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ABSTRACT

The intention of this work is to provide a deeper understanding of the engineering geological

behaviour ofgranite saprolite and how this affects the engineering ofsuch material, with specific

reference to the construction ofInjaka Dam in the north eastern portion ofSouth Africa Whilst

extensive investigation ofweathered granites has been carriedout internationally, very little detailed

research on the nature of this material is documented locally. The construction of Injaka Dam

afforded the opportunity to investigate the saprolite in detail. This study was initially submitted to

the Department ofGeology and Applied Geology at the University ofNatal, Durban (renamed the

University ofKwazulu-Natal in 2004) to fulfill the requirement ofa Master ofScience degree in

200 I. Following this submission, and supported by recommendations made by the external

examiners and the project supervisor, it was agreed to upgrade the work and submit this thesis for

the degree ofDoctor of Philosophy.

Intensive chemical weathering ofgranite at Injaka Dam site has resulted in the formation ofthick

saprolitic deposits overlying the weathered bedrock. The granite forms part of the 3 075 Ma

Nelspruit Suite which has been intersected by the African erosion surface. The extensive, multi­

cyclic period ofweathering and erosion that formed this surface has resulted in deep (up to 35 m)

chemical weathering ofthe underlying bedrock in this area. The construction ofInjaka Dam on this

material necessitated a thorough engineeringgeological investigationto understand the nature ofthe

weathering and the possible influences it exerts on the engineering behaviourofthe saprolite. This

was accomplished by analysing the weathering of the granite and relating the effects of these

weathering processes and changes to the engineering behaviour of the material. By applying

various chemical and mineralogical indices to the weathered granite, the intensityofweathering and

related changes could be quantified and compared with the engineering behaviourofthe material.

This was achieved byapplying a series ofengineering indices to the material and relating these to

the quantified weathering changes. In this way tentative extrapolation ofthe engineering behaviour

ofthe material could be gained and used to predict engineering performance. The resultant effects

ofthe engineering behaviour ofthe material on the design and construction ofthe dam are also

discussed.
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1. INTRODUCTION

The need for understanding the effects ofgeological processes on soils and rocks and their interaction

with the engineered environment is well established. Perhaps the most important of all of these

processes is that ofweathering. Chemical weathering forms a fundamental componentofsoil and rock

weathering in tropical and sub-tropical environments, whether they be contemporaneous or

palaeaoclimatic. As such, chemical weathering exerts a significant influence on the engineering

behaviour of these materials (Gidigasu, 1980). By understanding the processes and effects of this

weathering it is possible to predict the change in engineering behaviour of such materials as they

undergo transition from a fresh to weathered state and this in turn provides a key design solution to

engineering on and with such materials.

Weathered granite has been encountered in many civil engineering projects throughout the world, not

least ofwhich is at the construction site ofInjaka Dam in South Africa. In particular, construction in

and with such materials in Australia and the Far East has led to research which has ultimately facilitated

a greater understanding of the processes of chemical weathering acting on granites and the effects

thereof. However, much of this research has been based on physical, chemical and mineralogical

changes of the granite with continuously increasing weathering intensity (the weathering grade

spectrum) from fresh bedrock to residual soil, whereas this study concentrates primarily on the granite

saprolite phase ofweathering (Grade V or completely weathered material- Anon, 1995). In South

Africa, whilst much has been written about the engineering properties ofresidual soils, and granite soils

in particular, relatively limited information is available on the physico- and geochemical changes and

their effects on the engineering properties ofgranite saprolite. The catastrophic failure ofZoeknog

Dam in 1993, situated some 20km north ofInjaka Dam and constructed with similar materials, provided

the impetus for detailed investigation ofthe engineering geological behaviourofthe granite saprolite at

Injaka Dam.

The term "saprolite" is not commonly used in the South African context, although it forms common

terminology internationally. The term was introduced by Becker (1895) in the United States and since

that time has received favourable use by pedologists and geologists. Stolt and Baker (1994), define

saprolite as crystalline bedrock that has undergone isovolumetric weathering but which still retains the

original structure, texture and fabric ofthe parent rock, whilst essentially behaving geotechnically as

a soil. Its engineering weathering grade is equivalent to the commonly used "completely weathered"

terminology (ISRM, 1981).
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The occurrence ofsaprolites is widespread and they can be found on every continent (Sowers, 1963),

but are particularly common in the tropical and sub-tropical regions ofsouthern Asia, Australia, Africa,

southeastern North America, Central America and South America where wann and humid climates

occur. In some ofthe more temperate regions they occur as weathering remnants from tropical and

sub-tropical palaeoclimates (as they do in South Africa). The widespread occurrence ofthese materials

means thatthey often exhibit a variety ofcharacteristics - a reflection oftheir diverse parent lithologies

and variable weathering environments. It is this heterogeneity and complexity that commonly causes

these materials to presentproblems in engineering, or at least exhibit unique engineering behaviour. For

instance, saprolites are texturally similar to soils and exhibit the full range ofgrain sizes as found in

sediments; but mineralogically they contain primary rock fonning minerals within a complex fabric of

alteration and secondary decomposition products, and structurally they retain much of the relict

crystalline textures ofthe parent rock including internal mineral configurations and structural defects.

Consequently, the characterisation, sampling, testing and analysis ofsuch soils is complex. In fact,

many conventional soil mechanics approaches and relationships developed for transported soils do not

readily apply to these soils CVaughan etal., 1988) and ifthey do, require careful interpretation. Despite

this, the engineering behaviourofmany ofthese soils shows similarcharacteristics including low density,

moderate penneability, generally high shear strengths and metastable behaviour. The granite saprolite

at Injaka Dam proved to be no different.

The construction of Injaka Dam began in 1996 and with the dedicated support of the Council for

Geoscience and the Department ofWater Affairs and Forestry, this research was allowed to flourish.

The work represents a three year part-time involvement at Injaka Dam site where the author was

commissioned as site geologist. In this role, the author acted in close liaison with the design engineers

on all geological aspects ofthe dam design and construction. The granite saprolite provided a particular

area of interest which required further research having been under-studied in South Africa, despite

being a characteristically difficult material to engineer.

The objectives ofthis engineering geological study included analysis ofthe weathering processes that

have acted upon the granite to produce the saprolite and quantification ofthe engineering geological

behaviour ofthe material. The results from this study were used to guide design engineers during dam

construction and enhance the understanding ofthe engineering behaviour ofthe saprolite. To achieve

these objectives a series ofpetrographic, electron microscope, chemical and mineralogical techniques

were applied to the saprolite to understand the weathering processes and effects. Quantification ofthe

intensity ofweathering was achieved by using these techniques to index the changes brought about by

weathering. A series of engineering tests were also undertaken to quantify the engineering
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characteristics ofthe material. By indexing the material using these techniques, and comparing the

changes in engineering behaviour with weathering, an understanding of the complex effects that

weathering has on the engineering behaviour ofthe material could be gained. This is essentially the

hypothesis proposed for this thesis - that the weathering ofa granite saprolite can be indexed and that

these indices can be used to predict and correlate the engineering behaviour ofthis material to various

degrees of accuracy.

The initial part ofthis study (Chapters 2 to 9) reviews the many aspects ofchange that occur in the

weathering profile ofthe granite saprolite and attempts to correlate these changes either mineralogically,

geochemically or on a limited scale, structurally through microfabric investigations. The latter part of

the study (Chapters 10 to 13) quantifies the engineering behaviour ofthe material and its relationship

to the weathering changes mentioned above. Chapter 14 provides a synopsis of the engineering

characteristics ofthe remoulded granite saprolite which was carried out to assess the material suitability

for construction ofthe earthfill embankment for Injaka Dam. Finally, Chapter 15 reviews the design

and construction measures undertaken at Injaka Dam to mitigate against certain problematic

engineering characteristics of the granite saprolite.

For comparative purposes, and in an attempt to broaden the application ofthe results from this study,

selected information from the feasibility, design and post-failure investigations undertaken at Zoeknog

Dam has been included and discussed in this dissertation together with several comparative data sets

for similar material investigated by Falla (1985) in the Johannesburg area ofSouth Africa. It must be

appreciated that the level ofdetail ofinvestigation ofthese two data sets is not equivalent to that which

has been carried out in this study, although the objective ofthe comparisons is purely to establish the

general applicability ofselected fmdings from this research making the results broadly relevant to other

sites. Other relevant and comparable data from around the world on similar material is also included

to broaden the context ofthe findings from this study. It is hoped that this research and the results

thereofwill contribute to an improvement ofthe understanding ofgranite saprolite in South Africa and

the engineering of such materials, particularly with regard to dam construction.
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2. OVERVIEW OF SITE

2.1 Description of Injaka Dam site

Injaka Dam site is situated 10 km south ofBushbuckridge (24 0 53' 08" S; 31 0 05' 09" E), located

in Mpumalanga Province, South Africa (Figure 2.1). The dam is constructed on the eastward­

flowing, perennial Marite River which is a major tributary ofthe Sabie River. The Marite River has

its source at the edge ofthe Drakensberg escarpment Gust north ofGraskop). The dam comprises

a zoned earthfill embankment 550 m long and 53 m high with a central concrete trough spillway and

outlet conduit (Figure 2.2). It forms part ofthe development ofthe water resources ofthe Sabie

Rivercatchment allowing for expanded water utilization, stabilization ofthe flow ofthe Sabie River

in the Kruger National Park and transfer of water from the Sabie River sub-catchment to the

relatively dry Sand River sub-catchment. Locally, the reservoir will be used to increase the

irrigation potential ofthe surrounding Bushbuckridge Trust Farms.
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Figure 2.1. Locality of Injaka Dam site in the northeastern portion of South Africa.

2.2 Geomorphology of the Site

Injaka Dam is constructed in a portion ofthe Marite River valley where the upper valley flanks are

formed by two spurs. River bed level at the site occurs at an elevation of approximately 724

m.a.s.l. with the river varying from 10 m to 30 m in width, exhibiting a predominantly dendritic

drainage pattern - a feature typical of granitic terrains. Prior to construction, the left flank was
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slightly convex with an average gradient of 1V:2H. The less convex right flank exhibited an

average gradient of 1V:3H. The lower parts ofboth valley flanks were somewhat steeper with an

average gradient of1V: 1H. Both flanks were heavily vegetated with plantations ofEucalyptus sp.

on the upper flank shoulders and with natural riverine vegetation (sour lowveld Bushveld type)

found on the steeper, lower flank portions. Excavations made during construction ofthe dam have

reduced the valley flanks to straight slopes with significantly increased average gradients. The left

flank exhibited an average gradient of IV:0,75H whilst the right flank Was finished to an average

gradient of 1V:0,55H.

Figure 2.2. Oblique aerial view looking north of completed dam site showing central concrete
trough spillway, inlet tower, outlet conduit and rip-rap protected embankment (photo courtesy of

Department of Water Affairs and Forestry, 2002).

The dam site is located in a sub-tropical region with rain falling primarily during the summer period.

The maximum average daily summer temperature is 30.1 °C with a minimum average daily winter

temperature of8.9°C. Annual precipitation is 722 mm, with annual evaporation recorded over 2000

mm (SA Weather Bureau, 1998). This measurement represents 277% of the total annual

precipitation. Thomwaite's moisture index ofthe area is almost zero, suggesting that sub-humid

conditions prevail (Schulze, 1958). Using the climatic N-value derived by Weinert (1974), which

has been calculated as N=2, and the relationship between climate and type ofweathering as shown

by Figure 2.3 from Fookes etal. (1971), it can be seen thatthe main weathering mechanism under

the current climatic conditions at Injaka Dam site is chemical decomposition.
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Figure 2.3 Relationship between climate and type of weathering (after Fookes et al., 1971).

2.3 Geology of the Site

The regional geology ofthe area is depicted in Figure 2.4a with the local geology ofthe dam site

presented in Figure 2.5 and a cross section along the dam centreline shown in Figure 2.6. The

majority ofthe region (including the dam site) is underlain bymedium-grained quartz-microcline­

plagioclase-biotite migmatite, granite and gneiss. Mafic and ultramafic xenoliths up to 300mm in

diameter occur locally, but do not appear to be very common. Towards the western portion ofthe

site, comprising the upper reaches ofthe reservoir area, white to pale brown, medium to coarse­

grained porphyritic biotite granite becomes more predominant. Both lithologies are unnamed, but

belong to the 3075 Ma Nelspruit Suite, SACS (1980). The transition from the more massive granite

in the west to the gneissic rocks in the east is gradual with the contact not easily recognised.

Numerous post-Transvaal age diabase dykes (younger than 2 300 Ma) intrude the area, Chunnett

et al. (1991a). The diabase is generally dark grey, fine-grained and massive. The predominant

strike direction ofthese lineaments is north-northeast with a secondary strike direction for the dykes

being approximately east-west. The dykes vary from 10 m to 20 m in thickness and are generally

steeply dipping (>70 0
). A major fault with associated shearzone strikes approximately north-south

atthe location ofthe dam site (Figure 2.5). This feature is composed ofpegmatite and mylonitic

breccia. Detailed geological mapping ofthe dam site has revealed a complex temporal relationship
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between the faulting and the intrusion ofthe dykes. A very prominent chlorite schist zone (2 m in

width) is associated with post-intrusion emplacement of the linear north-south trending dyke

encountered at the site.

700
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HORIZONTAL DISTANCE (m)

LONGITUDINAL SECTION AlONG MAIN EARTH EMBANKMENT CENTRELlNE

Figure 2.6. Geological cross section along dam centreline (post excavation of foundation
footprint).

The major fault zone composed of recemented pegmatite and mylonitic breccia is resistant to

erosion and manifests itselfas a positive linear ridge clearly observable from aerial photographs and

surface inspection. However, the granite and the diabase dykes are very susceptible to chemical

weathering fonning thick mantles ofdecomposed material and only outcrop on very steep slopes

or in the river channel where erosion and scouring exposes the bedrock (Figure 2.7). This thick

weathered mantle has formed from extensive cycles of weathering over geological time.

According to the description ofthe geomorphic evolution ofsouthern Africa by Partridge and Maud

(1987), Injaka Dam site is located below the former position of the African erosion surface as

shown in Figures 2.4a and b. This extensive geomorphic surface is representative ofenduring,

multiple weathering and erosion cycles that started in the Cretaceous and terminated in the

Miocene, lasting some 140 million years and that was initiated by a series ofcontinental uplifts.

During this period an extensive area ofextraordinary smoothness was planated (Brink, 1996). The

extreme intensity ofthe weathering during this period has resulted in the formation ofsaprolitic soils

up to 35 m thick in places typified by extensive kaolinisation ofthe weathered profile. The current

sub-tropical climate ofthe area has also contributed to the enhanced chemical weathering, although

the full extent ofthis is not known. Subsequent erosion cycles caused by uplift and rejuvenation

have intersected the African erosion surface, partially stripping the thick mantle of weathered

material. One such surface as shown in Figures 2.4a and b is the Post African I surface which

was triggered by tectonic uplift in the Miocene and is generally typified by thinner weathered

mantles than those observed on the African erosion surface (Falla, 1985).
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3. CHEMICAL WEATHERING OF GRANITES

3.1 Introduction

Chemical weathering is the disequilibrium reaction of rocks and soils to their surrounding

environment. Generally, the nature ofthis environment is governed by the presence and quantity

ofwater; the availabilityofoxygen and the formation ofcarbonic acids. As Velbel (1984) suggests,

chemical weathering ofrocks and minerals is one ofthe most important geochemical processes by

which chemical elements are fractionated at the earth's surface. The complex interaction of

weathering and erosion effects are concentrated in the upper domain ofthe earth's crust and as

all engineering works are carried out at or close to the earth's surface, it is obvious that such

activities will be directly influenced by these two processes.

The effects ofchemical weathering on the engineering behaviour ofrocks and soils are many and

varied butgenerally combine to weaken the material. The most common effect is that ofincreased

porosity due to solution and stress relief(Vaughan and Kwan, 1984). This porosity may be in the

form of irregular inter- and intra-granular voids or through the development of inter and intra­

granular microfractures which make the material more friable. Through these processes, chemical

weathering also results in weakeningof mineral grains and a loss orpartial loss ofbonding between

such grains as observed by Nishida and Aoyama (1985) in their studyon decomposed granite soil.

Sowers (1963) has shown that these effects contribute to an increase in the deformability ofthe

weathered material. In many weathering systems, new minerals are deposited in voids, along grain

boundaries and along fractures. In some cases, as in the formation of iron oxide cementation in

laterites, these new minerals can strengthen the weathered rock material (Bell, 1999).

Alternatively, these new decomposition products can be leached out ofthe system leaving a more

porous structure. These effects can alter the permeabilityofthe material, but this will depend upon

the nature of the rock, the presence and type of weathering products and the intensity of the
weathering.

3.2 Processes of chemical weathering

Chemical weathering leads to mineral alteration primarily affected by oxidation, reduction,

hydration, hydrolysis, carbonation and chelation. Oxidation involves the reaction with oxygen to

form oxides, or if water is incorporated, hydroxides. This is considered to be one of the most

common chemical weathering reactions and is particularly important in rocks which contain

oxidizable substances such as iron. Reduction is the opposite ofoxidation and occurs in anaerobic

conditions where the availabilityofoxygen is limited. Hydration is the addition ofwaterto amineral

and is very important in the formation ofclay products whilst hydrolysis is the chemical reaction
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between the ions ofa mineral and the H+ and OH" ions ofwater and occurs whenever a mineral

is in contact with water. Carbonation is the reaction ofcarbonate orbicarbonate ions with minerals.

The source ofthese ions is from dissolved CO2 in water. Carbonates are not common end products

ofin situ weathering, but the fonnation ofcarbonates is an interim step in the weathering ofcertain

minerals, in particular feldspars. Chelation orcomplexing involves the retention ofan ion (usually

a metal) within a ring structure oforganic origin and is commonly used by plants. Chelation agents

allow for the extraction ofions from otherwise insoluble solids, enabling transfer ofthese ions in

chemical environments in which theywould nonnallybe precipitated. The most important chemical

weathering reactions that occur at Injaka Dam include hydrolysis and hydration leading to the

formation ofk:aolinite end products. Duringthese reactions, solution and leaching play an important

part in increasing the porosity of the material.

The rate at which the various weathering processes take place is dictated by three major factors

includingenvironmental factors (climate, hydrologica~ topographical and biological conditions); rock

mass properties (homogeneity, nature and spacing offractures, and secondary penneability) and

rock material properties (composition, fabric, texture and primary permeability). These factors

control the reaction and equilibrium rates between granite minerals (quartz, alkali feldspars,

plagioclase feldspars and micas) and outside reactants, includingwater, oxygen, carbon dioxide and

biological acids to form decomposition products. According to Oilier (1984) the following

decomposition products can be considered as diagnostic of chemical weathering ofgranite :

Clay minerals (kaolinite, iIIite, gibbsite and smectite)

Insoluble iron oxides and hydroxides

Cations

Silica in solution

The nature and relative abundance ofthese products is dependent upon the intensityofthe chemical

weathering, the severityofeluviation processes, the solubilityofthe elements (orderofsolubility for

common mineral forming elements is Ca>Na>Mg>K>Si>AI>Fe) and the pH of the ambient

solutions. According to Loughnan (1969) and Velbel (1984) clay mineralogy in deep weathering

profiles is consistent with the aqueous geochemistry ofthe weathering solutions. Different clay

minerals can only develop ifthe cations integral to their formation are available within the immediate

micro-environmentor through weathering solutions. Ifeluviation is not significant, cation-rich clay

species such as montmorillonite and illite are formed. Alternatively, intense flushing ofthe system

removing practicallyall soluble components can result in the fonnation ofk:aolinite and eventually

gibbsite. Figure 3.1 shows details ofthe proposed mineral weathering paths for granite in Hong

Kong as identified by Irfan (1996). Weathering paths identified for the granite at Injaka Dam are
shown in red.
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Figure 3.1. Weathering paths ofmineral transformations in Hong Kong granites as proposed by
Irfan (1996). Paths shown in red indicate mineral transformations of granite weathering at

Injaka Dam.

3.3 Mineralogical transformations during chemical weathering of granite

Molecularly the weathering ofsilica in the form ofquartz and silica minerals can be considered to

be insignificant. However, the silicate minerals including feldspars and micas are particularly

susceptible to chemical weathering. The feldspar minerals can be categorised into two groups:

plagioclase and alkali feldspars. The susceptibility ofthese minerals to chemical weathering is

explained by Zhao et al. (1994a) who describe the basic unit of silicate minerals, the silica

tetrahedron, as being composed of weak Si-O-Si linkages maintained by intricate interactions

between geometric and electrostatic factors. During the weathering of silicates the cations are

replaced by hydrogen ions as described by the following reaction:

silicate + hydrogen -... metal cation + silicon hydroXide (Eqn.3.3.1)
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Eggleton (1986) suggests that the prevelance ofdefects in the original feldspar mineral governs the

rate at which weathering can occur. As plagioclase contains multiple twin boundaries and complex

crystallographic textures, it is likely to alter more rapidly than simply twinned sanidine. Microcline

containing numerous twin boundaries is also likely to weather rapidly. A summary ofthe detailed

feldspar reactions during weathering is presented below:

Orthoclase (decomposition in acidic solution)

KAISi30 a+ W---+ K+ + AISi30 a- + Si02 + Hp

Na-plagioclase (decomposition in acidic solution)

NaAISi30 a+ W---+ Na+ + AISi30 a- + Si02 + H20

Ca-plagioclase (decomposition in acidic solution)

CaAlSiPa + W ---+ Ca2++ AISiPa2- + Si02 + Hp

(Eqn.3.3.2)

(Eqn. 3.3.3)

(Eqn. 3.3.4)

The first stages of feldspar weathering can be observed both in optical and scanning electron

microscopy. In plane polarised lightthe development ofturbidity and microcracking along cleavage

planes in feldspars can be observed. Scanning electron microscopy observations show the

development oforiented etch pits, generally in positions related to twin planes (Berner and Holdren,

1979). Etch pits represent sites of crystal dislocations (crystal defects and mismatched bonds)

which tend to be preferentially weathered. It is thought that etchpit sites are initially filled with clay

formed from in situ weathering of the feldspar. Flushing and dissolution ofthe clay erodes the

material, finally resulting in an empty etch pit. The presence of etch pits suggests that the

weathering is primarily ofa surface-controlled reaction, rather than diffusion-controlled reactions.

Montgomery and Brace (1975) suggest that partially annealed cleavages or random fractures

developed during early stage cooling ofthe rock are sites oflocally higher porosity (usually twice

average rock porosity). This excessive porosity may account for the more rapid decomposition of

these sites.

The progressive weathering sequence offeldspar is classically presented as follows, although the

formation ofeither smectite or kaolinite is governed by the drainage conditions during weathering,

with smectite forming in poorly drained environments and kaolinite forming under well-drained

conditions:

Feldspar ---+ smectite ---+ kaolinite ---+ gibbsite (Eqn. 3.3.5)

This reaction series can be explained by progressive silication ofweathering solutions with reaction

progressing as the solutions migrate downwards through the weathering profile.
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Micas are 2: 1 phyllosilicates with tightly held interlayer cations. Both biotite and muscovite can be

found in varying proportions within granite. G01dich (1938), in his classic appraisal ofweathering,

showed that muscovite is more resistant to weathering attack than biotite. Initial stages ofbiotite

weathering as observed under the optical microscope show orange iron oxide staining along

cleavage traces and at grain boundaries. More intense weathering effects result in the formation

oforange "halos" encompassing the weathered biotite grain suggesting mobilisation ofthe metal

oxide.

Generally, the classical weathering reaction series for muscovite and biotite are as follows:

Muscovite ~ vermiculite ~ beidellite

Biotite ~ vermiculite-chlorite ~ vermiculite

Zhao et al. (1994a) suggest the following detailed weathering reactions:

Muscovite (decomposition in acidic solution)

KAI2(Si~IOlO)(OHh + W~ K+ + A13++ AISi30 10+ + Si02+ H20

(Eqn. 3.3.6)

Biotite (decomposition in acidic solution) (Eqn.3.3.7)

K(Mg,Feh(Si~I01o)(OHh+ w~ K+ + (Mg2+, AI3+) + AISi30 1/ + Si02+ H20

Unlike most other silicates, sheet silicates characteristically dissolve and precipitate during

weathering. Dissolution (and precipitation) generally begins on the basal surface (parallel to the

layers) and the edge surfaces. As a consequence of the reactivity of the edges of the crystal

sheets, sheet silicates tend to dissolve actively from the edge towards the core (Nagy, 1995).

In a similar manner to the rate ofweathering offeldspars, the abundance ofsurface defects on the

mica grain surface may also control the susceptibility ofthe mineral to dissolution effects. Such

surface defects include steps, kinks, structural defects, compositiona1 impurities and dislocations.

Steps and kinks provide sites of different reactivity because they present different bonding

arrangements for dissolution reactions. Structural defects are sites of higher energy, whilst

compositional impurities, and particularly dislocations, may be sites oflocal higher strain energies.

The nature of these weathering reactions encountered at Injaka Dam is presented in the

forthcoming Chapters 6 to 9, where petrographic, mineralogical and microfabric studies using a

scanning electron microscope are detailed.
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4. THE DESCRIPTION AND CLASSIFICATION OF WEATHERED GRANITE

4.1 Introduction

It has been acknowledged by Dearman (1995) that different rock types respond differently to

weathering processes - this being a function oftheirdifferent mineralogy and different macro- and

micro-weathering environments. It stands to reason then that no weathering classification system

can be devised that is suitable for all rock types. In fact, it has been recognised by Anon (1995)

that classification systems can even differ from site to site.

A tremendous amount of literature is available describing the many systems used to classify

weathered rock to further understand and predict their engineering behaviour. Many of these

systems were developed from studies focussed on granite weathering. It is not the intention ofthis

study to review all these classification systems, however, it is important to illustrate the particular

methodology that was used for this study. The need to classify weathering of rock allows for

comparable descriptions ofzones ofrock and soil with particular characteristic qualities to which

engineering characteristics can be assigned. For a classification system to be successful it must

be able to identify a sequence ofrecognisable stages in decomposition and/or disintegration ofthe

rock and must show the differences in the progressive changes of the physical and mechanical

properties which influence the engineering performance of the weathered material.

4.2 Review of selected classification systems

Moye (1955) was perhaps the first to classify weathered granite into groups using engineering

parameters of weathered granitic rock exposed in outcrops, excavations and recovered as drill

cores. His classification system provided detailed descriptions ofsix stages ofchemical weathering

ranging from fresh granite to granitic soil (Table 4.1). Highly and completely weathered granites

classified as engineering soils, whilst fresh to slightly weathered granites classified as rock. The

moderately weathered granite proved difficult to classify as the material was often a transition

between soil and rock.

Shortly thereafter, Ruxton and Berry (1957) employed a more geologically and pedologically

orientated approach to their classification ofweathered Hong Kong granite where they made use

ofidentifying the percentage ofsolid rock within the weathering profile and the characteristics of

the residual weathered material ("debris"). They employed a four (I-IV) zone classification, one

of which can be sub-divided, as shown in Figure 4.1.
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Table 4.1. Summary of weathering factors taken into account in the Moye (1955) weathering

classification with grade numbers from Little (1969) and after Dearman (1995).

Degree of weathering

Granitic soil

Completely weathered

Highly weathered

Moderately weathered

Slightly weathered

Fresh

Engineering classification

Soil

Soil

Soil

Rock

Rock

Rock

Recognition factors Grade number

G VI

ABCDEF V

ABCD IV

ABC III

ABC 11

A

Recognition Factors

A Joints stained

B Rock and soil material stained

C Feldspars decomposed

D Strength: NX cores can be broken in the hand

E

F

G

Disintegrates in water

Biotite decomposed

Original texture absent

ZONE GRADE' THICKNESS Soil RECOGNITION FACTORS

I-Soil VI 15m Residual debris

Residual debris with core stones

D Y Z

lIa- Soil V

llb-Soil IV

0

44m Less than 10% corestones A B C WXY

0

o Q

°-00

CCO
15m COO 10 - 50% corestones A B C WXY

III - Soil and Rock III 15m Core stones with residual debris A B WX

IV - Soil and Rock 11

Rock

15m Partially weathered rock

Fresh jointed rock

A

Recqjnilia1 Factlrs , Little's (1939) ,,"BOO nuntls" "f.iEm

A
B
C
D

BrONl1 stairing to jcilt and caestae margins
Partial deccrrpcsiticrl d feldspws and lioile
Corrplete decxJll1lOSiticrl d feklsJHs and _
Reddening and wsjisaicn

W
G
y
Z

Caestaes
Grus
ResidJa <EIris
OOerenliaed d£t>ris

Figure 4.1. Weathering classification system ofRuxton and Berry (1957) with grade numbers
after Little (1969).

From the detailed descriptions given by Moye, it is possible to analyse his classification scheme into

six classes of"degrees ofweathering" in terms ofthe seven recognition factors A to G given in

Table 4.1. In a review ofthe engineering classification oftropical residual soils, particularly with

reference to Hong Kong and Malaysia, Little (1967) developed this idea ofsix weathering stages

each identified by a grade number I-VI. He discerned categorical differences between weathered

material using the degree ofdiscolouration, soil:rock ratios and the nature ofthe relict texture within
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the six classes of"degrees ofweathering" identified by Moye (1955). This six-fold grading system

described the fresh rock as Grade I with the residual soil labelled as Grade VI (Tables 4.1 and 4.2).

Little (1969) later updated the conceptofrock:soil ratio (previously introduced by Ruxton and Berry,

1957) for the description ofweathered granite. His classification is presented in Table 4.2 and is

important as it introduces a description of the state of the feldspar grains - which Baynes and

Dearman (1978a), Irfan (1988) and Lee and de Freitas (1989) have shown to be so important when

assessing the engineering behaviour of the weathered granite.

Table 4.2. Classification ofthe various stages ofthe weathering processes on granite (Little, 1969).

Grade Degree of

decomposition

VI Soil

V Completely

weathered

Field recognition

No recognisable rock texture; surface layer

contains humus and plants

Rock is completely decomposed by

weathering in place but texture still

recognisable. In types of granitic origin,

original feldspars completely decomposed to

clay minerals. Cannot be recovered as core

by ordinary rotary driling techniques.

Engineering properties

Unsuitable for important foundations. Unsuitable on

sJopes when cover is destroyed.

Can be excavated by hand or ripping without use of

explosives. Unsuitable for foundations of concrete

dams or large structures. May be suitable for

foundations of earth dams and for fiB. Unstable in

high euttings and steep angles. ReqUires erosion

protection.

IV

III

11

Highly

weathered

Moderately

weathered

Slightly

weathered

Fresh rock

Rock so weakened by weathering that fairly

large pieces can be broken and crumbled in

the hands. Sometimes recovered as core

by careful rotary drilling. Stained by

lmonite. less than 50% rock.

Considerably weathered throughout

Possessing some strength· large pieces

(e.g. NX drill core) cannot be broken by

hand. Often limonite stained. %)% to 90%

rock.

Distinctly weathered through much of the

rock fabric with slight Iimonite staining.

Some decomposed feldspar in granites.

Strength approaching that of fresh rock.

More than 90% rock.

Fresh rock may have some limonite-stained

joints immediately beneath weathered rock.

Similar to Grade V. Unlikely to be suitable for

foundations of concrete dams. Erratic presence of

boulders make it an unreliable foundation stratum

for large structures.

Excavated with difficulty without use of explosives.

MosUy crushes under bulldozers tracks. Suitable

for foundations small concrete structures and

rockfiH dams. May be suitable for semi-pervious

fill. Stability in euttings depends on special

features. especialy joint attitudes.

Requires explosives for excavation. Suitable for

concrete dam foundations. Highly permeable

through open joints. Often more permeable than the

zones above or below. Questionable as concrete

aggregate.

Staining indicates water percolation along joints;

individual pieces may be loosened blasting or stress

relief and support may be required in tunnels.

Lee and de Freitas (1989) presented a critical review of the current and past methods used for

classifying weathered granite and proposed a new rational approach adopting geological and

mechanical information to classify the weathered granite. Their main objection to many of the

existing weathering classification schemes was that they lead to difficulties in weathering

description and classification because ofthe imprecise and inadequate nature ofthe descriptive

terms. Martin and Hencher (1986) also found similar fault with the description ofweathered rocks

in BS 5930 (British Standards Institution, 1981), their criticism directed specifically atthis scheme.



19

Nevertheless, it is clear from the above discussion thatthe framework ofany classification system

is driven by the specific needs of the project to classify the weathered material.

The conceptofa six-fold classification system has generally found favour with various engineering

bodies (Anon, 1981 and 1995) and is also applicable to local igneous rocks in South Africa. The

classification system employed for this study used a modification ofthe prescriptive weathering

classification for uniform materials as proposed by Anon (1995). Before presenting this system it

is necessary that several of the terms be defined. Any general weathering scheme for granites

should include sequences of changes in material properties resulting from both chemical and

physical weathering processes acting together or individually (Dearman et al., 1978). The basic

description of the weathering grades of rock can be formulated from the key descriptive terms

defmed in Table 4.3. The use of these terms is flexible and they may be sub-divided using

qualifying terms (Lee and de Freitas, 1989). Ultimately, the application ofany classification system

will require some modification to suit the needs of the particular investigation. A better

understanding ofthe descriptive terms used in Table 4.3 can be gained when seen in the context

ofthe weathering processes as shown by the idealised diagram ofweathering ofrock material in

Figure 4.2. This flow chart shows the effect that disintegration, decomposition and solution

processes have on the nature ofthe rock fabric and mineral grains as weathering proceeds and

identifies the different varieties of fabric that can be achieved through these weathering paths.

Table 4.3. Key descriptive terms for classifying weathered rock material (after Dearman et al.,

1978).

TERM

Fresh

Discoloured

Weakened

Decomposed

Disintegrated

DESCRIPTION

No visible signs of weathering of rock material.

The colour of the original rock material is changed and is evidence of weathering. The degree of change

from the original colour should be indicated. If the colour change is confined to particular mineral

constituents this should be mentioned.

The rock is weakened to the extent that it is noticeably weakened, however it is not technically a soil.

The rock is weathered to the condition of a soil in which the original material fabric is still intact, but some

or all of the mineral grains are decomposed.

The rock is weathered to a condition of a soli in which the original material fabric is still intact. The rock is

friable. but the mineral grains are not decomposed.

As mentioned, the classification of weathered granite at Injaka Dam uses the uniform material

classification system prescribed by Anon (1995), and significantly, has been chosen because no

corestones occur within the profile (Figure 4.3). Figure 4.4 shows the detail ofthe classification

system, with Table 4.4 addressing the basic definitions of the grade numbers in terms of the

weathering ofthe rock. Figure 4.4 also shows the saprolite as being classed as Grade V material.

The material overlying the saprolite, termed granite saprolite with residual soil patches in this study,



20

straddles the Grades V and VI boundary. Material details for each relevant class are presented

in Figure 4.4.

TEXTURE PRESERVED

Solution

Solution

Rock material
with grain
boundaries
indicated

Decompos~ion

Decompos~ion

III Original minerals

[~J Voids

G Decomposition of one mineral species

• Decompos~ion of a second mineral species

o Opening of grain boundaries

Ea Fracturing of grains

• Residuum

TEXTURE DESTROYED OR ALTERED

Residuum of
day minerals

Figure 4.2. Idealised diagram ofthe stages ofweathering ofrock material (after Dearman, 1974).

Figure 4.3. Typical weathering profile encountered at Injaka Dam site. Note the distinct lack of
core stones with the very abrupt contact separating granite saprolite from highly weathered

granite bedrock.



Table 4.4. Description of weathering grades of rock mass description used in Figure 4.4.
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Grade Term

VI Residual Soil

V Completely

weathered

IV Highly Weathered

III Moderately

Weathered

Slightly

Weathered

Fresh

Description

All rock material is converted to soil. The mass structure and material fabric are destroyed.

There is a large change in volume. but the soil has not been significantly transported.

AB rock material is decomposed and/or disintegrated to soil. The original mass structure is stiM

largely intact

More than half of rock material is decomposed or disintegrated to a soil. Fresh or discoloured

rock is present either as a continuous framework or as corestones.

Less than half of the rock material is decomposed or disintegrated to soil. Fresh or discoloured

rock is present either as a continuous framework or as corestones.

Discolouration indicates weathering of rock material and discontinuity surfaces. All rock material

may be discoloured by weathering.

No visible sign of rock material weathering; perhaps slight discolouration on major discontinuity

surfaces.



Grad. IDelcrlpllon I Typlcll charaetlrllllcl

VI I Reslduel soli I Soli derived by in situ weathering
but h.vlng lost origln.1 texture
and fabric

------------------
I Highly

Large pieces broken by h.nd
IV IDoes not re.dily disaggreg.te

we.thered when dry s.mple Immersed in
water

-------------------Consider.bly we.kened
III I Mod....tely IPenetr.tive dlscolor.tion

we.thered L.rge pieces cannot be broken
by h.nd

SlIghtiy
I~~~~~s~,:~t~:--------

weathered Slight we.kenlng

-------------------

Fresh Unch.nged from origln.1 state I

High inter and intra-granular
porosity composed of fine
spongey feldspar and tubul
voids

High inter and intra-granular
porosity composed of fine
spongey feldsper and tubula
voids

Voldl

SlIty sand

SlIty sand

Grain 11.1

Present

Bloltlte is highly I Present
decomposed .nd m.y
be .bsent. Yellowl
orange weathering helos
often occur around
grains.

Blotlte completely
decomposed or absent
Clear hydrous micas
present

Extremely decomposed
fedlspar pseudomorphs
break down to soft day
becoming gritty h.rd
fragments and day with
depth

State of decompOlltlonldlllntegrallon of maJo, mln.ral conllll.nll Orlglnl' flbrlc

QUlrtz F.ldlllllr Mlcll

Fractured, reducedl Extremely to completely
In size, loss of decomposed feldsp.r
lustre pseudomorphs bre.k down

to soft day

Colour

Reddish brown
patches

Mottled light pink, IFractured, slight
white, orange and loss In structure
yellow becoming
olive yellow and
white with depth

Delc,lptlon of f.ldlp" _Itharlng u.lng grltltn,"" 1.11 (Irfln, 1888)

Deg"", of dtcompolltlon Grlttlna,"term Field recognltlon

Fresh Hard Cannot be cut by knife; cannot be grooved by pin

Moderataly Gritty Can be cut by knWe or grooved with • pin under he.vy pressure

Highly to Extremely Powdery C.n be crushed to silt size fragments by finger pressure

Completely Soft Can be moulded very easily with finger

This form of classification has been found applicable to many igneous, metamorphic and sedimentary rocks, The
profile at Injaka Dam is such that grades 11 and III are often combined.

Granlt. IIprollte

Fractured, reduced Feldpsar unrecognisable Blotlte absent Very high intergranular
In size, loss of Colourless hydrous porosity forming loose

Granltl IIprolltl lustre micas present. grain aggregations

with ..llduII loll
pltch.1 I Mottled pink and

yellow patches

Consider.bly we.kened
SI.kes In w.ter
Origin.' texture .pparent

Completely
weath...ed

V

~
E
8
.ll!
~
10

f
IX
Cl>

'"c:
l!
(!)

Figure 4.4. Classification system used for weathering of granite at Injaka Dam site (modified after Anon, 1995 and Irfan, 1988).
N
N
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5. SAMPLING MEmODOLOGY AND DESCRIPTION OF MATERIALS

5.1 Sampling Methodology

The excavations cut into the left and right valley flanks for the construction ofthe dam foundation

footprint at Injaka Dam site provided ideal exposures from which to cut block samples ofthe weathered

granite material through a vertical profile. This allowed an analysis ofthe changes in geochemistry,

mineralogy, physical structure and engineering behaviour ofthe weathered granite as a function of

depth. By cutting block samples directly from the excavation, disturbance during sampling was

minimised. Heymann and Clayton (1999) have shown that block sampling is the preferred option for

obtaining undisturbed samples as other methods such as tube and core sampling tend to disrupt the

fabric of natural soils.

Undisturbed block samples were carefully hand cut and trimmed from the face ofthe excavation at

vertical intervals ofapproximately 1to 2m along six sample traverses (Figures 2.5 and 5.1 - 5.6). These

block samples represented a volume of0,1to 0,2m3
• After trimming, the samples were immediately

brush-eovered with molten paraffm wax and then two further alternate layers ofmutton cloth and wax

until a fIrm protective layer surrounded the samples minimising any change in moisture content and

damage during transit. Heymann (1998) has shown that a combination ofcling film and wax proved

to be the most effective method for reducing moisture loss from block samples of London Clay.

However, the brittle nature of some of the weathered granite block samples from Injaka Dam site

required the extra strength afforded by the mutton cloth and wax combination. Furthermore, some of

the more delicate samples had to be covered with an integral layerofplaster-of-paris and mutton cloth

surrounding the fmal wax-mutton cloth layer. This provided the extra rigid protection to these samples.

The block samples were transported some 450 km to the Department ofWater Affairs and Forestry

Construction Materials Laboratory in Pretoriaon amattressofmoist sawdustand stored in an humidity

chamber prior to testing. Loose (disturbed) samples were also collected from the block sample sites,

where trimmings from the block samples were collected to obtain representative material for laboratory

testing, thus minimising any geochemical, mineralogical and textural differences between the block

samples and the loose samples.

The locationsofthe six sample traverses are shown on Figure 2.5 with specifIc profile details presented

in Figures 5.1 to 5.6. Figure 5.7 shows a photograph ofthe left flank ofthe dam foundation excavation

during construction with the site geology in relation to the sample traverses on this flank. A total of

forty eight samples ofweathered granite material were retrieved from the sample traverses. The bulk
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Figure 5.1. Sample traverse 1 incorporating right flank samples RF 12 to RF 14.

Figure 5.2. Sample traverse 2 incorporating right flank samples RF 6 to RF 16.
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Figure 5.3. Sample traverse 3 incorporating left flank samples LF 7 to LF 13.
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Figure 5.5. Sample traverse 5 incorporating left flank samples LF 18 to LF 28.
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Figure 5.7. View of the left flank of Injaka Dam site showing the site geology and positions of sample traverses 3, 4 and 5. Weathering grades for the respective
lithologies are also shown. Photograph taken from right flank, looking north.
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ofthe samples incorporated granite saprolite at varying degrees ofweathering intensity with granite

saprolite with residual soil patches and weathered granite bedrock sampled for comparative purposes.

5.2 Description of materials

Using the classification system presented in Figure 4.4, detailed macroscopic descriptions ofeach

sample were recorded in the field to compile the profIle descriptions at each sample traverse. These

are presented in Figures 5.1 to 5.6 depicting the sample traverses in relation to the excavated slope.

Samples labelled ''RP' were retrieved from the right flank traverses whilst samples labelled "LF" were

collected from traverses set out on the left flank. The traverses prove the existence of up to lOm of

granite saprolite directly exposed in the excavation flanks (although this thickness increases away from

the face ofthe excavations as shown in Figure 2.7). The samples incorporated granite saprolite with

residual soil patches, granite saprolite and weathered granite bedrock.

5.2.1 Granite saprolite with residual soil patches

The granite saprolite with residual soil patches occurs at the top ofthe profile and is distinguished from

the saprolite proper in that it has some loss ofrelict fabric due to a more advanced weathering state

(Figure 5.8). The horizon varies in thickness from 1,0 to 2,Om with a gradational contact with the

underlying granite saprolite. This material characteristically features irregular shaped, highly oxidised,

reddish brown patches ofloose, silt and clay aggregations often having a high porosity. These patches

occur irregularly throughout the horizon decreasing in abundance with depth and coalescing towards

the surface to grade into the overlyingreddish brown colluvial horizon. In some instances these patches

coincide with root traces. The remainderofthe material comprises a mottling oflight pink, pale yellow

and white, equigranular, firm, highly voided with void sizes ranging from 177to 1500J.1m clayeyand silty

sand retaining the original fabric ofthe parent material. The macro-voids exhibit spherical openings and

are vermiform (Figure 5.9) whilstthe micro-voids can be observed as fine sponge-like accumulations

within feldspar pseudomorphs and kaolinite aggregations. Thequartzgrains are often fractured reduced

in size and have a loss oflustre. The plagioclase feldspar grains are extremely decomposed, breaking

down to soft clay whilst the microcline feldspar grains break down to clay and occasional gritty

fragments when scraped with a knife. Within the reddish brown patches, the feldspars are not

recognisable. Biotite is completely absent with clear hydrous micas present.
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Figure 5.8. Granite saprolite (pink) with residual soil patches (red) showing complete loss offabric
structure where irregular patches of highly oxidised red clay aggregations occur (residual soil).

Note also loss offabric around root holes. Locality LF 7.

Figure 5.9. Close up view ofgranite saprolite (yellow) with residual soil patches (red brown)
showing prevalent concentration of vermiform voids. Note partial disruption to fabric in highly

oxidised (red brown) residual soil zones. Locality LF 18.
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5.2.2 Granite saprolite

The granite saprolite exhibits a variety ofcolours and grain sizes which can change over very short

distances (0,2m). This heterogeneity is a product ofthe heterogenous parent material fabric and local

differences within the weathering microclimate. The granite saprolite varies from orange with fine

yellow and light pink mottles in the upper profile to yellowish white with irregular dark olive patches

towards the base of the profile (Figures 5.10 and 5.11).

Figure 5.10. Variation ofgranite saprolite typical ofmid to upper profile material. Note distribution
ofvermiform solution voids throughout material and intact relict fabric showing structural interlock

ofgrains. Locality LF 24.

The material is equigranular except where localised quartz pegmatite veins occur and is firm in

consistency. Typical ofthis material is the presence ofnumerous tubularmacro-voids (250 to 1000J.1m

in diameter) as shown in Figures 5.10 and 5.11. These voids tend to preferentially form within feldspar­

rich and coarser-grained zones. Micro-voids often manifest themselves as a sponge-like texture within

feldspar pseudomorphs. The quartz grains are often fractured with a slight loss in lustre. Plagioclase

feldspar grains are extremelydecomposed forming pseudomorphs which breakdown to softclay, whilst

the less weathered microcline feldspar is moderately to highly decomposed and breaks down to clay

and gritty fragments. Biotitemay be absent in the upper reaches, but is highly decomposed lower down,

often exhibitinghalos oforange staining. The original fabric ofthe parent material is completely intact.
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Figure 5.11. Variation of granite saprolite typical of material just above bedrock contact. Note
retention of fabric. Locality LF 6.

As shown in Figure 4.3, the contact ofthe saprolite with the underlying weathered bedrock is abrupt

with no fonnation ofcorestones. This observation is similar to that described by Zhao et al. (l994a)

in their study ofgranite weathering in Singapore. It is not unusual for the saprolite to either directly

overly moderately or highly weathered granite, indicatingthat not all weathering grades are necessarily

included in the weathering profile.

5.2.3 Highly weathered granite

The highly weathered bedrockcomprises light yellow orolive yellow with white and dark green mottles,

close to medium jointed, equigranular (except where quartz pegmatite veins occur) granite (Figure

5.12). No voids are present within the material. Quartz grains are intact without any grain size

reduction although they may show signs offracturing. The plagioclase and microcline feldspars are

highly to moderately decomposed breakingdown to clay and gritty fragments. Dark green biotite grains

are present and ranging from moderately to highly weathered with orange stain halos surrounding the

grains.

5.2.4 Fresh and slightly weathered granite

The fresh and slightlyweathered granite bedrock is light grey to light greenish grey, medium to coarse­

grained with a poorly developed gneissic texture in places. The granite is often characterised by a

heterogenic appearance, often caused by pegmatitic zones and darkercoloured bands associated with

a higher percentage ofbiotite oramphiboles. The granite is close to mediumjointed and equigranular
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(except where pegmatite veins occur). In places adjacent to the diabase dykes the granite has been

influenced to some extent such that recrystallisation and assimilation has taken place forming granite

migmatite. Fracturing also tends to be more intense at these localities. The fresh granite shows no

discolouration. Quartz and feldspar grains are hard and intact and dark green biotite grains can be

observed.

Figure 5.12. View looking south of highly weathered granite bedrock showing complete
discolouration. Locality RF 25.
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6. SCANNING ELECTRON MICROSCOPE INVESTIGATION

6.1 Introduction

The scanning electron microscope (SEM) has since its inception been used as a tool to assess the

microfabric and weathering characteristicsofrocks and soils. Baynes and Dearman (1978b) stated

that the large range ofmagnification, advantageous depth offield, ease ofsample preparation and

analytical capabilities ofthe SEM greatly surpass the abilityofthe optical microscope to assess the

fme details of weathering and microfabric. Consequently, a greater understanding of these

features is gained. In the context ofgranite weathering, the SEM has been u~ed to describe grain­

surface textures offeldspar produced by weathering (Bernerand Holdren, 1977), and to assess the

nature and origin ofsome decomposition products (Keller, 1978). Baynes and Dearman (1978c)

have also managed to describe the microfabric of weathered granite using this technique.

The objective ofthis SEM study was to describe qualitatively the weathering characteristics and

mineralogical microfabrics ofthe weathered granite so that these observations can be correlated

with the geochemical, mineralogical and engineeringcharacteristic ofthe material discussed in later

chapters. Simplydefmed, the microfabricofsoils and rocks can be considered as the geometryand

interaction of the particulate grains with void space which together determine the mechanical

(engineering) properties of the material. This relationship is often complex and is affected by

molecular bonding (intra-grain forces), mineral bonding (inter-grain forces, either relict or

secondary), and volume and distribution ofthe void space. All these factors are influenced to some

degree by the weathering process. The primary microfabricofsaprolitic soils is geneticallyrelated

to the complex crystalline compositions and textures ofthe parent rock. Secondary, tertiary and

even higher orders ofmicrofabric can also be formed by weathering processes as decomposition

products fonn and porosity increases.

In the context ofgeotechnical engineering, limited work has been conducted on the relationship

between microfabric, weathering and engineering behaviour. Vargas (1953), Sowers (1963) and

Wallace (1973), suggested various microfabric configurations to explain observed engineering

behaviour without observing microfabrics and testing their hypotheses. Coliins and McGown

(1974) successfully applied their SEM observations to the engineering behaviour ofa variety of

natural soils, highlighting the importance ofthe SEM in this area ofstudy. They showed that the

sensitivity, collapse and expansiveness of these soils could be described in the context of soil

microfabric. Limited work has been carried out on characterising the microfabric ofweathered

granites through the SEM and its relationship to the engineering properties ofthe material, with

Baynes and Dearman (1978b and c) compiling the most comprehensive discussion on this

assessment. They have fonnulated a model on the microfabric of weathered granite using the
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degree of decomposition (Xd) which expresses the extent to which the mineral grains have

decomposed to clay and this is discussed in detail in Chapter 9. Collins (1985) has attempted to

formulate a three tier framework for microfabric characterisation oftropicallateritic and saprolitic

soils using the SEM. He maintained that the microfabric ofa saprolite could be broken down into

three levels: elementary level - comprising the interaction ofelementary particles such as clay

platelets and including pore space distributions; assemblage level- comprising the individual particle

assemblages formed by various combinations ofelementary particle arrangements and including

pore space distributions; and a composite microfabric level (comprising a composite ofvarious

assemblages in differing proportions based upon the weathering environment and parent rock

characteristics). He concluded that there exists a variety ofmicrofabrics in such soils with complex

multi-level pore systems. Notably, Collins realised that the link between microstructure

characterisation and mechanical behaviourofweathered materials is still at a developmental stage,

requiring significant further research and maintained that no single microfabric characterisation

could account for a complete explanation ofthe mechanical behaviourorengineering properties of

weathered materials. Furthermore, Baynes and Dearman (1978b) make the point that the size of

an SEM sample in relation to the field distribution of particular outcrops and exposures ofthe

weathered material can hardly be considered as representative. However, by observing sequential

changes in microfabric features, these features can be related to increasing weathering intensity

and in general terms microfabric changes can be reflected with weathering.

With these points in mind, the SEM work for this investigation was undertaken hand-in-hand with

a thorough geochemical, mineralogical and petrographical investigation ofthe weathered granite at

Injaka Dam to attempt to quantify the microfabric.

6.2 Sample preparation

The sampling and preparation of samples for SEM analyses is a delicate procedure requiring

preservation ofthe microfabric to prevent the formation ofmicroscopic artifacts. Specimens 250

cm3 in size were cut from the undisturbed block samples retrieved from the various sample

traverses. These specimens were oven dried for 48 hours at 36°C. Although it is suggested by

Tovey and Yan (1973) that freeze drying causes the minimum ofsample disturbance, this method

has been considered technically very difficult by Barden and Sides (1971). Consequently, oven

drying was considered the more suitable method for this study.

Smaller specimens ranging from 2 to 4 cm3 in size, were then carefully separated from the larger

cubes. Extreme care was taken during this process not to disturb the observational surface by

finger contact or smearing. Generally, the observational surface was J to 2 cm2 in area. Once the

required cube size had been trimmed, a thin layerofSuperglue® was applied to the side and bottom
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face of the sample to ensure sample integrity within the SEM. Unlike the peeling methods

suggested by Wong and Tovey (1975) and Barden and Sides (1971), it was decided to use delicate

air dusting for the cleaning ofthe observational surface. This procedure removed any disturbed or

loose surface detritus and proved successful in preventingthe formation ofartifacts during cleaning.

In cases where the block samples were considerably heterogeneous in nature, two and sometimes

three cube specimens were taken for observation. Once the cube specimens were correctly

prepared, they were fixed to a glass slide using carbon glue and then coated with a 300 Athick

layer ofcarbon. The carbon layer prevented over-charging ofthe specimen during analysis. In

some cases specimens had to be coated twice as the first carbon coating was not thick enough to

dissipate the charge.

6.3 Equipment and techniques

A Leica Cambridge Stereoscan 440 scanning electron microscope at the Council for Geoscience,

Pretoria, was used for the observational analysis ofthe cube samples. Analytical determination of

the composition ofmineral grains and clay aggregates was performed using the Electron Dispersive

System Oxford Link ISIS which was fitted to the SEM and operated at 20keV. This system

allowed for the determination ofthe majorand minor elements and their ratios to be displayed. The

entire system was run off a Pentium 100 MHz computer.

The general observation technique for the SEM was to traverse the sample, identifying the most

distinct mineralogical and microfabric features. Observational analysis of these features was

carried outat varying magnifications (40 xto 16000 x) to attempt to discern the properties ofthese

features. Essentially the intention ofthe SEMinvestigation was to identify, describe and photograph

those features thought to be associated with weathering and microfabric, which in turn are likely

to affect the engineering behaviour of the material. These features include microcracking,
dissolution and leachingeffects, and decomposition products. Bycharacterisingthese features with

the intensityofweathering, a relationship between the microfabric changes and weathering effects

could be determined. Whilst this procedure is subjective, it nevertheless still proved to yield very

relevant information on the nature of the changes in microfabric with increasing weathering.

Identification ofthe minerals under the SEMwas assisted by petrographic, x-ray diffraction (XRD)

and x-ray spectrometry (XRF) investigations as discussed in Chapters 7 and 8. Grain size and

particularly crystal form (shape and cleavage) were also employed to discern various minerals. Of

particular use was the Link ISIS system which allowed for analytical determination of the

composition ofthe mineral grains or aggregates (Figure 6.1). By focussing a target beam on the

particular mineral grain or clay aggregation the ratio ofvarious major and minor elements ofthat



36

particular target could be determined and used in identifying the mineral species. Furthermore, by

comparingthe ratios ofelements (particularly Si, AI, Ca, Na, and K) an indication ofthe degree of

weathering and leaching of the various minerals could also be obtained.

6.4 Nomenclature

Prior to discussing the SEM results it is pertinent that the relevant descriptive terms in SEM

nomenclature be defined. Table 6.1 provides details ofthese terms modified from Baynes and

Dearman (1 978c) with Figure 6.2 showing some ofthe typical clay particle geometric arrangements

and Figure 6.3 showing typical intragranular decompositional voids on feldspar surfaces. Where

appropriate, use has been made ofthis terminology when describing the various features identified

in this study.
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Figure 6.1. Example oftypical elemental counts per second from the Link ISIS system used to
differentiate various minerals under the SEM.

Cardhouse Bookhouse Turbostralic

Stair-stepped cardhouse Clay books

Figure 6.2. Possible geometrical arrangements ofclay microfabrics after Collins and McGown
(1974).



Table 6.1. Nomenclature of scanning electron microscope terminology (modified from Baynes and Dearman, 1978c).
rennlnology Deacrlptlon

Volda

Intergranular voids

Inlragranular voids

Transgranular voids

Prismatic etch pits (PEP's)

Prismatic etch trenches (PET's)

IrregUlar etch pits (IEP's)

Irregular etch crevasses (IEC's)

Clay Mlcrofabrlca

forming a space between mineral grains.

forming a space within mineral grains.

forming a space which cuts across a grain boundary.

roughly equidimensional, structurally controlled, decompositional hollows (see Fig. 6.3). Observations by Bemer and Holdren (1977) show such features

to be orientated generally in relation to twin planes. PEP's also represent sites of crystal dislocations (crystal defects and mismatched bonds) which
tend to have higher crystallographic energies and are preferentially weathered. It is thought that the etch pit sites are initially filled with clay with

flushing and dissolution eroding the material resulting in the hollow.

a structurally controlled decompositional hollow which has a length more than twice its width and forms similarly to PEP's (see Fig. 6.3).

an equidimensional decompositional hollow (see Fig 6.3).

a decompositional hollow having a length more than twice its width (see Fig. 6.3).

The microfabric of clays can be described at two levels. These include the arrangement of groups of individual clay particles (assemblage level) and the geometrical arrangement of individual clay particles
(elementary level). For clay particles that group together and act as units at varying levels of organisation, Yong and Sheeran (1973) presented the following definitions:

Domain

Cluster

Aggregations

two or more clay particles acting as a unit.

several domains acting as a unit.

large numbens of individual clay particles acting as an internally unordered but coherent group.

The geometrical relationships of individual clay platelets may be described using terms from original conceptual models as proposed by Van Olphen (1963):

Cardhouse

Layered

Books

Bookhouse

edge to face (E-F) arrangement (see Fig. 6.2).

face to face (F-F) arrangement.

face to face (F-F) forming a prismatic stack (see Fig. 6.2). May form interweaving bunches.

an open structure analogous to the cardhouse in which the Individual clay plates are replaced by books (see Fig. 6.2).

Turbostratic

Stair stepped

a closed structure consisting of tightly fitting books (see Fig. 6.2).

face to face (F-F) arrangement in which plates do not cover each other and hence form a stepped tabular structure (see Fig. 6.2). May form
interweaving bunches.

Cases may also arise where no clay microfabric is discernable.

w
-...:J
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Prismatic etch pits Prismatic etch trenches

Irregular etch pits Irregular etch crevasses

Figure 6.3. Intragranular decompositional voids as described by Baynes and Dearman (1978c).

6.5 Mineral weathering observations

Observations made with the naked eye during field mapping, petrographicallyand using the SEM

clearly indicate that all constituent parent materials do not weather at the same rate. This was

highlighted byGoldich (1938) in his double series ofdifferential weathering parent materials, ranging

from the most susceptible to least susceptible (Figure 6.4). This weathering series has been refmed

subsequently and other sequences have been proposed for specific cases. It follows from this that

the secondary minerals produced by weathering also appear in a definite order. More recently,

Nahon (1991), Anbeek (1992), Anbeek (1993) and Anbeek et al. (1994) have provided an insight

into the kinetics ofdissolution rates ofcertain major constituent minerals. The following discussion

describes the weathering and microfabric characteristics ofthe various mineralogical components

within the granite saprolite in the light of this information.

GOLDICH VlEATHERING SERIES

OIivine
Calcic plagiodase

+
Calcic-alkalic p1agioclase

Augite

\
Hornblende

~

Alkali-calcic plagiodase

Figure 6.4. Goldich's reaction series showing the high susceptibility ofplagioclase to

weathering.
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6.5.1 Quartz

The stable bondingofthe silica tetrahedron structure ofquartz molecules means that quartz grains

are generally resistant to weathering. Indeed, silica is the major element in water that undergoes

the least amount ofrandom variation. Practically then, the weathering effects on quartz can be

considered to be almost negligible in comparison to other minerals. However, as observed by

Brantley et al. (1986), natural etching ofquartz through chemical weathering can occur. This is

in the form ofsolution processes (Loughnan, 1969) which form a resistant, coarse-grained residue

during the weathering of granites (Lumb, 1962).

Indeed, in several ofthe samples ofgranite saprolite with residual soil patches characteristic arcuate

etching and pitting as observed by Krinsley and Doomkamp (1973), was observed on the surface

of some grains (Figure 6.5a) indicating a locally very high degree ofweathering and leaching.

Generally, however, the majority ofthe quartz grains exhibited a smooth or conchoidal fractured

surface as shown in Figure 6.5b.

6.5.2 Feldspars

The susceptibility offeldspars to chemical weathering with the plagioclase and potash feldspars

tending to undergo incongruent weathering has been described in Chapter 3 and Section 6.5.

Observations from this SEM investigation suggest a similar reactivity series for feldspars as that

found by Eggleton (1986), that is that the most reactive phase included Ca-plagioclase followed by

Na-plagioclase and then microcline. In fact, such was the intensityofthe weathering and severity

ofthe leachingofthe plagioclase in this weathered granite profile that its absence was conspicuous

in the near surface samples (Chapters 7 and 8). Scanning electron microscope observations of

feldspar weathering can be correlated with results from the XRD and petrographic analyses

(Chapters 7and 8) where the mobility orders for the alkali and alkali earth metal cations is Ca> Na

> Mg > K > Si > Al > Fe > Ti .

The feldspars from this granite saprolite show all classical SEM textures as described by Bemer

and Holdren (1977 and 1979), Baynes and Dearman (1978c) andAnand etal. (1985). The various

degrees ofetch pitting can be observed from the smallest cupules found in the least weathered

feldspars (Figure 6.6a) to the formation ofprismatic and irregular etch pits - PEPS (Figures 6.6b

and c) in the more highlyweathered grains. As weathering proceeds, coalescence ofthe prismatic

etch pits occurs forming prismatic etch trenches (PET's) shown in Figures 6.6d, e, fand g. The

PET's tend to develop preferentially along cleavage and twin boundaries as observed in these

figures and tend to significantly open up the feldspar structure. This systematic arrangement of

etch pits and etch trenches on the feldspar surfaces shows that the crystal structure of feldspar
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controls the nature and orientation of these features. Enhanced chemical weathering of the

feldspars leads to the coalescence ofthese etch pits and etch trenches, resulting in skeletal shells

of feldspar exhibiting a sieve-like texture as observed in Figures 6.6h, i, j and k.

The formation ofthe PEP's and PET's occurs on the surface of the feldspar grains but it is not

known exactly how deeply these features extend into the mineral grains. Montgomery and Brace

(1975) have however, shown by serial sectioning that the shape of these features changes

drastically with depth. Obviously with increased weathering, etchpit formation extends deeper into

the mineral grain. In fact, as observed by Baynes and Dearman (l978c), feldspar at a highly

progressed stateofweathering tended to show a sieve-like texture similarto that found in this study.

Anand etal. (1985) noted that the feldspars in saprolite material undergo various degrees and styles

ofalteration when weathered. Similarly, Baynes and Dearman (1978c) noted that not all feldspars

decompose in the same way, stating that the formation of irregular etch crevasses (lEe's ­

irregular, non-parallel sided crevasses evidently formed from a solution origin) on the surface of

some feldspars differs from that ofthe classic etch pit formation. Similar features were observed

for the weathered granite at Injaka Dam as shown in Figure 6.61. These features appear to be less

structurally controlled than the etch trenches, having a more irregular shape and more erratic

arrangement.

The variability in weathering ofthe feldspars described above can be a consequence ofdifferent

weathering regimes wherecertain weathering mechanisms and decomposition products occur under

one environment but not underanother. Weatheringmicroenvironments can also differ by distances

as small as 200 J.lm (Anand et aI., 1985). The reasons for these differences are not completely

understood but they may simply be a consequence ofminute differences in permeability within

various parts ofweathered grain structures or intergranular voids. The spatial arrangement ofthe

minerals, and consequently exchangeable cations, also accounts for microenvironment variations

as do the presence ofcrystallographic flaws within the mineral grain.

The different rates of feldspar weathering can be observed even in the early stages of chemical

weathering. Figure 6.6m shows the surface texture of a Na-plagioclase grain alongside a K­

feldspar grain located in a sample retrieved from a depth of 11,8 m and classified as highly

weathered granite bedrock. The more pitted surfaceofthe Na-plagioclase can clearly be observed.

6.5.3 Micas

Biotite and to a lesser extent muscovite are found in the granite saprolite at various degrees of

weathering. Muscovite is the more resistant ofthe two micas with the absence ofbiotite in the
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Figure 6.5. (a). Characteristic arcuate etching an~ pi~ng on weathered quartz. grain surface from ~te
saprolite with residual soil patches (LF 18). Magnifica~on = 4 ~90x. (b). Typl~1 s~ooth and conchOldal
fractured surface ofan unweathered quartz grain from gramte saprohte (LP 10). Magmficanon = 3 630x.

Figure 6.6. (a). Cupule formation developed on a twinned plagioclase grain in highly weathered granite (RF 2).
Magnification =3 700x. (b). Well developed prismatic etch pit formation on a feldspar grain surface in granite
saprolite (LF 3). Magnification = 4 500x. (c). Magnified view (16 380x) ofprismatic etch pits shown in Figure
6.6b. Magnification = 16 380x. (d). Structurally controlled prismatic etch trench formation on the surface ofa
plagioclase grain in granite saprolite (LF 8) -Iow magnification (603x).
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Figure 6.6. (e). Magnified view ofFigure 6.6d at 3 500x showing formation ofprismatic etch trenches (LF 8).
(t). Structurally controlled coalescence ofprismatic etch trenches in plagioclase feldspar from granite saprolite
(RF 7). Magnification = 4 360x. (g). View of Figure 6.6f showing distribution of prismatic etch trenches
throughout the grain surface. Magnification = 46Ix. (h). Structurally controlled coalescence ofprismatic etch
trenches showing sieve-like structure of plagioclase feldspar alongside unweathered quartz in granite saprolite
(RF 4). Magnification = I 72Ox. (i). Enhanced prismatic etch pit formation resulting in a highly porous
plagioclase feldspar framework in granite saprolite (LF 13). Magnification = 3 '870. (j). Another form of the
sieve-like feldspar texture developed in plagioclase feldspar from granite saprolite (LP 27). Magnification =

2200x.
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Figure 6.6. (k). Highly porous, fragile skeletal plagioclase feldspar framework developed under intense
leaching conditions in granite saprolite (LF 27). Magnification =2 660x. (1). Irregular etch crevasse formed
on the surface ofa feldspar grain in highly weathered granite (RF 24). Note the irregular shape ofthe crevasse
suggesting no structural control of the feature. Magnification = 3 220x. (m). Incongruent weathering of
potash feldspar and plagioclase in highly weathered granite (RF 16). Plagioclase (right hand side) shows
pitting on the grain surface whilst the potash feldspar (left hand side) exhibits no such features although
microcracks are clearly evident. Magnification=2 OOOx.

Figure 6.7. Opening (peeling) of mica cleavage showing feather-edge grain boundary in granite saprolite
(LF 12). Magnification = I 250x.
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upper profile sections bearing testimony to this. According to Bisdom (1967), Rimsaite (1967), and

Sawhney and Voigt (1969), mica crystals undergo three changes that may occur simultaneously

during weathering. These includedeformation, openingofcleavage and modification ofpolarizing

colours. GiIkes and Suddhiprakarn (1979) also observed the formation of shallow etch pits

("concavities") on the basal surface of biotite. In this investigation only the deformation and

opening ofcleavage could be identified under the SEM and these features were consistent with

those observed in thin sections (Chapter 7). Figure 6.7 shows extensive exfoliation where opened

cleavages can be observed. Jackson (1963) stated that the penetration ofcleavages by aggressive

agencies would allow weathering to proceed whilstmaintaining relative crystallographicorientation.

The opening of the mica cleavage involves significant volume increase and may cause

microfracturing (as observed by Irfan and Dearman, 1978a) and localised disruption of the

microfabric.

6.5.4 Secondary minerals (decomposition products)

The major secondary mineral constituents of the granite saprolite include kaolinite with lesser

amounts ofsmectite and in some cases interlayered illite and smectite. With kaolinite being the

predominant clay mineral, this implies that continued flushing ofthe system occurred under well

drained conditions. The localised occurrence ofthe smectite clays can be related to a number of

factors, including the close proximity ofthe weathered diabase dykes and the scattered occurrence

of weathered amphibolitic xenoliths, both of which provide a source of smectitic clays when

weathered. The occurrence ofsmectite in the highly weathered granite is most likely attributable

to the reduced permeabilities encountered within this material. Hematite forms a minor secondary

mineral constituentwhich is found in highly oxidised, near surface samples ofgranite saprolite with

residual soil patches. The secondary mineral constituents form from a complex series of

weathering reactions as outlined in Chapter 4.

The formation ofkaolinite as a decomposition productcan develop from avariety ofsources. The

most common is the chemical weatheringoffeldspar, although GiIkes and Suddhiprakarn (1979)

showed thatweathered biotite in saprolite materials also formed granularpseudomorphsconsisting
of kaolinite.

The kaolinization offeldspar may include the formation ofa diverse group ofkaolinite daughter

minerals depending on the weathering environment (Keller, 1978). These tend to occupy extensive

pockets within the framework of weathered quartz, feldspars and biotite opened up by void

formation. These daughterminerals include the platy, book-type kaolinite and the elongate kaolinite

minerals ofhalloysite-type. Unlike the structurally controlled occurrence ofetch pits, no evidence

has been found in this study or for that matter by Anand et al. (1985), to suggest that the crystal
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structure offeldsparcontrols the nature and orientation ofthe decomposition products. The most

common type ofstructured kaolinite observed in granite saprolite from Injaka Dam site is that of

platy, book-type kaolinite (Figure 6.8a) which is in agreementwith similar findings by Keller (1978).

No elongate kaolin minerals ofhalloysite-type were observed. The platy, book-type kaolinite can

be further categorised into sheaves, curved books or straight stackslbooks. These books are up to

200 J.lm in length with open face to face contacts as shown in Figure 6.8a. Individual kaolinite

platelets can be as large as 8 J.lm (Figure 6.8b). The random orientation ofthese plates in relation

to feldspar crystallography suggests that the argillic transition was not a solid-state transition or

replacement, but that solution in reactionwith the solid phases intervened. Platy, book-type kaolinite

is postulated to form in systems where geochemical equilibrium is maintained between the

groundwater solutions and solid phase parent-daughter minerals overa longperiod oftime. Amore

compact version ofthe microfabric mentioned above is shown in Figure 6.8c and 6.8d where the

bookhouse arrangement can be clearly observed. Here the clay consists ofshort (10 to 20 J.lm)

books in a bookhouse arrangement with edge to face contacts. The interstices between the books

are filled with irregular kaolinite platelets.

Figures 6.8e and 6.8fshow a loose turbostratic arrangement ofirregular kaolinite platelets up to 8

J.lm in size. This loose arrangement between the clay books is responsible for the very open

microfabric ofthe clay where voids as a large as 12 J.lm were measured. Irregular, elongate voids

with smooth rounded internal surfaces often occur and are indicative ofa solution origin. These

voids can be up to 150 J.lm in length with openings ranging from circularto elongate. Clearly then,

void formation within the clay microfabric occurs at two levels. One type is dictated by the

arrangement ofthe individual clay platelets and books, and the other type is dictated by solution

processes. The irregular arrangement ofthe larger solution voids which are predominant in the

turbostratic fabric means that solution occurred after the formation of this fabric.

In some cases pseudomorphic replacement offeldspar by kaolinite occurs. Figure 6.8g shows the

outline ofan original Na-plagioclase grain. Thecrystal habit can be clearly observed. Figure 6.8h

is a magnified view ofFigure 6.8gand shows an open structure ofirregularkaolinite platelets with

feldspar fragments. Such a structure forms bythe progressive alteration ofthe sieve-like feldspar

grain leading to deposition of kaolinite platelets on the open framework of the feldspar grains
(Figure 6.8i).

Furtherevidence for the argillic transition beinga productofsolution interaction with the solid phase

is presented in Figure 6.9gwhere kaolinite books can be seen developing within a microfracture of

K-feldspar. Other parts ofthe microfracture exhibit irregular edges and are partially filled with

irregular kaolinite platelets. It is therefore likely that the microfractures within and adjacent to the

feldspars offer suitable microenvironments for the precipitation ofkaolinite. This observation can
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be extended to field observations which show that many relictjoints within the saprolite are filled

with fine-grained, white kaolinite.

The micrographs in Figures 6.8a to i show the greatdiversity ofclay microfabrics that can develop

within granite saprolite. These microfabrics exhibitgreat variation in porosity. The widely differing

microfabrics were in many cases observed in samples taken very close to one another and in some

cases these different microfabrics were observed within the same sample. This variability may

reflect the differences in weathering microenvironments, these producing different decomposition

products.

6.5.5 Intergranular voids and microcracking

Chemical weatheringofgranites inevitably involves an increase in porosity. This increase is brought

about by the mechanisms discussed above. Inter-, intra- and transgranular porosity all form

important components within the granite saprolite. The formation ofporosity via etch pitting has

been discussed in section 6.5.2, however, a far more importantcomponentofporosity involves the

formation oflarge (from 0,3 to 2 mm in diameter), vermiform, intergranular solution voids with

circular openings as shown in Figures 6.9a and b. These voids were also studied using the SEM

and it was observed that they tend to preferentially accumulate in the bookhouse or turbostratic

kaolinite microfabrics and along grain boundaries (Figures 6.9c and d). The formation ofthese

voids along grain boundaries can be attributed to increased permeabilities within these zones

resulting in fluids oflow saturation within the microenvironment producing more intense solution.

Figure 6.ge shows one ofthese voids alongside a quartz grain. The tubular nature ofthe void can

be observed by the remaining clay bridge. An important observation ofthe shape ofthese voids

is that they tend to be blind suggesting that the removal ofmaterial to form these voids is through

solution rather than physical erosion along a series of interconnected channels and flow paths.

Microcrackingalso forms an importantcomponentofweatheringeffects. Microcracks within the

saprolite can be observed at all levels ofweathering, butgenerally increase in abundance, width and

continuity with increasing weathering. They vary in width from 7to 800 Ilm and can be continuous

for more than 50 mm (the length of a petrographic slide). Microcracking affects the entire

mineralogyofthe saprolite although quartz grains are particularlymicrocracked. The microcracks

can be open as in Figure 6.9[, filled with clay as in Figure 6.9g, or stained with iron oxide.

Interpretation ofthe precise formation mechanism for these microcracks is complex. Baynes and

Dearman (1978c) suggested that a destressing phenomenon may account for a large proportion of

microfracturing within weathered granites. They quoted the work byNur and Simmons (1970) who

showed theoretically that the effects of cooling and exhumation may be capable of producing
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Figure 6.8. (a). Platey book-type kaolinite showing extensive fonnation of clay books in granite saprolite
(LF 20). Magnification =3 920x. (b). Platy book-type kaolinite showing large size ofbooks. Magnification
=2190x. (c). Compact version ofplaty book-type kaolinite showing less well-developed books with more
random arrangement (RF 8). Magnification = 4 370x. (d). Another fonn of the compact platy book-type
kaolinite (LF 3). Magnification = 2 180x. (e). Loose turbostratic arrangement ofirregular kaolinite platelets
(LF 4). Magnification = 3 640x. (t). Turbostratic arrangement of irregular kaolinite platelets (RF 10)
showing ahigher porosity than that in Figure 6.8e. Magnification = 4 030x.
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Figure 6.8. (g). Pseudomorphic alteration ofplagioclase to kaolinite (RF 4). Magnification = 126x. The
original shape of the plagioclase grain can still be discerned. (h). Magnified view (2 060x) of Figure 6.8g
showing highly porous pseudomorphic transition from feldspar to kaolinite. (i). Formation of kaolinite
platelets in skeletal feldspar framework (LF 26) providing evidence that the argillic transition is a product of
solute interaction with the solid phase. Magnification = 16 330x.

Figure 6.9. (a). Vermiform solution voids showing circular cross-sectional openings formed in kaolinite
aggregations (LF 3). Magnification = IOOx. (b). Oblique view into vermiform void formed in massive
kaolinite (LF 12). Magnification = 187x.
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Figure 6.9. (c). Preferential solution void formation alongside quartz grain boundary where relatively higher
permeabilities result in solution voids (LF 2). Magnification = 212x. (d). Magnified view (864x) ofFigure
6.9c showing solution void characteristics. (e). Vermiform void formation alongside a quartz grain (LF 9).
The clay bridge shows the tubular nature ofthe void. Magnification = 174x. (f). Clean, open, intergranular
microcrack between two feldspar grains. The crack width is 10 I-Lm. Magnification =357x. (g). Kaolinite
platelets forming within microcracks suggesting direct argillic transition from pore water solutions.
Magnification = 1770x.
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microfractures due to the large difference in thermal expansion and compressibility between quartz

and other rock-forming minerals. Ifsome ofthe stresses that these differences generate are not

dispersed, then granites at the earth's surface will be subject to residual stress (Friedman, 1972),

where potentially recoverable elastic distortions ofthe constituentcrystals are in internal equilibrium

and hence 'locked in. Should weatheringprocesses release these stressesallowing locked in strains

to relax, microfractures may form. The preferential formation ofvoids along grain boundaries (as

discussed above, observed from petrographic studies in Chapter 7and noted by Irfanand Dearman

(1978a), could allow loosening ofthe rock texture, releasing the residual stressand accounting for

the formation ofmicrofractures. Another likely proposal for the occurrenceofthese microfractures

is the increase in the local stress field by post-emplacement intrusion ofthe diabase dykes. Stresses

during this intrusion process can be high enough to cause such microfracturingas suggested by the

closelyjointed nature ofthe granite alongside these intrusions. The difficulties in isolating one or

other mechanism for the exact cause ofthese features is impossible. It is, however, likely that the

microfracturing is a consequence of all the above-mentioned processes. These features

significantly weaken the material and accelerate the rate ofweathering.

6.5.6 SEM model of microfabric ofweathered granite

From the above discussions a tentative model of the microfabric development of a weathered

granite to granite saprolite can be proposed. In the initial stages ofweathering the increase in the

porosity ofthe material is controlled by two processes, that ofetch pit and crevasse formation on

the surfaces of the feldspar grains, in particular the plagioclase grains. This process occurs in

conjunction with microcracking along grain boundaries and the expansion of biotites. Further

weathering leads to the continued increase in porosity offeldspar grains (in some cases creating

sieve-like textures), but more importantly to the development ofclay microfabrics, which as has

been observed, are complexand varied in nature. Manyofthe clay microfabrics themselves exhibit

a high porosity due to particle aggregation as well as specific clay particle arrangements. Finally,

solution effects playa role in the microfabric formation on a sub-microscopic level in the formation

ofirregularetch crevasses as well as ona macroscopic level in the formation ofvermiform solution

voids. All processes identified through this SEM investigation lead to the ultimate increase in
porosity of the granite saprolite.
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7. PETROGRAPmC INVESTIGATION

7.1 Introduction

Analysing the petrography ofa soil or rock allows for accurate determination ofmineralogy and

provides a two dimensional insight into the natureofthe microfabric ofthe material. Tosupplement

the SEM observations, qualitative and quantitative petrographic examinations were carried outon

the weathered granite samples. Although the many applications ofpetrology are varied, de Puy

(1965), Weinert (1964) and Irfan and Dearman (1978a) have attempted to correlate the petrography

ofcertain materials (includingweathered granite) with theirengineeringproperties. They found that

the petrographic properties which influence this engineering behaviour include mineral composition

(primaryand secondary)and texture (includinggrain size, grain boundaryrelationships, microcracks

and voids). By studyingthese parameters, an improved understandingofthe engineering behaviour

ofa material can be gained, particularlywhen the relevant parameters are quantitatively defined.

7.2 Specimen preparation and techniques

Petrographic thin sectionsofgranite saprolitewith residual soil patches, granite saprolite, weathered

granite bedrock and fresh bedrock were prepared. Thin sections were cut directly from the fresh

rock samples, whilst the procedure for the granite saprolite with residual soil patches, granite

saprolite and weathered granite bedrock samples involved air drying at 30°C followed by epoxy

impregnation by soaking with Araldite@ resin. Initial attempts at vacuum impregnation were

unsuccessful as this resulted in the formation ofnumerous air bubbles forming within the resin. The

resin was coloured blue with an organic dye (dispersed phalocyanine blue) to distinguish any

inherent voids and microcracks within the samples as opposed to those formed by the sectioning

process. Thin sections 40 by 20 mm in size were cut from the hardened, resin-impregnated
samples.

The thin sections were qualitativelyexamined and quantitatively assessed to ascertain differences

in their petrographic nature in response to weathering. The modal analysis was determined using

the standard point count technique (Chayes, 1956) using a petrological microscope and a Swift

Automatic Point Counter (Model F) with 12 reset counters, electromechanical stage unit and

intermediate interval changing unit controlling a mechanical stage holding the thin section. A

horizontal and vertical grid spacing of0,4 mm between each point was selected with a total point

countof800 being used as representative ofthe sample and complyingwith similar procedures as
used by Irfan and Dearman (l978a).
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7.3 Petrographic descriptions

7.3.1 Fresh and slightly weathered granite

In order to obtain an indication ofthe petrographic nature ofthe parent rock, several thin sections

were made from boreholecores drilled in close proximity to the sample traverses (Figure 2.5). This

material revealed the "freshest" granite state, although some indicationsofalteration were already

noticeable on a microscopic scale.

The major mineral constituents ofthe fresh and slightly weathered granite are presented in Table

7.1 and include quartz (59%), microcline (12%) and plagioclase feldspar (I 7%) with minoramounts

ofchlorite (4%) and mica including biotite (4%) and muscovite (1%). The texture is generally

equigranular and medium grained (with an average grain size between 1 and 4 mm) with some

feldspars occasionallyexceeding 10 mm in size. The anhedral quartz grains are fresh, occasionally

exhibiting tight, transgranular hairline microcracks. Although the feldspars are hard and sound in

hand specimen, dusky clouding is alreadycommonplace within the centreofmostplagioclase grains

(Figures 7.1aand b). Mostofthe anhedral to euhedral plagioclase grains also show a small amount

ofmicaceous mineral growth (sericite - 2%) along cleavage planes and concentrated within the

centreofthe grains (Figure 7.1 b). Scanning electron microscope observations have already shown

the formation of prismatic etch pits on the surface of the plagioclase grains at the onset of

weathering. These contribute to the cloudy appearance of the grains as observed under the

microscope. Microcracking is also present although not as common as within the quartz grains.

The anhedral microcline grains are generally fresh and exhibitcharacteristic cross-hatch twinning

as shown in Figure 7.1b. Intra-granularmicrocracks occur butare limited. Biotite mayexhibit iron

oxide stain halos, although the grains still showcharacteristicdistinctivepleochroism with no opening

of mica cleavage observable.

The microfabric is essentially intactwithoutanydisruption to grain interlockand tight grain contacts
occur.

7.3.2 Highly weathered granite

Table 7.2 presents a summaryofthe modal analysis for these samples. The anhedral quartz grains

(32%) are 3,0 to 0,3 mm in size and often exhibit undulatory extinction with further weathering

opening the transgranular microcracks The microcracks range in width from 30 to 50 J.1m and are

occasionally filled with clay, otherwise remaining open as shown in Figure 7.2a. It is interestingto

note the large discrepancy between the quartz content in the highly weathered granite (average =
32,2%) and the fresh granite (average = 59,4%). This difference cannot be explained by any loss



Table 7.1. Modal analysis (%) and micropetrographic index (ID) of fresh and slightly weathered granite.
Sample Deplh Quartz Mietocline Plagioclal8 K·Feldsper Blotite Muscovlle Chlorlle Serleile Amorphoul Kaolinile Hemalite

(m) keollnlte books
Mlcrocracks Voids lIIite
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(kg.m")
I,

BH 1143
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59,0
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2,0

2,0
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2618

2599

2684
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13,9
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20,4

Table 7.2. Modal analysis (%) and micropetrographic index (I.,) of highly weathered granite.
Sample Depth Quartz Mietocline Plagioclese K·Feldspar Blotite Muscovite Serlelle Kaollnlte Kaollnite books
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I,

o 13,0 1,3RF2

RF 1
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RF15
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RF 23

RF 24

RF 25
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8,2

9,6

11,8

10,9

11,8

7,7

9,1

9,8

10,2

29,3
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36,1

32,3
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31,6
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32,2
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3,0
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9,2
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0,6

0,6

0,9
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9,1
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o
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0,1
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4,0
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0,6
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o
o

o
o
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0,6
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o
o
o
o
o
o
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9,2

6,8
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0,9
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o
o

0,6

o
o

0,8

o
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1823
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2242

2,2

1,7

4,1

1,3

13,9

7,0

11,6

5,9

5,6

7,3

VI
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of quartz through weathering, but rather shows the heterogenic nature of the granite mass.

Plagioclase grains (26%) show a dirty grey, turbid appearance with this fonn ofalteration often

disseminated consistently throughout the grain with Figures 7.2b and c illustratingthis. The grains

range in size from 0,08 to 3,2 mm in size. Sericitization (7%) along cleavage planes is commonplace

increasing as weathering increases. Scanning electron microscope observations show the

occurrence ofprismaticetch pits and in somecases skeletal plagioclase feldspar frameworks at this

stage ofweathering. The plagioclase grains are commonly microcracked, the cracks being clay­

filled or open (Figure 7.lc). Microcline feldspar (14%) is clear with tight, transgranular

microcracking as shown in Figure 7.2d. Turbidity can be observed spreading from the centre of

some grains. The anhedral grains are 0,9 to 2,7 mm in size. Biotite (2%) is olive brown in

colour with occasional iron oxide staining around the edge ofthe grains and segregation occurs

along cleavage planes (Figure 7.2e). Feather-edge grain boundaries occur as part ofthe onset of

alteration as seen in Figure 7.2f. The grains are generally between 0,2 and 1 mm in size.

Inter-granular microcracks oftenexhibita reticulate patternand mostare filled withclay minerals

and sericite. Orange stainingalong the surfaces ofthe microcracks is commonplace enhancing the

browndiscoloration ofthe samples. A plausible explanation for the fonnation ofthese microcracks

can be attributed to de-stressing ofthe quartz and feldspar grains during weathering. This can

occur as residual stress is released when grain boundaries are opened up and increased porosity

occurswhen solution effects become prominent (Dobereinerand Porto, 1993). The microcracking

related to different values ofmineral thennal expansion on cooling ofthe rock (as highlighted by

Nur and Simmons, 1970), should be more related to intra-granular features since the large inter­

particle microcracks were not observed in the fresh rock.

No significantdisruption to themicrofabric has taken placealthough localised looseningalonggrain

boundaries does occur.

7.3.3 Granite saprolite

A distinct petrographical change in texture occurs with a wide range ofpetrographic fabrics and

mineralogy observable in the saprolite (Table 7.3). These fabrics depend upon the degree of

alteration and leaching which are affected by the weathering microenvironment. Microcracking

ofquartz grains (21%) increases from narrow open microcracks to complete fragmentation ofthe

quartz grains with individual grains separated byclayaggregates orvoids with iron oxide staining

on the grain boundaries (Figures 7.3a, b and c). The intensity ofthe microcracking reduces the

grain size ofthe quartz. Plagioclase grains (4%) show moderate to oftencomplete alteration. The

alteration occurs throughout the grain and alongcleavage and twinningplanes (Figures 73dand e).

Sericitization (2%) is still common within the moderatelyaltered grainswhilst the completelyaltered



Table 7.3. Modal analysis (%) and micropetrographicindex (1,) of granite saprolite.
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grains are composed of clay aggregates forming clay pseudomorphs (Figures 7.3d and e).

Microcline (8,6%) exhibits slight cloudiness with intense microcracking (Figure 7.3f), with SEM

observations suggesting a porous structure. The microcracks may be tight oropen and filled with

clay, with partial alteration occurring along microcracksand cleavage. The open microcracking has

resulted in disaggregation ofthe grains effectively reducing grain size. The majority ofthe biotite

(0,5%) has been highly altered, although few remnant grains do exist. Where these occur, the

mineral experiences a loss in pleochroism associated with iron loss. Openingofcleavage is visible

causing disruption ofthe biotite structure, whilst grain boundaries become feather-edged. Where

alteration is more intense, the biotite alters to a variety offine-grained secondary micaceous and

kaolinite minerals. The occurrence ofkaolinite is common in this stage ofweathering. It occurs

as aplaty variety (26%) in Figure 7.3g and as disseminated fine-grained aggregates (17%) in Figure

7.3h. A small amount of iron-oxide minerals also occur with localised dissemination. They

predominantlyoccurwithin microcracks and as coatings on the void walls. X-raydiffiaction results

show the iron oxide to be hematite.

Void formation includes open, inter-granularmicrocracks and vermiform voids. The microcracks

form areticulate pattern (Figure 7.3 i) throughout the microfabric causinga degree ofdisruption to

the fabric. They tend to be open or filled with clayand/or stained with iron oxide. The width ofthe

cracks decreases systematically with a reduction in weathering intensity. The voids tend to be

irregular, although maintaining smooth edges typical ofsolution voids (Figure 7.3j). The vermiform

voids range in diameter from 0,02 to 2mm and their free surfaces are often clay-lined with iron

oxide staining. The voids tend to be preferentially situated within amorphous clay aggregations

(Figure 7.3j) but, as observed from the SEM investigation, also develop preferentiallyalong the grain

boundaries ofthe more competentgrains (Figures 7.3kand 1). The majorityofgrain boundaries are

open and are responsible for the significant difference in strength and density observed between

the granite saprolite and underlying highly weathered granite.

7.3.4 Granite saprolite with residual soil patches

The nature of this material approaches that ofa true residual soil where the material comprises

irregular, fine, iron-enriched clay aggregations within an incipient fabric similar to the granite

saprolite (as described above). Within the clay aggregations complete destruction ofany original

fabric has occurred (Figure 7.4a) where essentially the only primary mineral grains include broken

quartz (20%) with subordinate microcline fragments (4%). The grains are much reduced in size

due to enhanced weathering. Plagioclase is distinctly absent (Table 7.4), with the advanced stage

ofweathering having completelydecomposed the grains to kaolinite which forms the predominant
mineralogy (55%).



Table 7.4. Modal analysis (%) and micropetrographic index (4) of granite saprolite with residual soil patches.
Sample Depth Quartz Microcline Plagioclase K-Feldspar Biotite Muscovite Sericile Kaolinite Kaolinile books Hematile Microcracks Voids lIIitel Dry density I,

(m) amorphous smeetit.? (kg.m-')

RF12 1, 21,8 6,1 0,8 0 0,1 0,3 0,2 SO,O 4,5 1,6 6,8 7,3 0 1511 0,4

RF 17 2,2 20,5 5,4 0 0 0 0,1 0,1 42,1 14,9 0,5 2,5 13,9 0 1389 0,3

LF 1 0,9 12,2 6,5 0 1,8 0 2,7 0 48,6 1,2 6,2 2,7 17,7 0 1478 0,3

LF 7 1,1 23,8 13,3 0 0 0 1 0 32,2 13,2 0,7 7,3 8,3 1444 0,6

LF 18 1,1 19,6 0,5 0 0,8 0 0,1 0 22,0 25,5 10,3 5,0 15,3 0,6 1535 0,3

Average 19,6 6,4 0,2 0,5 0 4,2 0,1 39,0 11,9 3,9 4,9 12,5 1,8 1471 0,4

Vl
....:l
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Void formation is well-developed in the iron-enriched clay aggregations and is represented by a

concentration of vermiform voids (Figure 7.4b).

7.4 Characterization ofweathering and engineering properties in terms ofquantitative

micropetrographical indices

Irfan and Dearman (1978a) have advocated the applicationofstandard petrographic techniques to

evaluate the successive mineralogical and textural changes that occur during the weathering

process. There study on weathered granite in England proved this to be an applicable technique.

They maintained that petrographically relevant properties which can be expected to influence the

engineering behaviour ofthe weathered granite include primary mineral composition, secondary

alteration products, grain structure, texture and porosity (in the form ofvoids and microcracks).

The micropetrographic index (Ip) suggested by them provides a means of quantifying these

properties and is defined as follows:

I = % sound constituents
P % unsound constituents

(Eqn.7.4.1)

where sound constituents include quartz, plagioclase, potash feldspar, biotite, muscovite and

accessory minerals suchas magnetite and unsound constituents include sericite, kaolinite, gibbsite,

chlorite, secondary muscovite, iron oxides, microcracks and voids. The percentage cornposition of

the various constituents is obtained from modal analysis. Results for ~ values for the different

grades ofgranite weathering are presented in Tables 7.1 to 7.4 and show that ~ decreases with

increasing weathering.

The values of~ are similar to those obtained by Irfan (1988) where ~measured between 0,39 to

0,87 for similar material and Gupta and Rao (2001) where Ip measured an average ofO,8. The

values are also in agreement with qualitative observations ofmineralogyand microfabric (Chapter

8) suggesting that this index can be used to characterise the microfabric ofthe granite saprolite.

The association can be extended to correlations with certain engineering characteristics of the

material. A clear relationship is noted when plotting Ip against the dry density of the weathered

granite (Figure 7.5). The scatter ofresults is attributed to the small area ofthe thin section that may

not be entirely representative ofthe sample. The inherent variabilitywithin the parent material may
compound this.
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Figure 7.1. Photomicrographs of fresh and sli.ghtly wea~hered granite ~H 114!). (a). Granite showing
cloudy and slightly sericitised plagioclase grams along~lde cloudy. but m~ct ml~roclme.felds~ar under
plane polarised light (PPL). Magnification =40x. Gram b~und~es are tight Wlt~ no disruption to
microfabric. (b). Equivalent micrograph under cross polansed hght (CPL), showmg commencement of
sericite growth in plagioclase grains. Magnification =40x.

@.

Figure 7.2. Photomicrographs ofhighly weathered granite. (a). Clean open microcracks in quartz showing
the process of reduction in grain size (RF 14). Decomposed plagioclase occurs on bottom right with open
grain contacts clearly evident (PPL). Magnification = 40x. (b) and (c). Typical microfabric of highly
weathered granite in PPL (b) and CPL (c). Plagioclase grains show increased turbidity with a high degree of
sericitisation and numerous microcracks (RF 16). Only minor disruption to original microfabric is noted.
Magnification = 40x. (d). Slightly cloudy microcline feldspar (RF 25) with numerous clean microcracks
(CPL). Magnification =40x.
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Figure 7.2 (continued), Photomicrographs ofhighly weathered~anite..(e) and (t). Bleached biotite (RP 16)
showing characteristic feather-edged grain boundary and opemng of rmca cleavage ~nder PPL (e).and CPL
(t). Alteration of the edge of the biotite grains to micaceous clay can be observed ID the upper nght hand
portion ofthe micrograph. Magnification =40x.

Figure 7.3. Photomicrographs ofvarious microfabrics encountered within the granite saprolite. (a). Broken
quartz fragments within a matrix of clay (LF 4). Microcracks traverse the quartz grains and are clay filled
with iron oxide staining. This type of microfabric is representative of the most highly weathered granite
saprolite samples and approaches that of a residual soil. Disruption to the microfabric can be observed
although some grain interlock still occurs (PPL). Magnification = 40x. (0) and (c). Microfabric ofgranite
saprolite (LF 20)in PPL (b) and CPL (c). The microfabric shows some disruption due to the formation ofclay
and intense microcracking. A reduction in the grain size compared to that in Figure 7.2 can be observed.
Magnification = 40x.
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Figure 7,3 (continued). Photomicrographs ofvarious microfabrics encountered within the granite saprolite.
(d) and (e). Formation of clay pseudomorphs (LF 9) derived from complete decomposition ofplagioclase
grains (note the very turbid nature of the grains). The adjacent microcline grain shows comparatively less
alteration in the form ofdusty clouding and clay filled microcracks. PPL (d) and CPL (e). Magnification =
40x. (f). Severely microcracked microcline grain under CPL showing characteristic clay infilling along the
microcracks (LF 25). Magnification = 40x. (g). Platy, book-type kaolinite (LF 20) under CPL within a
matrixoffine-grained clay aggregates. Magnification = 40x. (h). Typical appearance offine-grained clay
aggregations under CPL (LF 8). Magnification = 40x. (i). Reticulate pattern of microcracks within the
granite saprolite (RF 4) showing the extension ofa microcrack propagating into the vermiform void located
within the fine-grained clay aggregations (CPL). Magnification =40x.
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Figure 7.3 (continued). Photomicrographs ofvarious microfabrics encountered within the granite saprolite.
0). Characteristic vermiform voids showing clay-lined surfaces with iron-oxide staining (LF 6). The smooth
appearance of the voids is typical of solution effects (PPL). Magnification = 40x. (k) and (I). Structural
control on void formation with propagation ofthe void dictated by the presence ofthe quartz grain (LF 9). As
identified from the SEM investigation, preferred solution along clay-grain contacts is common. PPL (k) and
CPL (I). Magnification =40x.

Figure 7.4. Photomicrographs of granite saprolite with residual soil patches. (a) Complete destruction of
microfabric with iron-enriched clay and broken quartz grains dominating the microfabric with characteristic
reticulate vermiform voids (LF 18). Magnification =40x. (b). Similar form ofreticulate vermiform voids in
iron-enriched aggregation ofclay (RF 17). Note smooth appearance of void walls showing solution effects.
Complete loss offabric occurs in this particular micrograph. Magnification =40x.
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Figure 7.5. Relationship ofmicropetrographic index (lp) and dry density (from sand replacement
method) of weathered granite.

The petrographic investigation also revealed the important effect that microcracks have on the

microfabric. However, the interpretation of the quantification or indexing of these features is

somewhat more complex and should be carried out with care. Irfan and Dearman (1978a) suggest

the use ofa microfracture index (If) which is quantified by counting the number ofmicrocracks in

a 10 mm traverse ofthe thin section and differentiating these cracks according to their filling. This

procedure is successful with highly weathered granites which only showa slightdisruption to their

original microfabric. However, with granite saprolite the microcracks often become widened and

filled with clay such thatapparently fewer microcracks will be observed overany particular 10 mm

traverse, giving the impression that microcracking decreases with increasing weathering. It is

therefore recommended that ~ provides a more appropriate index for the granite saprolite and in

fact has been demonstrated to successfully quantify mineralogical and fabric changes that have

occurred throughout the various defined weathering grades.
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8. MINERALOGY AND GEOCHEMISTRY

8.1 Mineralogy

8.1.1 Introduction

A study ofgranite weathering is not complete without a review of its mineralogy. For this purpose,

samples ofthe weathered granite were analysed for whole rock composition using a SiemensD500 X­

ray diffractometer. Although many previous studies on weathered granite have utilised petrographic

techniques to detennine the mineralogical composition ofthese materials, X-ray diffraction (XRD)

techniques have perhaps not been used as often as expected. Apart from being semi-quantitative, the

advantages of this technique are that it is able to provide a good indication of broad mineralogical

changes that occur throughout the weathering spectrum and allows for the detennination ofthe very

fine-grained products which arc difficultto identify in thin section. A summary ofthe XRD results for

each weathering grade of the granite is presented in Tables 8.1 to 8.4. The mineralogical results

confmn the nature ofchemical weathering and its effects on the granite as identified in the SEM and

petrographic studies and these are discussed below.

8.1.2 Equipment and Techniques

A Siemens D5000 X-ray system at the Council for Geoscience, Pretoria, was used for the semi­

quantitative XRD analysis. This system is equipped with a 2,2kWCu long fine focus tube, variable slit

secondarygraphite monochromator sample spinnerand 40 positionautomated sample changer. Bulk

samples for whole rock analysis in random powder preparation were scanned from 20 to 65 0 2e CUKa

radiation at a speed of0,02 0 2e step size per second with generator settings of35kV and 25mA.

Representative samples of the saprolite or weathered rock were air dried, crushed, milled and

homogenised to a fine powder (approximately IOllm in size). A sub sample ofthis powder was then

pressed into a shallowaluminium sample holder against a rough filter paper in order to ensure random

orientation ofthe sample material. No specific sample treatments were undertaken using foramide,
hydrazine or ethylene glycol, for example.

Mineral phase concentrations were detennined as semi-quantitative estimates using relative peak

height/area proportionsaccording to Brime (1985). Detection limits range from 0,5%to approximately

5% depending upon the sample composition and origin. Mineral phase identification was based upon
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the SIEMENS DIFFRACP1us - EVA evaluation programme with checking and [mal analysis of the

XRD traces carried out by the machine operator at the Council for Geoscience.

8.1.3 Fresh to slightly weathered granite

The fresh to slightly weathered granite can be seen to consist primarily of quartz, microcline and

plagioclase with minor chlorite and mica (fable 8.1). The percentage compositionofthe majorminerals

is somewhat variable with the quartz content varying from 42% to 71 % and plagioclase ranging

between 14% and 27%. Microcline generally occurs in lower proportions but also with a notable

variability ranging from 5% to 18%. The mica content varies from 2% to 8% whilst chlorite ranges

from I% to 7%.

Table 8.1. Mineralogical results from XRD analyses for fresh and slightly weathered granite.

Sample Microcline P1agioclase Quartz Kaolinite Mica Smectite Interstralified Ilite and Smectite Hematite Calcite Chlorite

BH1143 (23.7m) 5 14 71 0 3 0 0 0 0 7

BH 1143 (28.5m) 18 16 52 0 2 0 0 0 0 1

BH 1117 (18.9m) 16 18 53 0 8 0 0 0 0 5

BH 1117 (21.0m) 9 14 65 0 7 0 0 0 0 5

BH 1204 (25,2m) 17 27 42 0 8 0 0 0 0 6

Average 13 18 57 0 6 0 0 0 0 5

8.1.4 Highly weathered granite

The highly weathered granite is also composed primarily ofquartz, microcline, plagioclase and mica,

with variable kaolinite content (Table 8.2). The quartz content varies from 22% to 75 % with

plagioclase in lower proportions ranging from 10%to 33 %. Microcline varies from 9% to 17%. The

occurrence of kaolinite suggests the onset of the decomposition of the plagioclase feldspars with

kaolinite varying between 0% and 13%. The changing proportion ofplagioclase and secondary clay

(kaolinite) reveals the inverse relationship between these two minerals. Micacontents are low, varying

from 5% to 14%, but still remain higher than in the fresh to slightly weathered granite, this probably

being due to the increased fonnation ofillite. The mineralogical analyses also revealed the presence

of minor smectite. As explained in Chapter 7, this is probably due to the relatively poor drainage

conditions (supported by penneability results as found by Chunnett etal., 1991a) within the rock mass

at this grade ofweathering, where the effects of leaching are not significant.
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Table 8.2. Mineralogical results from XRD analyses for highly weathered granite.

sample Microdine Plagiodase Quartz Kaolinite Mica Smectite Interstratifled IUite and Smectite Hematite Calcite Chlorite

RF 2 13 17 51 3 9 3 0 0 3 0

RF 1 17 12 48 13 8 0 0 0 2 0

RF13 11 33 46 4 6 0 0 0 0 0

RF 14 17 22 54 0 5 0 0 0 2 0

RF 15 9 27 22 10 10 21 0 0 0 0

RF16 18 23 50 0 5 2 0 0 2 0

RF 22 9 23 54 0 6 8 0 0 0 0

RF 23 13 10 75 0 2 0 0 0 0 0

RF 24 6 20 68 0 2 4 0 0 0 0

RF25 7 25 50 0 14 4 0 0 0 0

LF28 13 23 54 2 8 0 0 0 0 0

Average 12 21 52 3 7 4 0 0 1 0

8.1.5 Granite saprolite

The granite saprolite can be seen to consist primarily ofquartz, kaolinite and feldspar (Table 8.3). The

quartz content varies from 17% to 65%, whilst kaolinite can be as high as 69% with a low of7% - this

being reflective ofthe degree ofweathering. No halloysite-type minerals were identified from the XRD

analysis. The feldspar component varies according to the intensityofweathering, with plagioclase being

very sensitive to weathering (0% to 34 %). The more resistant microcline occurs in variable

proportions ranging from 0% to 22% but is on average higher than plagioclase. Mica is also present

in significant concentrations (5 to 22%) and apparently increases with increasing weathering (this being

a function ofincreased secondary muscovite and illite formation). Small accumulations ofsmectitic

clays may be the product oflocalised poor drainage conditions within the material or could be derived

from amphibolitic xenoliths or the nearby weathered diabase dykes. A typical XRD trace for the

granite saprolite is presented in Figure 8.1.

8.1.6 Granite saprolite with residual soil patches

Mineralogical analysis shows the granite saprolite with residual soil patches to be composed essentially

ofquartz, microcline, kaolinite and mica (Table 8.4). The quartz content varies from 20% to 49%, with

microcline between 0% and 11%. As expected, the clay content is very high, with kaolinite forming

between 30% and 53% ofthe material. As with the granite saprolite, no halloysite-type minerals were

identified. There is significant variation of the mica content (from 5% to 33%) within the granite

saprolite with residual soil patches. The presence ofsmectite in most ofthese samples suggests poor

drainage conditions within the material allowing for the formation ofsuch clays. Hematite was only

found in two ofthe samples and its presence suggests the beginning oflaterisation within these samples.
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Table 8.3. Mineralogical results from XRD analyses for granite saprolite.

Sample Microcline Plagioclase Quartz Kaolinite Mica Smectte Interstratified lIIite and smectite Hematite Calcite Chlorite

RF 10 8 10 61 14 7 0 0 0 0 0

RF9 9 14 39 30 8 0 0 0 0 0

RF8 2 3 41 46 9 0 0 0 0 0

RF7 3 17 44 29 6 0 0 0 0 0

RF6 6 0 33 48 14 0 0 0 0 0

RF 5 14 0 43 25 18 0 0 0 0 0

RF4 0 4 30 46 20 0 0 0 0 0

RF3 22 17 29 16 16 0 0 0 0 0

RF18 7 0 17 69 9 3 0 0 0 0

RF 19 5 22 51 12 6 2 0 0 0 0

RF20 3 17 41 17 22 0 0 0 0 0

RF 21 5 34 34 14 8 5 0 0 0 0

LF 2 8 0 38 45 6 0 3 0 0 0

LF 3 12 0 38 39 7 0 3 0 0 0

LF 4 13 0 36 39 12 0 0 0 0 0

LF 5 10 3 45 27 11 4 0 0 0 0

LF6 6 0 38 40 11 0 6 0 0 0

LF 8 8 0 33 40 19 0 0 0 0 0

LF 9 21 7 30 34 8 0 0 0 0 0

LF 10 3 0 42 42 13 0 0 0 0 0

LF 11 15 0 25 50 10 0 0 0 0 0

LF 12 5 2 51 34 4 0 4 0 0 0

LF 13 13 17 30 27 8 0 5 0 0 0

LF 19 0 0 65 20 12 4 0 0 0 0

LF 20 5 0 41 39 12 3 0 0 0 0

LF 21 14 0 21 52 10 3 0 0 0 0

LF 22 12 0 29 51 5 3 0 0 0 0

LF 24 6 0 51 36 7 0 0 0 0 0

LF 25 4 0 57 31 8 0 0 0 0 0

LF 26 12 25 38 20 5 0 0 0 0 0

LF 27 7 21 39 17 15 0 0 0 0 0

Average 8 7 39 34 11 1 0 0 0

Table 8.4. Mineralogical results from XRD analyses for granite saprolite with residual soil patches.

Sample Microcline Plagioclase Quartz Kaolinite Mica Smectte Interstratified Inite and smectite Hematite Calcite Chlorite

RF12 3 2 49 33 5 4 0 5 0 0

RF 17 5 0 20 53 16 3 0 3 0 0

LF 1 5 0 43 32 17 2 0 0 0 0

LF 7 11 0 48 30 12 0 0 0 0 0

LF 18 0 0 36 31 33 0 0 0 0 0

Average 5 0 39 36 17 2 0 2 0 0



68

'lOO

11II

~
C
::>
o
U!IlD

c
:.J

DJ

DJ

ID JII

2-lheta - Seal e

.. '" OIl

~.HUlllU: ,.,21.'.:$11053-20." -T,pt:2T11T1 ott.cI ~S1Irt: U150' -e~d:U.UI5 "·np: OD3J '. sttp tIIt:1.' ·ClrI),: tMlSII998 tll:5l:.t1

oplre.:o~-.c... tD.I"'1 D.~UtD2S5IS1100. a.DSO I_POrt
['iJJJ-4161 O-Qln.f'(I-GD2-Wl:1SUa6-
(iJI9.a.es O-Ab•• ordtrlld -.""&008 -WL:1 .5£1151-

1S1.QQ ()-.~IIDC"•• ' ••td•• -1C'A500Il-W L: 1.51156-

!Libs-02ei3 () - IUoo.It-2.' -KAR(SBA~tD""')2-Wl: U4Q56:-
lUtH1164 () -Km••,,.. -Al2'SrlO15(OH)& -Wl: 1.5'Q56-

Figure 8.1. Typical XRD trace for granite saprolite at Injaka Dam.

Figures 8.2a to 8.2fshow the relationship ofmineralogical composition with depth for each ofthe six

sample traverses. The most striking feature ofthese figures is the very high degree ofvariability within

the mineralogical profiles. However, certain systematic relationships can be observed with the most

significant being the increase in kaolinite and corresponding decrease in plagioclase towards the

surface. A general decrease in microcline with increasing weathering occurs, although this is only

noticeable above 5 m depth. The variation ofquartz can be considered to be dictated by its variation

within the parent material. Although the mica content appears neither to increase or decrease it must

be realised that the XRD mica analysis includes primary and secondary forms of mica and

consequently, the alteration of biotite is off-set by the formation of iIlite.

Figure 8.3 shows the simple relationship ofinitial void ratio (eo) with kaolinite (%) determined from

XRD analysis. In order to validate these correlations, the r value was tested for significance using the

Student's t-Test, where:
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Figures 8.2a to 8.2f. Mineralogical changes as depicted in each sample traverse with depth. \0



N-2 =degrees of freedom

~
I=r~~

r =cooelalion coeflicient =0,79 t =t sampling distribution

(Eqn.8.1.1)

a = 0,05 = level of significance

70

Values from the Student's t-test suggest that the results are acceptable within the 95% confidence

interval (tcritical =2,021 and tobtained =4,108). Figure 8.3 shows that increased porosity corresponds to

increased kaolinite formation. The importance ofthis relationship is that it shows that clay formation

is equivalentto the rate ofpore formation (through leaching). There are two possible explanations for

this, both supported by observations from electron microscopy. The first is that leaching does not

necessarily preferentially target clay minerals, but occurs through direct solution ofthe feldspars at a

crystallographic level. The second possible reason is that pore formation eventually results in vermiform

macrovoids. Such voids give rise to very high porosities, with a free drainingsystem present. The large

diameters of these pores causes them to act as channels, preferentially draining water away from

smaller solution systems. Thus, in effect, the volume ofthe soil system exposed to dissolution by water

is decreased. The standing time for solutions to react is also very much reduced due to higher flow

rates through the system and this retards the solution reactions.

8.2 Geochemistry

8.2.1 Introduction

An analysis of the geochemistry of weathered granites provides an insight into the weathering

processes acting on the weathered rock and enhances our understanding of the mineralogical and

chemical changes that occur throughout the weathered profile and thataffect the engineering behaviour

ofthe material. Accordingly, major element analysis was conducted on most ofthe weathered granite
samples.



71

./ .
i·· .,/

• • /.'• 6t:. •

Vv. .
·1/ 6 Granite saproli1e with residual

~

II • soil patches

• Granite sapralite

o Highly weathered granite

0 r-r:O,790.2

Kaolinite ("la)

o w ~ m ~ W 00 ro 00

1.2

0.4

o
~
"tJ

.~ 0.6

CO
~

E

0.8

o

Figure 8.3. Increase in clay (kaolinite) with increasing initial void ratio suggesting that solution
effects do not preferentially target the kaolinite at the expense ofother minerals.

8.2.2 Equipment and Techniques

Afterappropriate splitting, crushingand milling, each sampleofweathered granite was analysed for Si,

Ti, AI, Fe, Mn, Mg, Ca, Na, K, P and Cr. The samples were initially dried at 110°C and roasted at

lOOO°C. Two grams ofthe roasted sample was weighed offwith 8g of 12:22 flu~ (35.29 % lithium

tetraborate and 64.71% lithium metaborate) and fused at 1050°C to form a glass bead. The fused

beads were analysed with a Philips PW1480 wavelength sequential X-ray spectrometer containing

Rh/Sc side window tube.

8.2.3 Technique of major elemental analysis

The interpretation ofthe geochemistryofweathering profiles is often based ona reference frame which

formulates a comparison ofthe element concentrations (in weight %) in the soils to those ofthe parent

rock, the so-called immobile element approach (Goldich, 1938 and Kronberg et al., 1987). In this

mannerthe absolute amounts ofelementremoval oraddition are usually based on comparisons with an

element (usually Ti or AI) assumed to be immobile during weathering (Middelburg et al., 1988).
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However, as pointed out by Gardner (1980), and confinned by this study, the assumption ofTi and Al

immobility is questionable. Alternatively, it has been shown by Millot and Bonifas (1955), that the

isovolumetric technique can be very useful when assessing element mobility throughout the weathered

profile. The isovolumetric technique allows forthe identificationofelementmobility within empirically

defined reaction progress diagrams that can be explained by certain stochiometric equations. The

reaction progress diagrams were first introduced by Helgeson etal. (1969) and are essentially plots of

element volumetric concentration (weight% multiplied by dry density) against dry density. In this way

the relationship of the element mobility with weathering (and hence a change in density) can be

identified. Certain conditions apply, including the assumption that no deposition has occurred from

outside the weathered profile and no volume change (expansion orcompression) has taken place. As

Middelburg et al. (1988) state, the assumption of constant volume is unequivocal and SEM and

petrographic investigations (Chapters 6 and 7) have shown this to be essentially true for the granite

saprolite and highly weathered granite bedrock at Injaka Dam.

8.2.4 Results of elemental analysis

The weight based concentration data and sample dry densities are presented for the various weathering

grades in Tables 8.5 to 8.7. The empirical reaction progress diagrams are shown in Figures 8.4a to

8Ah. These diagrams exhibit similar trends to those presented by Irfan (1996). Distinct trends in the

weathering of the granite can be observed from these diagrams with the early stages ofweathering

characterised by a rapid removal ofCaO andN~O from the weathered profile, whilst K20 gradually

declines until a dry density of 1600 kg.m-3 is reached. This relationship can be explained by the

preferential weathering of plagioclase in comparison with the potash feldspars. Middelburg et al.

(1988) have shown plagioclase to alter three times faster than the potash feldspars. The decrease in

CaO andN~O to zero signifies the completion ofplagioclase weathering at around 1400 kg.m-3• The

acceleration in the loss ofK20 from 1600 kg.m-3 is due to the increase in the rate ofweathering ofthe

K-feldspars, although significantly, the decrease never reaches zero as rnicrocline is still present even

within the granite saprolite with residual soil patches (Chapter 7 and Section 8.1.5).
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Table 8.5. Major element analyses (weight %) from XRF determinations for granite saprolite with
residual soil patches.

Sample SiO, TiO, Al,O, Fe,O, FeO' MnO MgO CaO Na,O

RF 12 56,82 0,58 22,20 6,94 0,10 0,04 0,31 0,09 0,04

RF 17 63,83 0,49 20,82 3,37 0,19 0,03 0,36 0,09 0,07

LF 1 69,99 0,24 17,45 2,22 0,40 0,02 0,24 0,09 0,04

LF7 69,63 0,12 18,64 1,22 0,15 0,02 0,14 0,09 0,05

LF 18 66,53 0,44 19,71 2,39 0,40 0,02 0,59 0,10 0

Average 65,36 0,37 19,76 3,23 0,25 0,03 0,33 0,09 0,04

, determined through analysis

K,O P,O, Cr,O,

1,87 0,04 0,04

2,67 0,04 0,02

3,17 0,02 0,04

3,48 0,02 0,04

2,93 0,03 0,01

2,82 0,03 0,03

H,O'

9,45

7,14

5,62

5,79

5,90

6,78

co, S Total

1,42 0,001 99,78

0,24 0,001 99,29

0,41 0,001 99,88

0,35 0,001 99,67

0,14 0,001 99,19

0,51 0,001

H,O-

1,08

0,96

0,09

0,44

0,43

0,60

Table 8.6. Major element analyses (weight %) from XRF determinations for granite saproHte.

Sample SiO, Ti02 Al,0, Fe,O, FeO' MnO MgO CaO

RF 10 69,50 0,26 17,72 2,03 0,19 0,03 0,35 0,16

RF 9 68,55 0,25 18,09 1,95 0,14 0,03 0,40 0,15

RF 8 64,45 0,61 18,09 5,27 0,19 0,05 0,74 0,36

RF 7 69,18 0,30 16,10 2,35 0,10 0,04 0,60 0,56

RF 6 63,96 0,35 20,92 3,08 0,15 0,02 0,33 0,08

RF 5 73,70 0,07 15,49 0,76 0,20 0,02 0,27 0,12

RF 4 68,51 0,30 18,75 2,25 0,10 0,04 0,38 0,12

RF 3 73,36 0,18 15,08 1,07 0,20 0,03 0,27 0,22

RF 18 66,35 0,47 19,23 2,88 0,19 0,03 0,47 0,18

RF 19 72,04 0,17 16,02 1,32 0,10 0,02 0,26 0,22

LF 2 64,43 0,48 20,08 4,03 0,20 0,02 0,21 0,24

LF 3 67,87 0,27 18,89 2,19 0,10 0,02 0,15 0,10

LF 4 68,29 0,37 17,71 2,64 0,30 0,04 0,38 0,10

LF 5 68,96 0,39 17,17 2,70 0,20 0,04 0,44 0,14

LF 6 64,01 0,73 18,80 5,60 0,20 0,07 0,84 0,11

LF 8 68,96 0,21 18,67 1,75 0,30 0,02 0,32 0,11

LF9 69,26 0,24 17,72 1,45 0,10 0,02 0,13 0,13

LF 10 63,61 0,73 19,81 5,23 0,20 0,04 0,48 0,08

LF 11 68,67 0,37 17,46 2,97 0,29 0,05 0,39 0,10

LF 12 64,52 0,89 17,49 6,42 1,11 0,07 0,69 0,20

LF 13 67,23 0,44 16,77 3,10 0,28 0,06 0,69 0,24

LF 19 69,65 0,19 18,64 1,20 0,30 0,01 0,36 0,10

LF 20 67,93 0,31 18,96 2,45 0,20 0,02 0,27 0,09

LF 21 67,27 0,34 18,65 2,49 0,15 0,01 0,18 0,10

LF 22 68,82 0,23 17,68 1,64 0,10 0,02 0,14 0,09

LF 24 69,26 0,21 17,75 1,67 0,20 0,02 0,23 0,10

LF 25 68,66 0,42 15,63 5,92 0,10 0,03 0,48 0,16

LF 26 74,16 0,13 15,53 0,98 0,10 0,03 0,26 0,16

LF 27 70,98 0,25 16,31 1,02 0,2 0,03 0,42 0,22

Average 68,60 0,34 17,66 2,70 0,21 0,03 0,39 0,19
, determined through analysis

Na,O

1,46

1,77

0,64

4,56

o
0,04

0,60

2,70

0,61

3,02

0,05

0,06

0,16

0,72

0,18

0,04

0,10

0,04

0,28

0,28

2,47

o
o
o
o

0,01

0,19

1,25

2,45

0,95

1<,0

3,35

3,07

2,50

2,87

2,03

5,57

2,98

4,75

3,02

3,54

2,53

4,17

4,99

4,63

2,21

3,91

6,64

2,14

4,47

1,34

3,72

2,44

2,76

4,03

4,61

4,07

2,27

4,40

4,41

3,46

P20,

0,02

0,02

0,04

0,04

0,03

o
0,03

0,02

0,02

0,02

0,07

0,04

0,06

0,06

0,11

0,02

0,03

0,08

0,06

0,12

0,06

0,01

0,03

0,04

0,02

0,02

0,10

0,02

0,03

0,04

Cr20,

0,02

0,02

0,03

0,02

0,02

o
o
o

0,02

0,02

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

o
o
o
o
o

0,03

0,01

0,01

0,02

H20'

4,18

4,35

6,68

1,87

8,17

3,50

5,82

1,85

5,88

2,34

7,28

5,81

4,74

4,28

6,99

5,33

3,85

7,30

4,71

6,58

3,29

6,10

6,55

5,85

5,17

5,60

5,80

2,15

2,20

5,0

CO2 S Total

0,10 0,001 99,38

0,08 0,001 98,84

0,17 0,001 99,8

0,05 0,001 98,49

0,65 0,001 99,8

0,05 0,001 99,76

0,06 0,001 99,92

0,05 0,001 99,73

0,08 0,001 99,42

0,05 0,001 98,97

0,24 0,001 99,84

0,13 0,001 99,75

0,05 0,001 99,74

0,05 0,001 99,77

0,05 0,001 99,84

0,13 0,001 99,75

0,09 0,001 99,70

0,06 0,001 99,77

0,05 0,001 99,77

0,05 0,001 99,75

0,07 0,001 98,42

0,12 0,001 99,13

0,07 0,001 99,64

0,05 0,001 99,12

0,06 0,001 99,60

0,09 0,001 99,25

0,16 0,001 99,95

0,05 0,001 99,18

0,05 0,001 98,54

0,1 0,001 99,471

H,O-

0,05

0,43

0,05

0,56

1,07

0,30

0,62

0,22

0,76

0,29

0,67

0,51

0,07

0,48

0,97

0,31

0,07

0,19

0,48

0,42

0,28

0,28

0,42

0,47

0,36

0,40

0,79

0,16

0,27

0,87
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Table 8.7. Majorelementanalyses (weight %) from XRF determinations for highly weathered granite.

Sample SiO, TiO, AJ,0 3 Fe.,0 3 FeO' MnO MgO CaO Na,O K,O P,O. Cr,03 H,O' co, S Total H,o-

RF 2 78,23 0,08 12,21 0,1 0,02 0.19 2,83 4,4 0.02 0,01 99,67

RF 1 72,42 0,16 16,22 0,03 0,06 0,09 1,33 4,55 0,02 0,01 99,95

RF 13 74,42 0,10 14,45 0,90 0,1 0,02 0,19 0,34 3,58 4,13 0,02 0,02 0,86 0,05 0,001 99,05 0,05

RF14 74,83 0,17 13,37 1,44 0,03 0,40 0,31 2,97 4,73 0,01 99,42 0,28

RF15 71,8 0,22 15,41 1,81 0,19 0,05 0,64 0,62 4,51 2,33 0,03 0,02 1,45 0,05 0,001 99,08 0,05

RF 16 77,23 0,1 11,92 0,72 0,1 0,27 0,37 3,2 4,61 0,02 0,01 99,32 0,11

RF22 75,99 0,10 13,11 0,02 0,18 0,51 3,87 3,80 0,02 0,02 99.11 0,24

RF23 74,65 0,10 14,16 0,02 0,15 0,90 4,33 3,88 0,04 0,02 99,50 0,18

RF24 74,69 0,10 14,07 0,02 0,2 0,61 3,96 3,99 0,02 0,02 99,29 0,29

RF 25 71,86 0,22 15,38 0,03 0,45 0,37 4,24 4,33 0,03 0,02 99,59 0,44

Average 74,61 0,14 14,03 0,26 0,43 3,48 4,08 0.02 0,02 1,2 99,40 0,21

• determined through analysis

The characteristic curved relationship ofFe20 3 is similar to that described by Gardner et al. (l978).

A gradual loss is experienced at the onset ofweathering, with progressive weathering causing a steady

increase as dry density reduces. Ti02 exhibits a similar relationship but with a scatter ofresults. The

relationship shows that the mobilisation ofTi is more active in the advanced weathering stages. Al20 3

shows a clear trend decreasing with decreasing dry density. These two observations substantiate the

findings by Gardner (1980) that mobilisation ofAI and Ti during weathering may be more common than

is generally assumed. Si02 decreases linearly in all cases with the least amount of scatter. The

relationship ofMgO is slightly more complex. In the less weathered granite, the bulk ofthe element

is located in biotite which alters rapidly during progressive weathering. Thus one would expect a

constantdecrease in MgO with decreasing dry density. However, the formation ofillite and secondary

micas duringweathering counteracts this loss. This accounts for the characteristic curved relationship

and is supported by XRD results.
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Figures 8.4a to h. Variation ofvolumetric concentration ofCaO, Na20, K20, Fe203, Ti02,AI203, Si02
and MgO with dry density. 0 := Highly weathered granite, .:= granite saprolite and ~:= granite
saprolite with residual soil patches.
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9. WEATHERING INDICES

9.1 Introduction

Chapters 6 to 8 have demonstrated how the changes in microfabric ofthe chemically weathered

granite saprolite at Injaka Dam are conceptually reflected in the geochemical and mineralogical

trends or signatures ofthe material. Th~ corollary to this is that the degree ofweathering (and its

impliedchanges to the physical and engineering behaviourofthe weathered material) can be scaled

quantitatively according to these mineralogical and geochemical changes. This can be achieved by

theuse ofchemical and mineralogical weathering indices. According to Aydin and Duzgoren-Aydin

(2002) over 30 such chemical weathering indices have been proposed. Many were not originally

designed for engineeringgeological purposes but have subsequently become popular in the last ten

years due to their successful application, particularly on the weathering ofbasalts and granites as

shown byIrfan (1996), Tugrul and Gurpinar (1997), Arel and Tugrul (2001), GuptaandRao (2001),

Ng et al. (2001) and Kim and Park (2003).

9.2 Chemical weathering indices

The role ofchemical weathering indices is essentially to quantify the degree ofdepletion ofmobile

components relative to immobile components duringweathering (Harnois, 1988). These indicescan

then be applied to standard weathering grades of material set up by specific weathering

classifications systems which in turn are correlated to engineering behaviour. For the successful

application ofchemical weathering indices four important factors should be noted :

1. Only those elements which have consistent geochemical behaviour during weathering

should be used. There is somediscrepancy in the literature with regard to the consistency

ofcertain elements, particularly Al and Ti (Gardner, 1980), but generally Ca, Na, Mg, K,

Si and Fe can be considered to assess weathering trends. This study has included results

using Al and Ti.

2. The indices should be independent ofthe degree ofoxidation of the weathered material.

3. Only those chemical elements commonly reported in analyses should be utilised. This

means that such indices can be calculated and routinely applied from standard analyses.

4. Chemical indices should be relatively easy to use and simple to apply.

Furthermore, Duzgoren-Aydin et al. (2002) have shown that the behaviour ofdifferent chemical

elements is complexdue to the redistribution and type ofthe weatherproducts and they concluded

that chemical weathering indices should be selected according to site specific behaviour.
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Several chemical weathering indices have been proposed and refmed since the inception of

Reiche's (1943), Weathering Potential Index (WPI -Eqn. 9.2.1). These indices range from a ratio

ofmany variables to simple binomial ratios. The commonelemental oxides repeatedly used in many

ofthe indices include K20, N~O,CaO, MgO, A120 3, Si02, Fe20 3, FeO, Ti02 and H20+. These

have been selected because oftheir respective mobility or resistance to leaching. Na, Ca, Mg and

Si can be considered to be leachedduring the weatheringofgranite, although the behaviourofsilica

is often irregularand the total proportion lost is ordinarily very small (parker, 1970). Al and Ti can

be considered to remain essentially within the weathering system (although some loss does occur

with increased weathering), whilst Fe and Kexhibit more complicated behaviourdependent upon

the redox conditions and chemistry ofambient fluids, respectively. H20+ can be defined as the

amount ofwater within the internal structure ofminerals (hydroxyl water) and it increases with

increasing weathering (increasing clay formation).

The selected chemical indices shown in Table 9.1 have been applied to the weathered granite at

Injaka Dam site to assess its degree of weathering and to attempt to relate these indices to the

density of the material which in turn has bearing on its engineering performance. All of these

indices were derived using molecular weight percentages. It can be seen from Table 9.1 that a

decrease in WPI reflects a loss in the mobile cations from the weathering system, and similarly a

decreasing Product Index (PI - Eqn. 9.2.2) suggests a decreasing silicacontent which occurs with

the onset of weathering. The Silica-Alumina Ratio (Eqn. 9.2.3) formulated by Ruxton (1968)

provides a measure ofthe total element loss (he assumed silica loss to equate to total element loss)

as a ratio ofthe alumina content. He considered the ratio ofSi02 to AI20 3 to indicate the degree

ofweathering and found this to be applicable to free draining, acidic weathering environments in

humid climates on acidic rocks. The Parker Index (Wp - Eqn. 9.2.4) derived by Parker (1970) is

based upon the proportions ofthe major alkaline metals and their bond strength with oxygen used

as a weighting factor. Gupta and Rao (2001) considered this index to be applicable to acid,

intermediate and basic rocks where hydrolysis is the main process ofsilicate weathering. The

Vogt Ratio (VR - Eqn. 9.2.5) derived by Vogt (1927) and advocated byRoaldset (1972) attempted

(incorrectly) to determine the ratio of immobile to mobile cations, but assumed that potassium

remained stable within the weathering system. Vogel (1975) modified Reiche's WPI in his

assessment ofthe weathering ofacid metavolcanics whereby the H20+ and oxidation state ofiron

were omitted from the original WPI equation to form the Modified Weathering Potential Index

(MWPI - Eqn. 9.2.6). Nesbitt and Young (1982), understanding that feldspars are the most

abundant reactive minerals in the earth's upper crust, realised that calcium, sodium and potassium

are generally removed from the feldspars during weathering by aggressive soil solutions. They

proposed that during weathering the proportion ofaluminato alkalis would typically increase in the

weathered product and that a good measure ofthe degree ofweathering could be obtained by the

Chemical IndexofAlteration (CIA -Eqn. 9.2.7). Hamois (1988) in his discussion suggesting that
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Product index (PI)
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PI •
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Silica-Alumina Ratio
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Ruxton (1968) 9.2.3 I-VI?

Alp,

Parker Index (Wp)
w • (211.,0 .M.lQ. 2K,o. C""}oJOO

Parker (1970) 9.2.4 I·VI
, 0.3j 0.9 O.2j 0.7

Vagt Ratio (VR)
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MgO+CaO"Na,o

Modified Weathering Potential Vagel (1975) 9.2.6 I-Ill?
Index' (MWPI) MWPI·

,1Vap"K,O"CaO ..UgO)+lOO
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potassium cations, whilst been leached during weathering can in fact be adsorbed on other clays

in the weathered profile through ion exchange, and may consequently disrupt geochemical trends

ofK+. He therefore proposed the Chemical Index of Weathering (CIW - Eqn. 9.2.8), devoid of

K20, as an improved measure of degree of weathering to that of the WPI, Wp VR, MWPI and

CIA. The Ignition Loss Index or H20+ as proposed by Sueoka et al. (1985) and used by

Jayawardena (1993) represents the amount ofcrystalline waterwithin the weathered material. An

increasing H20+ (Eqn. 9.2.9) content is caused byhydration and clay formation duringweathering.

Jayawardena and Izawa (1994) determined through their analyses ofmetamorphic rocks in Sri

Lankathatpossible relationships exist between A120 3, Si02 and Ti02 and proposedthe silica-titania

index for chemical weathering (Eqn. 9.2.10). Irfan (1996) in his comprehensive review of

weathered granite in Hong Kong proposed the Mobiles Index (I.nob - Eqn 9.2.11) which compared

the differentbehaviourof"mobile"and "immobile"elements during weathering using the fresh rock

as a comparative component for the index derivative.

The applicability of the various weathering indices to different material types and weathering

conditions has long been a source ofdebate. Parker (1970) stated that the Silica-Alumina Ratio

was restricted as to its use because the amountofsesquioxides must remain approximately constant

duringweathering and there must preferably be no formation ofsmectitesorvermiculites as initial

weatheringproducts. Harnois (1988), maintained that the use ofK20 as a mobile component in the

CIA, WPI and MWPI limits their application to soils in which potassium has been leached as

potassium, through its high exchange capacity can be adsorbed onto other clays in the weathering

profile, thus masking its mobility. The Vogt Ratio uses K20 as an immobile component which

contradicts the evidence that potassium is commonly leached. The common point made by all of

these authors is that for chemical weathering indices to be effective, an understanding of the

geochemical compositionand nature ofgeochemical processes and trends ofthe particularmaterial

of interest is required for the successful application ofany weathering index.

Table 9.2 provides a summary ofthe above-mentioned chemical weathering index values obtained

for samples from each sample traverse. From this table it can be seen that a relationship exists

between the weathering indices, density and grade ofweathering (Figures 9.1 a to k). Density has

been chosen as the comparative index property because the petrographic and SEM studies have

shown that weathering effects manifest themselves most significantly through a change in the

material porosity, and consequentlydensity. Chapters 10, 12, 13 and 14 also discussthe significance

ofthis basic index property and how it can be used as an index to the engineering behaviour ofthe

weathered granite, particularlywith regard to consolidation characteristics. In general, the values

ofWPI, PI, Si-AI, Wp and MWPI decrease as the weathering grade or density increases. This is

in accordance with fmdings from Jayawardena and Izawa (1994) and Gupta and Rao (2001).

Decreasing values of WPI, MWPI and Wp indicate decreasing mobile cations and increasing
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Table 9.2. Summary of chemical weathering indices for Traverses 1-6.

SAMPLE
DEPTH DENSITY

WPI PI Si-AI W, VR WlPI CIA CIW H2O' 1- Si-Ti
(m) (kg.m"')

Traverse 1

RF12' 1 1511 -39,77 77,80 4,34 17,33 23,91 2,41 90,78 98,98 9,45 0,80 70,58

RF10 3,5 1330 -11,38 85,74 6,66 43,28 5,97 5,00 73,72 86,81 4,18 0,45 78,76

RF9 4,9 1375 -11,92 85,42 6,43 43,87 5,10 5,25 73,55 85,04 4,35 0,43 78,26

RF8 5,7 1482 -22,84 82,93 6,OS 30,09 5,81 4,58 80,39 91,38 6,68 0,61 76,00

RF7 6,6 1855 1,71 86,62 7,29 69,48 1,91 8,87 58,07 65,40 1,87 -0,02 79,91

RF2" 8,2 1779 6,34 91,51 10,87 63,99 3,36 6,34 55,57 70,95 0,14 86,01

RF l' 9,6 1823 5,06 88,21 7,58 51,29 8,45 5,07 69,03 87,34 0,36 81 ,OS

RF 13' 10,6 2010 4,30 89,20 8,74 69,46 2,71 7,SO 56,83 69,00 0,86 0,04 83,26

RF 14' 118 2159 757 89 75 959 69 44 286 758 5585 71 05 007 8334

Trave<se2

RF6 2,5 1458 -31,87 82,17 5,19 18,35 23,59 2,36 89,93 99,31 8,17 0,79 74,42

RF 5 4,8 1763 ~,65 88,44 8,07 48,72 22,26 4,73 71,05 98,20 3,5 0,45 82,33

RF4 6,9 1457 -19,37 84,88 6,20 32,19 10,15 3,80 80,89 93,96 5,82 0,61 77,54

RF3 9,2 1883 0,12 88,44 8,25 66,53 3,66 7,07 80,17 75,70 1,85 0,12 82,14

RF 15' 10,9 2417 2,95 87,68 7,91 64,70 1,76 8,40 58,20 64,33 1,45 0,03 81,37
RF 16' 118 2480 748 9129 1099 7033 256 749 5218 6676 004 8600

Trave<se 3

lF7' 1,1 1444 -19,98 85,66 6,34 30,63 37,35 3,08 82,29 98,70 5,79 0,65 78,48
IF 8 2,8 1434 -17,43 85,10 6,27 34,74 21,30 3,73 80,59 98,80 5,33 0,61 78,00
IF 9 4,0 1429 -9,61 86,02 6,63 58,00 34,14 5,49 70,02 97,79 3,85 0,33 78,78
IF 10 5,5 1431 -27,65 81,58 5,45 15,53 2,77 88,68 98,94 7,3 0,79 74,17
IF 11 6,5 1362 -14,11 85,20 6,67 41,87 13,69 4,54 76,11 96,45 4,71 0,52 78,40
IF 12 7,3 1226 -24,13 81,84 6,26 16,37 7,37 2,98 88,49 95,SO 6,58 0,80 75,64
IF 13 ZZ 1625 -581 8527 689 5687 333 718 6630 7885 329 025 7339
Trave<se4

IF l' 0,9 1478 -19,31 85,75 6,81 28,18 24,97 3,01 82,66 98,70 5,62 0,68 79,17
lF2 2,4 1400 -27,40 82,28 5,44 23,14 21,74 2,79 86,04 97,48 7,28 0,71 74,87
IF 3 3,8 1416 -19,66 84,72 6,10 36,64 35,47 3,68 79,76 98,54 5,81 0,58 77,36
IF 4 4,5 1523 -14,02 85,10 6,54 45,15 16,44 4,79 75,18 97,55 4,74 0,49 78,11
IF 5 5,2 1610 -11,56 85,61 6,81 47,53 8,69 5,27 72,69 92,27 4,28 0,43 78,63
lF6 55 1133 -2520 821B 578 2392 809 369 1l§68 9743 B99 Q75 75 Q4
Trave<se 5

IF 18' 1,1 1535 -20,40 83,46 5,73 26,76 13,67 3,49 85,46 99,09 5,9 0,71 75,84
IF 19 2,3 1307 -21,71 85,48 6,34 21,97 19,49 2,64 86,85 99,03 6,1 0,75 78,26
lF20 3,2 1305 -23,71 84,46 6,08 24,41 25,93 2,75 85,75 99,14 6,55 0,72 77,19
IF 21 4,0 1386 -20,09 84,53 6,12 34,98 36,13 3,59 80,41 99,03 5,85 0,60 77,19
IF 22 5,1 1409 -16,81 85,90 6,80 43,79 3,91 77,43 99,08 5,17 0,55 78,75

. IF 24 5,7 1398 -18,68 85,85 6,62 35,54 28,41 3,66 79,41 98,90 5,6 0,60 78,86
lF25 6,2 1533 -20,29 85,29 7,45 22,76 9,95 3,OS 83,63 96,28 5,8 0,73 79,71
lF26 7,2 1522 -2,94 88,43 8,10 SO,Ol 6,76 5,19 68,60 86,87 2,15 0,38 82,12
lF27 78 1797 -148 8727 738 B175 384 695 63 93 78 64 720 019 8931
TraverseS

RF 17' 2,2 1389 -26,69 81,94 5,20 24,54 19,94 3,01 86,79 98,68 7,14 0,72 74,09
RF18 3,8 1383 -19,61 83,69 5,85 33,02 8,93 4,15 80,70 93,53 5,88 0,60 76,09
RF19 5,2 1696 -2,28 87,65 7,63 59,17 3,30 6,62 63,53 74,91 2,34 0,19 81,10
RF20 B,l 1479 5,98 87,76 7,31 46,45 2,96 5,99 68,30 75,73 0,32 80,18
RF21 6,2 1663 6,12 88,52 7,89 45,04 2,43 6,14 66,08 71,81 0,30 80,22
RF22" 7,7 2350 7,70 90,69 9,84 69,74 2,22 7,71 53,48 64,26 0,00 84,73
RF 23' 9,1 2210 8,64 89,86 8,95 75,57 2,01 8,65 52,22 61,79 -0,14 83,56
RF 24' 9,8 22SO 8,11 89,93 9,01 72,49 2,26 8,12 54,09 64,86 -0,04 83,65
RF25' lQ2 7437 89? 886? 7Q..~ 7803 228 893 5559 6689 -PlIB 814!

Note: * Granite saprolite with residual soil patches • Highly weathered granite
H20+ expressed as weight percentage
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Figures 9.1 a to h. Relationship of chemical weathering indices and dry density of weathered granite.
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Figure 9.1 i to k (continued). Relationship of chemical weathering indices and dry density of
weathered granite.

hydroxyl water with increasing weathering. Decreasing PI, Si-AI and Si-Ti values are indicative

ofa decreasing silica content. It can be seen that in all graphic relationships that there is a sharp

decrease in the weathering indices from the highly weathered granite to granite saprolite state and

this confirms the field observations ofthe abrupt change between the weathered rock and saprolite

as shown in Chapters4 and 5. Alternatively, CIA, CIW, H20+ and Imob show a continuous increase

with increasing degree ofweathering. This can also be attributed to the loss ofmobile cations and

alteration of the crystal structure - hence the increase in hydroxyl water.

When the relationship between dry density and weathering index value is plotted for the granite

saprolite, acceptable correlations can be observed for all weathering indices (Figures 9.1 a to 9.1 k)

with the exception of YR. In order to validate these correlations, the r value was tested for

significance using the Student's t-Test and the results from this assessment show that all the

correlations are significant at the 95% confidence limit (Table 9.3). The poor correlation shown by

YR is due to the incorrect use ofK20 as an immobile component for the determination ofVR.

Findings presented in Chapters 7 and 8 have proven that potassium is extensively leached from the

weathering system at Injaka Dam.
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Although an acceptable correlation was obtained using the Si-AI index value, it should also be noted

that it is subject to a number of restrictions as to its reliability (parker, 1970). The sesquioxides

content must remain approximately constant during weathering, and there must preferably be no

fonnation ofsmectite orvenniculite as initial weathering products. Mineralogical analyses (Chapter

8) have shown that some smectite formation can occur in the early stages ofweathering ofthe

granite at InjakaDam where free-draining conditions do not occurand this should be borne in mind

when assessing this index under such weathering conditions.

Table 9.3. t-Test results for correlation ofweathering indices with density.

Weathering index N t.....,a =0.05 t-..
WPI 44 0.820 2.015 9.28

PI 44 0,730 2,015 8,92

Si-AI 44 0.776 2,015 7,97

W. 42 0,823 2.015 9.16

VR 44 -0.570 2.015 -4.50

MWPI 44 0,840 2,015 10.03

CIA 44 -0.85 2.015 -10,46

CIW 44 -0.780 2,015 -8.08

H2O' 36 -0.690 2,015 -5.56

Si-Ti 44 0,728 2,015 6.92

I..... 44 -0.900 2.015 -13.38

The mobiles index (llIIob) was developed by Irfan (1996) to measure the relative removal of the

mobile cations from the rock with weathering. Consequently, it serves as an index for the degree

of decomposition of feldspars, particularly under highly leached conditions such as those

encountered within the granite saprolite at Injaka Dam. A plot of !.nob against the amount of

unaltered feldspar content is given in Figure 9.2 and shows a near linear relationship conftrnling this.

Once again, the t-Test was applied to validate the results and it was found that the correlation is

significant at the 95% confidence limits (toblained = 18,742; tcritical = 1,683) Irfan (1996) also

demonstrated a similar relationship with his study on Hong Kong granites.

A summary ofthe weathering index values with respect to the weathering grade ofthe granite is

presented in Table 9.4 which is effectively a compilation ofTable 9.2. This table shows that these

indices can be tentatively used to rationally classify the weathered granite according to its degree

ofweathering (and density). Jayawardena and Izawa (1994) were also able to demonstrate this

in their study ofweathered granite gneiss from Sri Lanka.
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Mean of weathering index

Weathering index Highly weathered granite Granite saprolite Granite saprolite with residual soil

WPI 6,71 -15,46 -25,23

PI 89,67 85,11 82,92

Si-AI 9,13 6,59 5,68

W. 68,80 39,98 25,49

VR 3,05 15,54 23,97

MWPI 7,57 4,52 3,00

CIA 56,30 76,85 85,60

CIW 68,71 91,06 98,83

H
2
O. 1,16 4,97 6,78

Si-Ti 83,44 78,20 75,63

1- 0,04 0,52 0,71

Table 9.5 details the Pearson correlation co-efficient values (r) for the various weathering indices

and shows that all indices excluding the Vogt ratio show good correlation against one another. Kim

and Park (2003) showed similar results in their study ofweathered granites around Seoul, South

Korea. Chemical weathering indices are only useful in engineering characterisation ofmaterial if

they can be related to some measurable physical or mechanical properties (Irfan, 1996). It can be

concluded that the application ofa number ofchemical weathering indices to the granite saprolite

at Injaka Dam has proven that these indices can be successfully used to assess the degree of

weathering ofthis material and can in fact provide an indication oftheir engineering behaviour

based upon dry density relationships.
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Table 9.5. Pearson correlation coefficient (r) for various weathering indices.
PI SI-AI Wp VR MWPI CIA CIW H20+ IMOB Si-Ti

WPI 0.931 0.890 0.959 -0.613 0.923 -0.973 -0.838 -0.998 -0.955 0.916

PI 0.942 0.857 -0.433 0.768 -0.893 -0.707 -0.902 -0.841 0.990

Si-Ti 0.811 -0.536 0.753 -0.883 -0.736 -0.914 -0.815 0.965

Wp -0.588 0.967 -0.987 -0.841 -0.946 -0.990 0.837

VR -0.675 0.606 0.738 0.477 0.606 -0.449

MWPI -0.962 -0.891 -0.905 -0.983 0.757

CIA 0.876 0.966 0.989 -0.887

CIW 0.743 0.888 -0.708

H20+ 0.940 -0.899

IMOB -0.828

9.3 Mineralogical weathering indices

In a similar manner to chemical weathering indices, mineralogical indices, using suitable ratios of

specific minerals can be applied to assess the weatheringofrocks. As feldspars undergo significant

changes during weathering, and quartz is relatively resistant, these two minerals can be used to

assess weathering trends. When microfracturing and decomposition have reduced granite to an

engineeringsoil it consists ofan interlockinggranularaggregate in which a certain proportion ofthe

grains has decomposed (Baynes and Dearman, 1978b). Lumb (1962) proposed a quantitative

mineralogical measure ofthis degree ofdecomposition which he called Xd. This can be defined
as follows:

where

and

Nq = (Weight Quartz) SOIL
(Weight Quartz + Weight Feldspar)

Nqo = (Weight Quartz) ORIGINAL ROCK
(Weight Quartz + Weight Feldspar)

(Eqn.9.3.1)

(Eqn.9.3.2)

(Eqn. 9.3.3)

It follows that ifXd=1, then weathering and leaching has reduced the feldspar content to zero, and

the soil can be considered to be in a state ofadvanced weathering. Baynes and Dearman (1978b),

provided a visual impression ofvariations for Xd (Figure 9.3) using a grid ofblocks representing
unweathered and weathered remnant granite minerals.
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Figure 9.3. Model to illustrate the microfabric consequences ofdiffering degrees ofdecomposition,
(Baynes and Dearman, 1978a). White squares are representative ofunweathered mineral grains
whilst black squares are representative ofweathered mineral grains. Assuming all decomposed
mineral grains are feldspar then (a) represents 30% weathered mineral grains where Xd =0,2; (b)
represents 50% weathered mineral grains where Xd = 0,5 and (c) represents 60% weathered
mineral grains where Xd = 0,8.

This shows that when Xd is less than 0,5 the microfabric consists of an interlocking granular

aggregate enclosing isolated decomposed minerals (granular-framework). AsXdapproaches 0,5

so the microfabric develops into a framework oforiginalgranitic minerals containing decomposition

products. WhenXd is greater than 0,5 the microfabric is dominated by the decomposition products

which enclose remnant original granite minerals (clay-matrix microfabric). Nq has traditionally

been determined by physically separating the quartz and feldspar grains from a disaggregated

specimen of weathered granite. This was accomplished by Lumb (1962) using a binocular

microscope. Due to the difficulty in manipulating the very fine grains only the fraction retained on

the BS 100 sieve was examined by Lumb. As this method was considered to be time consuming,

cumbersome and possibly inaccurate due to exclusion ofmaterial finer than that retained on BSS

100, it was decided to use the same weight ratio equation but with semi-quantitative mineralogical
results derived from the XRD analyses to produce XdXRD :

where

NQo = (% Quartz) ORIGINAL ROCK
DD (% Quartz + % Feldspar)

(Eqn. 9.3.4)

(Eqn.9.3.5)
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and

Nq = (% Quartz) SOIL
XRD (% Quartz + % Feldspar)

(Eqn.9.3.6)

Although the average value ofNqo for granite at Injaka Dam site is 0,648 (calculated from XRD

analyses), this value was normalised to 0,333 such that the results from Lumb 1962 could be made

comparable with results from this investigation.

Table 9.6 provides a summary ofthe results obtained for the samples from Traverse 1 to 6. The

granite saprolite with residual soil patches shows advanced weathering with values ofXdXRD ranging

from 0,70 to 1,00. The granite saprolite shows a much higher variability with Xd values ranging

from 0,14 to 1,00. It follows then, that the granite saprolite exhibits a broad range ofweathering

intensities with the high average XdXRD value suggesting that the majority ofthe samples are in a

state of intense weathering. Xd values for the highly weathered granite bedrock are significantly

lower, ranging from 0,07 to 0,65 and are indicative ofa significantly lower weathering intensity.

Mineralogical indices are also only useful if they can be applied to assessing the engineering

behaviour ofa material. The void ratio (and density) ofa soil is an important component ofthe soil

fabric exertingsignificant influence on the engineering behaviour ofthe material. For saprolitic soils

it can be expected that the void ratio increases away from the fresh rock, although local variations

ofthis trend will occur. The relationship between void ratio and weathering can be expressed using

XdXRD and is shown in Figure 9.4. There is a considerable scatter of points as is to be expected

from the crudeness ofthe measure ofXdXRD and the variations in original rock composition. Lurnb

(1962) constructed two simplified boundary conditions for the relationship ofXd and void ratio,

expressing "full leaching" conditions and "no leaching" conditions, respectively. The "no leaching"

boundary can be defined as no leaching apart from the loss ofcolloids removed during feldspar

alteration. Alternatively, the "full leaching" boundary is defmed as the complete loss ofcolloids

with no loss ofquartz. Neither ofthese two conditions is entirely correct and both simplify actual

conditions. However, the "no leaching" boundary condition represents the early stages of

weathering, whilst the "full leaching" condition can be applied to advanced stages ofweathering.

These boundary conditions can be defined according to the void ratio as follows:

"N0 leaching" condition :

I - Ni
eo =----N-"-----

N + qo

k Xd.(l - N
qo

)

(Eqn.9.3.7)
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Table 9.6. Mineralogical weathering indices for sample Traverses 1-6.
Sample Depth (m) Dry density (kg.m"") NqXRD Nq,XRD Xd XRp Kaolinite Plagioclase Microcline

Traverse 1

RE 12- 1 1511 0,91 0,33 0,86 33 2 3

RE10 3,5 1330 0,77 0,33 0,66 14 10 8

RE9 4,9 1375 0,63 0,33 0,45 30 14 9

RE8 5,7 1482 0,89 0,33 0,84 31 3 2

RE7 6,6 1855 0,69 0,33 0,53 7 17 3

RE 2' 8,2 1779 0,63 0,33 0,45 3 17 13

RE l' 9,6 1823 0,62 0,33 0,44 13 12 17

RE 13' 10,6 2010 0,51 0,33 0,27 4 33 11

BE 14' "8 2159 °58 033 037 ° 22 17

Traverse 2

RE6 2,5 1458 0,846 0,33 0,77 48 ° 6

RES 4,8 1763 0,754 0,33 0,63 25 ° 14

RE4 6,9 1457 0,882 0,33 0,82 46 4 °
RE 3 9,2 1683 0,426 0,33 0,14 16 17 22

RE 15' 10,9 2417 0,379 0,33 0,07 10 27 9

RE 16' 118 2480 0549 033 033 ° 23 18

Traverse 3

LE 7- 1,1 1444 0,81 0,33 0,72 30 ° 11

LE 8 2,8 1434 0,81 0,33 0,71 40 ° 8

LE9 4,0 1429 0,52 0,33 0,30 34 7 21

LE 10 5,5 1431 0,93 0,33 0,90 42 ° 3

LE 11 6,5 1362 0,63 0,33 0,44 50 ° 15

LE 12 7,3 1226 0,88 0,33 0,82 34 2 5

LE 13 77 1625 059 033 025 27 17 13

Traverse 4

LE 1- 0,9 1478 0,90 0,33 0,85 32 ° 5

LE2 2,4 1400 0,83 0,33 0,74 45 ° 8

LE 3 3,8 1416 0,76 0,33 0,64 39 ° 12

LE 4 4,5 1523 0,74 0,33 0,60 39 ° 13

LE 5 5,2 1610 0,78 0,33 0,67 27 3 10

I E6 55 1433 086 033 080 40 0 6

Traverse 5

LE 18- 1,1 1535 1,00 0,33 1,00 31 ° °
LE 19 2,3 1307 1,00 0,33 1,00 20 ° °
LE 20 3,2 1305 0,89 0,33 0,84 39 ° 5
LE21 4,0 1386 0,60 0,33 0,40 52 ° 14
LE 22 5,1 1409 0,71 0,33 0,56 51 ° 12
LE 24 5,7 1398 0,90 0,33 0,84 36 ° 6
LE 25 6,2 1533 0,93 0,33 0,90 31 ° 4
LE 26 7,2 1522 0,51 0,33 0,26 20 25 12
LE 27 78 1797 058 033 038 17 21 7

Traverse 6

RF 17- 2,2 1389 0,80 0,33 0,70 53 ° 5
RE18 3,8 1383 0,71 0,33 0,57 69 ° 7
RE19 5,2 1696 0,65 0,33 0,48 12 22 5
RE 20 6,1 1479 0,67 0,33 0,51 17 17 3
RE21 6,2 1663 0,47 0,33 0,20 14 34 5
RE 22' 7,7 2350 0,63 0,33 0,45 ° 23 9
RE 23' 9,1 2210 0,77 0,33 0,65 ° 10 13
RE 24' 9,8 2250 0,72 0,33 0,59 ° 20 6
RF25' 102 2437 061 033 042 0 25 7

Note: * Granite saprolite with residual soil patches # Highly weathered granite
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"Full leaching" condition:

I - N
= __9_0 Xd

eo N
9°

(Eqn.9.3.8)

weight of kaolinite produced from unit weight of feldspar = 0,5.
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Figure 9.4. Relationship ofXdXRD with initial voids ratio.

Baynes and Dearman (1978a) have shown that whenXd < 0,5 a granular microfabric is present

with interlocking grains and minimal leaching conditions. WhenXd> 0,5 they have shown that a

varietyofmicrofabrics canoccur including poorly leached, but highlydecomposed microfabric ("no

leaching, clay matrix"); porous interconnected granular and clay microfabric ("porous connected

matrix") and full leaching conditions resulting in a granular matrix with minimal clay ("full leaching -
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granular matrix"). The plot ofLumb's average trend for weathered granites in Hong Kong (line

Av) shows an increase in porosity up to Xd = 0,5 where after collapse of the microfabric occurs

producing a poorly leached, more dense microfabric (which approaches that of a residual soil

proper). The results from this study show a much different relationship with increasing Xd

suggesting increasing porosity and very little densification ofthe material at highXd values. This

is in agreement with the field observations which show only a poorly developed, thin veneer of

material exhibiting a true residual soil structure. The difference between these observations and

Lumb's results can probably be related to the much higher rainfall encountered in Hong Kong and

consequently more advanced weathering ofLumb's materials. The trend shown by the weathered

granites at Injaka Dam shows that the microfabric comprises predominantlyofa porous connected

matrix. This has been substantiated by SEM and petrographic investigations.
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10. BASIC ENGINEERING PROPERTIES

10.1 Particle size distribution

10.1.1 Introduction

It is well known that the analysis ofgrain size ofsaprolitic soils is sensitive to the test procedures

used (Sandroni, 1985) and is also influenced by variability in the initial grain size and mineral

composition of the parent rock. This sensitivity is caused by the effects of weathering where

aggregation ofclay particles (as seen in the SEM investigation in Chapter 6) cause the clay to

behave as a coarser fraction. Only significant disaggregation energy will allow the "correct"

grading ofthis material. The grain size composition ofthe fragile and honeycombed weathered

feldspars is also susceptible to the amount ofapplied disaggregation energy where hand crushing

will reduce these grains to a clay and silt sized fraction when in fact they exist as a much coarser

component in situ. It is reasonable to assume then that different grading characteristics can be

produced for the same material depending upon the approach used. However, whilst grading

interpretations are realized within the contextofthe test method employed, useful interpretationof

this index test can be gained.

10.1.2 Evaluation of grading

Grading determination according to ASTM D 422-63 (1986) was used to analyze the particle size

distribution. The procedure involved gentle crushingofthe saprolite clods in a mortarwith rubber

covered pestle after which the sample was sieved and tested using an hydrometer. It can be

assumed that modest disaggregation energy was applied to the material. Two grading procedures

were carried out on each sample - one involving the use ofwater and the other using a dispersion

agent (sodium hexametaphosphate). This was necessary to assess the dispersivity ofthe material

(details of which are presented in a Chapter 11).

The particle size distribution curves for the various grades of weathered granite are shown in

Figures 10.1a, band c. In order to quantitY the analysis ofthese curves, specific geometric values

known as grading characteristics can be defmed and used to categorise the grading. One such

grading characteristic is the Uniformity co-efficient (CJ which represents the ratio of the 60th

percentile to the 10thpercentile on the logarithmic grading curve. The granite saprolite with residual

soil patches is well-graded as shown by its high Cu values varying from 87,50 to 220,00 (Table

10.1). The claycontentaverages at 16%and the samples can be identified according to the Unified

Soil Classification System (USCS) as clayey or silty sands (SC and SM).
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Table 10.1. Particle size parameters for granite saprolite with residual soil patches.
Sample Percent passing (mm) Median Mean 50 5. C. LL PL PI L5

4.750 2,000 0.425 0.150 0.075 0.050 0.005 0.002 (mm) (mm) (%) (%) (%)

RF 12 98 95 72 59 54 54 33 31 0,031 0,261 17,49 0 133,33 44,0 26,4 17,6 8,7

LF 1 97 93 59 45 39 31 16 11 0,220 0,461 6,547 0,390 220,00 23,3 18,7 4,6 2,0

LF 7 100 97 62 43 35 29 12 8 0,208 0,384 5,235 0,462 124,590 26,0 18,6 7,5 3,7

LF 18 100 98 69 59 52 42 20 11 0,069 0,299 8,142 1,103 87,50 31,7 25,4 6,3 3,3

RF 17 100 100 80 61 52 44 26 18 0,069 0,163 8,000 0,336 92,86 34,2 22,6 11,6 6,7

50 = Sorting coeIlicient S. = 5kewness C, = Uniformity coeIlicient LL = Liquid limit

PL = Plastic limit PI = Plasticity index L5 = Linear shrinkage

Grading curves for the granite saprolite show the material to be very well-graded with high Cu

values and a significant degree ofvariability (Table 10.2). The curves are all skew with a wider

range of fme material than coarse with this relationship being comparable to fmdings by Lumb

(1962). Lumb also noted a bimodal grading distribution due to the quartz fraction remaining

relatively unchanged throughout weatheringwhilst the feldspar became progressively finer, resulting

in two fractions ofwidely differing modes. This relationship is not easily observable from these

results, this beingdue to the decrease in quartz grain size with increased weathering, identified in

the SEM and petrographic studies for the InjakaDam samples. The granite saprolite showed lower

clay contents (average = 7%) than the granite saprolite with residual soil patches and this is

indicative ofa less advanced degree ofweathering (Table 10.2). According to the USCS, the

majority ofthe samples classified as silty sands (SM) with the mostweathered samples classifying

as clayey sands (sq.

In their geotechnical investigations carried out for ZoeknogDam site situated some 25km north of

Injaka Dam, Partridge et al. (1984 and 1990) also studied the engineering properties of the

weathered granite encountered at this site on the Mutlumuvi River. The Zoeknog Dam site has

many similarities to that oflnjaka being underlain by granite-gneiss ofthe Nelspruit Suite Granite

and situated below the African erosion surface on a 30m thick, deeply weathered, intensely leached

mantle ofgranite saprolite. The 38m high homogeneous earth embankment dam with centrally

located morning glory spillway and conduit became infamous following its breaching in January

1993, three months after completion and following the startofimpoundment. Grading indicators

from the saprolite at Zoeknog Dam site show somewhat higher clay contents than that identified

at Injaka, averaging 15,6%although the material also classifies as silty sand (SM) and occasionally
clayey sand (ML) or silt and very fine sand (ML).

Falla (1985), in his comparative synopsis ofweathered crystalline rocks on various erosion surfaces

in the greaterJohannesburg area, has reported similargrading characteristics for granite saprolite

under the African erosion surface. According to Falia (1985), the granitic rock types in this study

belong to the Basement Complex (~3 100 to ~3 300 Ma) and comprise a complex suite of

migmatites, gneisses, porphyritic granodiorites with felsic dykes, veins ofaplite and coarse-grained
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pegmatite in places. The mesocratic granite gneisses consist of hornblende (partly altered to

chlorite), biotite, sodic-plagioclase, quartz and microcline with the leucocratic variety comprising

abundant quartz and biotite with sodic-plagioclase altered to sericite and variable amounts of

muscovite, microcline and chlorite. PartofFalla's analysis comprised an investigation ofthe upper

2m and 5m ofthe saprolite profile. His findings on the grading ofthe material are similar to that

encountered at Injaka Dam with clay contents reported to average between 16% and 22% for the

upper 2m with the lower 3m ofthe saprolite profile exhibiting average claycontents varying from

9% to 18% - the resultant decrease in clay with depth representative of reduced weathering as

found at lnjaka Dam site.

Table 10.2. Particle size parameters for granite saprolite.
Sample Percent passing (mm) Median Mean S. S. C. II Pl PI lS

4.750 2,000 0.425 0.150 0.075 0.050 0.005 0.002 (mm) (mm) (%) (%) (%)

RF 10 100 100 78 60 53 51 23 21 0,044 0,133 6,583 0806 100 37,1 24,6 12,6 5,3

RF9 100 100 68 49 41 30 12 4 0,140 0,311 5,222 0,673 62,500 33,2 25,0 8,2 4,0
RF8 100 99 68 52 47 44 20 16 0,150 0,304 0,8554 0,219 160 36,1 25,6 10,5 5,0

RF7 100 100 48 22 14 13 4 2 0,440 0,540 2,490 0,721 22,727

RF6 100 100 83 67 61 61 31 29 0,021 0,116 11,63 42,86 41,2 28,5 12,7 7,0

RF5 100 99 70 38 30 26 8 6 0,220 0,287 3,471 0,482 55,357

RF4 100 100 68 47 39 39 10 9 0,160 0,308 6,325 0,352 54,000 37,6 30,9 6,7 2,7

RF 3 100 93 46 25 18 18 5 4 0,460 0,595 2,739 0,695 55,00

IF 2 99 92 61 48 38 31 13 8 0,160 0,426 6,142 0,713 133,333 34,6 25,7 8,9 3,0
IF 3 100 96 55 45 38 28 11 6 0,230 0,466 5,388 0,527 126,250 32,4 20,9 11,5 3,7
IF 4 100 98 55 41 33 24 8 2 0,300 0,470 4,726 0,403 75,756 36,6 26,0 10,6 4,0
lF6 100 98 71 53 40 31 10 4 0,120 0,278 4,515 0,957 44,00 40,2 33,2 7,0 2,7
IF 8 94 90 61 49 43 35 20 11 0,130 0,455 9,487 0,533 192,50 36,0 26,6 9,8 4,7
IF 9 97 89 50 36 29 24 8 4 0,410 0,554 4,255 0,362 92,424 30,0 23,1 6,9 2,7
IF 10 100 99 72 60 53 44 18 8 0,065 0,255 7,454 1,065 68,085 39,9 28,2 11,7 4,7
IF 11 100 89 48 37 30 26 7 2 0,450 0,556 5,109 0,217 96,429 35,8 29,4 6,4 2,7
IF 12 100 96 59 43 33 28 8 3 0,205 0,417 4,924 0,628 70,724 42,9 33,3 9,6 4,7
IF 19 100 98 71 59 54 40 18 6 0,064 0,273 7,314 1,306 61,818 32,5 27,1 5,4 2,7
lF20 100 99 71 58 49 40 15 6 0,008 0,266 6,876 0,894 60,000 34,0 26,7 7,3 3,0
IF 21 100 97 58 43 36 26 9 3 0,220 0,426 5,143 0,525 79,310 31,6 25,8 5,8 2,3
IF 22 100 100 73 44 34 25 9 5 0,150 0,275 3,162 1,111 40,351 23,5 19,4 4,1 2,0
LF 24 100 99 55 42 35 29 11 5 0,270 0,440 5,323 0,350 121,951 31,7 25,7 6,0 2,3
lF25 100 98 66 51 40 37 2 2 0,130 0,341 5,606 0,820 77,143 33,6 26,3 7,3 3,0
lF26 100 93 44 31 24 19 6 3 0,500 0,593 3,576 0,378 70,000 35,4 29,7 5,7 2,2
IF 27 99 91 37 21 15 13 4 1 0,610 0,695 2,513 0,613 39,048 24,4 19,8 4,6 1,7
RF 18 100 100 75 54 41 34 12 5 0,120 0,215 4,528 0,569 50,000 30,8 24,6 6,2 2,7
RF19 100 99 54 30 19 17 5 2 0,340 0,505 2,860 0,856 42,500
RF20 100 100 65 43 30 23 6 2 0,20 0,351 2,860 0,86 38,75
RF21 100 100 61 37 25 19 5 2 0,27 0,407 2,86 0,86 38,10
S. - Sorting coefficient S. - Skewness C. =Unifonnity coefficient II =Liquid fimit
Pl =Plastic limit PI =Plasticity index lS =linear shrinkage

The highly weathered graniteat InjakaDam shows a poorgradingconsisting predominantlyofsand

(Table 10.3). The curves are low in clay (averaging 2%) and the grading typifies the extent ofthe

limited alteration of these samples, with many of the feldspars behaving as granular fragments.
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Table 10.3. Particle size parameters for highly weathered granite.
Sample Percent passing (mm) Median Mean S. S. C. LL PL PI LS

4.750 2,000 0.425 0.150 0.075 0.05 0.005 0.002 (mm) (mm) (%) (%) (%)

RF2 100 99 49 22 15 14 5 3

RF 1 99 83 32 18 13 11 3 1 0,730 0,870 2,50 0,676 25,000

RF13 100 98 50 20 12 8 3 2 0,410 0,563 2,330 0,999 10,000

S. = Sorting coefficient S. - Skewness C. = Uniformity coefficient LL - Liquid limit

PL = Plastic limit PI = Plasticity index LS = Linear shrinkage

A comparison of the XRD mineralogical results (Chapter 8) with the grading results discussed

above shows that the two cannot be reconciled with regard to the fme (clay) fraction.

Mineralogical determination ofclaycontent (kaolinite) is significantly higher than that gained from

mechanical grading methods. This perceived discrepancy can be explained by the fact that the

disaggregation was probably not complete and by the unique texture and microfabric of the

weathered granites where many clay minerals are "locked"within the partially weathered feldspars,

forming an integral component of the weathered feldspar structure. Disaggregation during

mechanical grading methods is not sufficient to free these clay particles. The rigorous mechanical

breakdown (during milling ofthe XRD samples) allows the clays to be released from the feldspars,

consequently resulting in higher compositional determinations. Furthermore, SEM observations in

Chapter 6 have shown that the kaolinite platelets can be silt sized (between 3 and 6 ,urn) and

consequently will not behave mechanicallyas a clay during hydrometer settlementmeasurements.

Aggregation of the clay platelets is also common compounding this effect.

Another way ofillustrating the textural changes that occur during weathering ofgranite is shown

by the ternary diagram in Figure 10.2. The weathering of the primary mineral grains to finer

decomposition products is shown bythe increase in silt and clay contents for increasing weathering.

This relationship can also be identified when comparingthe sortingcoefficient (So) with depth. The

sortingco-efficient measures the square root ofthe ratio ofthe 75th percentile to the 25th percentile

(from the logarithmic gradingcurve). The clear reduction in So with increasingdepth (Tables 10.1,

10.2 and 10.3) shows a continual coarsening ofthe grain size as weathering decreases. Analysis

of the grading data presented by Partridge et al. (1990) shows a similar trend for So'

10.2 Consistency limits

10.2.1 Introduction

As the science ofsoil mechanics was largely developed in relation to transported and often fine­

grained soils found in temperate latitudes, reproducible results from some standard tests may be

difficult to obtain when studying residual tropical soils. This was experienced when carrying out

indicator tests on the weathered granite material. In some cases the coarser granite saprolites and

highly weathered granite samples could not be tested due to their lack of plasticity.
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Figure 10.2. Ternary diagram ofweathered granite grain size indicating direction ofweathering

trend.

10.2.2 Results

Standard test methods were carried outfor the liquid limit and plastic limit (ASTM 04318-84, 1986),

and linear shrinkage (TMHl 1996, Method A4). The results ofthese tests are shown in Tables

10.1 to 10.3 and Figure 10.3. According to Anon (1979), the granite saprolite with residual soil

patches exhibits slightly plastic to moderately plastic behaviourwith an average PI of9,5. Similar

behaviour is shown by the granite saprolite, although the average PI is slightly lower at 8,1. The

studies undertaken by Partridge etal. (1984 and 1990) show slightly higher indicator characteristics

for the material at Zoeknog Dam site where average PI was measured at 13,3%. This corresponds

to the higher clay contents reported for this material. Falla's (1985) PI measurements for granite

saprolite in Johannesburg are also slightly higher for the frrst 2m ofthe saprolite profile, recorded

as being an average varying from 12% to 18% with the deeper profile (up to Srn below the start of

the saprolite horizon) measuring between 11% and 21% - once again reflective ofthe higher clay

contents for these materials in comparison to that encountered at Injaka Dam. No consistency

limits could be obtained for the friable, highly weathered granite samples.
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Figure 10.3. A-line plot ofgranite saprolite including granite saprolite with residual soil patches.

In broad terms, the plasticity indexreflects the ratio ofclay mineral to silt and fme sand in a soil, that

is the proportion ofclay minerals in the fines (Carterand Bentley, 1994). This relationship is clearly

illustrated in the activity chart presented in Figure 10.4, where the plasticity index is plotted against

percentage clay. Using the t-Test, the linear relationship in Figure 10.4 was validated where this

test proved the correlation ofr = 0,75 to be acceptable within the 95% confidence limits (tcrtitical =
1,703; tobtained =5,670). Consequently, it can be assumed that with increased weathering and clay

formation, the plasticity of the saprolite increases.

As expected with soils containing kaolinite (which exhibits an activity between 0,3 to 0,5 in the pure

form), the linear shrinkage of both the granite saprolite with residual soil patches and granite

saprolite was low, between (1,7 and 8,7%) and the saprolite can be considered to exhibit low

expansiveness as shown by the method developed by Van der Merwe (1964) in Figure 10.5.

Findings at Zoeknog Dam site (Partridge et al., 1984 and 1990) and on the Basement Complex in
Johannesburg (Falla, 1985) are similar.

10.3 Density and void ratio characteristics

It is well known in basic soil mechanics applications that soil density is one ofthe most important

parameters affecting the engineering behaviourofa soil (Lambe and Whitman, 1969 and Irfan and

Dearman, 1978b). Density is the measure ofthe state ofpacking ofthe soil which is inherently

dictated bythe microfabric and mineralogy -two features which have shown important implications

during the weathering process. An increase in packing is accompanied by an increase in strength,

a decrease in compressibilityand a decrease in permeability. Consequently, it is essential that the

densityofa soil is well-determined prior to relating it to other forms ofengineering behaviour. With
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respect to saprolitic materials, the use ofdensity is most often in index tests directed to assess the

degree of weathering and leaching.
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Figure 10.5. Potential expansiveness ofweathered granite using the method developed by Van
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The density ofthe weathered granite was determined from laboratory methods (BS 1377:1975 Test

15A) and field techniques including the sand replacement (TMHl Method AIO(a), 1986) and

nuclear probe methods (TMH1AlO(b), 1986). As all ofthe samples were extracted from the side

ofthe foundation excavation overaperiod oftime spanning seasonal change, the bulkdensities (Ph)

of the samples cannot be considered for analysis per se as these values are dependent upon the



99

seasonal (and consequently rainfall) conditionsat the time ofsampling. Acomparison ofdrydensity

values (Pd) provides considerably more insight into understanding the nature of the weathering

effects.

Laboratory density tests were conductedon undisturbed blocksamples, whilst the sand replacement

and nuclearmethods were both carried out immediately adjacent to the site from which the blocks

were extracted. Results for the various test procedures are presented in Tables lOA, 10.5 and

10.6. Results from the laboratory tests show a higher degree ofscatter than the field results. In

fact, correlations between the different types oftesting show the sand replacement and nuclear

methods to be the most complementary with high r-values obtained during data regression ofthe

dry density values (Figure 10.6). Once again, the t-Test was employed to assess the correlations

and this test found all of these results to be significant within the 95% confidence limits (Table

10.7).

These results corroborate the deductions made by Shai and Livneh (1983), that the repeatability in

nuclear testing is high and justifies its practical use. However, Wates (1987) does suggest the use

ofthe sand replacement method as the most defmitive technique for determining density values of

soils. The lackofprecision with regard to laboratory densities can be attributed to the test utilising

smaller, and thus less representative samples for analysis, in comparison to the field methods.

Accordingly, density results obtained from the sand replacementtests have been used for indexing

the material properties.

FromTables 1004 to 10.5, it can be seen that a significantdegree ofdensity variabilityoccurs, even

within material ofa similar weathering class. Haskins et al. (1998a) have mentioned a density

difference ofup to 15%for material from the same block sample ofgranite saprolite at Injaka Dam

site. This characteristic has been identified throughout the literature concerningthe weathering of

granite (Matsuo etal., 1968; Baynes and Dearman, 1978a; Irfan and Powell, 1985 and Zhao etal.

1994b) and can be attributed to the compositional variability ofthe granite parent bedrock and to

differing degrees ofweathering intensity which have locally variable distribution.

Table 1004. Summary of density and void ratio results for granite saprolite with residual soil

patches.
Sample oapt Bulk Density Dry Density (kg.m") a G. m S,

(m) (kg.m"') laboratory Sand Nuclear (%) (%)

RF12 1,0 1873 1463 1511 1461 0,839 2,7 22,6 72,5

LF 1 0,9 1610 1478 0,759 2,5 5,6 19,2

LF7 1,1 1659 1444 0,828 2,6 12,7 40,5

LF 18 1,1 1656 1516 1535 1480 0,788 2,6 15,3 52,0
RF 17 22 1712 1487 1389 1359 Q7Q§ 26 151 507

a =initial void ratio G. - specific gravity m =natural moisture content S. =degree of saturation



100

Table 10.5. Summary ofdensity and void ratio results for granite saprolite.

Sample Dept Bulk Density Dry Density (kg.m") e G. m S,

(m) (kg.m") Laboratory sand Nuclear (%) (%)

RF10 3,5 1642 1369 1330 1297 0,907 2,6 15,5 44,6

RF9 4,9 1639 1349 1375 13n 0,957 2,6 15,3 42,2

RF8 5,7 1892 1715 1482 1492 0,539 2,6 7,9 36,7

RF7 6,6 1998 1747 1855 1597 0,500 2,6 11,1 58,2

RF6 2,5 1795 1469 1458 1466 0,818 2,6 18,1 59,1

RF 5 4,8 1649 1388 1763 1630 0,888 2,6 16,3 48,1

RF4 6,9 1534 1342 1457 1434 0,960 2,6 12,5 34,3

RF3 9,2 1694 1744 1683 1648 0,848 2,6 14,4 45,0

LF 2 2,4 1654 1419 1400 1338 0,868 2,6 12,9 39,4

LF 3 3,8 1695 1430 1416 1402 0,860 2,6 14,9 46,1

LF 4 4,5 2087 1708 1523 1297 0,556 2,6 17,5 83,8

LF 5 5,2 1989 1680 1610 1553 0,589 2,6 15,3 69,3

LF6 5,5 1n3 1399 1433 1676 0,909 2,6 22,4 65,8

LF 8 2,8 1768 1419 1434 1375 0.745 2,6 13,6 48,3

LF 9 4,0 1760 1557 1429 1419 0,676 2,6 10,7 41,3

LF 10 5,5 1835 1460 1431 1373 0,801 2,6 21 68,9

LF 11 6,5 1674 1371 1362 1337 0,955 2,6 20,5 57,5

LF 12 7,3 1826 1487 1226 1209 O,n5 2,6 19,1 65,0

LF 13 7,7 2089 1927 1625 1631 0,365 2,6 4,8 34,6

LF 19 2,3 1627 1394 1307 1314 0,937 2,6 19,5 54,7

LF 20 3,2 1535 1366 1305 1319 0,955 2,6 16,9 49,5

LF 21 4,0 1591 1313 1386 1410 1,018 2,6 21,2 55,1

LF 22 5,1 1569 1373 1409 1415 0,930 2,6 14,2 40,5

LF 24 5,7 1667 1379 1398 1424 0,914 2,6 20,9 60,3

LF 25 6,2 1676 1541 1533 1539 0,713 2,6 8,7 32,3

LF26 7,2 1689 1554 1522 1512 0,692 2,5 13,2 47,1

LF 27 7,8 1878 1756 1797 1767 0,501 2,6 6,4 33,8

RF18 3,8 1551 1336 1383 1318 1,022 2,7 15,3 40,7

RF 19 5,2 1949 1818 1696 1515 0,447 2,6 7,2 42,4

RF20 6,1 1722 1453 1479 1447 0,817 2,6 18,5 59,8

RF 21 62 1607 139-' 1663 1541 0659 26 153 621
e =initial void ratio G. =specific gravity m =natural moisture content S, =degree of saturation

Table 10.6. Summary ofdensity and void ratio results for highly weathered granite.

sample Dept Bulk Density Dry Density (kg.m") e G. m S,

(m) (kg.m") Laboratory sand Nuclear (%) (%)

RF2 8,2 2299 2191 1n9 0,219 2,6 2,6 31,8

RF 1 9,6 1942 1826 1823 0,451 2,6 2,5 14,7

RF13 10,6 2277 2080 2010 0,269 2,6 4,1 40,2

RF 14 11,8 2209 2159 0,227 2,6 2,3 26,8

RF 15 10,9 2258 2087 0,242 2,6 3,0 32,8

RF16 11,8 2532 2480 0,034 2,6 0.3 22,9

RF 22 7,7 2392 2350 0,128 2,6 1,8 37,4

RF 23 9,1 2259 2210 0,199 2,6 2,2 29,3

RF24 9,8 2286 2250 0,178 2,6 1,6 23,9

RF25 10,2 2466 2437 0,087 2,6 1,2 36,4

LF 28 8,7 2256 2221 0,202 2,6 1,6 21,1
e =initial void ratio G. =specific gravity m =natural moisture content S, =degree of saturation
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Table 10.7. t-Test results for density technique correlations.

Correlation N t.-. a = 0,05 t-..

Nuclear method with sand replacement technique 35 0,826 2,042 8,418

Laboratory method with sand replacement technique 36 0,764 2,042 6,904

Laboratory method with nuclear method 35 0,523 2,042 3,525

The increase in density with a reduction in weathering and increasing depth is clearly shown in

Figure 10.7. An interesting observation from this figure is the factthatthe granite saprolitewith

residual soil patches exhibits a slightly higher or equivalent density to the granite saprolite that

directly underlies it. As leaching intensifies towards the surface (confirmation of which was

obtained from the SEM and geochemical investigations), the saprolite becomes increasingly

metastable, where at a point, it can no longer support its own weight and collapses into a denser

form. Colluvial processes (reworking) including percolating water often enhance this densification.

Individual results show thatthe granite saprolite may exhibit Pd values as low as 1200 kg.m-3 with

the higher Pd values in the order of1600 kg.m-3
• The density ofthe saprolite is directly related to

the intensity ofleaching ofthe material where higher void ratios are indicative ofthe presence of

more pronounced eluvial processes. Leaching does not occur homogeneously throughout the

weathering system but instead is concentrated in areas ofpreferential flow thus accounting for the

scatter of density data shown in Figure 10.7.

A marked increase can be observed in density between the granite saprolite and highly weathered

granite bedrock. This complies with field observations which show a very abrupt change between

the material types with a transition zone ofapproximately only 0,5-1 m (Figure 4.3). This abrupt

change has also been identified in other regions (Zhao etal., 1994a). The highly weathered granites

show significantly higher dry densities ranging from 1826 to 2524 kg.m-3 with much lower moisture

contents which can be attributed to their lower porosity. Figure 10.7 also shows the characteristic

decrease in void ratio with depth. Scanning electron microscopy, petrography and mineralogical

results show this to be a function ofdecreasing leaching within the weathering system, where the

porosity of the feldspars, clay aggregations and intra- and inter-granular voids decrease.

At Zoeknog Dam site, tests by Partridge etal. (1990) showed the granite saprolite to exhibit similar

dry densities to those measured at Injaka Dam. The granite saprolite at ZoeknogDam varied from

1319 to 1741 kg.m-3 between a depth range of5 to I0,5m with equivalent initial void ratios ranging

from 0,520 to 0,972 and these results compare favourably to those encountered at Injaka Dam.

Falla's (1985) study on granite saprolite showed dry density results varying from an average ofl354

to 1495 kg.m-3 for the upper 2m ofthe saprolite profile with equivalent average initial void ratios in

the order of0,755 to 0,972. From 3 to 5m depth in the saprolite profile he identified average dry

densities between 1327 and 1511 kg.m-3 with corresponding average initial void ratios between
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0,761 and 1,050. The range of these values is all well within that determined for the granite

saprolite at Injaka Dam.

A further comparison ofthe dry density and void ratio results with similar granitic materials from

Hong Kong as described by Lumb (1962) and Irfan (1988) shows that the granite saprolite at Injaka

Dam exhibits higher dry densities and lower void ratios than the Hong Kong material. The

weathered Hong Kong granite described by Irfan exhibits dry densities between 1200 and 1300

kg.m-3 with initial void ratios generally above unity. This suggests a more intense leaching ofthe

Hong Kong granite than that encountered in this investigation and may be explained by the higher

rainfall experienced in Hong Kong.

10.4 Permeability

10.4.1 Introduction

The in situ permeability ofsaprolitic soils is typically high due to the aggregation ofclay minerals

and other microstructural features causing high porosities. These features have been observed

from SEM observations in Chapter 6 and from the large discrepancy between grading parameters

and mineralogical analyses. Unlike true sedimentary soils, permeability of saprolites may not

necessarily correlate with the grain size ofthe saprolite. This was found by Lumb (1962) where

permeability results were applied to various grading parameters without much success. This

suggests that using the permeability ofthese soils as an index may be difficult. It has further been

suggested by Sridharan (1988) and Costa Filho et al. (1989) that the results of permeability in

saprolitic soils are difficult to determine and may be inconsistent due to the microfabric

heterogeneity. As a consequence of these observations a suite of permeability tests were

undertaken to quantify this engineering parameter of the material.

10.4.2 Permeability tests

In order to defme the permeability ofthe granite saprolite three complementary permeability test

methods were applied, including a laboratory falling head test, field falling head test and a field

constant head test. The laboratory falling head test (klab) was conducted in a similar manner to that

described by Head (1982), where the test was carried out in an oedometer consolidation ring with

an applied vertical load of 3,18 kg. The field falling head test (~eIJ employed the method

prescribed by Lambe and Whitman (1969), and was conducted at the locality from which the block

samples were cut. The test requires a standpipe to be inserted into the soil and filled with water.

A check was conducted to determine the rate at which the water level drops within the standpipe.

At saturation, this rate of drop is constant and the permeability of the soaked material can be

determined. The equation used to determine the permeability is described as follows:
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where: km =
D=

H1 =

H2 =

mean coefficient of permeability (cm.s-1
)

diameter pipe (cm)

piezometric head (cm) for time = t1 (s)

piezometric head for time = t2 (s)

(Eqn.10.4.1)

The field constant head test (kseJ followed a similar procedure to that proposed by Anon (1968).

This procedure uses a traditional mechanical apparatus, although an electronic data logging system

using the same principles was developed by the author for this investigation (Figure 10.8). This

comprised a computer controlled electronic level switch attached to a solenoid valve, flow meter

and data logger. The general permeability of the hole (kseJ was determined by augering two

boreholes at the top of Traverses 4 and 5, respectively. The intention of the procedure was to

correlate kgen with the average value of kfie1d for each traverse. Prior to testing, washed and

weighed 19 mm aggregate was carefully poured into the percussion holes up to the level required

fortesting. The function ofthe aggregate was to prevent collapse ofthe hole during saturation and

also allowed for a check ofthe hole volume. The test procedure determines the permeability over

the entire hole length and does not account for vertical changes in permeability. Figure 10.9

provides a summary ofthe test parameters with Figure 10.10 showing the conditions applying to

each hole. The results are presented in Table 10.8 with average~ values for the respective

traverses shown for comparative purposes.

Figure 10.8. Electronic data logger well permeameter designed for testing general field
permeability (kseJ using principles from the well permeameter as developed by Anon (1968).
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Traverse 4 Traverse 5

Water surface in well

h = Height of water in
test well (ft.)

water table or
impervious strata

Water surface in well
... ...

Tu
--Y...­

h

~

..... 0- r == Effective radius
of well (ft.)

CONDITION III
Tu < h

Tu = Unsaturated strata

k - 525,600 log. (~) 29t fJ:L\

20-h2[(~/_~(~Y] ~1l201ImperviOUS strata
Water table or y

CONDITION I
Tu> 3h

NOTE: For all conditions h should be 10r or greater

K", = coefficient of permeability (ftJyr)

Q = discharge rate of water from well for steady state conditions (ft3/min)

~, =viscosity of water at temperature T

~'" = viscosity of water at 20 degrees Celcius

Figure 10.9. Summary of test parameters for constant head well penneameter tests.

Table 10.8. Summary ofwell penneameter test results.

Traverse Driled Depth Driled '" Calculated Diameter '" T. a k.o. Average

(m) (m) (m) (m) (I.hr') (cm.s·') kw.

k.o. Traverse 4 8,72 0,100 0,104 28,96 47 1,7 x 10-" 4,7 x 10"

k.o. Traverse 5 13,93 0,110 0,110 13,50 73 1,8 x 10" 7,9 x 10"

for an explanation of symbols see Figure 10.9

Plots ofwater volume intake againsttime (Figure 10.10) show thatthe saprolite became saturated

after 25 hours. Smearing ofthe holes during augering may account for the slightly lower values of

kgen in comparison to the average kneld for the respective traverses. The penneability results for the

field and laboratory falling head tests are presented in Tables 10.9 to 10.11.
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Table 10.9. Summary of permeability test results for granite saprolite with residual soil patches.

Sample Field Faling Head Test Laboratory Falling Head Test

~(cm.s·') k.., (cm.s·')

RF 12 5,3x 1~ 6,5x 1~

LF7 1,2x 1~

LF 18 1,3x 1~ 5,Ox 1~

RF 17 6,8x 1~ 4,1 x 10"

Table 10.10. Summary of test results for granite saprolite.

Sample Field FaDing Head Test Laboratory FaDing Head Test

~(cm.s") k.., (cm.s")

RF10 1,2x1~ 8,4 x 10"

RF9 9,6x 10" 2,0 x 10"

RF 8 4,7 x 10" 9,3x 10"

RF7 5,1 x 1~ 2,9x 1~

RF6 6,3x 1~ 8,1 x 10"

RF5 1,4x10" 3,1 x 1~

RF4 1,4x 1~ 1,7 x 10"

RF 3 8,3 x 10" 7,9 x 10"

LF 2 4,5x 1~ 1,9x1~

LF3 4,6x 1~ 1,1 x 1~

LF 4 5,3x 1~ 1,2x1~

LF 5 6,1 x 10" 2,3 x 10"

LF6 3,1 x 10" 3,3 x 10"

LF 8 1,4 x 10" 9,5 x 10"

LF 9 8,0 x 10"

LF 10 3,8 x 10" 1,6x 1~

LF 11 5,3 x 10" 6,2 x 10"

LF 12 1,0 x 10"

LF 13 6,1 x 10" 2,3 x 10"

LF 19 3,1 x 10" 3,1 x 10"

LF 20 8,6 x 10" 8,6 x 1~

LF 21 8,0 x 10" 8,0 x 10"

LF 22 4,0 x 10" 4,0 x 10"

LF 24 8,7x 1~ 8,7 x 10"

LF25 4,7x 1~ 4,7 x 10"

LF 26 5,6 x 10" 5,6 x 10"

LF 27 3,2x 1~ 3,2 x 1~

RF 18 1,3x 1~ 5,5 x 10-'

RF19 5,5x 1~ 7,3 x 10""

RF20 8,3 x 10" 1,7 x 10"

RF 21 1,0 x 10"

Table 10.11. Summary of permeability results for highJy weathered granite.
Sample Field FaRing Head Test Laboratory Faling Head Test

~(cm.s") k.., (cm.s·')
RF2 7,0 x 10"

RF 1 3,9x 10" 2,1 x 10"
RF15 2,2 x 10"" 4,6x 1~
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Figure 10.11 shows the relationship Of~eld and ~ab values with depth. A striking feature ofthe

values is the high degree ofscatter, particularly with regard to ~ab' In fact, klab values may not be

considered useful as the standard deviation for these values exceeds the mean of these values

(Table 10.12). This highlights the difficulties with regard to laboratory testing ofsaprolitic soils

where sample disturbance during trimming and flow bypass along sample-oedometerring contacts

is difficult to control. Furthermore, samples used for the determination of klab are small and

consequently not likely to homogenise the effects of the inherent parent material variability.

Table 10.12. Statistical summary ofpermeability results.
Test Type Penneability (cm.s·')

Mean Median N Standard deviation

Laboratory Falling Head Test

Field Falling Head Test

Field Constant Head Test

1,6X 10"

6,5 X 10"

1,8X 10"

9,3 X 10"

5,6 X 10"

33

38

2

2,0 X 10"

3,5 X 10""

With the exception ofTraverse 1, all granite saprolite with residual soil patches samples showed

lower ~eld values than the granite saprolite. This relationship agrees with the more dense nature

ofthe granite saprolite with residual soil patches and supports the notion ofdensification by collapse

once a critical, advanced state ofweathering has been achieved. It is difficult to comment on the

relationship ofthe granite saprolite permeability with respect to depth as no particular correlation

is expressed in Figure 10.11. However, values for ~eld prove the saprolite to have a medium

permeability (1 x 10-5 to 1,4 x 10-4 cm.s-l), suggestingthat the material is free draining and indicating

good seepage conditions - a factor which is discussed in Chapter 14. A comparison Of~eld with

void ratio (Figure 10.12) shows a general increase in permeabilitywith increasing void ratio. This

implies that increased leaching leads to a more free-draining material, as would be expected.
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The poor correlation ofgrading (clay content) with permeability is shown in Figure I0.13a, where

the lack of any relationship suggests that permeability is not only a function of grading but is

affected by the texture and structure ofthe material. This supports the fmdings ofLumb (1962)

and Sridharan (1988). With this in mind, a comparison ofXdwith permeability (Figure 10.13b)was

made. This shows a general increase in permeability with increasingXd. As weatheringadvances

(an increase in Xd) so leaching causes porosity to become a prominent microfabric feature thus

increasing permeability (hence the positive relationship observed).
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Figure to.13. (a). Lack of correlation between clay (as determined from grading analyses)
with permeability. (b). Tentative relationship ofpermeability with the microfabric indexXd

Permeabilities determined for granite saprolite at Zoeknog Dam by Partridge etal. (1984 and 1990)

show similarvalues to those determined in this study at InjakaDam. For depths ranging from 1,2m

to 12,25m values ofk for the granite saprolite as determined by falling head permeability tests on

block samples ranged from 2,4 x 10-4cm.s'· to 5,2 x 10.7 cm.s'·. Partridge et al. (1984 and 1990),

found that there was a general trend for the permeability to increase with depth and whilst they

could not explain this relationship, a broad comparison ofthese results with the clay contentofthe

material shows that the highest permeabilities correspond to the lowest clay contents, in effect

suggesting that flow through microcracks and fissures not clogged by clay aggregations may be the

predominant seepage mechanism. This observation differs to those fmdings from Injaka Dam as

discussed above.
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11. DISPERSIVITY

11.1 Introduction

Dispersive soils are highly erodible due to deflocculation of clay particles in the presence of

relatively pure water to form colloidal suspensions that are removed from the soil through natural

permeability. According to Sherard et al. (1976a), the nature ofthese soils was first identified in

the American agricultural industry in the 1930'swhere significantproblems with regard to erosion

ofstructures and arable land were encountered. These soils were first identified in South Africa

in the mid-1960's as a result ofthe failure ofa number ofsmall earth dams in the Free State and

Northern Cape Provinces (Donaldson, 1975). Since that time, work characterising the nature,

behaviour and identification ofthese soils used in local embankment dams has been carried out

culminating in a review ofthe topic by Elges (1985) and Gerber (1986). A synopsis ofthis literature

reveals that no absolute methods for identifYing dispersive soils have been developed - this being

the result ofdispersivity being dependent upon the complex interaction ofa number ofphysico­

chemical properties of the soil and soil water, respectively.

The occurrence ofdispersive soils in South Africa is generally restricted to old pediment surfaces

with gentle rolling topography oflow reliefand smooth flat slopes (Bell andMaud, 1994). However,

dispersion can also be associated with flood plain deposits, colluvial sediments, lake bed deposits and

residual soils. Ithas been acknowledged that climate also plays a major role in the occurrence of

these soilswith theirassociation common, but not exclusive to regions which experience Weinerts's

(1980) climatic N-values ranging between 2 and 10.

11.2 The mechanism of dispersion

The mechanism ofdispersion in soils is brought about when the repulsive forces between the clay

particles in water exceed the attractive forces resulting in deflocculation ofthese particles. This

has important implications for erodibility when considering the movementofwaterthrough the soil.

In non-dispersive soils the clay particles adhere to one another and are only eroded by water

flowing above a definite threshold velocity. In dispersive soils the clay particles readily deflocculate

and go into suspension even in quiet water. This makes the erodibility ofthese soils critical, as

even the smallesthydraulic gradients can remove significant amounts ofcolloidal material from a
soil system.

The process ofdispersion is complex, being affected by a number of intrinsic geochemical and

physical parameters ofthe soil, including clay content, percentage dissolved sodium, pH, cation

exchange capacityand total dissolved solids (considered as the total contentofcalcium, magnesium,
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sodium and potassium in milliequivalents per litre). Inmany instances, the complex interrelationship

of these parameters is not fully understood and prevents identification of any single absolute

parameter that can be used to singularly identify such soils. According to Elges (1985), the

dispersion phenomenum is caused by a high percentage ofexchangeable sodium on the surface of

the clay particles. Sodium is loosely held on the clay surface and imparts a negative charge to it.

The adjacent negatively charged particles tend to repel one another, and ifthe forces ofrepulsion

are great enough to overcome the forces ofattraction, the clay particles deflocculate and can be

carried away. The percentage dissolved sodium content can be defined as the quantity ofsodium

from a sample ofpore water divided by the total dissolved solids (TDS) - in this case defined by

the summationofthe quantities ofthe four main alkali and alkaline earthcations in solution (calcium,

magnesium, sodium and potassium). Dispersive soils contain a percentage dissolved sodium content

higher than ordinary soils, being up to 12 %. The presence ofexchangeable sodium is the main

chemical factor contributing towards dispersive behaviour and is expressed in terms of the

exchangeable sodium percentage:

ESP = Exchangeable Sodium Concentration x 100
Cation Exchange Capacity

(Eqn. 11.2.1)

where the units are given in meq/lOO g of dry soil. A threshold value of 10% has been

recommended above which soils that have their free salts leached by seepage of relatively pure

waterare prone to dispersion (Elges, 1985). Gerber and Harmse (1987), have shown that soils with

ESP values above 15% are highly dispersive whilst those with low cation exchange capacities of

(15 meq/l00g clay) have been found to be completely non-dispersive at ESP values of 6% or

below. The cation exchange capacity (CEC, expressed in meq/l00g clay) can also be routinely

applied to the identification ofdispersive soils, with high CEC's indicative ofsoils readily able to

exchange cations with the ambient solutions.

For deflocculation to occur, a certain proportion ofclay is required within the soil. Dispersive soils

often contain a high to moderate proportion ofclay, although no significant differences in the clay

fractions ofdispersive and non-dispersive soils have been ascertained. Sherard etal. (1976a) have

suggested that soils with less than 10% clay particles may not have enough colloids to support
dispersive piping.

The typical pH range for dispersive soils is between 6 and 8, whilst higWy dispersive soils have been

found to have pH values above 8. Another important propertyclaimed to govern the susceptibility

ofclayeysoils to dispersion is the total contentofdissolved solids (TDS) within the water (Sherard

et al. 1976a). The lower the content ofdissolved salts the greater is the susceptibility ofsodium
saturated clays for dispersion.
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11.3 Identification of dispersive soils

The identification ofdispersive soils cannot beconducted using routine soil mechanics testing such

as natural moisture content, particle size distribution and Atterberg limits. Forthis reason, a number

ofspecialised physical and chemical tests have been developed to recognise dispersive soils (fable

11.1). However, no single test can be relied upon to absolutely identify these soils as the boundary

between deflocculated and flocculated states varies considerably. Hence, it is often necessary to

conduct a suite oftests to satisfactorily determine the dispersivity ofthe soils. The physical tests

show the erodibility ofthe soil or its direct reaction to exposure in water, whilst the chemical tests

show the cause ofthe dispersivity by measuring the presence of sodium on the clay surface.

Table 11.1. Established methods for determining the dispersivity ofsoils.
Test Type

Physical Tests

Crumb Test

Double Hydrometer Test (SCS Test)

Pinhole Test

Chemical Tests

Total Dissolved Solids and Percentage Sodium

ESP

ESP-CEC

Reference

Emerson (1964)

VoIk (1937) and Kinney (1979)

Sherard et al. (1976b)

Sherard et al. (1976a)

Gerber & Harmse (1987)

Gerber & Harmse (1987)

Substantial pipingerosion and "runnel erosion" (Figure 11.1) has occurred on the flanks ofthe dam

foundation excavation over a relatively short period of one year (one rainfall season). These

features are characteristic ofhighly dispersive soils. Furthermore, during erosion ofthe flanks, the

runoff water remains highly turbid even throughout long durations of rainfall (Figure 11.2).

Consequently, research was initiated to quantify the dispersivityofthe weathered granite. In order

to accomplish this, a number ofdispersivity tests were undertaken, including the physical tests

(crumb test, double hydrometer and pinhole tests) and chemical tests (ESP, CEC and pH).

Although the Atterberg limits do not provideameans ofdirectly identifying potentially dispersive

soils (Resendiz, 1977 and Tandanierand Ingles, 1985), it is generally accepted that the higher the

valuesofthe plastic limit, liquid limitand plasticity index, the higher is the resistance to dispersion.

11.3.1 Crumb test

The crumb test was first described by Emerson (1964) and is the simplest ofall dispersivity tests

measuring the reaction ofhydration ofa soil clod ("crumb") when placed in distilled water. The

tendency for the colloidal sized particles to deflocculate is observed over a ten minute period and

this reaction is graded accordingly. According to Elges (1985), the crumb test generally gives a

good indication ofthe potential erodibilityofclaysoils although soils containingkaolinite with known
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field dispersion problems have shown non-dispersive reactions. This was not the case in this study,

where the crumb test showed all samples to be dispersive, a characteristic noticed from field

observations.

Figure 11.1. Large piping and pervasive runnel erosion developed in granite saprolite foundation
excavation. The pipe developed over a period of one year.

Figure 11.2. Turbid water exiting from piping erosion on the right excavation flank in granite
saprolite.
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All samples of granite saprolite with residual soil patches tested positively as dispersive soils

exhibiting Grade 3 and one Grade 4 reaction (Table 11.2). The granite saprolite was also

susceptible to the crumb test with an overall more vigorous reaction as suggested by the Grade 4

results in Table 11.3.

11.3.2 Double hydrometer test

The double hydrometer test has been developed from the initial method proposed by Yolk (1937)

and described later by Kinney (1979). This test was one ofthe fIrst methods developed for soil

dispersivity and describes the tendency ofthe clay particles to naturally go into suspension. The

test measures the content of the fIve micron size particles in a standard hydrometer test with a

parallel test being conducted in which no chemical dispersant is used The amount of<5~m soil

particles that goes into suspension naturally is expressed as a percentageofthat in the standard test.

Bell and Maud (1994) have defmed certain broad classifIcations into which the double hydrometer

test identifIes the dispersivity of South African soils. They maintain that values less than 15%

suggest non-dispersive behaviour; between 15% and 30%defInes slightly dispersive characteristics;

between 30% and 50% includes soils that are dispersive and greater than 50% includes soils that

can be considered to be highly dispersive.

Table 11.2 shows 60 % ofthe samples ofgranite saprolite with residual soil patches to classify as

non-dispersive, whilst 40 % classify as slightly dispersive. The granite saprolite shows a much

wider range of dispersivity classifIcations (Table 11.3) with 26 % indicating non-dispersive

characteristics; 19 % showing slight dispersivity; 16 % exhibiting moderate dispersivity and 39 %

showing a susceptibility to be highly dispersive.

11.3.3 Pinhole test

In the pinhole test a cylinderofsoil is compacted at moisture content equal to its plastic limit using

a miniature compacter. A 1 mm pinhole is punched through the soil specimen and water is

percolated through the pinhole under constant head ranging from 50 to 380 mm. The flow rate,

effiuentturbidity and pinhole size are used to assess the disposition ofthe soil to disperse. This test

is widely considered to be the most reliable physical dispersivity test and was fIrst developed by

Sherard etal. (1976b). Jermy and Walker (1999) have advanced the qualitative assessment ofthis

test by using a spectrophotometer to quantitatively assess the turbidity ofthe effluent emanating

from the pinhole. Results from this investigation show that the samples ofgranite saprolite with

residual soil patches classify as non-dispersive (Table 11.2). The majority (94 %) ofthe granite

saprolite samples also showed non-dispersive tendencies from this test, whilst only 6 % showed

moderate dispersivity (Table 11.3).



Table 11.2. Physical and chemical dispersivity test results for granite saprolite with residual soil patches.
Sample Clay WL lp A LS pH K Ca Mg Na TDS ESP-CEC Graph EC Crumb Test Double Hydrometer Pinhole Test

(%)

ESP CEC Dispersivity Grade Dispersivity (%) Dispersivity Classification Dispersivity

RF12 31 44,0 17,6 0,6 8,7 Gr3 D 18,2 SD ND 1 ND

RF17 18 34,2 11,6 0,6 6,7 Gr3 D 11,5 ND NDl ND

LF 1 11 23,3 4,6 0,4 2,0 5,9 0,8 <1,0 <1,0 6,0 39,0 5,0 Gr3 D 6,3 ND NDl ND

LF7 8 26,0 7,5 0,9 3,7 5,9 1,9 <1,0 <1,0 6,0 37 5,4 Gr3 D 25,0 SD ND2 ND

LF 18 11 31,7 6,3 0,6 3,3 6,7 1,2 1,0 <1,0 4,0 32,0 3,45 41,04 MD 4,1 Gr4 D 10,0 ND NDl ND

----J



Table 11.3. Physical and chemical dispersivity test results for granite saprolite.
Sample Clay Wc Ip A LS pH K Ca Mg Na TDS ESP-CEC Graph EC Crumb Test Double Hydrometer Pinhole Test

(%)
Grade Oispersivity (%) Oispersivity Classification OispersivityESP CEC Oispersivity

RF 10 21 37,1 12,6 0,6 5,3 Gr4 0 47,8 MD NO 1 NO

RF 9 4 33,2 8,2 2,0 4,0 Gr4 D 75,0 HO ND 1 ND

RF 8 16 36,1 10,5 0,7 5,0 Gr4 D 90,0 HO ND 3 MD

RF 7 2 Too sandy Gr4 0 100,0 HO ND2 ND

RF6 29 41,2 12,7 0,4 7,0 Gr3 0 16,1 SO NO 1 NO

RF 5 8 Too sandy Gr4 D 100,0 HO ND1 NO

RF 4 10 37,6 6,7 0,7 2,7 Gr4 D 100,0 HO N01 ND

RF 3 5 Too sandy Gr4 D 80,0 HO NO 1 NO

RF18 5 30,8 6,2 1,2 2,7 Gr4 D 50,0 ND NO 1 NO

RF19 2 Too sandy Gr4 0 80,0 HO ND1 NO

RF20 2 Too sandy Gr4 D 100,0 HD NO 1 NO

RF21 2 Too sandy Gr4 0 80,0 HO ND 1 NO

LF 2 8 34,6 8,9 1,1 3,0 6,1 0,3 <1,0 <1,0 3,0 21,0 2,4 Gr3 D 12,5 NO ND1 NO

LF 3 6 32,4 11,5 1,9 3,7 6,2 0,5 <1,0 <1,0 3,0 21,0 2,1 Gr4 D 16,7 SO ND 1 ND

LF 4 2 36,6 10,6 5,3 4,0 7,0 0,8 4,0 <1,0 3,0 36,0 4,9 Gr4 D 50,0 MD NO 3 MD

LF 5 3 29,1 8,4 2,8 2,7 6,3 1,0 <1,0 <1,0 3,0 28,.0 3,0 Gr4 0 60,0 HO ND 2 NO

LF 6 4 40,2 7,0 1,8 2,7 6,4 0,6 1,0 <1,0 3,0 30,0 3,1 Gr4 0 50,0 MD ND 1 ND

LF 8 11 36,0 9,8 0,9 4,7 5,9 1,3 <1,0 <1,0 3,0 27,0 3,5 Gr4 D 5,0 NO NO 1 NO

LF 9 4 30,0 6,9 1,7 2,7 6,4 0,7 <1,0 <1,0 3,0 19,0 2,1 Gr4 0 12,5 ND ND1 NO

LF 10 8 39,9 11,7 1,5 4,7 6,1 0,9 <1,0 <1,0 2,0 25,0 2,2 Gr4 0 16,7 SO ND1 NO

LF 11 2 35,8 6,4 3,2 2,7 6,5 0,7 <1,0 <1,0 2,0 21,0 2,0 Gr4 0 14,3 NO NO 1 NO

LF 12 3 42,9 9,6 3,2 4,7 6,6 0,8 <1,0 <1,0 3,0 25,0 2,3 Gr4 0 37,5 MD NO 1 NO

LF 13 4 36,8 9,2 2,3 4,3 6,7 0,7 1,0 <1,0 3,0 27,.0 2,7 Gr4 0 55,0 HO N01 NO

LF 19 6 32,5 5,4 0,9 2,7 6,4 1,0 1,0 <1,0 3,0 24,0 3,69 48,58 MD 3,4 Gr3 0 11,1 NO NO 1 NO

LF 20 6 34,0 7,3 1,2 3,0 6,5 0,9 1,0 <1,0 3,0 27,0 2,99 34,93 NO 3,4 Gr4 0 20,0 SO NO 1 NO

LF 21 3 31,6 5,8 1,9 2,3 5,4 0,4 <1,0 <1,0 2,0 19,0 2,43 42,99 NO 2,1 Gr4 D 11,1 ND N01 NO

LF 22 5 23,5 4,1 0,8 2,0 6,2 0,6 <1,0 <1,0 3,0 24,0 8,95 14,18 MD 2,4 Gr4 D 22,2 SO ND1 NO

LF 24 5 31,7 6,0 1,2 2,3 6,2 1,6 <1,0 1,0 6,0 43,0 3,77 23,73 NO 6,2 Gr4 0 9,1 NO NO 1 NO

LF 25 6 33,6 7,3 1,2 3,0 6,5 0,6 <1,0 <1,0 4,0 25,0 7,96 21,57 MD 2,9 Gr4 0 16,7 SO ND 1 ND

LF 26 3 35,4 5,7 1,9 2,7 6,3 0,7 <1,0 <1,0 4,0 27,0 3,05 31,79 NO 3,1 Gr4 0 100,0 HO ND2 NO

LF 27 1 24,4 4,6 4,6 1,7 6,4 0,5 <1,0 <1,0 3,0 27,0 6,58 36,27 D 2,4 Gr4 0 50,0 MD N01 NO

..........
00
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11.3.4 ESP vs CEC

The introduction to this chapter highlighted the presence of exchangeable sodium as the main

chemical factor contributing towards dispersive behaviour. However, some difference ofopinion

exists as to the value ofESP above which a soil can be considered to be dispersive. Sherard et al.

(1976a), considered soils with an ESP value between 7 and 10 as being moderately dispersive,

whilst Harmse (1980) suggested that dispersive soils are characterised by an ESP value greater

than 5. Gerber (1983) integrated the relationship ofESP with the cation exchange capacity (CEC)

ofsoil which is dependent upon its clay mineralogy. He devised a chart defining specific degrees

ofdispersivity depending upon the relationship of these two parameters (Figure 11.3).

As a result ofcost implications, relatively few samples were submitted for this test in this research

and consequently only samples from Traverse 5were tested. The single sample ofgranite saprolite

with residual soil patches classified as non- or marginally dispersive, whilst the granite saprolite

showed a range ofdispersivity characteristics extending from non-dispersive to dispersive (Figure

11.3). Results from Chunnettetal. (1991a) conducted on similar material from the same site show

a higher indication ofdispersivity for these samples using this test, although the reason for this is not

known.
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Figure 11.3. ESP vs CEC graph for granite saprolite with residual soil patches and granite
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11.4 Discussion

The various tests conducted on the granite saprolite with residual soil patches show this material

to be non-dispersive oronly marginally dispersive. This is confIrmed by field observations which

show a much less pronounced runnel formation within this material in comparison to the granite

saprolite. This can probably be related to the low exchangeable sodium within these samples as a

result ofextensive leaching.

The boundary between flocculated and deflocculated states for the granite saprolite is considerably

less well-defmed so that the transition between non-dispersive and dispersive soils is wide.

Consequently, as Bell and Maud (1994) recommend, several different tests have been conducted

to determine the dispersive nature ofthe material. They have proposed a tentative rating system

for the differenttestmethods from their studyon selected South African soils. Subsequently, Bell

and Walker(2000), have modifIed this rating system using their sample population derived from soils

in KwaZulu-Natal. Both ofthese systems incorporated a variety ofsoil types from a variety of

origins but essentially determined the ESP vs CEC method as being most signifIcant in assessing

dispersive soils.

The limited data from the various dispersivity tests carried out on samples from Injaka Dam

produced disparate results. The crumb test and double hydrometertestproved the granite saprolite

to be dispersive and are in accordance with the fIeld observations ofthe effects ofdispersivity.

Consequently, these tests are recommended as suitable measures for quantifying the dispersivity

ofthe granite saprolite. The limited data from the ESP vs CEC test showed 50% ofthe samples

to be dispersive and the applicability ofthis test on granite saprolite at InjakaDam is questionable.

Results from the pinhole test proved not to correlate with fIeld observations and otherdispersivity

tests and can be considered to be unsuitable when assessing this material for dispersivity.

Partridge et al. (1984) carried out a similar suite oftests on the granite saprolite at Zoeknog Dam

and found the saprolite to be non-dispersive as determined by the pinhole test, double hydrometer

and ESP tests. Subsequent to the breaching of Zoeknog Dam, several investigations were

undertaken on the embankment materials constructed from granite saprolite. The investigation by

Partridge etal. (1993) undertook further ESPtests, double hydrometer and pinhole tests to validate

the results from earlier investigations. These subsequent tests show the material to have low ESP

values, generally less than 1% which is indicative ofnon-dispersive soils. Partridge et al. (1993)

make the notable point that particularly with ESP testing, it is necessary that the soil water is in

equilibrium with the soil and Elges (1985) maintains that this is not always the case when sampling

from the breach ofrecently failed dams. Partridge et a/.(1993), conclude that in the light ofthe

highly leached nature ofthe granite saprolite at Zoeknog Dam with low soil pH, the retention of
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sodium cations necessary for dispersion to occur can be precluded. They consequently maintain

that for the double hydrometer and pinhole tests which showed intermediate dispersivity

characteristics for the saprolite, this was considered a reflection of the erodability rather than

dispersivity of the soil.

Keller et01. (1994) in their post failure investigations at Zoeknog Dam confirmed that the pinhole

and crumb tests showed the granite saprolite to be non-dispersive whilst the double hydrometer

showed the material to exhibit marginal dispersive characteristics.

It is quite apparent from the above that owing to the poorly defmed flocculated and deflocculated

states for the granite saprolite, the transition between the dispersive and non-dispersive state is

wide, resulting in the ambiguous results as determined from the laboratory testing. It is pertinent

to note, however, that the granite saprolite is considered by the above references and the author to

be highly erodible.
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12. CONSOLIDATION CHARACTERISTICS OF GRANITE SAPROLITE

12.1 Introduction

When subjected to vertical pressure with lateral confinement, differences in terms ofthe consolidation

stress paths have been noted between saprolitic soils formed in situ and those soils derived from

sedimentary processes. Indeed, it has been shown by Vaughan etal. (1988), that the consolidation of

residual soils and saprolite is significantlygoverned by its texture, in particular its void ratio, density and

bonding (or "structural interlock") which often impart a characteristic yield stress observed on void

ratio-pressure (e-p) curves. Further to this, it is well known that saprolitic soils are prone to collapse

settlement because of their metastable structure (Dudley, 1970) - a result normally of the intense

leaching and clay-bridged microfabric ofthe material. This chapter describes the one-dimensional

consolidation characteristics ofthe granite saprolite with particular emphasis on collapse settlement

behaviour.

Throughout the literature on the consolidation ofsaprolitc soils, the preconsolidation pressure (Pc) is

regarded as one ofthe most important soil characteristics although its relationship to the weathering in

such soils has been the source ofmuch debate. Chang (1988) describes the Pc ofa soil as one ofthe

most important factors which influences soil engineering behaviour statingthat Pc separates small strain

and predominantly elastic behaviour from a large strain and predominantly plastic behaviourofa soil.

The Pc ofsaprolitic soils has been ascribed to the interlocking grain texture ofsaprolites as well as to

the effects ofdessication forming cementitious bonds which create a"yield stress" when consolidating

such soils. The early studies ofsaprolitic soils by Vargas (1953), noted that these soils exhibited a

"virtual preconsolidation pressure". A review ofthis work shows that this was probably attributable

to desiccation of the material or grain interlock, as Vargas found that Pc tended to decrease with

increasing depth (Figure 12.2). Findings by Sowers (1963) also noted that residual soil derived from

crystalline rock exhibited a preconsolidation pressure, but one which is highly variable, has no

correlation with the current overburden load and generally increases with depth. He noted that Pc is

probably related to the residual mineral bonds (interlock) of the parent rock, substantiating this

hypothesis by the observation that the "least weathered soils" (soils closest to bedrock) tend to have

the highestpreconsolidation loads. Vaughan (1985) has concluded that there is general agreement that

"quasi preconsolidation pressure" is due to the weathering (resulting in secondary bonding) and

structure ofthese soils rather than their stress history.
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To analyse the consolidation characteristics of the weathered granite at Injaka Dam, a series of

oedometer tests were undertaken. Nine double oedometer tests (Knight, 1961) and forty one single

oedometercollapse potential tests (Jennings andKnight, 1975) were carriedouton selected undisturbed

samples and the results of these tests are discussed below.

12.2 Consolidation characteristics from double oedometer tests

Nine double oedometertests were carried out on selected undisturbed samples ofthe granite saprolite

to compare their consolidation characteristics at natural moisture content with those under saturated

conditions and therebyobtainan indicationoftheirconsolidationcharacteristics and metastability. Cost

and time considerations limited the volume ofthis component of testing to only the nine samples

described below.

12.2.1 Sample preparation

In the double oedometer test, two specimens were tested in the normal manner ofconsolidometer

testing with both samples taken as close together as possible from the same block sample. One

specimen was tested at natural moisture content whilst the other was tested under saturated conditions.

The specimens were 76 mm in diameter with an initial height of25 mm. For all tests, a floating ring

oedometer was used with a porous stone provided at the top and bottom of the specimens. The

following load increments were applied: 25, 89, 191,381, 762 kPa, with unloading allowing rebound to

191 and 25 kPa, respectively.

12.2.2 Results from double oedometer tests

The results from the double oedometer tests carried out on weathered granite are presented in Table

12.1 and reflect the variation in the granite saprolite showingthat the initial void ratios from specimens

cutfrom the same undisturbed sample blockare significantlydifferent. This observation is in agreement

with previous studies ofsaprolitic soils reviewed by Vaughan (1985). The shape ofthe oedometer

curves for natural and saturated moisture conditions also varies significantly. Typical sets ofdouble

oedometer e-Iog p and e-p curves for the granite saprolite are shown in Figures 12.1a to i. These

curves are similar to those ofMassey et al. (1988) in that they do not display a clearly defined yield

stress as described by Vaughan et al. (1988). This observation is confirmed by the construction of

linear e-p plots (Figures 12.1 a to i) prescribed by Vaughan (1985) as being necessary for identifying

this type ofconsolidation behaviour. Massey et al. suggested that this lack ofclearly defined yield



Table 12.1. Results from double oedometer tests.
Sample

Moisture condition

LF 16"

NMC

LF 16"

SAT

LF 19

NMC

LF19

SAT

LF 20 LF 20 LF 21 LF 21 LF 22 LF 22 LF 25

NMC SAT NMC SAT NMC SAT NMC

LF 25 RF 10

SAT NMC

RF 10 RF 6

SAT NMC

RF6

SAT

RF4

NMC

RF4

SAT

° ° ° ° ° ° °
1,015 1,149 1,133 1,168 1,103 1,079 1,056

~ ~ ~ ~ ~ ~ ~

0,995 1,096 1,087 1,100 1,075 1,029 1,046

0,366 0,965 0,663 1,6411 0,535 1,130 0,226

147,350 148,150 149,300 146,700 156,460 155,160 157,27

68 68 68 68 68 68 68

0,967 0,938 1,022 0,994 1,035 0,925 1,013

0,228 1,300 0,502 0,638 0,306 0,762 0,264

63,931 59,446 35,397 33,434 37,844 15,964 38,444

191 191 191 191 191 191 191

0,928 0,823 0,931 0,920 0,985 0,852 0,969

° °
0,990 1,504

25 25

0,935 1,5

1,120 0,067

146,530 67,776

69 89

0,754 1,452

1,614 0,312

58,304 37,324

191 191

0,678 1,377

0,052 0,177 0,146

64,293 31,586 34,540

763 I 763 767

1,003 0,527 1,192

0,060 0,139 0,119

32,760 26,529 10,133

191 191 191

0,991 0,516 1,179

25 25 25

° °
1,042 1,114

25 25

1,034 1,103

0,1567 0,217

157,960 150,93

69 69

0,982 1,091

0,415 0,066

36,326 66,346

191 191

0,909 1,060

°
1,066

25

1,033

1,022

155,570

69

0,969

0,507

34,556

191

0,685

0,436

34,0533

381

1,2920,7

0,195

54,623

767

0,662

0,157

17,604

191

0,674

25

0,608

0,203

65,353

°
1,505

25

1,483

0,352

156,78

89

1,440

0,274

35,933

191

1,391

°
0,612

25

0,771

0,9221

149,06

89

0,747

0,213

15,967

191

0,691

0,327

61,000

I 381 361

0,608

0,053

36,915

381

1,049

0,374

63,963

381

0,838

0,132

33,373

763

0,763

0,112

54,762

191

0,755

25

0,306

35,492

361

1,260

0,176

32,727

763

1,101

0,199

26,938

191

1,087

25

1,060

0,440

28,394

381

0,608

0,148

46,297

763

0,536

0,123

42,372

191

0,543

25

0,566

0,218

65,753

381

0,612

0,294

33,363

763

0,738

0,112

52,267

191

0,742

25

0,752

0,366

32,900

381

0,782

0,133

54,142

767

0,715

0,102

50,137

191

0,712

25

0,746

0,243

36,216

381

0,958

0,047

61,96

767

0,893

0,090

33,240

191

0,898

25

0,908

0,361

30,552

361

0,855

0,118

50,538

763

0,760

0,111

46,872

191

0,766

25

0,806

0,467

32,754

381

0,641

0,167

29,815

763

0,738

0,155

26,649

191

0,758

25

0,756

0,616

29,041

381

0,726

0,190

16,566

763

0,636

0,147

23,227

191

0,645

25

0,676

0,20

61,770

381

0,666

0,113

21,099

763

0,754

0,167

30,023

191

0,766

25

0,783

°
1,026

25

1,007

0,354

8,411

89

0,937

0,576

64,350

191

0,653

0,445

59,399

381

0,753

0,194

53,766

763

0,657

0,152

27,062

191

0,669

25

0,707

°
1,487

25

1,477

0,165

151,92

69

1,435

0,266

66,114

191

1,376

0,235

63,491

381

1,27

0,163

59,214

763

1,23

0,053

31,155

191

1,226

25

1,237

°
0,911

25

0,905

0,121

6,052

89

0,853

0,441

36,666

191

0,785

0,372

61,136

381

0,711

0,146

42,353

763

0,630

0,130

51,580

191

0,641

25

0,679

1,341

0,141

1,030

89

1,306

0,240

36,368

191

1,270

0,157

35,287

361

1,203

0,105

59,928

763

1,169

0,041

7,155

191

1,176

25

1,166

°
1,350

25

C.

M.

Pressure (kPa)

Void ratio

c.

M.

Pressure (kPa)

Void ratio

Pressura (kPa)

Void ratio

C.

Pressure (kPa)

Void ratio

M.

Pressure (kPa)

Void ratio

M.

c.
Pressure (kPa)

Void ratio

Mo

c.
Pressure (kPa)

Void ratio

Pressure (kPa)

Void ratio

NMC =- natural moisture content SAT =saturated conditions
Cv =coefficient of consolidation m., =coefficient of volume change
* Granite saprolite with residual soil patches

m = ~_l_)
v 6p I + e

K
C =--

• my

-N
~
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stress may be due to three factors, namely specimen disturbance, small specimen thickness in relation

to maximum particle size or to bedding error in the measurement ofvertical displacement. The yield

point for the material may also be so low that it is not detected by the test due to the magnitude ofthe

fIrst load increment (25 kPa).

The consolidation curves for the saturated samples generally show a complete loss ofstrength even at

the lowest pressure application of25 kPa. The settlement curves for these samples tend to be much

steeper than those ofthe samples tested at natural moisture content with the samples showing loss of

strength under saturation. This is confirmed by a comparison ofthe compression indices (Table 12.2).

It is suggested that this is due to the softening ofthe clay particles, aggregations and pseudomorphs as

well as the dispersive nature ofthe soil which causes slight fabric disruption during saturation ofthe

sample within the oedometer ring. This effect is discussed in more detail when analysing the single

oedometer results.

The granite saprolite exhibited a Pc at natural moisture content (PcNMC) that varied from 90 to 21 0 kPa,

reducing to a value ranging from 35 to 110 kPa in the saturated state (PcSAT)' These results are

summarised in Table 12.2 and are in agreement with similar values quoted by Nouvais-Ferreira and

Fonesca (1988) for saprolitic soil derived from granite in Portugal (Table 12.3). In all cases PcNMC was

much greater than the current overburden pressure (Po) which is also shown in Table 12.2 and Figure

12.2. In this respect, the compressibility characteristics ofall samples excluding LF 21 and RF 4 are

similar to those ofover-consolidated soils. It can also be seen, as observed by Vargas (1953), that

above a certain depth preconsolidation appears to be independent ofthe overburden pressure, and as

the clay decomposition products form in situ, this does not reflect the loading history ofthe soil. No

correlation could be ascertained between Pc and density on the one hand, or degree ofdecomposition

on the other hand. Consequently, the explanation offered by Sowers (1963) for the presence of a

preconsolidation pressure cannot be substantiated using results from this study. Partridgeetal. (1984)

have found a similar relationship in their assessment ofthe granite saprolite at Zoeknog Dam (Figure

12.3) where they noted that PcNMC was considerably higher than the overburden line and ascribed this

to the possibility ofrelict "cementation" between particles. They also noted a sharp reduction in PcSAT

and attributed this to the possibility ofloss ofstructure and debonding due to saturation, as observed
with the Injaka Dam samples.
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Table 12.2. Compression indices from double oedometer tests.

sample Depth P""", P....T Po c.... c.... c.... c.... Xd p.(kg.m") OCR

(m) (kPa) (kPa) (kPa)

LF 18- 1,1 110 80 18 0,17 0,01 0,26 0,03 1,00 1535 6,1

LF 19 2,3 120 92 37 0,25 0,01 0,33 0,03 1,00 1307 3,2

LF 20 3,2 200 35 51 0,37 0,02 0,31 O,Q.4 0,84 1305 3,9

LF 21 4,0 90 80 63 0,32 0,01 0,24 0,02 0,40 1386 1,4

IF 22 5,1 130 40 80 0,22 0,01 0,23 0,02 0,56 1409 1,6

IF 25 6,2 150 98 0,42 0,01 0,24 0,02 0,90 1533 1,5

RF10 3,5 190 85 58 0,53 0,25 0,66 1330 3,3

RF6 2,5 210 110 41 0,30 0,23 0,77 1458 5,1

RF4 6,9 160 105 113 0,30 0,34 0,82 1457 1,4

P""", = preconsolidalion pressure at natural moisture content C""T = compression index at saturated moisture content

P....T = preconsolidalion pressure at saturated moisture content Xd = degree of decomposition (after lumb, 1962)

Po = overburden pressure P. = dry density

C""'" = compression index at natural moisture content OCR = over consolidation ratio (P.-/PO)

IF 18- = granite saprolite with residual soil patches

6

EARTltWEtGHT

-1.l5.2tfm'

a

Virtual pre-<:onsolidation load kg/cm'
(after Vargas, 1953)

0,

10

250

Preconaolidatlon P"'SSU'" (kPa)
50 100 150 200o

o n-~'-----;::::=.::=_====_=......==.==..==_:::::::;-]
.. C ,..",..COIlIiIrI:I

.. GrWliIletllll"*t ....... NSIl:l.IIldP*heS-

Injaka Dam

Figure 12.2. Relationship of Pc with depth at Injaka Dam site (shaded area encompasses all
samples) and findings by Vargas (1953) showing similar lack ofcorrelation ofPc with overburden

pressure.
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Figure 12.3. Relationship of Pc with depth as determined by Partridge et al. (1984) at Zoeknog
Dam (shaded area represents Pc envelope for saturated samples).

The compression index (Cc) was calculated from the e-Iog p curves (refer to Table 12.2 and Figures

12.1a to i) with the value ofCcNMC ranging from 0,17to 0,53 which is typical ofsiltymaterial. Lower

values were obtained for CcSAT showing the softening ofthe material under saturation. These results

are similar to those found by Nouvais-Ferreira and Fonesca (1988) in their study ofgranite saprolite in

Portugal (Table 12.3). Partridge et al. (1984), in their study ofthe granite saprolite at Zoeknog Dam

also found similar values ofCcNMC ranging from 0,13 to 0,38 and CcSAT ranging from 0,18 to 0,33.

Although Brummer (1980), Wallace (1973), Sowers (1963) and Partridge et al. (1984) managed to

defme tentative relationships between Cc and initial void ratio (Figures 12.4 and 12.5), no such

relationship could be established for the weathered granite from this study.

Table 12.3. Comparative values ofCc and Pc for saprolitic soil from granite in Portugal studied by

Nouvais-Ferreira and Fonesca (1988).

Stress path values

< 100 kPa

> 316,8 kPa

0,024 - 0,037

0,080 - 0,232

p,(kPa)

100 - 150
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Ofparticular concern with regard to the compressibility ofsaprolitic soils is the fact that they often

exhibit a metastable structure leading to collapsible behaviourunder consolidation. This mechanism of

soil collapse is well understood and according to Schwartz (1985), a collapsible soil may be defined as

that which can withstand a relatively large imposed stress with small settlements at low in situ moisture

content, but which exhibits a decrease in volume and associated notable settlement with no increase

in applied stress upon saturation. This decrease in volume is associated with collapse of the soil

structure where the changes in compression characteristics are brought about by a decrease in the

negative pore pressure (capillary tension) resulting from partial saturation (Jennings and Knight, 1975,

Day, 1996 and Dudley, 1970) and collapse or breaking of the respective soil elements.

The collapse phenomenum ofweathered granites in South Africa was first documented in the 1950's

by Jennings and Knight (1956, 1957). Since this time, engineers have been aware ofthe settlement

problems that can arise due to the collapse of completely weathered granite material. The granite

saprolite at Injaka Dam is no exception and exhibits a significant degree ofmetastability.

The main variables that govern the amount ofone dimensional collapse are the soil type, moisture

content, dry density and applied vertical pressure. However, a numberofcriteria are required for a soil

to exhibit collapse potential :

The soil must have a high porosity and some degree of strength Le. a collapsible fabric.

The soil must be in a condition ofpartial saturation as collapse settlement does not occur in soils

below the water table. Jennings and Knight (1975) suggested a critical degree ofsaturation

above which collapse will not occur. This depends upon the grain size distribution and the

following guidelines were presented :

Grain size 1-6 mm (fine gravels):

Grain size 150-2J..1m (fine silty sands):

Grain size 150-0,2J..1m (clayey silts) :

Sf = 6-10%

Sf= 50-60%

Sf= 90-95%

Errera (1977) also demonstrated that for residual granite this value appears to be 52%.

Schwartz (1985) has also shown that some relationship exists between collapse behaviourand

the particle size distribution.
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There must be an increase in moisture content which serves as the triggering mechanism for

collapse settlement to occur. The rate ofcollapse is dependent upon the rate ofsaturation.

The soil needs to be subjected to an imposed pressure greater than overburden pressure before

collapse will take place.

Using the method proposed by Jennings and Knight (1957), the percentage collapse at an applied

pressure of200 kPawas detennined from the double oedometertests and is summarised in Table 12.4.

These results are comparable with the collapse potential values achieved using the single oedometer

collapse potential test (Table 12.5).

Table 12.4. Percentage collapse as detennined from double oedometer tests.
Sample

LF 18

LF 19

LF20

LF 21

LF22

LF 25

RF10

RF6

RF4

Material type

Granite saprolite with residual soil patches

Granite saprolite

Granite saprolite

Granite saprolite

Granite saprolite

Granite saprolite

Granite saprolite

Granite saprolite

Granite saprolite

CoIapse at applied pressure =200 kPa

2.4%

2,6%

7.6%

0.5%

3.0%

1.8%

4,0%

3.3%

2.0%

12.3 Consolidation characteristics from single oedometer collapse potential tests

Single oedometercollapse potential tests as described by Jennings and Knight (1975) were also carried

out to detennine the collapse potential characteristics of the weathered granite. This test involves

loading an undisturbed specimen at natural moisture content in the oedometer up to a given load. At

this point the specimen is flooded and the resulting collapse strain is recorded. The specimen is then

subjected to further loading. The resulting typical oedometercurve is shown in Figure 12.6 where the

collapse potential is defmed. The collapse potential offive samples ofgranite saprolite with residual

soil patches and twenty-nine granite saprolite samples from the six sample traverses were tested.

12.3.1 Specimen preparation

Specimens measuring 76 mm in diameter with an initial height of25 mm were cut from the block

samples. Forall tests, a floating ring oedometer was used with a porous stone provided at the top and

bottom ofthe specimens. The following load increments were applied to the specimens 25, 89, 191,
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381 and 762 kPa, with flooding carried out at 191 kPa. Subsequent tests were conducted on selected

samples with flooding at a higher applied stress of381 kPa. Hence, the degree ofcollapse has to be

qualified in terms of the level of loading at which flooding takes place.

Saturation pressure (P..,)

L\e
Collapse Potential (%) = 1+e. x100

Log pressure

Figure 12.6. Typical oedometer curve from collapse potential test showing definition ofthe collapse
potential.

12.3.2 Results from single oedometer coUapse potential tests

Table 12.5 and Figures l2.7a to fillustrate the collapse potential values using an applied saturation

pressure ofl9l kPa (and 381 kPa for samples from Traverse 5 - Figure l2.7g). The collapse potential

(CP) varied both laterally and with depth, with a general decrease in collapsewith increasing depth and

increasing dry density (Figure 12.8), despite some inherent variability. The granite saprolite with

residual soil patches exhibited a variable CP at 191 kPa, ranging from 0,61% to 5,69%, whilst the

granite saprolite exhibited values between 0, 14%and 5,83%. No samples ofhighly weathered granite

could be tested in the oedometers as they were too brittle to be cut into an oedometer ring. Figure 12.8

also shows the criteria as suggested by Brink (1996) indicating the maximum possible dry density at

which collapse ofweathered granite soils ("residual granite") is likely to occur. It can be seen that for

a dry density above 1600 kg.m-3
, CP can be expected to be less than 1% for this material.

Although only seven samples were tested at the higher saturation pressure of 381 kPa, a distinct

increase in collapse can be observed with the granite saprolitewith residual soil patches increasing from

2,45% to 7,96%. The granite saprolite also showed a substantial increase in collapse with values
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Table 12.5. Collapse potential characteristics for granite saprolite from Traverses 1 to 6 (saturation at
191 kPa and 381 kPa where shown).

DEPTH (m) SPECIFIC GRAVITY s,. (%) W{%) p.{kg.m") P. (kg.m")
C.P.{%) C.P.{%)

SAMPLE
191 kPa 381 kPa

Traverse 1

RF 12- 1,0 2,71 71,9 22,6 1873 1463 0,61

RF10 3,5 2,61 44,6 15,5 1642 1369 3,91

RF9 4,9 2,64 42,2 15,3 1639 1349 5,83

RF 8 5,7 2,64 38,7 7,9 1892 1715 0,32

RF7 6,6 2.62 58,2 11,1 1998 1747 3.01

Traverse 2

RF6 2,5 2,67 59,1 18,1 1795 1469 0,86

RF 5 4,8 2,62 48,1 16,3 1649 1388 0,07

RF4 6,9 2,63 34,3 12,5 1534 1342 0,14

RF3 9.2 2,65 45.0 14.4 1694 1434 1,47

Traverse 3

LF 7- 1,1 2,64 40,5 12,7 1659 1444 5,69

LF 8 2,8 2,65 48,3 13,6 1768 1518 3,27

LF 9 4,0 2,61 41,3 10,7 1760 1557 2,26

LF 10 5,5 2,63 68,9 21 1835 1460 1,14

LF 11 6,5 2,68 57,5 20,5 1674 1371 1,42

LF 12 7,3 2,64 65,0 19,1 1826 1487 2,24

LF 13 7.7 2.63 34.6 4.8 2089 1927 0.75
Traverse 4

LF 1- 0,9 2,58 39,4 5,6 1610 1478 3,38
LF 2 2,4 2,65 39,4 12,9 1654 1419 2,89
LF 3 3,8 2,66 46,1 14,9 1695 1430 3,11
LF 4 4,5 2,66 60,2 16,9 1780 1523 0,82
LF 5 5,2 2,63 71,2 15,3 1989 1680 0,55
LF6 5.5 2.67 65.8 22.4 ln3 1399 0.61

Traverse 5

LF 18- 1,1 2,68 46,8 15,3 1656 1436 2,45 7,96
LF 19 2,3 2,65 53,6 19,5 1627 1361 3,79 6,41
LF 20 3,2 2,62 43,6 16,9 1535 1313 3,62
LF 21 4,0 2,62 55,1 21,2 1591 1313 1,66 2,62
LF 22 5,1 2,61 40,6 14,2 1569 1373 5.14 5.04
LF 24 5,7 2,62 60,3 20,9 1667 1379 0,04 3,11
LF 25 6,2 2,67 32,3 8,7 1676 1541 1,44 3,62
LF 26 7.2 2,58 45,4 13.2 1689 1492 1.22 202

Traverse 6

RF 17* 2,2 2,66 50,9 15,1 1712 1487 0,92
RF18 3,8 2,72 40,7 15,3 1551 1345 4,05
RF20 5,2 2,61 54,8 18,5 1644 1387 0,16
RF 21 6.1 2.60 46.0 153 1607 1394 0.10

- Granite saprolite with residual soil patches.
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Figure 12.7a Collapse potential curves for samples from Traverse 1.
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Figure 12.7c. Collapse potential curves for samples from Traverse 3.

137

I III
I ICoil se Pressure =191 kPa

r-.....
.~-::...;1\

1'\
.....

.. .. , .
I..-......

~}:{I .

~l'
I..

'--.,

,,,

1,1

1,0

~
0,9

.2
(;j 0,8a::
:2
~ 0,7

0,6

0,5

0,4
10 100

Log Pressure (kPa)
1000

--- LF 1 : Collapse potential = 3,38%, Id = 1478 kg.m~ .. granite saprolite with residual soil patches
- LF 2: Collapse potential =2,89%, Id =1419 kg.m~ .. granite saprolite
........ LF 3: Collapse potential =3,11%, Id =1430 kg.m~ .. granite saprolite
_ ..- LF 4: Collapse potential =0,82%, I. =1523 kg.m~ .. granite saprolite
-- LF 5 : Collapse potential =0,55%, I. =1680 kg.m~ .. granite saprolite
_. - LF 6: Collapse potential =0,61%, I. =1399 kg,m~ .. granite saprolite

Figure 12.7d. Collapse potential curves for samples from Traverse 4.



1 10 100 1000

Log Pressure (kPa)

1,1

1,0

0,9
~
.Q

0,8iii
IX:
"0

~ 0,7

0,6

0,5

0,4

I I
I I

11

Colla se Pressure = 191 kPa

"'1:- .~". ·t4I ",,"
~1

J' "

" ..)~ ".
r-, .....

rI

138
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Figure 12.7e. Collapse potential curves for samples from Traverse 5.
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Figure 12.7f. Collapse potential curves for samples from Traverse 6.
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generally increasing by 150 to 250%. The very much higher value for LF 24 and lower value for LF

22 can probably be attributed to the heterogeneity ofthe material or limitations with regard to the test

method which include sample disturbance, small specimen thickness in relation to maximum particle size

or to bedding errors in the measurement of vertical displacement.
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Figure 12.7g. Collapse potential curves for samples from Traverse 6 (saturation at 381 kPa).

From Figures 12.7a to fit can be seen that all specimens exhibit an initial stiffness which generally

increases with decreasing void ratio (as shown by the much flatter portions ofthe curves at the start

of loading for the samples with lower void ratios). The collapse potential of the saprolite can be

attributed to three components, namely, fabric, permeability and dispersivity. Haskins et al. (1 998b)

presented a summaryofthe following description ofthe collapse process shown in Figure 12.9. During

flooding ofthe oedometer specimens, saturation occurred almost instantaneously. The high porosity

and moderate permeability (lA x 10-4 to 3.1 X 10-5 cm.s-I - calculated from falling head tests) ofthe

samples enabled this to occur. During saturation the clay particles and aggregates undergo softening.

It is also thought that the dispersivity ofthe soil partially disrupts or loosens the interlocking fabric as

the clays undergo deflocculation. The softened and disrupted fabric enhances the movement ofwater

through the specimen resulting in accelerated saturation. The initial stiffness ofthe soil can be attributed

to the relict interlocking fabric ofthe granite and the fact that the skeletal feldspar grains may account

for some componentofstrength under partially saturated conditions. Once saturated, the deflocculation
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ofthe clays partially disrupts the relict fabric, simultaneously reducing the strength component ofthe

interlock and effectively increasing the load on the skeletal grains resulting in their collapse. This can

clearly be seen when comparing the oedometer curves ofthe same specimens but with saturation at

different applied stresses (compare Figures 12.7e and g). Even when the sample is loaded to 381 kPa

under natural moisture conditions, the material still exhibits a reasonable stiffuess. This is only lost once

flooding occurs.
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Figure 12.9. Explanation ofone dimensional collapse potential behaviour for granite saprolite from
Injaka Dam (after Haskins et al., 1998b).

Partridge et al. (1984 and 1990) showed similar collapse potential results for the granite saprolite at

Zoeknog Dam where values ranging from°to 11,8% (average =3,82%) were measured for saturation

pressures of200kPa. They also noticed a distinct increase in collapse potential at a higher saturation

pressure of 400kPa where values ranged from 4,57 to 12,10% (average = 8,01%) and a tentative

relationship ofdecreasing collapse potential with increasing dry density (Figure 12.10). They also found
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that despite the significant variation ofcollapse potential, dry density values in excess of1600kg.m-3

showed collapse potentials less than 1%.
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Figure 12.10. Relationship ofcollapse potential and dry density for Zoeknog Dam granite saprolite.

Falla (1985), was able to determine a range ofcollapse potential values for granite saprolite residing on

or below the African surface in the Johannesburg area. His summary results are broadly comparable

to that found at Injaka Dam with collapse potential results averaging between 2 and 5% but ranging

from 0 to as high as 17%.

In accordance with the findings ofJennings and Knight (1957) and in order to determine the effect of

moisture content variation on collapse settlement, a plot ofcollapse potential against the degree of

saturation (Sr) is shown in Figure 12.11. Although there is some variation, this shows that the granite

saprolite undergoes a significant increase in collapse settlement when Sr is less than 60%. This value

is very similar to the critical degree of saturation value proposed by Jennings and Brink (1975) for

"residual granite" (Figure 12.12). As shown by this figure, a good relationship exists between the

particle size distribution and collapse settlementofvarious other soils with coarser-grained soils showing

a lower critical degree of saturation.

Partridge etal. (1984 and 1990) found a similar relationship for the granite saprolite at Zoeknog dam,

however with considerably more variation. Nevertheless, a general trend can be observed in Figure

12.13 which shows that where Sris less than 70% a considerable increase in collapse settlement may

be expected.



142

I'" Granite saprolite with residual soil patchesI
• • Granite saprolite

~

•

• ••
~ •••

~ •.
•

• .
• •

~ .~.
•I • .~

• .

7

6

~5

~
'ii
~ 4..o
Q.

:: 3
Q.

~

o
u 2

o
30 40 50 60 70 80

Degree of saturation 5,

Collapse potential as a function of degree of saturation (SJFigure 12.11.

100

90

80

~
70c:

0

""~ 60
"Oi

50VI

'0
~

40

C>
30Q)

0

20

10

0
0 10

[J

•

20 30 40

o

_ Average critical degree of
saturation line

D Knight (1961)

o Jennings and Brink (1975)

'" Errera (1977)

• McKnight (1999)

00 Gran~e saprolite (Injaka Dam)

% Passing O,075mm sieve
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An analysis ofthe coefficientsofconsolidation (cv) and volume compressibility (ffiy) during the collapse

potential testing ofthe samples provides insight into the consolidation behaviourofthe saprolite. Values

for Cv and lIly at the specific load increments are presented in Table 12.6 and this shows that the value

ofthe coefficient ofvolume compressibility (ffiy) generally decreases with increased loading. After

saturation however, there is often an increase in the value of mvwhich again decreases at higher

loading. According to Northmore etal. (1996), this increase suggests a loosening ofthe soil structure

as it becomes more plastic. For a loading between 381 and 763 kPa, ffiy ranges from 0,0935 to 0,2813

m2.MN-1•
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Figure 12.13. Collapse potential as a function of degree of saturation (Sr) for granite saprolite at
Zoeknog Dam.

The high values for the coefficients ofconsolidation (cV> for the saprolites suggests that consolidation

occurs rapidly. In fact, in many instances, primary consolidation occurs within the first four minutes

ofloading. Fora loading between 381 kPa and 763 kPa, Cv values range from 26,3 to 45,6m2.year-I for

all samples. Upon flooding in the oedometer, specimens ofgranite saprolite become saturated almost

instantaneously. Figure 12.14 shows a plot ofcollapse settlement versus square root time for typical

samples ofgranite saprolite. Note that in this figure the majority ofcollapse settlement occurs within

four minutes of loading. Day (1996), referred to this portion ofthe consolidation curve as primary

collapse. The remaining portion ofthe consolidation curve is termed secondarycollapse. Figure 12.14

also shows how the time for 90% collapse is greatly extended when collapse is numerically small.

Booth (1975) found similar results in his investigation ofcollapse ofcompacted fill and suggested that

the clay bridges carried a portion ofstress under these circumstances. With regard to the saprolite,

slowerconsolidation rates for smallercollapse settlements can be attributed to a similarprocess where

the fabric ofthe samples exhibiting low collapse settlements contain lower clay contents and thus a

stronger interlocking fabric, and the saprolite also possesses a lower void ratio reducing the permeabiJity
and hence movement ofwater through the sample.
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Table 12.6. Values for coefficients ofconsolidation and volume compressibility for samples from
Traverses 1 to 6, calculated from collapse potential tests (. granite saprolite with residual soil patches).

Depth
Spedmen D-25kPa

25-89
~191kPa 191kPa

191- 382-
Collapse potantial (%)Sample

load range kPa 382kPa 763kPa

TnIVe<se 1
RF 12' 1,0 m., 1,1504 0,1038 0,0825 0,0631 0,1910 0,1364 0,614

Cv 38,4 1,3 7,1 1,9 9,9 10,5

RF10 3,5 m., 0,7834 0,3188 0,2456 0,4281 0,2617 0,1469 3,912

Cv 14,3 18,4 4,7 4,4 5,1 7,5

RF9 4,9 m., 1,1457 0,2307 0,1873 0,6507 0,2_ 0,1333 5,834

Cv 47,3 13,8 19,3 8,3 9,4 4,5

RF8 5,7 m., 0,7728 0,1241 0,1141 0,0325 0,0857 0,0650 0,317

Cv 84,4 10,5 '4,0 1,9 19,5 18,7

RF7 6,8 m., 0,3380 0,2098 0,2285 0,3198 0,1906 0,1017 3,013

c" 9,5 2,7 4,2 2,3 4,5 4,1
Tra_2

RF6 2,5 m., 1,0733 0,1188 0,0974 0,0691 0,1866 0,1446 0,659

Cv 21,0 1,7 3,6 4,9 16,7 17,1

RF5 4,8 m., 1,4115 0,5471 0,5916 0,0076 0,3006 0,1372 0,069

Cv 33,5 5,0 26,5 20,0 6,5

RF4 6,9 m., 0,4550 0,3557 0,2807 0,0146 0,2372 0,1388 0,140

Cv 21,3 5,7 10,0 12,9 18,5
RF3 9,2 m., 0,3473 0,2103 0,1_ 0,1522 0,1959 0,1090 1,469

c" 21,2 9,2 7,0 1,5 3,2 1,4
TnIVe<se 3

LFl' 0,9 m., 1,4976 0,4683 0,3935 0,3821 0,2722 0,1299 3,381
LF2 2,4 m., 0,4152 0,1603 0,1461 0,3032 0,2696 o,45n 2,688
LF3 3,6 m, 1,2530 0,3184 0,2512 0,3415 0,2224 0,1107 3,110
LF4 4,5 m., 0,8475 0,24n 0,1249 0,0658 0,1517 0,1069 0,623
LF 5 5,2 m, 0,1920 0,1312 0,0680 0,0550 0,0747 0,0513 0,546
LF6 5,5 m., 1,0988 0,1488 0,1001 0,0638 0,1132 0,0653 0,613

Tra_4

LF7" 1,1 m, 0,1923 0,1741 0,2133 0,6171 0,3365 0,1294 5,690

Cv 0,4 21,1 5,1 1,7 0,7 4,6
LF6 2,6 m, 1,0626 0,2137 0,1788 0,3512 0,2366 0,1214 3,270

Cv 15,4 2,0 4,2 5,3 3,0 2,2
LF9 4,0 m., 0,5888 0,2044 0,1090 0,2362 0,2128 0,1220 2,257

Cv 2,5 7,8 19,7 6,3 8,1 2,4
LF 10 5,5 m, 1,1345 0,2002 0,2288 0,1205 0,2947 0,1550 1,136

Cv 14,9 2,7 19,3 2,7 10,2 3,9
LFll 6,5 m., 0,1920 0,3050 0.2012 0,1472 0,2103 0,1380 1,418

Cv 1,4 21,7 0,9 0,2 1,2 10,3
LF 12 7,3 m., 1,1281 0,2082 0,1943 0,2399 0,1891 0,5324 2,241

Cv
LF 13 7,7 m., 1,1457 0,1651 0,1457 0,0783 0,1108 0,0630 0,748

c"
Traverse 5

LF 18' 1,1 m, 1,0875 0,19 0,191 0,2619 0,2195 o,ln 2,447
Cv 95,5 91,8 50,1 30,6 44,7 26,3

LF 19 2,3 rn, 1,433 0,1839 0,1707 0,4114 0,042 0,2813 3,788
Cv 224,1 213,8 33,3 21,8 29,9 41,9

LF20 3,2 m., 0,4475 0,2472 0,19n 0,3651 0,321 0,1482 3,615
Cv 230,1 35,8 96,0 32,6 20,5 26,4

LF21 4,0 m., 0,4203 0,2061 0,1814 0,1723 0,223 0,1259 1,661
Cv 231,4 56,5 24,3 33,8 31,9 45,6

LF22 5,1 m, 0,5895 0,4036 0.2874 0,5729 0.2938 0,1256 5,14
Cv 222,0 53,3 16,5 46,4 26,6 37,5

LF24 5,7 m., 1,4055 0,3682 0,3284 0,0047 0,2265 0,1319 0,043
Cv 213.2 50,3 47,6 44,1 40,2

LF25 6,2 m., 1,249 0,2701 0,2276 0,1547 0,1832 0,0935 1,442
Cv 96,7 51,8 49,8 30,7 29,2 42,5

LF26 7,2 m, 0,6732 0,2432 0,1894 0,127 0,201 0,1126 1,218
c" 230,0 55,7 53,8 52,1 31,7 29,2

TraverM6

RFl7" 2.2 m., 0,5232 0,1616 0,1606 0,0953 0.2466 0,1_ 0,922
Cv

RF18 3,8 rn, 0,6992 0,2211 0,2124 0,4389 0,2988 0,1505 4,053
Cv

RF20 5,2 m., o,78n 0,2246 0,2425 0,0183 0.2157 0,1296 0,156
Cv 221,0 94,9 51,4 48,0 28,1

RF21 8,1 m, 1.2391 0,307 0,304 0,011 0,1645 0,1302 0,103
c" 214,1 135,7 129J 110,5 74,1
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Figure 12.14. Typical curves ofcollapse settlement and square root time for granite saprolite.

12.4 Collapse potential using the triaxial apparatus with local strain instrumentation

For comparison with the double and single oedometer test results, two collapse potential tests were

conducted in the triaxial apparatus using local strain instrumentation. Cost implications limited the

number oftests to only two samples. These two undisturbed samples were retrieved after excavation

ofthe dam foundation footprint on the left flank at a depth of6m in the granite saprolite (Table 12.7).

12.4.1 Specimen preparation

The samples were placed in the triaxial cell at natural moisture content and the cell pressure was

increased in increments up to 200 kPa before wetting the sample by flushing it with de-aired water at

atmospheric back pressure. Full saturation was ensured by using sufficient back pressure to achieve

high B-values. Linear variable differential transformers (LVDT's) were fitted to the middle ofthe

specimen over a gauge length of 55mm. This technique avoids bedding errors which occur at the

interface between the specimen and the ridged specimen ends in the cell. In this way the collapse



146

potential is measured with significantly more accuracy compared with conventional collapse potential

tests using the oedometer. A layout of the apparatus used in shown in Figure 12.15.

'+------ Top cap drainage line

..----rr..------ top cap

I ::;;;.:;.:;;:::::;:~~~==== O-ringsh low air entry porous disc

.~~~~-----latex membrane

I~11~i~r..4----- top bracket

~ ~---- LVDT

~---- bottom bracket

~~~~~ l:R------ fine thread screw

e~~~~~-----low air entry porous disc

.. base pedestal

I_--~-- drainage line

ll::::==~t=:J- valve

Figure 12.15. Triaxial collapse test apparatus (after Heymann and Rust, in press).

12.4.2 Results from triaxial collapse settlement tests

The results from these tests show a much lower collapse settlement than those observed from the

single and double oedometer tests (Table 12.7). This can be explained by the much higher degree of

saturation ofthese samples which as shown by Figure 12.11 implies lower collapse potential values.

As with the double and single oedometer tests, the triaxial collapse potential tests also showed the

granite saprolite to display no significant yield stress. This is shown in Figure 12.16 where a plot of

effective stress against axial strain is illustrated for the two samples with neither curve showing an

obvious yield point.

Table 12.7. Collapse potential results from triaxial testing.

Sample

CH 150,79

CH 150,79

Depth (m)

6,5

6,5

Dry Density (kg.m")

1444

1461

S,(%)

80,0

76,5

CoIapse Potential at 200 kPa (%)

0,30

0,04
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Figure 12.16. Typical e-p curves from triaxial collapse potential tests.

12.5 Collapse Settlement Indices

12.5.1 Introduction

A considerable amount ofwork has been conducted on quantifYing parameters that qualitY settlements

associated with collapse. These include the previously discussed double oedometer test (Jennings &

Knight, 1956), triaxial tests (Grigorian, 1967) and shear tests (Milovic, 1969). The main disadvantage

ofthese tests is that they are specialised and time consuming and may in many cases be uneconomical

to conduct in certain geotechnical investigations, as was the case for this study. Consequently, a

number ofcollapse potential indices orcriteria have been proposed. The applicability ofthese indices

has been met with varied success depending upon the material type to which they have been applied

and the majority ofwork done has concentrated on loess or loess-like materials due to their prevalent

metastable characteristics.

12.5.2 Application of collapse settlement indices

Denisov (1951) was amongst the first to recognise that metastability of soils is determined to some

extent by their natural porosity and based his criterion on an evaluation ofthe voids ratio at the natural

moisture content and the liquid limit. He suggested that a soil may be metastable if it is capable of
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absorbing enough water to take it up to or beyond the liquid limit and proposed that a soil may be

metastable if:

(Eqn. 12.5.1)

where ElL = void ratio at WL

and eo = void ratio at natural moisture content

Table 12.8 presents a summaryofthe results ofvarious collapse settlement indices including the values

obtained from Denisov's (1951) equation. A plot of the Denisov values against collapse potential

suggests that granite saprolite with a Denisov value of less than 1 generally exhibits more than 3%

collapse potential (Figure 12.17).
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Figure 12.17. Relationship of Denisov values with collapse potential (%).

Gibbs & Bara (1962) presented Denisov's (1951) criterion in a graphical form (Figure 12.18),

suggesting that a soil with high enough void space to retain its liquid limitmoisture content at saturation

is susceptible to collapse on wetting. Their method only applies ifthe soil is uncemented and the liquid

limit is above 20%. As seen from the SEM and petrographic investigations the granite saprolite from

Injaka Dam is uncemented and Section 10.2 shows the liquid limit to fall within this requirement. The

Gibbs and Bara(1962) chart is divided into two regions by lines drawn at 100% Sr for soils with specific

densities of2,60 and 2,70. Soils which plot above the line ofsaturationare potentially metastable, whilst

those which plot below the line behave as stable or heaving soils. This graphical criterion has been
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Table 12.8. Collapse settlement indices for samples from Traverses 1 to 6.

Collapse index
Absolute collapse Liquidity Index (LI)

Xd.Jm
CoIapse

Depth Denisov Value index( i,J (Gibbs and Bara, 1962 potentialSample
(m) (Denisov, 1951) (j,,)(Feda, 1988)

(Feda, 1988) & Handy, 1973) (%)

Traverse 1

RF12* 1,0 1,503 0,287 5,05 -0,216 0,86 0,614

RF10 3,5 1,006 0,804 10,13 -0,728 0,66 3,912

RF9 4,9 0,952 1,372 11,25 -1,183 0,45 5,834

RF8 5,7 1,220 -0,492 -5,17 -1,686 0,84 0,317

Traverse 2

RF6 2,5 1,32 0,17 2,12 -0,82 0,77 0,859

RF5 4,8 1,11 0,63 0,069

RF4 6,9 1,23 0,84 5,59 -2,75 0,82 0,140

Traverse 3

LF 1* 0,9 0,81 2,22 10,20 -2,85 0,85 3,381

LF 2 2,4 1,03 0,80 7,04 -1,44 074 2,888

LF 3 3,8 0,98 0,99 11,44 -0,52 0,64 3,110

LF4 4,5 1,30 -0,48 5,11 -0,80 0,60 0,823

LF 5 5,2 1,21 0,10 0,80 -0,64 0,67 0,5<48

LF6 5,5 1,24 0,12 0,83 -1,5<4 0,80 0,613

Traverse 4

LF 7* 1,1 0,83 1,70 12,77 -0,79 0,72 5,690

LF 8 2,8 1,13 0,16 1,54 -1,38 0,71 3,270

LF 9 4,0 0,95 0,41 2,81 -1,80 0,30 2,257

LF 10 5,5 1,25 0,19 2,27 -0,62 0,90 1,136

LF 11 6,5 0,99 1,00 6,23 -1,39 0,44 1,418

LF 12 7,3 0,98 -0,41 -3,93 -1,48 0,82 2,241

LF 13 7,7 1,56 -1,49 -13,73 -2,48 0,25 0,748

Traverse 5

LF 18* 1,1 1,14 1,16 7,29 -1,60 1,00 2,447

LF 19 2,3 0,84 1,72 9,28 -1,41 1,00 3,788

LF20 3,2 0,88 1,65 12,06 -1,34 0,84 3,615

LF 21 4,0 0,93 2,19 12,68 -0,79 0,40 1,661

LF 22 5,1 0,72 3,80 15,58 -1,27 0,56 5,140

LF24 5,7 0,95 1,49 8,96 -0,8 0,84 0,043

LF 25 6,2 1,21 0,09 0,64 -2,41 0,90 1,442

LF 26 7,2 1,31 -0,11 -0,63 -2,89 0,26 1,218

Traverse 6

RF17* 2,2 0,99 0,61 7,06 -0,65 0,70 0,922

RF18 3,8 0,87 2,09 12,99 -1,5 0,57 4,053

* granite saprolite with residual soil patches
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successfully applied to predicting subsidence at a numberofdam and canal sites (Clemence & Finbarr,

1981).

The metastability as determined by the collapse potential values ofthe granite saprolite was analysed

using this chart and a good relationship was obtained (Figure 12.19). In general, the chart showed that

samples exhibiting a collapse potential greater than 3% are potentially metastable, whilst material

exhibiting a collapse potential between 2 and 3% can be considered to be marginal in terms of its

metastability. Material with a collapse potential of less than or equal to 1 can be considered to be

potentially stable according to this method.
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Figure 12.18. Stability diagram ofGibbs and Bara (1962) showing data from granite saprolite at
Injaka Dam.

Feda (1966 and 1988), has arguably produced the most comprehensive work on collapse indices on

his studies of loess. He proposes the collapse index ic> (previously known as the subsidence index _
K L):

PI
(Eqn. 12.5.2)

where m = natural moisture content S, =degree of saturation PL = plastic limit PI =plasticity index
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Figure 12.19. Applicability ofGibbs and Bara's (1962) graphical presentation ofmetastability (n =

number of samples).

Feda stipulated that in order to use this criterion the soil must have a critical porosity greater than or

equal to 40%. This requirement is satisfied by the granite saprolite from Injaka Dam site. Feda

also proposed that the absolute collapse index, i..c, could be used for collapse prediction where,

i =~ - PL
QC Sr (Eqn 12.5.3)

Collapse index (i,,) and absolute collapse index (iac) values for all ofthe samples are shown in Table

12.8. Feda suggested that ific was greater than 0,85 this was indicative ofa metastable soil. A plot

ofi"against percentage collapse potential shows a reasonable relationship (Figure 12.20) suggesting that

when ic is greater than 0,2 a collapse potential greater than 1% can be assumed. IfFeda's criterion of

0,85 is used, collapse potential greater than 3% can be expected for this material. Figure 12.21 shows

the relationship of i"., with collapse potential and suggests that where i"., is greater than 0, a collapse

potential larger than 1% can be expected.

Gibbs and Bara (1962) and Handy (1973) have shown that when the saturation moisture content

exceeds the liquid limit, collapse ofthe soil structure (in loess) from an increase in load is possible.

They express this instability criterion in terms of the liquidity index defined as:
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LI = w - PL
L L - PL

(Eqn.12.5.4)

where Lt = liquidity index w = natural moisture content PL = plastic limit LL = liquid limit

I!oundafy condition _. ~ > 0.85 is

indicative 01 metaslable soil according
to Fads, 1988.
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Figure 12.20. Relationship ofcollapse index (ic) and collapse potential (%).
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Figure 12.21. Relationship of absolute collapse index (ia.,) and collapse potential (%).

When the liquidity index approaches or exceeds a value ofunity, experience has shown that collapse

may occur. However, the liquidity index values for the granite saprolite correlate poorly with the actual
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values ofcollapse potential (Table 12.8) and consequently it is considered a poorcriterion for indexing

the collapse settlement of this material.

Darwell etof. (1976), have developed a relationship between plastic limit, liquid limit and dry density

which can be used to assess the possibility ofmetastability. Theyadapted Feda's collapse index i., and

rearranged this equation to include values for natural dry density and specific gravity:

LL + .l-PL < _1_[Pw __1 ]
17 0,85 Pd G.

where Pw = bulk density Pd = dry density G. = specific gravity LL = liquid limit

(Eqn. 12.5.5)

PL = plastic Iimitt

This expression can be written as a series ofparallel lines ofliquid limit against plastic limit with each

line being given a unique combination ofnatural dry density. One particular line is shown in Figure

12.22a. This line runs from the upper boundary line where LL = PL to the liquid limit axis where PL

= O. The area shaded in Figure 12.22a between the three line represents the inequality presented in

Equation 12.5.5. Consequently, all points in this shaded region represent cases where the liquid and

plastic limits are such that collapse index is greater than 0,85 for given values ofdrydensity and specific

gravity and thus any soil with indices located in this region would be metastable. To allow for the

prediction ofsoils with awide range ofdry density and specific gravity values, aseries oflines is drawn

for these different values. Examples ofthese lines are shown in Figure 12.22b. The central line is the

case in which Gs= 2,65 whilst the outer two lines represent Gs= 2,55 and Gs= 2,75 for the same dry

density. Any specific gravity can be interpolated between these three lines or extrapolating outside of

them ifnecessary. By varying the dry density, a series ofthese lines can be created as shown in Figure

12.22c.

To evaluate the metastabilityofasoil the following procedure is used. Ifa point given bythe liquid and

plastic limits ofthe soil lies to the left ofthe line corresponding to its dry density, then metastability is

likely as the criteria ofi., beinggreater than 0,85 is met. In Figure 12.23, values for the granite saprolite

at Injaka Dam are plotted as points whilst the trend for weathered granite derived from data given by

Lumb (1962), Lamb (1962) and Little (1967) is plotted as a stippled area. It can be seen that for this

stippled zone, metastability is possibly where the dry density is less than 1600 kg.m-3. This corresponds

to Brink's (1996) statement that collapsible soils characteristically have dry densities less than 1600
kg.m-3 and is confirmed by Figure 12.8.
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Figure 12.22a to c. Construction ofDarwell et al. 's (1976) graphic method for determination of
collapse settlement indices.

Each sample point for the granite saprolite at Injaka Dam was plotted to assess the likelihood of

metastability. A good relationship between Darwell etaf. 's (1976) chart and actual collapse potential

values was obtained (Figure 12.24). It can be seen from this figure that Darwell etaf. 's (1976) method

shows the granite saprolite to be potentially metastable when exhibiting a collapse potential greater than

2%. Consequently, it can be seen that the application ofthe chart proposed by Darwell et al. (1976)

can serve as a useful indicator for metastability of the granite saprolite at Injaka Dam.
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Figure 12.23. Stability chart of granite saprolite at Injaka Dam using Darwell et al. 's (1976)

graphical method.
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Figure 12.24. Applicability of Darwell et al. 's (1976) graphical method for indexing collapse

settlement at Injaka Dam.

Baynes & Dearman (1978a) attempted to use the graphic form of Lumb's (1962) degree of

decomposition (Xd) with void ratio as a metastability index. They used Darwell et al. 's (1976)

suggestion that any material with a density below 1600 kg.m-3 can be considered to exhibit potential

metastability. This criteria is represented in terms ofvoid ratio on Figure 12.25 and is shown by the

shaded area. Any material that falls within this shaded area in terms of its microfabric can be

considered to be metastable. The results ofcollapse potential tests from this study have been plotted

on this chart to determine its suitability as an indicator of metastability. Figure 12.26 shows the

applicability ofthis chart to indexing the collapse potential ofthe granite saprolite at InjakaDam. The

relationship shows that this method categorises almost all samples as metastable and is unable to

differentiate between the metastabilityofthe saprolite. Thus this method cannot successfully be used

to differentiate and index the collapse potential of granite saprolite.

In order to evaluate the collapse settlement indices for the granite saprolite at Zoeknog Dam a similar

exercise was carried out for the limited number ofsamples that were tested by Partridge et al. (1984

and 1990). The fmdings from this exercise for the Demsov value, ie and iac are presented in Figures

12.27a, b and c. It can be seen from these figures that a collapse potential of greater than 1,5% can

be expected for a Denisov value ofless than 1,6. A Denisov value ofless than 1 generally does not

showthe material at Zoeknog Dam to exhibit any collapse potential and Denisov's (1951) criterion of

a value less than unity for metastable conditions does notapply. Figures 12.27 b and c show a general

increase in collapse potential with increasing ie and iae, although the criterion for ie > 0,85 for metastable

conditions appears to be too high for this material.
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Figure 12.26. Applicability of Baynes and Dearman's (1978a) method of using elXd for indexing
collapse settlement.
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Figures 12.28 and 12.29 show the application ofthe Gibbs and Barn (1962) and Darwell et al. (1976)

method respectively, for the Zoeknog Dam granite saprolite. It can be seen from these figures that

these graphical methods are not considered suitable for the granite saprolite at Zoeknog Dam. The

likely reason for this is that these samples have slightly higher liquid and plastic limits for equivalent

density material as would be found at Injaka Dam. Chapter 10 has noted that the Zoeknog Dam

samples have slightly higher clay contents which could account for such behaviour. It is to be noted

in conclusion then, that such collapse potential indices should be treated with care when beingapplied

to particular materials and general relationships should be established before employing such indices.



158

900

1100 I---l---t-------;V"-;/'---+----I

1700

~ ~ ~ 00 00 ro M 00

Liquid L.ml%

• CoIapsePolon""(""")

• Collapse Potential (2-4%)

.. Collapse Potendal (4-6%)

• C<>IIapso Po_l(~)

• Collapse Potential (8-10%)

.~PotentiaI(1()"12%)

n=2

n=O n=O nzO n:r:O n=O

n=O

n:3

Figure 12.28. Stability diagram of Gibbs and Bara (1962) showing data from granite saprolite at
Zoeknog Dam and histogram showing correlation ofmethod with collapse potential.

n:1

":::0 1--n=2

n=6

• CoIlIpM PdentiII (0.2'%)

-CoIllIlMPo&enrIaII2-4%)

A ee..p..Polenlillll~)

.~PcunciIIIIs.n.)

• COIIJ- Pd8rltilIl (1.'0'1.)

• CoAlIPMPden1illl(lo.12"1lo)

80

Figure 12.29. Stability chart of granite saprolite at Zoeknog Dam using Darwell et al. 's (1976)
graphical method and histogram showing correlation of method with collapse potential.
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13. SHEAR STRENGTH OF UNDISTURBED GRANITE SAPROLITE

13.1. Introduction

The shear strength ofa soil is its maximum resistance which it can offer to shear stress. Once this

maximum has been achieved (the peak shear strength), the soil is considered to have failed with

failure occurring along a single plane or shear zone (the residual shear strength). The shear

strength value determined experimentally is not a unique constant of the material, but varies

according to the method of determination and the stresses imposed on the soil element.

Unweathered granite has a large cohesion (c '" 15000 kPa) and high angle of friction (({J '" 59°)

due to the strength ofintergranular bonds and the interlocking texture. When granite is weathered

to produce a friable highly weathered rock, cohesion is significantly reduced by opening ofgrain

boundaries and microfracturing. The angle offriction is reduced by the action ofweathering due

to mineralogical changes and internal weakening ofgrains. As the granite becomes more intensely

weathered, developing into saprolite, the grains become separated and/or altered to clay. This

results in a reduction ofcohesion to zero when totally saturated (Lumb, 1962). The friction angle

also reduces significantly, although generally remains higher than the value attributable to basic

mineral friction alone, which is approximately 30°for granite minerals and somewhat less for their

weathering products (Coulson, 1971). A summary ofthe shear strength parameters ofgrade VI

and Vweathered granite is presented in Tables 13.1 and 13.2, respectively. The tremendous range

displayed by the shear characteristics is according to Dearman et al. (1978), because ofthe wide

variety of microfabrics encountered within this material.

According to Ebuk et al. (1993), the presence ofrelict structure in weathered granite soils makes

the engineering behaviour ofthese soils different from those oftemperate soils exhibiting similar

grading. As widely documented in the literature CVargas, 1953; Wallace, 1973;Brinkand Kantey,

1961 and Sowers, 1963), this structure is generally responsible for the residual bonding within these

soils and accounts for the cohesion intercepton the strength envelope even when the soil is porous

and contracts during shear (Leroueil and Vaughan, 1990). This bonding can be attributed to relict

crystalline structure and the clay microfabric. The influence ofmoisture content is variable, but

generally as the clay microfabric becomes more dominant, so the moisture content plays a more
significant role.
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Table 13.1. Shear strength parameters of Grade VI weathered granite from various sources

(Deere and Patton, 1971) .

- Qesa;ption
Loc:aIily Type 01 Test SInJngth~ Remarl<s Source

c "
Hong Kong Triaxialtest c!;G-200kPa ,,';20-40" -.m soil. c! appmaches 0

lumb(I962)Decomposed gnmiIe
when fully saturated

Decomposed granite Hong Kong Drained triaxial test c!; G-225 kPa ,,'; 25-35" lumb(I962)

Deoomposed granile Hong Kong Undrained triaxial test c';OkPa ,,';;JS.<41,5" Pore pressure rneas<IAlrI'lOR Lamb (1962)

SI;ghlIy- TriaxiaI test c';OkPa ,-;31" Filly saturated V.-gas (1953)
docomposed grani1e

Table 13.2. Shear strength parameters ofGrade V weathered granite from various sources.

Material Description locality Type 01 Test S1rengtIl PararneteB RemarI<s Soun:e

c "
Deoompooed granitic Hong Kong Direct shear test c-OkPa ,,;39" A_ shearslreng\ll Cheung et al.
soiIand_ envelopewilh-.. (1988)
granitic sol . Hong -Kong

Residual granite soil Portugal salura1ed, undrained triaxial c' - 59 kPa ,,'; 26' Post envelope inflection Novais-Ferrek'a &
test Viana Da Fonesca

(1988)

Residual granitic soil Portugal llitecI shear test C' 26.5kPa ,,;34"
Sample consoIidaIed _

Novais-F8ITlliIa&
200 kPa before testing Viana Da Fonesca

(1988)

Granite saproIite Egypt Direct shear test c;G-15kPa ,,·40-<45" Partially saturated ~(1988)

Highly weathered Egypt llitecI shear test c;22-38 ,,-40-4/1" Partially satura1ed Radwan (1988)
granite kPa

Completely Hong Kong saturated, consolidated c!- 7,5 kPa ,,';31" Average parameters for drained Massey et al.
decomposed granite -.:I and undrained and undrained con<iIions (1989)_lasts
Completely Hong Kong saturated, consolidated c!-1G-20 ,,'; 32-39" Average paranwW's for_ Massey et al.
docomposed g<'8llile _andundrained kPa

and _ conditions
(1989)_ tests

Decomposed Granite Hong Kong Direct shear test c=OkPa ,,-35-10" Saturated. Coarse Soil Lumb(I962)

Decomposed Granite Hong Kong Direct shear test c-G-200 ,,-35-10" Medium soil. C' approac_ 0 Lumb(l962)
kPa when fulty saturated

Decomposed GnInite Hong Kong Drained triaxial1es1 c-G-75kPa ,,:33-40" I..umb (1962)

Decomposed grani1e Hong Kong
ContoIidalad. -

c!-OkPa ,,'-35.<41,5" Pore pressures measured Lamb (1962)
IriaxiaI test

Decomposed granite Triaxialtest c!-5(l.70 ,,';33,5- Dependent upon wealhering Hamtoi (1961)
kPa 41,5' index i,~ between 15 and

30

Decomposed granite Aus1ralia Direct Shear c- 25-30 ,,-26-29" 55% salu<aled Hooking (1960)
kPa

Decomposed Granile Hong Kong Drained shear lest c'-G-2,3 ,,'-25-38" Unsaturated Lurnb (1962)
kPa

Grade V weathered England Con_ted. undrained c'- 0 kPa ,,';39,5" Baynesand
granite trima' test Dearman (197&8)

13.2 Direct shear tests

13.2.1 Introduction

Direct shear tests were conducted on undisturbed samples of the granite saprolite to assess the

shear strength of the material. Although this test is limited in its application as no pore water

pressures can be measured and the failure plane is predetermined, Cheung etaI. (1988) stated that
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it offers some advantages over the triaxial test, and in fact they found that the test could be used

satisfactorily for the routine measurement ofshear strength ofsaprolitic soils. The direct shear test

is a much simpler and quicker test to perform than the triaxial test with both the shear and normal

stresses on the plane of failure being measured directly. Furthermore, saturation of the soil by

soakingcan be simulated more easily in the direct shear test as drainage paths are short and excess

pore pressures can dissipate rapidly, particularly with coarse-grained material.

13.2.2 Specimen preparation

Direct shear specimens were trimmed from the larger block samples by carefully using a knife,

hacksaw blade and sample mitre. Extreme care was taken during this procedure not to disturb or

unduly stress the sample, although difficulties were encountered with coarser grained material

where large quartz grains at ornear the boundaryofthe specimen disaggregated the sample during

trimming. In such instances the sample was trimmed by abrading with sand paper. Unfortunately,

the disruption of the microfabric during sample preparation can severely affect shear strength

results as shown by Gidigasu (1980). Irfan (1988) has also suggested that partial destruction of

bonds in completely decomposed materials may occuras a result ofstress reliefduring sampling,

disturbance during trimming and the application of normal stress in the higher stress range.

Direct shear tests were performed on 60 mm square by 20 mm thick specimens in a Wykenham

Farrance model shear machine. Although Bishop (1948) and Hennes (1952) concluded that there

is no significant scale effect in direct shear testing ofcohesionless soils due to the size ofthe shear

box itself, particle size has been found to be important in relation to the shear box size. This is

supported by results from the investigation by Cheung et al. (1988) who observed that shear

strengths were over-estimated when using smaller shear box sizes. ASTM (1985) prescribes that

the specimen thickness be greater than orequal to sixtimes the maximum grain diameter ofthe soil,

with the specimen diameter (or width) being equivalent to or greater than twice the specimen

thickness. Investigations in China as quoted by Cheung et al. (1988) suggest that the specimen

thickness should be between four and eight times the maximum grain diameter and the specimen

diameter should be between eight and twelve times the maximum grain diameter.

Although the granite saprolite can have a maximum grain size of8 mm or more, these very coarse

grained samples could not be tested using the shear box as they disintegrated during sample

preparation. The majority ofthe samples thatwere tested exhibitedamaximum grain size between

4,75 and 2,0 mm. Consequently, the sizeofthe shear boxused in this investigation can be expected
to provide acceptable results.
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The rate of shear applied to the specimen will affect the pore pressure distribution within the

sample, particularly under saturated conditions for soils with low permeability. However, Cheung

etal. (1988) found very little significantdifference in shear strength between different shear rates

applied to weathered Hong Kong granites. This can probably be attributed to the free-draining

nature ofthe material. Samples from the investigation at Injaka Dam were subjected to a rapid

shear rate of 1,2 mm/minute.

The specimens were tested at natural moisture content and under saturated conditions. The

specimens were allowed to saturate overnight (16 hours) as this was considered the most practically

efficient method for the schedule oftesting. Each sample was subjected to direct shear testing at

four normal stress intervals of 60, 120, 175 and 220 kPa.

13.2.3 Direct shear tests at natural moisture content

In their study investigatingthe effects ofstrain rate, moisture content, normal loading, sample size

and box types on the shear strength and shear mechanisms ofGrade IV and V weathered granite,

Ebuketal. (1993), recognised seven different categories ofshear failure type (Figure 13.1). Each

ofthese shear failure types defined a particular microfabric with respect to crystalline and/or clay

bonding depending on the degree ofweatheringofthe granite. This investigation showed several

similar types ofcharacteristic failure curves for the material from Injaka Dam. Figures 13.2 and

13.3 show the stress-strain curves and displacement-strain curves for samples derived from the

right flank and left flank ofthe dam site, respectively. They have been separated according to each

flank to allow the characteristics of the curves to be observed.

Type 1

Grade IV Strong

Type 2

Grade IV Weak

Type 3

Grade V Dense

Type 4a

Grade IV Weak

All normal stresses Dry, parUy saturated Dry. partty saturated
All moisture contents CfYstaHine and c~y bonding Minor crystanine bonding
Relict crystalNne bon<ing Major clay boncing

Type 4b Type 5 Type 6

Grad. IV Weak and V Strong Grade V Grade V

Saturated (loss of clay bonding)
Crystafline bonding

Type 1

Grad.V

Saturated (loss of clay bonding) Low normal stress
Minor crystalline bondng

Intermediate normal stress High normal stress

Figure 13.1. Characteristic stress-strain behaviour of weathered granite soils after Ebuk et al.
(1993).
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165

The stress-strain relationship for the granite saprolite with residual soil patches is characterised by

Type 7 curves over the entire applied nonnal pressure range. The gentle shape of these curves

with no clearly defined peak shear stress can be explained by the disrupted microfabric

characteristic of these samples (Chapter 7). The volume change behaviour is dominated by

contraction, even at low applied nonnal stresses and is due to compression ofthe clay dominated

microfabric.

With regard to the shear behaviourofthe granite saprolite, a distinction could be made between the

behaviour ofthe samples from the left and right flank, respectively. Generally, the material from

the right flank displays a Type 3 and 4b failure curve (Figure 13.1) at low (60 kPa) to intennediate

(120 kPa) nonnal stress. In these curves a broad peak is reached between 4 and 8% strain with

a gradual reduction in shear stress as failure continues - the distinction made between Type 3 and

Type 4b depending upon the rate of reduction in shear stress. Type 3 failure was often

accompanied with dilatancy, particularly at the lowest nonnal stress (60 kPa), whilstType 4b failure

showed compressive behaviour throughout. This compressive behaviour does not correlate with

results presented by Massey et al. (1988) where direct shear tests conducted by them on granite

saprolite showed distinct dilation at low normal stresses. The discrepancy can probably be

explained by the minimum nonnalload of60 kPa in this investigation exceeding the "critical nonnal

stress" identified by Massey et al., below which dilation occurs. They found this critical nonnal

stress to be 40 kPa. As the nonnal stress increases from 120 to 220 kPa, so the shear type failure

curves progress to Type 7, where there is no clearly defmed peak strength even at high strains of

21 %. This is in agreement with the findings of Ebuk et al. (1993) who identified a peak shear

strength that either remains constant or shows small increase with increasing strain. The volume

change is associated exclusively with compression - this being a function ofthe higher nonnal

stresses (Figures 13.2a, b, c and d).

The samples retrieved from the left flank showed Type 7 shear behaviour (Figures 13.3a, b, c and

d), even at low nonnal stresses. Interestingly, dilatant behaviour was observed for several ofthe

samples at low (60 kPa) to intennediate (120 kPa) nonnal stresses and low strains «8%). The

high porosity, nonnal grain size and moderate to low density characteristics of these samples

(Chapter 10) cannot account for their dilatant behaviourwith respectto the other samples and their

behaviour can only be considered extraordinary. Over higher strains, several of the samples

exhibited gradual dilation. Athigher nonnal stresses almost all the samples exhibited compressive

behaviour.

A summary ofthe shear strength parameters detennined from the direct shear tests is presented

in Tables 13.3 and 13.4. As with Baynes and Deannan (1978a), a similarly large scatterofresults

is shown but these are nevertheless comparable to the partially saturated samples presented in

Table 13.2. The right flank samples show qJ varying from 33,0° to 57,0° with an average of41,7°.
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The left flank samples exhibit lowerparameters, a feature associated with their higher clay contents

and generally higher moisture contents. Phi values vary from 26,1 ° to 50,3 ° with an average of

37,6°in this case. Cohesion is highly variable for both left and right flank samples. Right flank

samples exhibited c values ranging from 6,9 to 85,8 kPa with an average of41,4 kPa, whilst left

flank samples showed an average of 52,3 kPa, ranging from 7,5 to 129 kPa.

Table 13.3. Summary ofdirect shear strength parameters for granite saprolite with residual soil

patches at natural moisture content.

sample
Depth Dry density

Moisture (%) I. Xd qI (0) c(kPa)e
(m) (kg.m"')

RF12 1,0 1511 22,6 0,839 0,413 0,862 44,3 42,2

LF7 1,1 1444 12,7 0,828 0,618 0,722 45,2 7,5

LF 18 1,1 1535 15,1 0,788 0,267 1,000 40,5 39,3

RF 17 2,2 1389 15,1 0,796 0,701 41,4 52,1

Table 13.4. Summary ofdirect shear strength parameters for granite saprolite at natural moisture

content.
sample Depth Dry density Moisture (%) e I. Xd qI (0) c(kPa)

(m) (kg.m"')

RF10 3,5 1330 15,5 0,907 0,508 0,660 43,4 15,8

RF9 4,9 1375 15,3 0,957 0,824 0,446 35,7 51,9

RF8 5,7 1482 7,9 0,539 1,409 0,838 36,4 85,8

RF7 6,6 1855 11,1 0,500 1,417 0,534 43,3 44,9

RF6 2,5 1458 18,1 0,818 0,393 o,no 33,0 54,7

RF 5 4,8 1763 16,3 0,888 1,515 0,633 57,0 6,9

RF4 6,9 1457 12,5 0,960 0,543 0,824 37,6 43,0

RF3 9,2 1683 14,4 0,848 0,536 0,144 44,4 35,5

LF 2 2,4 1400 16,9 0,868 0148 0,740 42,6 17,2

LF 3 3,8 1416 14,9 0,860 0,876 0,642 41,8 43,3

LF 4 4,5 1523 17,5 0,556 0,535 0,604 26,1 129,0

LF 5 5,2 1610 15,3 0,589 0,501 0,665 39,0 97,5

LF6 5,5 1433 22,4 0,909 0,463 0,796 35,1 79,5

LF 8 2,8 1434 13,6 0,746 0,515 0,709 40,8 48,3

LF 10 5,5 1431 21,0 0,801 0,380 0,900 33,2 56,2

LF 11 6,5 1362 20,5 0,955 0,671 0,440 30,6 45,2

LF 19 2,3 1307 19,0 0,937 0,460 1,000 31,9 58,3

LF 20 3,2 1305 17,7 0,955 0,838 41,4 25,2

LF26 7,2 1522 12,4 0,692 0,568 0,264 27,6 72,1

LF 27 7,8 1797 6,4 0,501 1,621 0,376 50,3 13,9

RF 18 3,8 1383 15,3 1,022 0,398 0,565 41,9 22,1
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The nature ofgranite saprolite as defined by its complex microfabrics has been used by Lumb

(1962), Baynesand Dearman (1978a), Irfan (1988) and more recently Ebuk etal. (1993) to explain,

in part, the shearbehaviour ofthis material. Although the shear strength ofa material is a function

ofmanyparameters includinggrain size, grain shape, particle packing, drydensity, moisture content

and stress regime, the use ofmicrofabric indices often incorporates many ofthese parameters and

may be used to identify a crude relationship with shear strength.

Lumb (1962) was the first to apply a definitive index (Xd) to explain microfabric in weathered

granite and successfully applied it to changes in degree of weathering and grain size. He

recognised a great variety of microfabrics as indicated by the range ofXd values, but could not

reconcile these with the consistently high rp values for the weathered granite. Baynes and

Dearman, and Irfan found a similar lack ofcorrelation between Xd and rp. The fact that Xd only

considers the quartz and feldspar variationswithin the material, means that itexcludesany structural

components ofmicrofabric such as cracks and voids - features which have significanteffecton the

shear resistance ofa material. In addition, the decomposition state ofother minerals which can

influence the strength behaviour are not accounted for in the Xd determination. The

micropetrographic index~) has achieved more success in characterising shear behaviour (Irfan,

1988)and this can be attributed to this index incorporating changingmineralogical and microcrack

regimes within the weathered material. Consequently an element ofthe structural characteristic

ofthe microfabric is included in~. Although no clear relationship could be observed betweenXd,

~ and <p for this study, broad observations ofthe microfabric variability can tentatively explain

certain relationships. The Type 7failure curves exhibited by the granite saprolite with residual soil

patches over the complete range of normal stresses are indicative ofthe greater clay dominated

microfabrics ofthese samples which show a distinct loss ofstructure. This prevents any defmite

peak shear from beingachieved as the softerclaymatrix along the failure plane resists readjustment

of the more competent quartz grains as shearing continues. The clay dominated microfabric

reduces the interparticle contact ofthe more competent grains with each other, thus resulting in

characteristic compressive behaviour during shear.

The Type 3 and 4b failure curves from the right flank granite saprolite samples are characteristic

ofmaterial which shows less fabric disruption to the original fabric. These curves exhibit higher

shear stresses with adefined peak shear stress at low horizontal displacement (increased stiffuess).

This relationship can beexplained bythe existence ofrelict crystalline structure and bonding (with

a lesser component ofclay microfabric) which resists shearing. At a given point (4 to 8% strain)

the structure is broken resulting in a rapid reduction ofshear stress. This type offailure may be

associated with some dilatancy at low normal stress where the less prominent clay microfabric

allows the more competentquartz and broken feldspar grains into contact with each othercausing
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overridingand possibly rotation within the fabric fonned along the shear plane. At highernonnal

stresses the Type 3 failure curves change to Type 7 curves where the increased nonnal stress

compresses the soil fabric breaking up relict bondingand structure with subsequentgradual collapse

of the porous honeycombed feldspars as shearing progresses. This results in the compressive

behaviour observed with very poorly defined peak shear stress curves.

For both the left and right flank samples, the irregular natureofsome ofthe stress-strain curves can

be attributed to particle crushing ofthe feldspar grains and reorientation within the confines ofthe

shear box.

13.2.4 Direct shear tests at saturated moisture content

Direct shear tests were also carried outon saturated material. Cost and time implications prevented

all samples from being tested. As can be seen from Figure 13.4, the effect ofsaturation on the

samples is clearly shown by their characteristic Type 7 failure curves, with contraction

predominating throughout the shear process. This observation is common to both the granite

saprolite with residual soil patches and granite saprolite, respectively. No defmed peak shear stress

was achieved with shear stress increasing negligibly with strain.

As with the samples tested at natural moisture content, the saturated shear strength parameters

exhibit some variation (Tables 13.5 and 6). Adistinct reduction in cohesion is noted for the granite

saprolite (between 0and 55,2 kPa), probably as a result ofsofteningand deflocculation ofthe clay

within the sample, whilst the valuesof<p are comparable with the samples tested at natural moisture

content (between 32,4° and 45,8°).

Table 13.5. Summary of saturated direct shear strength parameters for granite saprolite with

residual soil patches.
Sample Depth (m) e I. Xd cp (0) c(kPa)

LF7 1.1 0.828 0.618 0.722 38.7 22

Table 13.6. Summary ofsaturated direct shear strength parameters for granite saprolite.
Sample Deplh(m) e I. Xd cp (0) c (kPa)

LF 3 3.8 0.860 0.876 0.642 37.5 25.0

LF4 4.5 0,556 0,535 0,604 39.8 25,0

LF 5 5,2 0,589 0,501 0,665 37,5 38,7

LF6 5,5 0,909 0,463 0,796 32.4 55.2

LF 8 2.8 0,746 0,515 0,709 43.4 34.3

LF 10 5,5 0,801 0,38 0.900 40.5 3.0

LF 11 6.5 0,955 0.671 0,440 45,8 0
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Figure 13.4. Stress-strain curves showing volume change in direct shear for left flank undisturbed samples
sheared under saturated conditions. --- = granite saprolite with residual soil patches; - =granite saprolite.
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The Type 7 failure curves can be explained by softening ofkaolinite during saturation, forming a

medium in which the more competentquartz grains and broken feldspar fragments are constantly

readjusted in position through ''ploughing'' and to a lesserextent rotation. The resultant densification

ofthe material prevents peak shearstrength from being achieved, even at21 % strain. The volume

reduction throughout shear can also be associated with the metastable nature ofthe saprolite and

the clay dominated microfabric which accommodates compression. The stress-strain curves are

generally smoother in comparison to the natural moisture contentcurves suggesting that saturation

softens the material facilitating particle crushingofthe skeletal feldspar grains and reorientation of

the more competentquartz grains. This accounts for the absence ofany significant stiffuess in the

early part ofdisplacement.

13.3 Triaxial tests

13.3.1 Introduction

As the direct shear test predetermines the failure plane ofthe sample, Sowers (1963) suggested that

unduly high shear strength results can be achieved from this testmethod, particularly ifthe material

exhibits any form offabric. Bynot predetermininga failure plane within the sample, triaxial tests

allow failure to occur "naturally" through the soil structure. In contrast to the fmdings ofCheung

etal. (1988), Sowers suggested thilt the triaxial shear test is the only suitable method oftesting the

strength of "residual" soils and even then, numerous tests are required to obtain an accurate

indication of the shear strength parameters of these soils.

Saturated consolidated drained triaxial tests were conducted on the undisturbed block samples of

the granite saprolite. The objective ofthese tests was to establish typical values ofdrained shear

strength parameters of the weathered granite. Although direct shear testing has provided an

indication ofthe shear strength ofthe granite saprolite, the method oftriaxial testing means that

effective shear strength parameters can be obtained. Shear strength results forming part of the

triaxial collapse potential tests (discussed in Section 12.4) are also presented here.

13.3.2 Saturated consolidated drained triaxial tests

13.3.2.1 Specimen preparation

The sample preparation for triaxial testing requires a significantly sensitive approach, particularly

where the specimens are brittle. The nature oftrimming the cylindrical specimens can give rise to

difficulties, particularly with regard to the coarsergrained samples where large quartz grains at or
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near the boundary of the specimen can disaggregate the sample during trimming. Cylindrical

samples 38 mm in diameter and 76 mm in length were used for the test procedure.

After installation in the triaxial cell, a back pressure and cell pressure of200 kPa were gradually

applied to the specimen. The back pressure was applied until Skempton's B value was close to

unity, implying total saturation. In most cases B values very close to unity could be achieved

overnight. The back pressure value of200 kPa was chosen to simulate a head ofwater 20 m in

height, thus representative ofthe pore pressure increase due to reservoir loading on the foundations.

With these values of pressure, similar levels of the appropriate field pressures are operative

throughout the test. The application of the cell pressure allowed for the increase in the pore

pressure within the specimen so that air as a separate phase in the void spaces is eliminated,

allowing for saturation ofthe sample. After saturation, cell pressures of275, 350 and 500 kPa were

applied respectively to each specimen to obtain the shear strength envelope. It should be noted that

these confIDing pressures are significantly higher than the normal pressures used in the direct shear

box tests. As a result subtle differences between the two shear tests, particularly within the lower

stress intervals may occur. A rate ofstrain of0,0457 mm.minute- l was used, correlating to a strain

of 3,6 % per hour. This rate of strain was considered suitable as no excess pore pressure was

observed during testing.

13.3.2.2 Results and discussion

Consolidated drained and undrained triaxial tests were conducted by Massey et al. (1988) on

granitic saprolite soils using lower confiningpressures ranging from 10 to 300 kPa. The objective

of these tests was to determine the effect ofmicrofabric on the shear strength characteristics of

the material. Massey et al. were able to identify a region in the stress paths where a "critical

effective confming pressure" existed, below which the material derives additional strength from

dilation and possibly also from shearing ofweaker bonds. The much higher cell pressures used in

this investigation prevented any identification of this relationship for these materials.

A typical set ofstress-strain curves for the granite saprolite are shown in Figure 13.5. As with the

direct sheartests, two anomalous failure type curves can be identified when plotting deviator stress

against strain. These include Type A and Type B curves (Figure 13.6) similar to the Type 3 and

Type 6 curves identified in Section 13.2. The Type A curves are characteristic of the least

weathered samples at low (275 kPa) and intermediate (350 kPa) confining pressures. The failure

curves show a distinct stiffuess at low strain with an abrupt increase to a defmed peak shear stress

at around 2,5 to 3% strain followed by a very gradual reduction in shear stress. The Type B failure

curves are similar to the Type 6 curves in Figure 13.1 and are characterised by more weathered

samples. The curves exhibit a gradual increase in shear stress with a poorly defmed peak shear

at extended strain ofup to 10 to 15%. In accordance with observations from the direct shear tests,
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it was found that as the confming pressure increased so the Type 3 curves changed to Type 7,

indicative of disruption of the microfabric interlock at these high confming pressures.

A summary ofthe shear strength parameters derived from the triaxial testing is shown in Tables

13.7 and 8 and once again shows the variation ofthe strength ofthe granite saprolite. The wide

scatter ofresults is not unusual with Brummer (1980), Jaros (1978) and Gidigasu (1980) fmding

similar relationships. Partridge etal. (1990) also found similar strength characteristics at Zoeknog

Dam as shown in Figure 13.7.

Figure 13.5. Stress-strain curves for selected granite saprolite samples from saturated
consolidated drained triaxial tests. (J3 =275,300 and 500 kPa, respectively.
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Figure 13.7. Results of saturated consolidated drained triaxial tests on granite saprolite at
Zoeknog Dam from Partridge et al. (1990).

Fell et al. (1992) have shown that when a number oftriaxial tests have been conducted on a soil,

it is recommended that the design shear strength parameters are obtained from the MIT stress path

plot ofthe test results rather than by averaging the individual rp' and c' values from each test, or

plotting all Mohr circles from the test results on a diagram. This method of construction to

determine the shear strength parameters is superior as it eliminates errors ofjudgement in choosing

the best common tangent to the Mohr circles; avoids ignoring the weakest specimens in the test

series and allows for the continual monitoring of(<JI' + <J3')/2 and (<Jl' - <J3')/2 values during shear

to give a stress path of the successive states of stress within a sample as it approaches failure

(Vickers, 1978). Effective stress points for the maximum deviator stress are shown in Figure 13.8

The data represents points s' and t' as defined by Atkinson and Bransby (1978) for the MIT stress

path concept. It is possible to determine 'a and d', the stress path counterparts for rp' and c' from

this data. Linear regression through these points shows that d = 0,35 kPa and a'=28,6°with
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calculation ofthe shear strength parameters giving the average results for the granite saprolite as

qJ' = 33,0° and c'= 0 kPa.

Table 13.7. Summary ofshear strength parameters for saturated consolidated drained triaxial tests

on granite saprolite with residual soil patches.

Sample

RF 12

RF17

LF7

LF 18

Oepth(m)

1,0

2,2

1,1

1,1

1511

1389

1444

1535

e

0,839

0,796

0,829

0,788

I.

0,413

0,500

0,618

0,267

Xd

0,862

0,701

0,722

1,000

lP' (0)

33,0

32,4

36,0

30,0

c' (kPa)

11.3

15,9

17,5

25,7

Table 13.8. Summary ofshear strength parameters for saturated consolidated drained triaxial tests

on granite saprolite.

Sample

RF 10

RF9

RF 8

RF7

RF6

RF 5

RF4

RF 3

RF18

RF20

RF 21

LF 2

LF 3

LF 4

LF 5

LF6

LF 8

LF 9

LF 10

LF 11

LF 13

LF 19

LF20

LF 24

LF 25

LF 26

LF27

Depth (m)

3,5

4,9

5,7

6,6

2,5

4,8

6,9

9,2

3,8

6,1

6,2

2,4

3,8

4,5

5,2

5,5

2,8

4,0

5,5

6,5

7,7

2,3

3,2

5,7

6,2

7,2

7,8

Dry density (kg.m")

1330

1375

1482

1855

1458

1763

1457

1683

1383

1479

1663

1400

1416

1523

1610

1433

1434

1429

1431

1362

1625

1307

1305

1398

1533

1522

1797

e

0,907

0,957

0,539

0,500

0,818

0,888

0,960

0,848

1,022

0,971

0,828

0,868

0,860

0,556

0,589

0,909

0,746

0,676

0,801

0,955

0,365

0,937

0,955

0,914

0,713

0,692

0,501

I.

0,508

0,824

1,409

1,417

0,393

1,515

0,543

0,536

0,398

0,822

0,895

0,148

0,876

0,535

0,501

0,463

0,515

0,508

0,380

0,671

0,584

0,460

0,500

0,527

0,747

0,568

1,621

Xd

0,660

0,446

0,838

0,534

0,770

0,633

0,824

0,144

0,565

0,511

0,203

0,740

0,642

0,604

0,665

0,796

0,709

0,279

0,900

0,440

0,254

1,000

0,838

0,843

0,902

0,264

0,376

cp' (0)

28,2

31,0

20,3

38,0

24,7

39,0

29,2

34,2

32,1

30,2

27,8

29,7

28,0

30,4

27,8

34,3

35,7

35,7

32,3

27,7

31,4

31,1

29,0

30,0

30,9

31,5

40,0

c'(kPa)

12,3

90,0

36,4

95,0

25,0

69,0

29,0

15,0

18,0

29,3

38,0

90,0

9,8

4,0

13,6

2,5

8.0

2,8

4,2

14,8

8,4

3,3

16,8

15,0

13,4

24,4

16,9

The granite saproJite exhibits a characteristic zero cohesion when totally saturated due to the Joss

ofcapillary forces (Lumb, 1962). The value of33,0° for qJ , is still higher than the value attributable
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to basic mineral friction alone (which is 30° for granite minerals and less for their weathering

products (Kanji, 1970; and Coulson, 1971). The fact that rp' is higher is probably related to the

surface roughness of the mineral grains induced by weathering, rather than the angularity and

interlocking texture, as samples tend to consolidate and produce positive pore-water pressures

during shear (Baynes and Dearman, 1978a). The value ofrp' still lies between 30
0

and 35
0

which

encompasses the results from other authors summarised in Table 13.2.

Correlation: r = 0.98
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Figure 13.8. Effective stress points for maximum deviator stress for consolidated drained
triaxial tests on granite saprolite samples.

13.3.2.3 Explanation of shear strength

The weathering effects on the granite saprolite reduce the interlock effect that the mineral grains

have with surrounding grains. The shear strength parameters rp' and c' have traditionally been

defmed in terms of interparticle obstruction forces and particle attraction, respectively.

Consequently, it can be expected that with increased weathering rp' and c' will decrease as

interparticle bonding is reduced. The Type A curves are characteristic ofmaterial with lower clay

microfabrics. The microfabric comprises significant relict bonding and structure (interlock) with

lesserclay and decomposition products. Microcracking is also not as intensely developed. It is this

interlocking fabric thataccounts for the stiffuess observed in these specimens at low to intermediate

confming pressures. At failure, the interlocking fabric is broken, with the competent quartz and

broken feldspar fragments interacting with the lesser clay microfabric to allow only a small

reduction in shear stress. The Type B curves show a more plastic failure mode with a poorly

defined peak shear stress even over significant strain. The saturation ofthese samples results in

softening ofthe specimens due to their higherclay content and this accounts for the characteristic

failure curves typical ofType B. The more competent quartz and broken feldspar fragments are
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constantly readjusted within the clay microfabric along the plane of failure. The resulting

densification causes the gradual increase in shear stress.

13.3.3 Shear strength results from triaxial collapse potential tests

During the triaxial collapse potential tests discussed in Section 12.4, the undrained shear behaviour

ofthese two samples was also determined. Figure 13.9 shows the stress-strain curves and pore

pressure measurements for the undrained compression tests. The shear strength parameters

measured from these tests show these samples ofgranite saprolite to exhibit a ffJ' of24 0 and a c'

of22 kPa. The internal angle of friction value is somewhat lower than that determined from the

saturated consolidated drained triaxial tests, but this discrepancy is within the range ofmaterial

variability. From Figure 13.10 it can be seen that the granite saprolite showed brittle behaviour

accompanied by strain softening at low initial mean effective stresses, with peakdeviatoric stresses

at low initial effective stresses typically reached at axial strains between 2,0 and 2,5%. At higher

initial mean effective stresses, the behaviour becomes more ductile. This behaviour is typical of

soils with significant levels of "bonding" or structure. Figure 13.10 confirms this as the stress paths

showed post-peak compressive behaviour. This occurs when the load is shed from the saprolite

skeleton to the pore water as restructuring takes place for shear past the peak stress.
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Figure 13.9. Stress-strain curves and pore pressure measurements from undrained triaxial tests.
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14. ENGINEERING CHARACTERISTICS OF REMOULDED MATERIAL

The bulk ofthis research has comprised an engineering geological assessment ofthe in situ granite

saprolite at Injaka Dam. To complete the study, this chapter includes an analysis ofthe engineering

behaviour ofthe remoulded material. To determine the suitability ofthe weathered granite for use in

the embankment fill material, Standard Proctor compaction tests were performed on selected samples

extracted from each ofthe traverses shown in Figure 2.5. This chapter describes the results ofvarious

engineering properties ofthe remoulded materials and compares them to that ofthe in situ conditions.

14.1 Compaction characteristics

Typical compaction curves ofthe various weathered granite materials are shown in Figure 14.1. The

compaction curves identify a spread of results for the various materials and this is confirmed by

Partridge et al. (1990) who observed similar characteristics for weathered granite at Zoeknog Dam.

Whilst the range of Standard Proctor maximum dry densities can be observed in Figure 14.1, the

average results for the various materials is presented in Table 14.1. Summary results of granite

saprolite from Zoeknog Dam as investigated by Partridge et al. (1984) are also shown and are

comparable.

Table 14.1. Average Standard Proctor maximum dry densities and optimum moismre contents.

This study Partridge et al., (1990)

Material type

Granite saprolite with residual soil

Granite saprolite

Highly _athered granite

Maximum dry density

(kg.m~

1702

1704

1683

Optimum moisture

content(%)

18

17

16

Maximum dry density

(kg.m")

1708

Optimum moisture

content (%)

16.9

It can be seen from this table that the optimum moismre content decreases slightly but steadily from

the granite saprolite with residual soil patches to the highly weathered material. The maximum dry

density values follow a similar relationship although very little difference is observed between the

granite saprolite and the granite saprolite with residual soil patches. The compaction curves for both

ofthese material types fall along or close to the 5% air voids line as shown in Figure 14.1. The lower

maximum dry density and optimum moisture content for the highly weathered granite is attributable to

the poor grading and low claycontent respectively ofthe material (Chapter 10). Figure 14.1 also shows

the cornpaction curves to follow the zone between the 5% and 10% air voids line.
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14.2 Permeability characteristics of remoulded material

Penneability tests were perfonned on remoulded samples compacted at approximately optimum

moisture content to 95% of Standard Proctor maximum dry density and using the falling head

penneameter. The results shown in Figure 14.2 and Tables 14.2 to 14.4 show some degree ofscatter

with penneability generally varying between 1x 10'" and 1 x 10.7 cms' for the granite saprolite with

an average of1,7 x 10-5 cm.s-'. This represents only a small reduction in penneability in comparison

to the in situ materials (Table 10.10). The highest value ofpenneability in Figure 14.2 (4,5 x 10'" cm.s'

') is represented by a sample ofhighly weathered granite and is indicative ofthe poor compaction effort

achievable for this material type. The granite saprolite with residual soil patches exhibits similar

penneability characteristics to that of the granite saprolite.
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Figure 14.2. Penneability characteristics of remoulded weathered granite materials.

These results are higher than those reported by Partridge et al. (1990), who found constant head

penneability results between 1,7x 1O~ and 6,7x 10-7 cm.s"on remoulded granite saprolite at Zoeknog

Dam. The lower penneabilities experienced at Zoeknog dam are likely to be due to the higher clay

contents of this material.

14.3 Consolidation characteristics of remoulded material

For this particular study no consolidation tests were carried out on the remoulded compacted granite

saprolite. However, Chunnett et al. (1 991b) have analysed the consolidation behaviour of both the

remoulded granite saprolite and granite saprolite with residual soil patches at Injaka Dam site. This



Table 14.2. Remoulded engineering properties of granite saprolite with residual soil patches at Injaka Dam.
Sample Depth Maximum dry Optimum e_ Permeability Direct shear at optimum Direct shear at saturated

(m) density moisture content (cm.s·') moisture content moisture content
(kg.m") (%)

Saurated consolidated drained
tMaxial

<jl(") c(kPa) <p(O) c(kPa) <p(O) c (kPa)

RF 12 1,0 1606 21,8 0,675 8,6 x 10" 34,9 67,3 30,6 9,4 31,8 3,6

LF 1 0,9 1750 15,9 0,486 1.6 x 10" 39,6 2,9

LF 7 1,1 1685 16,7 0,567 1,2 x 10" 41,3 68,3 37,8 14,8 35,1 4,6

LF 18 1,1 1770 16,7 0,531 2,5 x 10" 43,6 67,4 33,4 13,5 30,1 25,7

RF17 2,2 1700 17,8 0,571 2,2 x 10-1 51,5 173,8 36,9 9,0 25,0 24,2

00-



Table 14.3. Remoulded engineering properties of granite saprolite at Injaka Dam.
Sample Depth Maximum dry Optimum e~ Permeability Direct shear at optimum Direct shear at saturated Saurated consolidated drained

(m) density moisture content (cm.s·') moisture content moisture content triaxial
(kg.m"') (%)

cW) c(kPa) <prO) c(kPa) cW) c(kPa)

RF10 3,5 1612 18,5 0,619 6,6 x 10" 47,1 56,7 32,5 20,2 30,5 17,5

RF 9 4,9 1654 18,9 0,596 3,5 x 10" 24,1 93,9 31,4 31,8 37,4 0,7

RF 8 5,7 1715 18,8 0,575 4,4 x 10" 35,2 60,7 32,2 11,3

RF7 6,6 1683 13,0 0,557 2,3 x 10" 55,3 3,7 36,5 19,9 34,7 17,7

RF6 2,5 1584 19,9 0,686 6,8x 10" 37,8 86,2 26,9 32,5 26,0 23,9

RF 5 4,8 1752 16,0 0,495 1,7 x 10" 43,1 14,7 47,2 45,5 36,4 1,1

RF4 6,9 1616 19,2 0,627 1,4x 10" 45,0 48,5 33,0 16,2 31,5 7,7

RF 3 9,2 1744 15,4 0,519 5,7 x 10" 49,3 37,3 39,1 5,2 35,5 5,0

LF 2 2,4 1671 18,2 0,586 2,2 x 10" 37,6 67,9 44,4 5,4 34,5 5,8

LF 3 3,8 1681 16,5 0,582 3,8 x 10" 43,5 69,8 42,1 0 33,6 6,5

LF 4 4,5 1721 16,9 0,547 7,7 x 10" 41,4 58,4 38,9 8,8 33,6 2,5

LF 5 5,2 1774 15,5 0,505 8,0 x 10" 49,7 42,7 25,9 28,6 30,8 4,4

LF6 5,5 1659 17,0 0,609 1,6 x 10" 33,0 84,0 44,6 14,3 28,1 10,6

LF 8 2,8 1750 17,4 0,554 2,0 x 10" 43,0 61,3 19,9 27,9 36,5 1,7

LF 9 4,0 1773 15,7 0,472 1,3 x 10" 47,8 56,8 36,4 9,7 34,1 15,2

LF 10 5,5 1612 20,8 0,631 2,2 x 10" 39,5 112,3 33,9 26,4 31,4 4,4

LF 11 6,5 1641 17,7 0,633 1,4 x 10-' 36,7 70,5 45,8 1,8 30,6 9,7

LF 12 7,3 1729 17,0 0,527 2,2 x 10-' 34,9 81,3 32,3 6,0 35,2 0

LF 13 7,7 1714 17,8 0,534 5,9 x 10" 35,7 66,9 26,7 34,2 36,6 9,4

LF 19 2,3 1745 17,1 0,547 2,8 x 10" 44,9 61,0 30,1 16,1 31,1 3,3

LF 20 3,2 1675 17,5 0,594 2,1 x 10" 43,6 68,8 27,0 17,7 29 16,8

LF 21 4,0 1738 16,2 1,1 x 10" 39,8 0,3

LF 22 5,1 1793 14,5 7,7 x 10" 33,0 16,1

LF 24 5,7 1771 14,0 3,6 x 10" 35,2 15

LF 25 6,2 1762 14,8 9,9 x 10" 35 15,2

LF 26 7,2 1754 15,0 0,499 5,5 x 10" 43,7 90,9 33,2 20,7 34 23,9

LF 27 7,8 1833 14,5 0,446 8,7 x 10" 47,7 59,7 35,4 42,8

RF 18 3,8 1675 18,3 0,624 8,0 x 10" 36,2 37,8 30,6 9,9 27,0 5,5

RF19 5,2 1709 15,4 0,539 49,0 20,0 45,0 0 26,1 33,5

RF 20 6,1 1684 17,4 7,4x 10" 40,7 92,1 39,1 10,2

RF 21 6,2 1686 17L8 9,6 x 10" 43,5 52,8 36,1 ~9

00
N



Table 14.4. Remoulded engineering properties of highly weathered granite at Injaka Dam.
Sample Depth Maximum dry Optimum e_ Permeability Direct shear at optimum Direct shear at saturated Saurated consolidated drained

(m) density moisture content (cm.s·') moisture content moisture content triaxial

(kg.m"') (%)

lp(') c (kPa) lp(') c(kPa) lp(') c(kPa)

RF 2 8,2 1718 14,7 0,554 50,3 34,0 27,3 32,2 33,9 20,4

RF 13 10,6 1765 15,0 0,496 l,Oxl0" 48,1 24,3 50,6 13,0 36,3 14,9

RF 15 10,9 1668 13,4 0,589 4,6 x 10" 37,6 32,S 36,0 5,0 32,7 32,7

00
w
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information is accordingly presented in Table 14.5. Double oedometer consolidation tests performed

at optimum moisture content and at saturation were carried out on samples ofgranites saprolite and

granite saprolite with residual soil patches compacted to 100% Standard Proctor maximum dry density.

The compression ofthe granite saprolite with residual soil patches under a pressure of500 kPa varies

between 3,0 and 4,6% at optimum moisture content and between 5,4 and 6,4% when saturated. The

saturation collapse at a pressure of 500 kPa varies between 0 and 2,5%. The compression of the

granite saprolite undera pressure of500 kPa varies between 2,5 and 4,0% atoptimum moisture content

and between 4,0 and 6,3% when saturated. The saturation collapse at a pressure of 500 kPa varies

between 0 and 1%.

These results are summarised in Table 14.5 and it is evident that the granite saprolite and granite

saprolite with residual soil patches are not highly compressible after being compacted at optimum

moisture content to 100% Standard Proctor maximum dry density. This is the case even for the

saturated condition. The Cv values suggest that consolidation settlement will also take place fairly

slowly.

14.4 Shear characteristics of remoulded material

Direct shear testing was carried out on Standard Proctor compacted samples for comparative analysis

with shear strength results obtained from the undisturbed material as outlined in Chapter 13. The shear

tests were conducted at optimum moisture content and under saturated conditions. Saturated

consolidated drained triaxial tests were also undertaken on the remoulded material.

14.4.1 Direct shear tests on compacted samples at optimum moisture content

Figures 14.3 and 14.4 show the stress-strain and vertical displacement-strain curves for the right and

left flank samples, respectively tested in direct shear at optimum moisture content (the left and right

flank samples have been separated for ease ofobservation ofthe curves). In general, the samples of

granite saprolite and granite saprolite with residual soil patches all behaved similarly, exhibiting Type

3 failure curves (Figure 13.1) at low and intermediate normal stresses but developing Type 7 curves

(Figure 13.1) at intermediate and high normal stresses. At low normal stresses the curves show a rapid

increase in shear stress with failure occurring at low displacements (4-5 % strain). A clearly defined

peak shear stress is achieved. At higher normal stresses the peak shear stress becomes less obvious

and occurs at greater strains (between 5 and 12,5%). The slightly irregular curve shapes on Figures

14.3 and 14.4 can be attributed to readjustment of the more competent quartz grains and broken



Table 14.5. Summary of consolidation characteristics of remoulded granite saprolite at Injaka Dam (from Chunnett et al., 1991a)

Depth
Maximum

Specific
Moisture

Compression to Saturation collapse at
Coefficient of volume Coefficient of

Permeability
Material type dry density condition change. m, consolidation, C,

(m)
(kg.m~)

gravity
(%)

(%) (%)
(m'IkN) (m'/yr)

(cm.s·')

500 1000 200-500 500 - 1000 200 - 500 500 - 1000
kPa kPa kPa kPa kPa kPa

Granite saprolite with
3,5 1687 2,66

OMC 16,3
3,154 4,082 0 2,3

0,0000248 0,0000178
592 9,5 X 10"

residual soil patches SMC 23,1 0,0000732 0,0000606

Granite saprolite with
3,5 1701 2,64 OMC 15.9

3,064 4,392 2,5 4,3
0,0000360 0,0000983

548 4,7X 10"
residual soil patches SMC 21,8 0,0000268 0,0000598

Granite saprolite with
5,0 1765 2,63

OMC 17,9
4,663 6,680 0 0

0,0000553 0,0000403
753 1,4X 10"

residual soil patches SMC 20,1 0,0000687 0,0000372

Granite saprolite 4,0 1772 2,66
OMC 14,7

4,040 5,353 0 4,0
0,0000275 0,0000291

493 2,OX 10"
SMC 19,3 0,0000497 0,0000275

Granite saprolite 6,5 1878 2,69
OMC 11,1

2,563 3,579 9,0 1,6
0,0000330 0,0000200

751 5,1 X 10"
SMC 17,7 0,0000661 0,0000328

Granite saprolite 4,4 1455 2,80
OMC 30,3

3,839 5,668 0 1,3
0,0000748 0,0000366

780 2,6X 10"
SMC 33,6 0,0000609 0,0000619

00
VI
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Figure 14.4. Stress-strain curves showing volume change in direct shear for left flank compacted samples
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188

microcline feldspar grains along the failure surface. In all cases (with the exception ofone sample­

LF 9 at 175 kPa nonnal stress) the initial shearing of the sample is associated with contraction.

Subsequent shearing results in a decrease in the rate of contraction. Thereafter, at low and

intennediate nonnal stresses rapid dilation occurs as the dense matrix, quartz and unaltered feldspars

undergo reorientation and overriding during shear. At higher nonnal stresses the dilation is less

pronounced and in some cases very little volume change can be observed. Generally however, as

shearing continues, so dilation commences with the peak shear strength very broadly related to the

commencement ofdilation. The shear strength curves for the remoulded highly weathered granite

were similar, although they showed higher dilation at low to intennediate stresses due to the more

competent grain component resident within these less weathered samples.

Although Carterand Bentley (1994) and others showthat a relationship exists between rp 'and density,

Figure 14.5 illustrates that this relationship is complex, although a general increase in the friction angle

can be related to increasing maximum dry density.

Only a slight increase in the shear strength parameters is noted for the compacted samples at optimum

moisture content in comparison to the undisturbed samples (compare Tables 14.2 and 4 with Tables

13.3 and 4). <p for the compacted material at optimum moisture content varies from 34,9 to 55,3 0 with

an average of42,9 0 whilst cohesion increases significantly, having an average of 55,1kPa.
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14.4.2 Direct shear tests on compacted samples under saturated conditions

Figures 14.6 and 14.7 show the stress-strain and vertical displacement-strain curves for the right and

left flank saturated compacted samples, respectively. The results showa striking reduction in the shear

strength upon saturation indicating that moisture content plays a significant role in the shear strength

ofthe remoulded material. A broaderand generally much lowerpeak strength is achieved as softening

of the material occurs. The majority of the samples ofgranite saprolite and granite saprolite with

residual soil patches are characterised by a Type 7 failure curve at all ranges of normal stress.

Generally, the initial shearing ofthe sample is associated with contraction with subsequent shearing

resulting in a decrease in the rate ofcontraction until, in many cases, very little volume change can be

observed. The shear strength curves for the remoulded highly weathered granite were generally very

similar, with the higher moisture contents ofthis material resulting in the smoother Type 7curves. A

poor relationship exists between the shear strength and density for these samples (Figure 14.8).

Saturation ofthe compacted samples shows a decrease in the shear strength parameters as compared

to those obtained at optimum moisture content with q>' averaging 36,1 0 and cohesion averaging at

16,3kPa.' Importantly, these values are less than the strength parameters ofthe undisturbed samples

under saturated conditions and provides good evidence ofthe strength that the microfabric affords to

the material in its undisturbed state.
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14.4.3 Saturated consolidated drained triaxial tests on compacted samples

Saturated consolidated drained triaxia1 tests were conducted on samples of the weathered granite

compacted to maximum dry density (Standard Proctor). Figure 14.9 shows the stress-strain curves for

various selected samples at different cell pressures. The curves show a dramatic increase in stiffuess

in comparison to the tests conducted on the undisturbed samples (Figure 13.5) with much higher

maximum shear stresses being achieved as is most likely due to the extra strength afforded by the

consolidation process. As with the undisturbed samples two failure type curves can be identified,

namely Type B (Figure 13.6) and Type C (Figure 14.10). Type C curves show a marked increase in

stiffuess in comparison to Type A, with only slight reduction in the shear stress being achieved post

failure. These curves are characteristic of lower and intermediate confming pressures. As the

confining pressure increases so the curves change to Type C, exhibiting a lower stiffuess with a poorly

defined peak shear stress.

A summary ofthe shear strength parameters for the compacted samples is shown in Tables 14.2 to

14.4. Effective stress points for the maximum deviator stress are shown in Figure 14.11. The data

represents points s' and t' as defined byAtkinson and Bransby (1978) for the MIT stress path concept.

It is possible to determine 'a and d', the stress path counterparts for rp' and c' from this data. Linear

regression through these points shows that d' = 0,23 kPa and a'=30,1 °with calculation ofthe shear

strength parameters giving the average results for the granite saprolite as rp' = 35,4 0 and c'= 0 kPa.

This represents only a 7 % increase in the effective angle of internal friction in comparison to the

undisturbed samples. Averaging the shear strength parameters in Tables 14.2 to 14.4 gives values of

rp' = 33,4°and c' = 9,05.

The relationship ofeffective shear strength parameters from these triaxial tests shows a very general

increase in the effective friction angle with increasing maximum dry density as shown in Figures 14.12.
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15. EFFECT OF GRANITE SAPROLITE ON DESIGN AND CONSTRUCTION OF

INJAKADAM

15.1 Introduction

The preceding chapters have described in detail the weathering ofthe granite saprolite at Injaka Dam

and the geochemical, mineralogical, petrographical and engineering characteristics associated with the

weathering ofthis material. This chapter serves to discuss the engineering measures undertaken at

InjakaDam to mitigate against certain problematiccharacteristicsofthe granite saprolite with particular

emphasis on the treatment of the dam foundations.

It must be appreciated that due to the complex nature ofthedam foundation geology as shown in Figure

2.5 the design solution for InjakaDam was not based entirely upon the engineeringperformance ofthe

granite saprolite alone, but also included the intimate inter-relationship of this material with the

weathered diabase dykes that intersect the foundation. Nevertheless, this chapterdeals primarily with

the effects ofthe weathered granite and the following characteristicsofthe founding material (granite

saprolite) for the earthfill embankmentwere considered as critical during the design and construction

of Injaka Dam and required some form ofengineering remediation:

deep weathering profIle resulting in thick saprolite deposits overlying bedrock with intense

leaching forming low density, high porosity material susceptible to collapse settlement and

consolidation,

high porosities leading to moderate permeabilities ofthe granite saprolite and permeability

differentials between diabase and granite saprolite,

dispersive nature of the granite saprolite

15.2 Mitigation against collapse settlement of granite saprolite

The intensely leached nature of the granite saprolite with its open soil micro-structure makes the

material susceptible to collapse settlement upon saturation (Chapter 12). The effect ofthis on the

settlement ofthe dam foundation and embankment during construction and impoundment was cause

for concern by the design engineers. There exist a number of methods for reducing the collapse

settlement in dam foundations. These include removal ofthe problematic horizon; removal, backfill and

re-compaction; pre-wetting and loading; and in situ compaction of the horizon. Choudry (1988),

described various measures adopted in the construction ofthe Guri embankment dams in Venezuela
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which were constructed upon thick granite-gneiss saprolites which exhibited low dry densities and low

degrees ofsaturation. Choudry's description ofthe measures adopted included the removal ofa certain

amount ofthe collapsible material, several changes in alignments ofthe dams and pre-wetting ofthe

foundations using canals and drainage holes. Similarly, measures employed at Zoeknog Dam included

the stripping of the highly collapsible granite saprolite to depths and densities that correlated to

approximately 1600kg.m-3
- the suggested dry density limitofcollapse settlement soils as proposed by

Brink (1996).

At Injaka Dam, the initial design calculations based upon early geotechnical investigations suggested

that by removing the upper Srn ofthe granite saprolite, a significant reduction in the collapse settlement

could be achieved as the density ofthe granite saprolite was thought to improve considerably beyond

this depth. Duringconstruction ofthe dam and openingofthe foundation footprint, the results as shown

in Chapter 12 and published byHaskins and Bell (2002) suggested differently. They showed the granite

saprolite to exhibit amaximum collapse potential of6% at 191kPa saturation pressure (extending to 8%

at 381kPasaturation) and that even at 7,5m depth a collapse potential of2% could be measured. Their

conclusions demonstrated that the initial design assumption for the [mal excavation level of the

foundation footprint was inadequate They determined this by assessing the relationship of the dry

density and depth with the collapse potential. This relationship is shown in Figure 12.8 and illustrates

the reduction in collapse potential beyond a dry density of 1600kg.m-3•

Duringthe excavation ofthe dam foundation footprint numerous compaction tests were carried out on

the granite saprolite to assess its suitability for embankmentconstruction. Results for samples collected

from Traverses 1to 6 for this research have been discussed in Chapter 14. When a comparison ofthe

collapse potential with the ratio ofdry density to maximum dry density (as determined by Standard

Proctor compaction) Le. a measure of the metastable state, is carried out it can be seen that at 90%

maximum dry density/dry density ratio, the collapse potential is generally below I% (Table 15.1 and
Figure 15.1).

The [mal design measures required an excavation level for the foundation footprint that met either of

the above two requirements: Pd ~ 1600kg.m-30r %mdd ~90%. This ultimately translated to a maximum

excavation depth of13m below original ground level at the deepest point in the foundation, becoming

shallower towards the edges ofthe embankment. On average, an 8m excavation depth was required
over the foundation footprint.
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Table 15.1. Collapse potential characteristics with % maximum dry density for Traverses 1 to 6

(saturation at 191 kPa).

Depth
Maximum dry Optimum moisture

Collapse potential
Sample

p,
density content

., .-
(m) (kg.m") ., - (%)

(kg.m"} (%)

Traverse 1

RF 12' 1,0 1463 1606 21,8 94 0,61

RF10 3,5 1369 1612 18,5 83 3,91

RF9 4,9 1349 1654 18,9 83 5,83

RF 8 5,7 1715 1715 18,8 88 0,32

RF7 6,6 1747 1683 13,0 100 3,01

Traverse 2

RF6 2,5 1469 1584 19,9 92 0,88

RF5 4,8 1388 1752 16,0 100 0,07

RF4 6,9 1342 1616 19,2 90 0,14

RF 3 9,2 1434 1744 15,4 97 1,47

Traverse 3

LF 7' 1,1 1444 1685 16,7 86 5,69

LF 8 2,8 1518 1750 17,4 85 3,27

LF 9 4,0 1557 1773 15,7 81 2,26

LF 10 5,5 1460 1612 20,8 89 1,14

LF 11 6,5 1371 1641 17,7 83 1,42

LF 12 7,3 1487 1729 17,0 71 2,24

LF 13 7.7 1927 1714 17,8 95 0,75

Traverse 4

LF l' 0,9 1478 1750 15,9 84 3,38

LF 2 2,4 1419 1671 18,2 84 2,89

LF 3 3,8 1430 1681 16,5 84 3,11

LF 4 4,5 1523 1721 16,9 88 0,82

LF 5 5,2 1680 1774 15,5 91 0,55

LF6 5,5 1399 1659 17,0 86 0,61
Traverse 5

LF 18' 1,1 1436 1770 16,7 87 2,45
LF 19 2,3 1361 1745 17,1 75 3,79
LF 20 3,2 1313 1675 17,5 78 3,62
LF 21 4,0 1313 1738 16,2 80 1,67
LF 22 5,1 1373 1793 14,5 79 5,14
LF 24 5,7 1379 1771 14,0 79 0,04
LF 25 6,2 1541 1762 14,8 87 1,44
LF 26 7,2 1492 1754 15,0 87 1,22

Traverse 6

RF 17' 2,2 1487 1700 17,8 82 0,92
RF18 3,8 1345 1675 18,3 83 4,05
RF20 5,2 1367 1684 17,4 88 0,16
RF 21 6,1 1394 1686 17,8 98 0,10

, Granite saprolile with residual soil patches.
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Figure 15.1. Collapse potential as a function of% maximum dry density.

15.3 Mitigation for moderate permeability and dispersivity of foundation materials

15.3.1 Alignment of clay core with natural cut-offs

The granite saprolite has been shown to have a variable, but moderate permeability (Chapter 10) and

compounding this, the material classifies as being dispersive (Chapter 11) and highly erodible. These

characteristics require special attention in dam design. In light of the very deeply weathered and

intensely leached foundation material, it was realised during the early design phase ofthe dam that

seepage would occur beneath the dam wall through the weathered granite saprolite. It was also

realised that the fmer-grained diabase dykes and their weathering products would act as natural cutoffs

across the foundation An extensive testing programme was thus undertaken to quantify the

permeability ofthese weathered materials and the results ofthe weathered granite are presented and

discussed in Chapter 10 and summarised with the weathered diabase results in Table 15.2.

Table 15.2 Permeability of granite and diabase saprolite from various methods.

Test type Material k.- (cm.s·') N

Laboratory falling head test (Head, 1982) Granite saprolite 1,6 x Ht' 33

Diabase saprolite 1,Ox10" 2

Field faRing head test (Lambe and Whitman, 1969) Granite saprolite 6,5 x 10'" 38

Diabase saprolite 5,0 x 10'" 4

Field constant head test (Anon, 1968) Granite saprolite 1,8 x 10" 2

Diabase saproIite 1,5 x 10'" 5
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Table 15.2 shows that the granite saprolite exhibits a slightly higher permeability in comparison to the

diabase. This, together with the fact that the weathered diabase was determined to be less dispersive

and erodible than the granite saprolite, meant that the diabase provided a superior flow resistance to

watermoving through the foundation with less chanceofpiping failure developing through this material.

The favourable position ofthe diabase dykes (generally coincidental with the clay core ofthe dam

centerline (Figure 2.5) meant that the majorityofthe length ofthe claycore with some minoralignment

readjustments could be tied into the dykes to provide a natural, extended cut-off.

15.3.2 Construction of jet grout cut-off

Notwithstandingthis designoption oftying in the claycore into the weathered diabase, Figure 2.5 shows

that onthe upper left flank ofthe dam foundation the alignment ofthe clay core does not coincide with

any of the dykes intersecting the foundation and no natural cut-offwas available in this area. This

essentiallyexposed a 120m long section of20m deep, intensely leached granite saprolite through which

seepage could occur.

Initial considerations to use permeationgrouting as amethod ofreducing the permeability ofthe granite

saprolite were investigated. Permeation grouting is the application where grout, generally under low

pressure, permeates through the interstices between the soil grains without deforming the grain

structure ofthe in situ formation. Parry-Davies (1991) conftrms that this is the ideal solution for soils

to render them less permeable to the passage ofwater. The efficacy ofsuch a method is determined

primarily by the grain size ofthe soil and its permeability. An extensive grout testing programme was

undertaken to determine the success ofpermeation and tube-a-manchette grouting techniques using

super fme cementitious products and chemical grouts to permeate the granite saprolite. The results

from this programme proved that neither method nor grout type were suitable for successfully grouting

up the saprolite. Consequently, in the area beneath the clay core where no diabase dykes were present,

an alternate solution had to be found. This incorporated the design and construction ofa jet grout

curtain as discussed by Haskins and Van Zyl (2002), to minimise seepage through the foundation and

thus prevent the possible formation ofpiping failure beneath the dam wall. Heinz and Segatto (1999)

consider this grouting method to be extremely effective in reducing seepage in deeplyweathered dam
foundations that are considered to be dispersive.

According to Parry-Davies (1991),jet grouting is a relatively new form ofgrouting that was originally

developed around 1960. The method consists ofmixing a cement with the in situ soil using a rotating

lance and essentially improves the consolidation and cementation ofthe host material. By doing this,
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the permeability ofthe material is also reduced. The basis ofthe system is the high pressure injection

ofgrout into a soil through a rotating drilling rod forming mixed soil and grout columns as the rod is

withdrawn from the drilled pilot hole. By interlocking the columns so formed an impervious barrier can

be created.

To test the efficacy ofthe jet grout method in the granite saprolite, a number ofsecant test columns

were constructed to determine the various factors that affect column diameter and mixing within the

columns. The diameter and mixing are critical when creating a cut-offwall as the interlock between

columns is determined by the column spacing (dictated by column diameter) whilst the mixing should

produce an homogeneous mixture ofcementitious product and soil to reduce the permeability ofthe

material within the columns. The factors that affect the diameter and mixing include withdrawal and

rotation rate ofthe cement water jet, the pressure at which the jet is operated and the strength ofthe

material being treated. Following the testjet grouting programme, the columns were exposed within

the dam foundation and Table 15.3 presents a summary of the results.

Table 15.3. Results from jet grout tests in granite saprolite.
Column Depth of jetting Jetting pressure Withdrawal rate Diameter of Water: cement Cement

5-3 400 9 t750 1:1 t500

3-1 400 7 t725 1:1 1500

2 5-1 400 6 ±SOO 1:1 1300

3 22-1 400 6 ±SOO 1:1 1300

The test jet grout programme showed that by slightly increasing the withdrawal rate ofthe jet nozzle

from 9 to 6 seconds per 75mm, only 150mm reduction in the column diameter was evident (from

750mm to 600mm). However, a significant reduction in the cement consumption could be won by

increasing this rate, with a saving ofapproximately 200kg ofcement per metre length using the faster

withdrawal rate. Figures 15.2aand b show the interlocking test columns and the satisfactory mixing
achieved within the columns by the jet grout process.

From this information thejetgrout curtain was designed with columns chosen to be 600mm in diameter

with a centre-to-centre spacing of450mm, resulting in a 150mm interlock between adjacent columns.

The layout of the jet grout cut-offwas positioned along the centerline of the dam and tied into the

diabase dykes (Figure 15.3). Although the majority ofthe 129m long cut-offwall comprised only a

single row ofinterlockingcolumns, a double row ofcolumns was constructed where the diabase dyke

intersects the granite along the line ofthe cut-off(Figures 15.3 and 4). This double row was necessary
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to provide an effective cut-offover this geological contact that was considered to be a preferential

seepage pathway.

Figures 15.2a and b. (a) Test columns for jet grout method in granite saprolite. (b) Good mixing of
cementitious grout with saprolite to fonn homogeneous column.

The deepest column in the cut-offextended to 26m below foundation invert level in the granite saprolite

whilst those in the diabase averaged to a depth of13m. All columns were jetted to 2m below ground
level (final excavation level for the foundation footprint), whilst the baseofthe columns was detennined
by refusal or near refusal of the tricone bit used to drill the pilot hole.

As the columns were designed to reduce the saprolite penneability and not serve a structural function

the grout mix was changed from that used in the initial tests and consisted ofwater and cementitious
product, with the cementitious productconsistingofPulverised FlyAsh (pFA) and OrdinaryPortland
Cement (OPC) in an original mass ratio of50:50 at awater:cementitious product ratio of1. This was
later changed when the PFA and OPC was used in a mass ratio of 67:33 at a water:cementitious
product ratio of0,82. The mix was injected at a pressure of40 MPa and average strengths for the jet
grout mixture was detennined to be 7,5 MPa. There were a number of advantages in using the
OPC-PFA mix in the jet grout columns and these included:
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PFA as a pozzolan reacts with the by-products of the hydration process of the OPC

contributing to the long-tenn strength increase in the columns.

The shape ofthe PFA particles provides higher workability ofthe grout and the water/cement

ratio could therefore be reduced without loss of workability.

PFA bulking significantly reduced the cost of the columns.

PFA produces a cementitious product which is less penneable than that which is made up of

onlyOPC.

In order to check the integrity ofthejet grout columns a number ofcore holes were drilled through the

columns. These were either drilled vertically to obtain an indication ofthe mixing within the column or

were inclined at 30 0 to check the condition ofthe column interlocks. Penneability testing using falling

head tests and water pressure testing using packer tests was carried out in these holes. The results

from these tests are shown in Table 15.4 and indicate that an acceptable cut-offwas achieved using

the jet grout columns.

DOUBLE COLUMN JET
GRotlTCUT-oFF ...

.'. .

,.

] NelspruitSuite

] Pool·T""'OV8" Ag.

I F....

Figure 15.3. Layout ofjet grout curtain and pressure relief wells at Injaka dam.
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Table 15.4. Falling head and water pressure tests on grout columns.

Falling head tests Water pressure tests

Hole No, Time (mins) Water level Depth (m) Pressure (kPa) Time (mins) Flow (I) Depth (m)

drop (mm)

Cl 5 43 0-18,4 100 5 0 8-18,4

C2 5 20 0-35,5 50 5 0,4 8-35,3

C3 5 25 0-27,34 100

C4 5 17 0-15,0 100 5 0,9 8-28,5

CS 5 12 0-14,16 100 5 0 8-29,5

C6 5 85 0-23,5 100 5 0 0-23,5

As a consequence ofthe expected differential settlement between the jet grout columns and the in situ

saprolitic material, with the associated risk ofcracks developing through the clay core, a 2m thick

flexible clay capping (placed wet ofoptimum moisture content) was constructed over the jet grout
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columns (Figure 15.4). The flexible claycapping was designed to allow for plastic defonnation around

the top ofthe columns.

15.3.3 Pressure relief wells

In order to prevent any uncontrolled seepage through the weathered granite foundation that may lead

to piping, a line of 23 pressure relief wells, varying in diameter from 1 200mm to 600mm was

constructed along the toe ofthe dam on both the right and left flanks. The wells were auger drilled to

depths varying between 9m and 34m and refused on highly weathered granite or weathered diabase,

depending upon their location. Although the drilling ofthe wells was carried outeasilyon the right flank

where no water table was measured, the shallow water table conditions encountered on the upper left

flank (Figure 15.4) proved to be problematic. The shallow water table (between 3,5m and 5,5m below

the final excavation level) occurred as a result ofthe confining nature ofthe diabase dyke which strikes

perpendicular to the slope ofthe valley (Figures 15.3 and 15.4).

Initial attempts at augering the large diameter holes with casing support proved to be unsuccessful

below the water table. The large diameter casing could not be advanced continuously with the auger

drill resulting in short sections (0,5m to I,Om) ofthe holes being unsupported at times during the drilling

operation. Severe caving and collapse ofthe sidewalls as a result ofthe softened saprolite material in

these areas prevented any further advance ofthe holes and in fact two ofthe original pressure relief

wells had to beabandoned becauseofthis. With the realisation that conventional auger drill and casing

techniques would not be successful for such deep, large diameterdrilling in the granite saprolite, a new

fonn ofhole support was identified for the drilling operations. This incorporated the use ofthe organic

drilling mud, PAC-R. This product is an organic cellulose gum derived from the linter of cotton.

Although other types ofcheaperdrilling muds could have been chosen, PAC-R was identified because

it could also fulfil the requirements necessary for drilling the pressure reliefwells. These include the

requirement that the drilling mud should not pennanently seal the sides ofthe hole and that the mud

must maintain the hole open for a period of3 to 4 days (thus ensuring support ofthe hole even in the
event of plant break down).

Despite the fact that the PAC-R temporarily seals the sides of the hole during use, the product is

biodegradable after 20 days and washes out. The polymer can also be promptly destroyed by the

addition ofchlorine should this be required. A further advantage ofthis product was the fact that it

could be recycled and used for multiple holes. During filling ofthe pressure reliefwell holeswith filter

sand, the excess drilling mud was pumped back into the mixing hopper for re-use.
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15.4 Liquefaction potential

Whilst not forming the direct briefofthis research, it was felt appropriate to include a section on the

liquefaction potential ofthe granite saprolite to complete the analysis ofthe engineering geological

behaviour ofthis material. This problem also formed a component ofthe concerns addressed by the

design engineers, although the results ofthis investigation were presented by Welland (2002).

Liquefactioncan be consideredto be the transformation ofagranular material from a solid to a liquefied

state as a consequence of increased pore water and reduced effective stress (Marcuson, 1978). As

liquefaction occurs it allows large cyclic deformations to take place caused by softening ofthe soil,

which may be accompanied by loss ofshear strength that may lead to flow failure (youd and Idriss,

2001) and possible catastrophic consequences in respect ofdam construction.

Welland (2002), has proposed a methodology for estimating the liquefaction potential using theoretical

and empirical methods and has carried out an analysis ofthe Injaka Dam site (pre-construction and

post-impoundment) using these methods. He proposes a generalised relationship of liquefaction

potential with a suite ofgeotechnicallimitcharacteristics as shown in Table 15.5 and concludes that the

average soil parameters ofthe in situ granite saprolite at Injaka Dam site (pre-construction) are such

that they it is able to withstand moderate earthquake intensities ofV and peak ground accelerations of

O,lg. This he considers to be due directly to the reasonably high average in situ relative density ofthe

saprolite and indirectly to the fairly deep water table at 15 m, which places the potentially liquefiable

layer at a safe enough depth to pre-empt liquefaction.

Table 15.5. Theoretical and empirical geotechnicallimitcriteriaas determined by Welland (2002) for

preliminary liquefaction potential.
Parameter

Or(%)

Corrected SPT 'N'

Consistency

Bulk density (kg.m"')

Ory density (kg.m"')

Friction angle (0)

SUitability No. So

Silt and clay (%)

O..,(mm)

O,.<mm)

Cu= 0..,10,.

Very likely

< 33

< 10

Very loose

1700 - 1800

1300 - 1400

< 35

< 20

< 10

0,2 - 1,0

0,05 - 0,1

2-4

Liquefaction potential

Marginal

33-54

10- 25

Loose

1800 - 1900

1400 - 1500

35- 38

20- 50

10 - 15

0,01 - 0,05 or 0,1 - 0,25

4-5

Very unlikely

>54

>25

> Medium

> 1900

> 1500

> 38

> 50

> 15

<0,2 or > 1,0

< 0,01 or> 0,25

<2or>5
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Forthe post-impoundment case the probability ofliquefaction increases until a "Class 2" (liquefaction

unlikely) is attained with a head of 10 m. He maintains that the analysis shows that only after

considering a ground acceleration of 0,2g that a Class 4 (liquefaction very likely) is realised

under the post-impoundment conditions. This is considered to be an unlikely scenario based upon the

seismicity of the Injaka Dam area.



207

16. CONCLUSIONS

The weathering ofgranite at InjakaDam site has taken place over an extensive period (140 million

years) where intense leaching of the weathered profile has resulted in a very porous weathered

mantle overlying the bedrock. This comprises a thick sequence (over 36m) ofgranite saprolite

overlying weathered bedrock, and underlying a thin veneer (1 m) ofgranite saprolite with residual

soil patches.

The nature of weathered granites, and granite saprolite in particular, is complex with the

heterogeneity ofthe material presenting problems in its characterisation and testing. This research

has managed to classify the weathering ofgranite at Injaka Dam, with specific emphasis on the

Grade V and VI material and has related this (where possible) to the engineering behaviour ofthe

material.

Scanning electron microscope (SEM), petrographical, mineralogical and geochemical techniques

were used to study the nature of the weathering. The SEM research proved invaluable in

investigating and understanding the complex nature ofthe microfabric ofthe weathered granite ­

a feature which is critical in assessing the engineering behaviour ofthis material. Although the

technique is only qualitative, the results from these observations could be reconciled with

petrographic studies and changes in mineralogy and geochemistry. The results showed that

progressive weathering led to a significant increase in porosity through solution effects and

microcracking. In particular, a high sub-microscopic porosity was achieved through solution ofthe

feldspar grains (particularly plagioclase) where intense etching ofthese grains can reduce them to

skeletal fragments. Macroporosity in the form ofvermiform solution voids and open microcracks

also contributed to an increase in the porosity of the granite as weathering intensified. The

transformation of the granite bedrock to granite saprolite involved the formation of significant

amounts ofkaolinite primarily from the decomposition of plagioclase feldspars with chemical

weathering of microcline and biotite (to a lesser extent) also producing clay. Importantly, the

formation ofthis clay occurred without significant disruption to the original microfabric ofthe parent

rock, resulting in the characteristic relict fabric retained by the saprolite.

The petrographic research supported the results from the SEM studies, showing the increase in

porosity in the form ofmicrocracking, solution voids and etchingwith advancing weathering. The

advantage of the petrographic studies was that the microfabric could be quantified using the

micropetrographic index ~). This inqex showed a very clear relationship with the density ofthe

weathered material.
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Aside from semi-quantitatively characterising the mineralogy oftheweathered granite, XRD results

corroborated the fmdings from the SEM and petrographic studies, showing that leaching and

decomposition played a significant role in the formation of this granite saprolite. The semi­

quantitative nature ofthe XRD studies allowed for general mineralogical weathering trends to be

identified as weathering advances from the highly weathered bedrock at depth, to the granite

saprolite with residual soil patches at the surface. A very prominent inverse relationship between

the plagioclase feldspars and the formation ofkaolinite could be identified.

An analysis ofthe geochemistry augmented the understanding ofthe weathering processes and the

effects thereof. The leaching relationships ofspecific elements, in particular Ca, Na and K can

be reconciled with observations from the SEM study and mineralogical and petrographical studies

and in fact can be related to the change in density ofthe material as weathering advances. The

mineralogical and geochemical analysis also allowed specific geochemical and mineralogical

weathering indices to be formulated. These were compared to changes in the density of the

weathered granite and acceptable relationships between these indices and material density could

be derived. In this way, the weathering grade ofthe granite and its associated microfabric could

be indexed.

The typical engjneering relationships which have been developed for transported soils, which relate

the results of soil classification tests to engineering properties appear to be more complex for

saprolitic soils. It has been shown from this research that the determination ofa meaningful grain

size for the saprolite is difficult. The clay content of the material using standard sieve and

hydrometer techniques was appreciably lower than that obtained from XRD analysis and has

proven that the clay mineralogy acts as a coarser fraction within the material and may in fact be

"locked" within primary minerals. This behaviour means that the classification ofthese soils may

be affected. Generally, however, the weathered profile progresses from a coarser to fmer grained

structure with the granite saprolite classifying as a sandy silt whilst the fmer-grained ,overlying

granite saprolite with residual soil patches tends to plot closer to the A-line.

The density of the weathered granite proved to be an important criteria in the indexing of

weathering, and generally increased with depth. Localised variations in density were noted and are

attributed to inherent mineralogical variations within the parent rock and local variations ofthe

weathering environment (macro- and micro-scale). The dry density ofthe granite saprolite with

residual soil patches varied from 1444 to 1516 kgm-3, whilst the granite saprolite ranged from a low

of 1226 to a high of 1855 kgm-3. The underlying highly weathered granite bedrock exhibited

significantly higher densities ranging from 2080 to 2480 kgm-3 and is indicative of the

characteristically abrupt transition in the weathered profile from granite saprolite to weathered
bedrock.
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Permeability tests were also conducted on the material and showed the granite saprolite with

residual soil patches to exhibit values ofpermeability between 6,8 x 10-5 and 1,3 x 10-4 cms-I
• The

saprolite showed similar permeability values ranging from 1,4 x 10-4 to 1,0 x 10-5 cms·1
, indicative

ofgood drainage conditions. The high degree ofscatter of the permeability results made it very

difficult to apply index values to this parameter, although atentative relationship with Xd has been

shown.

Anomalous runnel and piping formation on certain excavations within the weathered granite profile

have shown this material to be dispersive and erodible. In order to quantify this dispersivity, a suite

oftests was undertaken on the material. Typically, and as found by previous studies and research

onthis subject, poorcorrelation was achieved betweenthe tests, although the crumbtest and double

hydrometer test proved to be the most suitable in characterising the dispersive behaviour of the

weathered granite. It is consequently recommended that these two tests be used when assessing

the dispersivity of this material.

The relatively low densities and high void ratios produced by the intense leaching conditions has

meant that the granite saprolite is particularly prone to collapse settlement -this beingexacerbated

by the enigmatic nature ofthe "porous-connected" microfabric typical ofthis material. A series

ofconsolidation tests including double oedometerand singleoedometercollapse potential testswere

undertaken. A number of observations were made including the fact that the samples which

consolidated under saturated conditions exhibited a significant loss in strength and stiffness. It is

postulated that this may be due to the dispersive nature ofthe material as well as softening during

saturation which results in localised disruption of the microfabric.

The collapse potential tests proved the weathered granite to exhibit metastabiIity with collapse

potential values at 200 kPa saturation ranging from 0,6 to 5,7% for the granite saprolite with residual

soil patches and from 0,1 to 6,4% for the granite saprolite. Typically higher values were noted

when the saturation pressure was increased. The results from this research also showed the

granite saprolite to exhibit a critical degree of saturation of 60%, with any value below this

suggestingapropensity for collapse potential above 1% to occur upon saturation and under load of

200 kPa. To augment these results a new technique assessing collapse potential using local strain

instrumentation in the triaxial apparatus was used. Limited results from this technique were
presented in this study.

The developmentofcollapse settlement indices is useful in that they may predict the metastabiIity

behaviour ofa material and therefore reduce the need for many expensive and time-consuming

laboratory tests. A variety of such indices developed by previous authors were applied to the

material to assess their suitability. Generally, all ofthe indices, with the exceptionofXd, proved to
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satisfactorily differentiate metastability within the weathering profile, although it is to be noted that

such indexing must be calibrated to specific material or site conditions.

A series ofdry and saturated quick shear tests as well as saturated consolidated drained triaxial

tests were carried out to determine the shear strength parameters of the weathered granite.

Results from the direct shear tests at natural moisture content showed q> '" 40 0 with a variable

cohesion intercept. Under saturated conditions a distinct reduction in cohesion was noted with q>

values remaining comparable to results from the natural moisture state. Saturated consolidated

drained triaxial tests showed effective shear strength parameters ofc' '" 0 kPa and q>' '" 33o. The

nature ofthe shear failure was tentatively explained in this research using broad observations of

microfabric. Limited stress path tests determined from the triaxial tests were useful in assessing

the significance of the relict structure in contributing to the nature ofshear failure.

Engineering characterisation ofthe remoulded, compacted weathered granite was carried out to

assess the suitability of the material for use in the earthfill embankment. Standard Proctor

compaction tests showed the granite saprolite with residual soil patches and the granite saprolite to

exhibit similarcompaction behaviourhaving a maximum dry density of1700 kg.m-3 with an optimum

moisture contentofaround 17 or 18%. The highly weathered granite exhibited a lowermaximum

dry density of1683kg.m-3 with an optimum moisture content of 16%. Permeability tests carried

out on the remoulded samples showed the granite saprolite to exhibit an average permeability of

1,7 x 10-5 cm.s- l whilst the lower compaction effort achieved by the highly weathered granite

resulted in its higher permeability of 4,5 x 10-4 cm.s- I
• Consolidation characteristics on the

remoulded granite saprolite showed it to exhibit a low compression and reasonably low collapse

settlement at various defmed saturation pressures. A suite ofshear tests was carried out on the

various grades ofremoulded weathered granite. The nature ofthe shear failure curves and their

differences with regard to the shear failure curves recorded for the undisturbed material was

tentatively explained. Generally, only a slight increase in the shear strength of the compacted

material was noted against that of the undisturbed material.

A number ofengineering solutions were required to construct Injaka Dam in the granite saprolite.

These were guided by fmdings from this study. Some ofthese solutions including excavation and

recompaction ofthe foundation material to minimise collapse settlement and the installation of

pressure reliefwells, are generally considered standard practice for dam construction under such

conditions. However, the jet grouting cut-off solution provided to be a unique and successful

method for increasing the seepage paths through the granite saprolite foundation material and may

be considered for other dams constructed on similar material.



211

This research has proven that any detailed engineering geological study of weathered profiles

requires a thorough understanding ofthe nature and processes ofweathering and the application

ofindexingthis weathering and applying these indices to the engineering behaviour. In this way the

engineering perfonnance ofthe material can be predicted and used to guide design and construction

solutions.
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The evaluation of granite saprolite as a founding medium at Injaka Dam,

South Africa

D.R.Haskins & A.Schall
Environmental, Engineering and Marine Geoscience Division, Council for Geoscience, Pretoria, South Africa

EO. Bell
Department ofGeology and Applied Geology, University ofNatal, Durban, South Africa

ABSTRACT: Injaka Dam site is underlain by weathered granite and granite-gneiss of the Nelspruit Suite (3075
Ma.), which has subsequently been intruded by several post-Transvaal age diabase dykes. Intensive chemical
weathering and leaching of this part of the 30 million year old African erosion surface has resulted in the formation
of low density saprolitic soils up to 35m thick. This paper presents the results of a series of geotechnical tests
conducted on the granite saprolite to assess the suitability of the material as a founding medium for the dam. Field
density tests proved to be the most accurate "quick" index test with acceptable correlations with dry density,
collapse potential and shear strength respectively. At the feasibility stage, excavation depth for the dam foundation
was considered to be 5m. However, results from subsequent investigation indicated that this was too shallow and
consequently an excavation depth 01'8 m was recommended for design purposes.

RESUME: Le site de construction du barrage d'Injaka Dam repose sur les granites et granites-gneiss alteres de
la "Nelspruite Suite" (3075 Ma) qui, par la suite, ont ete penetres par de nombreux dykes doleritiques d'age post­
Transvaal. L'intense alteration et lessivage chimiques de la surface d'erosion vieille de 30 millions d'annces
("African Erosion surface") est a I'origine de la formation de sols saprolitiques de faible densite et d'epaisseur
pouvant atteindre 35 metres. Cet article presente les resultats d'une serie de tests geotechniques effectues sur la
saprolite granitique afin d'estimer I'a-propos de ce materiel en tant que milieu de foundation pour Ic barrage.
Les tests de densite obtenus sur le terrain se sont montres les plus precis des tests "rapides", avec des correlations
acceptables avec, respectivement, la densite seche, le potentiel d'effondrement et la force de cisaillement. Au
stade de faisabilite, la profondeur d'excavation pour la fondation du barrage etait estimee it 5 metres. Cependant
les resultats d'investigation ulterieure ont indique que cette epaisseur etait trop mince et, consequemment, une
profondeur d'excavation de 8 metres a ete recommandee pour la conception de I'ouvrage.

1 INTRODUCTION

According to Stolt and Baker (1994), the term
saprolite is used to describe completely weathered
bedrock that retains the original structure and fabric of
the parent rock but behaves essentially geotechnically
as a soil. As a consequence of their mode of
formation, saprolitic soils are uniquely different in
structure and engineering behaviour from transported
sedimentary soils. In fact, as Irfan (1988) has pointed
out, their basic soil mechanics parameters are difficult
to determine because of the variability of grain size;

the variability of void size and void distribution; the
occurrence and behaviour of decomposition products;
the influence of weak bonding, and the nature of
macro- and microfabric associations within the
material. Furthermore, interpretation of these
parameters may not necessarily provide for the correct
analytical deductions.

Injaka Dam is located on the Marite River in
Mpumalanga Province, South Africa. This zoned
earthfill dam will be 53 m high and 550 m long when
completed and will have a central concrete trough
spillway. The construction of the dam forms part of
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the development of the water resources of the Sabie
River Catchment, allowing for greater water
utilization and flow stabilisation of the Sabie River
through the Kruger National Park. Locally, the
reservoir will satisfy the increasing domestic and
irrigation needs of the surrounding Bushbuckridge
settlement.

2 GEOGRAPHY AND GEOLOGY OF THE
DAM SITE

The dam site is located in a sub-tropical region, with
rain falling primarily during the summer period. The
maximum average daily summer temperature is
30.l o C with a minimum average daily winter
temperature of 8.9°C. Annual precipitation is 722
mm, with annual evaporation recorded at 147 mm.
This measurement represents 20% of the total annual
precipitation. Thornwaite's moisture index for the
area is roughly zero, suggesting that sub-humid
conditions prevail, (Schulze, 1958). Weinert's (1974)

climatic N-value is 2 which indicates that chemical
weathering is the major type of rock weathering.
The geology of the dam site is shown in Figure
I. The majority of the site is underlain by medium­
grained quartz-microcline-plagioclase-biotite granite
migmatite and gneiss. Towards the western portion of
the site, white to pale brown, medium- to coarse­
grained porphyritic biotite granite becomes more
predominant. Both lithologies are unnamed, but
belong to the Nelspruit Suite (3 075 Ma). Numerous
post-Transvaal age diabase dykes intrude the area.
The predominant strike direction of the dykes is north­
northwest with a secondary strike direction of east­
west. The dykes vary from 10 m to 20 m in thickness
and are generally steeply dipping (>70°).
A major fault, with associated shear zone, strikes

approximately north-northwest. In places, this feature
contains pegmatites and mylonitic breccia. Another
fault with a mylonitic shear zone is located adjacent to
the downstream, north-northwest trending diabase
dyke. This 2m wide shear zone consists of soft
chlorite schist.

GEOLOGICAL LEGEND

• Mylonitic fault zone

Diabase

D Granite gneiss

D Granite breccia

o 50 100 150m
Cl=:::=J__C=:::JI

P"igurc I. Geology of dam site
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The geological lithologies excluding the resistant
pegmatite and mylonitic breccia, show evidence of
intense chemical weathering and leaching. According
to Partridge and Maud (1983), Injaka Dam site is
located on the African erosion surface. This surface
was formed by a cycle of erosion that lasted 30 million
years planating an extensive area. The extreme
intensity of the weathering during this period resulted
in the formation of saprolitic soils up to 50m thick in
places. Consequently, intensely leached mantles of
thick saprolite overlie the granites, migmatite and
diabase at the dam site. Generally, the thickness of the
saprolite increases towards the flanks from 6m near the
river up to 30 and 35m on the upper left and right
flanks, respectively. The focus of this investigation
was to evaluate the engineering properties of the
granite saprolite to a depth of 10m. A typical lower
flank profile encountered at the site is illustrated in
Figure 2. This profile clearly highlights the very
porous nature ofsaprolite, demonstrating the important
role that leaching has played in the formation of this
material. The transition from saprolite to highly
weathered bedrock is generally sharp although some
areas do show a gradational change. Corestones are
absent and this can be attributed to the closely jointed
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Moist, red, soft to firm, intact, clayey
silt with scattered, sand and gravel.

f-iI'I""":;O'::="~':t1 COLLUVIUM.
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reddish brown patches, firm, highly
voided, sandy silt with clay. RE­
WORKED RESIDUAL GRANITE
SAPROLlTE.
Moist, orange with fine yellow and
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highly voided, sandy silt with clay.
GRANITE SAPROLlTE. Relict joint­
ing is present. Joints are closely
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:~~~~yg~g~~~~~~lf@Y _
Moist, light yellowish white with
irregular, dark olive patches, firm to
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o Q C? <0c;; yellow with white and dark green
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BEDROCK.

nature of the granite.
Five sample traverses were excavated in the lower

left and right valley flanks of the dam excavation in
order to retrieve representative block samples of the
granite saprolite for laboratory testing. These samples
occupied a volume of 0.1 mJ

. In situ density and
permeability tests were also conducted at the sample
localities.

3 THE CHEMICAL WEATHERING OF
GRANITE

Baynes and Dearman (1978a) describe the chemical
weathering of granite as a series of aggressive
chemical reactions that occur between the atmospheric
agencies (including, water, oxygen and carbon
dioxide) and the granite mineral constituents
(predominantly quartz, alkali feldspars, plagioclase
feldspars and micas). The degree of leaching that
occurs during these chemical reactions governs the
type of residual minerals which form. If only small
amounts of cations are flushed out the system,
montmorillonite or illite can form. However, should
extensive eluviation processes occur, resulting in
significant loss of soluble material, then kaolinite and
finally gibbsite are produced. The investigation at
lnjaka Dam has shown that the granite saprolite
developed under intense chemical weathering that
occurred under well drained conditions.

4 MINERALOGY

Samples of the granite saprolite were analysed for
whole rock composition using a Siemens D5000 X-ray
diffractometer. Figure 3 shows the major mineral
constituents as a function of increasing depth.
Gibbsite and goethite only occur at the top of the
profile where the most intense chemical weathering is
present. With increasing depth the percentage of
kaolinite decreases with a corresponding increase in
the plagioclase (oligoclase) and potash feldspar
content. The mica content increases towards the
surface with chlorite becoming a predominant
mineralogical component.

5 ENGINEERING PROPERTIES

Figure 2. A typical lower flank granite saprolite
profile.

The granite saprolite had a natural moisture content
which varied from 7.2 to 26.4%. These values are
considered lower than the actual moisture contents as
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Figure 3. Typical mineralogy of granite saprolite.

some degree of drying out has occurred on the
excavation flanks. The moisture content decreased
with depth. The degree of saturation determined from
the undisturbed samples ranged from 32 to 65%. The
soils were of low to intermediate plasticity with
plasticity indices ranging from 4 to 13 with a mean of
8. Liquid limits varied from 26 to 40% with a mean of
34 and linear shrinkage fluctuated between 2 to 7%
with a mean of 3.5%. The particle size distribution of
the saprolite is shown in Figure 4. The two envelopes
represent grading carried out with water and sodium
hexametaphosphate (dispersion agent), respectively.
The discrepancy between the two gradings is
indicative of the dispersivity of the material. Water
grading indicates that the saprolite is predominantly
composed of silt with sand (ML).

Mineralogical composition (%)

o 20 40 60 80 100

2

8

o GIBBSITE

• GOETHITE

KAOLINITE

~ PLAGIOCLASE

~ MICROCLINE

o MICA

~ QUARTZ

Deeply weathered granites in South Africa have been
identified as being especially prone to dispersivity
(Elges, 1985). In fact, extensive piping on the
excavation flanks at Injaka Dam indicates that the
saprolite is dispersive. Cation exchange capacity
(CEC in meq/l00g clay) and exchangeable sodium
percentage (ESP) were quantified for the saprolite to
assess its dispersivity. The results of the tests clearly
indicate that the material is dispersive (Fig. 5).
The determination of densities from the undisturbed

samples proved to be difficult as density differences
of up to 15% were observed within the same block.
This variability is the result of the observed genetic
diversity found within the parent material and a
consequence of weathering not acting uniformly due
to the anisotropic nature of the rock mass.
Comparison of the correlation coeffeicients between
the different densities showed that the two field
density tests exhibited a higher correlation (r=0.93268)
with each other than with the laboratory results
(r=0.83979 and r=0.78444 for sand replacement and
nuclear methods, respectively). Hence, sand
replacement and nuclear density testing were
employed as "quick index" tests.

The field dry density values tended to be low,
ranging from 1226 kg.m,3 to 1855 kg.m'3 with a mean
of 1475 kg.m,3. Generally, the density increased
significantly with depth with an abrupt increase at the
saprolite-bedrock contact. The low densities are due
to the high void ratio of the saprolite. Laboratory
calculated void ratios range from 0.54 to 1.02 with a
mean of0.789, with porosities varying between 35 and
50 %. The porosity can be observed at a macroscopic
level by the presence of tubular voids (177 to 2000 J..un
in diameter) and at a sub- microscopic level by the
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(sclf,hcaling if PI = 35%)
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Figure 4. Typical grading envelopes for granite
saprolite.

Figure 5. Dispersivity characteristics of the granite
saprolite
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saturated, the deflocculation of the clays partially
disrupts the relict fabric, simultaneously reducing the
strength component of the interlock and effectively
increasing the load on the skeletal grains resulting in
their collapse. The differences in the amount of
collapse between the samples shown in Figure 7 can
be related to field dry density and initial void ratio as
illustrated in Figure 8. Generally, as dry density
increases, the initial void ratio and collapse potential
correspondingly decrease.

The high values for the coefficients of consolidation
(cJ for the saprolite suggest that consolidation occurs
rapidly. For loading between 381 and 763 kPa. e,

values range from 26.3 to 45.6 m2/year. The value of

--- -..........
-',

Saturation pressure = 191 kPa

. ... .... .
8m .. _.. ._

0.6 -

Figure 7. Typical e-Iog p curves.

presence of etch pits, etch trenches and skeletal
crystalline frameworks as in Figure 6. The high
porosities of the saprolite render them potentially
metastable as they can collapse upon saturation and
loading.
Collapse potential tests as described by Jennings and

Knight (1975), were conducted on the saprolite at 191
kPa and further post saturation loading to 763 kPa •
Although the saturation pressure is equivalent to only
half the final load (450 kPa) that the embankment will
place on the deepest part of the foundation, the testing
was expected to provide a general indication of the
metastability of the foundation materials. The collapse
potential varied substantially laterally but decreased
with depth from 6% near the surface to 0 % at 12 m.
The collapse potential of the saprolite can be attributed
to three components, namely, fabric, permeability and
dispersivity. During flooding of the oedometer
specimens. saturation occurred almost instantaneously.
The high porosity and moderate permeability (lA x
10-4 to 3.1 x IO-s cm.s- I

- calculated from falling head
tests) of the sample enabled this to occur. During
saturation, it is also thought that the aggressive
dispersivity of the soil partially disrupts the
interlocking fabric as the clays det1occulate. The
disrupted fabric enhances the movement of water
through the specimen resulting in accelerated
saturation. Typical oedometer curves for the collapse
potential tests arc given in Figure 7. The initial
stiffness of the soil can be attributed to the relict
interlocking fabric of the granite and the fact that the
skeletal grains do account for some component of
strength under partially saturated conditions. Once

1.Z

1.1

Figure 6. Skeletal crystalline framework of
plagioclase feldspar against quartz.

Figure 8. Relationship of dry density, eo, and collapse
potential.
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the coefficient of volume compressibility (m,)
generally decreased with increased loading. After
saturation, however, there was often an increase in the
value of m, which again decreased at higher loading.
According to Northmore et al. (1996), this increase
suggests a loosening of the soil structure as it becomes
more plastic. For a loading between 381 and 763 kPa,
m, ranges from 0.0935 to 0.2813 m2/MN.
Saturated, consolidated drained triaxial tests were

conducted on 38 mm diameter cylindrical samples of
saprolite. The values for the effective angle of internal
friction (4) ') ranged from 20.3 to 40.0°, with a mean of
30.9° and a standard deviation of 3.8.Values for the
effective cohesion (c') varied from 0.40 to 58.4 kPa,
with a mean of 13.7 and a high standard deviation of

° -275 kPa

~=I" :::[i~ ~- ~- ~ ~~- ~~ ~-:
o 5 10 15
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13.005. The lack of stiffnesss in the stress-strain
curves as observed in Figure 9 can be attributed to the
material being saturated and the loss of interlock.
Peak shear strength was generally achieved at net
strains of 5 to 10% where destructuring of the soil
occurs. In some cases where 03 was high (500 kPa)
peak shear strength was not achieved over a 25% net
strain. In these cases it is thought that the high
confining stresses prevent the formation of a well
defined failure surface only allowing constant
readjustment of the microfabric. Nevertheless, it is
notable that the values of 4> ' are still relatively high.
This strength can probably be attributed to the angular
quartz and more resistant K-feldspar grains within the
clay matrix. From Figure 9 it can be seen that the
effective shear strength of the saturated saprolite is
highly variable and is dependent upon the applied
normal stress. Generally, however, the shear strength
and the angle of internal friction increase with
increasing depth as density improves.

Table 1 below outlines some of the important
engineering properties of the saprolite at the specified
depth.
Table I clearly shows that the engineering properties

of the saprolite significantly improve at a depth of 8m.
The excavation depth for the footprint was initially
considered to be Srn. This investigation has proved
that acceptable conditions occur at a depth of 8m.

6 CONCLUSIONS
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Strain %

10 15 Intense chemical weathering and leaching at Injaka
Dam site has resulted in the formation of a thick
saprolite regolith. The granite saprolite is a low to
medium plasticity silt with sand. Leaching of the
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Figure 9. Triaxial test results.
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Table I : Basic engineering properties of saprolite with
depth

DEPTH (m) DRY COLLAPSE ~.

DENSITY POTENTIAL
(kg,m-l ) (%)

3 1280-1550 0-6 19-31

4 1280-1550 0-6 21-32

5 1360-1780 0-6 24-35

6 1400-1800 0-6 26-37

7 1460-1900 0-4 28-40

8 1580-2000 0-3 30-42



saprolite has resulted in a low density, high porosity
soil with moderate permeability. Density increases
with depth towards the bedrock contact where an
abrupt change takes place from saprolite to rock. The
soil is aggresively dispersive with piping evident on
the excavation flanks at the site. The voided nature of
the saprolite means that it exhibits a metastable
microfabric and is collapsible. The collapse potential
was found to decrease from 6% near the surface to 0%
at 12m. Triaxial tests on the saprolite showed that the
effective angle of internal friction is high, increasing
with density towards the bedrock contact.
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of the weathering and engineering behaviour of a granite saprolite
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F.G.Bell
Department ofGeology andApplied Geology, University ofNatal, Durban, South Africa

ABSTRACT: Scanning electron microscope studies have been conducted on an intensely leached granite saprolite
to assess the fabric and weathering characteristics. The saprolite is located in one of the wetter regions of South
Africa, on an ancient erosion surface. The intensity of chemical weathering has resulted in the formation of very
thick saprolitic soils. The contact between the granite saprolite and bedrock is often sharp with no clear corestone
formation. Compositionally, the saprolite consists predominantly of quartz and kaolinite, with microcline and
plagioclase occurring in varying proportions, depending on the degree of weathering. Mica and occasionally
smectite form minor constituents, with gibbsite. and goethite present near the surface. Macro- and micro-void
formation constitute a distinct component of the fabric exerting a significant effect on the engineering behaviour
of the material. The macro-voids tend to be tubular and intergranular, preferentially forming in kaolinite rich zones
derived from chemically weathered feldspars. The occurrence of micro-voids within the kaolinite can be so intense
that a very porous clay framework can develop. Etch pitting occurs on the surface of some of the less weathered
feldspar grains.

RESUME: Les etudes au microscope electronique abalayage ont ete conduites sur une saprolite granitique
intensement lessivee afin de determiner la fabrique et les caracteristiques de I'alteration. La saprolite est situee
dans une des regions les plus humides d' Afrique du Sud, sur une ancienne surface d'erosion. L'intensite de
I'alteration chimique a provoque la formation de sols saprolitiques tn':s epais. Le contact entre la saprolite
granitique et la roche mere est souvent net, et la zone saprolitique ne contient pas de reliquats c1airement
granitiques. La saprolite se compose principalement de quartz et kaolinite, et de microcline et plagioclase en
proportions variables et dependantes du degre de I'alteration. Le mica et occasionnellement la smectite forment
les composants mineurs, avec de l'"gibbsite et goethite presents pres de la surface. La formation de macro- et
microcavites constitue une composante distinctive de la fabrique, affectant de maniere significative le
comportement mecanique du materiel. Les macrocavites ont tendance aetre tubulaires et intergranulaires, se
formant preferentiellement dans les zones riches en kaolinite, issues des feldspaths chimiquement alteres.
L'occurence de microcavites au sein de la kaolinite peut etre si intense qu'une structure argileuse tres poreuse
peut se developper. Quelques grains de feldspaths les moins alterespresentent une surface alteree
preferentiellement le long des clivages (etch pitting surface).

1 INTRODUCTION

The scanning electron microscope (SEM) has since its
introduction been used as a tool to assess the
microfabric and weathering characteristics of rocks
and soils. As stated by Baynes & Dearman (l978a),
the large range of magnification, advantageous depth
of field, ease of sample preparation and analytical
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capabilities of the SEM greatly surpass the ability of
the optical microscope to assess fine details of
weathering and microfabric. Consequently, a more
accurate interpretation and understanding of these
processes and features is gained. In the context of
granite weathering, the SEM has been applied to the
description of feldspar grain-surface textures produced
by weathering (Berner & Holdren, 1977); the nature



and origin of some decomposition products (Keller
1978) and to the weathered microfabric (Baynes &
Dearman, 1978b).

With regard to geotechnical engineering, limited
work has been conducted on the relationship between
weathering, microfabric and engineering behaviour.
Vargas (1953), Sowers (1963) and Wallace (1973)
suggested various microfabric configurations to
explain engineering behaviour. Then Collins &
McGown (1974) successfully applied their SEM
observations to the engineering behaviour of a variety
of natural soils highlighting the strength of the SEM in
this area of study. They showed that the sensitivity,
collapse and expansiveness of these soils could be
described in the context of soil microfabric.
The objective of this study is to qualitatively describe
the weathering characteristics and microfabric of a
granite saprolite at Injaka Dam site, Mpumalanga,
South Africa, whilst attempting to correlate these
observations with some aspects of the engineering

behaviour of the material.

saprolite as a function of depth.
Figure 1 shows the typical weathering trend of the

granite on a (CaO· + Na20) - AIP3 - K20 ternary plot,
Nesbitt & Young (1984, 1989). CaO· represents the
CaO associated with the silicate fraction of the sample.
Compositions are plotted as molar proportions. The
initial stages of weathering form a trend parallel to the
(CaO· + Na20) and AI20 3axis with the more advanced
weathering trend showing a signifcant loss in K20.
The initial loss of the alkalis and Ca in solution is
associated with weathering and leaching of the
plagioc1ase feldspars. The potash feldspars are more
resistant to erosion, only becoming significantly
affected towards the advanced stages of weathering.
These chemical trends are reflected in the microfabrics
as seen under the SEM.

3 METHODOLOGY

3.1 Sample Preparation

2 GEOCHEMISTRY OF GRANITE

Granite saprolite as described by I-Iaskins et al. (1998)
was used for this investigation. The saprolite
originates from intensely chemically weathered granite
migmatite of the Nelspruit Suite (3 074 Ma).
Estimates of the age of weathering are 30 Ma. Table
I shows typical chemical analyses of the granite

The preparation of samples for SEM analysis is a
delicate procedure requiring preservation of the
micro fabric to prevent the formation of microscopic
artifacts. Specimens, 250 cm3 in size, were cut from
undisturbed block samples obtained from the dam site
excavation flanks. These specimens were oven dried
for 48 hours at 36°C. Although it has been suggested
by Tovey & Van (1973) that freeze drying causes the

Table 1 : Typical XRF major mineral oxide analyses

Major Element Granite saprolite Granite saprolite Granite saprolite Granite saprolite Ilighly weathered Slightly weathered granite

Oxide (weight (2m) (4m) (6m) (8m) granite bedrock (I Om) bedrock (29m)

%)

SiO, 69.65 67.27 68.66 70.98 74.42 73.82

TiO, 0.19 0.34 0.42 025 0.10 0.18

AI,o, 18.64 18.65 15.63 16.31 14.45 13.73

Fe,O, 1.20 2.49 5.92 1.02 0.90 0.28

FeO 0.30 0.15 0.10 0.20 0.10 1.10

MnO 0.01 0.01 0.03 0.03 0.02 0.03

MgO 0.36 0.18 0.48 0.42 0.19 0.38

CaO 0.10 0.10 0.16 022 0.34 1.23

Na,O 0.00 0.00 0.19 2.45 3.58 4.01

K,o 2.44 4.03 2.27 4.41 4.13 4.02

H,O' 6.10 5.85 5.80 2.20 0.86 0.42

H,O· 0.28 0.47 0.79 027 0.05 0.01

TOTAL 99.13 99.12 99.95 98.54 99.05 99.48
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Figure 1. (CaO* + Na20) - AI20 3 - K20 ternary plot
of the weathering trend for granite at Injaka Dam.

minimum of specimen disturbance, this method was
considered technically very difficult by Barden & Sides
(1971). Consequently, oven drying was considered the
most suitable method for this investigation with
successful results being obtained. Smaller specimens,
2 to 4 cm3 in size were then carefully separated from
the larger blocks. Extreme care was taken during this
process not to disturb the observational surface by
finger contact. In cases where the specimens were
notably heterogeneolls in nature, two and sometimes
three cube samples were taken for observation.
Generally, the observational surface was I to 2 cm2 in
area. Once the required cube size had been trimmed a
thin layer of Superglue"' was applied to the sides a~d
bottom faces of the cube to ensure specimen integrity
within the SEM. Unlike the peeling methods suggested
by Wong & Tovey (1975) it was decided to use air
dusting for cleaning the observational surface. This
procedure removed any disturbed or loose surface
debris and proved successful in preventing the
formation of artifacts during cleaning. Once the cube
s~ecime.n was correctly prepared it was fixed to a glass
siI.de usmg carbon glue and then coated with a 300A
thIck carbon layer.

3.2 Observational Techniques

A .Leica Cambridge Stereoscan 440 scanning electron
mIcroscope was used for the observational analysis of
cube samples. Analytical determinaton of the
composition ~f mineral grains and aggregates was
performed usmg the Electron Dispersive System
Oxford Link /S/S which was fitted to the SEM. This
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system allowed the determination of the major and
minor elements, and their ratios to be displayed as
peaks. The entire system was run off a pentium 100
MHz computer. By observing sequential changes
throughout the weathering succession fundamental
microfabric changes could be understood.

4 SEM OBSERVATIONS

4.1 Quartz

The stable bonding of the silica tetrahedron structure
of quartz molecules means that quartz grains are
resistant to weathering. Indeed, silica is the major
element in water that undergoes the least amount of
random variation. Practically then, the weathering
effects on quartz can be considered to be almost
negligible. However, as observed by Brantley et al.
(1986), natural etching of quartz through chemical
weathering can occur. Indeed, in several of the upper
profile samples collected from Injaka Dam
characteristic arcuate etching was observed on the
surface of some grains indicating a very high degree of
weathering and leaching. Generally, however, the
majority of the quartz grains exhibited a smooth or
conchoidal fractured surface with common
microfracturing.

4.2 Feldspar.l·

It is well known that feldspars are susceptible to
chemical weathering and tend to undergo incongruent
weathering. Observations from this investigation
suggest a similar reactivity series for feldspars as that
noted by Eggleton (1986), in that Ca-plagiclase is the
most reactive phase, followed by Na-plagioclase and
then K-feldspar. In fact, such was the intensity of the
weathering and severity of leaching of the plagioclase
that its absence was conspicuous in the near surface
samples. Scanning electron microscope observations of
feldspar weathering can also be corroborated with the
results of the XRF analyses, where plagioclase was
observed to be the most intensely weathered feldspar.
The feldspars from this granite saprolite show all the
classical SEM textures as described by Berner &
Holdren (1977), Baynes & Dearrnan (l978b) and

AnaI?-d et al. (1985). The various degrees of etch
pitting can be observed from the smallest cupules to
the formation of prismatic etch pits (Fig. 2) and
prismatic etch trenches (Fig. 3). Intense dissolution
can result in the formation of honeycomb-like shells
(Fig. 4) located in the upper portions of the profile



Figure 2. Prismatic etch pits (PEP's) forming on the
surface of potash feldspar.

formed by the coalescence of prismatic etch trenches
(PET's). The systematic arrangement ofetch pits on the
feldspar surfaces illustrate that the crystal structure of
the feldspar controls the nature and orientation of its
weathering features. The formation of the PEP's and
PET's starts from the surface of the grains.
Montgomery & Brace (1975) have shown by serial
sectioning that the shape of these features changes
drastically with depth. Generally, with increased
weathering etch pit formation extends deeper into the
mineral grain.

4.3 Micas

Biotite, and to a lesser extent muscovite, are found at
various stages of weathering. Muscovite is the more
resistant of the two micas,with the absence ofbiotite in

Figure 3. Prismatic etch trenches (PET's) extending
through a plagioclase feldspar.

Figure 4. Skeletal framework of a plagioclase feldspar
after coalescence of prismatic etch trenches (PET's).

the upper profile sections paying testimony to this.
According to Bisdom (1967), and Sawhney & Voigt
(1969), mica crystals undergo three changes that may
occur simultaneously. These include deformation,
opening of cleavage (Fig. 5) and modification of
polarizing colours. The opening of mica cleavage
involves significant volume increase and can cause
disruption of the micro fabric.

4.4 Secondary Minerals

The major secondary mineral constituent is kaolinite.
Interstratilied illite and smectite occur on rare
occasions. Minor secondary mineral constituents
include hematite (found in highly oxidised, near
surface samples) and gibbsite (found in highly leached
near surface samples).

The kaolinization of feldspar may include the

Figure 5. Opening of mica cleavage.
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Figure 6. Platy, book-type kaolinite.

formation of a diverse group of kaolin daughter
minerals, depending on the weathering environment.
These daughter minerals include the platy, book-type
kaolinite and the elongate kaolin minerals of
halloysite-type. In accordance with Keller's (1978)
findings, the most common type ofkaolinite observed
in this granite saprolite is platy, book-type kaolinite
(Fig. 6). This group can be further catcgorised into
shcaves, curved books or straight stack books. The
random orientation of these platcs in relation to
feldspar erystallography suggests that thc argillie
transition was not a solid-state transition or
rcplacement. but that solution in reaction with the solid
phases intcrvcned. Platy, book-typc kaolinite is
regardcd as forming in systcms where geochemical
equilibrium is maintaincd betwecn the groundwater
solutions and solid phase parent-daughter minerals over

rigure 7. Highly voided. amorphous clay.
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Figure 8. Irregular, angular, loosely packed kaolinite
platelets.

a long period of time.
Kaolinite can also be found as a structureless variety

cunsisting of three forms, namely, highly voided.
amorphous, fine-grained, clay (Fig. 7); loosely-packed
irregular, angular clay platelets (Fig. 8) with edge to
face contacts; and more tightly packed aggregates of
clay platelets. It is thought that these variations are a
result of different weathering microenvironments and
dcgrees of eluviation.

4.5 Micrf?[raclures

Microrractures can be observed at all levels of
weathering. They vary in width from 7 to 800~m and
can bc open, filled with clay (Fig. 9), or stained with
iron oxide. The formation of these microfactures is

Figure 9. Platy, book-type kaolinite forming within a
micro fracture of feldspar.



Figure 10. Macro-void situated within amorphous
kaolinite.

thought to develop from a number of processes

including post-emplacement intrusion by diabase
dykes; stress relief due to cooling and exhumation;
solution effects, and stress relief due to weathering
where the formation of voids facilitates the expansion
of the mineral grains towards these zero stress areas.

4.6 A4acrovoids

i\ conspicuous component of the saprolite observed in
hand specimen is the profusion of circular, tube­
shapcd voids ranging from 0.3 to 2 mm in diameter
(rig. 10). These voids were also studied under the
SEM where it was found that they tend to accumulate
in the amorphous kaolinite variety. These voids form
from dissolution of the surounding clay and can
facilitate further actual eluviation of clay particles.

5 DISCUSSION

The granite saprolite at Injaka Dam exhibits low dry
density and is metastable. The low dry density of the
material can be attributed to the signiticant formation
of macro- and microvoids. The collapse potential of
the granite saprolite has been determined to range from
0% for samples with a dry density greater than 1.9 Mg
.m·3 to 6% for samples with a dry density less than 1.5
Mg m·3. Scanning electron microscope observations
have shown that the degree of leaching, microcracking
and void formation decrease with depth as density
increases. Typically, the collapse potential of a soil
requires two conditions, namely, the soil must be
sufficiently porous and the applied load must be
sufficiently high to cause structural collapse. Scanning
electron microscope observations have proved the
existence of a substantially porous microfabric. Figure
II summarises the proposed collapse mechanism as
deduced from scanning electron microscope
observations of the micro fabric. This model proposes
that the aggressive dispersivity of the material accounts
for the reduction in strength during saturation as clay
deflocculation occurs. Although the clay microfabric
is variable, the very porous nature of the clay, feldspars
and micas has an effect on the shear strength of the
material. The effective angle of internal friction. <1>1. as
determined from saturated consolidated drained tria.'Xial
tests. can be related to the density of the saprolite as
shown in Figure 12.

6 CONCLUSIONS

An SEM study has been cOI~ducted on a granite

--- ------ -- ·········i~iti~1 c~nsolidation of macro~~ids:S~b~~·q~~~t~~~s~iid~ii~~H~f·~i~r~~oids.
Closure of open mica cleavage and microfractures.

11' ·············:~~~·~~t;~~~~~i·~t~t~t~~~·if~~~ne:~t:~poa/:;~:;:;i;r~·:~s~·pg~I~~i;;;:~s:;ag~~~···
, H. . ~Q.r.~,.Q)II.~ps~J)L~9.il structure.

"", ,___________--, - _ _ __ Fabric readjustment under densification. Failure of material.

iCollapse Potential (%) = ~+eeo xlOO .

Saturation pressure (P..,)

Log P

Figure 11. Collapse potential mechanism for granite saprolite.
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INDEXING THE COLLAPSE BEHAVIOUR OF GRANITE
SAPROLITE AT INJAKA DAM, SOUTH AFRICA

David R. Haskins l and Fred G. Belf

ABSTRACT: Injaka Dam comprises a 57m high, zoned earthfill embankment with central concrete
trough spillway, inlet tower and outlet conduit. The dam is constructed on the Marite River in Mpumalanga
Province in the eastern lowveld of South Africa. The 550m long embankment is founded predominantly on
granite and granite migmatite intruded by four diabase dykes. The medium-grained quartz-microcline­
plagioclase-biotite granite belongs to the 3 075 Ma Nelspruit Suite. An extensive period of intensive
chemical weathering from the Cretaceous to the Miocene has produced a thick mantle of granite saprolite
overlying the bedrock in this region. The nature of the hydrolysis and dissolution weathering reactions
together with severe eluviation of the weathered profile has resulted in the upper portion of the 35m thick
saprolite comprising a highly voided structure. This open structure occurs both macroscopically in the form
of vermiform tubules up to 2mm in diameter and microscopically in the form of capillaries, and etch pits
within mineral grains. Recognising the microfabric as being potentially metastable, an investigation was
undertaken to quantify the collapse behaviour of the material. A series of single oedometer collapse
potential tests was carried out on samples retrieved from a range of depths within the embankment
foundation footprint. The results from these tests showed the granite saprolite to exhibit a collapse potential
varying from 0 to 6% at a saturation pressure of 191kPa. By applying a number ofpre-formulated collapse
indices to the weathered material, with these indices having been derived from the principle properties
affecting the collapse of a soil structure, a comparison could be made between the indices and the results
derived directly from the laboratory testing. In this way, an indication of the potential metastability of the
material could be gauged from the indices without having to undertake expensive and time-consuming
oedometer tests. This paper presents these findings and shows the applicability of the various collapse
indices to this particular material.

INTRODUCTION

When subjected to vertical pressure with lateral confinement certain differences in terms of the
consolidation stress paths have been noted between saprolitic soils formed in situ and those soils derived
from sedimentary processes. Indeed, it has been shown by Vaughan et al. (1988), that the consolidation of
residual soils and saprolite is significantly governed by its texture, in particular its void ratio, density and
bonding (or "structural interlock") which often impart a characteristic yield stress observed on void ratio­
pressure (e-p) curves. It is also well known that saprolitic soils are prone to collapse because of their
metastable structure (Dudley, 1970). This mechanism of soil collapse is well understood and according to
Schwartz (1985), a collapsible soil may be defined as that which can withstand a relatively large imposed
stress with small settlements at low in situ moisture content, but which exhibits a decrease in volume and
associated notable settlement with no increase in applied stress upon saturation. This decrease in volume is
associated with collapse of the soil structure where the changes in compression characteristics are brought
about by a decrease in the negative pore pressure (capillary tension) resulting from partial saturation
(Jennings and Knight, 1975, Day, 1996 and Dudley, 1970) and collapse or breaking of the respective soil
elements.

Injaka Dam comprises a composite earthfill embankment constructed on a thick mantle of weathered
granite with the central concrete trough spillway, inlet tower and outlet conduit set on fresh to weathered
bedrock. Recognising that the very porous weathered granite would be metastable, the South African
Department of Water Affairs and Foresty commissioned an in depth investigation into the collapse behaviour
of the weathered granite.

~ David Haskins: Melis & Du Plessis Consulti~g Engineers, P.G. Box 1476, Somerset West, 7129, South Africa
Fred Bell, Alwmton, Blyth Hall, Blyth, Nottinhamshire, 881 8HL, United Kingdom



The collapse phenomenum of weathered granites in South Africa was first documented in the 1950's by
Jennings and Knight (1956 and 1957). Since this time, engineers have been aware of the settlement
problems that can arise due to the collapse of completely weathered granite material. The granite saprolite at
Injaka Dam is no exception and exhibits a significant degree ofmetastability.

The main variables that govern the amount of one dimensional collapse are the soil type, moisture
content, dry density and applied vertical pressure. However, a number of criteria are required for a soil to
exhibit the collapse phenomenon:

1. The soil must have a high porosity and some degree of strength i.e. a collapsible fabric.
2. The soil must be in a condition of partial saturation as collapse settlement does not occur in soils

below the water table. Jennings and Knight (1975) suggested a critical degree of saturation (Sr)
above which collapse will not occur. This depends upon the grain size distribution and the following
guidelines were presented:

1-6 mm: Sr = 6-10%
150-2J.1: Sr = 50-60%
150-0,2J.1: Sr = 90-95%

Errera (1977) also demonstrated that for residual granite this value appears to be 52%. Schwartz
(1985), has also shown that a relationship exists between the particle size distribution and the critical
degree of saturation.

3. There must be an increase in moisture content which serves as the triggering mechanism for collapse
settlement to occur. The rate of collapse is dependant upon the rate of saturation.

4. The soil needs to be subjected to an imposed pressure greater than overburden pressure before
collapse will take place.

All of these conditions were met during the construction and impoundment of the dam on the granite
saprolite foundation.

THE NATURE OF THE GRANITE SAPROLITE

Macroscopic desc.·iption
The granite saprolite exhibits a variety of colours and grain sizes which can change over very short

distances (0,2 m). This heterogeneity is a product of the heterogeneous parent material fabric and local
differences within the weathering microclimate. The saprolite varies from orange with fine yellow and light
pink mottles in the upper profIle to yellmvish white with irregular dark olive patches towards the base of the
profile (see Figures la and b). The material is equigranular except where localised quartz pegmatite veins
occur and is firm in consistency.

Figures la and b. Variation of granite saprolite typical of weathering profile. Note original parent rock
fabric still remains intact.



Typical of this material is the presence of numerous vermiform macro-voids (250 to 1000 ~~ in
diameter). These voids tend to preferentially form within feldspar-rich and coarser-grained zones. Micro­
voids often manifest themselves as a sponge-like texture within the weathered feldspar pseudomorphs. The
quartz grains are often fractured with a slight loss in lustre. Plagiocl~se feldspar grains are e~trem~ly

decomposed forming pseudomorphs which break down to soft clay, whilst .the less weathere.d ~lllcroclme

feldspar is moderately to highly decomposed and breaks down to clay and gritty fragments..B..~tlte may be
absent in the upper reaches of the profile, but is highly decomposed lower down, often exhibltmg halos of
orange staining. The original fabric of the parent material is completely intact even though kaolinite forms a
major component of the microfabric. Figure 2 shows the classification system used for the granite saprolite
at Injaka Dam.
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Figure 2. Classification system used for weathering of granite at Injaka Dam site (modified after
Anon, 1995 and Irfan, 1988).

Microscopic and sub-microscopic description
Petrographically, a wide range of microfabrics and mineralogy are observable in the saprolite. These

fabrics depend upon the degree of alteration and leaching which are affected by the weathering
microenvironment. As weathering progresses, microcracking of quartz grains (21 %) increases from narrow
open microcracks to complete fragmentation of the quartz grains with individual grains separated by clay
aggregates or voids with iron oxide staining on the grain boundaries. The intensity of the microcracking
reduces the grain size of the quartz. Plagioclase grains (4%) show moderate to often complete alteration.
The alteration occurs throughout the grain and along cleavage and twinning planes. Sericitization (2%) is
still common within the moderately altered grains whilst the completely altered grains are composed of clay
aggregates forming clay pseudomorphs. Microcline (9%) exhibits slight cloudiness with intense
microcracking and with scanning electron microscope (SEM) observations showing a porous structure. The
microcracks may be tight or open and filled with clay, with partial alteration occurring along microcracks
and cleavage. The open microcracking has resulted in disaggregation of the grains effectively reducing grain
size. The majority of the biotite (0,5%) has been highly altered, although few remnant grains do exist.
Where these occur, the mineral experiences a loss in pleochroism associated with iron loss. Opening of
cleavage is visible causing disruption of the biotite structure, whilst grain boundaries become feather-edged.
Where alteration is more intense, the biotite alters to a variety of fine-grained secondary micaceous and



kaolin minerals. The occurrence of kaolinite is common in this stage of weathering. It occurs as a platy
variety (26%) and as disseminated fine-grained aggregates (17%). A small amount of hematite also occurs
with localised dissemination predominantly within microcracks and as coatings on the void walls.

Void formation includes intergranular microcracks, vermiform voids and etch pits in feldspar grains. The
microcracks form a reticulate pattern throughout the microfabric. They tend to be open or filled with clay
and/or stained with iron oxide. The width of the cracks decreases systematically with a reduction in
weathering intensity. The voids tend to be irregular, although maintaining smooth edges typical of solution
voids (see Figure 3a). The vermiform voids range in diameter from 0,02 to 2mm and their free surfaces are
often clay-lined with iron oxide staining. The voids tend to be preferentially situated within amorphous clay
aggregations but, as observed from the SEM investigation, also develop preferentially along the grain
boundaries of the more competent grains (see Figure 3b). Etch pitting develops within the feldspar grains
and enhanced chemical weathering can result in skeletal shells of feldspar exhibiting a sieve-like texture as
shown by Haskins et al. (1998). The majority of grain boundaries are open and are responsible for the
significant difference in strength and density obsenred between the granite saprolite and underlying highly
weathered granite. The microstructure is generally preserved with the orientation of the grains. From this
description it can be seen that the granite saprolite exhibits a porous microstructure susceptible to collapse
settlement.

Figures 3a and b. (a) Tubular vermiform void with iron oxide staining on smooth clay-lined surfaces
(plane polarised light). (b) Scanning electron microscope view of tubular vermiform void formed

adjacent to quartz grain.

OEDOMETER TEST RESULTS

In order to directly quantify the nature of the metastability of the granite saprolite at the dam, a number of
single oedometer collapse potential tests (Jennings and Knight, 1957) were carried out on a variety of
samples of granite saprolite obtained from various depths within the foundation footprint of the dam. The
results from these tests are shown in Table 1 and show the granite saprolite to have a collapse potential at
191 kPa, which can extend up to 6%. Figure 4 shows typical e-Iog p curves for the granite saprolite. A plot
of the effect of dry density on the collapse potential is shown in Figure 5. It can be seen from this figure that
for a dry density of greater than 1600kg.m'3, the collapse potential at 191kPa can be expected to be below
1%. The ?oundary limit for collapsible weathered granite in South Africa, as proposed by Brink (1996), is
shown for Interest.

. ~n accordance with the fIndings of Jennings and Knight (1957) relating the degree of saturation (Sr)
cflttcal for col~ap~e to oc.cur, a pl~t of collapse potential against Sr (Figure 6) shows that the granite saprolite
undergoes a slgrufican~ Increase III collapse settlement when Sf is less than 50% (shown by the change in
slope of the best fit lIne). This value is very similar to the critical degree of saturation value of 52%
p~op?se~ by Errera (1977) for residual granite. Figure 7 shows the relationship between the particle size
dlstflbutlOn and Sr of various soils in relation to the granite saprolite at Injaka Dam.
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Figure 4. Typical e-Iog p curves for collapse potential tests
carried out at a saturation pressure of 191 kPa.

depending upon the material type to which they have been applied,
concentrated on loess or loess-like materials.

Log Pressure (kPa)

A considerable amount of
work has been conducted on
quantifying parameters that
qualify settlements associated
with collapsibility. These
include the oedometer test
(Jennings & Knight, 1956),
triaxial tests (Grigorian, 1967)
and shear tests (Milovic, 1969).
The main disadvantage of these
tests is that they are specialised
and time consuming.
Consequently, a number of
collapse settlement indices or
criteria have been proposed to
provide an indication of a
materials' metastability. The
applicability of these indices has
met with varied success

with the majority of work having

--_. LF 18
- LF19
. LF 20

LF 21
LF 22
LF 24

- - LF 25
-- LF 26

1000100

'-.

'" '. __i "'.
-~ -I-- . ...... r-... '.

-f- _

ISaturation Pressure - 191 kPa

-'- ":"
: ••:....ce.,.,..,

- i

10

0,5

0,6

0,4

1,0

0,9
~
o
~ 0,8
0:::
"0;g 0,7

Table 1. Summary of collapse potential and collapse indices results.

Sample
Depth

(m)
w

(%)
Sf

(%)
Specific
gravity

Collapse
potential (%)
at 191 kPa

Denisov's
value

(Denisov,
1951)

Collapse
Index (le)

Feda 1988

Absolute
collapse index
lac (Feda 1988)

liquidity Index 1I
(Gibbs and Bara,

1966 and
Handy, 1973)

RF 12

RF 10

RF 9

RF 8

RF6

RF 4
IF 1
IF 2
IF 3
IF 4
IF 5

IF 6
IF 7
IF 8

IF 9

IF 10

IF 11

IF 12

IF 13

IF 18

IF 19

IF 20

IF 21

IF 22
IF 24

IF 25

IF 26

RF 17

RF18

1,0

3,5

4,9

5,7

2,5

6,9

0,9

2,4

3,8

4,5

5,2

5,5

1,1

2,8

4,0

5,5

6,5

7,3

7,7
1,1

2,3

3,2

4,0

5,1

5,7

6,2

7,2

2,2

3,8

1463

1369

1349

1715

1469

1342

1478

1419

1430

1523

1680

1399

1464

1518

1552

1460

1371

1487

1927

1436

1361

1313

1313

1373

1379

1541

1492

1497

1345

22,6

15,5

15,3

7,9

18,1

12,5

5,6

12,9

14,9

16,9

15,3

22,4

12,7

13,6

10,7

21,0

20,5

19,1

4,8

15,3

19,5

16,9

21,2

14,2

20,2

8,7

13,2

15,1

15,3

71,9

44,6

42,2

38,7

59,1

34,3

39,4

39,4

46,1

60,2

71,2

65,8

40,5

48,3

41,3

68,9

57,S

65,0

34,6

46,8

53,8

43,6

55,1

40,6

60,3

32,3

45,4

50,9

40,7

2,71

2,61

2,64

2,64

2,67

2,63

2,58

2,65

2,66

2,66

2,63

2,67

2,64

2,65

2,61

2,63

2,68

2,64

2,63

2,68

2,65

2,62

2,62

2,61

2,62

2,67

2,58

2,66

2,72

0,614

3,912

5,834

0,317

0,859

0,140

3,381

2,888

3,110

0,823

0,548

0,613

5,690

3,270

2,257

1,136

1,418

2,241

0,748

2,447

3,788

3,615

1,661

5,14

0,043

1,442

1,218

0,922

4,053

1,50

1,01

0,95

1,22

1,32

1,23

0,81

1,03

0,98

1,30

1,21

1,24

0,83

1,13
0,95

1,25

0,99

0,98
1,56

1,14

0,84

0,88

0,93

0,72

0,95

1,21

1,31
0,99

0,87

0,29

0,80

1,37

-0,49

0,17

0,84

2,22

0,80

0,99

-0,48

0,10

0,12

1,70

0,16

0,41

0,19

1,00

-0,41

-1,49

1,16

1,72

1,65

2,19

3,80

1,49

0,09

-0,11

0,61

2,09

5,05

10,13

11,25

-5,17

2,12

5,59

10,20

7,04

11,44

-5,11

0,80

0,83

12,77

1,54

2,81

2,27

6,23

-3,93

-13,73

7,29

9,28

12,06

12,68

15,58

8,96

0,64

-0,63

7,06

12,99

-0,22

-0,73

-1,18

-1,69

-0,82

-2,75

-2,85

-1,44

-0,52

-0,80

-0,64

-1,54

-0,79

-1,38
-1,80

-0,62

-1,39

-1,48

-2,48

-1,60

-1,41

-1,34

-0,79

-1,27

-0,8

-2,41

-2,89

-0,65

-1,5

~ =dry density
w = moisture content
Sr =degree of saturation
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Denisov Values
Denisov (1951) was amongst

the first to recognise that
metastability of soils 1S

determined to some e~1ent by
their natural porosity and based
his criterion on an evaluation of
the voids ratio at the natural
moisture content and the liquid
limit. He suggested that a soil
may be metastable if :
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where:
er.= void ratio at liquid limit
eo = void ratio at natural moisture
content

Table 1 presents a summary of
the results for the various collapse
settlement indices including the
values obtained from Denisov's
equation. A plot of these values
against collapse potential suggests
that granite saprolite with a
Denisov value of less than 1,3
generally exhibits more than 1%
collapse potential (see Figure 8).
This is in accordance with
Denisov's suggestion of
metastability shown in equation
(1) where a value less than 1 is
indicative of potentially
collapsible conditions.
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ti Granite saprclite with residual soil patches

• Granite saprolite
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6

Figure 5. The effect of dry density on the collapse potential of
granite saprolite

Degree of saturation (5,)

Figure 6. Relationship of collapse potential with degree of
saturation (Sr).

Gibbs and Bara Graphical
Method

Gibbs & Bara (1962)
presented Denisov's criterion in a
graphical form (see Figure 9),
stating that a soil with a high

enough void space to retain its liquid limit moisture content at saturation is susceptible to collapse on
wetting. Their method only applies if the soil is uncemented and the liquid limit is above 20%. The granite
saprolite at Injaka Dam complies with both of these requirements. Their chart is divided into two regions by
lines drawn at 100% degree of saturation for soils with specific densities of 2,60 and 2,70. Soils which plot
above the line of saturation are potentially metastable, whilst those which plot below the line behave as
stable or heaving soils. This graphical criterion has been successfully applied to predict subsidence at a
number of dam and canal sites in the past (Clemence & Finbarr, 1981).

The metastability as determined by the collapse potential values of the granite saprolite was analysed
using this chart and a good relationship was obtained (see Table 2) whereby 83% of samples with a collapse
potential between than 3 and 4% plotted in the metastable region on the chart. The method was more



definitive for samples exhibiting more than 4% collapse potential as in this range, all samples plotted as
metastable.

Table 2. Swnmary of collapse potential and graphical coJIapse index results.
% samples classified as potentially metastable according to graphical collapse index

Collapse potential (%) at 191 kPa 0-1 1-2 2-3 3-4 4-5 5-6

Gibbs and Bara's (1962) method 15 40 50 83 100 100

Darwell et al. 's (1976) method 42 40 100 100 100 100

(2)

(3)

PI

m
--PL
Sf

m
--PL
Sf

le

iae

Feda's Collapse Indices
Feda (1988) has produced

the most comprehensive work
on collapse indices from his
studies of loess. He proposed
the collapse index, ic:

where:
m = natural moisture content
Sf = degree of saturation
PL = plastic limit
PI = plasticity index,

In order to use this index the
soil must have a critical porosity
greater than or equal to 40%.
This requirement is satisfied by
the granite saprolite. Feda also
proposed that the absolute
collapse index, iac, could be used
for collapse prediction where:

90 100

•

8070

o Knight (1961)

o Jennings and Brink (1975)

a Errera (19n)

• MeKnight (1999)

® Granite saprolite (Injaka Dam)

60

tJ. Granite saprolite with residual soil patches

• Granile saprollte

..- Average critical degree of
saturation line

50

•

% Passing O,075mm sieve

•

•

• '.

30 40

•

•
•

2010

•5

6

• ••oL-------------~_--"-_~'~.'___ __.J

0,6 0,8 1,0 1,2 1,4 1,8 1,8

Denisov value

100

90

80

~
70c

0

""~ 60a
'" 50'"'0
Q) 40
~
0>

30Q)
Q

20

10

0
0

Figure 7. Average critical degree of saturation line as a function
of grain size.

iii 4
~

i
3: 3
a.
.!!!
(5
() 2

Figure 8. Comparison ofDenisov values with collapse potential at
191 kPa.

Collapse index (le) and
absolute collapse index (Iae)
values for all of the samples are
shown in Table 1. Feda
suggested that if le was greater
than 0,85, this was indicative of
a metastable soil. A plot of le
against collapse potential shows
a reasonable relationship (see
Figure 10) suggesting that when
le is greater than 0,2 a collapse
potential greater than I% can be
assumed. If Feda's criterion of

0,85 is used, a collapse potential greater than 2% can be expected for this material. Figure 11 shows the
relationship of lae with collapse potential and suggests that where lae is greater than 0 a collapse potential
larger than 1% can be expected for the granite saprolite.



Gibbs and Bara (1962) and Handy
(1973) Liquidity Index Method

Gibbs and Bara (1962), and
Handy (1973) have shown in
loess that when the saturation
moisture content exceeds the
liquid limit, collapse of the soil
structure from an increase in load
is possible. They expressed this
instability criterion in terms of
the liquidity index (Ll) defined
as:
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w-PL
Ll=

LL-PL
(4)

where:
Ll = liquidity index
w = natural moisture content
PL = plastic limit
LL = liquid limit

When the liquidity index
approaches or exceeds a value of
unity, experience has shown that
collapse may occur. However,
the liquidity index values for the
granite saprolite correlate poorly
with the actual values of collapse
potential (see Table I) and
consequently, it is considered a
poor criterion for indexing the
collapse settlement of this
material.
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Figure 9. Metastability diagram of Gibbs and Bara (1962)
showing data for granite saprolite.
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Figure 10. Relationship of Feda's collapse index (ic) with collapse
potential at I 91 kPa.

Darwell et al. (1976) graphical
method

Darwell et al. (1976) have
developed a relationship between
plastic limit, liquid limit and dry

density which can be used to assess metastability. They adapted Feda's collapse index (lc) and rearranged
the equation (2) to include values for natural dry density and specific gravity to give equation (5). This was
important in that the density of the material was taken into account in the formulation of the index.

LL+2- PL < _l_[pw __1 ]
17 0,85 pd Gs

(5)

Where:
LL = liquid limit
PL = plastic limit
Pw = density of water
Pd = dry density of soil
Gs = specific gravity

This expression can be written as a series of parallel lines of liquid limit against plastic limit with each
line being given a unique combination of natural dry density. One particular line is shown in Figure 12a.
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This line runs from the upper
boundary line where LL=PL to
the liquid limit a~s where PL=O.
The areas shaded in Figure 12a
between the three lines represent
the inequality presented above.
Consequently all points shaded in
this region represent cases where
the liquid and plastic limits are
such that the collapse index is
greater than 0,85 for given values
of dry density and specific
gravity and thus any soil with
indices located in this region
should be metastable. To allow
for the prediction of soils with a
range of dry density and specific
gravity values, a series of lines is
drawn for these different values.
Examples of these lines are
shown in Figure 12b. The central
line is the case in which Gs=2,65
whilst the outer two lines
represent Gs=2.55 and 05=2,75
for the same dry density. Any
specific gravity can be
interpolated benveen these three
lines or e:\.1rapolating outside of
them if necessary. By varying
the dry density, a series of these
lines can be created as shown in
Figure 12c.

In Figure 13, values for the
granite saprolite are plotted as
points. If a point given by the
liquid and plastic limits of the
soil lies to the left of the line
corresponding to its dry density.
then metastability is likely as the
criterion of le being greater than
0,85 is met. A good relationship
benveen Danvell's chart and
actual collapse potential values
was obtained (see Table 2). It

can be seen from this table that Danvell et af. 's method shows the granite to be potentially metastable when
exhibiting a collapse potential greater than 2% and thus this index serves as useful method of identifying
metastability.

CONCLUSIONS

The collapse potential of granite saprolite at Injaka Dam has been quantified using single oedometer testing.
In order to predict the collapse behaviour of this material, a number ofpre-formulated collapse indices were
applied to the saprolite. By comparing the performance of these indices in determining the collapsible nature
of the saprolite to the actual measurement of collapse potential in the single oedometer test. the usefulness of
these indices could be defmed for this material.
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It was found that the Denisov
criteria (1951), Gibbs and Bara's
graphical method (1962), Feda's
collapse index (1988), Feda's
absolute collapse index (1988)
and Darwell et 01. 's graphical
method (1976) could adequately
define the collapse behaviour of
the granite saprolite. The
liquidity index proposed by
Gibbs and Bara (1962) and
Handy (1973) was not successful
in indexing the collapse
behaviour of the granite saprolite.

Figure 13. Stability chart of granite saprolite using Darwell et
af. 's method.
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INJAKA DAM: MITIGATIVE MEASURES FOR DIFFICULT
FOUNDATION CONDITIONS

David R. Haskins1 and Johannes P. Van Zye

ABSTRACT: The 57 m high Injaka dam built on the Marite River in the Mpumalanga Province, South
Africa has a complex geological foundation comprising the 3 075 Ma Nelspruit Suite granite intruded by a
number of younger, faulted diabase dykes. Intensive chemical weathering at the site has resulted in the
formation of a thick mantle (up to 35m) of weathered saprolitic material overlying the bedrock. The
significantly different weathering products of the granite and the diabase dykes and their respective disparate
engineering behaviour has meant that extra precautionary measures were necessary during construction of
the dam.

The intense leaching of the granite saprolite has resulted in a material of low density exhibiting
significant metastability, particularly in the upper portion of the weathered profile. Design estimates of the
excavation level for the clay core trench and foundation footprint of the embankment had to be re-evaluated
and deepened during construction to prevent excessive collapse settlement of the foundation material. The
porous nature of the granite saprolite responsible for marginal permeability conditions in the foundation, as
well as the dispersive characteristics of the material required precautionary measures to be undertaken to
reduce seepage through the foundation. These included the alignment of the clay core with the lower
permeability diabase dykes and the installation of a jet grout curtain on the left flank to act as an engineered
cut-off in the granite saprolite. A series of pressure relief wells were also installed along the toe of the dam
to control seepage through the foundation. This required large diameter augering under difficult ground
conditions and was only successfully achieved using a specialised organic drilling mud.

A locally developed, high water table on the left flank had to be drained to reduce high pore water
pressures from developing during placement of the embankment in this area. A grid of large diameter
drainage holes in the foundation footprint was constructed for this purpose. This paper outlines the
implementation of these construction measures carried out under challenging site conditions.

INTRODUCTION

Injaka Dam site is situated 10 km south of
Bushbuckridge, located in Mpumalanga Province,
South Africa (see Figure 1). The dam is constructed on
the eastward-flowing, perennial Marite River, which is
a major tributary of the Sabie River. The dam comprises
a zoned earthfill embankment SSOm long and S7m high
with a central concrete uncontrolled trough spillway,
free-standing inlet tower and outlet conduit housing the
outlet pipes (see Figure 2).

The dam site is located in a sub-tropical region with
rain falling primarily during the summer period.
Thornwaite's moisture index of the area is almost zero,
suggesting that sub-humid conditions prevail (Schulze,
1958). Using Weinert's (1974) climatic N-value, which
has been calculated as N=2, it can be seen that the main,
current weathering mechanism at Injaka Dam site is
chemical decomposition.

Figure I. Locality of Injaka Dam site in
the north-eastern portion of South Africa.

~ David Haskins. Meli~ ~ Du ~lessi~ Consulting Engineers, P.O. Box 1476, Somerset West, 7129, South Africa.
Johannes Van Zyl, CIvil DeSIgn Dlfectorate, Department of Water Affairs and Forestry Private Bag X313 Pretoria
0001, South Africa. ' "



Figure 2. View of the completed dam showing inlet tower, trough
spillway and outlet conduit with main embankment.

The dam site is underlain by
pink, grey or yellow, medium­
grained quartz-microcline­
plagioclase-biotite migmatite,
granite and gneiss belonging to
the 3 075 Ma Nelspruit Suite.
Mafic and ultramafic xenoliths
occur locally, but do not appear
to be very common. Four post­
Transvaal age diabase dykes
(younger than 2 300 Ma) intrude
the area. The diabase is
generally dark grey, fme-grained
and massive. The dykes vary
from 10 m to 20 m in thickness
and are generally steeply dipping
(>70). A major fault with associated shear zone strikes approximately north-south at the location of the dam
site. This feature is composed of pegmatite and mylonitic breccia. Detailed geological mapping of the dam
site has revealed a complex temporal relationship between the faulting and the intrusion of the dykes (see
Figures 3 and 4).

GEOLOGY OF THE DAM
SITE

DOUBLE COLUMN JET
GROUT CUT-OFF

Granite gneiss

Granite breccia
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Figure 3. De~iled geology oft~e dam site showing the positions of the single and double column jet grout
cut-off, hne of pressure rehefwells and pore pressure drainage holes (modified after Council for

Geoscience, 2002).
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According to the description of the geomorphic evolution of southern Africa by Partridge and Maud
(1987), Injaka Darn site is located below the former position of the African erosion surface - a geomorphic
surface formed by multi-cyclic erosion that started in the Cretaceous and ended in the Miocene, lasting some
140 million years. The extreme intensity of the weathering during this period has resulted in the formation
of saprolitic soils up to 35m thick on the granite and 15m thick on the diabase, with the current sub-tropical
climate also imprinting the effects of chemical weathering. Haskins et al. (1998a and b), have provided a
synopsis of the weathering and engineering properties of the granite saprolite at the dam.

FOUNDATION MATERIAL: GEOTECHNICAL PROBLEMS AND MITIGATIVE MEASURES

A number of geotechnical problems regarding the highly weathered, intensely leached foundation
materials were identified during the feasibility and design phases of the geotechnical investigations
undertaken for the darn. These were later confirmed by detailed investigations during construction of the
dam.

2000

impoundment was cause for concern. The initial
design calculations suggested that by
removing the upper 5m of the saprolite,
a significant reduction in the collapse
settlement could be achieved as the
density of the granite saprolite was
thought to improve considerably
beyond this depth. During construction
of the dam and opening of the
foundation footprint, a detailed study
was undertaken to quantify the collapse
behaviour of the granite saprolite and
results from part of this study have
been presented by Haskins and Bell
(2002). The results showed the granite
saprolite to exhibit a maximum
collapse potential of 6% at 191kPa
saturation pressure (extending to 8% at
38lkPa saturation) and also proved that
the initial assumption for the final
excavation level of the foundation
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Figure 5. Relationship of dry density and collapse potential
for granite saprolite at Injaka Darn.

Metastability of granite saprolite
The intensely leached nature of the granite saprolite with its open soil micro-structure means that the

material is susceptible to collapse settlement when saturated. The effect of this on the settlement of the dam
foundation and embankment during construction and



Figure 6. Relationship of collapse settlement with %
maximum dry density for granite saprolite at Injaka Dam.
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footprint was inadequate. This was
detennined by assessing the
relationship of the dry density with the
collapse potential. This relationship is
shown in Figure 5 and illustrates the
remarkable reduction in collapse
potential beyond a dry density of
1600kg.m-3

. Brink's (1996) boundary
condition indicative of a collapsible
soil is shown for weathered granites in
South Africa for comparative purposes.
When a comparison of the collapse
potential with the ratio of dry density to
maximum dry density (as detennined
by Standard Proctor compaction) is
carried out, a similar result is seen

whereby at 90% maximum dry density, the collapse potential is generally below I% (see Figure 6). The
final design measures required an excavation level for the foundation footprint that met either of these two
requirements. This translated to a maximum excavation depth of Bm below original ground level at the
deepest point, becoming shallower towards the edges of the embankment. On average, an 8m excavation
depth was achieved over the foundation footprint.

Permeability and dispersivity of foundation materials
In light of the very deeply weathered and intensely leached foundation material, it was realised during the

design phase of the dam that seepage would occur beneath the dam wall through the weathered granite
saprolite. This together with the highly dispersive and erodible nature ofthe granite saprolite (see Figure 7)
was cause for concern. An extensive testing programme was thus undertaken to quantify the penneability of
the weathered materials. The results from this testing programme are shown in Table I.

Table 1. Penneability of granite and diabase saprolite from various methods.
Test type Material Mean N

Laboratory falling head test (Head,
1982)

Granite saprolite 1,6 x 1O~ 33

Diabase saprolite 1,0 x 10-5 2

Field falling head test (Lambe and
Whitman, 1969)

Granite saprolite 6,5 x 10-5 38

Diabase saprolite 5,0 x 10-5 4

Granite saprolite 1,8 x 10-5 2
Field constant head test (Anon, 1968)

Diabase saprolite 1,5 x 10-5 5

Alignment ofclay core
Table 1 shows that the granite saprolite exhibits a slightly higher penneability in comparison to the

diabase saprolite. This, together with the fact that the weathered diabase is less dispersive than the granite
saprolite, means that the diabase provides a superior flow resistance to water moving through the foundation
with less chance of piping failure developing through this material. The favourable positi·on of the diabase
dykes (generally coincidental with the clay core of the dam - see Figure 3) meant that the majority of the
length of the core could be tied into the dykes to provide a natural, extended cut-off.

Jet grout cut-off
Notwithstanding this design option, on the upper left flank of the dam foundation the alignment of the

clay core could not coincide with any of the dykes intersecting the foundation (see Figure 3) and no natural
cut-off was available to tie into the core. An extensive grout testing programme was undertaken to
detennine the success of penneation and tube-a-manchette grout techniques using cementitious products and
chemical grouts to consolidate the granite saprolite. The results from this programme proved that neither
method nor grout type were suitable for successfully grouting up the saprolite. Consequently, in the area
beneath the clay core where no dyke was present, a jet grout curtain was installed to minimise seepage
through the foundation and thus prevent the possible fonnation of piping failure beneath the dam wall.



Figure 7. Dispersivity of granite saprolite using ESP­
CEC chart.
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Jet grouting is essentially a ground
improvement technique that increases both the
consolidation and cementation of the host
material. By doing this, the permeability of
the material is also reduced. The basis of the
system is the high pressure injection of grout
through a rotating drilling rod forming mixed
soil and grout columns as the rod is withdrawn
from the drilled pilot hole. By interlocking
the columns so formed an impervious barrier
can be created. Heinz and Segatto (1995),
proclaim that the method of jet grouting is
extremely effective in consolidating materials
in dispersive soil conditions. Figure 3 shows
the position of the jet grout curtain whilst
Figure 8 illustrates the longitudinal section of
the jet grout cut-off.

To test the suitability of the jet grout
method in the saprolite materials, a number of
test columns were constructed to determine
the various factors that affect column diameter
and mixing within the columns. The diameter
and mixing are critical when creating a cut-off
wall as the interlock between columns is
determined by the column spacing (dictated
by column diameter) whilst the mixing should

produce an homogeneous mixture of cementitious product and soil to reduce the permeability of the material
within the columns. The factors that affect the diameter and mixing include withdrawal and rotation rate of
the cement water jet and the pressure at which the jet is operated. Table 2 shows a summary of the test
programme results and the effects that withdrawal rate has on the column diameter and consumption of
cement. Figure 9 shows the interlocking test columns, whilst Figure 10 shows the satisfactory mixing
achieved within the columns by the jet grout process.

The test grout programme showed that by slightly increasing the withdrawal rate of the jet nozzle from 9
to 6 seconds per 75mm, only 150mm reduction in the column diameter was evident (from 750mm to
600mm). However, a significant reduction in the cement consumption could be gained by increasing this
rate, with a saving of approximately 200kg of cement per meter length using the faster withdrawal rate. The
actual jet grout columns comprising the cut-off were therefore chosen to be 600mm in diameter with a
center-to-center spacing of450mm, resulting in a 150mm interlock between adjacent columns.

Table 2. Results from test jet grout programme.
Column Depth of test (m)

Withdrawal rate
Diameter of column (m) Cement consumption (kg/m)

(seconds/75 mm)

1 5-3 9 ±750 ±500

1 3-1 7 ±725 ±500

2 5-1 6 ±600 ±300

3 22-1 6 ±600 ±300

Although the majority of the 129m long cut-off wall comprised only a single row of interlocking
columns, a double row of columns was constructed where the diabase dyke intersects the granite along the
line of the cut-off (see Figures 3 and 8). This double row was necessary to provide an effective cut-off over
this geological contact that was considered to be a preferential seepage pathway.

The deepest column in the cut-off extended to 26m in the granite saprolite whilst those in the diabase
averaged to a depth of 13m. All columns were jetted to 2m below ground level (final excavation level for
the foundation footprint), whilst the base of the columns was determined by refusal or near refusal of the
tricone bit used to drill the pilot hole.
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The grout mix used in the columns consisted of water and cementitous product, with the cementitious
product consisting of Pulverised Fly Ash (PFA) and Ordinary Portland Cement (OPC) in an original mass
ratio of 50:50 at a water:cementitious product ratio of I. This was later changed when the PFA and OPC was
used in a mass ratio of 67:33 at a water:cementitious product ratio of 0,82. The mix was injected at a
pressure of 40 MPa. There were a number of advantages in using the OPC-PFA mix in the jet grout columns
and these include:
- PFA as a pozzolan reacts with the by-products of the hydration process of the OPC contributing to the

long-term strength increase in the columns.
- The shape of the PFA particles provides higher workability of the grout and the water/cement ratio could

therefore be reduced without loss of workability.
- PFA bulking significantly reduced the cost of the columns.
- PFA produces a cementitious product which is less permeable than that which is made up of only OPC.

In order to check the integrity of the jet grout columns a number of core holes were drilled through the
columns. These were either drilled vertically to obtain an indication of the mixing within the column or were
inclined at 30° to check the condition of the column interlocks. Permeability testing using falling head tests
and water pressure testing using packer tests was carried out in these holes. The results from these tests are
shown in Table 3 and indicate that an acceptable cut-offwas achieved using the jet grout columns.

As a consequence of the expected differential settlement between the jet grout columns and the in situ
saprolitic material, with the associated risk of cracks developing through the clay core, a 2m thick flexible
clay capping (placed wet of optimum moisture content) was constructed over the jet grout columns. The
flexible clay capping was designed to allow for plastic deformation around the top of the columns. Figures 8
and 11 show details of the column head clay cap.



Figure 9. Appearance ofexcavated jet grout
column showing interlock between columns.

Column diameter is 600mm nominal.

Table 3. Results of falling head and water pressure tests on)et grout co urnns.
Falling head tests Water pressure tests

Hole No.
Water level drop (mm) Depth (m) Pressure (kPa) Time (mins) Flow (I) Depth (m)Time (mins)

C1 5 43 0-18,4 100 5 0 8-18,4

C2 5 20 0-35,5 50 5 0,4 8-35,3

C3 5 25 0-27,34 100

C4 5 17 0-15,0 100 5 0,9 8-28,5

C5 5 12 0-14,16 100 5 0 8-29,5

C6 5 85 0-23,5 100 5 0 0-23,5

Pressure reliefwells
In order to prevent any uncontrolled seepage

through the weathered granite foundation that may
lead to piping, a line of 23 pressure relief wells,
varying in diameter from I 200mm to 600mm was
constructed along the toe of the dam on both the
right and left flanks. The wells were auger drilled to
depths varying between 9m and 34m and refused on
highly weathered granite or weathered diabase,
depending upon their location. Although the drilling
of the wells was carried out without incident on the
right flank where no water table was measured, the
shallow water table conditions encountered on the
upper left flank (see Figure 4) proved to be
problematic. The shallow water table (between
3,5m and 5,5m below the fmal excavation level)
occurred as a result of the confming nature of the
diabase dyke which strikes perpendicular to the
slope of the valley (see Figures 3 and 4).

Initial attempts at augering the large diameter
holes with casing support proved to be unsuccessful
below the water table. The large diameter casing
could not be advanced continuously with the auger
drill resulting in short sections (O,5m to 1,0m) of the
holes being unsupported at times during the drilling
operation. Severe caving and collapse of the
sidewalls as a result of the softened saprolite
material in these areas prevented any further
advance of the holes and in fact two of the original
pressure relief wells had to be abandoned. With the

realisation that conventional auger drill and casing techniques would not be successful for such deep, large
diameter drilling in the granite saprolite, a new form of hole support was identified for the drilling
operations. This incorporated the use of the organic drilling mud, PAC-R. This product is an organic
cellulose gum derived from the linter of cotton. Although other types of cheaper drilling muds could have
been chosen, PAC-R was identified because it could also fulfil the requirements necessary for drilling the
pressure relief wells. These include the requirement that the drilling mud should not permanently seal the
sides of the hole and that the mud must maintain the hole open for a period of 3 to 4 days (thus ensuring
support of the hole even in the event of equipment failure).

Despite the fact that the PAC-R temporarily seals the sides of the hole during use, the product is
biodegradable after 20 days and washes out. The polymer can also be promptly destroyed by the addition of
chlorine should this be required. A further advantage of this product was the fact that it could be recycled
and used for multiple holes. During filling of the pressure relief well holes with filter sand, the
excess drilling mud was pumped back into the mixing hopper for use in the following hole.



Figure 10. Detail showing mixed cement and saprolite product in
600mm diameter test column.

Figure 12. View of part of the completed,
single-column, jet grout cut-off with

foundation preparation detail for clay capping.

Drainage holes
During excavation of the

embankment footprint on the
upper left flank, concern was
raised regarding the
development of excessively
high pore water pressures
forming during placement of
the embankment fill.
Consequently, twenty-five
drainage holes comprising sand
drains were installed in the left
flank foundation to relieve the
build up of excess pore water
pressure in this area. The
drains connect with the base of
the blanket drain to dissipate
any excess pore water pressure
during placement of the
earthfill embankment. The
sand drains ranged from 750 to
450mm in diameter (depending
upon their method of drilling)
and were spaced at 15m

centres. The drainage holes varied in depth from
6,2m to 16,8m and were drilled successfully
utilising casing down to the required depths. The
holes were either auger drilled with casing or forum
bored with casing, with the shallow depths of these
holes (in comparison to the pressure relief wells)
allowing this type advancement to be a success.

CONCLUSIONS

The highly weathered and intensely leached nature
of the foundation materials at Injaka Dam have
provided a number of challenging difficulties during
construction of the dam. Primarily, the greatest
concern during design and construction of the dam
was the potential for any significant, uncontrolled
seepage to develop through the foundation of the
dam resulting in piping failure. A further concern
was the metastable nature of the thick saprolitic
mantle overlying the bedrock. These two problems
have been outlined and some of the innovative
solutions that were used to mitigate against such
difficult foundation conditions have been briefly
discussed. These have included extending the
excavation depth required for the embankment
footprint until material of suitable quality was
obtained; the construction of the clay core on the
less permeable, less dispersive weathered diabase
material; the construction of a jet grout cut-off
below the clay core where no diabase could be used
as a natural cut-off; the construction of a pressure



relief well system to control any seepage through the foundation and the construction of a series of drainage
holes to relieve the development of excessive pore water pressure during placement of the embankment on
the upper left flank.
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