
A study of evolutionary 
perturbative hyper-heuristics for 

the nurse rostering problem 
 

by 
Christopher Stephen William Exter Rae 

 
 
Submitted in fulfillment of the academic  
requirements for the degree of 
Master of Science in the School of Computer Science, 
University of Kwazulu-Natal, 
Pietermaritzburg 
 
 
                      January 2017

 
As the candidate’s supervisor, I have approved this dissertation for submission. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Signed: ___________________________ 
 
Name: Prof. Nelishia Pillay 
 
Date: ___________________________ 



 ii 

PREFACE 
 
The experimental work described in this dissertation was carried out in the School of 
Computer Science, University of KwaZulu-Natal, Pietermaritzburg, from January 2012 to 
January 2017, under the supervision of Professor Nelishia Pillay. 
 
The studies are original work by the author and have not been submitted in any form to any 
tertiary institution for any tertiary qualification such as degree or diploma. Where use has been 
made of the work of others it is duly acknowledged in the text. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
____________________________ 
Professor Nelishia Pillay – Supervisor 
 
 
 
____________________________ 
Christopher Rae – Candidate (Student number: 212561309) 



 iii 

DECLARATION 1 - PLAGIARISM 
 
 
I, Christopher Stephen William Exter Rae (Student number: 212561309) declare that: 

 
1. The research reported in this thesis, except where otherwise indicated, and is my original 

research. 
 

2. This thesis has not been submitted for any degree or examination at any other university. 
 

3. This thesis does not contain other persons’ data, pictures, graphs or other information, 
unless specifically acknowledged as being sourced from other persons. 

 
4. This thesis does not contain other persons' writing, unless specifically acknowledged as 

being sourced from other researchers. Where other written sources have been quoted, 
then: 

a. Their words have been re-written but the general information attributed to them 
has been referenced.  

b. Where their exact words have been used, then their writing has been placed in 
italics and inside quotation marks, and referenced. 

 
5. This thesis does not contain text, graphics or tables copied and pasted from the Internet, 

unless specifically acknowledged, and the source being detailed in thesis and in the 
references sections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Signed: ____________________________ 



 iv 

DECLARATION 2 - PUBLICATIONS 
 
 
DETAILS OF CONTRIBUTION TO PUBLICATIONS that form part and/or include 
research presented in this thesis: 
 Publication 1:  

C, Rae, and N, Pillay. "A preliminary study into the use of an evolutionary algorithm 
hyper-heuristic to solve the nurse rostering problem." Nature and Biologically Inspired 
Computing (NaBIC), Proceedings of the 4th World Congress on Nature and Biologically 
Inspired Computing (NaBIC 2012). pp. 156-161. IEEE, 2012. 

 Publication 2: 
C, Rae, and N, Pillay. "A Survey of Hyper-Heuristics for the Nurse Rostering 
Problem." Proceedings of 41st Annual Conference of the Operations Research Society 
of South Africa (ORRSA 2012). pp. 117-124. 2012. 

 Publication 3: 
C, Rae, and N, Pillay. "Investigation into an Evolutionary Algorithm Hyper-Heuristic 
for the Nurse Rostering Problem." Practice and Theory in Automated Timetabling 
(PATAT). Proceedings of the 10th International Conference on the Practice and Theory 
of Automated Timetabling (PATAT 2014). pp. 527-532, 2014. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Signed: 
 
 
____________________________   ____________________________ 
 
Christopher Rae               Prof. Nelishia Pillay 



 v 

Abstract 
 
Hyper-heuristics are an emerging field of study for combinatorial optimization. The aim of a 
hyper-heuristic is to produce good results across a set of problems rather than producing the best 
results. There has been little investigation of hyper-heuristics for the nurse rostering problem. 
The majority of hyper-heuristics for the nurse rostering problem fit into a single type of hyper-
heuristic, the selection perturbative hyper-heuristic. There is no work in using evolutionary 
algorithms employed as selection perturbative hyper-heuristics for the nurse rostering problem. 
There is also no work in using the generative perturbative type of hyper-heuristic for the nurse 
rostering problem. The first objective of this dissertation is to investigate the selection 
perturbative hyper-heuristic for the nurse rostering problem and the effectiveness of employing 
an evolutionary algorithm (SPHH). The second objective is to investigate a generative 
perturbative hyper-heuristic to evolve perturbation heuristics for the nurse rostering problem 
using genetic programming (GPHH). The third objective is to compare the performance of 
SPHH and GPHH. 
 SPHH and GPHH were evaluated using the INRC2010 benchmark data set and the results 
obtained were compared to available results from literature. The INRC2010 benchmark set is 
comprised of sprint, medium and long instance types. SPHH and GPHH produced good results 
for the INRC2010 benchmark data set. GPHH and SPHH were found to have different strengths 
and weaknesses. SPHH found better results than GPHH for the medium instances. GPHH found 
better results than SPHH for the long instances. SPHH produced better average results. GPHH 
produced results that were closer to the best known results. These results suggest future research 
should investigate combining SPHH and GPHH to benefit from the strengths of both 
perturbative hyper-heuristics. 
 
 
 
 
 
 
 
 
 
 



 vi 

Acknowledgements 
 
The financial assistance of the National Research Foundation (NRF) towards this research is 
hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author 
and are not necessarily to be attributed to the NRF. 
 I would like to thank the Centre for High Performance Computing for access to their 
resources and assistance. 
 I would like to thank my supervisor, Professor Nelishia Pillay, for her guidance and 
expertise in the fields of genetic programming and hyper-heuristics. 
 Finally I would like to thank my friends and family for their support, especially my 
mother and Amy Galbraith. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vii 

Table of Contents 
 

A STUDY OF EVOLUTIONARY PERTURBATIVE HYPER-HEURISTICS FOR THE NURSE 
ROSTERING PROBLEM ....................................................................................................................... I 

PREFACE ................................................................................................................................................ II 

DECLARATION 1 - PLAGIARISM .............................................................................................................. III 

DECLARATION 2 - PUBLICATIONS ......................................................................................................... IV 

ABSTRACT ............................................................................................................................................. V 

ACKNOWLEDGEMENTS ........................................................................................................................ VI 

TABLE OF CONTENTS ........................................................................................................................... VII 

LIST OF FIGURES .................................................................................................................................... XI 

LIST OF TABLES..................................................................................................................................... XII 

LIST OF ALGORITHMS ......................................................................................................................... XIV 

LIST OF EQUATIONS ............................................................................................................................ XV 

LIST OF SYMBOLS ............................................................................................................................... XVI 

CHAPTER 1 INTRODUCTION ............................................................................................................ 1 

1.1 PURPOSE OF THIS RESEARCH ............................................................................................................... 1 
1.2 OBJECTIVES ..................................................................................................................................... 1 
1.3 CONTRIBUTIONS .............................................................................................................................. 2 
1.4 DISSERTATION LAYOUT ...................................................................................................................... 2 

CHAPTER 2 EVOLUTIONARY ALGORITHMS ...................................................................................... 4 

2.1 BACKGROUND OF EVOLUTIONARY ALGORITHMS ..................................................................................... 4 
2.2 GENETIC PROGRAMMING .................................................................................................................. 4 

2.2.1 Representation ....................................................................................................................... 5 
2.2.2 Initial population generation .................................................................................................. 6 
2.2.3 Fitness Evaluation ................................................................................................................... 6 
2.2.4 Selection.................................................................................................................................. 6 
2.2.5 Genetic operators ................................................................................................................... 7 

2.2.5.1 Crossover ...................................................................................................................................... 8 
2.2.5.2 Mutation ...................................................................................................................................... 8 
2.2.5.3 Create operator ............................................................................................................................ 9 
2.2.5.4 Permutation ................................................................................................................................. 9 

2.2.6 Control models ........................................................................................................................ 9 
 ........................................................................................................................................................... 10 
2.2.7 Strongly typed genetic programming ................................................................................... 10 
2.2.8 Critical analysis of genetic programming ............................................................................. 10 

2.3 GENETIC ALGORITHMS .................................................................................................................... 13 
2.3.1 The genetic algorithm ........................................................................................................... 13 
2.3.2 Similarities to genetic programming .................................................................................... 14 
2.3.3 Initial population generation and representation ................................................................ 14 
2.3.4 Variable length chromosomes .............................................................................................. 15 
2.3.5 Genetic operators ................................................................................................................. 15 

2.3.5.1 Crossover .................................................................................................................................... 15 
 ....................................................................................................................................................................... 15 
2.3.5.2 Mutation .................................................................................................................................... 16 

2.3.6 Critical analysis of genetic algorithms .................................................................................. 16 



 viii 

2.4 SUMMARY .................................................................................................................................... 16 

CHAPTER 3 METHODS USED FOR SOLVING COMBINATORIAL OPTIMIZATION PROBLEM .............. 17 

3.1 MATHEMATICAL METHODS FOR COMBINATORIAL OPTIMIZATION ............................................................. 17 
3.1.1 Integer linear programming ................................................................................................. 17 
3.1.2 Constraint programming ...................................................................................................... 17 
3.1.3 Branch and bound ................................................................................................................. 18 

3.2 META-HEURISTICS .......................................................................................................................... 18 
3.2.1 Hill climbing .......................................................................................................................... 18 
3.2.2 Tabu search........................................................................................................................... 19 
3.2.3 Simulated annealing ............................................................................................................. 19 
3.2.4 Great deluge ......................................................................................................................... 20 
3.2.5 Variable neighbourhood search ............................................................................................ 21 
3.2.6 Harmony search .................................................................................................................... 22 

3.3 SUMMARY .................................................................................................................................... 22 

CHAPTER 4 NURSE ROSTERING ..................................................................................................... 23 

4.1 THE NURSE ROSTERING PROBLEM ...................................................................................................... 23 
4.2 BENCHMARK SETS OF THE NURSE ROSTERING PROBLEM DOMAIN ............................................................. 25 
4.3 THE FIRST INTERNATIONAL NURSE ROSTERING COMPETITION 2010 (INRC2010) ....................................... 26 
4.4 NOTTINGHAM BENCHMARKS ............................................................................................................ 28 
4.5 STATE OF THE ART IN NURSE ROSTERING ............................................................................................. 31 

4.5.1 Mathematical based approaches ......................................................................................... 31 
4.5.2 Meta-heuristic approaches ................................................................................................... 32 

4.6 CRITICAL ANALYSIS ......................................................................................................................... 36 
4.7 SUMMARY .................................................................................................................................... 37 

CHAPTER 5 HYPER-HEURISTICS...................................................................................................... 38 

5.1 INTRODUCTION TO HYPER-HEURISTICS ................................................................................................ 38 
5.2 SELECTION PERTURBATIVE HYPER-HEURISTICS ...................................................................................... 40 
5.3 SELECTION CONSTRUCTION HYPER-HEURISTICS ..................................................................................... 43 
5.4 GENERATIVE CONSTRUCTIVE HYPER-HEURISTICS ................................................................................... 45 
5.5 GENERATIVE PERTURBATIVE HYPER-HEURISTICS .................................................................................... 47 
5.6 CRITICAL ANALYSIS OF HYPER-HEURISTICS ............................................................................................ 49 
5.7 SUMMARY .................................................................................................................................... 50 

CHAPTER 6 NURSE ROSTERING USING HYPER-HEURISTICS ............................................................ 51 

6.1 NURSE ROSTERING AND SELECTION PERTURBATIVE HYPER-HEURISTICS ...................................................... 51 
6.1.1 Hyflex .................................................................................................................................... 54 

6.2 CATEGORIZATION OF LOW-LEVEL HEURISTICS FOR NURSE ROSTERING ........................................................ 55 
6.2.1 Swap heuristics ..................................................................................................................... 56 

6.2.1.1 Swap two shifts (s1) ................................................................................................................... 56 
6.2.1.2 Swap a shift type with a free shift (s2) ....................................................................................... 57 
6.2.1.3 Swap n shifts (s3) ........................................................................................................................ 57 
6.2.1.4 Swap using problem specific conditions (s4) .............................................................................. 57 
6.2.1.5 Swap with move acceptance (s5) ............................................................................................... 58 
6.2.1.6 Summary of swap heuristic category ......................................................................................... 58 

6.2.2 Edit heuristics ........................................................................................................................ 59 
6.2.2.1 Add and remove (e1) .................................................................................................................. 60 
6.2.2.2 Change shift type (e2) ................................................................................................................ 60 
6.2.2.3 Change n shifts (e3) .................................................................................................................... 60 
6.2.2.4 Change using problem specific conditions (e4) .......................................................................... 60 
6.2.2.5 Change with move acceptance (e5) ........................................................................................... 61 
6.2.2.6 Summary of edit heuristic category ........................................................................................... 61 

6.3 CRITICAL ANALYSIS OF NURSE ROSTERING AND HYPER-HEURISTICS........................................................... 62 
6.3.1 Nurse rostering problem ....................................................................................................... 62 



 ix 

6.3.2 Low-level heuristics ............................................................................................................... 63 
6.4 SUMMARY .................................................................................................................................... 63 

CHAPTER 7 METHODOLOGY .......................................................................................................... 64 

7.1 CRITICAL ANALYSIS OF RELATED LITERATURE ......................................................................................... 64 
7.1.1 SPHH Justification ................................................................................................................. 64 
7.1.2 GPHH Justification ................................................................................................................ 65 

7.2 RESEARCH METHODOLOGY ............................................................................................................... 66 
7.3 OBJECTIVES ................................................................................................................................... 66 

7.3.1 Objective one and two .......................................................................................................... 66 
7.3.2 Objective three...................................................................................................................... 67 
7.3.3 Measurements for analysis of the objectives ....................................................................... 67 

7.4 THE NURSE ROSTERING PROBLEM ...................................................................................................... 68 
7.4.1 Justification for benchmark set ............................................................................................. 68 

7.5 PROBLEM INSTANCES ...................................................................................................................... 68 
7.6 HYPOTHESIS TESTING ...................................................................................................................... 69 
7.7 TECHNICAL SPECIFICATIONS .............................................................................................................. 69 
7.8 SUMMARY .................................................................................................................................... 70 

CHAPTER 8 GENETIC ALGORITHM SELECTION PERTURBATIVE HYPER-HEURISTIC .......................... 71 

8.1 SPHH ALGORITHM ........................................................................................................................ 71 
8.2 REPRESENTATION AND INITIAL POPULATION GENERATION ....................................................................... 71 
8.3 EVALUATION AND SELECTION ............................................................................................................ 73 
8.4 GENETIC OPERATORS ...................................................................................................................... 73 
8.5 MULTITHREADING .......................................................................................................................... 74 
8.6 PARAMETERS ................................................................................................................................ 75 
8.7 SUMMARY .................................................................................................................................... 75 

CHAPTER 9 GENETIC PROGRAMMING GENERATIVE PERTURBATION HYPER-HEURISTIC ............... 76 

9.1 GPHH ALGORITHM ........................................................................................................................ 76 
9.2 GPHH TERMINAL AND FUNCTION SET ................................................................................................ 77 
9.3 INITIAL POPULATION CREATION AND REPRESENTATION ........................................................................... 81 
9.4 GENETIC OPERATORS ...................................................................................................................... 82 
9.5 PARAMETERS ................................................................................................................................ 86 
9.6 SUMMARY .................................................................................................................................... 86 

CHAPTER 10 RESULTS AND DISCUSSION ......................................................................................... 87 

10.1 GENETIC ALGORITHM SELECTION PERTURBATIVE HYPER-HEURISTIC RESULTS (SPHH) ................................... 87 
10.2 GENETIC PROGRAMMING GENERATIVE PERTURBATION HYPER-HEURISTIC RESULTS (GPHH) .......................... 89 

10.2.1 Evolving low-level perturbation heuristics using GPHH .................................................... 89 
10.2.2 Results of applying evolved heuristics .............................................................................. 91 

10.2.2.1 Comparing evolved heuristics to the seen instances used for evolution ................................... 97 
10.2.2.2 Analyzing the structure of evolved heuristics ............................................................................ 99 

10.3 COMPARISON OF SPHH AND GPHH ............................................................................................... 101 
10.4 COMPARISON WITH STATE OF THE ART ............................................................................................. 105 
10.5 SUMMARY .................................................................................................................................. 108 

CHAPTER 11 CONCLUSIONS AND FUTURE WORK .......................................................................... 109 

11.1 OBJECTIVES AND CONCLUSIONS....................................................................................................... 109 
11.2 FUTURE WORK ............................................................................................................................. 110 

11.2.1 Combining evolutionary selection and generation hyper-heuristics .............................. 110 
11.2.2 Coevolving the algorithm parameters for selection and generative perturbation hyper-
heuristics 110 
11.2.3 Generative construction hyper-heuristic for the nurse rostering problem ..................... 110 

11.3 SUMMARY .................................................................................................................................. 111 



 x 

BIBLIOGRAPHY ................................................................................................................................... 112 

APPENDIX A ....................................................................................................................................... 128 

A.1 PROGRAM REQUIREMENTS ............................................................................................................. 128 
A.2 SPHH........................................................................................................................................ 128 
A.3 GPHH ....................................................................................................................................... 128 
A.4 RUNNING AN EXPERIMENT ............................................................................................................. 130 

APPENDIX B ....................................................................................................................................... 131 

B.1 GPHH RELATED RESULTS TABLES ..................................................................................................... 131 
 



 xi 

List of Figures 
FIGURE 2.1 EXAMPLE OF A GENETIC PROGRAMMING INDIVIDUAL ................................................................................ 6 
FIGURE 2.2 STANDARD GENETIC PROGRAMMING CROSSOVER .................................................................................... 8 
FIGURE 2.3 SUBTREE MUTATION OPERATOR ........................................................................................................... 9 
FIGURE 2.4 PERMUTATION OPERATOR................................................................................................................. 10 
FIGURE 2.5 CUT AND SPLICE CROSSOVER .............................................................................................................. 15 
FIGURE 2.6 MUTATION .................................................................................................................................... 16 
FIGURE 4.1 EXAMPLE NURSE ROSTER .................................................................................................................. 24 
FIGURE 8.1 CROSSOVER EXAMPLE ...................................................................................................................... 74 
FIGURE 8.2 MUTATION EXAMPLE ....................................................................................................................... 74 
FIGURE 9.1 EXAMPLE OF HIGH-LEVEL AND LOW-LEVEL COMBINER FUNCTIONS ............................................................. 78 
FIGURE 9.2 EXAMPLE OF AN ITERATION FUNCTION ................................................................................................. 79 
FIGURE 9.3 MOVE ACCEPTANCE FUNCTION EXAMPLE EXAMPLE ................................................................................ 80 
FIGURE 9.4 EXAMPLE OF IF STATEMENT FUNCTIONS ............................................................................................... 81 
FIGURE 9.5 EXAMPLE OF AN INDIVIDUAL OR PARSE TREE ......................................................................................... 82 
FIGURE 9.6 GPHH CROSSOVER EXAMPLE ............................................................................................................ 83 
FIGURE 9.7 GPHH MUTATION EXAMPLE ............................................................................................................. 84 
FIGURE 9.8 GPHH PERMUTATION EXAMPLE ........................................................................................................ 85 
FIGURE 9.9 GPHH POINT MUTATION EXAMPLE ..................................................................................................... 85 
FIGURE A.1 SPHH PROGRAM .......................................................................................................................... 128 
FIGURE A.2 GPHH TAB 1 EVOLVE NEW HEURISTIC ............................................................................................... 129 
FIGURE A.3 GPHH TAB 2 RUN EVOLVED HEURISTIC ............................................................................................. 130 
FIGURE A.4 USING 3 INSTANCES OPTION ........................................................................................................... 130 
FIGURE A.5 DISPLAYING "RUNNING" LABEL WHILE EXECUTING PROGRAM ................................................................ 130 
FIGURE A.6 EXAMPLE OF AN ERROR MESSAGE POP UP .......................................................................................... 130 
 



 xii 

List of Tables 
TABLE 4.1 INRC2010 BENCHMARK INSTANCE DATA CHARACTERISTICS ...................................................................... 28 
TABLE 4.2 NOTTINGHAM BENCHMARK INSTANCE DATA ........................................................................................... 29 
TABLE 6.1 HYPER-HEURISTICS AND SWAP HEURISTIC CATEGORIZATION OF LPHS USED .................................................. 59 
TABLE 6.2 NON-HYPER-HEURISTICS AND SWAP HEURISTIC CATEGORIZATION OF LPHS USED ........................................... 59 
TABLE 6.3 HYPER-HEURISTICS AND EDIT HEURISTIC CATEGORIZATION OF LPHS USED .................................................... 62 
TABLE 7.1 LABELS ASSIGNED TO EVOLVED LPHS USING CORRESPONDING INSTANCES .................................................... 69 
TABLE 7.2 LEVELS OF SIGNIFICANCE, CRITICAL VALUE AND DECISION RULES FOR Z HYPOTHESIS TEST ................................. 69 
TABLE 8.1 PARAMETERS USED FOR SPHH RUNS .................................................................................................... 75 
TABLE 9.1 ACCEPTANCE METHODS COMPONENTS .................................................................................................. 80 
TABLE 9.2 FUNCTION AND TERMINAL ARGUMENTS FOR GPHH ................................................................................ 81 
TABLE 9.3 PARAMETERS USED FOR GPHH RUNS ................................................................................................... 86 
TABLE 10.1 SPHH RESULTS FOR SPRINT INSTANCES FROM INRC2010 ...................................................................... 87 
TABLE 10.2 SPHH RESULTS FOR MEDIUM INSTANCES FROM INRC2010 ................................................................... 88 
TABLE 10.3 SPHH RESULTS FOR LONG INSTANCES FROM INRC2010 ........................................................................ 88 
TABLE 10.4 RESULTS OF EVOLVING HEURISTICS ..................................................................................................... 90 
TABLE 10.5 GENERATED HEURISTICS .................................................................................................................. 90 
TABLE 10.6 THE EVOLVED HEURISTICS AND NUMBER OF GENERATIONS ...................................................................... 91 
TABLE 10.7 MINSCV RESULTS FOR SPRINT INSTANCES ............................................................................................ 91 
TABLE 10.8 AVGSCV RESULTS FOR SPRINT ........................................................................................................... 92 
TABLE 10.9 AVERAGE PERCENTAGE AWAY FROM THE BKR FOR SPRINT INSTANCES ....................................................... 92 
TABLE 10.10 AVERAGE OF AVGSCV RESULTS OBTAINED BY EVOLVED HEURISTICS FOR SPRINT INSTANCES .......................... 93 
TABLE 10.11 MINSCV RESULTS FOR MEDIUM INSTANCES ........................................................................................ 93 
TABLE 10.12 AVGSCV RESULTS FOR MEDIUM INSTANCES ........................................................................................ 94 
TABLE 10.13 PERCENTAGE AWAY FROM BKR FOR MEDIUM INSTANCES ..................................................................... 94 
TABLE 10.14 AVERAGE OF AVGSCV RESULTS OBTAINED BY EVOLVED HEURISTICS FOR MEDIUM INSTANCES ....................... 94 
TABLE 10.15 MINSCV RESULTS FOR LONG INSTANCES ............................................................................................ 95 
TABLE 10.16 AVGSCV RESULTS FOR LONG INSTANCES ............................................................................................ 95 
TABLE 10.17 PERCENTAGE DIFFERENCE FROM BKRS FOR LONG INSTANCES ................................................................ 95 
TABLE 10.18 AVERAGE OF AVGSCV RESULTS OBTAINED BY EVOLVED HEURISTICS FOR LONG INSTANCES ........................... 96 
TABLE 10.19 RANKING OF MINIMUM VALUES SEPARATED BY INSTANCE DESCRIPTION AND TYPE ...................................... 96 
TABLE 10.20 AVERAGE VALUES FOUND RANKING SEPARATED BY INSTANCE DESCRIPTION AND TYPE ................................. 97 
TABLE 10.21 EVOLVED HEURISTIC MINSCV PERFORMANCE FOR SEEN INSTANCE .......................................................... 97 
TABLE 10.22 EVOLVED HEURISTIC AVGSCV PERFORMANCE FOR SEEN INSTANCE .......................................................... 98 
TABLE 10.23 COMPARISON OF EVOLVED HEURISTICS USING THREE SEEN INSTANCES AND RESULTS OBTAINED FOR MINSCV 

RESULTS OF THE SEEN INSTANCES IN FINAL RUNS ............................................................................................ 98 
TABLE 10.24 COMPARISON OF EVOLVED HEURISTICS USING THREE INSTANCES AND RESULTS OBTAINED FOR THE AVERAGE OF 

THE SEEN INSTANCES IN FINAL RUNS ............................................................................................................ 99 
TABLE 10.25 BEST PERFORMING HEURISTICS ...................................................................................................... 100 
TABLE 10.26 WORST PERFORMING HEURISTICS .................................................................................................. 100 
TABLE 10.27 SPHH VS. GPHH FOR SPRINT INSTANCES ....................................................................................... 101 
TABLE 10.28 SPHH VS. GPHH FOR MEDIUM INSTANCES ..................................................................................... 101 
TABLE 10.29 SPHH VS. GPHH FOR LONG INSTANCES ......................................................................................... 101 
TABLE 10.30 SPHH VS. GPHH FOR INRC2010 BENCHMARK SET ......................................................................... 101 
TABLE 10.31 INSTANCES WHERE SPHH OBTAINED LOWER MINSCV COMPARED TO GPHH ......................................... 102 
TABLE 10.32 INSTANCES WHERE GPHH OBTAINED LOWER MINSCV COMPARED TO SPHH ......................................... 102 
TABLE 10.33 COMPARISON OF CONSTRAINTS OF INSTANCES WITH DIFFERENCES IN THE MINIMUM VALUES OBTAINED ....... 103 
TABLE 10.34 STATISTICAL TEST SPHH VS. GPHH FOR INRC2010 INSTANCES ......................................................... 103 
TABLE 10.35 GPHH STATISTICALLY COMPARED TO SPHH .................................................................................... 103 
TABLE 10.36 STATE OF THE ART COMPETITORS FOR INRC2010 BENCHMARK DATA SET .............................................. 105 
TABLE 10.37 COMPARISON OF MINSCV RESULTS FOR THE STATE OF THE ART NURSE ROSTERING FOR INRC2010 ............ 106 
TABLE 10.38 SUMMARY OF SPHH COMPARED TO THE STATE OF THE ART FOR INRC2010 INSTANCES .......................... 107 
TABLE 10.39 SUMMARY OF GPHH COMPARED TO THE STATE OF THE ART FOR INRC2010 INSTANCES .......................... 107 



 xiii 

TABLE 10.40 PERCENTAGE OF INSTANCES WHERE SPHH AND GPHH WERE BETTER OR EQUAL TO STATE OF THE ART ....... 107 
TABLE 10.41 DIFFERENCE OF AVERAGE MINSCV RESULTS FOR AVAILABLE RESULTS FOR COMPARING THE STATE OF THE ART TO 

SPHH AND GPHH................................................................................................................................ 107 
TABLE B.1 MINIMUM VALUES FOR SPRINT INSTANCES .......................................................................................... 131 
TABLE B.2 AVERAGE VALUES FOR SPRINT INSTANCES ............................................................................................ 131 
TABLE B.3 MINIMUM VALUES FOR MEDIUM INSTANCES ........................................................................................ 132 
TABLE B.4 AVERAGE VALUES FOR MEDIUM INSTANCES .......................................................................................... 132 
TABLE B.5 MINIMUM VALUES FOR LONG INSTANCES ............................................................................................ 132 
TABLE B.6 AVERAGE VALUES FOR LONG INSTANCES .............................................................................................. 133 
TABLE B.7 STANDARD DEVIATIONS GPHH ......................................................................................................... 133 
 



 xiv 

List of Algorithms 
ALGORITHM 2.1 THE GENETIC PROGRAMMING ALGORITHM [5].................................................................................. 5 
ALGORITHM 2.2 TOURNAMENT SELECTION [14] ..................................................................................................... 7 
ALGORITHM 2.3 FITNESS PROPORTIONATE SELECTION [16] ....................................................................................... 7 
ALGORITHM 2.4 THE GENETIC ALGORITHM [15].................................................................................................... 14 
ALGORITHM 3.1 HILL CLIMBING [65] .................................................................................................................. 19 
ALGORITHM 3.2 TABU SEARCH [66] ................................................................................................................... 19 
ALGORITHM 3.3 SIMULATED ANNEALING [68] ...................................................................................................... 20 
ALGORITHM 3.4 GREAT DELUGE [70] ................................................................................................................. 21 
ALGORITHM 3.5 VARIABLE NEIGHBOURHOOD SEARCH [71] ..................................................................................... 21 
ALGORITHM 3.6 HARMONY SEARCH [72] ............................................................................................................ 22 
ALGORITHM 8.1 GENETIC ALGORITHM HYPER-HEURISTIC ........................................................................................ 71 
ALGORITHM 8.2 TOURNAMENT SELECTION .......................................................................................................... 73 
ALGORITHM 9.1 GENETIC PROGRAMMING ALGORITHM OVERVIEW............................................................................ 76 
ALGORITHM 9.2 EVALUATION PHASE OF GPHH INDIVIDUAL .................................................................................... 77 
ALGORITHM 9.3 THE GROW METHOD ................................................................................................................. 82 
ALGORITHM 9.4 INVERSE TOURNAMENT SELECTION ............................................................................................... 83 
 



 xv 

List of Equations 
 
EQUATION 8.1 AMDAHL'S LAW .......................................................................................................................... 75 



 xvi 

 List of Symbols 
 

GA Genetic algori thm 

GP Genetic programming 
HH Hyper-heurist ic  
LPH Low-level perturbative heurist ic  

LCH Low-level construction heurist ic  
GCH Generated Construction heurist ic  

GPH Generated Perturbation heurist ic  
SPHH Select ion perturbative hyper-heurist ic  

GPHH Generat ive perturbative hyper-heurist ic  

µA Crit ical value of method A 

µB Crit ical value of method B 

H0 Null hypothesis  

Ha Alternate hypothesis  
USP Unwanted shift  pat terns  
AS Alternative ski l l requirement 
MinCWW Minimum consecutive working weekends  
MaxCWW Maximum consecutive working weekends  
NNF No night  shift  before free 
D Day off request  
S Shift  off request  

s1 Swap two shifts  

s2 Swap a shift  type with a free shift   

s3 Swap n shifts  

s4 Swap using problem specific condit ions  

s5 Swap with move acceptance  

e1 Add and remove  

e2 Change shift  type 

e3 Change n shifts  

e4 Change using problem specific  condit ions  

e5 Change with move acceptance  
SE Heurist ic evolved using sprint_early5  

SH Heurist ic evolved using sprint_hidden4 

SL Heurist ic evolved using sprint_late6 

ME Heurist ic evolved using medium_early5  

MH Heurist ic evolved using medium_hidden2 

ML Heurist ic evolved using medium_late3  

LE Heurist ic evolved using long_early4  

LH Heurist ic evolved using long_hidden5 

LL Heurist ic evolved using long_late2 

S Heurist ic evolved using sprint_early2,  
sprint_hidden1 and sprint_late2 

L Heurist ic evolved using sprint_late10,  
medium_late4 and long_late3 

H Heurist ic evolved using sprint_hidden6,  
medium_hidden5 and long_hidden3 



 xvii 

E Heurist ic evolved using sprint_early9,  
medium_early4 and long_early4 

I ( I1,  I2)  Iterat ion 

A (A1–A8) Acceptance method  

C (C2, C3) Low-level combiner  

IF-C Checks if soft  constraint  score has not  
changed 

IF- I Checks if solut ion has improved after 
executing first  branch 

n(n1-n13) Low-level perturbative heurist ic (LPH) 

MP Mathematical programming 

ECBP Eject ion chain and branch and price 
CP Constraint  programming 

HHGS Hyper-heurist ic with greedy shuffle  

ANS Adaptive neighbourhood search 
SVNS Stochast ic variable neighbourhood search 
IP  Integer programming 
HS Harmony search algori thms 

HSHH Harmony search as a hyper-heurist ic 
A1 All Moves  
A2 Improving on ly 
A3 Improving or Equal 
A4 Late acceptance  
A5 Great  deluge  

A6 Step counting  
A7 Simulated annealing  

A8 Adaptive Iterat ive Limited Lis t  Acceptance  
M(M1– M4) High-level combiner  



1 
  

Chapter 1 Introduction 
 

1.1 Purpose of this research 
This research investigates evolutionary perturbative hyper-heuristics for the nurse rostering 
problem.  There are two types of perturbative hyper-heuristics, selection hyper-heuristics which 
select heuristics that are applied to a candidate solution with the aim of improving it, and 
generation those that create a heuristic to affect change upon the solution. 
 
Genetic algorithms have been employed as selection perturbative hyper-heuristics to explore the 
heuristic search space. These hyper-heuristics have not been applied to the nurse rostering 
problem. Genetic algorithm based hyper-heuristics have performed well particularly on 
timetabling problems and job shop scheduling. Genetic programming and variations of genetic 
programming have been used to create heuristics to solve combinatorial optimization problems 
such as vehicle routing but none have been applied to the nurse rostering problem. Genetic 
programming is generally used to evolve programs to solve problems; as such it is a very good 
fit for the needs of a generative perturbative hyper-heuristic. There are however few studies 
dealing with the evolving of perturbation heuristics. Through analysis of literature it was 
decided that a strongly typed genetic programming model would be used. 
 
Generally selection hyper-heuristics take the form of single-point algorithms where a single 
mode of search is pursued. Investigating a genetic algorithm hyper-heuristic investigates a 
multi-point search where multiple searches are considered. 
 
The nurse rostering problem is one of the most well known combinatorial optimization 
problems. It deals with the assigning of shifts to nurses in hospitals.  It is also a problem that can 
be applied to a variety of shift scheduling problems however the problem differs from country 
to country and hospital to hospital. This dissertation is concerned with how effective 
evolutionary algorithm perturbative hyper-heuristics are when applied to solving the nurse 
rostering problem and the performance of the two types of perturbative hyper-heuristics. 
 
The purpose of hyper-heuristics is not to produce the best results, but to provide a more 
generalized solution to problems. This is achieved through producing good results across a set 
of problem instances, instead of optimizing for the best results for a few instances. It is with this 
intent that creating two perturbative hyper-heuristic approaches is undertaken, so that these 
experiences can contribute to the growing body of knowledge in the field of hyper-heuristics. 
 

1.2 Objectives 
The objectives of this dissertation are: 

1. Investigate a genetic algorithm selection perturbative hyper-heuristic approach for the 
nurse rostering problem. The approach implemented should be influenced by relevant 
literature. 

2. Develop and analyse a genetic programming generative perturbation hyper-heuristic. 
This approach should create perturbation heuristics that can be used to solve the nurse 
rostering problem. 

3. Compare the performance of the two perturbative hyper-heuristics for the nurse 
rostering problem. 



2 
  

1.3 Contributions 
This dissertation contributes to the body of research on perturbative hyper-heuristic approaches 
for the nurse rostering problem. The following contributions are made: 
 
 There has been little work using the genetic algorithm selection perturbative hyper-

heuristics for the nurse rostering problem. This study investigates the genetic algorithm 
selection perturbative hyper-heuristic. 

 Generative hyper-heuristics are a new field of research. Generating perturbation 
heuristics is newer still. This study investigates generating perturbation heuristics for 
the nurse rostering problem. 

 A survey and analysis of nurse rostering and hyper-heuristics. 
 A literature survey and analysis of the four types of hyper-heuristics is given. 

 

1.4 Dissertation layout 
The dissertation is laid out as follows: 
 
Chapter 2 provides an introduction to genetic programming and genetic algorithms. These 
sections each deal with the creation of the initial population, the representation of each 
individual, the methods for selection of individuals, the control models and the genetic 
operators. The processes used by genetic programming and genetic algorithms are critically 
analysed. 
 
Chapter 3 gives a summary of the most common methods used to solve combinatorial 
optimization problems. This is intended to provide the information necessary to have a basic 
understanding of mathematical and meta-heuristic approaches used for solving combinatorial 
optimization problems. 
 
Chapter 4 describes the nurse rostering problem and benchmark sets that are used in the 
literature. Following this a state of the art literature review is given for mathematical and meta-
heuristic approaches that have been used to solve the nurse rostering problem. The literature 
review details any relevant findings. Finally a critical analysis of the nurse rostering problem 
domain is given. 
 
Chapter 5 presents an overview of hyper-heuristic approaches. It describes the four types of 
hyper-heuristics and reviews the literature relevant to each type of hyper-heuristic. A critical 
analysis of hyper-heuristics is given. 
 
Chapter 6 presents approaches for nurse rostering using hyper-heuristics. An attempt is made to 
categorize low-level perturbation heuristics for the nurse rostering problem. A critical analysis 
of nurse rostering for hyper-heuristics is presented. 
 
Chapter 7 outlines the methodology used to achieve the objectives of the study. First a critical 
analysis of the literature is given specific to creating the two approaches. The objectives of the 
study are restated and it is detailed how they will be achieved and measured. The details of the 
nurse rostering problem instances being studied are given and the parameters of the approaches 
are given. The details for statistical testing of the two approaches are presented. Finally the 
technical specifications are provided.  
 
 



3 
  

Chapter 8 presents the genetic algorithm selection perturbative hyper-heuristic approach. This 
approach uses genetic algorithm using an indirect representation to solve the nurse rostering 
problem. Details are given of initial population generation, the representation used, the 
evaluation of individuals, the selection of parents, the control model used and the genetic 
operators. Finally multithreading is discussed.  
 
Chapter 9 presents the genetic programming generative perturbation hyper-heuristic approach. 
This chapter follows the same format as Chapter 8 providing detail on the representation used, 
the evaluation of the individuals, the selection of the parents, the population control model used 
and the genetic operators.  
 
Chapter 10 presents the results found for each hyper-heuristic solving the nurse rostering 
problem. A comparison of the performance of the two hyper-heuristics is made, and a 
comparison to the state of the art.  
 
Chapter 11 gives a summary of the findings and the conclusions of the investigation into 
perturbative hyper-heuristics for the nurse rostering problem and describes future research 
which will be investigated. 



4 
  

Chapter 2 Evolutionary Algorithms 
This chapter introduces genetic programming and genetic algorithms. A brief background of 
evolutionary algorithms is given and then the genetic programming algorithm is presented. The 
terms and processes of the algorithm are introduced and discussed in section 2.2. Following 
this genetic algorithms are presented and the terms and processes are discussed in section 2.3. 
 

2.1 Background of evolutionary algorithms 
Theory of natural selection, population control, inheritance of traits and variation in the 
population take an analogy from the theory of evolution first proposed by Charles Darwin [1]. 
These ideas have been incorporated into various evolutionary algorithms. Evolutionary 
algorithm is a generic term for algorithms inspired by biological evolution. The most popular 
evolutionary algorithm is the genetic algorithm which was popularized by Holland [2]–[4]. The 
genetic algorithm started as a population of fixed length binary strings. This population was 
changed using the ideas of natural selection and genetic inheritance. Binary strings make up the 
population. Each binary string is considered an individual or chromosome.  The individuals 
reproduce to produce new individuals in the population. Evolutionary algorithms e.g. genetic 
programming and genetic algorithms are used for problem solving. Evolutionary algorithms 
solve problems by encoding an individual to represent a possible solution to a problem.  
 
Koza [5] introduces genetic programming where an individual in the population represents a 
program. Genetic programming aims to evolve a program that can solve a problem instead of a 
solution to a problem. It can be said that genetic programming is a search of the space of 
possible programs (program space) and this is fundamentally different to genetic algorithms 
which search a space of possible solutions (solution space) [6]. Genetic programming has been 
used for circuit design [7], artificial intelligence game agents [8] , data mining [9] and creation 
of SAT [10] and bin-packing low-level heuristics [11]. 
 
The focus of this research is on using genetic algorithms with indirect representation and genetic 
programming. The following sections will describe genetic programming and genetic 
algorithms. Genetic programming is being investigated for generating perturbative heuristics 
and genetic algorithms for use in a selection perturbative hyper-heuristic. Hyper-heuristics are 
described in Chapter 5.  
 

2.2 Genetic Programming 
This section introduces the genetic programming algorithm, depicted in Algorithm 2.1 below. 
Genetic programming is an evolutionary algorithm derived from genetic algorithms. Genetic 
programming evolves computer programs. Genetic programming iteratively refines programs 
using concepts taken from genetic algorithms. The processes used are selection and genetic 
operators. 
 
The genetic programming algorithm presented uses the generational control model [6]. The 
genetic programming algorithm starts by generating a population of individuals (1). The 
algorithm continues until a termination requirement is met (2). The algorithm continuously 
performs fitness evaluation (2a) and creation of a new population (2b). The process of creating a 
new population ends when the new population is the same size as the existing population. 
Creating the new population depends on selecting parents (2bi). Genetic operators are applied to 
the selected parents (2bii). This generates new offspring which are inserted into a new 



5 
  

population (2biii). Finally the new population replaces the old population. The completion of 
these processes (2b) is called a generation and is a single iteration of the genetic programming 
algorithm. The processes are repeated until a termination criterion is met. Termination for the 
genetic programming algorithm can be after a set number of generations or a program is 
evolved that can solve the problem. The completion of the algorithm is a genetic programming 
run. The following sections describe the processes of the genetic programming algorithm 
presented in Algorithm 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 2.1 The genetic programming algorithm [5] 
 
2.2.1 Representation 
Koza [5] first represented genetic programming individuals as s-expressions.  S-expressions are 
the notation used to represent a nested list. This is the structure used to create programs in the 
programming language Lisp. In genetic programming an individual is a program. Individuals in 
genetic programming are generally represented as a parse tree [6]. A parse tree is built using 
primitive types called functions and terminals. Terminals in standard genetic programming are 
the leaf nodes. Terminals can be input variables, constants and functions with an arity of 0.  
Functions are branch nodes requiring arguments that can be provided by a function or a 
terminal. The terms used for the collection of functions and terminals in standard genetic 
programming are function set and terminal set [5], [12].  Searching through combinations of 
these primitives is called searching a program space.  
 
Functions and terminals have an arity. The arity is the number of arguments that a primitive has. 
In genetic programming, functions and terminals are primitive types. Terminals all have an arity 
of 0 because they have no arguments. The primitives selected for use with genetic programming 
are usually problem specific. For example evolving a program to solve a polynomial would use 
arithmetic functions and evolving a program to solve a different arithmetic problem could use 
the same primitives. However the primitives used to solve the artificial ant problem would be 
unique to that problem as it uses a Boolean function IfFoodAhead that is not likely to be reused 
in another problem domain. An example of an arithmetic parse tree is given in Figure 2.1 where 
+, -, ×, ÷ represent the function set and z, x, y are inputs to the problem and hence form the 
terminal set. This tree would be the same as the inorder traversal: ((y×z) - (y+y)) + (x× (z- 
(z÷(x+y)))). 
 
 

 
1. Create an initial population randomly 
2. Repeat the following tasks until a termination criterion has been 

reached: 
a. Evaluate the  population  (or Calculate population 

fitness) 
b. Repeat until creating a new population is complete 

i. Select parents using a selection method 
ii. Select and apply genetic operator 

iii. Insert offspring into the new population 
3. Replace old population with new population 
4. Repeat  2 to 3 until either 

a. End when an individual is found to be adequate 
b. Stopping criterion is met 

 



6 
  

 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 2.1 Example of a genetic programming individual 
 
2.2.2 Initial population generation 
The population is generated randomly. There are three common methods for generating a 
population. These methods are full, grow and ramped half and half [5]. One of the three 
methods is used to create the initial population. 
 
Full creates trees that are complete at the maximum depth, these trees are not very diverse as the 
structure is limited. Each tree is created by selecting a random function until the maximum 
depth is reached. At the maximum depth a terminal is randomly selected. 
 
Grow creates trees with variable shape. This results in trees with different depths being created. 
The grow method selects randomly from both the function and terminal set when creating a tree. 
If the maximum depth is reached a terminal is randomly selected. 
 
Ramped half-and-half produces trees using both the full and grow methods. Half of the 
population is created using the full method and the other half using the grow method. Both 
methods create an equal number of trees for depths between 2 and the maximum depth. This is 
used to give a variety of tree depth. 
 
2.2.3 Fitness Evaluation 
A fitness function must be defined to measure a program's performance. The fitness function 
used in genetic programming depends on the problem. The fitness function is used to determine 
the quality of an individual. There are four common fitness functions [5]. Raw fitness is the 
measurement that is best suited for the problem domain, for example the food eaten by an ant in 
the artificial ant problem. Standardized fitness is the adjustment of the raw fitness so that a 
lower value is better. Adjusted fitness is an adjustment to the standardized fitness by converting 
the standardized fitness to a value between 0 and 1. Normalized fitness is a ratio of the 
individual’s adjusted fitness and the sum of the adjusted fitness of all individuals in the 
population. Adjusted and normalized fitness are calculated when fitness proportionate selection 
is used. 
 
2.2.4 Selection 
In genetic programming there are various selection methods that can be used to choose 
individuals for reproduction by genetic operators. The most common selection methods are 
tournament selection and fitness proportionate selection. These originated with genetic 
algorithms. 

+

Individual

-

×

Y Z

+

Y Y

×

X -

Z ÷

Z +

X Y



7 
  

Tournament selection is the most used selection method. Tournament selection, depicted in 
Algorithm 2.2 is used to compare a subset of individuals with each other, returning the 
individual that wins the tournament. The individuals in the selected subset are randomly 
selected, this is called a tournament. The number of individuals in the tournament is problem 
dependent. A high tournament size could result in premature convergence. Tournament 
selection is easy to implement and results in a reduction of runtime compared to fitness 
proportionate selection[13]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fitness proportionate selection requires the calculation of the normalized fitness of each 
individual in the population to assign a fitness value proportionate to the entire population. This 
is also referred to as roulette-wheel selection [15]. A ‘mating’ pool is created to store the 
number of occurrences of each individual. Individuals with poor normalized fitness will 
virtually never be selected. This can reduce the diversity of the population and result in 
premature convergence. Due to the calculations involved this results in fitness proportionate 
selection being more computationally expensive compared to tournament selection [5]. 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
2.2.5 Genetic operators 
Genetic operators are used to create new offspring. Offspring are individuals that have been 
created using a parent individual and applying a genetic operator to the parent. Some genetic 
operators promote convergence and some diversity. It is necessary to find a balance of 
convergence and diversity for the evolution process to succeed. 
 
 

1. Select individuals randomly from the population equal 
to the parameter tournament size 

2. Set the best individual as the first individual in the 
sample 

3. Repeat until there are no individuals to compare 
against: 

a. Compare the best individual's fitness with the 
next individual in the sample 

b. If the fitness of the best individual is better 
than the compared individual, replace the best 
individual with the compared individual. 

4. Return the best individual 
 

1. Calculate the standard fitness 
2. Calculate the adjusted fitness 
3. Calculate the normalized fitness 
4. Create a ‘mating pool’ by performing the following for each 

individual:  
a. Multiply the normalized fitness by the population size 
b. Round this value and assign it to the individual 
c. Insert into the ‘mating pool’  

5. Randomly select an index from the ‘mating pool’ 
6. Return the individual of the index selected 

 

Algorithm 2.2 Tournament selection [14] 
 

Algorithm 2.3 Fitness proportionate selection [16] 
 



8 
  

2.2.5.1 Crossover 
Crossover is a local search operator because it searches a subarea of the program search space. 
The operator randomly selects two points, one in each of the selected parents. The subtrees at 
these two points are swapped. This generates two new offspring. In Figure 2.2, an example of 
this can be seen where the subtree rooted at the arrow pointing to the minus function in Parent 1 
is exchanged with subtree in Parent 2 shown with an arrow. This results in two new offspring; 
offspring 1 and offspring 2 [12]. 

 

 
2.2.5.2 Mutation 
Mutation is a global search operator. In tree based genetic programming subtree mutation is 
common and has a number of variants. Standard subtree mutation selects a random point in an 
individual and creates a new subtree at that point using the grow method [12]. Initially mutation 
was not used for genetic programming by Koza as he wanted to prove that genetic programming 
was not a random search of the program space [6]. However it has since gained popularity. 
Koza suggests very little mutation be used [17]. An example of subtree mutation can be seen in 
Figure 2.3 where the arrow pointing to the multiplication function in the second branch is 
selected and this entire subtree is replaced with a new subtree. 

+

-

-

×

Z Y

Z +

×

-

×

×

X

YY

Parent 1 Parent 2

Offspring 1 Offspring 2

X Y

X

Selected subtree

Selected subtree

+

×

Z Y

+

ZY

+

XZ

+

+

ZY

+

XZ

+

×

-

×

×

X

YY

X -

-

Z +

X Y

Subtree from parent 2

Subtree from parent 1

Figure 2.2 Standard genetic programming crossover 



9 
  

 

Point mutation [12] is an example of a mutation operator that does not change the structure of a 
selected subtree. Point mutation is where single node in an individual is selected and changed to 
a different compatible function or terminal[6]. For example changing a function + to a × or a 
terminal z to x would be valid point mutation. 
 
2.2.5.3 Create operator 
The create operator is a global search operator that generates a new individual. The create 
operator introduces new individuals into the population using the method used for the creation 
of the initial population. This would be either the grow or full methods  [18], [19]. 
 
2.2.5.4 Permutation 
Permutation is a local search operator but it is still considered a type of mutation [12]. 
Permutation results in a new arrangement of an individual. Permutation used by Koza[5] selects 
a random node in a tree and swaps the arguments of the selected node to create a new 
permutation of those arguments as a new individual. This operator has also been referred to as a 
swap operator [6] and is similar to the inversion operator which swaps subtrees that are not 
contained within each other. An example of permutation can be seen in Figure 2.4 where the 
plus function on the extreme right hand side of the tree is exchanged with the terminal Z within 
the subtree. This is a simple example of permutation. 
 
2.2.6 Control models 
Control models define how a population is evolved [6], [20]. In genetic programming the most 
common control model is the generational control model. A genetic programming algorithm 
using the generational control model uses a population of fixed size which is iteratively refined 
until a set generation limit is reached [19]. This is illustrated in Algorithm 2.1. Each iteration is 
called a generation. For each generation, the entire population is replaced with new individuals 
created using genetic operators. The offspring created for each generation is determined by 
genetic operator application rates set for the run. An application rate is a proportion of the 
population. For example a 0.9 crossover rate with a population of 100 individuals would result 
in 90 individuals of the next generation being created using crossover. 
 

+

-

-

×

Z Y

Z +

Parent

X Y

Selected subtree

Create new subtree

+

-

-

÷

X -

Z +

Offspring

X Y

+Z

- +

ZYZ X

New subtree

Figure 2.3 Subtree mutation operator 
 



10 
  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
The steady state model differs from the generational model, in that  a single population is 
maintained [21]. Individuals are still selected using tournament selection but genetic operators 
now replace weaker individuals using inverse tournament selection. This is done instead of 
replacing the entire population. The number of offspring replaced at each generation is generally 
very small. The steady state control model used in [18] achieved almost twice the number of 
successful runs for evolving a sorting algorithm than the generational control model.  
 
2.2.7 Strongly typed genetic programming 
Strongly typed genetic programming enforces type constraints [22]. This ensures the evolution 
of legal programs by the genetic programming algorithm. This is done by defining which 
argument types are acceptable for a function and the return type of the function. An example is a 
function called 'dot product' that takes 2 arguments of type 'vector' and returns a scalar number. 
Genetic operators must be implemented so that only valid offspring are produced. Valid 
offspring are trees where all functions have children of the correct type. In the initial population 
only legal trees are created. For mutation this means using the same method of creation as the 
initial population to create syntactically correct individuals. For crossover the change means that 
only nodes of subtrees which are the same type may be exchanged between individuals. 
 
2.2.8 Critical analysis of genetic programming 
Initial population generation is important as it affects diversity which in turn affects premature 
convergence. It is ideal to avoid prematurely converging to an area of the search space, where a 

Figure 2.4 Permutation operator 
 

+

Individual

-

×

Y Z

+

Y Y

×

X -

Z ÷

Z +

X Y

+

Permutation of Individual

-

×

Y Z

+

Y Y

×

X -

÷

÷

Z Z

+

X Y Z

Permutation of subtree



11 
  

suboptimal solution is found. In this chapter three methods for generating the initial population 
were described, namely full, grow and ramped half-and-half. The full method limits tree depth 
but could result in premature convergence as a result of a lack of diversity in the population 
because the trees are all of the same depth. The grow method encourages a diverse population of 
varying depths. Ramped half and half is the best of both worlds ensuring that some trees are 
created using the full method and some using the grow method. Grow will still give populations 
with good diversity. 
 
The generational control model is generally employed in genetic programming. The model 
replaces the old population with a new population under the assumption that the new population 
is better than the previous population. The steady-state model is considered less likely to suffer 
premature convergence [23].  It has been found in genetic algorithms that the steady-state model 
reduces the number of generations needed to find a solution [24]. In the steady-state control 
model a few of the weaker individuals are constantly removed via an inverse selection method. 
The steady-state model has been found to be effective in genetic algorithms and grammatical 
evolution [25]. 
 
The selection method used to choose the parents for the genetic operators could result in 
premature convergence by being too elitist. Generally tournament selection is used instead of 
fitness proportionate selection in genetic programming. Tournament selection is commonly used 
because it is easy to implement and generally has better runtimes than fitness proportionate 
selection [13]. Fitness proportionate selection is more likely to encourage premature 
convergence as solutions that are better have a higher chance of being selected. Tournament 
selection firstly selects a random sample of the population. The size of this sample is determined 
by the tournament size. The tournament size is used to apply selection pressure. A large 
tournament size results in elitist selection and potentially causes premature convergence. A 
small tournament size would exert very low selection pressure especially if the population size 
is high. It would also increase the time it takes for the GP algorithm to converge. It seems that 
generally a tournament size of 5 is the most commonly used value, it still allows for a decent 
subset of the population to be selected. This means that poor quality solutions may not be 
entirely excluded due to lower selection pressure. 
 
Population size is an important factor in maintaining diversity, if a population is too small 
diversity will not exist and premature convergence will occur. This can be because the small 
population might not fully represent the program space. If a population size is too big, 
convergence may be slow. The initial populations in genetic programming are usually created 
without duplicates to increase the diversity of the population. 
 
Genetic operator application rates usually include more crossover than mutation as Koza [5] 
initially wanted to demonstrate that genetic programming is not a random search.  There has 
been work that has only used mutation operators[26]. Luke and Spector [27] found that 
crossover is generally more successful than  subtree mutation but subtree mutation works well 
with small population sizes. The results were not statistically significant when comparing the 
two operators. Mutation does increase the diversity of the population. Crossover is necessary for 
the genetic programming algorithm to converge. Ideally the goal of genetic programming is to 
generate a program that is capable of solving the problem at hand. If the genetic programming 
algorithm is unable to converge to an area of the search space, it may require extensive 
runtimes. Mutation is necessary to increase diversity in the population and prevents premature 
convergence. With regards to other operators, there is little work done on their effectiveness and 
applicability. It can be inferred, however that global search operators such as create will perform 
a similar role to mutation while local search operators like permutation will perform a similar 
role to crossover. Global search operators increase diversity in the population and local search 
operators promote convergence. 



12 
  

The aim of genetic programming is to evolve a program that can solve a problem. For some 
problem domains the aim is to produce a solution program with an expected result that can be 
identified. There are problem domains, for example the field of combinatorial optimization 
problems, where the global optimum is unknown and the aim is to minimize or maximize the 
cost of the solution produced by the evolved program. A good fitness function can create a 
distinction between poor programs and good programs. It is however, difficult to tell whether a 
fitness function results in poor or good performance of evolved programs. In general a genetic 
programming algorithm can end execution when an adequate solution is found but in the cases 
where an adequate solution is unknown or the goal unspecified other termination criteria must 
be considered. The most common termination criterion used in these instances is setting a limit 
on the number of generations. This is effective as it provides a clear termination criterion for the 
execution of the genetic programming algorithm. Another method may be to enforce some type 
of convergence checking where if the individual with the best fitness has not changed for a 
number of generations then the run could be ended. This indicates the genetic programming 
algorithm has converged. Due to the stochastic nature of evolutionary algorithms an ideal 
solution is not guaranteed with every run. As such it is advisable to abandon runs that have 
converged to a poor area of the search space. Generally the best approach seems to be placing a 
limit on the number of generations to be performed in a run. In most genetic programming 
studies a generation limit of 50 generations is usually used and this seems to be sufficient for 
convergence.  
 
The primitives used dictate the structure of the individuals in the population and therefore the 
diversity of the population. A terminal set and or function set that do not sufficiently represent 
the problem may not be able to produce a solution. A large primitive set (terminal set and or 
function set) would increase the search space. The function set can consist of arithmetic, 
Boolean, problem specific functions or combinations of any of the above.  For example in the 
artificial ant problem it is common to use the problem specific function IfFoodAhead but this 
function would not be useful in other problem domains. It is easy to choose a function set when 
a problem has a set type, such as arithmetic problems, as then one only need consider arithmetic 
functions. There are however, many mathematical functions that could be chosen e.g. sin, cos, 
modulus etc. in addition to simple arithmetic operations e.g. plus, minus, division and 
multiplication. It is generally unclear on how one decides on a function set and what affect the 
chosen functions have on the genetic programming algorithm. Obviously not including a diverse 
range of functions can result in premature convergence. This is because a solution may be 
impossible to find. It is assumed that evolution would penalize primitives that do not assist in 
finding the desired solution or may impact the evolved program's performance. Evolution does 
not strictly eliminate primitives that hinder the search process from being a possible option for 
an offspring created in later generations. It is possible to eliminate primitives completely by 
using no global search operator e.g. mutation. A biased fitness function can also eliminate 
primitives. A good fitness function can help the evolutionary algorithm avoid individuals that 
consist of poorly performing combinations of the function and terminal sets. A large function 
set does increase the search space but too small a search space may result in programs that do 
not result in an adequate solution. It seems best to include functions that are specific to the 
problem domain. This can be determined through knowledge of the problem domain. 
 
Genetic programming is a powerful method for evolving programs. It is capable of exploiting 
the advantages of the population based approaches by exploring a large search space and 
considering multiple solutions. The major disadvantage is that potentially not all runs will be 
successful. The stochastic nature of the genetic programming algorithm can lead the search 
inadvertently to premature convergence. The primitives may not be able to construct a program 
solution. Changing parameters such as genetic operator application rates can result in an 
increased chance of finding a solution. It is difficult to find the correct set of parameters. 
Genetic programming results in a program, this has potential to be induced quicker than an 



13 
  

algorithm designed by a human programmer. An evolved program can be more reusable than a 
human designed algorithm. Genetic programming has the power of automation where it can 
allow the evolution of new programs for problem domains that may be difficult for a human 
programmer to create. It has already been shown that evolving programs is known to have high 
runtimes but has been found to be competitive with human programmers coming up with 
solutions to solving problems. There still exists a large amount of research to be done in genetic 
programming such as identifying methods for choosing ideal parameters, function and terminal 
sets and whether the current evolutionary control models and genetic operators are the best that 
are available. Currently many of the choices made in applying genetic programming  are best 
guesses and even slight changes in genetic operator application rates result in solutions being 
found or not. It is difficult to choose parameters for genetic programming, this is because each 
parameter change may affect another parameter. Genetic programming runs are generally quite 
expensive computationally and having to run a number of tests to determine if a parameter is 
impacting the results is a further time cost. Parameter tuning tools are starting to be used in the 
field of evolutionary algorithms. There is little research into the effectiveness of using parameter 
tuning tools for genetic programming.  Runtimes are also an issue for genetic programming 
when large data or complex evaluations are necessary. This will be alleviated through using 
distributed computing using multi-core architecture. 
 

2.3 Genetic algorithms 
Genetic algorithms were first implemented as a method to use evolutionary ideas to optimize a 
population of fixed binary strings [3]. A binary string is made up of a number of bits, each bit is 
treated as a part of the solution but requires decoding to be relevant. Each bit can represent a 
different feature of the problem. This encoding is not ideal for all problems. For example a 
travelling salesman problem chromosome would be made up of n bits to represent the n cities 
which must be visited. A single bit changing can create an illegal solution as it is not legal to 
visit the same city twice. An alternate to binary representations are direct representations of the 
solution space for solving problems [28], [29]. Direct representations can be more appropriate 
for example a representation for the travelling salesman problem would be character string. 
Each character in this character string would represent a city. An indirect representation would 
differ from both a binary encoding and direct encoding by instead of representing a solution 
space it would represent operators which should be applied to a solution space. Studies found 
success using genetic algorithms with an indirect representation where the problem was solved 
by the decoding of the chromosome string [30]–[32]. Selection perturbative hyper-heuristics 
employing a genetic algorithm to explore the low-level heuristic space are essentially genetic 
algorithms using an indirect representation [33], [34]. This section provides an overview of 
genetic algorithms using an indirect representation. 
 
2.3.1 The genetic algorithm 
The genetic algorithm presented by Goldberg [15] is depicted in Algorithm 2.4. This is 
considered the first major use of an evolutionary algorithm for problem solving.  
 
The algorithm begins by creating an initial population and evaluating each individual (1). Then 
the algorithm enters a loop (2) which will continue until a new population of offspring is 
created. In order to generate individuals for the new population, fitness proportionate selection 
is used to select two individuals as parents (2a). Genetic operators are applied to the selected 
parents (2b). Two offspring are produced by process 2b. If a random number is in the range of 
the probability of crossover, crossover is applied to the selected parents. If this random number 
is not in this range then the selected parents are copied into the next generation (2bi). Following 
crossover if a random number is within the probability for mutation, mutation is applied to both 



14 
  

offspring (2bii). Different probabilities are used for crossover and mutation. For example if the 
crossover probability is 80% (0.8) and a random number generated in the range of 0 and 0.8 is 
generated then crossover would be applied to the selected parents. Probability outside these 
bounds will result in crossover not being applied. The offspring are then evaluated (2biii) and 
inserted into a new population (2biv). Once there are the same number of individuals in the new 
population as the original population, the new population replaces the old population (3). This is 
considered a generation as part of the generational control model described in section 2.2.6. The 
steady-state control model described in section 2.2.6 is also used for genetic algorithms. In order 
to change the above algorithm to a steady-state model one would instead insert the created 
offspring into the current population using an inverse selection method to replace individuals 
with poor fitness in the population. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3.2 Similarities to genetic programming 
Genetic programming covered in section 2.2, shares common features with genetic algorithms. 
Fitness functions and selection methods are generally the same used between the two 
evolutionary algorithms.  Fitness functions are the same as those used by genetic programming 
(section 2.2.3). Genetic algorithms used to employ fitness proportionate selection [35] for 
selection. Tournament selection as described in section 2.2.4 is also used for genetic algorithms. 
Tournament selection gained popularity in genetic algorithms after the introduction of genetic 
programming. 
 
2.3.3 Initial population generation and representation 
The initial population is generated randomly, each character in the string is randomly chosen. 
Each individual in a genetic algorithm is called a chromosome. Each chromosome in the 
population is encoded using a binary string. A binary chromosome is decoded and maps on to a 
solution space, a direct genetic algorithm maps directly to a solution and a genetic algorithm 
using an indirect representation requires decoding to create a solution [36]. A binary string 
chromosome could be "10011010" which would be two bits and may represent two digits 
necessary for a solution.  A direct genetic algorithm would map the solution space directly to 

 
1. Create an initial population and evaluate 
2. Repeat the following tasks until a new population is 

created: 
a. Select two individauls from the population  i1 

and i2 
b. Repeat until creating a new population is 

complete 
i. If crossover probability 

 Perform crossover to i1 and i2 → 
creating offspring i3 and i4 

        Else 
        Copy i1 and i2 → i3 and i4 

ii. If mutation  probability 
   Perform mutation to i3 and i4 

iii. Evaluate i3 and i4. 
iv. Insert i3 and i4 into new population 

3. Replace old population with new population 
4. Repeat  2 to 3 until termination criterion is met 

 
Algorithm 2.4 The genetic algorithm [15] 



15 
  

the individual. For example, Raghavjee [30] used a two-dimensional matrix to represent a 
school timetable. Unlike the standard genetic algorithm which uses a binary string 
representation a genetic algorithm using an indirect representation maps an integer or character 
string to operators which are applied to a candidate solution. For example the string "13326432" 
would be an example of this. Each gene (integer) represents a different operator to use to change 
a candidate solution. Han et al. [31] use an indirect representation of integer strings where 
heuristics are mapped to each integer in the string. The genetic algorithm using an indirect 
representation by Han et al. [31] was shown to outperform a direct genetic algorithm for the 
trainer scheduling problem. Corne and Ogden [32] used a genetic algorithm using an indirect 
representation which was better than a direct genetic algorithm at solving the  preacher 
timetabling problem. Raghavjee [30] uses a character string representation for a genetic 
algorithm using an indirect representation for solving the school timetabling problem. 
Raghavjee [30] found the genetic algorithm using an indirect representation to be better at 
solving the school timetabling problem than the genetic algorithm using a direct representation. 
The representation used should be appropriate to the problem domain [37] as mentioned earlier 
a binary encoding would not make sense for a travelling salesman problem in which each city 
only needs to be visited once. 
 
2.3.4 Variable length chromosomes 
Standard genetic algorithms used fixed length individuals but variable length individuals have 
been used with indirect representations. The messy genetic algorithm is considered the first 
evolutionary algorithm to feature variable length individuals [35], [38]. This representation 
allows for complex representations such as that needed for the prisoner's dilemma problem as 
researched by Lindgren [36], [39]. Messy genetic algorithms use a cut-and-splice crossover 
operator, resulting in variable length individuals. Han et al. [31] show an improvement in using 
a variable length representation to their previous fixed length genetic algorithm using an indirect 
representation [31]. 
 
2.3.5 Genetic operators 
Genetic operators are used to evolve and create new individuals for each generation with the 
intent of improving the fitness of each individual. The most common operators used for genetic 
algorithms are crossover and mutation. 
 
2.3.5.1 Crossover 
For variable length individuals the crossover operator generally used is the cut and splice 
operator introduced by Goldberg [35]. In Figure 2.5 the cut and splice crossover is presented 
where a point is selected in each parent. In parent 1 the point selected is position 4 and the 
operator cuts the rest of this string. In parent 2, position 5 is selected. The first offspring, 
offspring 1 is the combination of parent 2 (4-3-2-5-7) with parent 1 of (2-5-7-6-3-3). The second 
offspring, offspring 2 is the combination of parent 1 (1-4-3) and parent 2 (6-3-1-2-2-4). The 
offspring are created by taking segments from the selected points. Offspring 1 is given from 
positions 1 to 5 of parent 2 and positions 4 to 9 in parent 1. Offspring 2 is created from positions 
1 to 3 of parent 1 and position 6 to 11 of parent 2. 
 
 
 
 
 
 

Figure 2.5 Cut and splice crossover 



16 
  

1-4-3-2-5-7-6-3-2-2

1-4-3-2-3-7-6-3-2-2

Individual selected for mutation

Individual after mutation

2.3.5.2 Mutation 
The mutation operator randomly changes a character in an individual. It replaces a selected 
character with a randomly selected character. In Figure 2.6 an individual is mutated with the 
character at position 5 in the string changing from 5 to 3 [36]. 
 
 

 
 

 
 
 
 
2.3.6 Critical analysis of genetic algorithms 
The genetic algorithm is a flexible meta-heuristic approach that is capable of solving problems 
by exploring the solution space as a multi-point search. In this way a genetic algorithm is often 
able to overcome the limitations of single-point searches such as tabu search, hill climbing and 
variable neighbourhood search, by not being easily stuck in local optima.  Representation plays 
a key role in how effective a genetic algorithm is for the problem domain it is applied to. Firstly 
the representation choice is between a direct encoding against an indirect encoding. Genetic 
algorithms for timetabling and scheduling problems have generally performed better using an 
indirect representation. It is generally the case that a variable length is better when using an 
indirect representation [31], [34]. Using variable length individuals has been shown to be 
effective in various domains using genetic algorithms as well. As such a genetic algorithm using 
both a variable length and indirect representation generally uses cut and splice crossover. In 
terms of selection pressure tournament selection is more efficient than roulette wheel selection 
and been shown to be effective as a selection method for genetic algorithms. The generational 
model is the most commonly used model used for genetic algorithms.  The representation best 
suited to scheduling and timetabling problems is an indirect representation mapping characters 
to heuristics [32], [34], [40]. 
 

2.4 Summary 
This chapter presents an overview of evolutionary algorithms. Genetic programming is 
presented, the algorithm, the representation, initial population generation, selection methods, 
genetic operators and control models are detailed. A critical analysis of genetic programming is 
then given. Genetic algorithms are then presented, the algorithm, the similarities to genetic 
programming, initial population generation and genetic operators. Finally a critical analysis of 
genetic algorithms is given. 

Figure 2.6 Mutation 



17 
  

Chapter 3 Methods used for solving 

combinatorial optimization problem 
 
This chapter provides a summary of methods used by studies mentioned in Chapter 4, which 
reports on the state of the art survey of methods applied to nurse rostering and Chapter 5, a 
survey of hyper-heuristics. The majority of these methods deal with solving combinatorial 
optimization problems for example, bin-packing, the travelling salesman problem, timetabling 
and nurse rostering. Section 3.1 and section 3.2 provide an overview of mathematical methods 
and meta-heuristics respectively. 
 

3.1 Mathematical methods for combinatorial 

optimization 
This section provides an overview of mathematical methods that are used to solve combinatorial 
optimization problems. The first two methods covered are integer linear programming (Section 
3.1.1) and constraint programming (Section 3.1.2). These are methods that are used to solve 
combinatorial optimization problems by creating mathematical models. The final section looks 
at branch and bound, a popular exact method for solving combinatorial optimization problems 
(Section 3.1.3). 
 
3.1.1 Integer linear programming 
Integer linear programming (ILP) models optimization problem constraints using integer 
variable representations [41]–[43]. Integer variables are used to represent the constraints of the 
problem.  ILP supports both discrete and continuous variables. Two popular variants of ILP 
exist: mixed integer linear programming, where variables are represented using real numbers, 
and 0-1 linear programming which represents all variables using binary values. Once a problem 
has been formulated as an ILP problem it can be solved using either an exact method such as 
branch and bound [44] and or a meta-heuristic method [45]. 
 
3.1.2 Constraint programming 
Constraint programming is where a problem is modeled in terms of a set of problem specific 
constraints and variables [43].  Constraint programming allows for specialized constraints 
modeling. It is limited to modeling discrete problems and has no limitation on arithmetic 
constraints for decision variables. Each variable represents a single value that must be set from a 
predetermined range. An example variable for the nurse rostering problem (see Chapter 4 for 
details) is Nurse-Day, where each nurse would have a Nurse-Day for each day that needs to be 
scheduled. This variable holds the value for a shift e.g. E - early shift, N - night shift or L - late 
shift [46]. The variables used depend on how the problem is modeled. The variables can be 
represented by integers, strings or a problem specific type. The aim is to then minimize the 
constraints. The minimization of these constraints is achieved by using an exact method e.g. 
branch and bound [47] or backtracking [48], and or meta-heuristics [49]. The values of variables 
are restricted by the constraints. Constraint satisfaction is the most common type of constraint 
programming used  for complex problem domains [50]. 



18 
  

3.1.3 Branch and bound 
Branch and bound and known variants; branch and price and branch and cut, are considered 
exact algorithms [51]–[53]. The branch and bound algorithm uses a lower bound calculation 
method and an upper bound calculation method to attempt to find the optimal value. The lower 
bound calculation is either a heuristic or a method e.g. Lipschitz [54]. The upper bound 
calculation is either a heuristic or an optimization method such as the simplex method which 
will set the best solution found so far as the upper bound. Branch and bound first calculates the 
upper and lower bounds of an initial candidate solution created randomly or using a low-level 
construction heuristic (LCH, see Chapter 5 section 5.3). Branch and bound then creates 
branches using a partitioning algorithm, specific to the problem being solved, to partition the 
solution into two new possible candidate solutions. Each branch is a slightly different variation 
of the initial solution and each created branch has its upper and lower bound calculated. A 
branch that results in a feasible solution and a solution with equal or improving objective value 
is selected and branched.  This process of branching and updating the upper and lower bounds, 
is repeated until an optimal solution is found. Branch and price is a variant which uses column 
generation to update a master problem (the original problem), the restricted master problem 
(only considers a subset of columns of the master problem) and the pricing problem, which is a 
sub problem that is solved to find a column with a negative reduced cost. The pricing problem is 
solved with a heuristic or local search method. Columns with a negative reduced cost are added 
to the restricted master problem [55]–[58]. Branch and cut uses a cutting plane algorithm, which 
iteratively refines a candidate solution by generating and solving linear inequalities. This cutting 
is only done when it is valid to do so after the branching of the problem [59], [60].  
 

3.2 Meta-heuristics 
Meta-heuristics explore and exploit the search space for the particular problem domain. The aim 
of meta-heuristics is to find an optimal solution to a problem in a reasonable time period. Where 
the global optimum is unknown, finding a solution as better than the current best known 
solution is the goal [61], [62]. 
 
Meta-heuristics that will be described in this section are all local search methods. Local search 
iteratively improves an initial solution. This is achieved by searching a neighbourhood of 
solutions. A neighbourhood is a search space of a candidate solution where small changes to the 
candidate solution are considered neighbouring because they are similar to the original solution. 
This is done by applying one or more neighbourhood operators to a candidate solution. 2-opt is 
an example of a neighbourhood operator [63]. The operator was first developed to solve the 
travelling salesman problem. 2-opt can be used on any problem that can be mapped to a graph. 
The algorithm swaps the order of two points of a graph. Neighbourhood operators result in 
small changes to a candidate solution, producing a neighbouring candidate solution. Applying a 
neighbourhood operator is moving from a solution S to a solution S'. A local search is 
performed usually for a set number of iterations. Each iteration compares the difference between 
S and S' until a local or global optimum has been identified [64]. 
 
3.2.1 Hill climbing 
Hill climbing is a local search algorithm [65]. The hill climbing algorithm is given in Algorithm 
3.1 the algorithm starts with an initial candidate solution S (1). This initial solution is generated 
through LCHs, heuristics that build an initial solution using a rule of thumb such as put the 
smallest container in the box first, or randomly initialized. For a number of iterations (kMax) 
the algorithm attempts to find an improved solution. This is done by applying a neighbourhood 
operator resulting in a new solution S' (2a). This new solution S' is compared to S, if S' is an 



19 
  

improvement then S is set to S' (2c). A counter variable k, with a starting value of 0 is 
incremented (2c) and once the iteration limit is reached a solution is returned. 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.2 Tabu search 
Tabu search guides the search process away from local optima by placing candidate solutions 
which are repeatedly visited in a list. The list is updated at each iteration of the search [66], [67]. 
These candidate solutions are tabu (forbidden) for a set number of iterations. This means that 
improvement is less likely to stagnate as these moves will be avoided. Psuedocode for the tabu 
search is shown in Algorithm 3.2. An initial candidate solution S is created using a LCH or 
random initialization (1). A tabu list is usually of length 100 and is a parameter that is problem 
dependent such as the population size of a genetic algorithm (2). The algorithm repeats until an 
iteration limit is reached (kMax) (3). The algorithm first applies a neighbourhood operator 
resulting in a solution S' (3a). If the new solution S' is an improvement to S and S' is not in the 
tabu list then set S = S'. If the new solution S' is not an improvement S' is inserted into the tabu 
list (3b). This way all non-improving immediate changes are avoided. The algorithm then 
returns a solution (4). Tabu search can use an aspiration criterion which allows a candidate 
solution in the tabu list to be selected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.3 Simulated annealing 
Simulated annealing is based on the annealing process of metallurgy [68], [69]. The process of 
annealing removes the defects from metal through heating and cooling. The algorithm accepts 
all improving or equal changes in the solution space and will decrease the probability of 
requiring an improving or equal solution for each iteration, that if no improving or equal 

 
1. Start with an initial candidate solution S 
2. Repeat the following tasks while k < kMax: 

a. Apply neighbourhood operator resulting in 
neighbouring solution S' 

b. If S' is an improvement on S 
   S = S' 

c. k++ 
3. Return best found solution 

 

 
1. Start with an initial candidate solution S 
2. Initiliase an empty  tabu list 
3. Repeat until k > kMax: 

a. Apply neighbourhood operator 
resulting in neighbouring solution S' 

b. If S' is an improvement on S and S' is 
not in the tabu list 

   S = S' 
                 Else  
             Insert S' into tabu list  

c. k++ 
4. Return best found solution 

 

Algorithm 3.1 Hill climbing [65] 

Algorithm 3.2 Tabu search [66] 



20 
  

solution is found, another area of the search space will be considered. This process imitates the 
cooling of metals. The pseudocode for the simulated annealing algorithm is presented in 
Algorithm 3.3. Initially simulated annealing starts with a candidate solution (S) (1). The 
algorithm runs until an iteration limit (kMax) is reached (3). A temperature value (T) is set (3a). 
The temperature is calculated based on the number of iterations (k) over the maximum number 
of iterations (kMax). The next step is to apply a neighbourhood operator to S resulting in a 
solution S'. S' is accepted if it is less than or equal to S. It is also accepted if a randomly 
generated probability P is above a set threshold. The probability for accepting a solution is 
based on the current solution (S), the neighbourhood change to the current solution (S') and the 
temperature (T). The equation for this probabilistic acceptance can be seen calculated in the 
Else If statement at (3c). It is common to include a restart mechanism to try and avoid local 
optima. An example restart mechanism is given in (3e) where a threshold will be reached if the 
best solution is not changed for a number of iterations. In this case if the threshold is reached the 
current solution S is replaced by the previous best solution SBest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.4 Great deluge 
Great deluge is an algorithm based on the idea of floods where a water level (B) is updated as a 
threshold for accepting new solutions [70]. The algorithm is similar to the simulated annealing 
algorithm but it instead accepts solutions based on fixed decremented steps. The pseudocode for 
the great deluge is presented in Algorithm 3.4. The algorithm begins with an initial candidate 
solution S (1). The only parameter that needs setting is the deluge value D, a fraction of the 
Boundary level B, used to gradually lower the boundary level B. B the boundary level is set to 
the objective value of the solution S but is only changed by the step (3d). The algorithm repeats 
until the maximum number of iterations is reached (kMax) (3). Firstly a neighbourhood 
operator is applied to S resulting in a new solution S'(3a). S' is accepted if it is less than or 
equal to S, or if S' is less than or equal to B. If the solution S' is not accepted, a counter n is 
incremented (3b). If the counter n exceeds a threshold (nThreshold) then the algorithm exits 
(3c). Then the boundary level B is updated (3d) and the iteration level k is incremented (3e). 
When the algorithm exits a solution is returned. 

 
1. Start with an initial candidate solution S 
2. k = 0 
3. Repeat while k  <  kMax  

a. T =  k / kMax 
b. Apply neighbourhood operator resulting in 

neighbouring solution S' 
c. If S'  <=  S 

      S = S' 
            Else If exp(-(S' - S)/T  > P  
        S = S' 

d. If S' < S 
            SBest = S 
                       Else 
                      n++ 

e. If n > nThreshold 
       S =  SBest 

f. k++ 
4. Return best found solution 

 
Algorithm 3.3 Simulated annealing [68] 



21 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.5 Variable neighbourhood search 
Variable neighbourhood search (VNS) is made up of the processes of shaking, local search and 
neighbourhood change [71]. A VNS algorithm can be seen in Algorithm 3.5. Firstly an initial 
solution is created either by using a LCH or randomly (1). The algorithm uses a set of 
neighbourhood operators (2). The algorithm repeats until the neighbourhoods have all been 
explored. Shaking is a change to the current solution S. This change can be random or as shown 
in the algorithm as a candidate solution generated using the current neighbourhood; this 
candidate solution does not have to be accepted but is an attempt to escape local optima (3a). 
Next the current neighbourhood operator is applied iteratively to the candidate solution (3c). If 
the solution is an improvement the neighbourhood explored resets to the first neighbourhood 
otherwise the neighbourhood is changed (3d). For example for solving the travelling salesman 
problem a VNS may switch from using 2-opt to 3-opt as the neighbourhood operator. Finally 
the algorithm returns the best solution it has found (4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1. Start with an initial candidate solution S 
2. Set deluge value D 
3. Repeat while k  <  kMax  

a. Apply neighbourhood operator resulting in 
neighbouring solution S' 

b. If S' <=  S  or S' <= B 
                       S = S' 
               Else  
             n++  

c. If n > nThreshold 
       exit  

d. B  =  B - D 
e. k++ 

4. Return best found solution 
 

 
1. Start with an initial candidate solution S 
2. Select a set of neighbourhood operators (1...kMax) 
3. Repeat while k  <=  kMax  

a. S'  = Shaking, to a randomly produced solution from 
Neighbourhood Nk   

b. If S' < S  
        S = S' 

c. Perform local search applying neighbour Nk  to 
solution S resulting in neighbouring solution S'  

d. If S'  < S 
       S = S' 
                k  = 1 
                  Else  
                 k = k +1  

4. Return best  solution found 
 

Algorithm 3.4 Great deluge [70] 

Algorithm 3.5 Variable neighbourhood search [71] 



22 
  

3.2.6 Harmony search 
Harmony search was inspired by the improvisation process of musicians. In the harmony search 
algorithm variables are treated as musicians playing notes. The notes represent different values a 
variable may be assigned and with each play the value is changed [72]. Harmony search is an 
attempt to heuristically and stochastically find the global optimum of a number of decision 
variables for a given problem domain. Harmony search is similar to other population based 
methods such as genetic algorithms [73]. The basic harmony search algorithm can be seen in  
Algorithm 3.6. Each candidate solution in harmony search is a set of decision variables, these 
are initialised randomly and stored in a harmony memory which has a size of HMS (harmony 
memory size) (1). A new solution is created by looping through each possible decision variable 
(2). Each decision variable is chosen either by selecting a random value from an existing 
solution in harmony memory selected by a probability called, Harmony Memory Considering 
Rate (HMCR). The selected value is then changed by a probability called Pitch Adjusting Rate 
(PAR) as a slight modification (2a), otherwise a random value is chosen using probability (1-
HMCR) (2b), this is called pitch adjustment.  The search attempts to find combinations of 
values based on experience using HMCR and PAR, or randomness that are optimal. If the new 
solution S' is better than the worst solution in the harmony memory, it replaces the worst 
solution (3). Repeat steps 2 and 3 until a criteria to stop generating new solutions is reached (4). 
Finally the best solution found is returned by the algorithm (5). Harmony search generates a 
new solution at each iteration of the algorithm stochastically using information stored in the 
harmony memory where as a genetic algorithm shares information given by two parents 
resulting in new offspring being added to the population [74]. Harmony search is similar to 
evolutionary algorithms as it maintains a number of solutions which are used in part to create 
new solutions and replaces the weakest in the harmony memory similar to replacing the weakest 
in a population of solutions similar to a steady-state control model [75]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

3.3 Summary 
This chapter presents currently used methods for solving combinatorial optimization problems. 
The mathematical methods including, integer linear programming, constraint programming and 
branch and bound are presented and discussed. Secondly meta-heuristic approaches are 
presented these include: hill climbing, tabu search, simulated annealing, great deluge, variable 
neighbourhood search and harmony search. This chapter provides necessary details to 
understanding subsequent chapters. 

 
1. Create a harmony memory of randomly generated solutions 

S0-HMS. 
2. Generate  a new solution S', for each decision variable: 

a. If probability HMCR is met 
Use a value of a solution in the harmony memory with. Change the 
value of the selected value with probability PAR. 

b. Else use a random value (with a probability of 1-
HMCR) for this decision variable.  

3. If S' is better than the worst solution in the harmony memory 
Sw. 

       Sw = S' 
4. Repeat 2 to 4 until a termination criteria is met. 
5. Return best solution found 

 Algorithm 3.6 Harmony Search [72] 



23 
  

Chapter 4 Nurse Rostering 

This chapter introduces the nurse rostering problem. A description of the problem and brief 
background is given. The modeling of the problem is covered and available benchmark sets are 
described. A state of the art review is presented and a critical analysis of the nurse rostering 
problem is given. 

 

4.1 The nurse rostering problem 
The nurse rostering problem (NRP) is a scheduling problem concerned with optimizing the 
working schedules of nurses. The terms nurse scheduling, hospital personnel scheduling or 
personnel scheduling are often used as synonyms for nurse rostering. In this study nurse 
rostering will be defined as: the allocation of shifts to nurses for the duration of a scheduling 
period with the goal being to minimize a set of given constraints [76]–[78]. A shift type is a 
time period of a day determined by the hospital. A nurse not working is scheduled as having a 
free shift type for that day. A nurse working a specific shift type is considered working. A shift 
assignment refers to the allocation of a shift type and a day to a nurse. A nurse is an employee 
who works for the hospital on a contract basis e.g. a part time contract is when a nurse works 
50% of the time. A contract is an agreement between the hospital and the nurse, a contract is a 
collection of guidelines as to how much the nurse should be working. A nurse may have a skill 
type that qualifies them to work a specific shift type. A scheduling period is the number of days 
that the roster covers. The term roster shall refer to the complete list of nurses and their shift 
assignments. The term schedule will be used to refer to an individual nurse's list of shift 
assignments. The NRP is always subject to a set of constraints to be optimized [77]–[79]. 
 
A nurse roster is a two-dimensional matrix, where the rows represent the nurses and the 
columns the days of the week. Each cell contains the shift that the nurse is allocated on the 
particular day. An example nurse roster is given in Figure 4.1. In the example 5 nurses have 
been assigned shifts over 4 days. For example nurse 1 has a shift E, which represents a time 
period in the morning, on Thursday, Friday and Sunday. Nurse 5 has a shift N, which represents 
a shift during the night, on Thursday and Friday. Nurse 2 has a shift L which in this example 
will represent the period in between morning and night shifts. The slots with no assigned shift 
e.g. Nurse 3 on Friday, is a free shift. Most nurse rostering problems deal with scheduling 
periods that are four weeks in length. The number of shift types e.g. E, L, N, is generally three 
to five. The number of nurses is usually in the range of 10 to 50 nurses. It should be noted that 
real world nurse rostering problems differ from one hospital to the next and from country to 
country. 
 
Nurse rostering is a proven NP-hard problem [81] and is considered more complex than the 
travelling salesman problem[82]. The difficulty of the problem makes it an interesting area of 
research for optimization techniques. For example an NRP with 10 nurses, 4 shift types over a 4 
week scheduling period has a potential search space of 10277. Developments in nurse rostering 
may impact other personnel scheduling and timetabling problems [83].  
 
Early studies dealt with developing mathematical models that would be used to assist in the 
scheduling of nursing staff. Miller et al. [84] used a formulation based on the number of 
required personnel per day to come up with a mathematical model of the nurse rostering 
problem. Miller et al. proposed a cyclic coordinate descent algorithm to solve the nurse 
rostering problem. This study compared the rosters produced to those created manually by the 
hospital finding that this approach was superior. Miller et al. [84] report the algorithm was 



24 
  

implemented in hospitals in the United States and Canada. Nurse rostering in the real world is 
mostly done by a head nurse who either manually creates the forecasted schedule or by self 
rostering practices where nurses choose their own working periods. Advancements in 
computing power allowed for more research in automated algorithms to be developed [77], [85]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Automated nurse rostering is generally concerned with generating an entire roster. Automated 
rostering solutions have mostly been successfully adopted in European hospitals [86]. Self 
rostering provides nurses with autonomy and satisfaction, as their personal preferences have 
been accounted for to a greater degree. Automated rostering may not adequately meet the needs 
of the nursing staff if the constraint weighting is not appropriate [77], [86]–[88].  It can be 
argued that self rostering is not always applicable. Self rostering  introduces the possibility of 
creating unfair rosters [77], [89].   
 
Kellogg et al.[86] surveyed fifteen automated systems found in literature that were implemented 
in hospitals. Of the fifteen systems it was not known whether five of the systems are still used, 
while one is partially in use. Six of the surveyed automated systems were found to still be in use 
with only two not in use; one was found to be partially in use. Of those still in use, over one-
hundred-and-ninety hospitals use automated systems for scheduling, with only two hospitals 
known to have abandoned automated systems. Ten of the systems used meta-heuristics, four 
used mathematical methods and one was a decision support system. 

Day

Nurses

1

2

3

4

5

n

Thursday

E

L

E

E

N

Friday

E

E

L

N

Saturday

L

E

N

Sunday

E

E

E

E

E

Figure 4.1 Example nurse roster 
 



25 
  

The nurse rostering problem is generally solved with the aim of minimizing an objective 
function based on constrained optimization, or in other words the nurse rostering problem is 
modeled as a constraint optimization problem (COP), where the optimization of constraints is 
the goal. The objective function is a sum of the hard and soft constraints violations. Hard 
constraints must not be violated in order for a roster to be feasible. Soft constraints do not 
contribute to feasibility but quality and the desired goal is to minimize the number of soft 
constraints violated [90].  Once hard constraint violations have been eliminated, the problem is 
then a matter of minimizing soft constraint violations. Constraints which are not met result in a 
violation being counted. Soft constraints between problem instances will generally have 
different value weightings for incurring penalties. Each hospital and or ward will have different 
priorities for which constraints are more important to satisfy and minimize. For example a 
hospital with a low number of nurses will value minimizing staff having days off. Additionally 
soft constraints for some problem instances may not be necessary and thus can be weighted as 0. 
The soft constraints can be divided into work contract and nurse preference constraints. Work 
contract constraints are decided by the contract a nurse is working and nurse preference due to a 
nurse’s decisions e.g. To not work on Thursdays. 
 
Nurse rostering problems are generally considered highly constrained as feasible solutions are 
restricted by hard constraints [91].  It is also considered difficult and often impossible to satisfy 
all the constraints of a nurse rostering problem [78]. Further detail on constraints for the nurse 
rostering problem is given in section 4.2. 
 

4.2 Benchmark sets of the nurse rostering problem 

domain 
A common problem in combinatorial optimization is the availability of problem instances to 
allow for the comparison of the effectiveness of different methods. For example if a method is 
used to solve an instance of the nurse rostering problem that is not publicly available, it will not 
be possible to compare the effectiveness of this approach to other methods developed by 
different researchers. To overcome this researchers have created benchmark sets to compare and 
evaluate new and existing methods in solving the nurse rostering problem. Benchmark sets can 
consist of problems that are either real world or artificial. A real world data set is based upon 
data from an actual hospital. An artificial data set is generated by an algorithm designed to 
automate the creation of problems similar to real world data but based on user input. For 
example, the Nottingham benchmark a set [92] is based on real world data. In contrast NSPLib 
[93] (Nurse Scheduling Library) is a benchmark set that was generated and as such the instances 
are considered artificial [94].  NSPLib is not commonly used for research on the nurse rostering 
problem currently. 
 
Nurse rostering involves minimizing constraint violations. The term coverage constraint is used 
to refer to the number of required shift assignments that should be worked each day of the 
scheduling period. The coverage constraint is to make sure that each shift type on a given day is 
allocated a sufficient number of nurses for the given shift type. In some nurse rostering 
problems this is not considered a hard constraint. The next constraints that should be met are 
those of the contracts that the nurses have with the hospital. Satisfying individual nurse 
preferences is also important [95] and these are referred to as personal preferences. A nurse 
requesting a day off or a specific shift assignment is an example of personal preferences. In this 
study the benchmark dataset that is used for experimentation is that used for the first 
international nurse rostering competition 2010 (INRC2010) [79], [96]. This was a competition 
created to promote research in the domain of nurse rostering given the success of the 



26 
  

international timetabling competitions (ITC2002 and ITC2007) to further advance educational 
timetabling [97]. The following subsections describe the INRC2010 benchmark data set and the 
Nottingham benchmark data set. 
 

4.3 The first international nurse rostering competition 

2010 (INRC2010) 
This data set is a real-world data set that was developed with the intent to further reduce the gap 
between research and practice. Nurse rostering is a complicated problem domain and as such 
not all aspects of the real world problem are included. Constraints from modern hospitals were 
incorporated in the creation of this benchmark set. 
 
The competition itself had 3 difficulty tracks. These were sprint, medium and long. Sprint 
instances were meant to be solved in 8 seconds, Medium in 8 minutes and Long were allowed 
up to 10 hours. A benchmarking tool was provided to determine the time limitation for specific 
computer configurations, the times above are given using a 3.2 GHz processor. 
 
The hard constraints for the INRC2010 problem instances for all three tracks are: 
 A nurse may only work one shift per day. 
 Each shift must be assigned the required number of nurses. 

 
Work contract constraints: 
 Unwanted shift patterns: A sequence of shift types over consecutive days which are 

undesirable. For example a nurse working the shift type 'L' followed by 'E' would incur 
a soft constraint violation but a nurse working the shift type 'L' followed by 'L' would 
not. Unwanted shift patterns can be specified for specific consecutive days e.g. Friday, 
Saturday and Sunday. 

 Alternative skill: A nurse is penalized for not working a shift where they have the skill 
required to work that shift. A free shift does not incur a soft constraint violation. Every 
nurse incurs a soft constraint violation for every shift that nurse works for which they 
do not have the required skill. 

 Maximum assignment: A maximum number of shifts should be assigned to each nurse 
for the scheduling period. Nurses can be assigned a number of shifts during the 
scheduling period, up to the length of the scheduling period. Exceeding the maximum 
set by the contract incurs a soft constraint violation. 

 Minimum assignment: The minimum number of shifts should be assigned that should 
be worked for the scheduling period. Nurses can be assigned a number of shifts during 
the scheduling period, up to the length of the scheduling period. A nurse assigned a 
number of shifts less than the minimum set by the contract incurs a soft constraint 
violation. 

 Maximum consecutive working days: The maximum number of consecutive days that 
should be worked by a nurse. A nurses' schedule can be made with any combination of 
shifts worked for a nurse. The contract will specify a preferred number of maximum 
consecutive working days. Exceeding the maximum consecutive working days will 
incur a soft constraint violation. 

 Minimum consecutive working days: The minimum number of consecutive days that 
should be worked by a nurse. A nurses' schedule can be made with any combination of 
shifts worked for a nurse. The contract will specify a preferred number of minimum 
consecutive working days. Too few consecutive working days will incur a soft 
constraint violation. 



27 
  

 Maximum consecutive free days: The maximum number of consecutive free days that 
can be allocated to a nurse. The contract specifies a maximum number of days each 
nurse is allowed to take off consecutively. A nurse will incur a soft constraint violation 
if too many days in a row are not worked. 

 Minimum consecutive free days: The minimum number of consecutive free days that 
can be allocated to a nurse. The contract specifies a minimum number of days each 
nurse is allowed to take off consecutively. A nurse will incur a soft constraint violation 
if too few days in a row are not worked. 

 Two free days after a night shift: It is preferable for nurses to have two free days after 
working a night shift. If a nurse has a night shift followed by a working day, a soft 
constraint violation is incurred. 

 Maximum consecutive working weekends: The maximum number of consecutive 
weekends is measured only on weekends where the nurse is working a shift. The 
contract specifies a maximum number of consecutive working weekends. A nurse 
exceeding the maximum number of consecutive working weekends incurs a soft 
constraint violation. 

 Minimum consecutive working weekends: The minimum number of consecutive 
weekends is measured only on weekends where the nurse is working a shift. The 
contract specifies a minimum number of consecutive working weekends. A nurse 
exceeding the minimum number of consecutive working weekends incurs a soft 
constraint violation. 

 Maximum number of working weekends: The maximum number of weekends that can 
be worked by a nurse, where the nurse is working a shift. The contract specifies the 
maximum number of weekends that can be worked by a nurse. Exceeding the maximum 
number of working weekends incurs a soft constraint violation. 

 Minimum number of working weekends: The minimum number of weekends that can 
be worked by a nurse, where the nurse is working a shift. The contract specifies the 
minimum number of weekends that can be worked by a nurse. Working less than the 
minimum number of working weekends incurs a soft constraint violation. 

 Complete weekends: A soft constraint violation is incurred for working an incomplete 
weekend, a weekend is incomplete if one day in the weekend is not worked. If all days 
in the weekend are not worked no soft constraint violation is incurred. 

 Identical shift types over weekends: A soft constraint violation is incurred if a nurse is 
allocated different shift types over a weekend. Days with no shifts scheduled are not 
penalized. 

 
Nurse preference constraints: 
 Requested day on: A specific nurse may request working on a particular day in the 

scheduling period. If the nurses' schedule includes not working on the requested ‘day 
on’, a soft constraint violation is incurred. 

 Requested day off: A specific nurse may request not to work on a particular day in the 
scheduling period. If the nurses' schedule includes working the requested ‘day off’, a 
soft constraint violation is incurred. 

 Requested shift on: A specific nurse may request working a specific shift type on a 
specific day in the scheduling period. If the nurses' schedule includes not working the 
requested shift type on a specific day, a soft constraint violation is incurred. 

 Requested shift off: A specific nurse may request not working a specific shift type on a 
day in the scheduling period. If the nurses' schedule includes working the requested 
shift type on a specific day, a soft constraint violation is incurred. 

 
Each problem instance in Table 4.1 uses a subset of the above soft constraints.  Furthermore, the 
weighting of each soft constraint differs for each problem instance. 
 



28 
  

Table 4.1 shows each problem instance that was created for the competition. In this table the 
number of nurses and the shift types that must be worked each day are given. The scheduling 
period for all instances is 28 days. The constraints that feature in some instances but not all 
instances are: Unwanted shift patterns (USP), alternative skill (AS), Minimum consecutive 
working weekends (MinCWW), Maximum consecutive working weekends (MaxCWW), No 
night shift before a free weekend (NNF), day on or off requests (D) and shift on or off requests 
(S). 
 

Table 4.1 INRC2010 benchmark instance data characteristics 
Instance Nurses  Shift  Types  USP AS MinCWW MaxCWW NNF D S 
sprint_early(01–10) 10 4 Yes      Yes  Yes  
sprint_late01 10 4 Yes   Yes   Yes  Yes  Yes  
sprint_ late02 10 3 Yes   Yes   Yes  Yes  Yes  
sprint_late03 10 4 Yes   Yes   Yes  Yes  Yes  
sprint_late04 10 4 Yes   Yes  Yes  Yes  Yes  Yes  
sprint_late05 10 4 Yes   Yes   Yes  Yes  Yes  
sprint_late06 10 4   Yes   Yes  Yes  Yes  
sprint_late07 10 4   Yes  Yes  Yes  Yes  Yes  
sprint_late08 10 4   Yes  Yes  Yes    
sprint_late09 10 4   Yes  Yes  Yes    
sprint_late10 10 4   Yes  Yes  Yes  Yes  Yes  
sprint_hidden01 10 3 Yes   Yes  Yes  Yes  Yes  Yes  
sprint_hidden02 10 3 Yes   Yes   Yes  Yes  Yes  
sprint_hidden(03&04) 10 4 Yes   Yes   Yes  Yes  Yes  
sprint_hidden05 10 4 Yes   Yes  Yes  Yes  Yes  Yes  
sprint_hidden(06&07) 10 3 Yes   Yes  Yes   Yes  Yes  
sprint_hidden08 10 4 Yes   Yes  Yes   Yes  Yes  
sprint_hidden09 10 4 Yes   Yes    Yes  Yes  
sprint_hidden10 10 4 Yes   Yes  Yes   Yes  Yes  
medium_early(01–05) 31 4      Yes  Yes  
medium_late01 30 4 Yes   Yes  Yes  Yes  Yes  Yes  
medium_late02 30 4 Yes   Yes  Yes  Yes  Yes  Yes  
medium_late03 30 4   Yes  Yes  Yes  Yes  Yes  
medium_late04 30 4 Yes   Yes  Yes  Yes  Yes  Yes  
medium_late05 30 5 Yes  Yes  Yes  Yes  Yes  Yes  Yes  
medium_hidden01 30 5 Yes  Yes  Yes  Yes  Yes    
medium_hidden02 30 5 Yes  Yes  Yes  Yes  Yes    
medium_hidden03 30 5 Yes   Yes  Yes  Yes    
medium_hidden04 30 5 Yes  Yes  Yes  Yes  Yes    
medium_hidden05 30 5 Yes   Yes  Yes  Yes    
long_early(01–05) 49 5 Yes      Yes  Yes  
long_late01  50 5 Yes  Yes  Yes  Yes  Yes    
long_late02  50 5 Yes  Yes  Yes  Yes  Yes    
long_late(03&04) 50 5 Yes  Yes  Yes  Yes  Yes    
long_late05  50 5 Yes  Yes  Yes  Yes  Yes    
long_hidden(01–04) 50 5 Yes  Yes  Yes  Yes  Yes    
long_hidden05 50 5 Yes  Yes  Yes  Yes  Yes    

 

4.4 Nottingham benchmarks 
The University of Nottingham currently maintains a set of benchmark instances for nurse 
rostering [92]. These can be seen in Table 4.2. This benchmark set is based on research using 
real world hospital problems. The problem model used is based on the advanced nurse rostering 
model (ANROM) [98]. The ANROM model was adopted by 40 hospitals in Belgium replacing 
manual scheduling successfully [99]. 
 



29 
  

 
Table 4.2 Nottingham benchmark instance data 
Instance  Nurses  Shift 

types 
Scheduling 

period 
Ozkarahan14 14 2 7 
Musa 11 1 14 
Millar-2Shift-
DATA1&1.1 

8 2 14 

LLR 27 3 7 
Azaiez 14 2 28 
GPost  & GPost-B 8 2 28 
QMC-1& QMC-2 19 3 28 
WHPP 30 3 14 
BCV-3.46.2 46 3 26 
BCV-3.46.1 13 4 29 
SINTEF 24 5 21 
ORTEC01 & ORTEC02 16 4 31 
ERMGH 41 4 48 
CHILD 41 5 42 
ERRVH 51 8 48 
HED01 20 5 31 
Valouxis-1  16 3 28 
Ikegami-2Shift-DATA1 28 2 30 
Ikegami-3Shift-DATA1, 
Ikegami-3Shift-DATA 1.1 
& Ikegami-3Shift-DATA 
1.2 

25 3 30 

BCDT-Sep  20 4 30 
MER 54 12 48 

 
The hard constraints for this benchmark set are: 
 A nurse may only work one shift per day. 
 Each shift must be assigned the required number of nurses. 
 Required skill: The nurse assigned to a shift must have the skill required to work that 

shift. 
 
The problem is then a matter of minimizing weighted soft constraints. As in the case of the 
INRC2010 benchmark set, these can be divided into the work contract and nurse preferences: 
 
Work contract: 
 Minimum time between two assignments: A nurse is meant to work a single shift per 

day. However, two shifts may be on consecutive days but only a few hours apart. 
Therefore a minimum time must elapse before a new shift can be worked or a soft 
constraint violation is incurred. 

 Alternative skill: A nurse is penalized for not working a shift where they have the skill 
required to work that shift. A free shift does not incur a soft constraint violation. Every 
nurse incurs a soft constraint violation for every shift that nurse works which they do 
not have the required skill. 

 Maximum assignment: A maximum number of shifts assigned to each nurse for the 
scheduling period. Nurses can be assigned a number of shifts during the scheduling 
period, up to the length of the scheduling period. Exceeding the maximum set by the 
contract incurs a soft constraint violation. 

 Minimum assignment: A minimum number of shifts assigned that should be worked for 
the scheduling period. Nurses can be assigned a number of shifts during the scheduling 
period, up to the length of the scheduling period. A nurse assigned a number of shifts 
less than the minimum set by the contract incurs a soft constraint violation. 

 Maximum consecutive working days: A maximum number of consecutive days that 



30 
  

should be worked by a nurse. A nurses' schedule can be made with any combination of 
shifts worked for a nurse. The contract will specify a preferred number of maximum 
consecutive working days. Exceeding the maximum consecutive working days will 
incur a soft constraint violation. 

 Minimum consecutive working days: A minimum number of consecutive days that 
should be worked by a nurse. A nurses' schedule can be made with any combination of 
shifts worked for a nurse. The contract will specify a preferred number of minimum 
consecutive working days. Too few consecutive working days will incur a soft 
constraint violation. 

 Maximum consecutive free days: A maximum number of consecutive free days that can 
be allocated to a nurse. The contract specifies a maximum number of days each nurse is 
allowed to take off consecutively. A nurse will incur a soft constraint violation if too 
many days in a row are not worked. 

 Minimum consecutive free days: A minimum number of consecutive free days that can 
be allocated to a nurse. The contract specifies a minimum number of days each nurse is 
allowed to take off consecutively. A nurse will incur a soft constraint violation if too 
few days in a row are not worked. 

 Maximum number of hours worked:  The maximum number of hours is a limit on how 
much a nurse should work based on the specific contract. A soft constraint violation is 
incurred if the hours worked by a nurse are greater than the maximum number of hours 
assigned to the nurse's contract. 

 Minimum number of hours worked:  A minimum number of hours must be worked 
based on the specific contract. A soft constraint violation is incurred if the hours worked 
by a nurse are less than the minimum number of hours assigned to the nurse's contract. 

 Maximum number of assignments per day of week: For each nurse, each day of the 
week has a limit on the number of assignments that may be scheduled. A soft constraint 
violation is incurred if the limit on shift assignments for a specific day of the week is 
exceeded. This constraint can be used to enforce that employees get at least one free 
week day. 

 Maximum number of assignments per shift type: A limit can be imposed on the number 
of assignments that should be scheduled for a shift type. A soft constraint violation is 
incurred if the maximum number of shift assignments for a specific shift type exceeds 
the limits placed on the particular shift type for the scheduling period. This is usually a 
low limit as it is used to encourage shift diversity. 

 Maximum shift types per week: Each shift type has a limit as to how many times it may 
be worked in a week.  If this constraint is present a soft constraint violation would be 
incurred when a shift type is scheduled over the maximum for a specific shift type in the 
period of a week. 

 Number of consecutive shift types: Each shift type has a limit as to how many times it 
should be repeated in a schedule. If a nurse were to exceed the limit on working a shift 
type e.g. the E shift type worked 8 days in a row and the maximum being 6, a soft 
constraint violation would be incurred for exceeding the limit by 2 consecutive shift 
types. 

 Two free days after a night shift: It is preferable to have two free days after working a 
night shift. 

 No night shift before a free weekend: A night shift should not be assigned the day 
before a nurse’s free weekend. 

 Maximum consecutive working weekends: The maximum number of consecutive 
weekends where the nurse is working a shift. The contract specifies a maximum number 
of consecutive working weekends. A nurse exceeding the maximum number of 
consecutive working weekends incurs a soft constraint violation. 

 Minimum consecutive working weekends: The minimum number of consecutive 
weekends where the nurse is working a shift. The contract specifies a minimum number 



31 
  

of consecutive working weekends. A nurse exceeding the minimum number of 
consecutive working weekends incurs a soft constraint violation. 

 Maximum number of working weekends: The maximum number of weekends that can 
be worked by a nurse, where the nurse is working a shift. The contract specifies the 
maximum number of weekends that can be worked by a nurse. Exceeding the maximum 
number of working weekends incurs a soft constraint violation. 

 Minimum number of working weekends: The minimum number of weekends that can 
be worked by a nurse, where the nurse is working a shift. The contract specifies the 
minimum number of weekends that can be worked by a nurse. Working less than the 
minimum number of working weekends incurs a soft constraint violation. 

 Complete weekends: A soft constraint violation is incurred for an incomplete weekend, 
a weekend is considered incomplete when one day is not worked, if no shifts are 
worked no soft constraint violation is incurred. 

 Identical shift type during weekends: A soft constraint violation is incurred for working 
different shift types over a weekend. Days with no shift scheduled are not penalized. 

 Maximum number of assignments on bank holidays: This constraint takes into 
consideration the previous scheduling period for each nurse, such that each nurse is 
penalized depending on bank holidays worked in the previous scheduling period as well 
as the current scheduling period. The intent is that hospitals prefer limiting bank holiday 
assignments. A nurse with a number of assignments on bank holidays that exceeds the 
maximum incurs a soft constraint violation. 

 Shift type succession: Penalizes specific consecutive shift types e.g. a shift type E may 
not be followed by a shift type D. Having an E shift type followed by a D shift type for 
a nurse schedule would incur a soft constraint violation. 

 
Nurse preferences: 
 Requested day on: A specific nurse may request working on a particular day in the 

scheduling period. If the nurses' schedule includes not working the requested day on, a 
soft constraint violation is incurred. 

 Requested shift off: A specific nurse may request not working a specific shift type on a 
day in the scheduling period. If the nurses' schedule includes working the requested 
shift type on a specific day, a soft constraint violation is incurred. 

 Requested assignments: Nurses may request a specific shift assignment. If this shift 
assignment is not allocated a soft constraint violation is incurred. 

 Tutorship: Some nursing staff may not be allowed to work alone and therefore it is 
required to assign them a tutor. Nursing staff that require tutorage but are not allocated a 
shift assignment with another nurse will incur a soft constraint violation. 

 Nurses not allowed working together: Nurses may request being scheduled apart from 
other nurses. Rosters where shift assignments have nurses working with nurses whom 
they are not supposed to work with will incur a soft constraint violation.  
 

4.5 State of the art in nurse rostering 
This section presents literature that has contributed to the field of nurse rostering and the state of 
the art of nurse rostering. This section has been divided into mathematical approaches and meta-
heuristic approaches. 
 
4.5.1 Mathematical based approaches 
This section reviews literature which has focused on solving the nurse rostering problem using 
approaches that make use of mathematical techniques. This includes studies modeling the 
problem using integer linear programming and constraint programming and studies that 



32 
  

specifically use exact mathematical methods for example branch and bound. A description of 
these mathematical approaches can be found in Chapter 3 section 3.1. 
 
Valouxis et al. [100] use a two-phase integer programming approach. The first phase is used to 
assign work requirements to each nurse. This consists of randomly assigning a schedule for each 
week and ignoring constraints that depend on evaluating the shift type. Three operators are 
used: 
 Cut at one day and interchange – A day d is selected and two partial rosters from two 

random nurses are created for each nurse. The first is a roster up to day d and the second 
is a roster from day d+1 to the end of the scheduling period. The partial rosters are 
combined to form a new roster for each nurse. 

 Cut at two days and interchange – Two days are selected and ‘Cut at one day and 
interchange’ is applied to each day. 

 2-Opt procedure – Swaps one or more shift assignments from a nurse, with every other 
nurse. Overall improvements to the roster are accepted. 

The second phase assigns specific shift types to nurses. The shift assignment is random and 
performed over a 3 day period for the working shifts assigned to each nurse in phase 1. Phase 2 
is repeated until no improvement is found. These two phases are repeated until the time limit is 
exceeded. This approach was the overall winner of the first international nurse rostering 
competition (INRC2010).  
 
Santos et al. [101] used a variety of integer programming techniques such as mixed integer 
programming applied to the INRC2010 benchmark set. A greedy algorithm is used to create the 
initial roster. The greedy algorithm attempts all possible shift assignments for each nurse, 
keeping only the shift assignment that gives the lowest number of soft constraint violations.  A 
heuristic search is used to generate integer programming sub-problems to be solved by 
CPLEX[102]. CPLEX uses the simplex method to solve the generated sub-problems. The 
following neighbourhoods are used by the heuristic: 
 Fix days – A number of days are fixed and cannot be changed. A range of days is 

selected and at each iteration changes. 
 Fix shifts – Each iteration results in a selected shift type that can be changed and nurses 

with those shifts will be the attempted area of this search. This neighbourhood is exited 
once all iterations have been performed. 

 
These neighbourhoods create sub-problems which are solved by CPLEX. This approach 
produced improvements to the best known results at the time of publication. 
 
Burke and Curtois [57] used two methods for the first nurse rostering competition 2010. The 
first was an ejection chain variable depth search, this was used to solve the sprint instances. The 
second was a branch and price approach. The initial solution was produced by applying variable 
depth search for 5 seconds. Then the problem was solved using branch and price using the 
COIN-OR simplex method [103]. This approach ranked fourth in the sprint track, second in the 
medium track and second in the long track.  Burke and Curtois [57] extended the research and 
applied the branch and price algorithm to the Nottingham benchmarks. The algorithm was found 
to find the optimal solution for the majority of the benchmark set.  
 
4.5.2 Meta-heuristic approaches 
This section presents various meta-heuristics used to solve the nurse rostering problem. These 
include: variable neighbourhood search (VNS), tabu search and iterated local search. 
 
Burke et al. [104] used a variable neighbourhood search (VNS) for the nurse rostering problem. 
The approach was tested on the ORTEC instance in the Nottingham benchmark set. The VNS 



33 
  

makes use of two neighbourhood operators: 
 Swap shift assignment with free shift – Swap a nurse's shift type with a nurse with a 

free shift on the same day. 
 Swap two shifts – Swaps the shifts of two nurses with assigned shifts on the same day. 

The VNS was shown to perform better than a commercial package using a genetic algorithm.  
 
Frøyseth et al. [76], [105] present an iterated local search approach to solve the nurse rostering 
problem for  Swedish and Norwegian hospitals. The algorithm consists of two phases, 
construction and improvement. The construction phase is an algorithm that attempts to assign 
shifts based on what is considered important, what is the hardest shift type to assign and which 
employee it is best for it to be assigned to. The improvement phase uses a diversification 
mechanism.  The diversification mechanism removes a number of nurses’ shifts. Then the 
diversification mechanism enters the construction phase and iterated local search is used to 
create a valid roster. The neighbourhood operators used by the iterated local search are: 
 Swap two shifts – Swaps two shifts of two nurses on a specific day. 
 Swap three shifts of three nurses – Swaps three shifts of three nurses on a specific day. 
 Swap two shifts of two nurses on two days – Swaps two shifts of two nurses on two 

days. 
The generated rosters were evaluated by nurses with experience in manual nurse rostering. The 
generated rosters were considered good by staff that analysed them. 
 
Lü and Hao [106] used a neighbourhood search approach called adaptive neighbourhood search 
(ANS). The adaptive neighbourhood search was entered into the first international nurse 
rostering competition 2010. The authors define two neighbourhood operators: 
 Swap a shift type with a free shift – Swaps a shift of one nurse to a free shift on another 

nurse on a chosen day. 
 Swap two shifts – Swaps two shifts of two nurses on a specific day and neither shift is 

free or the same shift type. 
ANS switches between algorithms. The first algorithm is an intensive search that uses the tabu 
search meta-heuristic. The second algorithm attempts all feasible moves for a specific nurse on 
a specific day for a given neighbourhood operator. The second algorithm is applied to half the 
nurses selected randomly. The third algorithm selects a random set of half the nurses and 
considers all moves that can decrease soft constraint violations. The three algorithms use the 
neighbourhood operators, one swap and two swap. A variable called diversification level is 
changed throughout the search to decide which of the three algorithms should be used. The 
approach produced 12 improvements to the best known solutions for the INRC2010 benchmark 
set. This work used algorithms which used neighbourhood operators and it was a very effective 
approach. This approach was placed third for the sprint data set and fourth for the medium data 
set in INRC2010. 
 
Vu et al. [107] use iterated local search in combination with tabu search. The approach was used 
to solve the nurse rostering problem for a Canadian hospital. Greedy shuffling and steepest 
descent are used to improve the solution created by iterated local search. Greedy shuffling 
should not be used for large problems if computation time is limited. Iterated local search makes 
use of four neighbourhood operators: 
 Swap shift assignment with a free shift – Swaps the shift type of one nurse for a free 

shift of another nurse on a chosen day. 
 Swap Worst-Scheduled nurse (the nurse with the most personal and working constraint 

violations) – Swaps a shift assignment of the worst scheduled nurse, with another nurse 
on a chosen day. 

 Swap Worst-Scheduled nurse two days – Swaps two consecutive shift assignments of 
the worst scheduled nurse with another nurse's over the same two days. 
 



34 
  

 Swap Worst-Scheduled nurse three days – Swaps three consecutive shift assignments of 
the worst scheduled nurse with another nurse's over the same three days. 

 
Tassopoulos et al. [108] use a two-phase stochastic neighbourhood search. This method was 
tested on seven of the Nottingham benchmark instances and also applied to the INRC2010 
benchmark instances. The approach mainly uses an algorithm called: selective partial swap. 
Selective partial swap is a greedy algorithm applied to two nurses’ schedules. For each day in 
the scheduling period, over a subset of days (where the subset of days is the current day and the 
current day+n, n increments until the last day in the scheduling period), the shifts between the 
two nurses are swapped under a set probability. Swaps are kept if they are improving or equal. 
This is similar to the greedy shuffle algorithm [109] but instead is stochastic due to the 
introduced randomness. The approach uses three algorithms: 
 Successive segment swap mutation – Performs selective partial swap on a random list 

of all nurses. Select consecutive nurses in the list and perform ‘selective partial swap’. 
 Random segment swap mutation – Performs ‘selective partial swap’ over two random 

lists of all nurses. A nurse from each list is selected and their shifts are changed using 
‘selective partial swap’. 

 Selective day swap mutation – Attempt swaps of a randomly selected nurse with all 
possible nurses for each day of the scheduling period. Keeps improving or equal swaps. 

The algorithm is applied to a population of solutions; the population size used was 2. The first 
phase executes successive segment swap mutation for a set number of cycles after randomly 
creating an initial roster. The second phase for each individual in the population executes 
‘selective day swap mutation’ then ‘successive segment swap mutation’ and then ‘Random 
segment swap mutation’. Until a termination criterion is met, theses were a maximum number 
of iterations and a maximum number of iterations were the fitness remains unchanged. This 
approach found an improvement for the Nottingham benchmark instance HED01 and found 
improvements for medium_hidden01, medium_hidden03 and medium_hidden04. 
 
Nonobe [110] used an existing tabu search algorithm [111] to solve the nurse rostering problem. 
The approach formulates the nurse rostering problem as a constraint optimization problem and 
then applies the tabu search algorithm. The tabu search features an adaptive tenure for the tabu 
list and an aspiration criterion. This algorithm had three stopping criteria: maximum number of 
iterations, reaching a number of iterations where no improvement has occurred and a solution 
with no soft constraint violations. The tabu search uses two neighbourhoods; a 'shift' 
neighbourhood which changes the variable values in the solution and a 'large' neighbourhood 
that includes the 'shift' neighbourhood and a 'swap' neighbourhood. The 'swap' neighbourhood 
swaps variables of different values. The 'swap' neighbourhood increases for each iteration of the 
tabu search. This approach was ranked second in the sprint track, third in the medium track and 
fourth in the long track for the first international nurse rostering competition. 
 
Hadwan et al. [112] applied the harmony search algorithm to the nurse rostering problem. A 
harmony memory is represented by a two dimensional matrix. Rows represent a set of rosters. 
Columns represent the variables that are the shift types and nurses. To satisfy hard constraints, 
only valid weekly successive shift types were generated. These valid weekly shift types are 
randomly chosen from to create the roster for each nurse. The soft constraint violations of each 
roster are stored in the harmony memory. Rosters are then operated upon by three operators to 
create new rosters. These are: memory consideration, random consideration and pitch 
adjustment. Memory consideration is based on a probability to select a variable from the 
harmony memory. Random consideration is based on the inverse probability of memory 
consideration and randomly changes the value of the variable. Pitch adjustment attempts to 
change the value of variables based on another probability and a randomly chosen value for the 
amount of change (bandwidth). For pitch adjustment each only improving solutions are 
accepted. The algorithm was tested on data from a large hospital in Malaysia and was also 



35 
  

tested on the Nottingham benchmarks. This harmony search algorithm was found to perform 
better than a VNS [104] (on a single instance only), a shift sequence approach [113] and a 
memetic approach [114] but was found to perform worse than the scatter search algorithm used 
in [57]. 
 
Awadallah et al. [115] used a harmony search algorithm applied to the nurse rostering problem. 
The harmony memory is randomly generated. Pitch adjustment is applied to all nurses and each 
shift assignment in the nurse’s roster. The pitch adjustment operator is changed to use three 
neighbourhood operators when changing a shift type: 
 Move one shift – Swap the nurse’s shift type with a random nurse with a free shift type. 
 Swap two shifts – Swap the nurse’s shift type with a random nurse with a different shift 

type. 
 Do nothing – Make no changes. 

These operators are used based on a probability for each. Moves made by the operators to the 
candidate solution were discarded if they resulted in a worse candidate solution. Memory 
consideration assigns shift types to nurses from those in the harmony memory based on a 
probability. Random consideration assigns remaining nurses shift types based in the inverse 
probability. If an infeasible solution is generated the process begins again. Following these 
operators pitch adjustment is performed. This is done for each nurse. The stopping criterion for 
the algorithm was a maximum number of iterations. Harmony search was not able to compete 
with the results from the first international nurse rostering competition 2010 but was only tested 
on the set of sprint instances.  
 
Awadallah et al. extend their work in [116], where the random selection of variables in the 
harmony search memory is exchanged for the method ‘global best’[117]. This method is 
reportedly from particle swarm optimization. The global best method instead selects the best 
value in the harmony memory instead of a random value.  More neighbourhood operators are 
explored in pitch adjustment operator compared to [115]: 
 Move one shift – Swap the nurse’s shift type with a random nurse with a free shift type. 
 Swap two shifts – Swap the nurse’s shift type with a random nurse with a different shift 

type. 
 Token ring move – Swap the nurse’s shift type with a random shift assignment of 

another nurse, if the complete weekend soft constraint is violated. The selected shift 
assignment will also be swapped with another random nurse's shift assignment. 

 Cross move – Swap the nurse’s shift type with a random nurse’s shift type but the shift 
type of the assignment is the same. 

 Move weekend – Swap the nurse’s shift type if this shift assignment is during a 
weekend, swap the shift types of the entire weekend with a randomly selected nurse’s 
shift types during the weekend. 

 Swap two days – Swap the nurse’s shift type and the consecutive shift type on the 
following day with a random nurse's shift assignments for the same days. 

 Swap three days – Swap the nurse’s shift type and two consecutive shift type on the 
following day with a random nurse's shift assignments for the same days. 

This time the harmony search algorithm is applied to the entire INRC2010 benchmark set. 
Random selection is shown to perform better on the sprint track from the benchmark set 
compared to using the global best method. This algorithm outperforms the harmony search 
algorithm used in [115]. 
 
Awadallah et al. [118] hybridized the harmony search algorithm with greedy shuffle as it was 
previously found to be effective in [119], [104], [120]. The greedy shuffle algorithm is a local 
search method which swaps each shift of each nurse with every shift in the scheduling period 
but only accepts swaps which improve the candidate solution. Greedy shuffle was applied after 
creating a new harmony under a certain probability. This was tested on the INRC2010 



36 
  

benchmark set. Harmony search using the global best method to select from the harmony 
memory, performed slightly better on medium instances but worse on long track instances for 
the INRC2010 benchmark set [118].  
 
Awadallah et al. [121] extend the harmony search algorithm to include a hill climbing operator 
during the generate a new solution phase (see Algorithm 3.6). Hill climbing uses four 
neighbourhood operators: 
 Move weekend – Swap the nurse’s shift type if this shift assignment is during a 

weekend, swap the shift types of the entire weekend with a randomly selected nurse’s 
shift types during the weekend. 

 Move one shift – Swap the nurse’s shift type with a random nurse with a free shift type. 
 Swap two shifts – Swap the nurse’s shift type with a random nurse with a different shift 

type. 
 Shuffle moves – Selects a nurse with the worst roster (the highest soft constraint 

violations) and attempts to incrementally swap subsets of shift assignments starting 
from a randomly selected day until the end of the scheduling period, with a randomly 
selected nurse. 

This hybridization saw improved performance compared to global best harmony search [116] 
for the entire INRC2010 benchmark instance set. The algorithm performed well on the sprint 
instances but struggled to achieve good results on the medium and long instances. The authors 
suggested that they would have improved results by implementing new neighbourhoods.  
 

4.6 Critical analysis 
When evaluating a method it is often worthwhile to have a means to compare it with others. 
This is difficult without a reliable benchmark set. In literature there are very little reported 
results using the NSPLib benchmark data set. NSPLib has a large number of problem instances; 
while this is great for accurate statistical tests, it is not practical to the real world researcher. 
This is because it is difficult to find comparisons for results of problem instances and additional 
time must be spent doing experiments for problem instances where comparisons could be made. 
The Nottingham benchmark instances are a good resource which provides examples of hospital 
models from various countries. The problem is only a subset of this benchmark set is used by 
most researchers making it difficult to compare different approaches across the entire 
benchmark set. The nurse rostering competition benchmark instances are a real world data set 
but have only two strict hard constraints compared to three in the Nottingham benchmark 
instances. The main advantage is that new methods to solve the nurse rostering problem are 
being reported using these benchmark instances. There are also a number of reported results 
from the first international nurse rostering competition INRC2010. While there is some 
inconsistency in what instances have been reported, it is still possible to compare. It is also 
useful that one of the reported results is a selection perturbative hyper-heuristic. For these 
reasons the INRC2010 benchmark set will be used in this study. 
 
Integer programming and exact methods such as branch and price perform very well when 
applied to the nurse rostering problem. These have the advantage of being very reliable but have 
the disadvantage of being potentially computationally expensive, especially branch and price. 
Flexibility of the model used for integer programming approaches is also not guaranteed. The 
integer programing approaches presented have used local search algorithms in addition to 
mathematical methods. Meta-heuristics with a focus on neighbourhood search, such as the 
adaptive neighbourhood search (ANS) [106] and the two-phase stochastic neighbourhood search 
[108] have performed competitively on the INRC2010 benchmark set in terms of finding 
minimum values.  The two-phase stochastic neighbourhood search has shown very good 
performance for the nurse rostering problem. The performance of the two-phase stochastic 



37 
  

neighbourhood search has not been reported outside of the INRC2010 competition website [96] 
but it has been capable of finding and improving on the best known results for the INRC2010 
benchmark instances. A main feature of this neighbourhood search is its probabilistic greedy 
swap algorithm, selective partial swap. 
 
The field of nurse rostering is a domain where there are not that many new contributions, 
however new approaches have had success in improving benchmark results. The two-phase 
stochastic neighbourhood search [108] improved on and matched results obtained by state of the 
art integer programming techniques [101]. Most of the recent and previous research is focused 
on solving specific hospital problems. This makes it difficult to compare approaches. It also 
makes it difficult to determine if what worked for a study is effective for the nurse rostering 
problem overall, as often the problem instances are private. 
 

4.7 Summary 
This chapter presents the nurse rostering problem, the benchmark sets commonly used, the state 
of the art methods applied to solve the nurse rostering problem and finally a critical analysis of 
the nurse rostering problem is presented. 



38 
  

Chapter 5 Hyper-Heuristics 

This chapter introduces the field of hyper-heuristics. Firstly an introduction to the field of 
hyper-heuristics is given. Then each of the four categories of hyper-heuristics, identified in 
literature are reviewed. 

 

5.1 Introduction to hyper-heuristics 
The field of hyper-heuristics aims to provide a problem solving methodology that has a higher 
level of generality than methods such as branch and bound, integer programming and meta-
heuristics e.g. genetic algorithms and simulated annealing or problem specific low-level 
heuristics. Hyper-heuristics operate indirectly, mapping the low-level heuristics onto a candidate 
solution. The intent is that a hyper-heuristic can be reused in multiple problem domains. The 
reusability saves time compared to creating problem specific solutions.  Hyper-heuristics use 
information gained mostly from an objective function, a measure of the candidate solution's 
quality. 
 
The first reported use of the term hyper-heuristic was by Cowling et al. [122]. Hyper-heuristics 
were first defined as a problem independent method to choose low-level heuristics. An objective 
function is used to inform the hyper-heuristic to make the best choice of which low-level 
heuristic to choose and apply to a candidate solution. Burke et al. [123] identified the 
probabilistic learning technique used to combine low-level heuristics to solve the job shop 
scheduling problem by Fisher and Thompson [124] as an early hyper-heuristic. Other 
approaches that have been categorized as hyper-heuristics were also found in work involving 
genetic algorithms in [125]. In [125] the job shop scheduling problem was investigated. A 
genetic algorithm was tested to evolve low-level heuristic combinations. An individual 
represents a combination of low-level construction heuristics. For example the individual 
"abde..." would use the low-level construction heuristic represented by 'a' to schedule the job 
represented by 'b'.  In [126] a genetic algorithm was used to solve the transportation of chickens 
for a company in Scotland; as in the previous study the genetic algorithm evolves a string where 
each character represents a low-level construction heuristic. Each low-level construction 
heuristic is applied sequentially to build a schedule. There are two main types of hyper-
heuristics, selection and generative. 
 
The term heuristic is a heavily overloaded term in literature. Perturbation heuristics are moves 
which change (perturb) a candidate solution. For example, swapping two nodes in a directed 
graph would be a perturbation heuristic. Construction heuristics are used to build candidate 
solutions – for example, adding a node to a directed graph that is the closest in distance to the 
previous node (nearest neighbour) would be a construction heuristic. In hyper-heuristics these 
two types are referred to as low-level perturbation heuristics (LPHs) and low-level construction 
heuristics (LCHs). 
 
Selection hyper-heuristics are a category of hyper-heuristics where low-level heuristics are 
selected and applied to a candidate solution. The selection hyper-heuristic selects from a 
provided set of domain specific low-level heuristics. Selection hyper-heuristics can be 
categorized into selection perturbative and selection constructive hyper-heuristics. 
 
Construction heuristics are used to build a solution based on simple rules. Construction 
heuristics are usually specific to the problem domain. An example of a construction heuristic is 
the saturation degree heuristic. Saturation degree is a heuristic based on graph colouring and 



39 
  

presented in [127] for examination timetabling. The saturation degree heuristic first calculates 
the number of feasible periods for each event. A feasible period is a time slot that will not incur 
a hard constraint violation. The event with the least feasible periods available is given priority. 
An example of a selection construction hyper-heuristic is that implemented by Petrovic and Qu 
[128]. In this work case-based reasoning was used. A database of cases of timetabling problems 
paired with the best two low-level heuristics to solve each problem is stored. The hyper-
heuristic then uses the generated knowledge to apply the most suitable low-level heuristic to 
solve unseen timetabling problems. 
 
Burke et al. [129] extended the concept of a hyper-heuristic to include the generative hyper-
heuristic. This category of hyper-heuristic aims to create new low-level heuristics. As with the 
selection hyper-heuristics, generative hyper-heuristics can be identified in earlier studies. An 
example is the work by Fukunaga on the satisfiability (SAT) problem[130], [10], [131]. 
Generative hyper-heuristics are a type of hyper-heuristic that create new low-level heuristics for 
a chosen problem domain. The generative hyper-heuristic can be subdivided into construction 
and perturbation categories. The new low-level heuristics are created by using existing low-
level heuristics and features of the problem. According to Fukunaga [130] these components 
used for generating new heuristics are best identified by human designers. The components used 
by generative hyper-heuristics are features of low-level heuristics, low-level heuristics and 
features of the problem used for creating new low-level heuristics. Generative hyper-heuristics 
most commonly use genetic programming to create construction heuristics. Most of the work on 
generating perturbation heuristics has been done with grammatical evolution, a variant of 
genetic programming [132]. The heuristics generated by these approaches can be disposable or 
reusable [133]. Burke et al. [134] found the size of the training set and difficulty of the training 
instances to be a factor affecting reusability of generated heuristics for packing problems. 
 
The generative perturbative hyper-heuristic creates perturbation heuristics. An example of a 
generative perturbative hyper-heuristic is  found in [134]. In [134] grammatical evolution is 
used to create bin-packing perturbation heuristics. These evolved heuristics are reusable. 
 
The generative constructive hyper-heuristic creates construction heuristics, an example of a 
generative constructive hyper-heuristic can be found in [135]. In [135] reusable construction 
heuristics are generated for the knapsack problem using genetic programming. The generated 
heuristics outperformed human designed heuristics. The ‘heuristics’ created by generative 
constructive hyper-heuristics will be referred to as generated construction heuristics (GCHs) and 
those created by generative perturbative hyper-heuristics as generated perturbation heuristics 
(GPHs). 
 
There are hyper-heuristics with no learning and hyper-heuristics with learning [123]. A hyper-
heuristic that does not use the feedback provided by the objective function has no learning. An 
example of a hyper-heuristic without learning is a random selection perturbative hyper-heuristic 
that accepts all moves. 
 
Hyper-heuristics that feature learning fall into two categories of learning: offline and online 
learning. The type of learning is dependent on when the learning occurs in the hyper-heuristic. 
Online learning refers to learning based on the current information gained during the execution 
of the hyper-heuristic. The selection hyper-heuristic used in [122] is an example of online 
learning where a choice function is used to select low-level heuristics . The choice function 
selects low-level heuristics is based on the feedback learnt from the effectiveness of already 
applied low-level heuristics. Offline learning refers to learning obtained at an earlier stage; this 
information is used to inform the hyper-heuristic at runtime. This is usually a set of training 
instances used in the learning process. The information gained is used by the hyper-heuristic 
during an execution with instances that have not been part of the offline learning. Chan et al. 



40 
  

[136] generated a decision tree to select which groups of low-level heuristics to apply based on 
information gained during previous executions, such as the number of suboptimal solutions 
found and the percentage of suboptimal moves found after using groups of low-level heuristics.  
 
Hyper-heuristics have limited interaction with the problem domain. This is because the hyper-
heuristic only receives feedback from the objective function based on the effect of the low-level 
heuristic on the candidate solution. When the hyper-heuristic cannot access domain specific 
information, this is called the domain barrier [31], [122], [137]–[140]. The domain barrier 
allows the hyper-heuristic to indirectly interact with the candidate solution. Hyper-heuristics use 
only the provided low-level heuristics and the objective function for feedback. Maintaining the 
domain barrier increases the generality of the hyper-heuristic. This is different from meta-
heuristics that operate by searching the solution space. This generality is achieved through a 
mapping from the heuristic space to the solution space [123], [137]. 
 
Recently attempts to provide hyper-heuristic frameworks that generalize across a number of 
domains have been explored. The Hyflex framework allows for implementation of a selection 
perturbative hyper-heuristic that can be benchmarked across multiple domains [141].  Hyflex 
includes benchmark datasets and low-level heuristics for the problem domains of personnel 
scheduling, traveling salesman, bin packing, SAT and permutation flow shop scheduling [141]–
[145]. In the Hyflex framework, the problem domains and LPHs are made available through an 
interface to the user. An alternate concept exists in the Hyperion framework which allows meta-
heuristics and hyper-heuristics to be implemented and studied. This framework is not limited to 
specific problem domains. Hyperion provides existing move acceptance methods for use such as 
accept all moves, accept only improving, exponential Monte Carlo, simulated annealing and 
great deluge [146], [147]. These are provided for the purpose of exploring and analyzing the 
effectiveness of these move acceptance criteria with meta-heuristics and or selection 
perturbative hyper-heuristics.  This progress in research provides proof of the main goal of 
hyper-heuristics, the goal of a more generalized approach for problem solving. Hyper-heuristics 
are searching for reliable problem independent methods that are good at generalizing across 
problem domains [148], [149]. 
 
In the following sections relevant literature across the four categories of hyper-heuristics will be 
presented. The sections will cover the methods employed, the domain the hyper-heuristic was 
applied to and any relevant outcomes: Firstly the selection perturbative hyper-heuristic, 
secondly the selection construction hyper-heuristic, thirdly the generative construction hyper-
heuristic and finally the generative perturbative hyper-heuristic is presented. This order was 
chosen as selection perturbative hyper-heuristics are arguably the most common hyper-heuristic 
and it is necessary to see how selection differs between the selection constructive and selection 
perturbative hyper-heuristics. The generative construction hyper-heuristic is the most researched 
type of generative hyper-heuristic and thus should be used to influence the research that will 
lead to the more recent field of generative perturbative hyper-heuristics.  
 

5.2 Selection perturbative hyper-heuristics 
This section will introduce and survey selection perturbative hyper-heuristics. This section will 
look at relevant literature on selection perturbative hyper-heuristics. 
 
Selection perturbative hyper-heuristics are generally comprised of a selection method and a 
move acceptance method [150], [151]. The selection method decides which heuristic in the 
provided set of LPHs to select and apply to the candidate solution. If only a single solution is 
improved by exploring a set of neighbourhood moves, it is called a single-point search [152]. 
The move acceptance method decides if the move made by a selected LPH is accepted. It is 



41 
  

possible to use accept all moves as a move acceptance method. Multi-point search methods 
when used as selection perturbative hyper-heuristics, e.g. genetic algorithms, are both heuristic 
selection and move acceptance. In the case of a genetic algorithm selection perturbative hyper-
heuristic the process of evolution and the fitness function take care of selecting heuristics and 
whether or not to accept a move. The LPHs are problem domain dependent. This is because the 
LPHs must map to the solution space of the problem domain. The selection perturbative hyper-
heuristic aims to outperform the individual LPHs [153]. 
 
Ayob and Kendall [154] investigated a hyper-heuristic that uses random heuristic selection. The 
hyper-heuristic was used to solve the component placement problem of an electrical circuit 
board. It was found to be best solved using EMCQ (Exponential Monte Carlo with counter) as 
the move acceptance method. The authors found that a hyper-heuristic using choice function 
selection and simulated annealing move acceptance performed poorly in comparison. 
 
Bai and Kendall [155] compared two selection perturbative hyper-heuristics to solve the 
problem of shelf organization. One of the hyper-heuristics used random heuristic selection and 
the other choice function heuristic selection. Three move acceptance methods were tested for 
the random heuristic selection hyper-heuristic. These move acceptance methods were accept 
improving moves, accept all moves and simulated annealing. The move acceptance for the 
choice function heuristic selection hyper-heuristic was not reported. The choice function 
heuristic selection hyper-heuristic was based on [138]. The hyper-heuristic with random 
heuristic selection and simulated annealing move acceptance was found to be the best 
performing hyper-heuristic.  
 
Kendall and Soubeiga [156] investigate two hyper-heuristics. One with random heuristic 
selection and one with choice function heuristic selection. These are tested on a project 
presentation scheduling problem. The move acceptance methods investigated were accept all 
moves and accept only improving moves. The hyper-heuristic with choice function heuristic 
selection outperformed the hyper-heuristic with random heuristic selection on tests which were 
performed on initial solutions of a poor quality. It was found that a hyper-heuristic using choice 
function heuristic selection performed better than the hyper-heuristic using random heuristic 
selection. The move acceptance methods tested were ‘accept all moves’ and ‘accept only 
improving moves’. Choice function heuristic selection was able to find solutions of better 
quality in a shorter time period.  
 
Burke et al. [157] investigate the heuristic selection methods of choice function and random 
selection. A comparison is given of the move acceptance methods of simulated annealing and 
EMCQ (Exponential Monte Carlo with counter). EMCQ decreases the chance of accepting a 
solution exponentially with time but if there is no improvement the chance of accepting 
solutions is increased. The hyper-heuristics tested are similar to those in [154]. The hyper-
heuristics were tested on the examination timetabling problem using the Carter benchmark set 
[158]. The choice function selection hyper-heuristic with simulated annealing move acceptance 
was found to be better than a random selection hyper-heuristic with EMCQ as move acceptance. 
 
Özcan et al. [159] compare the performance of greedy random heuristic selection, reinforcement 
learning heuristic selection and simple random heuristic selection in a hyper-heuristic for 
solving the examination timetabling problem.  Late acceptance was used for move acceptance. 
Late acceptance is similar to hill climbing and simulated annealing. Late acceptance hill 
climbing differs from standard hill climbing algorithms by accepting candidates by considering 
previous candidate solutions. The hyper-heuristics were evaluated on the Carter benchmark set 
[158]. Simple random heuristic selection and late acceptance were found to perform the best. 
This hyper-heuristic outperformed a hyper-heuristic using choice function heuristic selection 
and simulated annealing move acceptance [157]. 



42 
  

McClymont and Keedwell [160] implemented a hyper-heuristic using a Markov chain for 
heuristic selection and move acceptance. The hyper-heuristic was tested on multi-objective test 
problems. The method only uses four LPHs, namely, mutation, replication and transposition. 
This approach was compared to a random selection hyper-heuristic using the same LPHs 
however the acceptance method used was not mentioned.  This hyper-heuristic outperformed 
the random selection hyper-heuristic. 
 

Burke et al. [161] use an ant colony algorithm for heuristic selection. This hyper-heuristic was 
applied to the project presentation scheduling problem. A variety of move acceptance methods 
were investigated. The move acceptance, accept all moves was more successful than accepting 
improving moves only. This hyper-heuristic was found to perform better than the hyper-
heuristic using choice function selection from [156]. It produced better results than a hyper-
heuristic using simple random heuristic selection. In [162] a similar ant colony hyper-heuristic 
is applied to the travelling tournament problem. The move acceptance used was not reported.  
The hyper-heuristic produced better results than integer programming, constraint programming, 
tabu search and ant colony optimization approaches used to solve the same travelling 
tournament problem instances. 
 
Burke et al. [163] used tabu search for heuristic selection as part of a hyper-heuristic to solve 
two problems namely, the university course timetabling problem and nurse rostering problem. 
The authors do not specify the use of a specific move acceptance method. This hyper-heuristic 
was not changed only the low-level heuristics used were changed. The hyper-heuristic was not 
as good as a tailor-made genetic algorithm for the nurse rostering problem. For the university 
course timetabling problem, the hyper-heuristic performed better than or equal to an ant colony 
algorithm and a local search algorithm. It is important to note that in this study no parameters 
were changed for the tabu search algorithm when it was used for a different problem domain. 
 
Kendall and Hussin [164], [165] used a hyper-heuristic similar to that of [163] to solve 
examination timetabling problems. The hyper-heuristic used tabu search for heuristic selection. 
Three variants of move acceptance methods were compared namely tabu search, hill climbing 
and great deluge. It was reported that great deluge acceptance performed well by directing the 
search towards better quality solutions. The authors note that the hyper-heuristic took up to 10 
times longer than using a great deluge meta-heuristic. This can be expected because a hyper-
heuristic interacts indirectly with the solution space. Hyper-heuristics are known to require more 
runtime in general. 
 

Cowling et al. [31] employed a genetic algorithm using an indirect representation as a selection 
perturbative hyper-heuristic to solve a trainer scheduler problem. Each chromosome represents a 
string of selected LPHs. The LPHs are applied in sequence to a candidate solution. Evolution is 
achieved by using genetic operators. The genetic operators used were crossover and mutation. 
This work is extended in [31] to incorporate an adaptive length representation rather than fixed 
length by using cut and splice crossover. The adaptive length genetic algorithm hyper-heuristic 
was found to perform better than the individual heuristics, a genetic algorithm and the genetic 
algorithm hyper-heuristic in [22]. In [40] the adaptive length genetic algorithm hyper-heuristic 
used guided genetic operators. These operators were specialized mutation operators which 
removed poorly performing heuristics from longer than average individuals. The length of the 
average individual is kept track of during the execution. This variation also injects LPHs that are 
considered good into shorter than average individuals. This version of the hyper-heuristic is 
applied to the student project presentation scheduling  problem and the geographically 
distributed course scheduling problem [40]. In [40] a tabu list was used to limit the use of LPHs 
that did not change the objective function from being called for a number of subsequent 
generations. This tabu criterion is only applied to the position of the LPH in the chromosome. It 
was found that using this tabu list did not provide better results when compared to the previous 



43 
  

genetic algorithm hyper-heuristic using guided genetic operators, a genetic algorithm, memetic 
algorithm and choice function hyper-heuristic from [156]. The authors state that the genetic 
algorithm using the tabu list and the choice function hyper-heuristic require less processing time 
compared to the genetic algorithm hyper-heuristic using guided genetic operators.  
 
The selection perturbative hyper-heuristic is a powerful problem solving method. Selection 
perturbative hyper-heuristics show good generality over different problem domains. Generally a 
selection perturbative hyper-heuristic is more flexible than a meta-heuristic approach. Selection 
perturbative hyper-heuristics can more easily be applied to different variations of a problem 
domain and if necessary to different problem domains. The design of a selection perturbative 
hyper-heuristic is dependent on choosing either a good performing heuristic selection method 
and or a good move acceptance method. 
 

5.3 Selection construction hyper-heuristics 
Selection constructive hyper-heuristics select LCHs. Each LCH determines an allocation to the 
candidate solution based on its own measure. The suggested allocation is then used to construct 
the candidate solution [151]. The aim is to make more intelligent use of LCHs. A single LCH 
can be used to create an entire candidate solution. LCHs are good at creating feasible solutions. 
A string produced by a genetic algorithm, where each character represents a LCH is still a 
selection hyper-heuristic because a hyper-heuristic (the genetic algorithm) has selected the order 
of application for those LCHs. 
 
Burke et al. [123] consider the work by Thompson and Fisher, and Crowston et al. [124], [166] 
as some of the first hyper-heuristics. This work used probabilistic learning a classification 
approach based on the probability of an event happening. This was used to select known job 
shop scheduling construction heuristics. The probabilistic learning updated the performance of 
the applied LCH. The associated performance of each LCH decided which construction 
heuristic was best to use when creating a candidate solution. 
 
The ideas of Thompson and Fisher, and Crowston et al. [124], [166] are explored further using 
genetic algorithms by Fang et al. [125], [167]. Fang et al. [125], [167] used a genetic algorithm 
to solve the job shop scheduling problem. In this genetic algorithm each individual represents a 
sequence of LCHs and jobs that require allocation. This was effectively a selection constructive 
hyper-heuristic and searches the heuristic space. The selection construction hyper-heuristic was 
found to perform better than a standard genetic algorithm applied to the solution space. 
 
López-camacho et al. [168] implement a genetic algorithm to evolve LCH strings to solve 1D 
and 2D bin-packing problems. A single allocation method was used to fill bins, where other 
similar studies let the genetic algorithm also choose the allocation method in the encoding.  The 
evolved string of LCHs outperforms the individual heuristics. 
 
Ross and Marin-Blázquez [169] bused XCS, an evolutionary algorithm classifier as a hyper-
heuristic. This hyper-heuristic was used to select a set of construction heuristics to solve the bin-
packing problem. The evolved heuristic combination was able to outperform the largest fit 
decreasing heuristic and the variation of Django and Finch’s heuristic which was found to be the 
best performing heuristic. A training set of 10 instances was used. The evolved combinations 
found were evaluated on 223 instances. The final evolved combination solved more instances to 
optimality than the best individual heuristic. 
 
Pillay [170] used an evolutionary algorithm hyper-heuristic to solve the uncapacitated 
examination timetabling problem. The individuals in the population are represented by strings. 



44 
  

Each character in the string represents a LCH. The LCHs are the graph colouring construction 
heuristics defined for examination timetabling [171]. The approach was tested on instances from 
the Carter examination timetabling benchmark set [158]. This research tested different 
representations for individuals in the population. These were: variable length heuristic 
combination, n-times heuristic combination and fixed length heuristic combination. All 
representations found feasible timetables. It was found that a combination of all the 
representations tested generalized better than each LCH. 
 
Els and Pillay [172] used an evolutionary algorithm hyper-heuristic to solve the curriculum 
based university course timetabling problem. This approach was tested on a set of 14 
benchmark problems from the ITC2007 benchmarks [97]. Each individual was made up of 
characters that map to graph colouring construction heuristics found in [171]. The size of the 
individuals was set to be problem dependent. The combinations evolved were analysed to find 
patterns in the occurrence of construction heuristics. It was found that the order and frequency 
of LCHs were problem dependent. The evolutionary algorithm hyper-heuristic produced 
feasible timetables for all runs. This was better than individual LCH performance. 
 
Burke et al. [127] used a tabu search hyper-heuristic to solve examination timetabling problems. 
Graph colouring LCHs were used [171]. It was found that the tabu search works best for 
heuristic selection when combined with a deepest descent local search [127]. Deepest descent is 
applied to the candidate solution after each LPH application. Using a larger set of LCHs 
provided better results. The Carter examination timetabling benchmark set [158] was used to 
test the hyper-heuristic. The larger set of LCHs adversely affected computational time due to 
exploration of a larger search space. The same hyper-heuristic was also tested using the 
ITC2007 university course timetabling benchmark set [97].  The hyper-heuristic produced better 
results for one problem instance compared to previous work employing a tabu search hyper-
heuristic, local search and ant colonization [173]. This work was extended in [174] by Qu and 
Burke investigating using local search during timetable construction. A greedy search was 
performed when a completed candidate solution was produced and during candidate solution 
construction. This resulted in improved results over those found in [127]. In [174] it was found 
that iterative local search and variable neighbourhood search were more effective than tabu 
search and the steepest descent method for the hyper-heuristic to choose LCHs. The Carter 
examination timetabling benchmark set [158] and the ITC2007 university course timetabling 
benchmark set [97] were used for testing the selection construction hyper-heuristic. This work 
shows the advantages of searching the heuristic search space with the solution space. 
 
Sabar et al. [175] used four ordered lists of four selected LCH to solve examination time tabling 
problems. In this approach the heuristic groups are applied hierarchically similar to the approach 
used by Pillay and Banzhaf [176]. Each group was a permutation of selected graph colouring 
heuristics. The timeslots selected are chosen using roulette wheel selection. This work differs 
from the work of Pillay and Banzhaf [176] by using a difficulty index given by the sum of the 
suggested order given by each individual heuristic for each exam. The lowest difficulty index 
indicates the most difficult exam to be scheduled first. This approach was found to be better 
than using a single LCH, which was selected and applied sequentially. This approach was tested 
on the Carter benchmarks [158] and the ITC2007 benchmarks [97]. It was suggested that 
hierarchical combinations are an effective strategy when compared to sequential combinations 
used by hyper-heuristics generally. 
 
Selection constructive hyper-heuristics have been shown to be effective for creating candidate 
solutions. It is evident that construction heuristics are very useful for providing feasible initial 
solutions. 
 



45 
  

5.4 Generative constructive hyper-heuristics 
Generative constructive hyper-heuristics describe a hyper-heuristic approach that generates new 
LCHs or GCH [151]. These GCHs are found using components. Components are human 
identified and include features of the problem and existing LCHs. The chosen components are 
recombined by the hyper-heuristic to create a GCH. Generative constructive hyper-heuristics 
aim to automate the process of creating equal or better LCHs. This results in a new generated 
construction heuristic (GCH). Automating the creation of LCHs saves time when working on 
new problems. The studies presented here made contributions to the field. 
 
Oltean and Dumitrescu [177] evolved GCHs for the travelling salesman problem using multi 
expression programming. Multi expression programming is a variant of genetic programming 
that uses a linear representation [178].  The best GCH that was found through evolution was 
compared to the nearest neighbour construction heuristic and the minimum spanning tree 
construction heuristic on 17 instances from TSPLIB [179]. The GCH performed better than the 
minimum spanning tree construction heuristic and better than the nearest neighbor LCH on 14 
of the 17 instances tested. 
 
Poli et al. [180] use a linear genetic programming approach to evolve construction heuristics. A 
steady state control model was used. Two different crossover operators were selected from 
uniformly. The resulting offspring had point mutation applied to them. The primitives used 
consisted of arithmetic operators applied to an accumulator. There were two accumulators used 
to provide the ability to store and swap values. Registers were used to input problem specific 
information. The GCHs were used to solve the one dimensional bin packing problem. A training 
set with 48 problem instances was used. The GCHs were reported to generally outperform 
human designed heuristics.  
 
Dimopoulos and Zalzala [181] used genetic programming to create GCHs for a machine 
scheduling problem. A set of 20 training instances was used. The function set consisted of 
arithmetic operators. The terminal set was derived from the parameters which comprise the 
LCH called, Montagne [182]. These parameters were: the processing time of a job, due date of a 
job and sum of processing time of all jobs in the problem instance. The earliest due date and 
shortest processing time LCHs were included in the components used. It was reported that the 
GCHs were found to be equivalent to the individual LCHs in performance on test instances. 
 
Geiger et al. [183] developed an evolutionary learning system to create GCHs. The GCHs are 
used to solve a machine scheduling problem. This approach is similar to that of [181] but more 
problem specific components are used and no LCHs are used. Arithmetic functions and a 
conditional function were used to form a GCH. The terminal set consisted of components 
derived from existing LCHs, integer constants and variables such as: problem instance 
attributes. For example, the due date, current time, min and max due date and queue time. The 
GCHs are shown to perform equal or better than known construction heuristics. The 
performance of the GCHs was competitive to an algorithm called Johnson's algorithm which 
was the benchmark for the problem domain. 
 
Jakobovic et al. [184] used genetic programming to create GCHs for a multiple machine 
scheduling problem. A steady state control model was used. Standard crossover is used and 
three types of mutation are used, namely, subtree mutation, permutation and shrink mutation. 
The functions used are arithmetic operators and the ramp function. The terminal set consisted 
of: processing time of a job, sum of processing times of remaining jobs and setup time from 
previous job. These are similar to those used in [183].  One hundred and twenty problem 
instances were used for a training set. The GCH performed better than already existing 



46 
  

heuristics such as earliest due date, shortest processing time and Montagne [182] on problem 
instances that were not part of the training set. 
 
Ho and Tay [185], [186] used genetic programming to create GCHs for the job shop scheduling 
problem. The function set included arithmetic functions and an automatically defined function 
to encapsulate a subtree for reuse. The components used were problem instance variables for 
example; release date, processing time, number of operations for each job and average total 
processing time.  A training set of 108 job shop scheduling problem instances was used. It was 
found that the GCHs were better than the best identified LCH of estimated due date. 
 
Hyde et al. [11] used genetic programming to create GCHs for the bin packing problem. The 
function set consisted of arithmetic operators. The terminal set consisted of: features of the 
problem e.g. number of pieces in a bin, bin capacity and size of current piece. The best GCH 
found matches the performance of the first fit heuristic. It was found that the training set needs 
to represent the characteristics of the problem instances that need solving or the created heuristic 
may violate hard constraints. GCHs for one category of a problem, perform better when applied 
to problems from the same category. The GCHs can be specialized on a particular variation of a 
problem or be a general heuristic. It was found that low-level heuristics that were evolved to be 
more generic to the problem domain performed poorly overall. The work by Hyde et al. [11], 
[149] was extended for the bin packing problem [187]. In this work construction heuristics are 
evolved over a number of different problem instances. In total 20 instances were used as a 
training set. The evolved heuristics are applied to problems that differ to those in the training 
set. The GCHs, performed better than the best fit heuristic. 
 
Burke et al. [188] used genetic programming to create GCHs for the two-dimensional stock 
cutting problem.  The function set consisted of arithmetic operators. The components used were 
problem specific variables such as the width or height of a piece, the area of a piece or the slot 
height or sheet height. One GCH is evolved for instance. The GCHs are equivalent to the best fit 
heuristic. The GCHs were reported to have higher runtimes than the best fit heuristic.  
 
Drake et al. [135] used genetic programming to create GCHs for a knapsack problem. These 
heuristics were trained on 5 instances and tested on an unseen set of 5 instances. The GCHs had 
equivalent performance to the existing LCH called profit to weight ratio. LCHs were evolved 
using genetic programming by Allen et al. [189]  for the three dimensional knapsack packing 
problem. The components used were problem specific features such as the volume of a piece, 
the value of a piece and the coordinates of the current corner. The GCH is used to select from all 
available pieces, pieces are inserted one at a time. The evolved LCHs outperform a human 
created heuristic [190]. The performance of the GCHs were found to perform better than a 
simulated annealing meta-heuristic on 8 of 20 instances, two of which had a difference of 14.3% 
and 20.5% in the quality of the solutions compared to simulated annealing. The simulated 
annealing meta-heuristic had better performance for 10 of 20 instances but the largest difference 
in the quality of solutions was 11.5%. 
 
Xie et al. [191] used genetic programming to create GCHs for the storage location assignment 
problem. Arithmetic functions were used and so were two custom functions. The first was an if 
statement, that returns one of two values based on the value of a third input. The second was a 
less than or equal to operator that returns 1 or -1.  The components used were problem specific 
variables such as, the average picking frequency, the picking frequency of the most and least 
popular items, the sum of the total picking frequencies and the number of available and used 
bins. The best GCH found, had good reusability, was able to find near optimal solutions and had 
good runtime performance, when applied to increasingly challenging problem instances. The 
best GCH found was compared to the branch and cut method. The branch and cut method found 
solutions of better quality compared to the GCH. The hyper-heuristic had better scalability and 



47 
  

was able to solve problems of increased problem size which were computationally infeasible for 
the branch and cut method. An analysis of human created heuristics was given showing superior 
performance and flexibility of automatically created GCHs. It was shown that it is difficult to 
manually create an effective heuristic. 
 
Pillay and Banzhaf [176] created hierarchical combinations of graph colouring LCHs. These 
combinations were investigated for the uncapacitated examination timetabling problem. In this 
approach a tree like hierarchy was made and the heuristics are applied using a pareto 
comparison instead of sequentially. The combinations are tested on the Carter benchmarks 
[158]. This preliminary work performed well producing solutions close to the best results cited 
in literature. This is made more impressive as no improvement phase was utilized. The results 
were generally better than tabu search [127], [192], variable neighbourhood search [193] and a 
fuzzy logic expert system [194]. 
 
Generative constructive hyper-heuristics is still a developing field. It was said in [189] that the 
first aim should be to automate the generation of LCHs and not necessarily obtain the best 
results. There is still potential for improvement and eventually replacing human experts in LCH 
creation. The human researcher will still be needed to determine training sets and components. 
Evolutionary algorithms have been shown to be good at combining components. For reusable 
GCHs a training set needs to feature all variations of the problem instances to achieve a high 
generality. Disposable evolved LCHs offer better performance generally for the problem 
instances they were evolved for. This means that the generality of the GCH is often sacrificed 
for improved results on specific instances. GCHs are already competitive with human designed 
construction heuristics. 
 

5.5 Generative perturbative hyper-heuristics 
The generative perturbative hyper-heuristic model makes use of existing features of the 
problem, LPHs, heuristics and algorithms. These are combined in some program structure to 
generate new perturbation heuristics.  These components are specific to the problem domain 
[130], [151]. Generative perturbative hyper-heuristics create generated perturbation heuristics 
(GPH). 
 
Fukunaga [130] used a population based approach that generates s-expression individuals called 
CLASS. This is done using a single operator called, composition. The composition operator 
combines the two individuals into a single s-expression using a conditional if-else statement, 
where the condition is a Boolean expression. The aim of the approach is to create variable 
selection heuristics for the SAT problem. This is considered early work in automatically 
creating perturbation heuristics. The work combined known components. These components 
were derived by looking at WalkSAT, GSAT and Novelty+ algorithms. The primitives for the 
approach were inputs of scoring of variables, ranking of variables, the age of the variable and 
conditional branching functions. Two evolved perturbative heuristics were compared with 
WalkSAT and Novelty+ algorithm and found to be competitive. CLASS was shown to be better 
than random generation of GPHs. In [131] the work by Fukunaga was extended and the GPHs 
were found to have good scalability. In [195] the function set is increased. The GPHs are shown 
to have competitive performance with respect to the previous version [130] and GSAT and 
Novelty+ algorithms. 
 
Nguyen et al. [196] used genetic programming to evolve disposable heuristics. This work was 
done using the Hyflex framework. This study is an exception to the use of Hyflex as a selection 
perturbative hyper-heuristic framework. In this study it uses the LPHs within Hyflex as part of a 
new evolved heuristic.  The function set consists of conditionals, acceptance methods and 



48 
  

combination functions. Conditionals included: if new solution, if local optimum and if no 
improvement. Acceptance methods used were: accept all moves, simulated annealing. A 
combination function was available to combine two LPHs, executing both heuristics 
sequentially. It was found that the evolved disposable heuristics performed better than heuristics 
generated randomly from the initial population.  On the bin packing and SAT problems, the 
generated heuristics were competitive to the existing hyper-heuristics provided by CHeSC2011.  
The performance of existing hyper-heuristics was not competitive with competition submissions 
for CHeSC2011. 
 
Poli and Keller used linear genetic programming to evolve perturbation heuristics [197]–[201]. 
This approach evolved perturbation heuristics for the data sets from TSPLIB [179] for the 
travelling salesman problem. The terminal set is made up of local search heuristic variants of 3-
opt, 2-opt and includes a basic hill climber. The terminal set also includes if_2-Change and if_3-
Change, which execute 2-opt and 3-opt respectively only if an improvement is made to the tour. 
The function set includes If_improvement, which branches if an improvement occurs and repeat 
until improvement, which repeats until an improvement is made. The results of [200] were 
shown to be better than those obtained by Oltean [177] which were obtained using a GCH 
created by a generative constructive hyper-heuristic. In [197] it was found that reducing the 
number of primitives used effects the time it takes to evolve heuristics as the search space is 
reduced. The results of [200] were similar in quality to a genetic algorithm solver for the 
travelling salesman problem. 
 
Bader-el-den and Poli [202]  used genetic programming, using strong typing in the form of a 
grammar to create disposable perturbation heuristics to solve the SAT problem. This was done 
by using a number of already known local search heuristics. A grammar was created using 
features found in the local search heuristics. One feature identified was probabilistic branching. 
This approach used probabilistic branching components which were if statements with a 
probability variable as an argument. This was used instead of conditional branching for program 
structure. The initial population was reported to contain valid heuristics. Conditional branching 
was considered a weakness of the heuristics generated by Fukunaga [130]. This was because it 
did not give the GP system enough freedom and was used to choose between two heuristics in 
the conditional which resulted in slow runtimes of the GPHs created. The GPHs in this study 
were found to produce results competitive with the WalkSat algorithm and the FlipGA 
algorithm in [203]. 
 
Drake et al. [132] used grammatical evolution to create an algorithm for the shaking method for 
a variable neighbourhood search and construction heuristics for the vehicle routing problem. 
The approach was tested on two different categories of vehicle routing problems. It performed 
better on capacitated vehicle routing problems (where there are more constraints on the 
vehicles) than on vehicle routing problems with a time window (where an added constraint is 
included to deliver within a certain time period). This could be due to the components made 
available to the hyper-heuristic not being sufficient to deal with the constraints of the second 
type of problem. This suggests that the provided functions and terminals were not able to form 
heuristics capable of dealing with differences in the problem domain. 
 
Burke et al. [134] used grammatical evolution to evolve perturbation heuristics for bin packing 
problems. A single instance from each of the selected categories of bin-packing problem 
instances was used to evolve GPHs. During the evolution the GPHs were measured by their 
performance over 100 applications of the same GPH on a different initial candidate solution for 
each generation. This hyper-heuristic was able to generate heuristics that were one away from 
the global optimum for the tested bin packing problems.  The advantage of using a generative 
perturbative hyper-heuristic to automate the design of LPHs is that GPHs can be evolved 
specifically for any bin packing problem.  



49 
  

Sabar et al. [204] used grammatical evolution to evolve combinations of LPHs and acceptance 
methods. This approach used a steady-state control model. In genetic programming terms the 
LPHs and acceptance methods are part of the terminal set. The function set consisted of: 
neighbourhood union, random gradient and token ring search. Neighbourhood union combines 
LPHs. Random gradient involves repeated application of a heuristic until it is not accepted by 
the acceptance methods. This approach aims to combine acceptance methods and existing 
LPHs. In total 10 acceptance methods were used. The approach was tested on examination 
timetabling and vehicle routing problems. It produced competitive results compared to bespoke 
local search methods such as simulated annealing and large neighbourhood search. 
 
KhudaBukhsh [195] used local search to generate variable selection heuristics for the SAT 
problem. A GPH was created by performing a local search of components identified by 
Fukunaga [130]. The generated heuristics can be considered superior to those evolved by 
Fukunaga due to ability to solve challenging SAT instances and having produced results that 
were competitive with state of the art SAT solvers. This hyper-heuristic created heuristics that 
were better than the GNOV, RANOV and AE20 heuristics.  
 
There is little work done on this type of hyper-heuristic. The work by Sabar et al. [204] in 
exploring the combination of LPHs and move acceptance methods is promising. Adding 
operators to add conditional branching or problem specific conditionals could be explored to 
create more effective perturbative heuristics. The fitness function should be tailored to the aim 
of the approach as in the work by Fukunaga [133] and Burke et al. [131]. LPH combinations are 
disposable in most optimization problems due to the problem specific nature of LPHs.  
 

5.6 Critical analysis of hyper-heuristics 
The most researched type of hyper-heuristic is the selection perturbative hyper-heuristic. The 
performance of selection perturbative hyper-heuristics is dependent on the ability of heuristic 
selection and move acceptance methods. For single-point search algorithms two distinct 
methods are usually required.  For multi-point search algorithms these are one and the same. 
Provided that the move acceptance method is good the heuristic selection method can be 
effective even if it is very simple, even simple random selection has been shown to work well. 
The studies surveyed in the chapter show that meta-heuristics such as tabu search and simulated 
annealing have performed well as move acceptance methods. It has been shown that simulated 
annealing is a top performing move acceptance method. For the project presentation problem an 
ant algorithm hyper-heuristic and the guided operator genetic algorithm hyper-heuristic 
outperformed a choice function selection hyper-heuristic.  This suggests that biologically 
inspired methods may have advantages in certain problem domains. It is evident from the 
literature that genetic algorithm hyper-heuristics showed promise.. 
 
Selection constructive hyper-heuristics are good at creating high quality initial solutions if 
LCHs are available for the domain. It is interesting to note how combinations of heuristics can 
be applied to create candidate solutions. There is merit in searching both the low-level heuristic 
space and the solution space. When employed as selection constructive hyper-heuristics multi-
point searches have been shown to be quite effective. Genetic algorithms are seen to produce 
good results for a number of domains. 
 
Generative constructive hyper-heuristics show that there is potential in automating the creation 
of new LCHs. It is clear that the components made available to the approach must be carefully 
considered to be able to represent the problem for which a GCH is being evolved. The 
generality of these GCHs can be improved by featuring a larger training set but this would 
increase the time and reduce the efficiency and efficacy of the GCH. The effort of evolving 



50 
  

more general low-level heuristics is generally worth the cost of evolving essentially disposable 
low-level heuristics for a domain.  Evolutionary algorithms such as genetic programming and 
grammatical evolution have been found to generally be suited for the purpose of generative 
constructive hyper-heuristics. 
 
Generative perturbative hyper-heuristics offer a way to produce new perturbative heuristic 
combinations. The aim is to produce a good performing LPH. Generative perturbative hyper-
heuristics could also be used to identify strong components, such as good move acceptance and 
or good combinations of LPHs. Genetic programming has been very effective at producing low-
level heuristics both construction and perturbation. 
 

5.7 Summary 
This chapter presents a literature survey on hyper-heuristics. Firstly hyper-heuristics are 
introduced, then the four types of hyper-heuristics are presented: Selection perturbative, 
selection construction, generative constructive and generative perturbative. Finally a critical 
analysis of hyper-heuristics is given. 



51 
  

Chapter 6 Nurse rostering using 

Hyper-Heuristics 

This chapter looks at hyper-heuristic approaches used to solve the nurse rostering problem. It 
also attempts to categorize LPHs for the nurse rostering problem. 
 

6.1 Nurse Rostering and selection perturbative hyper-

heuristics 
This section looks at the state of the art hyper-heuristic approaches for solving the nurse 
rostering problem. Hyper-heuristics that have been used to solve the nurse rostering problem 
have essentially been selection perturbative hyper-heuristics. 
 
Cowling et al. [205] used a selection perturbative hyper-heuristic to solve a nurse rostering 
problem for a UK hospital. A choice function was used to select LPHs. No move acceptance 
method is described. The LPHs used in this study are based on neighbourhood operators used in 
Dowsland [206]. The LPHs used in this study will be referred to as the Cowling heuristics, these 
were: 

 H1 –  Randomly select a nurse, randomly select a week, randomly change the shift 
types in that week for the selected nurse. 

 H2 – Same as H1 but only accepts moves that result in an improvement in hard 
constraint violations. 

 H3 – Same as H1 but only accepts moves that result in an improvement in hard 
constraint violations and no worsening soft constraint violations. 

 H4 – Same as H1 but only accepts moves that result in an  improvement in soft 
constraint violations. 

 H5 – Same as H1 but only accepts moves that result in an improvement in soft 
constraint violations and no increase in hard constraint violations. 

 H6 –  Randomly select a nurse, if the nurse's roster violates the coverage 
constraint(section 4.1), change all shift types to the opposite shift type. e.g. a day 
shift becomes a night shift. 

 H7 –  Same as H6 if the resulting move still violates the coverage constraint, 
randomly select another nurse working the opposite shift type and swap rosters. 

 H8 –  Same as H1 but the replaced weekly shifts are stored. It is attempted to 
replace a week of the roster of another randomly selected nurse with the stored 
weekly shifts of the first nurse. This is attempted until a move is found that 
improves the soft constraint violations. 

 H9 – Same as H8 but accepts moves that result in an improvement in soft constraint 
violations with no hard constraint violations. 

This hyper-heuristic was applied to 52 instances of the nurse rostering problem specific to a UK 
hospital. 27 of the instances were within 10% of the optimal solution and 9 were solved 
consistently to optimality. This approach was considered more reliable than a genetic algorithm 
as it was able to solve more instances consistently. This hyper-heuristic produced more reliable 
results than genetic algorithms and was able to produce a feasible solution for an instance which 
the genetic algorithms [207] could not. It was considered equivalent to a tabu search algorithm 
[206] in terms of producing feasible solutions. The hyper-heuristic approach generally had 



52 
  

worse constraint violations than the bespoke methods it was compared to. 
 
Burke et al. [208] used a random selection perturbative hyper-heuristic with a tabu list to rank 
the heuristics used; this allows selection of the best performing LPHs. The LPHs used were the 
Cowling heuristics. The hyper-heuristic was applied to the same 52 instances used by Cowling 
et al. [205]. This hyper-heuristic  performed better than the choice function hyper-heuristic used 
by Cowling et al. [205].  
 
Bai et al. [209] used a selection perturbative hyper-heuristic that was hybridized with a genetic 
algorithm. The LPHs used were the Cowling heuristics. The selection of LPHs was done using a 
choice function. Simulated annealing was used to decide whether or not to accept the move 
made by the chosen LPHs. The hyper-heuristic is employed after the genetic operators are 
applied to the candidate solution. This hyper-heuristic performed better than the tabu search 
hyper-heuristic by Burke et al. [208] on 22 of the 52 instances.  This result was shown to be 
statistically significant.  
 
Bilgin et al. [210]  use a selection perturbative hyper-heuristic to solve Belgian nurse rostering 
problem. This hyper-heuristic used random selection to select heuristics and simulated 
annealing move acceptance. In the problem model used a shift assignment consists of a shift 
type, skill type, day and nurse quadruple. This means that a shift assignment can be made 
without a compatible skill type for the given shift type. A comparison with great deluge as the 
move acceptance method was made. The LPHs used were based on  the neighbourhood moves 
described in [211]: 
 Assign shift – Allocate a randomly selected shift type, to a randomly selected nurse on a 

randomly selected day. The skill type is given by the skill associated with the given 
shift type. 

 Delete shift – Randomly select a nurse, randomly select a shift assignment and remove 
the shift type and skill type. 

 Single shift day – Randomly select a nurse, randomly select a working day from that 
nurse's roster, randomly select another nurse who does not work on the same day and 
has the same skill type. Move the shift assignment to the nurse who was not working on 
that day. 

 General assignment change – Randomly select a nurse, randomly select a shift 
assignment from the nurse's roster. Randomly change the shift type to another shift 
type. 

 Change assignment based on compatible shift type – Randomly select a nurse, 
randomly select a shift assignment from the nurse's roster. Randomly change the shift 
type of the shift assignment to a different shift type that fulfills the coverage constraint 
for the selected day of the shift assignment. 

 Change assignment based on compatible skill type – Randomly select a nurse of those 
with more than one skill type, randomly select a shift assignment from the nurse's 
roster. Randomly change the shift type of the shift assignment to a different shift type 
that has the same skill type. 

It was found that the hyper-heuristic with simulated annealing move acceptance performed best 
and was better than the variable neighbourhood search used in [212]. 
 
Bilgin et al. [109] used a random selection hyper-heuristic for the INRC2010 competition. LPHs 
are selected randomly and the moves are accepted through the simulated annealing move 
acceptance method.  Following the application of the low-level heuristic to a candidate solution, 
the candidate solution is changed using a greedy shuffle algorithm. Bilgin et al. used set of a 
dozen LPHs. These were derived from three categories: 
 Swap subset of day shifts – Randomly selects a subset of all days for two randomly 

selected nurses and perform a swap of their corresponding shift assignments. 



53 
  

 Swap subset of weekend shifts – Randomly selects a subset of all weekend shift 
assignments for two randomly selected nurses and perform a swap of the corresponding 
shift assignments. 

 Swap subset of weekday shifts – Randomly selects a subset of working days for two 
randomly selected nurses and perform a swap of the corresponding shift assignments. 

This hyper-heuristic was placed third in the competition for the long instance track, the 
problems of which were seen as more challenging in the competition. This suggests that this 
hyper-heuristic was good at dealing with the more difficult instances and was better suited to 
time consuming or challenging problems. The difference between this work and most other 
selection perturbative hyper-heuristics was the additional use of a greedy shuffle algorithm after 
the hyper-heuristic for 20% of the remaining time allocated to each problem instance. The 
greedy shuffle algorithm considers incremental swaps of shift types between all nurses and all 
days in the scheduling period which results in improving or equal soft constraint violations. If 
no improvement was made by greedy shuffle for a number of iterations, the schedule is changed 
by swapping the nurse's roster with the highest soft constraint violations with the roster of a 
randomly selected nurse. Similar greedy shuffle algorithms have been found to produce 
improved solutions for the nurse rostering problem [104], [119], [120]. 
 
Bilgin et al. [213] studied selection perturbative hyper-heuristics for the nurse rostering 
problem. This study explored a variety of move acceptance (great deluge, simulated annealing, 
and accept improving or equal moves) and heuristic selection methods (simple random, choice 
function and a dynamic heuristic set strategy with simple random) in [213].  The LPHs used 
were the same as those in [109] as described above. The most effective hyper-heuristic was 
found to be a random selection with simulated annealing for move acceptance. These hyper-
heuristics were tested on the INRC2010 benchmark instances.  
 
Anwar et al. [214] used harmony search as a hyper-heuristic. Instead of changing variables for 
the problem domain in a harmony memory it instead selects LPHs. A memory to store candidate 
solutions and a memory to store selected LPHs was used. New solutions are accepted if an 
improvement is found over a randomly selected candidate solution in memory. New solutions 
that are accepted replace previous solutions stored in memory. This hyper-heuristic used 4 
LPHs: 
 Swap two shifts – A nurse with a working shift type is randomly selected and swapped 

with a working shift type of another randomly selected nurse for the same day. The shift 
types are not allowed to be the same. 

 Move one shift – A nurse is randomly selected and a random shift assignment is 
selected and swapped with another nurse's shift type on the same day. The shift type can 
be any type, even not worked. 

 Shuffle moves – Selects the nurse with the roster with the highest soft constraint 
violations and attempts to incrementally swap a subset of the shift assignments (worked 
or not worked) from a randomly selected day until the end of the scheduling period with 
a randomly selected nurse. 

 Blank move – No changes are made to the candidate solution 
This hyper-heuristic was tested on the INRC2010 benchmark data set but only on the early 
instances for the sprint, medium and long tracks. For the sprint instances it was able to only 
achieve the best known score for 2 instances (sprint_early05 and sprint_early08), Runtimes 
were over 30 minutes. It is understandable that population (multi-point searches) based hyper-
heuristics require more runtime than single-point searches. These results are possibly due to the 
LPH set being too small and or not being specific enough to the problem domain to exploit the 
solution space. 
 
 



54 
  

6.1.1 Hyflex 
This section looks at how entries into the CHeSC2011 [215] competition solved the nurse 
rostering problem using the Hyflex framework [141]. The focus of the following studies is to 
look at how well they performed on the nurse rostering problem and the competition in general. 
 
Misir and De Causmaecker [216] developed a hyper-heuristic for CHeSC2011 competition. The 
LPH selection method is a probabilistic method. This probabilistic method calculates a 
performance metric to measure the effect of each LPH on the candidate solution. This method 
orders the LPHs by the improvement in the candidate solution quality.  A reward-penalty 
strategy is used in this hyper-heuristic is used to adapt the parameters of the methods used 
during the execution of the hyper-heuristic.  The move acceptance method used was adaptive 
iteration limited list-based threshold acceptance (AILLA). AILLA keeps a fixed list of previous 
best candidate solutions. A change to the candidate solution is accepted if it is better than the 
candidate solution. A change to the candidate solution is also accepted if after a number of 
iterations with no improvement the change is accepted if it is better than or equal to the next 
candidate solution in the list. This hyper-heuristic was the overall winner of the CHeSC 2011 
competition. This hyper-heuristic was the 10th best hyper-heuristic for the nurse rostering track. 
 
Chan et al. [136] created a hyper-heuristic based on the analogy of pearl hunting, this used 
repeated diversification and intensification stages. Offline learning in the form of generating a 
decision tree decides which LPHs to apply during intensification. The intensification stage uses 
two methods. The first method executes local search LPHs with a low search depth until an 
improvement is found and stores a small number of the best solutions. The second method 
executes hill climbing LPHs with a high search depth until no improvement can be found. The 
second method attempts to improve only the best solutions found in the first method.  During 
the intensification stage only improving moves are accepted. The diversification stage uses one 
randomly selected LPH that is not a local search low-level perturbation heuristic. 
Diversification moves are accepted if they meet a threshold set by the best result of the first 
iteration of the intensification stage. This approach found 3 new best known results for the nurse 
rostering problem benchmark instances. This approach achieved fourth place in the CHeSC2011 
competition and was placed sixth for nurse rostering. 
 
Hsiao [217] used a variable neighbourhood search (VNS) as a hyper-heuristic for the 
CHeSC2011 competition. The shaking step of VNS selected the mutation and ruin and recreate 
LPHs and used a tabu list to limit the use of poorly performing LPHs. The VNS hyper-heuristic 
then iterated through the use of the local search heuristics for the local search step, where local 
search LPHs are selected using rank selection. A population of solutions is kept. Tournament 
selection is used as a move acceptance method. This hyper-heuristic achieved second place 
overall in the competition. This approach scored best compared to other entries in the 
CHeSC2011 competition for the nurse rostering problem.  
 
Larose [218] developed a hyper-heuristic called MLAlgorithm to compete in CHeSC2011. This 
algorithm combines iterated local search with reinforcement learning. The heuristic selection 
was a modified reinforcement learning algorithm from the work by Meignan et al. [219].  This 
approach consists of three stages, diversification, intensification and move acceptance. The 
move acceptance accepts an improving candidate solution or a candidate solution after no 
improvement has been made for a number of iterations. For the diversification stage the ruin and 
recreate and mutation LPHs were applied to the candidate solution, there was a chance that no 
change would be made to the candidate solution. The intention of allowing a possible no change 
to the candidate solution was intended so the intensification stage could further attempt to 
improve a candidate solution. The intensification stage used local search LPHs to improve the 
candidate solution until the solution stops improving. MLAlgorithm achieved third place overall 



55 
  

in the competition. MLAlgorithm achieved the second best score for the nurse rostering problem 
compared to other entries in the CHeSC2011 competition. 
 
Lehrbaum [220] created a hyper-heuristic called HAHA for the CHeSC2011 competition. 
HAHA consists of three main phases: serial search, ‘generate mutations’ and parallel search. 
The phases are executed in sequential order until a time limit is reached. The move acceptance 
used during all three phases was improving or equal acceptance but there is a limited list of 
already visited solutions which are rejected if revisited. If solutions found by the stages are all in 
this list than the best candidate solution is changed using mutation LPHs until it is not present in 
the memory. Serial search is a stage that uses only local search LPHs. Serial search applies all 
local search LPHs in order of their measured performance to the candidate solution.  If there is 
an improvement the move is accepted and a random search depth is set. Generate mutations is a 
stage that uses mutation LPHs. The mutation LPHs are selected using roulette wheel selection 
and applied seven times to the candidate solution. The seven applications create seven different 
candidate solutions for the parallel search stage. Parallel search applies the sorted list of LPHs 
across the seven available candidate solutions. The LPH used will change if there is no 
improvement after a number of iterations. This stage attempts to improve the solution by using 
LPHs across different candidate solutions. If no improvement to the current best candidate 
solution was found in the parallel search stage, a solution is selected from the list using roulette 
wheel selection. If the selected solution has already been visited, mutation LPHs are applied 
until the candidate solution has changed. This hyper-heuristic scored sixth overall for 
CHeSC2011 and third with respect to the nurse rostering problem. 
 
From these studies it can be seen that a selection perturbative hyper-heuristic such as that 
developed by Misir and De Causmaecker [216] which generalized the best over multiple 
problem domains, did not perform well on the nurse rostering problem domain. This suggests 
that some hyper-heuristics will perform better for different problem domains.  In this 
dissertation the performance of perturbative hyper-heuristics is investigated for the nurse 
rostering problem. It can also be seen that methods that were employed by selection perturbative 
hyper-heuristics which used mechanisms from multipoint search, were prevalent in these studies 
and performed well specifically for the nurse rostering problem domain. 
 

6.2 Categorization of low-level heuristics for nurse 

rostering 
This section attempts to categorize the LPHs used in hyper-heuristic studies and neighbourhood 
operators used by non-hyper-heuristic studies for the nurse rostering problem. The reason for 
looking at non-hyper-heuristic studies is that many selection perturbative hyper-heuristics look 
to previous work using search and neighbourhood operators when deciding upon low-level 
heuristics, often neighbourhood operators are used as the LPHs in hyper-heuristic studies. For 
example the neighbourhood operators used by Dowsland [206] were adapted for selection 
perturbative hyper-heuristics by Cowling et al. [205], Burke et al. [208] and Bai et al. [209]. The 
neighbourhood operators used by Bilgin et al. [211] were also used in a selection perturbative 
hyper-heuristic for nurse rostering [210].  
 
The LPHs currently used for nurse rostering can be divided into two categories. The first 
category will be referred to as swap heuristics and the second category will be referred to as edit 
heuristics for the purposes of categorizing nurse rostering low-level perturbation heuristics. 
Swap heuristics involve exchanges of shift assignments which are already present in a given 
schedule. The swap heuristic category is subdivided into five sub-categories, namely: Swap two 



56 
  

shifts (s1), swap a shift with a free shift (s2), swap n shifts (s3), swap using problem specific 
conditions (s4) and swap with move acceptance (s5). Swap heuristics of s1-s3 may fall into the 
categories of s4 and s5. Swap heuristics could easily be referred to as swap heuristics however 
using the term local differentiates them from the counterpart of heuristics that perform changes 
to a given schedule. Edit heuristics involve adding, removing or changing shift assignments. 
Edit heuristics work by performing new changes to the given schedule. Edit heuristics are 
generally used to solve nurse rostering problem instances which have the coverage constraint as 
a soft constraint instead of a hard constraint. The edit heuristic category is subdivided into five 
different sub-categories, namely: add and remove (e1), change shift type (e2), change n shifts 
(e3), change using problem specific conditions (e4) and change with move acceptance (e5). Edit 
heuristics of e1-e3 may fall into the categories of e4 and e5. 
 
The categorization scheme will be presented in the format: sub-category 1 (sub-category x, sub-
category y ...).  This defines that the first sub-category outside the parenthesis, is the main parent 
sub-category of the LPH. Sub-categories within the parenthesis are those which have additional 
requirements in addition to the parent sub-category. For example, a swap of multiple shifts 
between two nurses' rosters with the same contract would be categorized as s3(s4) but if this 
LPH were to also require that the change improves the soft constraint violations then it would be 
categorized as s3(s4, s5). When there are no parentheses additional sub-categories only fall into 
a single sub-category. For example, swapping a free shift of one nurse with a worked shift of 
another is simple categorized as, s2. When a second sub-category is identified a + sign is used to 
denote that the category is also used. e.g. sub-category 1 + sub-category 2(sub-category  x, sub-
category y). For example if a LPH existed that performed first a swap of two shifts between 
nurses but then only performed a swap of multiple shifts between the same nurses if the soft 
constraint score was reduced by the change it would be categorized as, s1 + s3(s5). A LPH for 
nurse rostering can fall into sub-categories from both the local and global categories. 
 
6.2.1 Swap heuristics 
Swap heuristics in nurse rostering are an exchange of one shift assignment from one nurse to 
another. Swap heuristics have to select and swap from existing assignments in the given 
schedule. There are five sub-categories of swap low-level heuristics found in hyper-heuristic 
studies for solving the nurse rostering problem. These swap heuristic sub-categories are: Swap 
two shifts (s1), swap a shift with a free shift (s2), swap n shifts (s3), swap using problem 
specific conditions (s4) and swap with move acceptance (s5). More than one sub-category can 
form the categorization of a swap heuristic. 
 
The following subsections describe each of the 5 swap heuristic sub-categories (s1-s5) and their 
use in hyper-heuristic and non-hyper-heuristic studies for use in solving the nurse rostering 
problem. 
 
6.2.1.1 Swap two shifts (s1) 
This swap heuristic is an exchange of any two selected shift types from two different nurses' 
rosters on the same selected day and can include or exclude swapping free shifts. LPHs from in 
the study by Anwar et al. [214] fall into this sub-category. 
 
The neighbourhood operators used in the non-hyper-heuristic by Lü and Hao [106] also fall into 
this sub-category. It was specified for this neighborhood operator that both shift assignments 
must not be the same shift type or a free shift. This is necessary as it ignores unnecessary swaps 
as exchanging the same shift type would have no effect on the given schedule. It is possible to 
include free shifts but this would be categorized as both an s1 and s2 swap heuristic.  Generally 
this LPH is forbidden from swapping shift types that are the same e.g. swapping the shift types 



57 
  

of two nurses working morning shifts on the same Monday would not improve the roster of 
either nurse. 
 
6.2.1.2 Swap a shift type with a free shift (s2) 
This swap heuristic is applied to a nurse with a shift type and another nurse with a free shift on 
the same day. An LPH of this sub-category is found in the study by Bilgin et al. [210] for hyper-
heuristics for nurse rostering. 
 
Generally, this sub-category of swap heuristics can be identified most often in non-hyper-
heuristic studies. The heuristics in this sub-category explore a smaller neighbourhood compared 
to s1. Neighbourhood operators in this sub-category were used in the study conducted by Lü and 
Hao [106] and this approach was effective at solving the nurse rostering problem. 
Neighbourhood operators in this sub-category can also be found in the studies conducted by: 
Frøyseth et al. [76], [105] and Burke et al. [104]. 
 
6.2.1.3 Swap n shifts (s3) 
This sub-category of local heuristic performs a bigger change to the given schedule compared to 
a l1 local heuristic. It follows that it generally explores a larger search space than l1 and l2 local 
heuristics. There are multiple variants of this sub-category of local heuristic and some methods 
if used as low-level perturbation heuristics will fall into this sub-category e.g. greedy shuffle, 
which would be a l3(l5) local heuristic as it swaps n shifts but also accepts improving moves. 
The l3 sub-category is the most flexible local heuristic categorization as it can be defined in a 
variety of ways. Heuristics that fall in this can consider multiple days in sequence or randomly 
and can also perform exchanges between multiple nurses. 
 
Cowling et al. [205], Burke et al. [208] and Bai et al. [209] used a heuristic referred to as H7 
which swaps the roster of the recently changed nurse with another nurse working the opposite  
shift type (days or nights). This is the only LPH which falls into both swap and edit categories 
for nurse rostering. 
 
Anwar et al. [214] used a swap heuristic called shuffle moves. This heuristic swaps  blocks of 
shift assignments between nurses. It is stated that it considers both worked and not worked shifts 
and swaps a subset of shift assignments. Bilgin et al. [109], [213] used local heuristics which 
swapped subsets of shift assignments between nurses. 
 
Frøyseth et al. [76], [105] used two neighbourhood operators that fall into this sub-
categorization. The first swaps three shift assignments for three nurses on a single day. The 
second swaps two shifts for two nurses on two days. 
 
Vu et al. [107] used two neighbourhood operators which swap two and three days between two 
nurses. Awadallah et al. [116], [118], [121], used a neighbourhood operator called 'swap three 
days'. This swaps a selected shift assignment and two consecutive shift assignments with a 
randomly selected nurse's corresponding shift assignments. This differs from other s3 LPHs, 
swapping contiguous shift assignments. 
 
6.2.1.4 Swap using problem specific conditions (s4) 
Swap heuristics that fall into any of the other three sub-categories of swap-heuristics fall into 
this sub-category when additional problem specific requirements are introduced. For example, 
selecting the nurse with the roster with the most soft constraint violations for an s1, s2 or s3 
swap heuristic, or that a contract requirement such as skill type is a criterion for the nurse 



58 
  

chosen in the exchange of shift types for a selected day or days. These are the least flexible as 
they rely heavily on the constraints present in a specific problem instance. Heuristics falling into 
this sub-category will generally be identified as having a parent sub-category from the sub-
categories of s1-s3. For example, a swap of two shifts between nurses which only occurs 
between nurses with the same contract would be categorized as s1(s4). 
 
Bilgin et al. [109], [213] used LPHs which swap a subset of shift assignments between nurses 
based on the definition of a weekend (which is specific to the nurse's contract). That is these 
swaps used problem instance specific information to perform exchanges between nurse's rosters. 
In these problem instances a weekend could be defined as Saturday, Sunday or as Friday, 
Saturday and Sunday or as Saturday, Sunday and Monday. These LPHs would be categorized as 
s3(s4). 
 
Anwar et al. [214] used a shuffle moves swap heuristic which selects two nurses, one is selected 
randomly and the other is the nurse with the roster that incurred the highest soft constraint 
violations.  This heuristic iterates for each day in the scheduling period, the heuristic swaps an 
increasing number of shifts at each iteration between the two nurses. This is categorized as 
s3(s4). 
 
Awadallah et al. [116], [118], [121], used a neighbourhood operator based on satisfying the 
'complete weekend' and 'identical shift types during weekend' constraints. If the complete 
weekend constraint is violated the shift type is swapped with another nurse's shift type (an s1 
LPH) and additionally a further swap is performed to make the shift types during the weekend 
identical. These would be categorized as s1(s4) 
 
6.2.1.5 Swap with move acceptance (s5) 
Heuristics in this sub-category have a criterion or method to determine whether the move made 
by a heuristic is accepted or rejected. Like the previous sub-category (s4) heuristics in this sub-
category fall into the sub-categories of s1-s3 with a move acceptance criterion. Swap heuristics 
with this sub-category are found as neighbourhood operators. The neighbourhood operator 
'selective partial swap' used by Tassopoulos et al. [108] falls into the categorization of s3(s5). 
The heuristic performs an iterative number of shift assignment swaps, over each day in the 
scheduling period between nurses. This falls into the s3 sub-category. At each swap a 
probability decides whether to accept or reject the move made and only improving or equal 
moves can be accepted. This means it falls into the s5 sub-category. 
 
6.2.1.6 Summary of swap heuristic category 
This categorization presents the three sub-categories that describe the basic exchanging of shift 
assignments between nurses as LPHs found in literature. The sub-categories of s4 and s5 
describe additional requirements which are additional requirements of heuristics that fall into 
the sub-categories of s1, s2 or s3. It is possible to categorize some swap heuristics as being both 
s3 and s4. A swap heuristic in this category will exchange two working shifts or more with an 
additional requirement such as a skill required for working the shift assignment. If an LPH was 
used which performed an s1 swap and then did an s3 swap it would be categorized as s1+s3. 
The sub-categories of s4 and s5 are identified as any sub-category of s1, s2 and s3 which has the 
either a problem specific requirement (s4) or a requirement to accept or reject the move made by 
the swap (s5). The sub-category of s2 is not by default an s4 sub-category as the LPH is 
requesting a swap with a nurse that has a free shift on the selected day and this is not specific to 
a problem instance detail but rather a feature of the problem domain as a whole. A soft 
constraint violation of a nurse's roster would be specific to the problem instance as would the 
definition of a weekend, thus swap heuristics which make changes depending on these are 



59 
  

categorized as the s4 sub-category of swap heuristic. 
 
The application of heuristics falling into the s1 sub-category result in a small change. The 
heuristics which fall into this category explore a small neighbourhood as only two shifts are 
swapped between nurses and they cannot target nurses that have been assigned free shifts. It is 
not possible generally for this category of LPH to be able to fully solve the nurse rostering 
problem. Therefore it is necessary to search an additional neighbourhood that of exchanging 
worked shifts and free shifts, this has been categorized as the s2 sub-category. It can be seen 
from literature that heuristics that fall into the s1 and s2 sub-categories of LPH are used 
together. 
 
The sub-category s3 includes any heuristic swap between two or more nurses which exchanges 
two or more shift types. This sub-category could be further sub-divided into LPHs that perform 
swaps between more than two nurses. This is unnecessary as the function is the same, a number 
of shift types are exchanged in either case. This further sub-division could be seen as another 
sub-category. The LPHs falling into this sub-category of swap heuristics, operate in a large 
search space that encompasses the neighbourhoods of the sub-categories s1 and s2. These LPHs 
can result in large changes to the solution space and convergence to a local optima may be 
avoided. 
 
The sub-category s4 is useful in that it focuses the search space of LPHs in the sub-categories of 
s1-s3. This sub-category is useful in that it can utilize problem specific information to better 
traverse the search space. There is a risk however that if the problem specific information is no 
longer advancing the search then LPHs with this sub-category can be redundant. 
 
The sub-category of s5 seeks to limit the search space by only applying swaps that are seen as 
beneficial to the search. This could be seen as lessening the work of an acceptance method as 
these LPHs would exclude changes to the solution space which are worsening. 
 

Table 6.1 Hyper-heuristics and swap heuristic categorization of LPHs used 
Hyper-heuristics  Swap heuristic sub-categories 
Anwar et  a l.  [214] s1,  s3 
Bilgin et  al.  [210] s2 
Bilgin et  al.  [109]  [213] s3,  s3(s4) 
Cowling et  al.  [205] s3 
Burke et  al.  [208] s3 
Bai  et  al.  [209] s3 

 
Table 6.2 Non-hyper-heuristics and swap heuristic categorization of LPHs used 

Non-hyper-heuristics  Swap heuristic sub-categories 
Awadallah et  al.  [116] , [118] ,  [121] , s1,  s3,  s1(s4),  s3(s4) 
Bilgin et  al.  [211] s2 
Frøyseth et  al.   [76] ,  [105] s1,  s2,  s3 
Lü and Hao [106] s1,  s2 
Tassopoulos et  al.  [108] s3(s4) 
Vu et  al.  [107] s2,  s3,  s3(s4) 

 
Table 6.1 gives a summary of the hyper-heuristic studies for nurse rostering and the swap 
heuristic sub-categories found within those studies. Table 6.2 gives a summary of non-hyper-
heuristic studies for nurse rostering and the swap heuristic sub-categories of neighbourhood 
operators used in these studies. 
 
6.2.2 Edit heuristics 
This category of LPH performs any possible change to a schedule but do not use the existing 
schedule's information. In some cases this is simply changing a shift type randomly in other 



60 
  

cases a successive add and remove of shift types, or an LPH that attempts to correct the 
occurrence of too many or too few shift assignments by the inserting or removing of too many 
shift assignments to the schedule. In this respect the change is not local to the given schedule. 
There are five sub-categories identified for this category namely, add and remove (e1), change 
shift type (e2), change n shifts (e3), change using problem specific conditions (e4) and change 
with move acceptance (e5). An edit heuristic can fall into more than one sub-category.  
 
The following subsections will detail each of the three edit heuristic sub-categories (e1-e5) and 
their use in hyper-heuristic studies for solving the nurse rostering problem. 
 
6.2.2.1 Add and remove (e1) 
This sub-category of edit heuristic adds or removes shift assignments to a selected nurse's roster. 
Similar LPHs are used in other domains for example in the study by Raghavjee [30] for solving 
school timetabling problems heuristics for allocation and de-allocation of tuples were used. One 
of the consequences of this sub-category of edit heuristic is that too many shift assignments may 
be made or removed from the schedule. This could increase the time taken by the search as extra 
LPHs may be needed to remove excess shift assignments or to add necessary shift assignments. 
 
Bilgin et al. [210] used both an assign shift and delete shift heuristic in a selection perturbative 
hyper-heuristic. These added and removed randomly selected shift assignments from randomly 
selected nurses. 
 
6.2.2.2 Change shift type (e2) 
This sub-category of edit heuristic contains heuristics which make a single change to the shift 
type of a randomly selected shift assignment of a randomly selected nurse.   
 
Bilgin et al. [211]  used a change shift LPH for a selection perturbative hyper-heuristic. The 
LPH would randomly change the shift type of a randomly selected shift assignment in a nurse's 
roster. 
 
6.2.2.3 Change n shifts (e3) 
This sub-category of edit heuristics contains heuristics which make changes to a number of 
selected shift assignments in a nurse's roster. The Cowling heuristics (see: Chapter 6 section 6.1) 
used by Cowling et al. [205], Burke et al. [208] and Bai et al. [209] all fall into this sub-
categorization as they change a number of shift assignments. The LPH referred to as H1 
performs random changes to shift types present in a selected week of a nurse’s roster. H1 is used 
as the basis for the LPHs of H2-H5 and H8 and H9. The LPHs referred to as H6 and H7 change 
a nurse's entire roster. This is a large amount of change to be made and the application of the 
heuristic can move to a different area of the search space. 
 
6.2.2.4 Change using problem specific conditions (e4) 
This sub-category of edit heuristics performs changes using problem instance specific details. 
For example the skill type required to work a shift must be possessed by the selected nurse. This 
limits the number of changes that can be made by these heuristics and the areas of the search 
space they can explore. As with sub-categories s4 and s5 in the swap heuristic sub-categories, 
e4 is categorized as having a parent sub-category of e1, e2 or e3. 
 
Cowling et al. [205], Burke et al. [208] and Bai et al. [209] used edit heuristics which fall into 
this sub-category. These LPHs target the shift types that violate the coverage constraint for a 



61 
  

randomly selected nurse (H6, H7). These heuristics also fall into the e3 sub-category of edit 
heuristics. This categorizes H6 as e3(e4) while H7 has an additional swap heuristic sub-category 
making its categorization e3(e4)+s3. 
 
Bilgin et al. [211]  used two edit heuristics of this sub-category which perform changes 
depending on the skill type required for shift types. The first edit heuristic will change a shift 
type to a different shift type (which has the same skill type) for a nurse that fits the required 
coverage constraint requirements for the selected day. The second edit heuristic will only select 
from a list of nurses which have multiple skill types, it changes a shift type to another shift type. 
In this case the problem specific condition is that only nurses with more than one skill type can 
be selected by this edit heuristic. 
 
6.2.2.5 Change with move acceptance (e5) 
This sub-category of edit heuristics includes heuristics with an additional requirement of a move 
acceptance criterion. If the move acceptance criterion is not met, the changes made are rejected. 
For example, a secondary requirement of an edit heuristic may be ‘accept only improving soft 
constraint violations’ to the move made by the heuristic. Edit heuristics categorized as e5 will 
have a parent sub-category from e1, e2 or e3.  
 
The Cowling heuristics used by Cowling et al. [205], Burke et al. [208] and Bai et al. [209] had 
six of nine LPHs (H2-H6 and H8 and H9) which used a move acceptance criterion. The 
acceptance criteria used in these LPHs, was that there must be a no change or a reduction in 
hard constraint violations and/or soft constraint violations. This sub-category does limit the 
possible moves which can be made by heuristics in this sub-category. 
 
6.2.2.6 Summary of edit heuristic category 
Edit heuristics are LPHs which perform changes to the given schedule which are not already 
present in the schedule. The majority of the Cowling heuristics fit into the categorization of 
e3(e5). Application of these heuristics can focus the search. These edit heuristics are rarely 
employed for nurse rostering problems as they depend on the coverage constraint being a soft 
constraint requirement. In a very similar manner to the categorization of swap heuristics, the 
first three sub-categories are generally independent of each other (e1-e3). The two sub-
categories (e4 and e5) are sub-categories that change how an edit heuristic is applied. Both sub-
category e4 and e5 can be identified for some edit heuristics. The only identified exception is 
the Cowling heuristic H7 which can be categorized as a e3, e4 and s3 LPH under this 
categorization as, e3(e4)+s3. 
 
The e1 sub-category heuristics if successively applied are able to fulfill the role of a e4 sub-
category specialization. This is because it is possible for the addition of shift assignments and 
the removal to satisfy the coverage constraint requirement. The issue is adding and removing 
shifts can increase the solution search space, if one of the two LPHs in this category is applied 
too often.  
 
The e2 sub-category deals with only changing a single shift assignment's shift type. It is a bit 
easier to satisfy a coverage constraint using this operator as it would only result in excess in the 
number of shift types assigned.  
 
The e3 sub-category has LPHs that search a large search space. Changing a large number of 
shift types would have a larger effect compared to the sub-category of e2. 
 
 



62 
  

Three of the edit heuristics that fall into the sub-category e4 were used in an attempt to satisfy 
the coverage constraint. The two other edit heuristics that fall into this sub-category were used 
to change shift types depending on the skill type required for working the shift. This sub-
category for edit heuristics allows the edit heuristics to focus on a smaller area of the search 
space in the same way it does for the local heuristic sub-category s4.  
 
The Cowling heuristics fall mainly into the sub-category of e5. It could be that by having an 
additional requirement of improvement to soft or hard constraint violations, further focuses the 
search. If the search space does prove large then additional move acceptance may be necessary 
to focus the search. Additional move acceptance may be best used with LPHs which perform a 
lot of change to the solution space. 

 
Table 6.3 Hyper-heuristics and edit heuristic categorization of LPHs used 

Hyper-heuristics  Edit heuristic sub-categories 
Bilgin et  al.  [210] e1,  e2,  e2(e4)  
Cowling et  al.  [205] e3,  e3(e4),  e3(e5),  e3(e4,e5),  e3(e4)+s3  
Burke et  al.  [208] e3,  e3(e4),  e3(e5),  e3(e4,e5),  e3(e4)+s3  
Bai  et  al.  [209] e3,  e3(e4),  e3(e5),  e3(e4,e5),  e3(e4)+s3  

 
Table 6.3. Gives a summary of the edit heuristic sub-categories identified in selection 
perturbative hyper-heuristics studies. 
 

6.3 Critical analysis of Nurse Rostering and Hyper-

heuristics 
The first section provides a critical analysis of the nurse rostering problem and the use of 
selection perturbative hyper-heuristics for solving the problem. The second section critically 
analyses the LPHs used by selection perturbative hyper-heuristics for solving the nurse rostering 
problem. 
 
6.3.1 Nurse rostering problem 
Nurse rostering is a challenging problem and has a number of areas that are yet to be explored. 
This is because the nurse rostering problem differs largely between hospitals, even within the 
same country. An example of this challenge is in some problem instances the coverage 
constraint is a hard constraint and in others it is a soft constraint. In problem instances where the 
coverage constraint is a soft constraint allows the selection perturbative hyper-heuristics applied 
to these problem instances to use LPHs that change shift assignments without creating an 
infeasible schedule. This makes it difficult to ascertain which LPHs are useful for different 
nurse rostering problems. Generally the most used LPHs were those that perform swaps within 
an existing roster; the approaches using these heuristics were also among the most successful. In 
this chapter these heuristics were categorized into the swap heuristic category. 
 
The nurse rostering problem in some cases has been used as a problem domain to support the 
claim of generality gained by using a hyper-heuristic. The CHeSC2011 competition used the 
nurse rostering problem as one of the problem domains for competitive testing of the generality 
of selection perturbative hyper-heuristics across domains. While CHeSC2011 brought some 
new attention to nurse rostering this was only because it was one of the problem domains used 
for testing new selection perturbative hyper-heuristics. CHeSC2011 brought new attention to 
hyper-heuristics in general as well. The hyper-heuristic by Misir et al. [216] performed the best 
on average in the CHeSC2011 competition but performed poorly for the nurse rostering 
problem. The variable neighbourhood search hyper-heuristic by Ping-Che et al. [217] was found 



63 
  

to be the best performing hyper-heuristic overall for the nurse rostering problem but it was the 
worst performing hyper-heuristic for the bin-packing problem. These findings support the ‘no 
free-lunch’ theorem [221]. 
 
Selection perturbative hyper-heuristics for the nurse rostering problem have been shown to 
outperform meta-heuristics generally despite the higher level of generality achieved by a 
selection perturbative hyper-heuristic. Selection perturbative hyper-heuristics are never as 
bespoke as meta-heuristic approaches. 
 
There has been little work in applying multi-point searches for solving the nurse rostering 
problem, especially evolutionary algorithms to solving the nurse rostering problem but even less 
work in performing a multi-point search of the heuristic search space. The only existing 
literature for searching a population of LPHs was early work using harmony search as a hyper-
heuristic. In the published study only a handful of problem instances have been tested and the 
performance did not seem to be competitive with the state of the art. It was also found that many 
of the methods used by the selection perturbative hyper-heuristics submitted for the 
CHeSC2011 competition contained aspects of multi-point search methodologies such as 
keeping multiple candidate solutions and or improving upon them. For the reasons above, it is 
worth investigating an evolutionary algorithm as a selection perturbative hyper-heuristic. 
 
6.3.2 Low-level heuristics 
The choice and development of LPHs for the nurse rostering problem is a challenging area. 
There is no standard set of LPHs, as can be seen from literature in this chapter in section 6.1. 
Furthermore the LPHs have been used in different selection perturbative hyper-heuristics are 
applied to different problem instances. It is hard to determine if the selection perturbative hyper-
heuristic is effective at using the LPHs or whether the set of chosen LPHs is effective for the 
problem instance(s). There has been consistency in the studies by Cowling et al. [205], Burke et 
al. [208] and Bai et al. [209] where the same set of LPHs was used in each. The Cowling LPHs 
were used for a nurse rostering problem where the coverage constraint was a soft constraint. 
This makes it difficult to use those LPHs in other problem instances where the coverage 
constraint is a hard constraint. The LPHs used by the Hyflex framework are quite complex but 
the same set is available across selection perturbative hyper-heuristics implemented using the 
framework. In Hyflex the issue is that there is no requirement to use all provided LPHs and also 
the LPHs require additional parameter values. 
 
There are only a handful of studies investigating selection perturbative hyper-heuristics for the 
nurse rostering problem. Selection perturbative hyper-heuristic that have been used for the nurse 
rostering problem have been found to outperform meta-heuristic approaches [109], [209], [210]. 
Furthermore selection perturbative hyper-heuristics have been found to be effective for other 
combinatorial optimization domains also outperforming meta-heuristics for a variety of problem 
domains. In addition to this CHeSC2011 showed that innovative selection perturbative hyper-
heuristics showed promise for solving the nurse rostering problem. This warrants further 
research into different types of selection perturbative hyper-heuristics for nurse rostering. 
 

6.4 Summary 
This chapter presents hyper-heuristic literature where the nurse rostering problem was solved. It 
also gives a categorization of the low-level perturbation heuristics used in literature and finally a 
critical analysis of nurse rostering and selection perturbative hyper-heuristics. 



64 
  

Chapter 7 Methodology 

This chapter sets out the methodology used to achieve the objectives of this dissertation 
described in Chapter 1. Section 7.1 presents a critical analysis of related literature. Section 7.2 
presents the research methodology to be followed. Section 7.3 details how each objective will 
be achieved. Section 7.4 gives a brief overview of the nurse rostering problem being solved. 
Section 7.5 presents the problem instances being used and the parameter settings. Section 7.6 
describes the hypothesis testing which will be used in the study. Section 7.7 details the 
hardware and software used to achieve the objectives. Finally section 7.8 gives a summary of 
the chapter. 
 

7.1 Critical analysis of related literature 
From the survey of literature done in Chapter 4 and Chapter 5, it can be seen that there has been 
little research into solving the nurse rostering problem using selection perturbative hyper-
heuristics. It can also be seen that the majority of the work involves single-point search 
methodologies. Multi-point search hyper-heuristics have been found to be effective in problem 
domains such as examination and school timetabling [30]. Examples of other multi-point 
searches have been effective at solving problems like course timetabling and project 
presentation scheduling [31], [34]. These have generally employed some form of evolutionary 
algorithm, usually a genetic algorithm with an indirect representation, this can also be referred 
to as a selection perturbative hyper-heuristic. The results of existing selection perturbative 
hyper-heuristics demonstrate that searching the heuristic search space is more effective than 
directly searching the solution space. The nurse rostering problem has a very large solution 
space. This suggests an evolutionary algorithm selection perturbative hyper-heuristic may be 
effective. 
 
The major contribution of this dissertation is to investigate the generative perturbative hyper-
heuristic for the nurse rostering problem. There has been little work with this type of hyper-
heuristic generally and none for the nurse rostering problem. Generative perturbative hyper-
heuristics have generally not been applied to timetabling and scheduling problem domains. The 
studies surveyed for solving the nurse rostering problem defined in this dissertation, used mostly 
meta-heuristics using neighbourhood operators and selection perturbative hyper-heuristics for 
finding solutions to the problem. This suggests there may even be a need for the generation of 
new perturbation heuristics for the nurse rostering problem. 
 
The objectives as stated in Chapter 1 for the dissertation are: To investigate a genetic algorithm 
selection perturbative hyper-heuristic for solving the nurse rostering problem, to develop and 
analyse a genetic programming generative perturbative hyper-heuristic for generating LPHs to 
solve the nurse rostering problem and to compare the two developed hyper-heuristics' 
performance for the nurse rostering problem. 
 
7.1.1 SPHH Justification 
It is necessary to investigate selection perturbative hyper-heuristics first. In the literature (see 
Chapter 6 section 6.1) for solving the nurse rostering problem, all hyper-heuristics studied have 
been selection perturbative hyper-heuristics. These have been effective at solving the nurse 
rostering problem. There has been limited research for multi-point hyper-heuristics for solving 
the nurse rostering problem. This will be one of the goals of this research. 
 



65 
  

For the investigation of a selection perturbative hyper-heuristic a genetic algorithm will be used. 
The genetic algorithm selection perturbative hyper-heuristic will use a string representation 
where each character in a string representation represents a LPH that will be applied to a 
candidate solution. This is based on representations used by Han et al. [31] and Raghavjee [30]. 
An adaptive length representation will be used as Han et al. [31] found an improvement over 
previous work using a fixed length chromosome. A generational control model will be used as it 
will be a good way to establish a basic performance of the approach. It is well known control 
model and does provide a level of reliability. The initial population will be generated between a 
minimum and maximum size which will be based on the number of nurse shifts required for the 
problem instance. The maximum size of the chromosome will be decided based on memory 
limitations of systems used for simulations. This will ensure that there is little to no restriction 
on the size of chromosomes during the search. Tournament selection will be used as it is more 
computationally efficient compared to roulette wheel selection [13]. The crossover operator 
used will be the cut and splice crossover because it has been found to be effective for other 
selection perturbative hyper-heuristics in different problem domains. The mutation operator will 
be decided during development as there are different types of mutation to consider. 
 
The LPHs used will be from the swap heuristic category as defined in section 6.2.1. This is 
primarily because the problem instances use the coverage constraint as a hard constraint 
requirement. The LPHs used will be from the s1, s2 and s3 sub-categories with some falling into 
the s4 and s5 categories if necessary. Previous work applied to the same problem instances has 
successfully used LPHs from the s3 sub-category. From the categorization of LPHs for nurse 
rostering in section 6.2.1 has shown that the s1 and s2 sub-categories should be utilized for 
selection perturbative hyper-heuristics in this problem domain. This is because these are the 
most commonly used swap heuristics. The s4 and s5 sub-categories will be considered for use 
during the study as it is not clear whether these will be advantageous. 
 
7.1.2 GPHH Justification 
The investigation for the generative perturbative hyper-heuristic will use genetic programming 
and strong typing. There has been no previous work in generating LPHs for the nurse rostering 
problem. However the surveyed literature for solving the nurse rostering problem has shown 
that perturbation heuristics are effective for solving the nurse rostering problem. It follows that 
evolving new LPHs should be attempted. 
 
Genetic programming has been shown to be good at the generation of low-level heuristics as a 
generative hyper-heuristic [221]. Strong typing will enforce the relationships between 
primitives; this is similar to using a grammar. It should be stated that grammatical evolution 
could perform a similar function but it does search the program space in a different way [222]. 
The study will be influenced by the study by Sabar et al. [204] and the study by Nguyen et al. 
[196].  The generational control model will be used; it is a commonly used control model for 
genetic programming. The grow method will be used to produce the initial population. The 
initial population generation method generally does not seem to affect fitness [223]. The grow 
method provides diverse trees and will be sufficient for the purposes of investigating a 
generative perturbative hyper-heuristic for the nurse rostering problem. Tournament selection 
will be used as it is the most computationally efficient method. The generative perturbative 
hyper-heuristics will be investigated as it could find new perturbation heuristics for the nurse 
rostering problem, and or facilitate identification of effective components for perturbation 
heuristics for the nurse rostering problem. Standard crossover and sub-tree mutation will be 
used because these offer a good variety of exploration and exploitation. Crossover provides a 
local search of the program space. Sub-tree mutation allows for a global search of the program 
space. Crossover and Sub-tree mutation have been found effective for genetic programming. 
Other genetic operators will be considered during the study. 



66 
  

The function set will contain move acceptance methods such as, simulated annealing and great 
deluge for move acceptance, simple move acceptance criteria, functions to combine terminals 
and functions. These will be used based on what has been done in other generative perturbative 
hyper-heuristics.  Bilgin et al. [213] explored move acceptance for a selection perturbative 
hyper-heuristic for nurse rostering and found generally great deluge and simulated annealing 
move acceptance (meta-heuristics) were equivalent to accepting any equal or improving move. 
Across other problem domains meta-heuristic move acceptance methods perform better 
although they have a higher computational cost. For this reason and to provide options to the 
genetic programming approach a number of move acceptance methods will be made available. 
The move acceptance methods include: Accept improving moves only, accept improving or 
equal moves, great deluge, simulated annealing, adaptive iterative-limited list acceptance 
(AILLA) and late acceptance hill climbing. Unlike the study by Sabar et al. [204], IF 
conditionals will be used similar to those used by Nguyen et al. [196] and an iteration function 
will be made available. The terminal set will include LPHs of sub-categories s1, s2, s3, s3(s4), 
s1(s4) and s2(s4). The sub-category s5 is redundant because of the inclusion of the move 
acceptance function(s). 
 

7.2 Research methodology 
The objectives will be achieved using the proof  by demonstration methodology [224]. This 
research methodology for computer science requires the development of a single approach 
which is iterated upon to achieve the stated objective(s). Firstly an initial approach must be 
developed. The initial approach is based on an analysis of the literature. The initial approach 
will then be improved upon using iterative refinement. Changes to the approach will be based 
on testing. Iterative improvement occurs until an improvement is made or an improvement 
cannot be feasibly made. For each iteration the revision of the approach is evaluated in terms of 
the objectives of the problem to be solved. These approaches should be produced to meet the 
objectives of the research question.  
 
In order to analyse the developed approaches data will be collected. This will be done by using a 
problem domain benchmark data set as a measure. It will also be compared empirically to other 
method's available results from the same problem domain benchmark data set. Finally the 
empirical data collected and observations made by the researcher will be presented in a 
conclusion.  
 

7.3 Objectives 
This section describes how the research methodology will be implemented in order to achieve 
the three objectives of this dissertation. Objective one and objective two are similar and 
approached in the same manner; this methodology will be discussed in section 7.3.1. Objective 
three requires completion of both objectives one and two which will be discussed in section 
7.3.2. 
 
7.3.1 Objective one and two 
The first objective set in Chapter 1, is to investigate a genetic algorithm as a selection 
perturbative hyper-heuristic for the nurse rostering competition. The second objective set in 
Chapter 1, is to investigate the creation and performance of a generative perturbation hyper-
heuristic model for the nurse rostering problem. These objectives are achieved through the proof 
by demonstration methodology.  
 



67 
  

Firstly an initial approach will be developed for each objective, descriptions of the initial 
approaches can be found in section 7.1.1 for objective one and section 7.1.2 for objective two.  
 
The two developed approaches will be tested using the nurse rostering competition benchmark 
data set described in section 7.4.1.  
 
The developed approaches will be refined until no improvement can be made or an 
improvement is not going to provide significant improvement for the work required or there is 
no significant improvement possible. 
 
The refinements made to both approaches will be similar as they are both evolutionary 
algorithms as described in Chapter 2. Refinements will include looking at the initial population 
generation, the genetic operators, the selection of parents and the control model.  
 
Objective one requires analysis of the genetic algorithm and the performance of the genetic 
algorithm. Objective two requires the analysis of how the LPHs were created, how the LPHs 
performed and the structure of these LPHs. 
 
SPHH will be executed 30 times for each instance in the INRC2010 benchmark data set. GPHH 
will be executed 30 times per LPH to evolve. A number of LPHs will be evolved. Each evolved 
LPH will then be executed on the INRC2010 benchmark set using a time limit as a stopping 
criterion.  
 
7.3.2 Objective three 
The achievement of objective three requires the completion of both objective one and objective 
two. Both approaches will be compared using statistical hypothesis testing as shown in section 
7.6. 
 

7.3.3 Measurements for analysis of the objectives 
There is currently no standard measurement to compare the results of hyper-heuristics.  Most 
literature compares results in terms of feasibility and quality. Feasibility is measured by hard 
constraint violations, a feasible solution has no hard constraint violations. If hard constraint 
violations do occur they will be penalized heavily. Quality is measured using the minimum soft 
constraint violations (minSCV) obtained by the method. 
 
Results will be compared using the number of hard and soft constraint violations. The 
measurements taken will be: hard constraint violations,  minSCV, the average soft constraint 
violations over 30 runs (avgSCV), the standard deviation of the average soft constraint 
violations and the number of generations taken.   
 
For objective 1, the number of generations taken will be discussed; this is how many times the 
population was changed while a combination or combinations of LPHs were applied to 
candidate solutions. The minSCV will be compared to the best known result (BKR) for each 
instance.  
 
For objective 2, the number of generations taken will be discussed; this is how many times the 
population was changed until an LPH is evolved. The minSCV will be compared to the BKR for 
the evolved heuristics. The avgSCV will also be used to measure the performance of the 
evolved heuristics. 
 
 



68 
  

For objective 3, the minSCV of both methods will be compared. The avgSCV and standard 
deviation will be used for hypothesis testing of the results of SPHH to GPHH.  
 

7.4 The nurse rostering problem 
The first international nurse rostering competition benchmark data set [96] will be used to test 
SPHH and GPHH. This benchmark data set contains 60 instances each with different work 
contracts for the nurses. Instances are subdivided into tracks based on the number of nurses. 
These are sprint, medium and long. Each track had instances released under different periods 
e.g. early instances were released first, late instances were released near the end of the 
competition and hidden instances were unseen to the competitors. For competition purposes the 
sprint track was allowed 8 seconds, the medium track 8 minutes and the long track 10 hours. 
The time limits were obtained using a provided CPU benchmarking tool. For SPHH these limits 
were ignored as it is known that evolutionary algorithms and hyper-heuristics generally require 
more runtime than single-point search approaches. For GPHH these runtimes will be used as a 
guideline for the final evaluation of evolved LPHs (Chapter 4 section 4.3). The INRC2010 
benchmark instance details can be found in Chapter 4 section 4.3 in Table 4.1. 
 
7.4.1 Justification for benchmark set 
While NSPLib offers an impressive amount of data that can be used to perform statistical tests, 
it does not feature complex and modern constraints such as unwanted shift patterns. The main 
reason for not using this benchmark set is the lack of comparative studies in the field of hyper-
heuristics. At least one author has expressed difficulty in accurately comparing their work with 
the available results [225].  
 
The INRC2010 benchmarks provide comparison of competition proven results (Under rules and 
a time limit) as well as results submitted post-competition (no time limit verification). This 
provides a comparison against a variety of different algorithms that are new or state of the art. 
INRC2010 does feature a constraint that is not present in the Nottingham benchmarks which is 
the unwanted patterns constraint which is a slightly more specific version of the shift succession 
constraint as you can specify unwanted patterns for certain days. However the Nottingham 
instances have a wide number of constraints to solve since they include time restriction 
constraints (where hours between shifts matter), these (for example) are not covered in the 
INRC2010 benchmark set. INRC2010 is considered to have more modern and standardized 
constraints. 
 

7.5 Problem instances 
GPHH requires the evolution of LPHs. These LPHs will be evolved using a seen instance, the 
seen instance is the only instance used during the evolution of an LPH. Once evolved, each LPH 
is applied to all instances (seen and unseen). In order to ascertain the effects of using different 
seen benchmark instances for the evolution of LPHs, 9 INRC2010 instances will be used to 
evolve 9 LPHs. This will be a random selection of an early, late and hidden instance from each 
track (3 sprint instances, 3 medium instances and 3 long instances). This will be done to use 
instances which have different constraints.  In order to discover if evolving a LPH using more 
than one seen instance is advantageous, a further four LPHs will be evolved using sets of three 
seen instances. The first three will select an instance randomly from each track for early, hidden 
and late instances. The last will take three instances randomly from the sprint track.  
 
 



69 
  

Each evolved LPH is assigned a label based upon the instance used to evolve the LPH. For 
example the LPH evolved using medium_early05 is given the label ME.  The instances and 
associated labels assigned to the 13 heuristics which will be evolved using these instances, can 
be seen in Table 7.1. 
 

Table 7.1 Labels assigned to evolved LPHs using corresponding instances 
Evolved heuristic  Seen instance(s)  
SE sprint_early5   
SH sprint_hidden4 
SL sprint_late6 
ME medium_early5  
MH medium_hidden2 
ML medium_late3 
LE long_early4  
LH long_hidden5 
LL long_late2  
S sprint_early2  sprint_hidden1 sprint_late2 
L sprint_late10 medium_late4 long_late3  
H sprint_hidden6 medium_hidden5 long_hidden3 
E sprint_early9  medium_early4  long_early4  

 

7.6 Hypothesis testing 
A two-tailed hypothesis test will be used to determine the statistical significance of results 
obtained when comparing the performance of SPHH and GPHH. This test can only be used with 
results that can form a normal distribution that is there must be 30 or more in the two samples 
tested. Z-tests are used to calculate a Z-value, this Z-value is compared to the critical value to 
determine the level of significance. The level of significance and corresponding critical value 
and decision rules are given in Table 7.2.  In this dissertation the z-test will be applied with a 
value of α = 0.05, or 95% significance. Testing for a statistically significant result requires the 
formulation of a null hypothesis and an alternate hypothesis: 
 

H0 : µA  = µB 
Ha  : µA  > µB 

 
If the calculated value of Z is less than the critical value there is no statistical difference in 
comparing the means and the null hypothesis (H0) is accepted. If the Z value is greater than the 
critical value than the alternate hypothesis is accepted (Ha) and there is a statistically significant 
difference in the two means. A negative Z value represents that method A is worse than method 
B. 
 

Table 7.2 Levels of significance, critical value and decision rules for Z hypothesis test 
Signif icance 
(α)  

Critical  value Decision rule 

0.01 2.33 Accept  H0 – IF Z < 2.33 
0.05 1.64 Accept  H0 – IF Z < 1.64 
0.1 1.28 Accept  H0 – IF Z < 1.28 

 

7.7 Technical specifications 
The two proposed hyper-heuristic approaches, a genetic algorithm selection perturbative hyper-
heuristic and a genetic programming generative perturbation hyper-heuristic will be developed 
using the Java programming language. The Netbeans integrated development environment will 
be used. The linear congruential random number generator native to the Java programming 



70 
  

language was used to generate random numbers. The approaches will be developed on a 
computer with the following specification: Intel i7 2600 3.3GHz, 4 GB of RAM running the 
Windows 7 operating system. 
 
Simulations were run using: 

 Intel i7 2600 3.3GHz, 4 GB of RAM running Linux using the distribution Fedora 17 
 Hewlett Packard z820, Intel Xeon E5-2697v2 2.7GHz, 512GB of RAM running the 

Windows 7 operating system 
 Center for high performance computing sun cluster, see: www.chpc.ac.za for further 

details 
 

7.8 Summary 
This chapter presents the methodology used for achieving the objectives outlined in Chapter 1. 
The measurements used to analyse the achievement of the objectives, an overview of the nurse 
rostering problem and justification for the use of the chosen benchmark set is given. SPHH and 
GPHH will be applied to the INRC2010 benchmark data set. The problem instances required for 
the creation of LPHs by GPHH are presented. In cases where there is need to show the 
significance of a result a two tailed hypothesis test will be used to show statistical significance. 
Finally the technical specifications for the development and testing of the developed approaches 
(SPHH and GPHH) are provided. 



71 
  

1. Create initial population 
2. Evaluate individuals in population 
3. Create new generation by: 

a. Apply each heuristic in the individual to the current 
solution  

b. Set best individual’s solution as the current roster 
c. Select parents using tournament selection 
d. Apply genetic operators to selected parents and evaluate 

individuals in population 
4. Repeat 3. until a maximum number of generations has been 

reached or the solution has converged. Return the best candidate 
solution 

 

Chapter 8 Genetic Algorithm Selection 

Perturbative Hyper-Heuristic 

This chapter presents SPHH, a genetic algorithm using an indirect representation as a selection 
perturbative hyper-heuristic. This is a multi-point hyper-heuristic approach. This genetic 
algorithm implemented was influenced by genetic programming and genetic algorithm hyper-
heuristics. This genetic algorithm hyper-heuristic uses a generational control model [20]. 
Genetic operators are used to search a space of LPHs. The chapter details the SPHH algorithm, 
the representation used and LPHs used by the genetic algorithm, the selection methods used, the 
genetic operators, the multithreading approach used and the parameters chosen. 
 

8.1 SPHH Algorithm 
The genetic algorithm used for SPHH is presented in Algorithm 8.1. Firstly an initial population 
is created, this population is then refined iteratively following a process of evaluation, selection 
of parents and use of genetic operators to create offspring which form the population for each 
generation. Section 8.2 describes the initial population creation, representation and LPHs used, 
Section 8.3 presents the selection and evaluation of individuals for genetic operators, section 8.4 
describes the genetic operators used, section 8.5 discusses using multithreading to optimize the 
SPHH algorithm and section 8.6 gives the final parameters used for the algorithm. 
 
 
 

 

 
 
 
 
 
 
 
 
 

8.2 Representation and initial population generation 
An individual in the population is represented by a string, this string is made up of characters. 
Each character represents a LPH. A number of heuristics were developed based on literature. 
Heuristics that swap multiple days must perform at least two swaps. The LPHs are listed below 
with the character used to represent the LPH, its categorization (refer to section 6.2) and with a 
description of the LPH. For example a heuristic which swaps a shift type between nurses will be 
in the category of s1.The LPHs used included the following perturbation heuristics: 
 T (l1(l5)) –Randomly select two nurses and a day where both have worked shifts, swap 

the shift types between the two nurses. Attempt for n times and return the best found 
solution. 

Algorithm 8.1 Genetic algorithm hyper-heuristic 



72 
  

 Z (l1(l5)) –Randomly select two nurses and a day where both have worked shifts, swap 
the shift types between the two nurses. Attempt for n times but stop when an improved 
solution is found. 

 A (l2(l5)) –Select a day randomly, randomly select a nurse working a shift and another 
nurse working a free shift for the selected day. Swap the shift type to the nurse with the 
free shift for the selected day. Attempt for n times and return the best found solution. 

 Q (l2(l5)) –Select a day randomly, randomly select a nurse working a shift and another 
nurse working a free shift for the selected day. Swap the shift type to the nurse with the 
free shift for the selected day. Attempt for n times but stop when an improved solution 
is found. 

 Y (l3(l5)) –Select two nurses randomly, select a random subset of days in the 
scheduling period. Swap the associated shift types for the selected day. Attempt for n 
times and return the best found solution. 

 X (l3(l5)) –Select two nurses randomly, select a random subset of days in the 
scheduling period. Swap the associated shift types for the selected days. Attempt for n 
times but stop when an improved solution is found. 

 W(l3(l5)) – Select two nurses randomly, select a subset of weekdays randomly. Swap 
the associated shift types for the selected days. Attempt for n times and return the best 
found solution. 

 F (l3(l5)) – Select two nurses randomly, select a subset of weekdays randomly. Swap 
the associated shift types for the selected days. Attempt for n times but stop when an 
improved solution is found. 

 E (l3(l5)) – Select two nurses randomly, select a subset of weekend days randomly. 
Swap the associated shift types for the selected days. Attempt for n times and return the 
best found solution. 

 C (l3(l5)) – Select two nurses randomly, select a subset of weekend days randomly. 
Swap the associated shift types for the selected days. Attempt for n times but stop when 
an improved solution is found. 

 M (l2(l4)) – Randomly select a nurse which has a requested shift off (see section 4.1) 
violation, randomly select a nurse which has a free shift for the same violation. Assign 
the nurse with the free shift the shift type of the first nurse and remove the first nurse's 
shift assignment. 

 K (l2(l4)) – Randomly select a nurse which has a requested day off  (see section 4.1) 
violation, select a nurse which has a free shift for the same violation. Assign the nurse 
with the free shift the shift type of the first nurse and remove the first nurse's shift 
assignment. 

 B ((l1+l2)(l5)) – Randomly select a nurse, a list of nurses is created randomly, a day is 
randomly selected. The first nurse's associated shift type is swapped with each nurse in 
the list. Improving moves are kept. 

 b – Blank move, this means no heuristic is executed at this point in the string. Anwar et 
al. [214]  also provided a LPH that does nothing. 

 
Each character of the string is randomly chosen from the given set of LPHs. An example of an 
individual is: "TZTMKB" the first LPH to apply would be 'T' and the last would be 'B'. The 
candidate solution obtained from applying these LPHs to the current schedule would be 
compared with the best schedule obtained by SPHH and if it has lower soft constraint violations 
it would replace the best schedule obtained. This is done for each individual in the population. 
Hard constraint violations are avoided as the LPHs do not violate the single shift per day hard 
constraint and cannot add excess shifts so they cannot violate the coverage requirements.  
 
In the creation of the initial population, the length of each string is randomly generated within a 
lower value and an initial upper value. The number of shift assignments detailed in the cover 
requirements for the scheduling period (see Chapter 4 section 4.1) is multiplied by a number for 



73 
  

the lower and a number for the upper bound to determine these bounds. For example an initial 
population is generated and the lower value is set to 5, the initial upper value to 10 and the 
number of shift assignments is 200. Then the initial population would only contain individuals 
uniformly with string lengths of 1000 and 2000.  The values used for upper and lower values 
were chosen during the study. From the first generation, the upper value is set to a maximum 
limit, this limit is high but safely avoids any system memory limitations.  A high initial upper 
value during the initial population generation affects performance, as higher string lengths 
directly increase time it takes to evaluate individuals. 
 

8.3 Evaluation and selection 
Before the SPHH is used as a solver for the NRP, an initial schedule is created by randomly 
allocating shift types to nurses. The number of shift types allocated is the number of shifts 
specified in the coverage requirements for the scheduling period. Only a single shift is allowed 
to be allocated to a nurse, for each working day. This avoids incurring hard constraint violations 
for the chosen problem instances. Each individual in the population is applied to the same initial 
schedule. The soft constraint violations are the measure of fitness of an individual. For each 
generation the best improvement on the initial schedule found after all individual’s execution 
replaces the initial schedule.  This is a form of shared memory as information is given to all the 
individuals in the population. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Tournament selection is used to choose the parents to create the next generation. This selection 
method returns the fittest individual of a random sample of individuals.  
Algorithm 8.2 presents the process in detail. A random sample is simply individuals in the 
population chosen at random and put into a group. The size of this group is decided by the 
tournament size parameter. 
 

8.4 Genetic operators 
In each generation the population is created by applying mutation and crossover operators to the 
selected parents. Genetic operators are chosen based on application rates e.g. for 0.7 crossover 
and 0.3 mutation with a population size of 100, will create 70 offspring through crossover and 
30 offspring through mutation in the next generation. 
 
The crossover operator combines two individuals that are selected using tournament selection. 
Two random points, one in each individual is selected. These points are used to create 
substrings where the characters left of the point in the second individual are appended to the 

1. Select a random sample using the parameter 
tournament size 

2. Set the best individual (i) as the first 
individual in the sample 

3. Repeat until there are no individuals to 
compare against: 

a. Compare the fitness of i with i+1 
from the sample  

a. If the fitness of i is higher than i+1, 
replace i with i+1 

4. Return i  
  Algorithm 8.2 Tournament selection 



74 
  

Selected individual one: 
F F T C C X C T T F 
Selected individual two: 

F T F b T X C 
 
First offspring: 

F F T T X C 
Second offspring: 

F T F b T C C X C T T F 
 
Evaluate each individual and keep the best newly created individual. 

Individual before mutation: 
F F T C C X C T T F 
Individual after mutation: 

F F T Q C X C T T F 
 

characters right of the point in the first individual and the characters left of the point in the first 
individual are appended to the characters right of the point in the second individual. These two 
offspring are evaluated and the fittest becomes a member of the next generation. The process is 
depicted in Figure 8.1. The crossover operator is unable to produce offspring that are greater 
than the maximum string bound set due to memory limitations. If offspring are produced that 
exceed this bound, the characters after the limit are removed. The removal of characters occurs 
before the offspring are evaluated. 
 
  
 
 
 
 
 
  
 
 
 
 
 

 
 
The mutation operator changes one individual selected using tournament selection. One random 
character in the string of LPHs is selected and changed to a randomly selected character. The 
new offspring is then evaluated. The process is depicted in Figure 8.2. 
  
 
 
 
 
 
 
 
 

8.5 Multithreading 
Multithreading was introduced to SPHH in order to improve runtimes. It also adds a bit of 
entropy in that each thread will execute in a non-deterministic order which means that a usually 
predictable pseudo random number generator will not produce the same sequence of random 
numbers with the same seed.  
 
Initially the evaluation process was threaded where constraint evaluations were put on threads 
and then added to the thread pool however this did not result in performance gains as the work 
load of most of the constraint evaluations was minimal. 
 
Evolutionary algorithms are an embarrassingly parallel problem.  Where the individuals of the 
population are processed by creating offspring, this process is only dependent on choosing 
parents from tournament selection. There is no reason why the genetic operators themselves 
cannot be called in parallel. This allows most of the algorithms runtime to be reduced 
significantly based on Amdahl’s law in Equation 8.1 which states that a speed up (S) is related 
to the number of threads(n) and the amount of processing that is required to be linear (B). Since 

Figure 8.1 Crossover example 

Figure 8.2 Mutation example 



75 
  

the majority of the work can be performed in parallel, B can be assumed to be less than 10% of 
the algorithm. The machines used for testing have access to 8 threads. Giving an estimated 
potential reduction in runtimes by as much as 92%. Each call to a genetic operator is executed 
on a separate thread. 
 

 

 
 

8.6 Parameters 
Table 8.1 details the parameters used for SPHH simulations. The population size was decided 
during the study by testing different values. The initial length of the individuals in the 
population is randomly set between an initial maximum value and a minimum value. These 
values were scaled to the coverage requirements for each instance. After the initial population 
generation the maximum individual length is set to a large integer value. The tournament 
selection size was set to 5 individuals in the population size promoting selection of better 
performing individuals. The genetic operator rates were decided during the study, through 
observation of different combinations. Shared memory was used because during the study it 
showed improved results. The convergence limit is the number of generations for which the 
fitness of the candidate solution is unchanged, after this limit is reached SPHH terminates. The 
convergence limit was decided during the study based on an observation that generally 
convergence occurs within 25 generations. A 100 generation limit was set as a generous limit. 
The low-level heuristic set (see: Section 8.2) was influenced by related literature as a result of 
the discussion in Chapter 6 Section 6.3.2.  
 

Table 8.1 Parameters used for SPHH runs 
Parameter  Value 
Populat ion Size 100 
Ini t ial maximum 
individual length 

25 × Coverage requirements 

Minimum 
individual length 

10 × Coverage requirements 

Maximum 
individual length 

1342177 

Tournament size 5 
Crossover rate 0.7 
Mutation rate 0.3 
Shared memory Yes  
Benchmark instance 
data set  

The Fi rst  Nurse Rostering 
Competi t ion Instances  

Convergence limit  25 
Low-level 
perturbation 
heurist ic set  

T,Z,X,Y,F,W,C,E,Q,A,K,M,
B,b 

Generat ional limit  100 

 

8.7 Summary 
This chapter has presented SPHH a multi-point selection perturbative hyper-heuristic. The 
chapter describes the SPHH algorithm, the representation used and the creation of individuals in 
the population. The details of the LPHs used are provided.  The chapter then covers the 
selection and evaluation methods, the genetic operators used and multithreading which was 
necessary to improve runtime performance. Finally the chapter presents the parameters used for 
the SPHH approach simulations. 

nBB
nS

−−+
=

)1(
1)(

Equation 8.1 Amdahl's law 
 



76 
  

1. Create initial population 
2. Evaluate individuals in population (See 

Algorithm 9.2.) 
3. Create a number of individuals by: 

a. Probabilistically select genetic operator 
type  

b. Select parents using tournament 
selection  

c. Apply genetic operators to selected 
parents and evaluate newly created 
individuals 

d. Replace individuals if they are not 
present in the population using inverse 
tournament selection. 

4. Repeat until a maximum number of generations. 
5. Return the best program  

 

Chapter 9 Genetic Programming 

Generative Perturbation Hyper-

Heuristic 
This chapter presents GPHH, a strongly typed genetic programming algorithm as a generative 
perturbative hyper-heuristic. This genetic programming algorithm was influenced by the state of 
the art of generative perturbative and generative constructive hyper-heuristics. The genetic 
programming algorithm studied here uses a steady-state control model. Genetic operators are 
used to combine function and terminal set elements into new low-level perturbative heuristics. 
The chapter describes the GPHH algorithm, the function and terminal set used, the initial 
population generation methods and representation used, genetic operators and the chosen 
parameters. 
 

9.1 GPHH Algorithm 
This section presents the GPHH algorithm.  Strong typing is used to create more structured trees 
by limiting the arguments of certain operators. The genetic programming approach uses the 
steady-state control model. In previous research it was found that the steady-state control model 
was an improvement compared to the generational control model, as it prevents weak 
individuals from being entered into the population [25].  The steady-state control model was 
also found to reduce premature convergence. During the study, the generational control model 
was attempted but performed poorly. 
 
Algorithm 9.1 provides an overview of the GPHH. First an initial population is created and is 
evaluated. Then at each iteration a set number of offspring are created using a selected genetic 
operator based on a set probability. The parent(s) required for the genetic operator are selected 
using tournament selection. The newly created offspring are evaluated. Once the set number of 
offspring have been created they replace individuals in the population provided they do not exist 
as duplicates are not allowed in the population. Inverse tournament selection is used to replace 
individuals in the population. This algorithm repeats until a set number of iterations are reached.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 9.1 Genetic programming algorithm overview 



77 
  

Algorithm 9.2 shows an overview of how each individual in the population is evaluated during 
the execution of Algorithm 9.1. Firstly the parse tree is interpreted as a heuristic. This heuristic 
is executed 10 times, this tests the individual on randomly generated initial solutions, this 
prevents over fitting. Each execution applies the heuristic to the candidate solution for the 
instance, until a set time limit is reached. Only one instance is used for the 10 executions. The 
individual is given a fitness value by using the soft constraint values obtained over these 10 
executions. This is the average fitness multiplied by the minimum fitness. This was chosen as it 
rewards individuals that find minimum results quickly while also penalizing individuals with 
performance that varies by a large amount. 
 
  
 
 
 
 
 
 
 
 

9.2 GPHH terminal and function set 
GPHH aims to create new LPHs. These are composed of existing move acceptance methods and 
LPHs. LPHs make changes to an initial solution. Genetic programming is used to combine these 
parts which have been divided into a function set and terminal set. The created LPH is applied 
to randomly generated initial solutions. The default move acceptance for an individual is to 
accept all moves. As the parse tree is traversed, each move acceptance method will replace the 
current move acceptance method, when applying terminals to the initial solution. Some move 
acceptance methods have a number of parameters. These parameters are not reset until the initial 
solution is changed. Each LPH is applied multiple times to the solution for a limited period. 
This is done to test the effectiveness of the evolved LPH. 
 
The terminal set consists of 14 LPHs. The LPHs chosen for the terminal set are based upon an 
analysis of the literature in Chapter 6 section 6.2. These were chosen to represent a wide range 
of possible LPHs to give the process of evolving a LPH more flexibility. This flexibility is 
achieved by being able to combine existing LPHs with move acceptance methods. These are 
presented in a bulleted list which has the letter 'n' followed by a number for the LPH and the 
LPH categorization in brackets:   

• n0 – No change to initial solution. 
• n1(l1) – Randomly select two nurses and a day where both have worked shifts, swap the 

shift types between the two nurses. 
• n2(l2) – Select a day randomly, randomly select a nurse working a shift and another 

nurse working a free shift for the selected day. 
• n3(l3) – Select two nurses randomly, select a subset of days in the scheduling period 

randomly. Swap the associated shift types for the selected day. 
• n4(l3(l4)) – Select two nurses randomly, select a random subset of weekend days. Swap 

the associated shift types for the selected days. 
• n5(l3(l4)) – Select two nurses randomly, select a random subset of weekdays. Swap the 

associated shift types for the selected days. 
• n6(l2(l4)) – Randomly select a nurse which has a requested shift off (see Chapter 4 

section 4.1) violation, randomly select a nurse which has a free shift for the same 
violation. Assign the nurse with the free shift the shift type of the first nurse and remove 

1. Interpret  parse tree 
2. Repeat for 10 executions 

a. Create random initial solution 
b. Execute parse tree for time 

period n 
3. Update fitness of individual 

 
Algorithm 9.2 Evaluation phase of GPHH individual 



78 
  

the first nurse's shift assignment. 
• n7(l2(l4)) – Randomly select a nurse which has a requested day off  (see Chapter 4 

section 4.1) violation, select a nurse which has a free shift for the same violation. 
Assign the nurse with the free shift the shift type of the first nurse and remove the first 
nurse's shift assignment. 

• n8(l1(l4)) – Select a nurse randomly, then select a nurse with a roster with a higher soft 
constraint cost. Randomly select a day where both have worked shifts, swap the shift 
types between the two nurses. 

• n9(l1(l5)) –Selects two nurses randomly and a sequential period of days randomly. 
Shifts between these nurses are swapped if a set probability is randomly overcome. 

• n10(l3) – Select two nurses randomly, select a sequential subset of days in the 
scheduling period randomly. Swap the associated shift types for the selected day. 

• n11(l1(l4)) – Select two nurses randomly which have different contracts, and a day 
where both have worked shifts, swap the shift types between the two nurses. 

• n12(l3(l4)) – Select two nurses randomly which have different contracts, select a subset 
of days in the scheduling period randomly. Swap the associated shift types for the 
selected day. 

• n13(l3(l4)) – Select a nurse randomly, then select a nurse with a roster with a higher 
soft constraint cost. Select a subset of days in the scheduling period randomly. Swap the 
associated shift types for the selected day. 
 

The function set contains four functions: Combiners (H and C), If statements, Move acceptance 
methods (A) and Iterations (I).  
 
Combiners represent multiple statements in a program. There are two types of Combiners; high-
level (H) and low-level (C). Each parse tree must begin with a high-level combiner. There are 
six high-level combiners with an arity of 1 to 6 (H1-H6). Arguments of high-level combiners 
can be any of the following functions: Repeat, move acceptance methods and low-level 
combiners. There are two low-level combiners; C2 which has an arity of 2 and C3 which has an 
arity of 3. These accept low-level combiners, If statements and terminals as arguments. 
 
An example of the high-level combiner, H3 can be seen in Figure 9.1. H3 combines 3 branches. 
When the parse tree is executed, the branch beginning with I is run first, I is a repeat function so 
any functions and terminals making up the subtree will be executed ten times. Then the branch 
beginning with A will execute, A is a move acceptance method. The third branch, C2 will 
execute the branches from left to right. 
 
 
 
 
 
 
 
 
 
  
 
 
Iteration functions have an arity of 1. The arguments they accept are; move acceptance methods 
or low-level combiners. There are two iteration operators both repeat the branch for ten 
iterations. Different values were tried during development but ten worked well. The first, I1 
executes the branch and retains all changes made to the initial solution. I1 is intended to 

H3

I C2A

Figure 9.1 Example of high-level and low-level combiner functions 
 



79 
  

encapsulate an effective branch and repeat it. The second, I2 stores each change to the candidate 
solution and applies the best change found at the end of ten iterations. I2 is intended to find the 
best change to the candidate solution by a branch. 
 
In Figure 9.2 it can be seen that there is an iteration function in the first branch of the high-level 
combiner H3. The iteration function has a move acceptance method A as an argument and is 
followed by C2 which combines two LPHs as terminals. The LPHs are each applied using the 
same acceptance method A. The LPH, n3 is applied to the initial solution and the move is 
accepted or rejected by the move acceptance method A and then n1 is applied to the candidate 
solution and the move is accepted or rejected by the move acceptance method A. This branch is 
repeated for ten iterations. Then the next branch containing a move acceptance method A is 
applied and finally the branch containing the low-level combiner C2 is applied. 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
Move acceptance methods have an arity of 1. The arguments they can take are low-level 
combiners, If statements and terminals. There are 8 move acceptance methods. The acceptance 
methods chosen are taken from literature. These are given in Table 9.1. Simple move 
acceptance methods such as; accept improving or equal moves were included. The intention of 
high-level combiners is to allow for multiple move acceptance methods to be present in the 
same parse tree. The first move acceptance method in the parse tree will be applied to all 
terminals (LPHs) until a branch with a different move acceptance method is reached, at this 
point that move acceptance method will be used. 
 
The move acceptance methods; accept improving only, accept improving or equal, great deluge 
and simulated annealing for this problem were explored for a hyper-heuristic using random 
heuristic selection for the nurse rostering problem [213]. This study found improving only to be 
the worst acceptance method for their hyper-heuristic but found great deluge to be the best. 
However, no combination was found to be significantly better than another. Due to this even 
though ‘improving only’ seems to perform poorly it should be an option to the GPHH. 
 
The methods of late acceptance [159], [226] and step counting [227] are algorithms proposed 
for improving the hill climbing acceptance method. The step counting algorithm was shown to 
perform generally better than simulated annealing and late acceptance when applied to the 
examination timetabling problem. These acceptance methods are state of the art and need to be 
options for GPHH.  
 
 

H3

I C2A

A

C2

n3 n1

Figure 9.2 Example of an iteration function 
 



80 
  

The adaptive iterative limited list algorithm was introduced by Misir [228] it is similar to the 
late acceptance method but was shown to perform better than late acceptance, improving equal 
and great deluge when applied to the ready-mixed concrete delivery problem. This acceptance 
method was also used [213], [216] to create an adaptive hyper-heuristic for Hyflex [141]. This 
hyper-heuristic won the cross domain heuristic search challenge (CHeSC2011). Given the 
comparative performance to state of the art move acceptance methods it was included in the 
function set. 
 

Table 9.1 Acceptance methods components 
Acceptance Methods 
(type A) 

Description 

A1 All Moves  
A2 Improving on ly 
A3 Improving or Equal 
A4 Late acceptance [229] 
A5 Great  deluge [70] 
A6 Step counting [230] 
A7 Simulated annealing 

[69] 
A8 Adaptive Iterat ive 

Limited List  
Acceptance [216] 

 
In Figure 9.3 the high-level combiner is H2. The first branch is an iteration operator followed by 
the move acceptance method A3 (which accepts all improving and equal moves) followed by 
the low-level combiner C2 which has branches n3 and n1. These are executed sequentially 
using A3 to accept or reject moves. When the ten iterations of the repeat operator are finished, 
the next branch A5 changes the move acceptance method to the great deluge method. The next 
operator in the tree is C2 which consists of n9 and n0. The LPH n9 is applied to the solution 
and the moves are accepted or rejected based on the great deluge method. n0 is a null move but 
if it were a LPH that made a change to the solution it would be applied and the great deluge 
method would consider its changes to the solution. 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
There are two If statement operators, the first IF-C has an arity of 2. IF-C checks if the 
candidate solution has not changed during Algorithm 9.2. If it has not changed the alternate 
branch is executed otherwise the first branch is executed. This is intended to allow a LPH to 
evolve a branch to escape local optima.  The second is IF-I which has an arity of 3. The first 
branch of IF-I is always executed, if an improvement in soft constraint violations are found then 
the second branch is executed otherwise the third branch is executed. This is intended so that an 
alternate branch can be executed if the result of applying the first branch does not effect change 

H2

I A5

C2

n9 n0

A3

C2

n3 n1

Figure 9.3 Move acceptance function example 
l  



81 
  

on candidate solution. The arguments taken are: Low-level combiners, If statements and 
terminals. 
 
In Figure 9.4 the high-level combiner is H2 the first branch has an acceptance method of A3 
followed by the operator IF-I. IF-I applies the first argument to the candidate solution, once the 
result of applying the first argument is known, the conditional operator checks if this result is an 
improvement.  If the result is an improvement the second branch is traversed, otherwise the 
third branch is traversed. In the example, the first branch of IF-I is applied to the candidate 
solution, in this example this would be the application of n3. If the move made by n3 and 
accepted by A3 is an improvement to the soft constraint violations of the solution then the 
second branch is applied (n1), otherwise the branch combining n6 would be applied to the 
solution. The second branch of H2 changes the move acceptance method to A5 (great deluge) 
the following branch is IF-C. IF-C checks if the number of soft constraint violations has stayed 
the same for a number of iterations. If this is false n9 is executed, if this is true the second 
branch combining n0 is executed. In this example no change would occur however this would 
not always be the case with IF-C as it could combine any combination of IF-I, IF-C, C2, C3 or 
any terminal (LPH). 
 
 

 
 
 
 
 
 

 
 
 

 
  
Table 9.2 provides information for the arguments of each element of the function set. In the 
arity column the comma separation indicates that there are separate operators with different a 
different arity but the same function. 
 

Table 9.2 Function and terminal arguments for GPHH 
Function Accepted 

arguments  
Description Arity 

M A, C, I High-level combiner  1,  2 ,  3 ,  4 ,  
5 ,  6 

I A, C Iterat ion 1 
A C,  IF-C, IF- I,  n  Acceptance method  1 
C C,  IF-C, IF- I,  n  Low-level combiner  2,  3 
IF-C C, IF-I,  IF-C, n Checks if soft  constraint  score has not  

changed 
2 

IF- I IF- I,  IF-C, C, n  Checks if solut ion has improved after 
executing first  branch 

3 

Terminal  Accepted 
arguments  

Descript ion Arity 

n null  Low-level perturbative heurist ic 
(LPH) 

0 

 

9.3 Initial population creation and representation 
The initial population is created using the grow method discussed in Chapter 2 section 2.2.2. 
The grow method cannot add arguments to operators which do not take those operators as 

H2

A3 A5

If-C

n9 n0

If-I

n1n3 n6

Figure 9.4 Example of if statement 
 



82 
  

1. Create a root node 
2. For each argument: 

a. If maximum depth,  select a 
compatible terminal node 

b. Else Select a compatible 
function or terminal node 

3. Repeat 2. For each function node. 
4. Once all branches contain a terminal 

end method 
 

arguments see Algorithm 9.3.  Individuals of various depths are generated due to 2b. A 
maximum depth is set. Figure 9.5 shows an example of an individual represented as a parse tree. 
This individual has a depth of 3. It first executes improving or equal move acceptance (A3) and 
then it checks if the solution has not changed for a number of attempts (IF-C), if it has changed 
n2 is applied to the candidate solution otherwise n0 is applied. Following this the move 
acceptance is changed to step counting acceptance (A6) and n11 is applied to the candidate 
solution. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 

 
  
 

9.4 Genetic operators 
GPHH uses probability to decide whether to use crossover or other genetic programming 
operators. Crossover (Figure 9.6) is used for exploration. This is the predominant operator used 
for genetic programming. The other genetic programming operators consist of: three global 
search operators namely: Mutation (Figure 9.7), Create and Point mutation (Figure 9.9) and one 
local search operator: Permutation (Figure 9.8). 
 
Standard genetic programming crossover using strong typing is used. Only compatible types can 
be exchanged. An example of crossover for GPHH is given in Figure 9.6. In this example the 
two offspring are created, the better of the two will replace an individual in the population with 
lower fitness chosen through inverse tournament selection shown in Algorithm 9.4. In this 
example an acceptance method (A6) node in parent 1 is replaced with function node (C3) from 
parent 2. This creates an offspring that combines 3 more heuristics. While the second offspring 
only differs from parent 2 by having a second acceptance method and a new low-level heuristic, 
on the right branch of H2, this allows for simpler trees to also be considered. Entire sub trees 
may be swapped providing a point in the second parent's tree contains a compatible argument. 
 

Algorithm 9.3 The grow method 

H2

A3 A6

n6If-C

n3 n6

Figure 9.5 Example of an individual or parse tree 
 



83 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPHH mutation, selects a node in the tree at random and then uses the grow method to replace 
that node with a new subtree. In Figure 9.7, the parent's IF-I node has been replaced with an 
entirely new subtree starting with IF-C. 

1. Select random individuals from the population equal 
to the parameter tournament size 

2. Set the worst individual as the first individual in the 
sample 

3. Repeat until there are no individuals to compare 
against: 

a. Compare the worst individual's fitness with 
the next individual in the sample 

b. If the fitness of the worst individual is higher 
than the compared individual, replace the 
worst individual with the compared 
individual. 

4. Return the worst individual 
 Algorithm 9.4 Inverse tournament selection 

H3

A2 A6

If-C n9

If-I

n5 n3 n1

n8 n4

H2

A8

If-C

C3

n9 n2 n6

n4n9

H3

A2

If-C

If-I

n5 n3 n1

n8 n4

C3

n9 n2 n6

H2

A8

If-C

n4n9

A6

n9

Parent 1 Parent 2

Offspring 1 Offspring 2

Figure 9.6 GPHH Crossover example 
 



84 
  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Permutation is an operator that changes the order of the arguments of a selected node. This is 
done by selecting a random number of changes up to the number of function and terminal set 
elements in the tree). Then for each change, a node is randomly selected and a swap of the node 
with another node that is compatible with Table 9.2 is performed. The nodes swapped are 
removed from the list of nodes. If the maximum depth is exceeded the operator is attempted 
again until a valid parse tree is created. An example can be seen in Figure 9.8. Where a tree has 
been completely rearranged but still contains the same individuals as its parent. 
 
Point mutation changes a single terminal node to a different terminal value this can be seen in 
Figure 9.9 where the terminal node with the label "n0" has been changed to have the label "n9". 
The terminal node is selected uniformly at random. There are not different types of terminals so 
point mutation cannot create invalid trees. 
 
The create operator is a more severe form of mutation where instead of selecting a random 
node, the entire tree is replaced with a newly created individual. This process uses the grow 
method (Algorithm 9.3). 
 
 
 
 
 
 
 
 
 

H3

A2

If-C

If-I

n5 n3 n1

n8 n4

H3

A2 A6

If-C A6

If-C

C2 If-I

n9n8 n4

A6

n9

n5 n3 n1n5 n5

Parent

Offspring

Figure 9.7 GPHH Mutation example 
 



85 
  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

H3

A2

If-C

If-I

n5 n3 n1

n8 n4

A6

n9

H3

A6

If-I

If-C

n4 n9

n8 n4

A2

n1

n3

Parent

Offspring

Figure 9.8 GPHH Permutation example 
 

Figure 9.9 GPHH point mutation example 
 

H2

A8

If-C

n4n9

A6

n9

H2

A8

If-C

n4n9

A6

n8

Parent

Offspring



86 
  

9.5 Parameters 
Table 9.3 details the parameters used for GPHH simulations. The following were decided 
during the study; the fitness function, number of runs for each individual created, the time per 
run, IF-C limit, tournament size and maximum tree depth,  number of generations, the 
population size, the number of offspring changed by genetic operators at each generation, the 
probability used for the n9 LPH and the probability of crossover. This was done to explore a 
number of possible configurations. In this approach if crossover was not selected, one of four 
exploitation operators were applied to a selected individual. These are: mutation, point 
mutation, permutation and create. 
 
Each individual is evaluated by 10 runs; each run is limited to half a second, each run works on 
a randomly generated candidate solution. The individual is executed on the selected instance(s).  
IF-C is an element of the function set intended to escape local optima if a solution is 
converging, the limit is set at 30, after 30 consecutive applications to a candidate solution 
without an improvement in soft constraint score the alternate branch of the IF-C function is 
taken.  
 

Table 9.3 Parameters used for GPHH runs 
Parameter  Value 
Fitness function minimum×average 
Runs for 
individuals 

10 

Time period for 
each execution of 
the evaluation 
phase Algori thm 9.2 

0.5 Seconds 

IF-C limit  30 
Generat ions  100 
Tournament size 5 
Maximum tree 
depth 

12 

Populat ion size 100 
Offspring per 
generat ion  

8 

Probabili ty Swap 0.96 
Crossover  0.85 
Benchmark instance 
data set  

The Fi rst  Nurse 
Rostering 
Competi t ion 
Instances  

 

9.6 Summary 
This chapter has presented the model and algorithm for a generative perturbation hyper-heuristic 
using strongly typed genetic programming. The chapter firstly covers the general algorithms for 
the approach, and then it gives details of the terminal and function set and representation. Then 
the initial population generation and genetic operators are covered, finally the chosen 
parameters are presented. 



87 
  

Chapter 10 Results and discussion 
This chapter details the results of the two approaches developed to achieve the objectives 
outlined in Chapter 7. Section 10.1 presents the results of the genetic algorithm selection 
perturbative hyper-heuristic (SPHH). Section 10.2 presents the results of the genetic 
programming generative perturbation hyper-heuristic (GPHH). Section 10.3 presents a 
comparison of the two approaches results. Section 10.4 gives a comparison to the state of the art 
for nurse rostering optimization done using the INRC2010 benchmark data set. 
 

10.1 Genetic algorithm selection perturbative hyper-

heuristic results (SPHH) 
This section presents the results obtained by the approach described in Chapter 8 which dealt 
with the development of a genetic algorithm selection perturbative hyper-heuristic for solving 
the nurse rostering problem. 
 
The SPHH was applied to the benchmark instances from the INRC2010 benchmark data set. 
These will be compared by separating the instances into the three tracks of; sprint, medium and 
long. SPHH found feasible solutions for all instances from the INRC2010 benchmark set. The 
results are measured in terms of quality using the number of soft constraint violations. The 
lowest number of soft constraint violations obtained by SPHH (minSCV) are compared to the 
best known soft constraint results (BKR). The aim of a hyper-heuristic is not to perform better 
than state of the art but to perform generally well for a set of problem instances. To this end 
while good results are desirable they do not necessarily show that the hyper-heuristic is good or 
bad. 
 
Table 10.1, Table 10.2 and Table 10.3 display the results obtained by SPHH. Table 10.1 for the 
sprint instances, Table 10.2 for the medium instances and Table 10.3 for the long instances. 
Each table shows the BKR for each instance, the minSCV obtained over 30 runs of SPHH for 
each instance, the average number of soft constraint violations (avgSCV) obtained by SPHH 
over 30 runs for each instance, the average generations taken when a solution was found for 
each run, the percentage difference between the minSCV obtained by SPHH, the BKR and the 
standard deviation of the soft constraint violations over 30 runs for each instance.  
 

Table 10.1 SPHH results for sprint instances from INRC2010 
Instance  BKR minSCV avgSCV Average 

generation 
Percentage 
difference 

Standard 
deviation 

sprint_early1  56 56 56.1 1.67 0.00% 1.67 
sprint_early2  58 58 58.23 2.03 0.00% 2.03 
sprint_early3  46 51 51.27 1.9 10.87% 1.9 
sprint_early4  59 59 59.47 3.23 0.00% 3.23 
sprint_early5  58 58 58.07 1.2 0.00% 1.2 
sprint_early6  54 54 54.1 2.23 0.00% 2.23 
sprint_early7  56 56 56.47 3.03 0.00% 3.03 
sprint_early8  56 56 56.23 1.47 0.00% 1.47 
sprint_early9  55 55 55.57 3 0.00% 3 
sprint_early10  52 52 52.5 2.57 0.00% 2.57 
sprint_late1 37 39 40.43 3.57 5.41% 3.57 
sprint_late2 42 43 44.2 3.9 2.38% 3.9 
sprint_late3 48 48 50.23 5 0.00% 5 
sprint_late4 73 75 82.77 7.43 2.74% 7.43 



88 
  

Instance  BKR minSCV avgSCV Average 
generation 

Percentage 
difference 

Standard 
deviation 

sprint_late5 44 45 45.93 3 2.27% 3 
sprint_late6 42 42 42.53 2.6 0.00% 2.6 
sprint_late7 42 43 45.47 6.67 2.38% 6.67 
sprint_late8 17 17 17.43 1.07 0.00% 1.07 
sprint_late9 17 17 17.47 1.23 0.00% 1.23 
sprint_late10 43 49 51.73 1 13.95% 1 
sprint_hidden1 32 33 35.63 5.17 3.13% 5.17 
sprint_hidden2 32 32 34.8 2.6 0.00% 2.6 
sprint_hidden3 62 62 64.93 5.47 0.00% 5.47 
sprint_hidden4 66 66 67.67 3.87 0.00% 3.87 
sprint_hidden5 59 59 61.7 3.67 0.00% 3.67 
sprint_hidden6 130 135 152.6 5.03 3.85% 5.03 
sprint_hidden7 153 156 178.87 4.1 1.96% 4.1 
sprint_hidden8 204 207 228.57 3.13 1.47% 3.13 
sprint_hidden9 338 343 357.93 5.63 1.48% 5.63 
sprint_hidden10 306 306 323.33 4.87 0.00% 4.87 

 
Table 10.2 SPHH results for medium instances from INRC2010 

Instance  BKR minSCV avgSCV Average 
generation 

Percentage 
difference 

Standard 
deviation 

medium_early1  240 240 241.87 4.33 0.00% 4.33 
medium_early2  240 240 240.93 7.43 0.00% 7.43 
medium_early3  236 237 237.53 5.3 0.42% 5.3 
medium_early4  237 237 238.23 6.3 0.00% 6.3 
medium_early5  303 303 304.47 8.37 0.00% 8.37 
medium_late1 157 165 179.37 12.6 5.10% 12.6 
medium_late2 18 24 27.33 13.7 33.33% 13.7 
medium_late3 29 31 35.53 8.97 6.90% 8.97 
medium_late4 35 37 39.43 11.6 5.71% 11.6 
medium_late5 107 127 142.27 14.3 18.69% 14.3 
medium_hidden1 121 134 157.93 13.3 10.74% 13.3 
medium_hidden2 221 243 269.5 13.8 9.95% 13.8 
medium_hidden3 35 36 40.83 11.93 2.86% 11.93 
medium_hidden4 78 86 91.43 9.17 10.26% 9.17 
medium_hidden5 119 125 141.53 11.67 5.04% 11.67 

 
Table 10.3 SPHH results for long instances from INRC2010 

Instance  BKR minSCV avgSCV Average generation Percentage 
difference 

Standard 
deviation 

long_early1  197 197 197.07 3.6 0.00% 3.6 
long_early2  219 220 222.13 10.57 0.46% 10.57 
long_early3  240 240 240 1 0.00% 1 
long_early4  303 303 303.1 3.87 0.00% 3.87 
long_early5  284 284 284.07 3.93 0.00% 3.93 
long_late1  235 250 262.5 17.03 6.38% 16.97 
long_late2  229 253 263.13 18.87 10.48% 18.86 
long_late3  220 256 273.5 16.53 16.36% 16.38 
long_late4  221 250 278.03 16.1 13.12% 16.1 
long_late5  83 87 92.83 19.73 4.82% 19.79 
long_hidden1 346 369 398.43 19.13 6.65% 19.13 
long_hidden2 89 90 93.4 16 1.12% 16 
long_hidden3 38 42 48 18.97 10.53% 18.97 
long_hidden4 22 24 31.87 18 9.09% 18 
long_hidden5 41 51 60.3 16.77 24.39% 16.77 

 
SPHH performs well for the sprint instances. For eighteen of the thirty sprint instances the BKR 
was matched by then minSCV obtained by SPHH. SPHH obtained a minSCV within 5% of the 



89 
  

BKR for nine instances. The average percentage difference of the minSCV to the BKR was 
1.73%. 
 
SPHH finds good solutions for the majority of sprint instances. SPHH takes on average 3.38 
generations to find good quality solutions for sprint instances. This is the average for all runs of 
SPHH of the generations it took to find a solution which could not be improved upon.  
 
SPHH performs well for medium instances. For four of the fifteen medium instances the 
minSCV obtained by SPHH matched the BKR. SPHH obtained a minSCV within 10% of the 
BKR for eight instances. The average percentage difference of the minSCV to the BKR was 
7.27%. 
 
SPHH finds good solutions for the majority of the medium instances. Solutions are found within 
an average of 10.18 generations. This suggests that SPHH in general finds these harder to solve 
than the sprint instances. 
 
SPHH performs well on long instances. For four of the fifteen long instances the minSCV 
obtained by SPHH matched the BKR. SPHH obtained a minSCV within 10% of the BKR for 
five instances. The average percentage difference of the minSCV to the BKR was 6.89%. 
 
SPHH finds good solutions for a majority of the long instances. Solutions are found within an 
average of 13.34 generations. This suggests that they were more difficult to solve than the 
medium instances. 
 
SPHH is good at finding good quality solutions for 65% of the INRC2010 benchmark data set, 
the minSCV results are within 5% of the BKR. For 81% of all instances the minSCV obtained 
was within 10% of the BKR. This suggests SPHH obtains results reasonably close to the BKR.  
SPHH is good at solving the sprint instances which have fewer nurses. The majority of instances 
where SPHH obtains minSCV results which match the BKR have fewer constraints. These were 
generally the instances released early for the INRC2010 competition. SPHH still performed well 
on instances with additional constraints but it is clear these instances were more difficult for 
SPHH.  
 

10.2 Genetic programming generative perturbation 

hyper-heuristic results (GPHH) 
This section presents the results of using an approach called GPHH to solve the nurse rostering 
problem. The approach was presented in Chapter 9. This approach has two phases; the first 
phase is the evolution of a heuristic in the form of a strongly typed parse tree. The second phase 
is the application of that evolved heuristic applied to the INRC2010 benchmark instances. 
Section 10.2.1 presents the results of evolving heuristics. Section 10.2.2 presents the results of 
using the evolved heuristics to solve the nurse rostering problem from the INRC2010 
benchmark set. 
 
10.2.1 Evolving low-level perturbation heuristics using GPHH 
The genetic programming approach described in Chapter 9 was used to evolve perturbation 
heuristics. The heuristics were evolved over 30 runs for 100 generations. The run with the 
lowest fitness was selected as the best evolved heuristic to be applied to the INRC2010 
benchmark set. In Table 10.4 it can be seen that the average fitness is generally in the middle of 



90 
  

the maximum and the minimum fitness values. The effectiveness of the evolved perturbation 
heuristics tested by applying the evolved heuristics to the INRC2010 benchmark instances. 
 

Table 10.4 Results of evolving heuristics 
Evolution 
instance(s)  

Min f itness Max 
f itness 

Average 
f itness 

Standard 
deviation 

S 2197.70 2317.13 2262.496 1511.754 
E 53344.30 57489.07 54525.76 4653347.70 
H 25737.10 35767.30 30403.00 459912 
L 119189.73 203926.33 147860.43 1675204.48 
SE 3364.00 3369.80 3365.16 2.36 
SH 4666.20 4936.80 4794.64 70.60 
SL 1793.40 1822.80 1805.44 6.21 
ME 95502.60 98022.00 96381.35 594.56 
MH 132224.40 212534.40 165826.2 15855.08 
ML 1953.90 3195.90 2344.16 341.82 
LE 97605.20 102091.50 99148.68 1084.73 
LL 310511.20 563861.60 421691.40 73301.78 
LH 18066.80 31990.70 23239.04 3622.99 

 
Table 10.5 shows the best evolved heuristic found. The evolution instance(s) is shown in 
Chapter 7 section 7.5 in Table 7.1. These were selected by the lowest fitness value found in 30 
runs. The average generation for finding the best evolved heuristic was generation 76. The 
lowest generation of an evolved heuristic was 53 for SL. The highest generation for an evolved 
heuristic was 98 for the instance LE. 
 

Table 10.5 Generated Heuristics 
Evolved 
LPH 

Generation 
found 

Heuristic 

S 87 H1, (,  A5, (,  IF-C, n9,  (,  C2,  (,  C3,  n7,  n6,  ( ,  C3,  n9,  n9,  n9,  ),  ) ,  ( ,  IF-C, n2,  (,  C3,  n9,  n2,  
( ,  C2,  (,  C2,  n10, n10,  ),  ( , IF-I,  n9,  n0,  n9,  ) ,  ) ,  ) ,  ) ,  ) ,  ) ,  ) ,  )  

E 71 H1, (,  A5, (,  IF-C, (,  C3,  (,  C3,  (,  C3,  (,  C3,  (,  C3,  n4,  n4,  n12,  ),  ( , IF- I,  n1,  n4,  n12,  ),  n4,  
) ,  ( ,  C3,  n9,  n9,  n7,  ) ,  n2,  ) ,  ( ,  C3,  n8,  n9,  n5,  ) ,  n3, ) ,  n7,  ( ,  C3,  n4,  n4,  n12,  ),  ) ,  ( ,  C3,  (,  
C2,  n7,  n7,  ) ,  ( ,  C2,  n8,  n4,  ) ,  n12,  ),  ) ,  )  

H 73 H1, (,  A7, (,  IF-C, (,  C3,  n9,  n9,  n12,  ),  ( ,  IF-C, (,  C3,  n9,  n9,  n12, ),  ( ,  IF-C, (,  C3,  n6,  
n9,  n9,  ) ,  ( ,  IF-C, (,  C3,  n9,  n11,  n12,  ),  ( ,  IF-C, (,  C3,  n9,  n11,  n12,  ),  ( ,  IF-C, (,  C2,  n7,  
n6,  ) ,  ( , IF-I,  n2,  n0,  n2,  ) ,  ) ,  ) ,  ) ,  ) ,  ) ,  ) ,  ) ,  )  

L 95 H1, (,  A5, (, IF- I,  ( ,  C3,  n7,  n2, ( ,  C3,  (, IF-I,  ( ,  C3,  n1,  n2,  ( ,  C3,  (,  IF-C, (,  C2,  n1,  n2,  ) ,  
n2,  ) ,  n0,  ( ,  IF-C, (,  C3,  n9,  n9,  n8,  ) ,  ( ,  C2,  n9,  n9,  ) ,  ) ,  ) ,  ) ,  n1,  n2,  ) ,  n0,  ( ,  IF-C, (,  C3,  
n9,  n9,  n8,  ) ,  ( ,  C2,  n2,  n1,  ) ,  ) ,  ) ,  ) ,  n1,  n1, ) ,  )  

SE 57 H2, (,  A3, (, IF- I,  ( ,  C3,  (,  C3,  n9,  n7,  ( ,  C3, n8, n9, n9, ) ,  ) ,  n12,  (,  C2,  n8,  n8,  ) ,  ) ,  n7,  ( ,  
C2,  (,  C3,  n8,  n4,  n9,  ) ,  n2,  ) ,  ) ,  ) ,  ( ,  A3, (, IF- I,  ( ,  C3,  n9,  n7,  n12, ),  n9,  ( ,  C2,  (,  C3,  n8,  
n8,  n9,  ) ,  n2,  ) ,  ) ,  )  

SH 57 H1, (,  A7, (,  C3,  (,  C3,  n9,  n9, n0,  ) ,  ( ,  C2,  n2,  n2,  ) ,  ( ,  IF-C,  (,  C3,  n2,  (,  C3,  n9,  n9,  n0,  
) ,  n8,  ) ,  n13,  ),  ) ,  )  

SL 53 H1, (,  A5, (,  C2,  (,  C3,  n9,  n9, n2,  ) ,  ( ,  C3,  n9,  n9,  n12,  ),  ) ,  )  
ME 95 H1, (,  A3, (,  C3,  (, IF-I,  ( ,  C3,  n9,  n2,  n9,  ) ,  ( ,  C3,  (,  IF-C, (,  C3,  n9,  n8,  n9,  ) ,  n7, ) ,  n4,  

n10,  ),  n13, ),  n4,  ( ,  C3,  n9,  n8,  n9,  ) ,  ) ,  )  
ML 91 H1, (,  A3, (,  C3,  n4,  (,  C2,  (,  C3,  n6,  (,  C2,  (,  C2,  (,  C3, n6, (,  C2,  (,  C2,  n0,  n13, ),  n9,  ) ,  

( , IF- I,  n2,  n13,  (,  C2,  (,  C3,  n0,  n8,  n13, ),  n9,  ) ,  ) ,  ) ,  n9,  ) ,  n9,  ) ,  ( , IF- I,  n4,  n13,  (,  C2,  (,  
C2,  (,  C2,  (,  C2,  n0,  n10,  ),  n9, ) ,  n9,  ) ,  n9,  ) ,  ) ,  ) ,  n9,  ) ,  ( , IF-I,  n7,  n9,  ( ,  C3,  n8,  n8,  n2,  ) ,  
) ,  ) ,  )  

MH 56 H1, (,  A7, (,  C2,  (,  C2,  (,  C3,  (,  C2,  n9,  n9,  ) ,  n2,  ( ,  C3,  n8,  n1,  n9, ) ,  ) ,  ( ,  IF-C, n9,  n13,  ),  
) ,  n2,  ) ,  )  

LE 98 H1, (,  A7, (,  C3,  (,  C2,  (,  C2,  (,  C3,  (,  C2,  n7, (,  IF-C, (,  C3,  n1,  n1,  n1,  ) ,  n4,  ) ,  ) ,  n9,  ( ,  
C2,  (,  C3,  n1,  n1,  n7,  ) ,  ( ,  C3,  n11,  n11,  n7,  ),  ) ,  ) ,  n4,  ) ,  n4,  ) ,  n7,  ( ,  C3,  n1,  n2,  n9,  ) ,  ) ,  )  

LL 71 H1, (,  A3, (,  C3,  (,  C3,  n10,  n8,  n4,  ) ,  ( ,  C3,  (,  C3,  n2,  n11,  n13,  ),  ( , IF-I,  n9,  n9,  n12,  ),  
n0,  ) ,  ( , IF-I,  ( ,  C3,  n2,  n11,  n10,  ),  n7,  ( , IF- I,  n9,  n9,  n9,  ) ,  ) , ) ,  )  

LH 88 H2, (,  A5, n6,  ),  ( ,  C3,  n7,  (, IF-I,  ( ,  C3,  n2,  (,  C2,  n10,  n11,  ),  n9,  ) ,  n6,  ( ,  C3,  (,  C3,  n11,  
n6,  n0,  ) ,  n10,  n0,  ),  ) ,  ( , IF- I,  ( ,  C3,  n7,  (, IF-I,  ( ,  C3,  n2,  (,  C2,  n10,  n11,  ),  n9,  ) ,  n6,  ( ,  
C3,  (,  C3,  n11,  n6,  n0,  ) ,  n10,  n0,  ),  ) ,  ( , IF- I,  ( ,  C3,  n2,  (,  C2, n11,  n0,  ),  n9,  ) ,  n2,  ( ,  C3,  (, 
C3,  n6,  n6,  n9,  ) ,  n10,  n0,  ),  ) ,  ) ,  n2,  ( ,  C3,  (,  C3,  n6,  n6,  n9,  ) ,  n10,  n0,  ),  ) ,  )  

 



91 
  

Table 10.6 shows that the evolved heuristics were the fittest individuals for 23.69 generations on 
average. This suggests that the 100 generation limit was adequate. It is still possible 100 
generations was not enough for the instances that were used to evolve S, L, ME, ML, LE and 
LH as all were found above 80 generations. It is hypothesized that the aforementioned evolved 
heuristics are likely to be the poorest performing of the evolved heuristics. The evolved 
heuristic SL only contains three unique LPHs. While it was the best low-level heuristic evolved 
for that instance, it is hypothesized that it will not perform well when compared to other evolved 
heuristics with more diversity of heuristics and choice. 
 

Table 10.6 The evolved heuristics and number of generations 
 Generations 

active 
Minimum 2 
Maximum 47 
Average 23.69 

 
10.2.2 Results of applying evolved heuristics 
This section presents the results of applying the evolved heuristics to all INRC2010 instances. 
The evolved heuristics found feasible solutions for all instances. These will be compared by 
separating the instances into the three tracks: sprint, medium and long. Results are compared to 
the BKRs in this section and will be compared to SPHH in section 10.3. These evolved 
heuristics are not expected to perform better than a selection perturbative hyper-heuristic as the 
intent is to evolve perturbation heuristics. 
 
Table 10.7 shows the minSCV results found for the sprint instances by the evolved heuristics. 
Table 10.8 shows the avgSCV results found for sprint instances by the evolved heuristics. Table 
10.9 shows the percentage difference of the minSCV from the BKR for sprint instances. Table 
10.10 shows the averages of the avgSCVs for each evolved heuristic for all sprint instances.   
 
The evolved heuristics found using GPHH on average obtains minSCV values that match the 
BKRs for 14.76 sprint instances. Three evolved heuristics obtain minSCVs that match 17 BKRs 
for sprint (H, SE, ME), LE obtains minSCVs which match only 9 BKRs for sprint instances. 
On average GPHH obtains minSCVs for a further eight sprint instances which are within 5% of 
the BKR.  Seven of the evolved heuristics obtained minSCVs which were under 3% on average 
away from the BKR. H, MH, S have the best performance for obtaining minSCVs for sprint 
instances. Across sprint instances the evolved heuristics that produced the best avgSCV results 
were S, H and ME. 
 

Table 10.7 minSCV results for sprint instances 
Instances  BKRs S E H L SE SH SL ME MH ML LE LH LL 
sprint_early1  56 56 56 56 56 56 56 56 56 56 56 56 56 56 
sprint_early2  58 58 58 58 58 58 58 58 58 58 58 58 58 58 
sprint_early3  46 51 51 51 51 51 51 51 51 51 51 51 51 51 
sprint_early4  59 59 59 59 59 59 59 59 59 59 59 60 59 59 
sprint_early5  58 58 58 58 58 58 58 58 58 58 58 58 58 58 
sprint_early6  54 54 54 54 54 54 54 54 54 54 54 54 54 54 
sprint_early7  56 56 56 56 56 56 56 56 56 56 56 56 56 56 
sprint_early8  56 56 56 56 56 56 56 56 56 56 56 56 56 56 
sprint_early9  55 55 55 55 55 55 55 55 55 55 55 56 55 55 
sprint_early10  52 52 52 52 52 52 52 52 52 52 52 52 52 52 
sprint_late1 37 38 40 38 39 39 39 39 39 38 38 40 39 39 
sprint_late2 42 43 43 43 43 42 42 43 43 43 43 45 43 43 
sprint_late3 48 49 49 48 49 49 49 50 49 49 49 50 49 50 
sprint_late4 73 80 78 79 76 80 80 75 77 78 77 90 77 75 



92 
  

Instances  BKRs S E H L SE SH SL ME MH ML LE LH LL 
sprint_late5 44 45 45 45 45 45 44 45 45 45 45 47 45 45 
sprint_late6 42 42 42 42 42 42 42 42 42 42 43 43 42 42 
sprint_late7 42 46 47 44 47 44 45 45 44 43 45 49 46 44 
sprint_late8 17 17 17 17 17 17 17 17 17 17 17 17 17 17 
sprint_late9 17 17 17 17 17 17 17 17 17 17 17 17 17 17 
sprint_late10 43 45 48 45 47 46 47 47 46 46 46 50 48 47 
sprint_hidden1 32 33 33 33 33 32 33 33 33 33 34 37 34 32 
sprint_hidden2 32 32 32 32 32 32 32 33 32 32 32 35 32 32 
sprint_hidden3 62 63 64 62 63 63 63 63 62 62 63 64 62 64 
sprint_hidden4 66 66 67 66 66 67 67 68 66 66 67 68 68 67 
sprint_hidden5 59 60 59 60 59 59 61 60 59 60 60 60 60 59 
sprint_hidden6 130 144 172 150 160 166 178 154 163 149 170 160 166 167 
sprint_hidden7 153 161 162 156 161 156 157 163 166 161 161 171 158 158 
sprint_hidden8 204 211 221 217 215 211 216 213 215 214 220 239 221 215 
sprint_hidden9 338 345 348 343 346 340 343 345 339 352 347 361 349 340 
sprint_hidden10 306 306 306 306 306 306 312 311 306 306 306 324 318 306 

 
Table 10.8 avgSCV results for sprint 

Instances  S E H L SE SH SL ME MH ML LE LH LL 
sprint_early1  56.57 56.5 56.53 56.63 56.53 57.03 56.9 56.3 56.37 56.8 57.43 56.8 56.87 
sprint_early2  58.67 58.6 58.53 58.7 58.23 59.23 59 58.2 58.3 58.8 59.93 58.77 59.17 
sprint_early3  52.17 51.93 52 52.37 51.47 52.5 52.43 51.87 51.97 52.3 53.2 52.47 52.5 
sprint_early4  60.33 60.43 60.23 60.63 60.07 60.73 60.97 60.1 60.3 60.7 62.23 60.33 61.03 
sprint_early5  58.03 58.03 58 58.1 58.03 58.17 58.07 58.03 58.03 58.03 58.7 58 58.17 
sprint_early6  54.03 54.13 54.17 54.27 54.03 54.8 54.77 54.1 54.1 54.43 55.3 54.33 54.6 
sprint_early7  56.77 57.03 56.8 56.87 56.5 57.63 57.4 56.6 56.83 57.1 57.87 57 57.8 
sprint_early8  56.87 56.37 56.47 56.67 56.23 56.8 56.73 56.37 56.53 56.6 56.93 56.53 57 
sprint_early9  55.97 56.37 56.1 56.3 56 56.47 56.43 56.1 56 56.17 58.13 56.87 56.83 
sprint_early10  52.9 53.33 52.8 53 52.77 53.3 52.93 52.87 52.6 53 54.53 53.17 53.67 
sprint_late1 40.63 41.9 40.87 41.07 40.73 41.37 41.47 40.87 40.63 41.43 44.37 41.8 42.1 
sprint_late2 45.03 45.53 45.03 45.27 45.2 45.4 45.47 45.2 45.53 45.4 49.07 45.57 46.07 
sprint_late3 51.4 51.67 51.37 51.53 50.73 52.3 51.6 51.57 51.13 51.27 55.03 51.83 52 
sprint_late4 87.97 89.13 87.17 86.17 87.67 88.77 87.7 85.47 88.8 86.17 104.47 87.47 89 
sprint_late5 46.9 47 46.5 46.97 46.73 46.97 46.73 46.87 46.47 47.03 49.37 46.97 47.37 
sprint_late6 43.4 43.63 43.03 43.53 43.37 43.6 43.47 43.33 43.13 43.5 45.53 43.7 43.73 
sprint_late7 51.63 53.63 51.57 52.2 52.03 51.07 51.17 51.47 50.07 52.33 59.07 52.13 52 
sprint_late8 22.8 21.4 20.7 23.03 22 21.73 22.63 21.37 21.13 21.67 26.47 22 21.33 
sprint_late9 21.87 23.23 24 21.3 22.43 21.87 22.37 21.97 22.9 23.13 27.7 23.73 23.8 
sprint_late10 52.17 53.03 52.47 53.67 52.27 54.33 54.5 53 51.63 53.13 59.23 54.27 55 
sprint_hidden1 35.9 37.33 36.4 37.23 35.67 37.07 36.9 36 36.23 36.37 41.3 36.43 37.13 
sprint_hidden2 35.1 35.4 34.67 35 34.8 35.53 34.77 34.07 34.47 34.97 39.8 34.77 34.97 
sprint_hidden3 66.67 68.17 66.97 68 67.57 67.8 67.63 66.9 67 68 72.83 67.4 68.73 
sprint_hidden4 69.27 69.67 69.87 70.17 69.23 69.47 70.03 69.43 69.4 70.1 72.6 70.53 70.7 
sprint_hidden5 62.97 63.5 63.03 63.83 62.93 63.7 62.63 62.93 62.77 63.67 67.8 63.23 64.4 
sprint_hidden6 161.03 168.8 166.17 167.5 167.07 170.53 164.43 166.57 168.83 170.17 189.07 168 171.5 
sprint_hidden7 182.37 191.77 180.37 187.37 183 187.23 182.63 185.63 184 187.43 216.4 191.07 190.67 
sprint_hidden8 234.07 240.1 237.13 242.2 238.73 241.2 235.23 240.37 239.5 239.7 272.83 243 241.2 
sprint_hidden9 362.9 369.2 363.87 366.83 361.17 365.57 364.37 364.6 365.4 366.53 388.9 367.1 368.1 
sprint_hidden10 330.57 340.97 328.53 329.73 337.93 335.77 331.87 331.2 332.7 332.6 375.67 338.13 335.47 

 
Table 10.9 Average percentage away from the BKR for sprint instances 

Evolved 
heuristic 

Percentage 
away from 
BKR 

H 2.20% 
MH 2.34% 
S 2.40% 
SE 2.63% 



93 
  

Evolved 
heuristic 

Percentage 
away from 
BKR 

ME 2.76% 
LL 2.81% 
L 2.97% 
SL 3.00% 
ML 3.33% 
SH 3.43% 
LH 3.57% 
E 3.78% 
LE 6.56% 

 
Table 10.10 Average of avgSCV results obtained by evolved heuristics for sprint instances 

Evolved 
heuristic 

Average 
across 
sprint 
instances  

S 85.57 
H 85.71 
ME 85.98 
SE 86.04 
MH 86.09 
SL 86.11 
L 86.54 
ML 86.62 
SH 86.93 
LH 87.11 
E 87.26 
LL 87.43 
LE 94.39 

 
Table 10.11 shows the minSCV results found for medium instances by the evolved heuristics. 
Table 10.12 shows the avgSCV results found for medium instances by the evolved heuristics. 
Table 10.13 shows the percentage difference of the minSCV from the BKR for medium 
instances. Table 10.14 shows the averages of the avgSCVs for each evolved heuristic for all 
medium instances. 
 
The evolved heuristics found using GPHH on average find five of fifteen instances within 5% of 
the BKRs. A further six medium instances are solved within 20% of the BKR. SL, H and SE 
have the best performance for obtaining minSCVs for medium instances. Across medium 
instances the evolved heuristics that produced the best avgSCV results were H, SE and MH. 
 

Table 10.11 minSCV results for medium instances 
Instances  BKRs S E H L SE SH SL ME MH ML LE LH LL 
medium_early1  240 241 241 240 241 242 243 243 241 241 242 242 242 243 
medium_early2  240 241 241 241 242 241 241 241 241 241 241 241 241 242 
medium_early3  236 238 238 237 238 237 238 237 238 237 238 238 238 238 
medium_early4  237 239 238 238 238 238 239 239 238 238 239 239 238 239 
medium_early5  303 304 304 304 304 303 305 304 304 304 304 306 304 305 
medium_late1 157 176 182 182 177 180 179 175 182 177 178 201 176 185 
medium_late2 18 24 28 24 27 26 29 24 22 25 25 30 27 28 
medium_late3 29 35 33 32 33 34 36 34 32 32 36 39 33 36 
medium_late4 35 39 39 38 39 38 38 38 37 39 38 45 39 38 
medium_late5 107 139 138 130 137 134 140 136 142 139 142 172 135 141 
medium_hidden1 121 148 144 148 150 148 156 138 142 146 155 174 149 136 
medium_hidden2 221 258 274 263 269 254 278 262 267 271 275 302 270 257 
medium_hidden3 35 41 40 37 39 38 39 38 39 39 39 49 37 40 



94 
  

Instances  BKRs S E H L SE SH SL ME MH ML LE LH LL 
medium_hidden4 78 88 86 86 86 87 87 87 85 87 85 91 84 88 
medium_hidden5 119 140 138 134 137 139 143 137 137 130 141 146 143 141 

 
Table 10.12 avgSCV results for medium instances 

Instances  S E H L SE SH SL ME MH ML LE LH LL 
medium_early1  243.17 242.87 242.93 243.03 243.23 246.77 244.23 242.77 242.6 243.53 243.9 245.37 244.6 
medium_early2  244.37 242.47 242.43 242.67 242.27 245.73 242.8 243.5 242.17 242.83 243.83 244.87 243.97 
medium_early3  241.63 238.93 238.9 238.8 239.23 240.37 239.8 239.37 239.03 239.5 240.17 241.6 240.3 
medium_early4  242 239.93 239.67 239.77 239.43 240.83 240.6 240.7 239.5 240.5 241 241.9 241.2 
medium_early5  308.23 305.73 305.3 305.97 305.37 309.3 306.27 305.53 305.4 306.6 308.93 308.43 307 
medium_late1 191.7 200.8 193.4 198.73 193.33 196.67 195.63 192.73 190.33 194.77 218.23 192.5 197.73 
medium_late2 31.63 34.77 30.4 31.17 32.27 31.47 30.7 30.53 30.37 32.87 40.3 33.1 34.9 
medium_late3 39 39.8 38.13 38.33 39.2 41.33 39.17 41.37 39.03 40.6 47.23 39.63 43.37 
medium_late4 42.6 43.3 41.53 43.27 42.5 43.13 41.93 46.4 41.77 43.2 51.33 43.03 44.63 
medium_late5 154.07 162.67 152.1 156.7 155 161.87 156.27 173.33 157.23 156.83 195.03 161.1 163 
medium_hidden1 166.77 173.17 170.63 173.43 167.9 177.63 169.67 173.9 169.03 172.33 209 177.6 180.43 
medium_hidden2 293.87 302.33 288.67 297.2 292.63 300.53 293.2 306.53 293.3 300.4 340.63 296.77 297.17 
medium_hidden3 44.37 44.8 43.63 44.63 43 44.2 44.07 43.47 43.97 44.83 53.57 49.77 45.2 
medium_hidden4 93.63 95.23 92.07 94.23 93.4 93.83 94.5 93.63 94.3 93.6 103.2 98.67 95.57 
medium_hidden5 155.03 165.8 153.97 158.2 154.2 158.9 153.37 151.93 159.5 156.03 187.57 174.87 159.97 

 
Table 10.13 Percentage away from BKR for medium instances 

 

 
Table 10.14 Average of avgSCV results obtained by evolved heuristics for medium instances 

Evolved 
heuristic 

Averages 

H 164.92 
SE 165.53 
MH 165.84 
S 166.14 
SL 166.15 
L 167.08 
ML 167.23 
ME 168.38 
SH 168.84 
E 168.84 
LL 169.27 
LH 169.95 
LE 181.59 

 
Table 10.15 shows the minSCV results obtained for long instances by each of the evolved 
heuristics. Table 10.16 shows the avgSCV results found for long instances by the evolved 

Evolved 
heuristic 

Percentage 
away from 
BKR 

H 10.74% 
ME 10.87% 
SL 11.25% 
MH 12.05% 
SE 12.43% 
LH 13.02% 
S 13.13% 
L 13.42% 
E 14.11% 
ML 14.16% 
LL 14.44% 
SH 16.04% 
LE 25.48% 



95 
  

heuristics. Table 10.17 shows the percentage difference of the minSCV away from the BKR for 
long instances. Table 10.18 shows the averages of the avgSCVs for each evolved heuristic for 
all long instances. 
 
The evolved heuristics found using GPHH on average obtain minSCV results for four of fifteen 
instances within 10% of the BKRs. A further thirteen long instances obtain minSCV results 
within 20% of the BKRs. S, SL, MH have the best performance for obtaining minSCV results 
for long instances. Across long instances the evolved heuristics that produced the best avgSCV 
results were H, MH and S. 
 

Table 10.15 minSCV results for long instances 
Instances  BKR S E H L SE SH SL ME MH ML LE LH LL 
long_early1  197 197 197 197 197 197 197 197 197 197 197 197 197 197 
long_early2  219 221 221 222 221 221 222 222 221 221 221 223 221 222 
long_early3  240 240 240 240 240 240 240 240 240 240 240 240 240 240 
long_early4  303 303 303 303 303 303 303 303 303 303 303 303 303 303 
long_early5  284 284 284 284 284 284 284 284 284 284 284 284 284 284 
long_late1  235 254 262 257 257 255 262 260 257 250 257 283 259 268 
long_late2  229 249 273 259 266 263 262 253 258 260 259 305 263 262 
long_late3  220 257 268 258 263 258 255 256 262 263 266 294 260 256 
long_late4  221 256 271 259 267 264 257 258 259 255 264 299 268 269 
long_late5  83 99 104 97 96 96 99 93 95 98 100 123 98 97 
long_hidden1 346 368 380 374 374 368 369 370 381 374 377 423 377 374 
long_hidden2 89 90 91 89 91 90 90 90 91 90 90 101 91 92 
long_hidden3 38 43 45 41 45 43 42 42 40 40 42 55 44 42 
long_hidden4 22 23 27 25 24 27 26 27 26 25 27 37 25 28 
long_hidden5 41 48 52 48 48 48 45 51 45 46 48 67 48 51 

 
Table 10.16 avgSCV results for long instances 

Instances  S E H L SE SH SL ME MH ML LE LH LL 
long_early1  197.13 197.07 197.2 197.47 197.03 198.4 198.2 197 197.2 198.13 197.57 197.87 198.57 
long_early2  230.33 223 223.5 223.47 222.57 225.33 224.53 227.27 222.97 224.7 226.53 224.53 225.8 
long_early3  240 240 240 240 240 240 240 240.67 240 240 240 241.37 240 
long_early4  307.87 303.07 303 303 303.07 303.93 303.8 303.07 303.03 303.67 304.4 306.7 304.37 
long_early5  289.27 284.3 284 284.03 284 284.83 284.43 284 284 284.57 285.17 284.27 285.07 
long_late1  267.63 285.47 271.57 278.3 274 276.07 273.2 271.67 271.5 276.17 315.87 282.07 282.43 
long_late2  273.03 296.27 275.63 285.67 277.43 278.4 276.57 273.1 277.63 282.53 326.77 284.33 289.07 
long_late3  275.77 285.3 275.97 279.33 277.3 278.03 277.63 276.2 276.4 279.07 323.2 277.8 284.1 
long_late4  273.47 286.47 276.4 283.33 280.3 281.97 275.77 275.43 275.4 277.87 327.6 285 291.47 
long_late5  110.7 120.07 111.47 115.47 113.57 116.03 110.9 111.5 110.93 115.7 152.97 118.43 118.07 
long_hidden1 396.27 407.57 397.97 401.57 396.43 399.17 399.73 445.53 397.03 399.57 466.3 403.63 414.6 
long_hidden2 93.93 98.37 93.2 95.3 94.03 95.4 93.93 105.03 93.97 96.5 111.57 95.9 98 
long_hidden3 48 51.8 48.27 50.57 47.8 49.6 47.77 48.47 48.17 50.27 63.07 51.37 50.4 
long_hidden4 31.9 34.7 30.87 33.7 31.43 31.77 31.4 30.8 30.47 31.3 49.3 43.77 35.37 
long_hidden5 56.27 63.3 55.67 57.1 55.7 58.3 56.2 54.43 56.57 58.4 79.83 58.87 59.87 

 
Table 10.17 Percentage difference from BKRs for long instances 

Evolved 
heuristic 

Percentage 
away from 
BKR 

S 7.46% 
MH 7.61% 
ME 7.95% 
H 8.12% 
SH 8.33% 
SL 8.89% 
SE 9.14% 
L 9.16% 



96 
  

Evolved 
heuristic 

Percentage 
away from 
BKR 

LH 9.41% 
ML 9.64% 
LL 10.56% 
E 12.09% 
LE 25.64% 

 
Table 10.18 Average of avgSCV results obtained by evolved heuristics for long instances 

Evolved 
heuristic 

Averages 

H 205.65 
MH 205.68 
S 206.10 
SL 206.27 
SE 206.31 
SH 207.82 
ML 207.90 
L 208.55 
ME 209.61 
LH 210.39 
E 211.78 
LL 211.81 
LE 231.34 

 
Table 10.19 shows the rankings of the evolved heuristics for the tracks of the INRC2010 
benchmark data set for minSCV results obtained by the evolved heuristics. Table 10.20 shows 
the rankings of the evolved heuristics for the tracks of the INRC2010 benchmark dataset for 
averages of avgSCV results obtained by the evolved heuristics. 
 
The best evolved heuristics for finding minSCV results were S, H and SL. The best average 
performance of an evolved heuristic was H and the next best were S and MH. Evolved 
heuristics created using three seen instances did not generally outperform those evolved using a 
single seen instance. It should also be noted that evolving using more instances requires more 
computational time. H seems to perform the best with regards to the minSCV results and 
average avgSCV results. The evolved heuristics of S, MH and SE do have similar performance. 
 
There is no strong relationship between the performance of the evolved heuristic and the 
constraints which are covered by the instance used for evolution of the algorithm. This is 
probably due to the design of GPHH which minimizes over fitting by using a randomly 
initialized candidate solution for each run during evolution (see Chapter 9 section 9.1). 
Although the seen instances used to evolve H covered all constraints, the seen instances used to 
evolve: S, SE and MH did not and the heuristics evolved from these instances were comparable 
to the performance of H. LL covered all the constraints but had worse performance compared to 
H. 
 

Table 10.19 Ranking of minimum values separated by instance description and type 
Rank INRC2010 Sprint  Medium Long 
1 S S SL S 
2 H H H SL 
3 SL SE SE MH 
4 MH MH MH H 
5 SE LL ME SH 
6 ME ME S SE 
7 L L LH ME 
8 LL SL L ML 



97 
  

9 LH ML LL L 
10 SH SH E LH 
11 ML E ML LL 
12 E LH SH E 
13 LE LE LE LE 

 
Table 10.20 Average values found ranking separated by instance description and type 

Rank INRC2010 Sprint  Medium Long 
1 H S H H 
2 S H SE MH 
2 MH ME MH S 
4 SE SE S SL 
5 SL MH SL SE 
6 ML SL L SH 
7 L L ML ML 
8 ME ML ME L 
9 SH SH SH ME 
10 LH LH E LH 
11 E E LL E 
12 LL LL LH LL 
13 LE LE LE LE 

 
10.2.2.1 Comparing evolved heuristics to the seen instances used for 

evolution 
The evolved heuristics were applied to the entire INRC2010 benchmark data set. This section 
aims to see if there was any advantage gained for the evolved heuristics when applied to their 
seen instances. 
 
Table 10.21 displays the evolved heuristic and the minSCV result obtained for the seen instance 
used to evolve the heuristic. The table also contains the best minSCV result obtained when 
applying the other evolved heuristics and which evolved heuristic achieved that result and the 
difference between both minSCV values. Table 10.22 displays the evolved heuristic and the 
avgSCV result obtained for the seen instance used to evolve the heuristic. The table also 
contains the best avgSCV result obtained when applying the other evolved heuristics and the 
difference between both avgSCV values. 
 
 
For the seen instance of SE and of LE, the same minSCV result was obtained by all the evolved 
heuristics. For the seen instance of SH, the same minSCV result was obtained by the evolved 
heuristics SH and LL. For the seen instance of MH, the evolved heuristics; H and ME obtained 
the same minSCV result as MH. For the seen instance of ML, a 7.6% better minSCV result was 
obtained by the evolved heuristic, SE. For the seen instance of LH, a 5.3% better minSCV 
result obtained by the evolved heuristic S. 
 

Table 10.21 Evolved heuristic minSCV performance for seen instance 
Evolved heuristic  minSCV minSCV of  best evolved 

heuristic 
Best evolved 
heuristic 

Difference 

SE(sprint_ear ly5)  58 58 ALL 0 
SH(sprint_hidden4) 75 75 LL 0 
SL(sprint_late6)  238 237 H, L,  MH 1 
ME(medium_early5)  304 303 SE 1 
MH(medium_hidden2) 32 32 H, ME 0 
ML(medium_late3)  275 254 SE 21 
LE ( long_early4)  303 303 ALL 0 



98 
  

Evolved heuristic  minSCV minSCV of  best evolved 
heuristic 

Best evolved 
heuristic 

Difference 

LH(long_hidden5) 263 249 S 14 
LL(long_late2)  51 45 SH 6 

 
Table 10.22 Evolved heuristic avgSCV performance for seen instance 

Evolved heuristic  avgSCV avgSCV of  best 
evolved heuristic  

Best evolved 
heuristic 

Difference 

SE(sprint_ear ly5)  58.03 58.00 H, LH 0.03 
SH(sprint_hidden4) 69.47 69.23 SE 0.24 
SL(sprint_late6)  43.47 43.03 H 0.44 
ME(medium_early5)  305.53 305.53 H 0.00 
MH(medium_hidden2) 39.03 38.13 H 0.90 
ML(medium_late3)  300.40 288.66 H 11.74 
LE ( long_early4)  304.40 303.00 H, L 1.40 
LH(long_hidden5) 284.33 273.03 S 11.30 
LL(long_late2)  59.87 54.43 ME 5.44 

 
Table 10.23 displays the evolved heuristic and the minSCV result obtained for the seen 
instances used to evolve the heuristic. The table also contains the minSCV result obtained and 
the evolved heuristic which achieved that result and the difference to the evolved heuristic for 
that instance. Table 10.24 displays the evolved heuristic and the avgSCV result obtained for the 
seen instances used to evolve the heuristic. The table also contains the avgSCV result obtained 
and the evolved heuristic which achieved that result and the difference to the evolved heuristic 
for that instance. 
 
The evolved heuristic H has been shown to perform well on obtaining minSCV and avgSCV 
results when compared to the other evolved heuristics performance on the INRC2010 
benchmark data set. H did not obtain the best minSCV result for the seen instances used to 
evolve H. The same is true for S and H. The evolved heuristic L does find the best minSCV 
result for one of the instances it was evolved using. As all the evolved heuristics find the same 
minSCV result for one of the instances used to generate S, it would be impossible to say if S 
was tailored to that instance. For avgSCV results only S was able to match the average value for 
one of the instances it was evolved using (sprint_late2). The biggest difference in avgSCV 
results between the best evolved heuristic and the evolved heuristic using that instance was 4%. 
The average difference of the avgSCV results was only 1.41%. 
 

Table 10.23 Comparison of evolved heuristics using three seen instances and results obtained for 
minSCV results of the seen instances in final runs 

Evolved 
heuristic 

Instances tested minSCV minSCV 
of  best 
evolved 
heuristic 

Best evolved 
heuristic 

Difference 

 
S 

sprint_early2  58 58 ALL 0 
sprint_hidden1 33 32 SE, LL 1 
sprint_late2 43 42 SE, SH 1 

      
E sprint_early9  55 55 ALL 0 

medium_early4  238 238 H, L,  SE, ME, MH, 
LH 

0 

long_early4  303 303 ALL 0 
      
H sprint_hidden6 150 144 S 6 

medium_hidden5 134 130 MH 4 
long_hidden3 41 40 ME,MH 1 

      
 
S 

sprint_early2  58 58 ALL 0 
sprint_hidden1 33 32 SE, LL 1 
sprint_late2 43 42 SE, SH 1 

 
 



99 
  

Table 10.24 Comparison of evolved heuristics using three instances and results obtained for the 
average of the seen instances in final runs 

Evolved 
heuristic 

Instances tested avgSCV avgSCV 
of  best 
evolved 
heuristic 

Best evolved 
heuristic 

Difference 

 
S 
 

sprint_early2  58.67 58.20 ME 0.47 
sprint_hidden1 35.90 35.67 SE 0.23 
sprint_late2 45.03 45.03 S,H 0.00 

 
 
E 
 

sprint_early9  56.37 55.97 S 0.40 
medium_early4  239.93 239.43 SE 0.50 
long_early4  303.07 303.00 H, L 0.07 

 
 
H 
 

sprint_hidden6 166.17 161.03 S 5.13 
medium_hidden5 153.97 151.93 ME 2.03 
long_hidden3 48.27 47.77 SL 0.50 

 
 
L 
 

sprint_late10 53.67 51.63 MH 2.03 
medium_late4 43.27 41.53 H 1.73 
long_late3  279.33 275.77 S 3.57 

 
10.2.2.2 Analyzing the structure of evolved heuristics 
It is interesting to look at the structure of the evolved heuristics. In one of the thirteen evolved 
heuristics the same move acceptance method was used twice. Generally the best evolved 
heuristics used simulated annealing acceptance (A7) or improving or equal acceptance (A3), it 
can be seen that great deluge acceptance (A5) did work well for S. 
 
Table 10.25 shows the percentage of how the different combinations of the function and 
terminal sets make up the top four best performing evolved heuristics. Table 10.26 shows the 
percentage of how the function and terminal sets make up the bottom four worst performing 
evolved heuristics. 
 
The best move acceptance methods for the nurse rostering problem appear to be simulated 
annealing (A7), improving equal moves (A3), great deluge (A5). These were used in the best 
performing evolved heuristics. One evolved heuristic featured two move acceptance methods 
but was effectively an intron as only the ‘improving equal moves’ (A3) method was used.  
 
Improving only acceptance (A2), late acceptance hill climbing (A4) or AILLA (A8) were not 
used by any evolved heuristic. Improving only acceptance did not perform well in [213]. It 
appears the evolution of the heuristics excluded these elements of the function set.  
 
The LPH n1 was not present in any of the best performing evolved heuristics. This suggests that 
exchanging working shift types between nurses was not an effective way to reduce the soft 
constraint violations. 
 
H makes use of LPHs that exchange shifts between nurses with different contracts (n11 and 
n12), SE also uses n12. IF-C occurs more in the evolved heuristic H and S, it also occurs in LE 
and E. The heuristic n9 occurs more in S than in H but occurs in H more than in MH and SE. 
The heuristic n9 does occur frequently in the poorly performing evolved heuristics. It does not 
appear that a single function or terminal set element gives an advantage to an evolved heuristic. 
 
Two of the evolved heuristics with the worst performance used the great deluge acceptance 
method (A5). In comparison to the evolved heuristic S, it was found that S has two LPHs that 
deal with the day off and shift off requests and features the LPH n9 more frequently than LL an 



100 
  

E. These differences allow S to perform similar to the best evolved heuristics. 
 
For the worst performing evolved heuristics it can be seen that n1 occurs in two of the four. The 
heuristic n1 does not occur in any of the best performing evolved heuristics. LE only makes use 
of four unique heuristics and despite using IF-C and IF-I it is unable to make up for its limited 
moves. The evolved heuristic LE also uses n0 which is a blank move low-level heuristic more 
than any other evolved heuristic. The evolved heuristic E has the best diversity of heuristics 
used but is dependent mostly on n4 where as the best performing evolved heuristics made use of 
n9 mostly. E does not feature n6 or n7.  The evolved heuristic LH uses n7, n8 and does use n9 
the most of the evolved heuristics with poor performance this would suggest it would have 
performance matching the best evolved heuristics. The evolved heuristic LH is similar to SE 
with the exception that in LH, NC2 or NC3 functions do not occur, which results in LH having 
less complexity to its tree structure. LH only uses the n8 and n7 heuristic once whereas SE uses 
n7 three times and n8 6 times. 
 
IF-C occurs in H more than any evolved heuristic. The evolved heuristics LE, LH and LL use 
IF-I the most of any evolved heuristic suggesting it is possibly a weaker function generally. MH 
used n9 the most followed by H and SE yet even occurring frequently in LH did not give LH 
notably improved performance on the other worst performing heuristics. 
 

Table 10.25 Best performing heuristics 
H 
 

S 
 

MH 
 

SE 
 

IF-C 17.14% IF-C 8.00% IF- I 6.38% IF- I 5.71% 
IF- I 2.86% IF- I 4.00% C2 21.28% C2 8.57% 
C2 2.86% C2 12.00% C3 10.64% C3 17.14% 
C3 14.29% C3 12.00% A3 2.13% A3 5.71% 
A7 2.86% A5 4.00% n0 6.38% n2 5.71% 
n0 2.86% n0 4.00% n2 4.26% n4 2.86% 
n2 5.71% n2 8.00% n4 4.26% n7 8.57% 
n6 5.71% n6 4.00% n6 4.26% n8 17.14% 
n7 2.86% n7 4.00% n7 2.13% n9 20.00% 
n9 22.86% n9 28.00% n8 6.38% n12 5.71% 
n11 5.71% n10 8.00% n9 19.15% H2 2.86% 
n12 11.43% H1 4.00% n10 2.13%  

 
 

 n13 8.51% 
H1 2.13% 

H1 2.86% 

 
Table 10.26 Worst performing heuristics 

LE 
 

LL 
 

E 
 

LH 
 

IF-C 4.00% IF- I 8.00% IF-C 2.86% IF- I 13.64% 
IF- I 16.00% C3 26.00% IF- I 2.86% A3 4.55% 
C2 24.00% A5 2.00% C2 5.71% n0 4.55% 
A6 4.00% n0 14.00% C3 25.71% n2 9.09% 
n0 24.00% n2 10.00% A5 2.86% n4 4.55% 
n1 4.00% n9 10.00% n1 2.86% n7 4.55% 
n3 12.00% n10 12.00% n2 2.86% n8 4.55% 
n9 8.00% n11 10.00% n3 2.86% n9 22.73% 
H1 4.00% H2 2.00% n4 20.00% n12 4.55% 
  n5 2.86% n13 4.55% 

n8 5.71% H1 4.55% 
n9 8.57%  

 
 

n12 11.43% 
H1 2.86% 

 



101 
  

10.3 Comparison of SPHH and GPHH 
This section compares the two approaches developed namely, SPHH a selection perturbative 
hyper-heuristic and GPHH a generative perturbation hyper-heuristic. For GPHH the best 
avgSCV results are taken and their corresponding standard deviations. minSCV results from 
GPHH are the lowest minSCV results from all of the evolved heuristics. 
 
Table 10.27 shows the average minSCV, avgSCV and standard deviation for SPHH and GPHH 
for sprint instances.  
 

Table 10.27 SPHH Vs. GPHH for sprint instances 
 SPHH GPHH 
Average  minSCV 79.07 79.53 
Average avgSCV 83.41 84.93 
Average standard deviat ion 3.38 2.97 

 
Table 10.28 shows the average minSCV, avgSCV and standard deviation for SPHH and GPHH 
for medium instances.  
 

Table 10.28 SPHH Vs. GPHH for medium instances 
 SPHH GPHH 
Average minSCV 151.00 153.07 
Average avgSCV 159.21 164.21 
Average standard deviat ion 10.18 4.68 

 
Table 10.29 shows the average minSCV, avgSCV and standard deviation for SPHH and GPHH 
for long instances.  
 

Table 10.29 SPHH Vs. GPHH for long instances 
 SPHH GPHH 
Average minSCV 194.40 194.13 
Average avgSCV 203.22 204.62 
Average standard deviat ion 13.33 5.21 

 
Table 10.30 shows the average minSCV, avgSCV and standard deviation for SPHH and GPHH 
for all INRC2010 instances. It also presents the results of taking the best average minSCV and 
avgSCV results from both approaches 
 

Table 10.30 SPHH Vs. GPHH for INRC2010 benchmark set 
 SPHH GPHH Best of  

both 
Average minSCV 125.88 126.35 125.35 
Average avgSCV 132.31 134.67 132.06 
Average standard deviat ion 7.57 3.95 - 

 
SPHH obtains better minSCV and average results across the benchmark data set.  SPHH is 
better at solving the nurse rostering problem. GPHH had lower standard deviations across the 
benchmark set. This means the application of the evolved heuristics was generally more 
consistent for obtaining avgSCV results. 
 
Table 10.31 displays the minSCV results for instances where SPHH obtained lower results 
when compared to results obtained by GPHH.   
 
 



102 
  

Table 10.31 Instances where SPHH obtained lower minSCV compared to GPHH 
Instances  SPHH GPHH Percentage 

difference 
sprint_hidden6 135 144 6.25% 
sprint_hidden8 207 211 1.90% 
medium_early2  240 241 0.41% 
medium_early4  237 238 0.42% 
medium_late1 165 175 5.71% 
medium_late3 31 32 3.13% 
medium_late5 127 130 2.31% 
medium_hidden1 134 136 1.47% 
medium_hidden2 243 254 4.33% 
medium_hidden3 36 37 2.70% 
medium_hidden5 125 130 3.85% 
long_early2  220 221 0.45% 
long_late4  250 255 1.96% 
long_late5  87 93 6.45% 

 
Table 10.32 displays the minSCV results for instances where GPHH obtained lower results 
when compared to results obtained by SPHH. 
 

Table 10.32 Instances where GPHH obtained lower minSCV compared to SPHH 
Instances  SPHH GPHH Percentage 

difference 
sprint_late1 39 38 2.56% 
sprint_late2 43 42 2.33% 
sprint_late5 45 44 2.22% 
sprint_late10 49 45 8.16% 
sprint_hidden1 33 32 3.03% 
sprint_hidden9 343 339 1.17% 
medium_late2 24 22 8.33% 
medium_hidden4 86 84 2.33% 
long_late2  253 249 1.58% 
long_late3  256 255 0.39% 
long_hidden1 369 368 0.27% 
long_hidden2 90 89 1.11% 
long_hidden3 42 40 4.76% 
long_hidden4 24 23 4.17% 
long_hidden5 51 45 11.76% 

 
The best minSCV results from GPHH have a slightly higher average percentage difference 
compared to SPHH. The average percentage difference for instances where SPHH obtains better 
minSCV results than GPHH is 2.95%. The average percentage difference for instances where 
GPHH obtains better minSCV results is 3.61%. For 14 instances SPHH obtained minSCV 
results better than the best minSCV results of GPHH. For 15 instances GPHH obtained minSCV 
results better than the best minSCV results of SPHH. 
 
Table 10.33 shows how many constraints were present in instances which seemed to favour 
SPHH and GPHH in terms of minSCV results and those instances which had equal minSCV 
results. GPHH performed better generally for instances which had the unwanted shift pattern 
(USP), alternative skill (AS), minimum consecutive working weekends (MinCWW) and No 
night shift before a free weekend (NNF). SPHH performed better generally on instances with 
maximum consecutive working weekends (MaxCWW), day off (D) and shift off (S) constraints. 
The instances with equal minSCV results mostly had the USP, D and S constraints. 
 
 



103 
  

Table 10.33 Comparison of constraints of instances with differences in the minimum values 
obtained 

 Shift 
Types 

USP AS MinCWW MaxCWW NNF D S 

SPHH favoured instances 4.50 78.57% 35.71% 78.57% 78.57% 64.29% 57.14% 57.14% 
GPHH favoured instances 4.40 93.33% 53.33% 100.00% 73.33% 93.33% 46.67% 46.67% 
Equal instances 4.10 77.42% 3.23% 45.16% 29.03% 38.71% 90.32% 90.32% 

 
Hypothesis tests were conducted to determine the significance of the results. The hypotheses 
are:  
 H0: There is no difference in the mean objective value for SPHH and GPHH. 
 Ha: The objective value for method SPHH is better than method GPHH.  

Table 10.34 shows the Z-value when comparing SPHH against GPHH when compared for all 
problem instances. It was expected that SPHH would perform better than GPHH because SPHH 
searches a space of LPHs while GPHH attempts to create new LPHs. This means SPHH 
performs more optimization in order to solve the nurse rostering problem. SPHH produces 
statistically significant results when compared to GPHH at the 5% level. Therefore the 
alternative hypothesis is accepted. 
 

Table 10.34 Statistical test SPHH Vs. GPHH for INRC2010 instances 
 SPHH Vs. 

GPHH 
Z-Value -2.13 

 
Table 10.35 presents a list of z-values for each instance of INRC2010 comparing results of 
SPHH to those of GPHH. 
 

Table 10.35 GPHH statistically compared to SPHH 
Instances  Z-Value Statistical  

signif icance 
(0 for none,  
+ for over 
mean, - for 
under mean) 

sprint_early1  0.63 0 
sprint_early2  -0.09 0 
sprint_early3  0.55 0 
sprint_early4  0.99 0 
sprint_early5  -0.30 0 
sprint_early6  -0.16 0 
sprint_early7  0.06 0 
sprint_early8  0.00 0 
sprint_early9  0.69 0 
sprint_early10  0.21 0 
sprint_late1 0.29 0 
sprint_late2 1.13 0 
sprint_late3 0.53 0 
sprint_late4 1.77 + 
sprint_late5 0.92 0 
sprint_late6 1.00 0 
sprint_late7 3.34 + 
sprint_late8 4.60 + 
sprint_late9 17.02 + 
sprint_late10 -0.55 0 
sprint_hidden1 0.03 0 
sprint_hidden2 -1.35 0 
sprint_hidden3 1.62 0 
sprint_hidden4 2.07 + 
sprint_hidden5 1.24 0 



104 
  

Instances  Z-Value Statistical  
signif icance 
(0 for none,  
+ for over 
mean, - for 
under mean) 

sprint_hidden6 2.73 + 
sprint_hidden7 0.64 0 
sprint_hidden8 2.35 + 
sprint_hidden9 1.96 + 
sprint_hidden10 2.38 + 
medium_early1  0.90 0 
medium_early2  0.90 0 
medium_early3  1.30 0 
medium_early4  1.03 0 
medium_early5  0.54 0 
medium_late1 4.02 + 
medium_late2 1.18 0 
medium_late3 1.49 0 
medium_late4 0.98 0 
medium_late5 3.07 + 
medium_hidden1 2.71 + 
medium_hidden2 5.60 + 
medium_hidden3 0.97 0 
medium_hidden4 0.36 0 
medium_hidden5 4.01 + 
long_early1  -0.10 0 
long_early2  0.22 0 
long_early3  0.00 0 
long_early4  -0.14 0 
long_early5  -0.09 0 
long_late1  1.47 0 
long_late2  2.52 + 
long_late3  0.53 0 
long_late4  -1.39 0 
long_late5  4.70 + 
long_hidden1 -0.46 0 
long_hidden2 -0.07 0 
long_hidden3 -0.07 0 
long_hidden4 -0.42 0 
long_hidden5 -1.81 - 

 
It was found that statistically significant results at the 5% level were found for 16 instances 
when comparing SPHH to GPHH. These were for two long instances, five medium instances 
and nine sprint instances. Only the results obtained by GPHH for long_hidden05 were 
statistically significant at the 5% level of significance, when compared to SPHH. For the 
majority of instances (43) the null hypothesis is accepted. 
 
GPHH does obtain better minSCV results for certain instances however statistically SPHH is 
better at minimizing soft constraint violations. One example of a difference SPHH has is the 
higher standard deviations which were on average 1.9 times greater than the standard deviations 
of GPHH. This suggests that GPHH has less variability in the results obtained but they are 
weaker. There is potential that if both methods were combined to take advantage of their 
respective strengths and weaknesses that results could be further improved. 
 
 
 



105 
  

10.4 Comparison with state of the art 
This section will provide an empirical comparison with the state of the art methods which have 
been applied to the INRC2010 benchmark set. It should be noted that not every study provided 
results for all the instances in the benchmark data set or statistical means and standard 
deviations. This comparison only serves as a guideline as such and is provided to give an insight 
into the performance of the state of the art compared to selection perturbative hyper-heuristic 
approaches. 
 
Table 10.36 presents the approaches which will be compared with SPHH and GPHH. These 
results were taken from the studies which provided results and the INRC2010 website [96].  
 

Table 10.36 State of the art competitors for INRC2010 benchmark data set 
Description Label Reference(s) 
Mathematical 
programming 

MP [100] 

Eject ion chain 
and branch and 
price 

ECBP [57] 

Constraint  
programming 

CP [110] 

Hyper-heurist ic 
with greedy 
shuffle 

HHGS [109] 

Adaptive 
neighbourhood 
search  

ANS [106] 

Stochast ic 
variable 
neighbourhood 
search  

SVNS [108] 

Integer 
programming 

IP  [101] 

Harmony search 
algori thms 

HS Basic harmony 
search [115] ,  
Global best  
[116] ,  Greedy 
Shuffle [118] 

Harmony search 
as a hyper-
heurist ic  

HSHH [214] 

 
MP was the winner of the INRC2010 competition implemented by Valouxis et al. [100]. Burke 
and Curtois (ECBP) [57], CP by Nonobe [110], adaptive neighbourhood search (ANS) by Lü 
and Hao [106] and HHGS by Bilgin et al. [109], ranked within the top 5 for the INRC2010 
competition. The integer programming approach (IP) by Santos et al. [101] obtained 
improvements on the BKRs post-competition, further improvements on a number of BKRs were 
later obtained by Tassoupoulos et al. [108] (SVNS). There have been three papers looking into 
harmony search (HS) as a solver for the nurse rostering problem for comparison purposes these 
results will be combined to take the best minSCV obtained from each HS method. The first was 
a preliminary implementation of harmony search [115]. The second used an additional approach 
called global best [116] and another used the greedy shuffle heuristic [118]. Additionally 
another selection perturbative hyper-heuristic based on harmony search was investigated and 
results shall be compared with those available (HSHH). 
 
Table 10.37 presents all available minSCV results for their respective methods. Where there is a 
blank, no data was available. 
 
 



106 
  

Table 10.37 Comparison of minSCV results for the state of the art nurse rostering for INRC2010 
Instance  SPHH GPHH MP ECBP CP HHGS ANS SVNS IP HS HSHH 
sprint_early1  56 56 56 56 56 57 56 56 56 56 58 
sprint_early2  58 58 58 58 58 59 58 58 58 58 60 
sprint_early3  51 51 51 51 51 51 51 51 51 46 53 
sprint_early4  59 59 59 59 59 60 59 59 59 59 62 
sprint_early5  58 58 58 58 58 58 58 58 58 58 58 
sprint_early6  54 54 54 54 54 54 54 54 54 54 55 
sprint_early7  56 56 56 56 56 56 56 56 56 56 58 
sprint_early8  56 56 56 56 56 56 56 56 56 56 56 
sprint_early9  55 55 55 55 55 55 55 55 55 55 57 
sprint_early10  52 52 52 52 52 52 52 52 52 52 54 
sprint_late1 39 38 37 37 37 40 37 37 37 37  
sprint_late2 43 42 42 42 42 44 42 42 42 42  
sprint_late3 48 48 48 48 48 50 48 48 48 48  
sprint_late4 75 75 76 73 76 81 73 73 73 73  
sprint_late5 45 44 44 44 45 45 44 44 44 45  
sprint_late6 42 42 42 42 42 42 42 42 42 42  
sprint_late7 43 43 43 42 43 46 42 42 42 43  
sprint_late8 17 17 17 17 17 17 17 17 17 17  
sprint_late9 17 17 17 17 17 17 17 17 17 17  
sprint_late10 49 45 44 43 44 46 43 43 43 43  
sprint_hidden1 33 32 33    32 32 32 32  
sprint_hidden2 32 32 33    32 32 32 32  
sprint_hidden3 62 62 62    62 62 62 62  
sprint_hidden4 66 66 67    66 66 66 66  
sprint_hidden5 59 59 60    59 59 59 59  
sprint_hidden6 135 144 139    130 130 130 130  
sprint_hidden7 156 156 153    153 153 153 153  
sprint_hidden8 207 211 220    204 204 204 204  
sprint_hidden9 343 339 338    338  338 338  
sprint_hidden10 306 306 306    306 306 306 306  
medium_early1  240 240 240 240 241 242 240 240 240 248 249 
medium_early2  240 241 240 240 240 241 240 240 240 248 251 
medium_early3  236 237 236 236 236 238 236  236 243 247 
medium_early4  237 238 237 237 238 238 237 237 237 245 248 
medium_early5  303 303 303 303 304 304 303 303 303 311 315 
medium_late1 163 175 159 158 176 163 164  157 175  
medium_late2 22 22 20 18 19 21 20  18 31  
medium_late3 30 32 30 29 30 32 30  29 40  
medium_late4 37 37 36 35 37 38 36 35 35 44  
medium_late5 125 130 113 107 125 122 107  107 137  
medium_hidden1 134 136 131  130  122 121 122 190  
medium_hidden2 257 254 221    224  221 264  
medium_hidden3 35 37 38  36  35 35 36 59  
medium_hidden4 85 84 80    80 79 78 96  
medium_hidden5 125 130 122    120  119 190  
long_early1  197 197 197 197 197 197 197 197 197 215 214 
long_early2  220 221 219 219 224 220 222 219 219 248 245 
long_early3  240 240 240 240 240 240 240 240 240 246 248 
long_early4  303 303 303 303 303 303 303 303 303 314 317 
long_early5  284 284 284 284 284 284 284 284 284 296 298 
long_late1  250 250 239 235 267 241 237  235 258  
long_late2  253 249 231 229 245 245 229  229 259  
long_late3  253 255 222 220 254 233 222  220 268  
long_late4  262 255 228 221 260 246 227  221 272  
long_late5  89 93 83 83 93 87 83  83 112  
long_hidden1 369 368 363    346  346 417  
long_hidden2 90 89 106   90 89 89 89 106  



107 
  

Instance  SPHH GPHH MP ECBP CP HHGS ANS SVNS IP HS HSHH 
long_hidden3 42 40 38    38 38 38 49  
long_hidden4 27 23 22    22 22 22 32  
long_hidden5 51 45 41    45 41 41 56  

 
Table 10.38 shows the percentage of instances where SPHH has higher minSCV results, lower 
minSCV results and equal minSCV results. 
 
 

Table 10.38 Summary of SPHH compared to the state of the art for INRC2010 instances 
 MP ECBP CP HHGS ANS SVNS IP HS HSHH 
SPHH > 40.00% 42.50% 16.67% 19.51% 46.67% 39.13% 51.67% 16.67% 0.00% 
SPHH < 13.33% 0.00% 23.81% 36.59% 3.33% 0.00% 1.67% 50.00% 90.00% 
SPHH = 46.67% 57.50% 59.52% 43.90% 50.00% 60.87% 46.67% 33.33% 10.00% 

 
Table 10.39 shows the percentage of instances where GPHH has higher minSCV results, lower 
minSCV results and equal minSCV results. 
 

Table 10.39 Summary of GPHH compared to the state of the art for INRC2010 instances 
 MP ECBP CP HHGS ANS SVNS IP HS HSHH 
GPHH > 45.00% 45.00% 26.19% 21.95% 48.33% 39.13% 51.67% 13.33% 0.00% 
GPHH < 13.33% 0.00% 19.05% 36.59% 1.67% 0.00% 0.00% 50.00% 90.00% 
GPHH = 41.67% 55.00% 54.76% 41.46% 50.00% 60.87% 48.33% 36.67% 10.00% 

 
Table 10.40 presents the percentage of instances where the minSCV results were better or equal 
to the state of the art. 
 
Table 10.40 Percentage of instances where SPHH and GPHH were better or equal to state of the art 

 MP ECBP CP HHGS ANS SVNS IP HS HSHH 
SPHH 60.00% 57.50% 83.33% 80.49% 53.33% 60.87% 48.33% 83.33% 100.00% 
GPHH 55.00% 55.00% 73.81% 78.05% 51.67% 60.87% 48.33% 86.67% 100.00% 

 
SPHH and GPHH were better or equal to the majority of the available minSCV results, with the 
exception of IP. MP, ECBP, CP, ANS and IP have minSCV results which are lower than SPHH 
and GPHH for more instances. SPHH and GPHH obtained minSCV results which were better 
than those obtained by MP, CP, HHGS, ANS, HS and HSHH for at least one instance. On 
average SPHH and GPHH found better results for 28% of minSCV results obtained by state of 
the art approaches excluding HSHH, where SPHH and GPHH obtained better or equal minSCV 
results.  Although SPHH and GPHH do not always produce the best results, this empirical 
comparison does show that the performance of the two approaches is comparative. 
 
Table 10.41 which presents the difference of the sum of available minSCV results obtained by 
the state of the art and compares it to GPHH and SPHH. 
 

Table 10.41 Difference of average minSCV results for available results for comparing the state of 
the art to SPHH and GPHH 

 SPHH GPHH 
MP -2.88 -3.05 
ECBP -2.72 -2.90 
HHGS -0.60 -0.77 
HS 7.22 7.05 
CP 0.45 0.1 
ANS -4.18 -4.35 
SVNS -1.46 -1.41 
IP  -4.73 -4.9 
HHHS 7.4 7.2 



108 
  

 
GPHH and SPHH obtained better minSCV results compared to HHHS and HS. GPHH and 
SPHH had minSCV results which were close to CP, HHGS and SVNS. GPHH and SPHH 
minSCV results were worse overall when compared to MP, ECBP, ANS and IP.  The closeness 
of the available results of CP, HHGS and SVNS suggests the approaches are still comparable to 
the state of the art. The other population based approaches (HS and HSHH) do not perform well 
in general and the available minSCV results are worse than those obtained by GPHH and 
SPHH. As both SPHH and GPHH obtain similar results to the selection perturbative hyper-
heuristic (HHGS) it suggests these are both comparable to other selection perturbative hyper-
heuristic approaches.  
 

10.5 Summary 
This chapter presents the results of the two developed approaches, SPHH and GPHH. A 
comparison of SPHH and GPHH is given and an empirical comparison between the state of the 
art approaches and the two developed approaches is given. 



109 
  

Chapter 11 Conclusions and future 

work 
This chapter presents the overall conclusions based on the research findings of the dissertation. 
The outcomes are presented with respect to the two objectives outlined in Chapter 1; these are 
presented in section 11.1. Finally directions for future work building upon this dissertation are 
presented in section 11.2. 
 

11.1 Objectives and conclusions 
 
 Objective 1:  Investigate a genetic algorithm selection perturbative hyper-heuristic for 

the nurse rostering problem. The approach implemented should be influenced by 
relevant literature. 

 
A genetic algorithm hyper-heuristic was implemented based on a critical analysis of literature 
on previous genetic algorithm selection perturbative hyper-heuristics and selection perturbative 
hyper-heuristics and heuristic search approaches applied to the nurse rostering problem. The 
developed approach, SPHH performed well on the INRC2010 benchmark set. SPHH found 
feasible solutions for all instances. SPHH obtained results which were close to those obtained 
by state of the art approaches. The performance of SPHH was comparative with to an existing 
selection perturbative hyper-heuristic approach. 
 
 Objective 2: Develop and analyse a genetic programming generative perturbation 

hyper-heuristic for solving the nurse rostering problem. This approach should create 
perturbation heuristics that can be used to solve the nurse rostering problem. 

 
A generative perturbative hyper-heuristic was implemented. This generative perturbative hyper-
heuristic was created through critical analysis of recent work in literature for evolving 
perturbation heuristics. Many studies which evolve heuristics used grammatical evolution and 
this lead to the use of a steady state control model which was beneficial for GPHH. GPHH 
evolved heuristics which produced feasible solutions for all problem instances in the INRC2010 
benchmark set. Results obtained were comparative with the state of the art and GPHH obtained 
fewer soft constraint violations for some instances in comparison to SPHH. Results suggest that 
the evolution process may be useful in identifying good function and terminal set elements. The 
heuristics evolved using more than one seen instance did not necessarily result in better 
performing evolved heuristics compared to those evolved using only a single seen instance.  
None of the evolved heuristics were seen to suffer from over fitting. GPHH evolved heuristics 
with structures that are similar to how human designed meta-heuristics are structured with a 
single move acceptance method.  
 
 Objective 3: Compare the performance of the two perturbative hyper-heuristics for the 

nurse rostering problem. 
 
The performance of the two developed approaches namely, SPHH and GPHH were compared 
using minSCV results, avgSCV results and hypothesis testing. Hypothesis testing was used to 
determine the statistical significance of the results. Across all instances the results obtained by 
SPHH were statistically significant compared to those obtained by GPHH. In terms of 



110 
  

individual instances SPHH obtained statistically significant results for 16 instances and GPHH 
obtained one statistically significant result, this was for the instance of long_hidden05. GPHH 
was still able to obtain fewer soft constraint violations on a number of instances compared to 
SPHH. GPHH still showed good performance given that the aim was not to compete with SPHH 
but to create new perturbation heuristics. GPHH evolved heuristics which performed well on 
instances individually, if these were used by SPHH system results obtained would probably 
improve further. SPHH was designed to solve the nurse rostering problem by searching the low-
level heuristic space. GPHH was designed to evolve heuristics which were then used to solve 
the nurse rostering problem but should ideally be used by a meta-heuristic as a neighbourhood 
operator or as an LPH used by a selection perturbative hyper-heuristic. 
 

11.2 Future work 
Based on the results of this research of hyper-heuristics and the nurse rostering problem 
potential future work will be discussed. Future extensions of the research presented in this 
dissertation include: 
 
11.2.1 Combining evolutionary selection and generation hyper-

heuristics 
This would entail using GPHH to evolve heuristics which will be used by a selection 
perturbative hyper-heuristic such as SPHH to improve an initial candidate solution. This would 
address the issue of choosing a set of low-level heuristics however a broader and refined 
function set to GPHH would need to be included. 
 
11.2.2 Coevolving the algorithm parameters for selection and 

generative perturbation hyper-heuristics 
The field of hyper-heuristics is rapidly moving towards hyper-heuristics which generate and 
design the hyper-heuristic itself. It is still however cumbersome to tune parameters be it through 
empirical testing or using a tool such as ParamILS [231]. A parallel genetic algorithm or a 
tuning mechanism built into the selection or generative perturbative hyper-heuristic based on 
parameter design approaches such as the Taguchi orthogonal arrays[232] could provide a novel 
solution to parameter tuning. Coevolving parameters for a selection or generative hyper-
heuristic would be compared using the standard approaches used by researchers in the field and 
tools like F-Race[233] and ParamILS. 
 
11.2.3 Generative construction hyper-heuristic for the nurse 

rostering problem 
There are no equivalent construction heuristics to the set of “graph colouring heuristics” for 
timetabling, for the nurse rostering problem. A genetic programming approach will be 
implemented to break down what human schedulers attempt to do into components that can be 
used to evolve low-level construction heuristics for the nurse rostering problem. 
 
 
 
 
 



111 
  

11.3 Summary 
This chapter gives a summary of the findings of the research of this dissertation and the 
outcomes of the objectives and how they were fulfilled. Finally, future work based on the 
observations made during this research is presented. 



112 
  

Bibliography 
[1] C. Darwin, “On the origins of species by means of natural selection,” London: Murray, 
1859. 

[2] J. Holland and J. Reitman, “Cognitive systems based on adaptive algorithms,” ACM 
SIGART, vol. 63, no. Bulletin, pp. 49–49, 1977. 

[3] D. Goldberg and J. Holland, “Genetic algorithms and machine learning,” Mach. Learn., 
vol. 2, no. 3, pp. 95–99, 1988. 

[4] J. Holland, “Genetic Algorithms,” Sci. Am., vol. 267, no. 1, pp. 337–370, 2011. 

[5] J. Koza, Genetic programming: on the programming of computers by means of natural 
selection, 1st ed. MIT press, 1992. 

[6] W. Banzhaf et al., Genetic Programming, an Introduction. San Francisco: Morgan 
Kaufmann Publishers, 1998. 

[7] F. Koza, John R. and Bennett, Forrest H and Andre, David and Keane, Martin A. and 
Dunlap, J. R. Koza, F. H. Bennett, D. Andre, M. A. Keane, and F. Dunlap, “Automated 
synthesis of analog electrical circuits by means of genetic programming,” IEEE Trans. Evol. 
Comput., vol. 1, no. 2, pp. 109–128, 1997. 

[8] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler, “Co-evolving soccer softbot team 
coordination with genetic programming,” in RoboCup-97: Robot soccer world cup I, Springer, 
1998, pp. 398–411. 

[9] A. Freitas, “A genetic programming framework for two data mining tasks: classification 
and generalized rule induction,” Genet. Program., pp. 96–101, 1997. 

[10] A. S. Fukunaga, “Evolving local search heuristics for SAT using genetic programming,” 
in Genetic and Evolutionary Computation Conference, 2004, pp. 483–494. 

[11] G. Burke, Edmund K and Hyde, Matthew R and Kendall, Evolving Bin Packing 
Heuristics with Genetic Programming, Parallel P. Springer, 2006, pp. 860–869. 

[12] R. Poli, W. B. Langdon, N. F. McPhee, J. R. Koza, and J. R. Poli, Riccardo and Langdon, 
William B and McPhee, Nicholas F and Koza, A field guide to genetic programming, no. 
March. Lulu.com, 2008, p. 250. 

[13] T. Blickle and L. Thiele, “A comparison of selection schemes used in genetic 
algorithms,” TIK-Report, 1995. 

[14] L. M. Brad, D. E. Goldberg, B. L. Miller, and D. E. Goldberg, “Genetic algorithms, 
tournament selection, and the effects of noise,” Complex Syst., vol. 9, no. 3, pp. 193–212, 1995. 

[15] D. E. Golberg and D. E. Goldberg, “Genetic algorithms in search, optimization, and 
machine learning,” Addion wesley, vol. 1989, p. 102, Oct. 1989. 



113 
  

[16] T. Bäck and T. Back, “Evolutionary algorithms in theory and practice: evolution 
strategies, evolutionary programming, genetic algorithms,” Oxford Univ. Press, 1996. 

[17] D. Andre, F. B. III, J. J. R. Koza, F. H. Bennett III, and J. J. R. Koza, “Discovery by 
genetic programming of a cellular automata rule that is better than any known rule for the 
majority classification problem,” in …  Conference on Genetic Programming, 1996, pp. 3–11. 

[18] K. E. Kinnear, “Evolving a sort: Lessons in genetic programming,” Neural Networks, 
1993., IEEE Int. …, vol. IEEE Inter, no. Neural Networks, pp. 881–888, 1993. 

[19] N. Pillay, “An Investigation into the Use of Genetic Programming for the Induction of 
Novice Procedural Programming Solution Algorithms in Intelligent Programming Tutors,” 
University of Natal, 2004. 

[20] W. S. Bruce, “The Application of Genetic Programming to the Automatic Generation of 
Object-Oriented Programs,” 1995. 

[21] C. W. Reynolds, “An evolved, vision-based model of obstacle avoidance behavior,” From 
Anim. to Animat., vol. 2, pp. 384–392, 1993. 

[22] D. J. D. Montana, “Strongly typed genetic programming,” Evol. Comput., vol. 3, no. 2, 
pp. 199–230, 1995. 

[23] D. Dracopoulos and S. Kent, “Genetic programming for prediction and control,” Neural 
Comput. Appl., pp. 214–228, 1997. 

[24] G. Syswerda, “A study of reproduction in generational and steady state genetic 
algorithms,” Found. Genet. algorithms, vol. 2, pp. 94–101, 1991. 

[25] C. Ryan, M. O’Neill, and M. O’Neill, “Grammatical evolution: A steady state approach,” 
Late Break. Pap. Genet. Program., vol. 1, pp. 180–185, 1998. 

[26] K. Chellapilla, “Evolving computer programs without subtree crossover,” IEEE Trans. 
Evol. Comput., vol. 1, no. 3, pp. 209–216, 1997. 

[27] S. Luke and L. Spector, “A comparison of crossover and mutation in genetic 
programming,” Genet. Program., vol. 97, pp. 240–248, 1997. 

[28] P. L. Naga et al., “Genetic algorithms for the travelling salesman problem: A review of 
representations and operators,” Artif. Intell. Rev., vol. 13, no. 2, pp. 129–170, 1999. 

[29] S. Africa, “Using Genetic Algorithms to Solve the South African School Timetabling 
Problem Rushil Raghavjee Nelishia Pillay,” pp. 286–292, 2010. 

[30] R. Raghavjee, “A Study of Genetic Algorithms for Solving the School Timetabling 
Problem,” School of Computer Science, University of Kwazulu-Natal, Pietermaritzburg, 2013. 

[31] P. Cowling, G. Kendall, and L. Han, “An Investigation of a Hyperheuristic Genetic 
Algorithm Applied to a Trainer Scheduling Problem,” in Proceedings of the 2002 Congress on 
Evolutionary Computation, 2002. CEC’02., 1999, pp. 1185–1190. 



114 
  

[32] D. Corne and R. Ogden, “Evolutionary optimisation of methodist preaching timetables,” 
Int. Conf. Pract. Theory Autom. Timetabling, 1997. 

[33] T. Abdelmaguid, “Representations in genetic algorithm for the job shop scheduling 
problem: A computational study,” J. Softw. Eng. Appl., vol. 3, no. 12, p. 1155, 2010. 

[34] R. Raghavjee and N. Pillay, “A Genetic Algorithm Selection Perturbative Hyper-
Heuristic for Solving the School Timetabling Problem,” Orion, vol. 3, no. 1, pp. 39–60, 2015. 

[35] D. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms: Motivation, analysis, and 
first results,” Complex Syst., vol. 1, no. 3, pp. 493–530, 1989. 

[36] M. Melanie, “An introduction to genetic algorithms,” Cambridge, Massachusetts London, 
England, Fifth Print., vol. 3, pp. 62–75, 1999. 

[37] L. Davis, Handbook of genetic algorithms. Van Nostrand Reinhold, New York, 1991. 

[38] H. Stringer and A. S. Wu, “Variable-Length Genetic Algorithms and an Analysis of 
Changes in Chromosome Length Absent Selection Pressure,” 2005. 

[39] K. Lindgren, “Evolutionary phenomena in simple dynamics,” in Artificial life II, 1992, 
pp. 295–312. 

[40] L. Han and G. Kendall, “An Investigation of a Tabu Assisted Hyper-Heuristic Genetic 
Algorithm,” in Evolutionary Computation, 2003. CEC’03. The 2003 Congress on, 2003, vol. 3, 
pp. 2230–2237. 

[41] G. Nemhauser and L. Wolsey, Integer and combinatorial optimization. 1988. 

[42] L. Wolsey, “Integer programming,” Ser. Discret. Math. Optim., pp. 113–129, 1998. 

[43] A. Schrijver, Theory of linear and integer programming. John Wiley & Sons, 1998. 

[44] J. Tomlin, “Technical Note—An Improved Branch-and-Bound Method for Integer 
Programming,” Oper. Res., vol. 19, no. 4, pp. 1070–1075, 1971. 

[45] A. Lokketangen and F. Glover, “Solving zero-one mixed integer programming problems 
using tabu search,” Eur. J. Oper. Res., vol. 106, no. 2, pp. 624–658, 1998. 

[46] B. M. W. Cheng, J. H. M. Lee, J. C. K. Wu, and H. Kong, “A Nurse Rostering System 
Using Constraint Programming and Redundant Modeling,” vol. Informatio, no. IEEE 
Transactions on 1.1 (1997), pp. 44–54, 1997. 

[47] K. Apt and P. Shaw, “Principles of constraint programming,” in International Conference 
on Principles and Practice of Constraint Programming, 2003, pp. 417–431. 

[48] P. Van Beek, X. Chen, P. Van Beek, and X. Chen, “CPlan: A constraint programming 
approach to planning,” in AAAI/IAAI, 1999, pp. 585–590. 



115 
  

[49] P. Shaw, “Using constraint programming and local search methods to solve vehicle 
routing problems,” in International Conference on Principles and Practice of Constraint 
Programming, 1998, pp. 417–431. 

[50] R. Soto, B. Crawford, E. Monfroy, W. Palma, and F. Paredes, “Nurse and paramedic 
rostering with constraint programming: A case study,” Rom. J. Inf. Sci. Technol., vol. 16, no. 1, 
pp. 52–64, 2013. 

[51] A. Land and A. Doig, “An automatic method of solving discrete programming problems,” 
Econom. J. Econom. Soc., vol. July, no. 1, pp. 497–520, 1960. 

[52] E. Lawler and D. Wood, “Branch-and-bound methods: A survey,” Oper. Res., 1966. 

[53] R. Horst and H. Romeijn, Handbook of global optimization volume 2. 2002, p. 58. 

[54] J. Paulavičius, R. and Žilinskas, R. Paulavičius, and J. Žilinskas, “Lipschitz Optimization 
with Different Bounds over Simplices,” Simplicial Glob. Optim., no. Springer New York, pp. 
21–60, 2014. 

[55] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance, 
“Branch-and-price: Column generation for solving huge integer programs,” Oper. Res., vol. 46, 
no. 3, pp. 316–329, 1998. 

[56] M. Savelsbergh, “A branch-and-price algorithm for the generalized assignment problem,” 
Oper. Res., vol. 45, no. 6, pp. 831–841, 1997. 

[57] E. K. E. Burke and T. Curtois, “New computational results for nurse rostering benchmark 
instances,” Tech. Rep., vol. 10, p. 13, 2011. 

[58] D. Pinha and Q. P. Q. Zheng, “Branch and Price,” 2012. [Online]. Available: 
http://www.iems.ucf.edu/qzheng/grpmbr/seminar/Denis_Branch_and_Price.pdf. [Accessed: 10-
Dec-2014]. 

[59] M. Fischetti, J. J. Salazar González, and P. Toth, “A branch-and-cut algorithm for the 
symmetric generalized traveling salesman problem,” Oper. Res., vol. 45, no. 3, pp. 378–394, 
1997. 

[60] A. Mathematics, S. Review, M. Padberg, and G. Rinaldi, “A branch-and-cut algorithm for 
the resolution of large-scale symmetric traveling salesman problems,” SIAM Rev., vol. 33, no. 1, 
pp. 60–100, 1991. 

[61] I. I. H. Osman and G. Laporte, “Metaheuristics: A bibliography,” Ann. Oper. Res., vol. 
63, no. 5, pp. 511–623, 1996. 

[62] F. Glover and G. Kochenberger, Handbook of metaheuristics. 2003. 

[63] G. Croes, “A method for solving traveling-salesman problems,” Oper. Res., 1958. 

[64] L. Cooper and D. Steinberg, “Introduction to methods of optimization,” 1970. 



116 
  

[65] J. J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE 
Trans. Syst. Man. Cybern., vol. 16, no. 1, pp. 122–128, 1986. 

[66] F. Glover, “Tabu search – part I,” ORSA J. Comput., vol. 1, no. 3, pp. 190–206, 1989. 

[67] F. Glover, “Tabu search—part II,” ORSA J. Comput., vol. 2, no. 1, pp. 4–32, 1990. 

[68] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative studies,” J. Stat. 
Phys., vol. 34, no. 5, pp. 975–986, 1984. 

[69] P. J. M. Van Laarhoven, E. E. H. L. Aarts, P. Van Laarhoven, and E. E. H. L. Aarts, 
Simulated annealing. Springer, 1987, pp. 7–15. 

[70] G. Dueck, “New optimization heuristics: The great deluge algorithm and the record-to-
record travel,” J. Comput. Phys., vol. 104, no. 1, pp. 86–92, 1993. 

[71] N. Mladenović, P. Hansen, N. Mladenović, and P. Hansen, “Variable neighborhood 
search,” Comput. Oper. Res., vol. 146, no. International Series in Operations Research & 
Management Science, pp. 61–86, 1997. 

[72] Z. Z. W. Geem, J. H. J. Kim, and G. V Loganathan, “A new heuristic optimization 
algorithm: harmony search,” Simulation, vol. 76, no. 2, pp. 60–68, 2001. 

[73] D. Weyland, “A rigorous analysis of the harmony search algorithm: How the research 
community can be misled by a ‘novel’ methodology,” Model. Anal. Appl. Metaheuristic 
Comput. Adv. Trends Adv. Trends, p. 72, 2012. 

[74] M. Mahdavi, M. Fesanghary, and E. Damangir, “An improved harmony search algorithm 
for solving optimization problems,” Appl. Math. Comput., vol. 188, no. 2, pp. 1567–1579, 2007. 

[75] M. Padberg, “Harmony Search Algorithms for binary optimization problems,” in 
Operations Research Proceedings 2011, 2012, pp. 343–348. 

[76] H. Frøyseth, M. Stølevik, and A. Riise, “A heuristic approach for solving real world nurse 
rostering problems,” in The 7th international conference on the practice and theory of 
automated timetabling, 2008, p. 5. 

[77] E. Burke, P. De Causmaecker, P. De Causmaecker, G. Vanden Berghe, and H. Van 
Landeghem, “The State of the Art of Nurse Rostering,” J. Sched., vol. 7, no. 6, pp. 441–499, 
Nov. 2004. 

[78] B. Cheang, H. Li, A. Lim, and B. Rodrigues, “Nurse rostering problems––a bibliographic 
survey,” Eur. J. Oper. Res., vol. 151, no. 3, pp. 447–460, Dec. 2003. 

[79] S. Haspeslagh et al., “The first international nurse rostering competition 2010,” Ann. 
Oper. Res., vol. 218, no. 1, pp. 1–31, Jan. 2012. 

[80] T. Curtois, “Novel heuristic and metaheuristic approaches to the automated scheduling of 
healthcare personnel,” 2007. 



117 
  

[81] R. Karp, Reducibility among combinatorial problems, Complexity. Springer, 1972, pp. 
85–103. 

[82] J. Tien and A. Kamiyama, “On manpower scheduling algorithms,” Siam Rev., vol. 24, no. 
3, pp. 275–287, 1982. 

[83] A. Wren, “Scheduling, timetabling and rostering—a special relationship?,” Pract. theory 
Autom. timetabling, 1996. 

[84] H. E. H. Miller, W. P. W. Pierskalla, and G. J. G. Rath, “Nurse scheduling using 
mathematical programming,” Oper. Res., vol. 24, no. 5, pp. 857–870, 1976. 

[85] M. Warner, B. Keller, and S. Martel, “Automated nurse scheduling.,” J. Soc. Health Syst., 
vol. 2, no. 2, pp. 66–80, 1990. 

[86] D. L. Kellogg and S. Walczak, “Nurse Scheduling: From Academia to Implementation or 
Not?,” Interfaces (Providence)., vol. 37, no. 4, pp. 355–369, Jul. 2007. 

[87] M. Miller, “Implmenting Self-Scheduling,” J. Nurs. Adm., vol. 14, no. 3, pp. 33–36, 
1984. 

[88] R. Hung, “Improving productivity and quality through workforce scheduling,” Ind. 
Manag. THEN ATLANTA, vol. 34, pp. 4–4, 1992. 

[89] R. Silvestro and C. Silvestro, “An evaluation of nurse rostering practices in the National 
Health Service,” J. Adv. Nurs., vol. 32, no. 3, pp. 525–535, 2000. 

[90] I. Berrada, J. A. Ferland, and P. Michelon, “A multi-objective approach to nurse 
scheduling with both hard and soft constraints,” Socioecon. Plann. Sci., vol. 30, no. 3, pp. 183–
193, 1996. 

[91] E. K. E. Burke, J. Li, and R. Qu, “A hybrid model of integer programming and variable 
neighbourhood search for highly-constrained nurse rostering problems,” Eur. J. Oper. Res., vol. 
203, no. 2, pp. 484–493, 2010. 

[92] T. Curtois, “Nurse rostering benchmark instances.” [Online]. Available: 
http://www.cs.nott.ac.uk/~tec/NRP/. 

[93] B. Vanhoucke, Mario, Maenhout, “NSPLib.” [Online]. Available: 
http://www.projectmanagement.ugent.be/?q=research/personnel_scheduling/nsp. 

[94] M. Vanhoucke and B. Maenhout, “NSPLib – A Nurse Scheduling Problem Library : A 
tool to evaluate ( meta- ) heuristic procedures,” pp. 1–11, 2005. 

[95] S. Petrovic and G. Vanden Berghe, “A comparison of two approaches to nurse rostering 
problems,” Ann. Oper. Res., vol. 194, no. 1, pp. 365–384, Nov. 2010. 

[96] S. Haspeslagh, “The First Nurse Rostering Competition 2010,” 2010. [Online]. Available: 
https://www.kuleuven-kulak.be/nrpcompetition. 



118 
  

[97] B. Mccollum et al., “Setting the Research Agenda in Automated Timetabling : The 
Second International Time- tabling Competition,” no. August 2007. 

[98] G. Vanden Berghe and G. Vanden Berghe, “An advanced model and novel meta-heuristic 
solution methods to personnel scheduling in healthcare,” 2002. 

[99] E. K. Burke, T. Curtois, R. Qu, G. Vanden-berghe, and G. Vanden Berghe, “Problem 
model for nurse rostering benchmark instances,” pp. 1–29, 2008. 

[100] C. Valouxis, C. Gogos, G. Goulas, P. Alefragis, and E. Housos, “A systematic two phase 
approach for the nurse rostering problem,” Eur. J. Oper. Res., vol. 219, no. 2, pp. 425–433, 
2012. 

[101] R. A. M. Santos, H. G., Toffolo, T. A. M., Ribas, S., & Gomes, “Integer Programming 
Techniques for the Nurse Rostering Problem,” in Practice and Theory of Automated 
Timetabling, 2010, pp. 256–283. 

[102] IBM, CPLEX 12.2 User’s Manual. 2011. 

[103] “COIN-OR Linear programming solver,” 2010. [Online]. Available: https://projects.coin-
or.org/Clp. 

[104] E. K. Burke, T. Curtois, G. Post, R. Qu, B. Veltman, and C. E. Burke, “A hybrid heuristic 
ordering and variable neighbourhood search for the nurse rostering problem,” Eur. J. Oper. 
Res., vol. 188, no. 2, pp. 330–341, 2008. 

[105] M. Stølevik, T. E. Nordlander, A. Riise, H. Frøyseth, A. Riise, and T. E. Nordlander, “A 
hybrid approach for solving real-world nurse rostering problems,” in International Conference 
on Principles and Practice of Constraint Programming, 2011, pp. 85–99. 

[106] Z. Lü and J.-K. Hao, “Adaptive neighborhood search for nurse rostering,” Eur. J. Oper. 
Res., vol. 218, no. 3, pp. 865–876, May 2012. 

[107] S. N. Vu, M. H. N. Nguyen, L. M. Duc, C. Baril, V. Gascon, and T. B. Dinh, “Iterated 
local search in nurse rostering problem,” in Proceedings of the Fourth Symposium on 
Information and Communication Technology - SoICT ’13, 2013, pp. 71–80. 

[108] I. P. Solos, I. X. Tassopoulos, and G. N. Beligiannis, “A Generic Two-Phase Stochastic 
Variable Neighborhood Approach for Effectively Solving the Nurse Rostering Problem,” 
Algorithms, vol. 6, no. 2, pp. 278–308, May 2013. 

[109] B. Bilgin, P. Demeester, M. M\is\ir, W. Vancroonenburg, G. Vanden Berghe, and T. 
Wauters, “A hyper-heuristic combined with a greedy shuffle approach to the nurse rostering 
competition,” in Proceedings of the 8th International Conference on Practice and Theory of 
Automated Timetabling, 2010, pp. 1–6. 

[110] K. Nonobe, “INRC2010 : An Approach Using a General Constraint Optimization Solver,” 
First Int. Nurse Rostering Compet. (INRC 2010), pp. 1–2, 2010. 

[111] K. Nonobe and T. Ibaraki, “A tabu search approach to the constraint satisfaction problem 
as a general problem solver,” Eur. J. Oper. Res., vol. 106, no. 2, pp. 599–623, 1998. 



119 
  

[112] M. Hadwan, M. Ayob, N. R. Sabar, and R. Qu, “A harmony search algorithm for nurse 
rostering problems,” Inf. Sci. (Ny)., vol. 233, no. January, pp. 126–140, 2013. 

[113] P. Brucker, E. K. Burke, T. Curtois, R. Qu, G. Vanden Berghe, and G. Vanden Berghe, 
“A shift sequence based approach for nurse scheduling and a new benchmark dataset,” J. 
Heuristics, vol. 16, no. 4, pp. 559–573, Nov. 2008. 

[114] E. Burke, P. Cowling, P. De Causmaecker, and G. Vanden Berghe, “A memetic approach 
to the nurse rostering problem,” Appl. Intell., vol. 15, no. 3, pp. 199–214, 2001. 

[115] M. a. Awadallah, A. T. Khader, M. A. Al-Betar, and A. L. Bolaji, “Nurse Scheduling 
Using Harmony Search,” 2011 Sixth Int. Conf. Bio-Inspired Comput. Theor. Appl., pp. 58–63, 
Sep. 2011. 

[116] M. a. Awadallah, A. T. Khader, M. A. Al-Betar, and A. L. Bolaji, “Global best Harmony 
Search with a new pitch adjustment designed for Nurse Rostering,” J. King Saud Univ. - 
Comput. Inf. Sci., vol. 25, no. 2, pp. 145–162, Jul. 2013. 

[117] M. G. H. H. Omran and M. Mahdavi, “Global-best harmony search,” Appl. Math. 
Comput., vol. 198, no. 2, pp. 643–656, May 2008. 

[118] A. L. Awadallah, Mohammed A and Khader, Ahamad Tajudin and Al-Betar, Mohammed 
Azmi and Bolaji, “Harmony search with greedy shuffle for nurse rostering,” Int. J. Nat. Comput. 
Res., vol. 3, no. 2, pp. 22–42, 2012. 

[119] E. K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe, “A Time Pre-defined Variable 
Depth Search for Nurse Rostering 1 Introduction,” INFORMS J. Comput., 2007. 

[120] E. Burke et al., “A hybrid tabu search algorithm for the nurse rostering problem,” Asia-
Pacific Conf. Simulated Evol. Learn., no. Simulated evolution and learning. Springer Berlin 
Heidelberg, pp. 187–194, 1999. 

[121] A. L. Awadallah, Mohammed A and Khader, Ahamad Tajudin and Al-Betar, Mohammed 
Azmi and Bolaji, “Hybrid Harmony Search for Nurse Rostering Problems,” Comput. Intell. 
Sched. (SCIS), 2013 IEEE Symp., pp. 60–67, 2013. 

[122] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach to scheduling a 
sales summit,” in International Conference on the Practice and Theory of Automated 
Timetabling, 2000, pp. 176–190. 

[123] E. K. Burke et al., “Hyper-heuristics: A survey of the state of the art,” J. Oper. Res. Soc., 
vol. 64, no. 12, pp. 1695–1724, 2013. 

[124] H. Fisher and G. Thompson, “Probabilistic learning combinations of local job-shop 
scheduling rules,” Ind. Sched., vol. 3, no. 2, pp. 225–251, 1963. 

[125] H. Fang and P. Ross, “A Promising Hybrid GA/Heuristic Approach for Open-Shop 
Scheduling Problems In Proceedings of the 11th European Conference on Arti cial Intelligence, 
John Wiley and Sons, 1994, pages 590{594.,” no. 699, 1994. 



120 
  

[126] E. Hart, P. Ross, and J. Nelson, “Solving a real-world problem using an evolving 
heuristically driven schedule builder.,” Evol. Comput., vol. 6, no. 1, pp. 61–80, Jan. 1998. 

[127] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu, “A graph-based hyper-
heuristic for educational timetabling problems,” Eur. J. Oper. Res., vol. 176, no. 1, pp. 177–192, 
Jan. 2007. 

[128] S. Petrovic and R. Qu, “Case-based reasoning as a heuristic selector in a hyper-heuristic 
for course timetabling problems,” vol. 82, pp. 336–340, 2002. 

[129] E. K. Burke et al., “Exploring Hyper-heuristic Methodologies with Genetic 
Programming,” Comput. Intell., no. Computational Intelligence. Springer Berlin Heidelberg, pp. 
177–201, 2009. 

[130] A. Fukunaga, “Automated discovery of composite SAT variable-selection heuristics,” in 
AAAI/IAAI, 2002, no. AAAI/IAAI, pp. 641–648. 

[131] A. S. Fukunaga, “Automated discovery of local search heuristics for satisfiability 
testing.,” Evol. Comput., vol. 16, no. 1, pp. 31–61, Jan. 2008. 

[132] J. H. Drake, N. Kililis, and E. Özcan, “Generation of VNS components with grammatical 
evolution for vehicle routing,” in European Conference on Genetic Programming, 2013, pp. 
25–36. 

[133] M. Hyde, “A genetic programming hyper-heuristic approach to automated packing,” 
University of Nottingham, 2010. 

[134] E. K. Burke, M. R. Hyde, and G. Kendall, “Grammatical Evolution of Local Search 
Heuristics,” IEEE Trans. Evol. Comput., vol. 16, no. 3, pp. 406–417, Jun. 2012. 

[135] E. Glanville, Ranulph and Griffiths, David and Baron, Philip and Drake, John H and 
Hyde, Matthew and Ibrahim, Khaled and Ozcan, “A genetic programming hyper-heuristic for 
the multidimensional knapsack problem,” Kybernetes, vol. 43, no. 9/10, pp. 1500–1511, 2014. 

[136] C. Y. Chan, F. Xue, W. H. Ip, and C. F. Cheung, “A Hyper-heuristic Inspired by Pearl 
Hunting Pearl Hunter : An Inspired Hyper-heuristic,” pp. 1–5. 

[137] S. Burke, EK and Hart, E and Kendall, G and Newall, J and Ross, P and Shulenburg, 
“Hyper-heuristics: An emerging direction in modern search technology,” Handb. 
Metaheuristics, vol. 2, pp. 457–474, 2003. 

[138] P. Cowling, G. Kendall, and E. Soubeiga, “A Parameter-Free Hyperheuristic for 
Scheduling a Sales Summit,” in Proceedings of the 4th metaheuristic international conference, 
2001, vol. 1101, pp. 4–9. 

[139] P. Cowling, G. Kendall, and E. Soubeiga, “Hyperheuristics: A tool for rapid prototyping 
in scheduling and optimisation,” Work. Appl. Evol. Comput., pp. 1–10, 2002. 

[140] E. Soubeiga, “Development and application of hyperheuristics to personnel scheduling,” 
University of Nottingham, 2003. 



121 
  

[141] O. Committee, “CHeSC : Cross-Domain Heuristic Search Competition The HyFlex 
Framework CHeSC : Cross-Domain Heuristic Search Competition,” pp. 23–25, 2011. 

[142] G. Ochoa and T. Curtois, “A HyFlex Module for the Permutation Flow Shop Problem,” 
pp. 1–4. 

[143] T. Curtois, G. Ochoa, M. Hyde, and J. A. Vázquez-rodríguez, “A HyFlex Module for the 
Personnel Scheduling Problem,” pp. 1–12, 2011. 

[144] T. Curtois et al., “A hyflex module for the max-sat problem,” Univ. Nottingham, Tech. 
Rep, pp. 1–5, 2011. 

[145] M. Hyde, G. Ochoa, V. Antonio, and T. Curtois, “A HyFlex Module for the One 
Dimensional Bin Packing Problem,” pp. 1–5. 

[146] J. Swan, E. Özcan, and G. Kendall, “Hyperion - a recursive hyper-heuristic framework,” 
in International Conference on Learning and Intelligent Optimization, 2011, pp. 616–630. 

[147] J. Swan, J. Woodward, E. Özcan, G. Kendall, and E. Burke, “Searching the Hyper-
heuristic Design Space,” Cognit. Comput., vol. 6, no. 1, pp. 1–13, Feb. 2013. 

[148] P. Ross, “Hyper-heuristics,” Search Methodol., pp. 529–556, 2005. 

[149] E. K. Burke, M. R. Hyde, G. Kendall, and J. Woodward, “Automatic heuristic generation 
with genetic programming: evolving a jack-of-all-trades or a master of one,” Proc. 9th Annu. 
Conf. Genet. Evol. Comput., vol. 14, no. 6, pp. 1559–1565, 2007. 

[150] E. Özcan, B. Bilgin, E. E. Korkmaz, and K. İstanbul, “A comprehensive analysis of 
hyper-heuristics,” Intell. Data Anal., vol. 12, no. 1, pp. 3–23, 2008. 

[151] E. K. Burke et al., “A Classification of Hyper-heuristic Approaches,” Handb. 
metaheuristics, no. Handbook of metaheuristics. Springer US, pp. 449–468, 2010. 

[152] O. Roeva, T. Slavov, S. Fidanova, and and S. F. Roeva Olympia, Tsonyo Slavov, 
“Population-based vs. single point search meta-heuristics for a pid controller tuning,” Handb. 
Res. Nov. soft Comput. Intell. algorithms theory Pract. Appl. IGI Glob. Pennsylvania, vol. 
Handbook o, pp. 200–233, 2013. 

[153] P. Ross, J. G. J. Marín-Blázquez, S. Schulenburg, and E. Hart, “Learning a procedure that 
can solve hard bin-packing problems: A new ga-based approach to hyper-heuristics,” in Genetic 
and Evolutionary Computation Conference, 2003, pp. 1295–1306. 

[154] M. Ayob and G. Kendall, “A monte carlo hyper-heuristic to optimise component 
placement sequencing for multi head placement machine,” in Proceedings of the international 
conference on intelligent technologies, InTech, 2003, vol. 3, no. c, pp. 132–141. 

[155] R. Bai and G. Kendall, “An Investigation of Automated Planograms Using a Simulated 
Annealing Based Hyper-heuristics,” Metaheuristics Prog. as real Probl. solvers, pp. 1–7, 2003. 

[156] G. Kendall and E. Soubeiga, “Choice function and random hyperheuristics School of 
Computer Science & IT University of Nottingham , Nottingham Peter Cowling Department of 



122 
  

Computing , University of Bradford Bradford BD7 1DP , UK ; 
Peter.Cowling@scm.brad.ac.uk,” vol. Proceeding, pp. 2–6, 2002. 

[157] E. K. Burke, G. Kendall, M. Misir, and E. Özcan, “Monte Carlo hyper-heuristics for 
examination timetabling,” Ann. Oper. Res., vol. 196, no. 1, pp. 73–90, Sep. 2010. 

[158] M. Carter, G. Laporte, and S. Lee, “Examination timetabling: Algorithmic strategies and 
applications,” J. Oper. Res. Soc., 1996. 

[159] E. Ozcan, Y. Bykov, E. Özcan, Y. Bykov, M. Birben, and E. K. Burke, “Examination 
timetabling using late acceptance hyper-heuristics,” 2009 IEEE Congr. Evol. Comput., pp. 997–
1004, 2009. 

[160] K. Mcclymont, H. Building, E. Ex, and E. C. Keedwell, “Markov Chain Hyper-heuristic ( 
MCHH ): an Online Selective Hyper-heuristic for Multi-objective Continuous Problems,” pp. 
2003–2010, 2011. 

[161] E. Burke, G. Kendall, D. L. L. Silva, R. O’Brien, and E. Soubeiga, “An Ant Algorithm 
Hyperheuristic for the Project Presentation Scheduling Problem,” 2005 IEEE Congr. Evol. 
Comput., vol. 3, pp. 2263–2270, 2005. 

[162] P.-C. Chen, G. Kendall, and G. Vanden Berghe, “An Ant Based Hyper-heuristic for the 
Travelling Tournament Problem,” 2007 IEEE Symp. Comput. Intell. Sched., pp. 19–26, Apr. 
2007. 

[163] E. K. E. K. K. Burke, G. Kendall, and E. Soubeiga, “A Tabu-Search Hyperheuristic for 
Timetabling and Rostering,” J. Heuristics, vol. 9, no. 6, pp. 451–470, Dec. 2003. 

[164] G. Kendall and N. M. Hussin, “Tabu Search Hyper-heuristic Approach to the 
Examination Timetabling Problem at University Technology MARA,” in International 
Conference on the Practice and Theory of Automated Timetabling, 2004, no. 1996, pp. 270–
293. 

[165] G. Kendall and N. M. Hussin, “An investigation of a tabu search based hyper-heuristic for 
examination timetabling hyper-heuristics,” Multidiscip. Sched. Theory Appl., no. November, pp. 
309–328, 2005. 

[166] W. Crowston, F. Glover, G. Thompson, and J. Trawick, “Probabilistic and Parametric 
Learning Methods for the Job Shop Scheduling Problem,” GSIA, 1964. 

[167] H. Fang, P. Ross, and D. Corne, “A Promising genetic Algorithm Approach to Job-Shop 
Scheduling, Rescheduling, and Open-Shop Scheduling Problems Appears in: Proceedings of the 
Fifth International Conference on Genetic Algorithms, S. Forrest (ed.), San Mateo: Morgan 
Kaufmann, 1993, pages 3,” no. 623, 1993. 

[168] E. López-camacho, H. Terashima-marín, and P. Ross, “A hyper-heuristic for solving one 
and two-dimensional bin packing problems,” in Proceedings of the 13th annual conference 
companion on Genetic and evolutionary computation, 2011, pp. 257–258. 

[169] P. Ross et al., “Hyper-heuristics: learning to combine simple heuristics in bin-packing 
problems.,” in GECCO, 2002, pp. 942–948. 



123 
  

[170] N. Pillay, “Evolving hyper-heuristics for the uncapacitated examination timetabling 
problem,” J. Oper. Res. Soc., vol. 63, no. 1, pp. 47–58, Apr. 2011. 

[171] E. K. Burke, J. P. Newall, and R. F. Weare, “A Simple Heuristically Guided Search for 
the Timetable Problem A Heuristically Guided Random Search.” 

[172] R. Els and N. Pillay, “An evolutionary algorithm hyper-heuristic for producing feasible 
timetables for the curriculum based university course timetabling problem,” 2010 Second World 
Congr. Nat. Biol. Inspired Comput., pp. 460–466, Dec. 2010. 

[173] K. Socha, J. Knowles, and M. Sampels, “A max-min ant system for the university course 
timetabling problem,” in Ant algorithms, 2002, pp. 1–13. 

[174] R. Qu and E. K. Burke, “Hybridizations within a graph-based hyper-heuristic framework 
for university timetabling problems,” J. Oper. Res. Soc., vol. 60, no. 9, pp. 1273–1285, 2009. 

[175] N. R. Sabar, M. Ayob, R. Qu, and G. Kendall, “A graph coloring constructive hyper-
heuristic for examination timetabling problems,” Appl. Intell., vol. 37, no. 1, pp. 1–11, Aug. 
2011. 

[176] N. Pillay and W. Banzhaf, “A study of heuristic combinations for hyper-heuristic systems 
for the uncapacitated examination timetabling problem,” Eur. J. Oper. Res., vol. 197, no. 2, pp. 
482–491, Sep. 2009. 

[177] M. Oltean and D. Dumitrescu, “Evolving TSP heuristics using multi expression 
programming,” Comput. Sci. 2004, no. 0, pp. 670–673, 2004. 

[178] M. Oltean, “Multi Expression Programming,” pp. 1–28, 2006. 

[179] G. Reinelt, “TSPLIB—A traveling salesman problem library,” ORSA J. Comput., vol. 3, 
no. 4, pp. 376–384, 1991. 

[180] R. Poli, J. Woodward, and E. K. Burke, “A histogram-matching approach to the evolution 
of bin-packing strategies,” 2007 IEEE Congr. Evol. Comput., pp. 3500–3507, Sep. 2007. 

[181] C. Dimopoulos and a. M. S. A. M. S. Zalzala, “Investigating the use of genetic 
programming for a classic one-machine scheduling problem,” Adv. Eng. Softw., vol. 32, no. 6, 
pp. 489–498, Jun. 2001. 

[182] E. Montagne, “Sequencing with time delay costs,” Ind. Eng. Res. Bull. Arizona State 
Univ., vol. 5, pp. 20–31, 1969. 

[183] C. D. Geiger, R. Uzsoy, H. Aytu\ug, and H. Aytuğ, “Rapid Modeling and Discovery of 
Priority Dispatching Rules: An Autonomous Learning Approach,” J. Sched., vol. 9, no. 1, pp. 
7–34, Feb. 2006. 

[184] D. Jakobovi, D. Jakobović, and L. Budin, “Dynamic scheduling with genetic 
programming,” in European Conference on Genetic Programming, 2006, pp. 73–84. 

[185] N. B. Ho and J. C. Tay, “Evolving Dispatching Rules for solving the Flexible Job-Shop 
Problem,” 2005 IEEE Congr. Evol. Comput., vol. 3, pp. 2848–2855, 2005. 



124 
  

[186] J. C. Tay and N. B. Ho, “Evolving dispatching rules using genetic programming for 
solving multi-objective flexible job-shop problems,” Comput. Ind. Eng., vol. 54, no. 3, pp. 453–
473, Apr. 2008. 

[187] E. K. Burke, M. R. Hyde, G. Kendall, and J. R. Woodward, “The scalability of evolved 
on line bin packing heuristics,” 2007 IEEE Congr. Evol. Comput., pp. 2530–2537, Sep. 2007. 

[188] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, “A Genetic Programming Hyper-
Heuristic Approach for Evolving Two Dimensional Strip Packing Heuristics,” pp. 1–17. 

[189] S. Allen, E. K. Burke, M. Hyde, and G. Kendall, “Evolving reusable 3d packing 
heuristics with genetic programming,” in Proceedings of the 11th Annual conference on Genetic 
and evolutionary computation, 2009, pp. 931–938. 

[190] S. Allen, E. Burke, and G. Kendall, “A new hybrid placement strategy for the three-
dimensional strip packing problem,” 2009. 

[191] J. Xie, Y. Mei, A. T. Ernst, X. Li, and A. Song, “A genetic programming-based hyper-
heuristic approach for storage location assignment problem,” in 2014 IEEE Congress on 
Evolutionary Computation (CEC), 2014, pp. 3000–3007. 

[192] E. Burke, M. Dror, S. Petrovic, and R. Qu, “Hybrid graph heuristics within a hyper-
heuristic approach to exam timetabling problems,” in The next wave in computing, optimization, 
and decision technologies, Springer, 2005, pp. 79–91. 

[193] E. Burke, A. Eckersley, and B. Mccollum, “Computer Science Technical Report No . 
NOTTCS-TR-2006-2 Hybrid Variable Neighbourhood Approaches to University Exam 
Timetabling Hybrid Variable Neighbourhood Approaches to University Exam Timetabling,” 
2006. 

[194] H. Asmuni, E. K. Burke, J. M. Garibaldi, and B. McCollum, “Fuzzy Multiple Heuristic 
Ordering for Examination Timetabling,” Int. Conf. Pract. Theory Autom. Timetabling, pp. 334–
353, 2004. 

[195] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown, “SATenstein: 
Automatically Building Local Search SAT Solvers from Components.,” in IJCAI, 2009, vol. 9, 
no. October, pp. 517–524. 

[196] S. Nguyen, M. Zhang, and M. Johnston, “A genetic programming based hyper-heuristic 
approach for combinatorial optimisation,” in Proceedings of the 13th annual conference on 
Genetic and evolutionary computation, 2011, pp. 1299–1306. 

[197] R. E. Keller and R. Poli, “Cost-Benefit Investigation of a Genetic-Programming 
Hyperheuristic A Linear-GP Hyperheuristic,” pp. 13–24, 2008. 

[198] R. E. Keller and A. G. Hyperheuristic, “Linear Genetic Programming of Parsimonious 
Metaheuristics.” 

[199] R. E. Keller and R. Poli, “Improved Benchmark Results from Subheuristic Search,” 2008. 



125 
  

[200] R. E. Keller, R. Poli, A. G. Hyperheuristic, and R. Keller, Robert E and Poli, “Linear 
genetic programming of parsimonious metaheuristics,” 2007 IEEE Congr. Evol. Comput., pp. 
4508–4515, 2007. 

[201] R. E. Keller and R. Poli, “Self-adaptive hyperheuristic and greedy search,” 2008 IEEE 
Congr. Evol. Comput. (IEEE World Congr. Comput. Intell., pp. 3801–3808, Jun. 2008. 

[202] M. Bader-el-den and R. Poli, “Generating SAT local-search heuristics using a GP hyper-
heuristic framework,” in International Conference on Artificial Evolution (Evolution 
Artificielle), 2007, pp. 37–49. 

[203] J. Gottlieb, E. Marchiori, and C. Rossi, “Evolutionary algorithms for the satisfiability 
problem,” Evol. Comput., vol. 10, no. 1, pp. 35–50, 2002. 

[204] N. R. Sabar, M. Ayob, G. Kendall, R. Qu, S. Member, and R. Qu, “Grammatical 
evolution hyper-heuristic for combinatorial optimization problems,” IEEE Trans. Evol. 
Comput., vol. 17, no. 6, pp. 840–861, 2013. 

[205] P. Cowling, G. Kendall, and E. Soubeiga, “Hyperheuristics: A robust optimisation 
method applied to nurse scheduling,” in International Conference on Parallel Problem Solving 
from Nature, 2002, pp. 851–860. 

[206] K. A. Dowsland, “Nurse Scheduling with tabu search and strategic oscillation,” Eur. J. 
Oper. Res., vol. 106, no. 2, pp. 393–407, 1998. 

[207] K. A. Dowsland and W. Lane, “An Indirect Genetic Algorithm for a Nurse Scheduling 
Problem,” vol. 31, no. 5, pp. 761–778, 2004. 

[208] E. Burke and E. Soubeiga, “Scheduling nurses using a tabu-search hyperheuristic,” Proc. 
1st Multidiscip. Int. Conf. Sched. Theory Appl. (MISTA 2003), Nottingham, UK, no. Proceedings 
of the 1st multidisciplinary international conference on scheduling: Theory and applications 
(MISTA 2003), Nottingham, UK. 2003, pp. 1–22, 2003. 

[209] R. Bai, E. K. Burke, G. Kendall, J. Li, and B. McCollum, “A Hybrid Evolutionary 
Approach to the Nurse Rostering Problem,” IEEE Trans. Evol. Comput., vol. 14, no. 4, pp. 580–
590, Aug. 2010. 

[210] B. Bilgin, P. De Causmaecker, P. De Causmaecker, and G. Vanden Berghe, “A 
Hyperheuristic Approach to Belgian Nurse Rostering Problems,” Proc. 4th Multidiscip. Int. 
Conf. Sched. Theory Appl., no. Proceedings of the 4th Multidisciplinary International 
Conference on Scheduling: Theory and Applications. 2009, pp. 10–12, 2009. 

[211] B. Bilgin et al., “Local search neighbourhoods for dealing with a novel nurse rostering 
model,” Ann. Oper. Res., vol. 194, no. 1, pp. 33–57, Nov. 2012. 

[212] G. Vanden Bilgin, Burak and De Causmaecker, Patrick and Rossie, Benot and Berghe, 
“Local Search Neighbourhoods to Deal with a Novel Nurse Rostering Model,” Ann. Oper. Res., 
vol. 194, no. 1, pp. 33–57, 2012. 



126 
  

[213] B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg, G. Vanden Berghe, and G. 
Vanden, “One hyper-heuristic approach to two timetabling problems in health care,” J. 
Heuristics, vol. 18, no. 3, pp. 401–434, 2012. 

[214] K. Anwar, M. A. Awadallah, A. T. Khader, and M. A. Al-Betar, “Hyper-heuristic 
approach for solving nurse rostering problem,” in Computational Intelligence in Ensemble 
Learning (CIEL), 2014 IEEE Symposium on, 2014, pp. 1–6. 

[215] O. Committee, “CHeSC : Cross-Domain Heuristic Search Competition ASAP Default 
Hyper-heuristics CHeSC : Cross-Domain Heuristic Search Competition,” pp. 23–25, 2011. 

[216] M. Mısır et al., “An intelligent hyper-heuristic framework for chesc 2011,” Learn. Intell. 
Optim., pp. 461–466, 2012. 

[217] P.-C. Hsiao, T.-C. Chiang, and L.-C. Fu, “A VNS-based hyper-heuristic with adaptive 
computational budget of local search,” 2012 IEEE Congr. Evol. Comput., pp. 1–8, Jun. 2012. 

[218] M. Larose, “A hyper-heuristic for the chesc 2011,” in The 53rd Annual Conference of the 
UK Operational Research Society (OR53), 2011, pp. 1–2. 

[219] D. Meignan, A. Koukam, and J. Créput, “Coalition-based metaheuristic: a self-adaptive 
metaheuristic using reinforcement learning and mimetism,” J. Heuristics, 2010. 

[220] A. Lehrbaum, “A New Hyperheuristic Algorithm for Cross-Domain Search Problems,” 
vol. 2011, 2011. 

[221] R. Poli and M. Graff, “There is a free lunch for hyper-heuristics, genetic programming 
and computer scientists,” in European Conference on Genetic Programming, 2009, pp. 195–
207. 

[222] M. O’Neil et al., Grammatical evolution: evolutionary automatic programming in an 
arbitrary language. Norwell, MA: Kluwer Academic Publishers, 2003. 

[223] S. Luke and L. Panait, “A survey and comparison of tree generation algorithms,” in 
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), 2001, 
pp. 81–88. 

[224] C. Johnson, “Basic Research Skills in Computing Science.” [Online]. Available: 
http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/basics.html . 

[225] A. A. Constantino, D. Landa-Silva, E. L. de Melo, C. F. X. de Mendonça, D. B. Rizzato, 
and W. Romão, “A heuristic algorithm based on multi-assignment procedures for nurse 
scheduling,” Ann. Oper. Res., vol. 218, no. 1, pp. 165–183, Apr. 2014. 

[226] E. Burke and Y. Bykov, “A late acceptance strategy in hill-climbing for exam timetabling 
problems,” in PATAT 2008 Conference, Montreal, Canada. 2008., 2008, p. 7. 

[227] Y. Bykov and S. Petrovic, “An initial study of a novel Step Counting Hill Climbing 
heuristic applied to timetabling problems,” in Multidisciplinary International Conference on 
Scheduling: Theory and Applications (MISTA-13), 2013, pp. 691–693. 



127 
  

[228] M. Misir, “A selection hyper-heuristic for scheduling deliveries of ready-mixed 
concrete,” Proc. Metaheuristics Int. Conf. (MIC 2011), pp. 289–298, 2011. 

[229] E. K. Burke and Y. Bykov, “The late acceptance hill-climbing heuristic,” Univ. Stirling, 
Tech. Rep, no. June, p. 19, 2012. 

[230] S. Bykov, Yuri and Petrovic, “A Step Counting Hill Climbing Algorithm,” Nottingham 
Univ. Bus. Sch. Res. Pap. Ser., vol. 10, p. 23, 2013. 

[231] F. Hutter, H. H. H. Hoos, K. Leyton-Brown, and T. Stützle, “ParamILS: an automatic 
algorithm configuration framework,” J. Artif. Intell. Res., vol. 36, no. 1, pp. 267–306, 2009. 

[232] R. N. Kackar, “Off-line quality control, parameter design, and the Taguchi method,” in 
Quality Control, Robust Design, and the Taguchi Method, Springer, 1989, pp. 51–76. 

[233] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “Automated algorithm tuning using 
F-Races: Recent developments,” in Proceedings of MIC, 2009, vol. 9, pp. 1–10.  



128 
  

Appendix A  
This appendix describes how to run the two programs. 

A.1 Program requirements 
Java 1.6 must be installed in order to use the program (http://java.com/en/download). Once Java 
is installed on the machine the two jar files should be executable. Copy the folder “Executables” 
from the CD to your computer. These are called SPHH.jar and GPHH.jar. For linux machines, 
navigate to the folder, right click on the jar file and click “Open in Terminal”. Then type the 
following command: java –jar filename.jar. For windows users please use the two included 
“.bat” files are provided these are called SPHH.bat and GPHH.bat. For linux users two “.sh” 
files are provided these are called SPHH.sh and GPHH.sh.  
 
 

A.2 SPHH 
“SPHH.jar” is the selections perturbative hyper-heuristic presented in Chapter 8. This program 
can be seen in Figure A.1. SPHH includes a number of preset options for population size, 
genetic operator rates, tournament size, generation limit, convergence limit and the initial 
individual length values. The tournament size cannot be set higher than the population size. An 
option is included to output to file (each file name is unique), this will create a text file in the 
subfolder called “Results”. If the checkbox is not checked no file will be written and the data 
will be displayed through the console. A further option is available to run SPHH before 
multithreading was added. Finally the instance to run the SPHH algorithm on can be selected. A 
label will display the word “Running” while a run is ongoing and a pop up message will 
confirm the run has finished. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A.3 GPHH 
“GPHH.jar” is the generative perturbative hyper-heuristic presented in Chapter 9. GPHH 
includes two tabs, the first seen in is the interface to evolve a new heuristic and the second seen 
in is the interface to run an evolved heuristic. Evolved heuristics are available in the subfolder 
“EvolvedHeuristics”.  
 

Figure A.1 SPHH program 

http://java.com/en/download


129 
  

The first tab as seen in Figure A.2, “GPHH” is used to evolve a heuristic. This tab includes a 
number of preset options for population size, genetic operator rates, tournament size, generation 
limit, offspring for each generation, the IF-C value, probability swap value and the evaluation 
time for Algorithm 9.2 (the value is set to milliseconds such that 1 = 100ms). The tournament 
size and offspring for each generation must not exceed the population size. An option is 
included to output to file (each file name is unique), this will create a text file in the subfolder 
called “Results”.  A further option is available to run GPHH using 3 instances, this will display 
two additional combo boxes shown in Figure A.4. The instances do not have to be unique but 
using this option will triple the runtime of the program. When a run finishes the evolved 
heuristic will be written to the folder “EvolvedHeuristics”. This new heuristic can be run using 
the second program tab.  A pop up message will also confirm the run has finished. 
 
 
 
  
 
 
  
  
  
  
  
  
 
 
 
 
 
 
 
The second tab as seen in Figure A.3, “GPHH (Execute evolved heuristic) is used to run an 
evolved heuristic. This tab also presents a number of preset options for the probability swap 
value, the time period to apply the evolved heuristic to the chosen instance and the IF-C value. 
The competition benchmarking tool is included in the folder “Benchmarking”. This tool will 
give a set of suggested time values for solving each track of instance. For this program the 
default values of 8 seconds for sprint instances, 8 minutes for medium instances and 1 hour for 
long instances are set. The time values can be changed by the user and will only update to 
default values when selecting a new instance or inputting a time value of 0. The heuristic file 
you wish to use can be selected and the instance you wish to apply the evolved heuristic to can 
be chosen. An option is included to output to file (each file name is unique), this will create a 
text file in the subfolder called “Results”. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.2 GPHH tab 1 evolve new heuristic 



130 
  

 
 
 
 
  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.4 Using 3 instances option 

A.4 Running an experiment 
First the parameters must be set. Default values have been provided in order to quickly 
demonstrate the two approaches. The parameters can be changed and the parameters used for 
the simulations are available to the user. SPHH and GPHH are multithreaded and will attempt to 
use the maximum number of threads available, for example a computer with 4 cores and no 
hyper-threading will have 4 threads but a computer with 4 cores and hyper-threading will have 8 
threads available. Both approaches will try to use the maximum number of available threads. 
The exception is the single threaded version of SPHH. An error message will be displayed if a 
parameter is not set properly for example, in Figure A.6 the evaluation time for running an 
evolved heuristic was set to 0. It is recommended that you run a single instance of a program at 
a time. While a program is running a label will display the word “Running” this can be seen in 
Figure A.5. When this label no longer displays “Running” the run has finished.  
 
Finally an instance must be selected from the INRC2010 benchmark data set and a number of 
runs must be chosen. 
 
 

 
Figure A.5 Displaying "Running" label while executing program 

 
 

Figure A.3 GPHH tab 2 run evolved heuristic 

Figure A.6 Example of an error message pop up 



131 
  

Appendix B  
This appendix contains tables of results pertaining to Chapter 10 section 10.2. 
 

B.1 GPHH related results tables 
 

Table B.1 Minimum values for sprint instances 
Instances  BKRs S E H L SE SH SL ME MH ML LH LL LE 
sprint_early1  56 56 56 56 56 56 56 56 56 56 56 56 56 56 
sprint_early2  58 58 58 58 58 58 58 58 58 58 58 58 58 58 
sprint_early3  46 51 51 51 51 51 51 51 51 51 51 51 51 51 
sprint_early4  59 59 59 59 59 59 59 59 59 59 59 59 59 60 
sprint_early5  58 58 58 58 58 58 58 58 58 58 58 58 58 58 
sprint_early6  54 54 54 54 54 54 54 54 54 54 54 54 54 54 
sprint_early7  56 56 56 56 56 56 56 56 56 56 56 56 56 56 
sprint_early8  56 56 56 56 56 56 56 56 56 56 56 56 56 56 
sprint_early9  55 55 55 55 55 55 55 55 55 55 55 55 55 56 
sprint_early10  52 52 52 52 52 52 52 52 52 52 52 52 52 52 
sprint_late1 37 38 40 38 39 39 39 39 39 38 38 39 39 40 
sprint_late2 42 43 43 43 43 42 42 43 43 43 43 43 43 45 
sprint_late3 48 49 49 48 49 49 49 50 49 49 49 49 50 50 
sprint_late4 73 80 78 79 76 80 80 75 77 78 77 77 75 90 
sprint_late5 44 45 45 45 45 45 44 45 45 45 45 45 45 47 
sprint_late6 42 42 42 42 42 42 42 42 42 42 43 42 42 43 
sprint_late7 42 46 47 44 47 44 45 45 44 43 45 46 44 49 
sprint_late8 17 17 17 17 17 17 17 17 17 17 17 17 17 17 
sprint_late9 17 17 17 17 17 17 17 17 17 17 17 17 17 17 
sprint_late10 43 45 48 45 47 46 47 47 46 46 46 48 47 50 
sprint_hidden1 32 33 33 33 33 32 33 33 33 33 34 34 32 37 
sprint_hidden2 32 32 32 32 32 32 32 33 32 32 32 32 32 35 
sprint_hidden3 62 63 64 62 63 63 63 63 62 62 63 62 64 64 
sprint_hidden4 66 66 67 66 66 67 67 68 66 66 67 68 67 68 
sprint_hidden5 59 60 59 60 59 59 61 60 59 60 60 60 59 60 
sprint_hidden6 130 144 172 150 160 166 178 154 163 149 170 166 167 160 
sprint_hidden7 153 161 162 156 161 156 157 163 166 161 161 158 158 171 
sprint_hidden8 204 211 221 217 215 211 216 213 215 214 220 221 215 239 
sprint_hidden9 338 345 348 343 346 340 343 345 339 352 347 349 340 361 
sprint_hidden10 306 306 306 306 306 306 312 311 306 306 306 318 306 324 

 
Table B.2 Average values for sprint instances 

Instances  S E H L SE SH SL ME MH ML LH LL LE 
sprint_early1  56.57 56.5 56.53 56.63 56.53 57.03 56.9 56.3 56.37 56.8 56.8 56.87 57.43 
sprint_early2  58.67 58.6 58.53 58.7 58.23 59.23 59 58.2 58.3 58.8 58.77 59.17 59.93 
sprint_early3  52.17 51.93 52 52.37 51.47 52.5 52.43 51.87 51.97 52.3 52.47 52.5 53.2 
sprint_early4  60.33 60.43 60.23 60.63 60.07 60.73 60.97 60.1 60.3 60.7 60.33 61.03 62.23 
sprint_early5  58.03 58.03 58 58.1 58.03 58.17 58.07 58.03 58.03 58.03 58 58.17 58.7 
sprint_early6  54.03 54.13 54.17 54.27 54.03 54.8 54.77 54.1 54.1 54.43 54.33 54.6 55.3 
sprint_early7  56.77 57.03 56.8 56.87 56.5 57.63 57.4 56.6 56.83 57.1 57 57.8 57.87 
sprint_early8  56.87 56.37 56.47 56.67 56.23 56.8 56.73 56.37 56.53 56.6 56.53 57 56.93 
sprint_early9  55.97 56.37 56.1 56.3 56 56.47 56.43 56.1 56 56.17 56.87 56.83 58.13 
sprint_early10  52.9 53.33 52.8 53 52.77 53.3 52.93 52.87 52.6 53 53.17 53.67 54.53 
sprint_late1 40.63 41.9 40.87 41.07 40.73 41.37 41.47 40.87 40.63 41.43 41.8 42.1 44.37 
sprint_late2 45.03 45.53 45.03 45.27 45.2 45.4 45.47 45.2 45.53 45.4 45.57 46.07 49.07 
sprint_late3 51.4 51.67 51.37 51.53 50.73 52.3 51.6 51.57 51.13 51.27 51.83 52 55.03 
sprint_late4 87.97 89.13 87.17 86.17 87.67 88.77 87.7 85.47 88.8 86.17 87.47 89 104.47 
sprint_late5 46.9 47 46.5 46.97 46.73 46.97 46.73 46.87 46.47 47.03 46.97 47.37 49.37 



132 
  

Instances  S E H L SE SH SL ME MH ML LH LL LE 
sprint_late6 43.4 43.63 43.03 43.53 43.37 43.6 43.47 43.33 43.13 43.5 43.7 43.73 45.53 
sprint_late7 51.63 53.63 51.57 52.2 52.03 51.07 51.17 51.47 50.07 52.33 52.13 52 59.07 
sprint_late8 22.8 21.4 20.7 23.03 22 21.73 22.63 21.37 21.13 21.67 22 21.33 26.47 
sprint_late9 21.87 23.23 24 21.3 22.43 21.87 22.37 21.97 22.9 23.13 23.73 23.8 27.7 
sprint_late10 52.17 53.03 52.47 53.67 52.27 54.33 54.5 53 51.63 53.13 54.27 55 59.23 
sprint_hidden1 35.9 37.33 36.4 37.23 35.67 37.07 36.9 36 36.23 36.37 36.43 37.13 41.3 
sprint_hidden2 35.1 35.4 34.67 35 34.8 35.53 34.77 34.07 34.47 34.97 34.77 34.97 39.8 
sprint_hidden3 66.67 68.17 66.97 68 67.57 67.8 67.63 66.9 67 68 67.4 68.73 72.83 
sprint_hidden4 69.27 69.67 69.87 70.17 69.23 69.47 70.03 69.43 69.4 70.1 70.53 70.7 72.6 
sprint_hidden5 62.97 63.5 63.03 63.83 62.93 63.7 62.63 62.93 62.77 63.67 63.23 64.4 67.8 
sprint_hidden6 161.03 168.8 166.17 167.5 167.07 170.53 164.43 166.57 168.83 170.17 168 171.5 189.07 
sprint_hidden7 182.37 191.77 180.37 187.37 183 187.23 182.63 185.63 184 187.43 191.07 190.67 216.4 
sprint_hidden8 234.07 240.1 237.13 242.2 238.73 241.2 235.23 240.37 239.5 239.7 243 241.2 272.83 
sprint_hidden9 362.9 369.2 363.87 366.83 361.17 365.57 364.37 364.6 365.4 366.53 367.1 368.1 388.9 
sprint_hidden10 330.57 340.97 328.53 329.73 337.93 335.77 331.87 331.2 332.7 332.6 338.13 335.47 375.67 

 
Table B.3 Minimum values for medium instances 

Instances  BKRs S E H L SE SH SL ME MH ML LH LL LE 
medium_early1  240 241 241 240 241 242 243 243 241 241 242 242 243 242 
medium_early2  240 241 241 241 242 241 241 241 241 241 241 241 242 241 
medium_early3  236 238 238 237 238 237 238 237 238 237 238 238 238 238 
medium_early4  237 239 238 238 238 238 239 239 238 238 239 238 239 239 
medium_early5  303 304 304 304 304 303 305 304 304 304 304 304 305 306 
medium_late1 157 176 182 182 177 180 179 175 182 177 178 176 185 201 
medium_late2 18 24 28 24 27 26 29 24 22 25 25 27 28 30 
medium_late3 29 35 33 32 33 34 36 34 32 32 36 33 36 39 
medium_late4 35 39 39 38 39 38 38 38 37 39 38 39 38 45 
medium_late5 107 139 138 130 137 134 140 136 142 139 142 135 141 172 
medium_hidden1 121 148 144 148 150 148 156 138 142 146 155 149 136 174 
medium_hidden2 221 258 274 263 269 254 278 262 267 271 275 270 257 302 
medium_hidden3 35 41 40 37 39 38 39 38 39 39 39 37 40 49 
medium_hidden4 78 88 86 86 86 87 87 87 85 87 85 84 88 91 
medium_hidden5 119 140 138 134 137 139 143 137 137 130 141 143 141 146 

 
Table B.4 Average values for medium instances 

Instances  S E H L SE SH SL ME MH ML LH LL LE 
medium_early1  243.17 242.87 242.93 243.03 243.23 246.77 244.23 242.77 242.6 243.53 245.37 244.6 243.9 
medium_early2  244.37 242.47 242.43 242.67 242.27 245.73 242.8 243.5 242.17 242.83 244.87 243.97 243.83 
medium_early3  241.63 238.93 238.9 238.8 239.23 240.37 239.8 239.37 239.03 239.5 241.6 240.3 240.17 
medium_early4  242 239.93 239.67 239.77 239.43 240.83 240.6 240.7 239.5 240.5 241.9 241.2 241 
medium_early5  308.23 305.73 305.3 305.97 305.37 309.3 306.27 305.53 305.4 306.6 308.43 307 308.93 
medium_late1 191.7 200.8 193.4 198.73 193.33 196.67 195.63 192.73 190.33 194.77 192.5 197.73 218.23 
medium_late2 31.63 34.77 30.4 31.17 32.27 31.47 30.7 30.53 30.37 32.87 33.1 34.9 40.3 
medium_late3 39 39.8 38.13 38.33 39.2 41.33 39.17 41.37 39.03 40.6 39.63 43.37 47.23 
medium_late4 42.6 43.3 41.53 43.27 42.5 43.13 41.93 46.4 41.77 43.2 43.03 44.63 51.33 
medium_late5 154.07 162.67 152.1 156.7 155 161.87 156.27 173.33 157.23 156.83 161.1 163 195.03 
medium_hidden1 166.77 173.17 170.63 173.43 167.9 177.63 169.67 173.9 169.03 172.33 177.6 180.43 209 
medium_hidden2 293.87 302.33 288.67 297.2 292.63 300.53 293.2 306.53 293.3 300.4 296.77 297.17 340.63 
medium_hidden3 44.37 44.8 43.63 44.63 43 44.2 44.07 43.47 43.97 44.83 49.77 45.2 53.57 
medium_hidden4 93.63 95.23 92.07 94.23 93.4 93.83 94.5 93.63 94.3 93.6 98.67 95.57 103.2 
medium_hidden5 155.03 165.8 153.97 158.2 154.2 158.9 153.37 151.93 159.5 156.03 174.87 159.97 187.57 

 
Table B.5 Minimum values for long instances 

Instances  BKRs S E H L SE SH SL ME MH ML LH LL LE 
long_early1  197 197 197 197 197 197 197 197 197 197 197 197 197 197 
long_early2  219 221 221 222 221 221 222 222 221 221 221 221 222 223 
long_early3  240 240 240 240 240 240 240 240 240 240 240 240 240 240 



133 
  

Instances  BKRs S E H L SE SH SL ME MH ML LH LL LE 
long_early4  303 303 303 303 303 303 303 303 303 303 303 303 303 303 
long_early5  284 284 284 284 284 284 284 284 284 284 284 284 284 284 
long_late1  235 254 262 257 257 255 262 260 257 250 257 259 268 283 
long_late2  229 249 273 259 266 263 262 253 258 260 259 263 262 305 
long_late3  220 257 268 258 263 258 255 256 262 263 266 260 256 294 
long_late4  221 256 271 259 267 264 257 258 259 255 264 268 269 299 
long_late5  83 99 104 97 96 96 99 93 95 98 100 98 97 123 
long_hidden1 346 368 380 374 374 368 369 370 381 374 377 377 374 423 
long_hidden2 89 90 91 89 91 90 90 90 91 90 90 91 92 101 
long_hidden3 38 43 45 41 45 43 42 42 40 40 42 44 42 55 
long_hidden4 22 23 27 25 24 27 26 27 26 25 27 25 28 37 
long_hidden5 41 48 52 48 48 48 45 51 45 46 48 48 51 67 

 
Table B.6 Average values for long instances 

Instances  S E H L SE SH SL ME MH ML LH LL LE 
long_early1  197.13 197.07 197.2 197.47 197.03 198.4 198.2 197 197.2 198.13 197.87 198.57 197.57 
long_early2  230.33 223 223.5 223.47 222.57 225.33 224.53 227.27 222.97 224.7 224.53 225.8 226.53 
long_early3  240 240 240 240 240 240 240 240.67 240 240 241.37 240 240 
long_early4  307.87 303.07 303 303 303.07 303.93 303.8 303.07 303.03 303.67 306.7 304.37 304.4 
long_early5  289.27 284.3 284 284.03 284 284.83 284.43 284 284 284.57 284.27 285.07 285.17 
long_late1  267.63 285.47 271.57 278.3 274 276.07 273.2 271.67 271.5 276.17 282.07 282.43 315.87 
long_late2  273.03 296.27 275.63 285.67 277.43 278.4 276.57 273.1 277.63 282.53 284.33 289.07 326.77 
long_late3  275.77 285.3 275.97 279.33 277.3 278.03 277.63 276.2 276.4 279.07 277.8 284.1 323.2 
long_late4  273.47 286.47 276.4 283.33 280.3 281.97 275.77 275.43 275.4 277.87 285 291.47 327.6 
long_late5  110.7 120.07 111.47 115.47 113.57 116.03 110.9 111.5 110.93 115.7 118.43 118.07 152.97 
long_hidden1 396.27 407.57 397.97 401.57 396.43 399.17 399.73 445.53 397.03 399.57 403.63 414.6 466.3 
long_hidden2 93.93 98.37 93.2 95.3 94.03 95.4 93.93 105.03 93.97 96.5 95.9 98 111.57 
long_hidden3 48 51.8 48.27 50.57 47.8 49.6 47.77 48.47 48.17 50.27 51.37 50.4 63.07 
long_hidden4 31.9 34.7 30.87 33.7 31.43 31.77 31.4 30.8 30.47 31.3 43.77 35.37 49.3 
long_hidden5 56.27 63.3 55.67 57.1 55.7 58.3 56.2 54.43 56.57 58.4 58.87 59.87 79.83 

 
Table B.7 Standard deviations GPHH 

Instance  S E H L SE SH SL ME MH ML LH LL LE 
sprint_early1  0.57 0.57 0.73 0.76 0.63 0.76 0.84 0.47 0.61 0.85 0.85 0.78 1.07 
sprint_early2  0.71 0.62 0.82 0.79 0.50 0.86 0.74 0.41 0.47 0.81 0.63 0.83 1.39 
sprint_early3  0.79 0.87 0.79 0.89 0.63 0.78 0.77 0.82 0.85 0.88 0.94 0.94 1.27 
sprint_early4  0.96 1.04 0.73 0.93 0.74 1.08 0.93 1.03 0.79 0.79 0.66 1.27 1.45 
sprint_early5  0.18 0.18 0.00 0.31 0.18 0.38 0.25 0.18 0.18 0.18 0.00 0.46 0.79 
sprint_early6  0.18 0.35 0.38 0.52 0.18 0.76 0.73 0.31 0.31 0.63 0.55 0.62 0.92 
sprint_early7  0.82 0.85 0.85 0.82 0.82 0.81 0.97 0.77 0.83 0.80 0.79 1.10 0.94 
sprint_early8  0.68 0.49 0.57 0.71 0.43 0.66 0.52 0.49 0.63 0.62 0.68 0.79 0.78 
sprint_early9  1.03 1.07 0.92 1.06 1.08 1.14 1.19 0.99 0.95 1.02 0.97 1.26 1.28 
sprint_early10  0.76 0.76 0.71 0.59 0.73 0.84 0.74 0.73 0.62 0.79 0.87 1.03 1.14 
sprint_late1 1.16 1.32 1.43 1.39 1.17 1.33 1.53 1.04 1.40 1.38 1.65 1.75 2.01 
sprint_late2 1.25 1.43 1.10 1.46 1.49 1.65 1.38 1.40 1.81 1.25 1.57 1.53 2.49 
sprint_late3 1.22 1.60 1.19 1.53 1.14 1.66 1.04 1.19 1.38 1.26 1.84 1.36 2.59 
sprint_late4 4.86 6.22 4.70 6.13 5.11 6.21 7.36 3.79 6.21 5.38 5.71 6.30 8.27 
sprint_late5 0.96 1.31 1.04 1.19 1.20 1.07 1.17 1.17 1.01 1.40 1.03 1.13 1.59 
sprint_late6 0.77 0.85 0.85 0.86 1.07 1.13 1.01 0.88 0.82 0.63 0.95 1.01 1.59 
sprint_late7 4.09 5.83 4.30 3.90 3.86 3.91 3.42 3.50 3.53 4.02 4.10 3.54 5.71 
sprint_late8 3.72 4.34 3.74 4.68 4.36 3.79 4.58 4.23 4.82 4.83 4.62 3.49 5.15 
sprint_late9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
sprint_late10 4.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
sprint_hidden1 1.84 1.88 1.96 2.39 1.73 1.86 2.22 1.62 1.68 1.65 1.72 2.26 2.64 
sprint_hidden2 2.07 2.01 1.81 1.62 1.71 2.30 1.89 1.44 1.68 1.69 1.99 1.96 3.23 
sprint_hidden3 2.11 2.34 2.67 2.27 2.03 2.37 2.74 2.94 2.59 2.86 3.06 2.41 3.52 
sprint_hidden4 1.68 1.99 1.63 1.93 1.50 1.48 1.75 1.70 1.71 1.75 1.83 1.82 2.09 
sprint_hidden5 2.22 2.18 1.87 2.74 2.00 2.37 1.90 2.24 2.24 2.34 2.06 2.61 3.45 



134 
  

Instance  S E H L SE SH SL ME MH ML LH LL LE 
sprint_hidden6 16.17 14.09 15.77 11.68 15.37 14.18 11.74 16.66 14.98 13.72 12.06 13.35 19.07 
sprint_hidden7 11.14 16.26 12.06 13.69 17.88 16.87 11.59 12.74 11.69 13.10 18.04 17.75 25.85 
sprint_hidden8 12.42 14.37 14.35 20.06 13.56 14.67 11.76 16.38 11.28 13.97 12.99 15.45 19.80 
sprint_hidden9 8.01 10.41 7.14 9.75 7.08 10.93 9.88 12.00 8.65 11.14 10.95 11.89 14.86 
sprint_hidden10 8.88 16.32 10.93 12.23 15.51 14.52 14.16 14.44 15.75 13.97 15.84 16.61 20.96 
medium_early1  1.02 0.90 1.08 0.93 0.77 3.87 0.90 0.86 0.97 0.94 2.92 0.97 0.99 
medium_early2  2.98 0.78 0.90 0.76 0.87 4.46 0.85 1.89 0.70 0.99 3.37 1.03 1.37 
medium_early3  3.15 0.64 0.92 0.76 1.07 1.07 1.27 0.93 1.03 0.94 3.02 1.21 1.32 
medium_early4  2.83 1.08 0.88 0.94 1.04 0.91 0.89 2.05 0.86 1.31 3.26 1.52 1.23 
medium_early5  4.15 1.08 1.09 1.07 0.85 4.56 1.05 1.11 0.81 1.35 3.33 1.11 1.60 
medium_late1 7.24 10.44 6.99 8.34 6.34 9.50 7.25 6.95 8.01 8.61 8.50 7.21 9.75 
medium_late2 3.31 3.39 3.28 2.67 3.31 2.01 3.15 3.62 3.02 2.79 2.60 2.96 4.60 
medium_late3 3.09 3.10 3.38 3.34 3.43 2.92 2.74 6.05 2.94 2.87 3.10 4.70 4.48 
medium_late4 2.55 2.26 2.13 2.46 2.60 2.61 2.23 6.84 1.81 2.11 2.43 2.85 3.13 
medium_late5 10.25 11.07 10.16 11.85 11.63 13.83 11.49 27.08 10.04 8.94 12.22 13.03 17.95 
medium_hidden1 11.95 16.08 11.03 13.50 13.63 15.23 14.32 14.26 14.15 12.05 14.83 18.27 17.28 
medium_hidden2 17.43 16.66 12.70 13.41 14.11 16.91 17.05 27.85 15.99 15.91 19.30 16.50 21.63 
medium_hidden3 2.46 2.50 2.87 3.49 2.80 2.98 2.95 2.66 3.22 3.11 7.67 3.40 4.34 
medium_hidden4 3.21 3.43 3.29 4.22 3.59 4.38 4.52 4.90 3.13 4.41 8.67 3.88 5.39 
medium_hidden5 9.20 13.78 8.73 12.27 9.96 8.82 9.51 8.12 14.40 8.52 25.41 10.85 19.98 
long_early1  0.35 0.25 0.41 0.68 0.18 0.81 0.89 0.00 0.41 0.78 0.73 0.90 0.57 
long_early2  11.19 1.23 1.04 1.20 1.07 1.90 1.55 7.00 1.00 1.53 1.68 1.56 1.61 
long_early3  0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.77 0.00 0.00 2.28 0.00 0.00 
long_early4  7.58 0.25 0.00 0.00 0.25 0.78 0.76 0.25 0.18 0.66 5.29 0.93 1.07 
long_early5  7.81 0.47 0.00 0.18 0.00 0.70 0.57 0.00 0.00 0.57 0.52 1.01 0.79 
long_late1  8.45 10.15 8.35 10.15 9.14 8.35 8.12 8.02 10.59 9.78 11.16 8.97 14.72 
long_late2  10.61 14.57 9.90 10.41 10.01 10.15 10.71 7.23 9.25 13.47 10.54 11.84 13.32 
long_late3  10.73 8.85 8.20 9.93 10.57 9.44 8.56 8.58 9.90 7.57 10.53 12.38 16.33 
long_late4  8.45 9.35 11.62 11.63 9.66 12.55 9.53 9.64 8.39 10.50 10.79 13.41 17.29 
long_late5  6.29 8.45 8.11 7.80 8.48 8.57 8.33 6.84 8.19 8.64 9.12 9.67 14.99 
long_hidden1 17.56 15.22 11.97 20.77 14.95 16.36 15.98 76.19 11.20 11.87 15.84 15.28 26.78 
long_hidden2 2.53 3.95 2.28 2.93 2.04 3.10 2.95 17.02 2.67 3.22 3.34 3.27 5.14 
long_hidden3 3.30 4.81 3.81 3.95 4.15 4.14 3.51 3.28 3.14 4.07 4.10 3.80 5.39 
long_hidden4 4.18 4.55 3.71 5.05 3.24 3.49 3.15 2.73 3.45 3.05 16.36 5.10 5.35 
long_hidden5 4.03 6.22 5.18 4.66 4.60 5.13 3.91 5.72 6.28 5.54 5.51 5.17 6.57 

 


	Chapter 1 Introduction
	1.1 Purpose of this research
	1.2 Objectives
	1.3 Contributions
	1.4 Dissertation layout

	Chapter 2 Evolutionary Algorithms
	2.1 Background of evolutionary algorithms
	2.2 Genetic Programming
	2.2.1 Representation
	2.2.2 Initial population generation
	2.2.3 Fitness Evaluation
	2.2.4 Selection
	2.2.5 Genetic operators
	2.2.5.1 Crossover
	2.2.5.2 Mutation
	2.2.5.3 Create operator
	2.2.5.4 Permutation

	2.2.6 Control models
	2.2.7 Strongly typed genetic programming
	2.2.8 Critical analysis of genetic programming

	2.3 Genetic algorithms
	2.3.1 The genetic algorithm
	2.3.2 Similarities to genetic programming
	2.3.3 Initial population generation and representation
	2.3.4 Variable length chromosomes
	2.3.5 Genetic operators
	2.3.5.1 Crossover
	2.3.5.2 Mutation

	2.3.6 Critical analysis of genetic algorithms

	2.4 Summary

	Chapter 3 Methods used for solving combinatorial optimization problem
	3.1 Mathematical methods for combinatorial optimization
	3.1.1 Integer linear programming
	3.1.2 Constraint programming
	3.1.3 Branch and bound

	3.2 Meta-heuristics
	3.2.1 Hill climbing
	3.2.2 Tabu search
	3.2.3 Simulated annealing
	3.2.4 Great deluge
	3.2.5 Variable neighbourhood search
	3.2.6 Harmony search

	3.3 Summary

	Chapter 4 Nurse Rostering
	4.1 The nurse rostering problem
	4.2 Benchmark sets of the nurse rostering problem domain
	4.3 The first international nurse rostering competition 2010 (INRC2010)
	4.4 Nottingham benchmarks
	4.5 State of the art in nurse rostering
	4.5.1 Mathematical based approaches
	4.5.2 Meta-heuristic approaches

	4.6 Critical analysis
	4.7 Summary

	Chapter 5 Hyper-Heuristics
	5.1 Introduction to hyper-heuristics
	5.2 Selection perturbative hyper-heuristics
	5.3 Selection construction hyper-heuristics
	5.4 Generative constructive hyper-heuristics
	5.5 Generative perturbative hyper-heuristics
	5.6 Critical analysis of hyper-heuristics
	5.7 Summary

	Chapter 6 Nurse rostering using Hyper-Heuristics
	6.1 Nurse Rostering and selection perturbative hyper-heuristics
	6.1.1 Hyflex

	6.2 Categorization of low-level heuristics for nurse rostering
	6.2.1 Swap heuristics
	6.2.1.1 Swap two shifts (s1)
	6.2.1.2 Swap a shift type with a free shift (s2)
	6.2.1.3 Swap n shifts (s3)
	6.2.1.4 Swap using problem specific conditions (s4)
	6.2.1.5 Swap with move acceptance (s5)
	6.2.1.6 Summary of swap heuristic category

	6.2.2 Edit heuristics
	6.2.2.1 Add and remove (e1)
	6.2.2.2 Change shift type (e2)
	6.2.2.3 Change n shifts (e3)
	6.2.2.4 Change using problem specific conditions (e4)
	6.2.2.5 Change with move acceptance (e5)
	6.2.2.6 Summary of edit heuristic category


	6.3 Critical analysis of Nurse Rostering and Hyper-heuristics
	6.3.1 Nurse rostering problem
	6.3.2 Low-level heuristics

	6.4 Summary

	Chapter 7 Methodology
	7.1 Critical analysis of related literature
	7.1.1 SPHH Justification
	7.1.2 GPHH Justification

	7.2 Research methodology
	7.3 Objectives
	7.3.1 Objective one and two
	7.3.2 Objective three
	7.3.3 Measurements for analysis of the objectives

	7.4 The nurse rostering problem
	7.4.1 Justification for benchmark set

	7.5 Problem instances
	7.6 Hypothesis testing
	7.7 Technical specifications
	7.8 Summary

	Chapter 8 Genetic Algorithm Selection Perturbative Hyper-Heuristic
	8.1 SPHH Algorithm
	8.2 Representation and initial population generation
	8.3 Evaluation and selection
	8.4 Genetic operators
	8.5 Multithreading
	8.6 Parameters
	8.7 Summary

	Chapter 9 Genetic Programming Generative Perturbation Hyper-Heuristic
	9.1 GPHH Algorithm
	9.2 GPHH terminal and function set
	9.3 Initial population creation and representation
	9.4 Genetic operators
	9.5 Parameters
	9.6 Summary

	Chapter 10 Results and discussion
	10.1 Genetic algorithm selection perturbative hyper-heuristic results (SPHH)
	10.2 Genetic programming generative perturbation hyper-heuristic results (GPHH)
	10.2.1 Evolving low-level perturbation heuristics using GPHH
	10.2.2 Results of applying evolved heuristics
	10.2.2.1 Comparing evolved heuristics to the seen instances used for evolution
	10.2.2.2 Analyzing the structure of evolved heuristics


	10.3 Comparison of SPHH and GPHH
	10.4 Comparison with state of the art
	10.5 Summary

	Chapter 11 Conclusions and future work
	11.1 Objectives and conclusions
	11.2 Future work
	11.2.1 Combining evolutionary selection and generation hyper-heuristics
	11.2.2 Coevolving the algorithm parameters for selection and generative perturbation hyper-heuristics
	11.2.3 Generative construction hyper-heuristic for the nurse rostering problem

	11.3 Summary
	A.1 Program requirements
	A.2 SPHH
	A.3 GPHH
	A.4 Running an experiment
	B.1 GPHH related results tables





