

Open Architecture Control System for a

Modular Reconfigurable Machine Tool

Submitted by:

Mr AQM Amra - 207505463

BSc Eng, UKZN

Supervisor:

Prof. G Bright

May 2013

Submitted in fulfilment of the academic requirements for the degree of Master of Science in
Engineering at the School of Mechanical Engineering, University of KwaZulu-Natal.

i

Declarations

Declaration by supervisor:

As the candidate’s Supervisor I agree to the submission of this dissertation:

Signed: ______________________ Date: ______________________

 Prof. Glen Bright

Declaration by Author:

I, Abdul Qadir Amra, declare that:

(i) The research reported in this dissertation, except where otherwise indicated, is my original

research.

(ii) This dissertation has not been submitted for any degree or examination at any other university.

(iii) This dissertation does not contain other persons’ data, pictures, graphs or other information,

unless specifically acknowledged as being sourced from other persons.

(iv) This dissertation does not contain other persons’ writing, unless specifically acknowledged as being

sourced from other researchers. Where other written sources have been quoted, then:

a) Their words have been re-written but the general information attributed to them has been

referenced;

b) Where their exact words have been used, their writing has been placed inside quotation

marks, and referenced.

(v) This dissertation/thesis does not contain text, graphics or tables copied and pasted from the

Internet, unless specifically acknowledged, and the source being detailed in the dissertation/thesis and

in the References sections.

Signed: ______________________ Date: ______________________

 Mr. Abdul Qadir Amra

Declaration: Publications

Amra, A. Bright, G. Padayachee, J; “Open Architecture Controller for Modular Reconfigurable Machine

Tool”. In 20th International Conference on Mechatronics and Machine Vision in Practice (M2VIP); 20th

September 2013; Ankara; Turkey.

ii

Acknowledgements

In the name of Allah, the most beneficent, the most merciful. All praise and thanks is due to Allah,

without him nothing would be possible. To Allah for the will power, mental and physical strength and

support that he has blessed me with throughout this research.

To my wife Aalia, for her understanding and love, without whom I would not have been able to

achieve this. For her motivation, support, encouragement, patience, assistance and sacrifices that she

made in the past 2 years.

To my family for their continued support, motivation and help throughout this research.

To Professor Glen Bright, I thank him for the supervision, motivation and support throughout this

research.

I would also like to thank the following people and departments:

 The staff at the School of Mechanical Engineering (UKZN) for their outstanding support.

 Mr. Jared Padayachee for his assistance and guidance.

 My colleagues at the Mechatronic and Robotic Research Group for their assistance.

iii

Abstract

The present day manufacturing environment has forced manufacturing systems to be flexible and

adaptable to be able to match the product demands and frequent introduction of new products and

technologies. This research forms part of a greater research initiative that looks at the development of

the reconfigurable manufacturing paradigm. Previous research has shown that the lack of

development of a Modular Reconfigurable Manufacturing Tools (MRMT) and Open Architecture

Control System (OACS) is currently a key limiting factor to the establishment of Reconfigurable

Manufacturing Systems (RMS), which has been the primary motivation for this research.

Open Architecture (OA) systems aim to bring the ideas of RMS to control systems for machining

systems. An OA system incorporates vendor neutrality, portability, extendibility, scalability and

modularity. The research has proposed, designed and developed a novel solution that incorporates

these core principles allowing the system to be flexible in mechanical and control architectures. In

doing so, the system can be reconfigured at any time to match the specific manufacturing functionality

required at that time thereby prolonging the lifecycle of the machine via multiple reconfigurations

over time, in addition to decreasing the cost of system modifications due to a well-defined modular

system. The reconfiguration and machining variance is achieved by the introduction of mechanical and

control modules that extend the Degrees of Freedom (DOF’s) available to the system.

The OACS has been developed as a modular solution that links closely to the existing mechanical

modularity on the RMT to maximize the reconfigurability of the system. The aim was to create a one to

one link between mechanical and electronic hardware and the software system. This has been

achieved by the addition of microcontroller based distributed modules which acts as the interface

between the electro-mechanical machine axes via hardwired signals and the host PC via the CAN bus

communication interface.

The distributed modules have been developed on different microcontrollers, which have successfully

demonstrated the openness and customizability of the system. On the host PC, the user is presented

with a GUI that allows the user to configure the control system based on the MRMT physical

configuration. The underlying software algorithms such as, text Interpretation, linear interpolation, PID

or PI controllers and determination of kinematic viability are part of the OACS and are used at run time

for machine operation.

The machining and control performance of the system is evaluated on the previously developed

MRMT. The performance evaluation also covers the analysis of the reconfigurability and scalability of

the system. The research is concluded with a presentation based on conclusions drawn from the

research covering the challenges, limitations and problems that OA and RMS can face before MRMT

become readily available for industry.

iv

Table of Contents

Declarations .. i

Acknowledgements.. ii

Abstract ... iii

Table of Contents .. iv

List of Acronyms and Abbreviations ... viii

Nomenclature .. x

List of Figures ... xii

List of Tables ..xvi

1. Introduction ... 1

1.1 Manufacturing System Environment ...1

1.2 Research Question ...2

1.3 Research Objectives ...2

1.4 MSc Research Contribution ..2

1.6 Outline of Dissertation ...3

1.7 Chapter Summary ..4

2. Manufacturing Systems ... 5

2.1 Dedicated Manufacturing Systems ..5

2.2 Flexible Manufacturing Systems ..5

2.3 Intelligent Manufacturing Systems ..7

2.4 Reconfigurable Manufacturing Systems ..7

2.5 Manufacturing System Life Cycles .. 11

2.6 Chapter Summary ... 12

3. Open Architecture, Modular and Distributed Control Systems .. 13

3.1. Essential Characteristics of Open Architecture Controllers .. 13

3.2. Emerson DeltaV ... 16

3.3. Siemens SIMATIC ... 18

3.5. Chapter Summary ... 19

4. Mechanical Systems .. 20

4.1 Computer Numerically Controlled Machines .. 20

4.2. Modular Reconfigurable Manufacturing Tool ... 21

4.4. Chapter Summary ... 27

5. Open Architecture System for a Modular Reconfigurable Machine Tool 28

5.1 Research and Design Outlines ... 28

5.2 Mechatronic Design Approach .. 28

5.2 OACS High Level Design .. 29

v

5.3 Distributed Modules ... 32

5.4. Buffer Layers ... 34

5.5. Chapter Summary ... 35

6. Electronic Subsystems ... 36

6.1 Overview ... 36

6.2 Host PC .. 36

6.3 Distributed Modules ... 37

6.3 Multiple Microcontroller Implementation .. 38

6.4 Communications Network .. 40

6.5 CAN bus ... 42

6.6 CAN bus Hardware .. 43

6.7 Message Packet Formatting .. 45

6.8 Spindle and Axis Speed Control... 47

6.9 Motor Noise Cancellation ... 48

6.10 Collision Detection .. 49

6.11 Position Feedback Encoders .. 51

6.12 Vibration Sensor: Accelerometer .. 52

6.13 Power Distribution Network ... 53

6.14. Chapter Summary ... 54

7. Control Algorithms for Open Architecture Control System ... 55

7.1. Kinematic Modelling ... 56

7.2. Control Theory .. 59

7.2.1 PID Controller .. 61

7.3. Program Interpretation and Validation ... 65

7.4. Interpolation ... 69

7.4.1. Linear Interpolation .. 69

7.4.2. Circular Interpolation .. 71

7.5. Acceleration and Deceleration Control ... 74

7.6. Encoder Position Algorithms ... 76

7.6. Chapter Summary ... 77

8. Open Architecture Control System Software .. 78

8.1 Overview ... 78

8.2 Development Environment ... 79

8.3 User Interface .. 79

8.4 Set-Up and Configuration .. 81

8.5 Data Downloading and Module Information .. 84

8.6 Contoller Selection .. 86

8.7 User Programming .. 87

vi

8.8 Motor Control, Debugging and Performance Evaluation.. 88

8.9 Algorithm Editing and Tuning .. 89

8.10. Distributed Module Software.. 90

8.11 Chapter Summary ... 91

9. System Testing and Performance .. 93

9.1. MRMT Setup ... 93

9.2. Reconfiguration Times .. 95

9.3. PC Load .. 96

9.4. Acceleration and Deceleration Control Example .. 96

9.5. Accuracy and Repeatability ... 97

9.6. Vibrations .. 102

9.7. Power Distribution Network Loading .. 105

9.8. Response Times ... 107

9.9. Chapter Summary ... 109

10. Discussion .. 110

10.1 Performance of Electronic Subsystems ... 110

10.1.1 Position Control: Accuracy and Repeatability ... 110

10.1.2. Axes Speeds and Time to Execute Commands ... 110

10.1.3 Power Usage ... 111

10.1.4 Vibrations .. 112

10.1.5 Distributed Module Response Times .. 112

10.2 Performance of OACS on PC.. 113

10.2.1 Reconfiguration Times .. 113

10.2.2 CPU Load ... 113

10.3 OACS Integration with Mechanical System ... 113

10.4 OACS and OA standards .. 115

10.5 OACS on MRM for RMS ... 117

10.6 Challenges and Limitations for OA Systems .. 118

10.7 Chapter Summary ... 120

11. Conclusion ... 121

References ... 123

Appendices... 126

Appendix A: Kinematic Modelling Data ... 126

X Axis - Base Module ... 126

Z Axis - Column Module ... 126

A Axis – Rotary Module ... 127

vii

Drill Module ... 127

Modular Range Extension Arm .. 128

Appendix B: Distributed Module Schematics .. 129

Appendix C: PID Code .. 133

Appendix D: Sample Code for Text Interpretation .. 135

Appendix E: Linear Interpolation Code .. 139

Appendix F: Circular Interpolation Code ... 143

Appendix G: Acceleration Deceleration Code ... 146

Appendix H: Sample Code of CANbus Class ... 149

Appendix I: Sample Code for Generic Servo Module Class ... 154

Appendix J: Sample Code for Physical Configuration Tab ... 157

Appendix K: Sample Code for Data Download Tab.. 163

Appendix L: Sample Code for Motor Control Tab .. 166

Appendix M: Reconfiguration Time Data .. 168

Appendix N: Acceleration/Deceleration Control Example Data .. 169

Appendix O: Encoder Count Data .. 170

Time Comparisons Data ... 171

Appendix P: Vibration Intensity Recording Data ... 172

Appendix Q: Current Consumption Test Data ... 178

Note: Only samples of the C# code for the OACS GUI and the C++ code for the distributed modules has

been included in the appendices due to the length of the code developed and written. The complete

code that was written for the system is included on the attached CD.

viii

List of Acronyms and Abbreviations

ADC Analog to Digital Convertor

API Application Programming Interface

CAD Computer Aided Design

CAM Computer Aided Manufacturing

CAN Controller Area Network

CAPP Computer Aided Part Planning

CIM Computer Integrated Manufacturing

CNC Computer Numerically Controlled

COTS Commercially Off the Shelf

DC Direct Current

DCS Distributed Control System(s)

DMS Dedicated Manufacturing System(s)

DOF Degrees of Freedom

EI Electromagnetic Interference

FIFO First In First Out

FMS Flexible Manufacturing System(s)

GUI Graphical User Interface

HMI Human Machine Interface

HTM Homogenous Transformation Matrix

IEEE Institute of Electrical and Electronics Engineers

IMS Intelligent Manufacturing System(s)

IS Intrinsically Safe

LMS Lean Manufacturing System(s)

MRMT Modular Reconfigurable Manufacturing Tool(s)

NC Numeric Control

OA Open Architecture

OACS Open Architecture Control System(s)

OMAC Organisation for Machine Automation and Control

PC Personal Computer

PI Proportional Integral

PID Proportional Integral Derivative

PLC Programmable Logic Controller(s)

PWM Pulse Width Modulation

RMS Reconfigurable Manufacturing System(s)

RMT Reconfigurable Manufacturing Tool(s)

USB Universal Serial Bus

ix

VN Vendor Neutral

VS Vendor Specific

x

Nomenclature

�� Joint Variable

�� Angle Joint Variable

�� Displacement Joint Variable

M Homogenous Transformation Matrix

��
� HTM that expresses the overall configuration of the MRMT

��
� 3x3 rotation motion matrix

��
� 3x1 translational motion matrix

u PID controller output

y Process output

r Reference position

e Error

K Electromotive constant

J Moment of inertia of the mechanical system about the axis of the motor

b Damping coefficient of the mechanical system on the axis

L Motor inductance

R Electrical resistance of the motor

�(�) Servo Motor Transfer Function

��(�) PID Transfer Function Continuous domain

�(�) PID Transfer Function discrete time domain

�� Proportional gain

�� Integral gain

�� Derivative gain

T Sample Time

L Delay time

T Time constant

� Feed rate

� Interpolation Length

���� Interpolation time

�� Displacement at �

���� Displacement at � + 1

� Number of Interpolation iterations

��(�) X axis velocity function

��(�) Y axis velocity function

ER Radial error

�[�] Interpolation output and input signal for filter

ℎ[�] Input to a filter with impulse response

xi

�[�] Convolution output

� Discrete time

�� Input data shifter at the ���iteration

∆�� Acceleration and deceleration output pulses

���� Reference voltage

����� Supply voltage to the accelerometer

n Number of the bits on the ADC

xii

List of Figures

Figure 1: Manufacturing System Evolution from 1980-2000 ... 1

Figure 2: Manufacturing Systems Paradigms... 8

Figure 3: Illustration of the Reconfiguration of a RMS .. 12

Figure 4: Criteria for Open Control Systems .. 14

Figure 5: Three Critical Aspects of OA Controllers- Add, Swap and Integrate ... 15

Figure 6: OSACA Reference Model .. 16

Figure 7: (a) DeltaV System Architecture (b) Plug and Play Modular Cards .. 17

Figure 8: CNC System Architecture .. 20

Figure 9: CNC Servo Driving Mechanism .. 21

Figure 10: MRMT Conceptual Module Library ... 22

Figure 11: Machine Reconfiguration .. 23

Figure 12: Drawing Indication: Two Bolted Interfaces on Mechanical Module 23

Figure 13 (a) Coordinate System (b) Absolute Position Reference .. 24

Figure 14: X Axis Drive Mechanism .. 25

Figure 15: Z Axis Drive Mechanism .. 25

Figure 16: A Axis Drive Mechanism.. 26

Figure 17: Drill Head Module ... 26

Figure 18: Accessory Module - Modular Range Extension Arm ... 26

Figure 19: Hardware/Software Co-Design Approach... 29

Figure 20: Integration of Distributed Modules .. 30

Figure 21: High Level System Design ... 31

Figure 22: Examples of the Software Modules In System Memory ... 32

Figure 23: Example of the Components of a Distributed Controller ... 33

Figure 24: Module Linking With Buffers .. 34

Figure 25: OACS Architecture .. 36

Figure 26: FEZ Panda 2 Board .. 37

Figure 27: Diagram Illustrating the Tasks of the Distributed Spindle Module ... 38

Figure 28: Diagram Illustrating the Tasks of the Distributed Servo Module.. 38

Figure 29: chipKIT Max32 ... 39

Figure 30: Arduino UNO ... 39

xiii

Figure 31: Comparison Between the Wiring for a Multi-wire vs CAN bus Network 41

Figure 32: Pin Out Configuration of a 9 pole SUB-D Connecter ... 43

Figure 33: Peak Systems PCAN PCI Card .. 44

Figure 34: Illustration of CAN bus Network and Node Connections .. 44

Figure 35: chipKIT Network Shield ... 45

Figure 36: CAN-BUS Shield ... 45

Figure 37: CAN bus Message Fields ... 46

Figure 38: (a) Pin Out Configuration of Motor Driver (b) Assembled Motor driver 47

Figure 39: Motor Terminals With Added Capacitors to Filter Out Noise ... 49

Figure 40: Limit Switch ... 49

Figure 41: Illustration of Limit Switches on the MRMT ... 50

Figure 42: Schmitt Trigger Connection Diagram for the 555 Timer ... 51

Figure 43: (a) Block Diagram for the Optical Encoder (b) Output Signals From the Encoder 52

Figure 44: SparkFun ADXL335 Breakout Board Triple Axis Accelerometer ... 53

Figure 45: Power Distribution Network ... 54

Figure 46: Flowchart Illustrating Embedded Algorithms ... 56

Figure 47: Coordinates References Between Movements .. 58

Figure 48: System Architecture Highlighting Control Functionality ... 60

Figure 49: Closed Loop Feedback Control System ... 61

Figure 50: PID Block Diagram ... 61

Figure 51: Controller Response .. 64

Figure 52: Ziegler Nichols Tuning ... 65

Figure 53: Text Interpretation and Validation Flowchart .. 68

Figure 54: (a) 2 Axis Input Parameters (b) Interpolated results .. 70

Figure 55: 2 Axis Linear Interpolation Example ... 70

Figure 56: Reference Word Algorithm ... 71

Figure 57: Reference Word Algorithm for Circular Interpolation .. 72

Figure 58: Radial and Cord Height Errors for Circular Interpolation .. 73

Figure 59: Convolution Example .. 74

Figure 60: Input and Output Pulse Train Profiles ... 75

Figure 61: Illustration for S-Shape Acceleration/Deceleration Control [28] .. 75

xiv

Figure 62: Output Signals from the Encoder .. 76

Figure 63: System Architecture .. 79

Figure 64: Graphical User Interface ... 80

Figure 65: Flowchart of Sequence of Events .. 81

Figure 66: GUI Showing Results of a Bus Scan ... 82

Figure 67: GUI Showing Numbering Sequence .. 83

Figure 68: Illustration of the Assigning of Classes.. 84

Figure 69: GUI Data Downloads ... 85

Figure 70: GUI Module Information ... 86

Figure 71: GUI Controller Selection ... 86

Figure 72: Program Editor .. 87

Figure 73: Program Editor with User Entered Program ... 88

Figure 74: GUI Motor Control and Debugging ... 89

Figure 75: GUI Algorithm Editor ... 90

Figure 76: Microcontroller Software Flowchart... 92

Figure 77: MRMT Configuration for Testing .. 93

Figure 78: Distributed Module - Arduino UNO (Linear Axis Z) ... 94

Figure 79: Distributed Module – chipKIT (Linear Axis X) .. 94

Figure 80: Distributed Module – FEZ Panda 2 (Rotary Axis A) ... 94

Figure 81: Distributed Module – FEZ Panda 2 (Spindle Module) ... 95

Figure 82: Graph of Software Reconfiguration Time ... 95

Figure 83: CPU Load During OACS Operation .. 96

Figure 84: Graph of Acc/Dec Output Pulse .. 97

Figure 85: Graph of Acc/Dec Output Pulse .. 97

Figure 86: X Axis Encoder Counts ... 98

Figure 87: Z Axis Encoder Counts ... 99

Figure 88: A Axis Encoder Counts .. 99

Figure 89: A Axis Encoder Counts (Lower Encoder Resolution) ... 101

Figure 90: Axis Movement vs Average Time .. 102

Figure 91: Recorded Vibrations Due to Axis Movement and Drill Operation .. 103

Figure 92: Recorded Vibrations from Drilling 20mm into Product .. 104

xv

Figure 93: Recorded Vibrations from Drilling 40mm into Product .. 104

Figure 94: Graph of X Axis Current Consumption .. 105

Figure 95: Graph of Z Axis Current Consumption .. 105

Figure 96: Graph of A Axis Current Consumption .. 106

Figure 97: Graph of Unloaded Drill Current Consumption .. 106

Figure 98: Graph Drill Current Consumption During Operation .. 107

Figure 99: Screenshot of Data from CAN bus Monitor .. 108

Figure 100: MRMT and OACS Configuration 2 Modules .. 114

Figure 101: MRMT and OACS Configuration 4 Modules .. 115

Figure A102: X Axis with i and i+1 Reference Points .. 126

Figure A103:Z Axis with i and i+1 Reference Points ... 126

Figure A104: (a) A Axis with i (b) i+1 Reference Points .. 127

Figure A105: Drill Module i and i+1 Reference Points ... 127

Figure A106: Modular Range Extension Arm (a) i and (b) i+1 Reference Points 128

Figure B107: Board ID 3 Schematic .. 129

Figure B108: Board ID 2 Schematic ... 130

Figure B109: Board ID 4 Schematic ... 131

Figure B110: Board ID 5 Schematic ... 132

xvi

List of Tables

Table 1: Comparison of DMS, FMS and IMS .. 7

Table 2: Comparison Between DMS, RMS and FMS [9] ... 10

Table 3: Comparison of Critical Features of the 3 Boards ... 40

Table 4: Comparison Between Profibus, Foundation Field Bus, Modbus and CAN bus 41

Table 5: Unique Node Addresses/Identifiers ... 43

Table 6: Table Showing Packet Message Formats for Transmissions from Host PC 46

Table 7: Table Showing Packet Message Formats for Transmissions from Distributed Modules 47

Table 8: Control Signals and Operation for Motor Drivers .. 48

Table 9: Schmitt Trigger Detector Input Conditions and Outputs ... 51

Table 10: Trial and Error Tuning Guidelines ... 64

Table 11: Ziegler Nichols Tuning Rules .. 65

Table 12: Reduced NC command Instruction Set .. 66

Table 13: Logic for Decoding Quadrature Encoder Waveforms .. 76

Table 14: Summary of MRMT Design Specifications ... 97

Table 15: Summary of Test Results for Repeatability .. 99

Table 16: Summary of Accuracy Test Results for Translational Axes... 100

Table 17: Summary of Test Results for Accuracy and Repeatability for A Axis 101

Table 18: Comparison of Axis Speeds .. 102

Table 19: Range of Accelerometer Readings Captured ... 103

Table 20: Summary of Distributed Module Response Times ... 109

Table 21: Summary of OACS Core Principles ... 115

Table 22: Comparison of OACS and Other Research Attempts ... 116

Table A23: X Axis Design Data .. 126

Table A24: Z Axis Design Data .. 126

Table A25: A Axis Design Data ... 127

Table A26: Drill Module Design Data ... 127

Table A27: Modular Range Extension Arm Design Data .. 128

Table M28: Reconfiguration Times for 3 Modules (Familiar User) .. 168

Table M29: Reconfiguration Time for 3 Modules (New User) ... 168

Table N30: Acceleration/Deceleration Results (Constant Multiplier Values) .. 169

xvii

Table N31: Acceleration/Deceleration Results (Varied Multiplier Values) .. 169

Table O32: Encoder Count - X Axis (80mm Movement) .. 170

Table O33: Encoder Count - Z Axis (50mm Movement) .. 170

Table O34: Encoder Count - A Axis (345° Movement) ... 170

Table O35: Time (sec) Comparisons for Movement on All Axes .. 171

Table P36: Vibration Intensity Due to Axis Movement and Drill Operation .. 172

Table P37: Vibration Intensity During Drilling Operation – Drill In/Out 20mm 172

Table P38: Vibration Intensity During Drilling Operation – Drill In/Out 40mm 174

Table Q39: Current Consumption (A) - A Axis .. 178

Table Q40: Current Consumption (A) - X Axis .. 178

Table Q41: Current Consumption (A) - Z Axis .. 179

Table Q42: Current Consumption(A) Unloaded Drill ... 180

Table Q43: Current Consumption(A) During Drilling Operation .. 180

1

1. Introduction

Chapter 1 introduces the reader to the scope of the research. A summary of the challenges and

current state of present day manufacturing systems is presented. This discussion identifies the

limitations of RMS, and this has set the basis for the motivation for the research. Thereafter the aims

and objectives for the research are presented followed by a short summary of the remaining chapters

in the dissertation.

1.1 Manufacturing System Environment

The demands on manufacturing systems have changed significantly over the past few decades. Early in

the 20th century, mass production was required to meet consumer demands and market

requirements [1]. This demand for mass production led to the research and development of machines

and systems that were capable of rapidly producing large quantities of products at lower costs.

However later in the 20th century, the market demands changed again, and a trend was seen that the

time to market for products was decreasing and the complexity of product machining requirements

was increasing [2].

In the last decade, manufacturing demands have changed based on the idea of mass customization. In

a workplace where globalization has come to the fore recently, global economic competition has

forced manufacturers to re-evaluate how products are made and the cost effectiveness of production.

Figure 1 [2] shows a timeline of events regarding the evolution of manufacturing systems, illustrating a

decrease in the time to market and an increased level of product complexity from 1980 to 2000.

Figure 1: Manufacturing System Evolution from 1980-2000

In summary, the dynamic market has meant that a manufacturing system needs to manage the:

 Frequent introduction of new products;

 Fluctuations in consumer demands;

 A greater demand for product customization;

 Regular introduction of new technologies and legislations for production.

Reconfigurable Manufacturing Systems (RMS) have emerged in recent years with the aim of managing

the aforementioned points. From the conception of the ideas to the physical implementation, RMS is

aimed at being inherently flexible in both software and hardware. This flexibility ensures that the

system is able to keep up with the constantly growing, evolving and varying production requirements,

2

while still maintaining a high throughput thereby to prolonging the beneficial operation period of a

machine.

The flexible nature of RMS requires equally flexible control systems that can quickly and reliably adjust

its control functionality depending on the systems available hardware modules at any given time. In

the surveys conducted by Mehrabi et al. [3], software issues posed the area of greatest concern for the

successful development and implementation of RMS. In addition ElMaraghy has highlighted that key

technologies such as modular machines and Open Architecture Control Systems (OACS) need further

development for the realization of RMS [4].

1.2 Research Question

Reconfigurable Machine Tools (RMT) are a developing technology for advanced manufacturing

systems of the future. The flexible and transformable nature of RMT requires equally flexible and

reconfigurable control systems. According to Katz [5] these control systems, “are designed to allow

changes in machine configuration according to changes in production requirements.” This flexibility

ensures that the machines, in hardware and software architectures can match changes, production

requirements and evolving manufacturing objectives.

The research has involved the research, design and development of a Reconfigurable Open

Architecture Control System for a RMT while attempting to answer whether an OACS can enable a

RMT to assist advanced manufacturing systems in efficiently responding to frequent product and

market changes.

1.3 Research Objectives

The objectives of this MSc research were as follows:

 To conduct a literature review of manufacturing engineering, manufacturing technology, open

architecture systems and reconfigurable machine tools.

 To define the key characteristics that are required in the development of an open architecture

control system.

 The research, design and development of electronic subsystems on an RMT, namely:

o Embedded controller platform;

o Distributed control drives;

o Communications network/interface.

 The research, design and development of an control system consisting of:

o PC Based open architecture control application that consists of:

 Application Programming Interfaces (API) for user and machine control functions;

 External interfaces – Programming and communication interfaces;

 Internal interface – Control and interaction of mechanical modules.

 Analysis and validation of the performance of the system against predefined specifications.

1.4 MSc Research Contribution

The research covers the design and development of an OACS for a Modular Reconfigurable Machine

Tool (MRMT). The MRMT was designed and developed as part of a previous research by

3

Padayachee et al. [6]. The MRMT is designed from the base up to the tool head to be modular, thereby

allowing the MRMT to be reconfigurable, flexible, transformable, and scalable thus satisfying the RMS

criteria. However, just as the modular mechanical hardware builds up the MRMT allowing it to change

its functionality, in order to fully realise the benefits of MRMT, an electronic and control software

system which can exhibit the same characteristics is necessary.

The research has proposed the use of a novel solution of a distributed microcontroller-based

controller network linked together with a communications interface to create a modular distributed

electronic software system. This modular approach supports the aim of a plug and play system of

mechanical, electronic and software components. The bus network topology allows and assists with

the seamless integration of new modules when the user reconfigures the MRMT. The microcontroller

based distributed electronic modules performs the tasks of linking motor drivers, axis control, and

collecting data from the sensory circuits.

In order for the electronic hardware systems to be reconfigurable, a modular OACS is required; the

software system just like the hardware systems needs to be modular to allow for reconfigurability,

flexibility, transformability, and scalability. To achieve this modularity, the software system is designed

using C++, an object orientated class based programming language. This approach uses the class

functionality of C++ to create a one to one link between the distributed electronic network and the

software modules, in its aim to achieve a modular software system that links to the physical

distributed modules.

The software system is presented with a tabbed Graphical User Interface (GUI) allowing the end user

options for set up, configuration, tuning, debugging and monitoring of the MRMT. All of the

aforementioned are implemented to satisfy the aims of an OACS. Invisible to the user is the underlying

communication and control routines. User-specific programs can be programmed in and a text

interpretation routine is run to validate the user programs.

Thereafter the movements are passed through interpolation, PID control and Acceleration and

Deceleration control routines which determine the tool path profiles and the commands for each axis.

Finally, these commands are passed on to distributed modules which interpret and carry out the

correct commands. Feedback from the sensors is processed and fed back to the control routines to

monitor and correct the machine movements.

The research has designed and implemented an OACS that is based on a GUI which runs of a standard

PC which achieves the machine control and interfacing to the distributed modules. The research has

also designed and implemented the distributed modules, the communications interface and

associated sensory and interfacing modules. The OACS developed has been tested on an existing

MRMT, and results were compared to a set of pre-defined performance benchmarks.

1.6 Outline of Dissertation

Chapter One: Presents the reader with the background of the Research, the motivation for the

research, and a summary of what the research has entailed.

Chapter Two: Consists of a literature review analysing the existing manufacturing systems, their

successes and failures which led to the motivation and development of the RMS paradigm.

4

Chapter Three: Consists of a literature review and analysis of the essential characterises of open

architecture systems, industrially available Distributed and Modular Control Systems which have

influenced the OACS design and implementation.

Chapter Four: Presents the core ideas of CNC machining systems, followed by the motivation for

Modular Machines. Design and engineering details of the Modular Machine that the OACS has been

tested on is also presented.

Chapter Five: Here the concept of an OACS and the design proposal for the OACS that has been

developed is presented based on motivations from the literature review and analysis of existing

controls systems.

Chapter Six: A core aspect of the design, which supports the idea of an OACS is the electronic

subsystems and distrusted modules. The engineering, design and implementation of the electronic

subsystems are presented as well.

Chapter Seven: Presents the various control and interpretation algorithms that the OACS uses from

start-up, to configuration to machining.

Chapter Eight: The GUI sits over the various control algorithms presented in Chapter 7 and herein PC

based OACS covering the software implementation of the GUI is presented. The various functions of

the GUI are covered showing the reader an overview of the OACS.

Chapter Nine: Presents the MRMT and OACS setup that is used to test the OACS followed by test

results and a short discussion based on the testing of the OACS on a MRMT.

Chapter Ten: Discussion evaluating the performance of the system based on the test results. The

successes and failures of the OACS is also evaluated in light of RMS. Followed by a discussion on the

challenges, limitations and further research.

Chapter Eleven: Concludes the research dissertation based on the principles of OACS and the aims set

out in Chapter 1.

1.7 Chapter Summary

Chapter 1 introduces the reader to the scope of the research. A summary of the challenges and

current state of present day manufacturing systems has been covered, where the key challenges

facing manufacturing systems have been discussed. This discussion identifies the limitations of RMS,

and this has set the basis for the motivation for the research. Furthermore the aims and objectives for

the research have been presented followed by a short summary of the remaining chapters in the

dissertation.

5

2. Manufacturing Systems

Chapter 2 is a presentation of a literature review analysing existing manufacturing paradigms, namely

the DMS, FMS and IMS. Due to the inability of these systems to meet the current manufacturing

demands, the RMS paradigm has emerged. RMS is expected combine the benefits of DMS, FMS and

IMS to achieve a system that can constantly adapt its functionality through a reconfiguration process

of both hardware and software.

2.1 Dedicated Manufacturing Systems

At the beginning of the 20th century, mass production was required to meet the demands of

consumers [1]. This demand for mass production led to the research and development of machines

and systems that were capable of rapidly producing large quantities of products at lower costs. A

Dedicated Manufacturing System (DMS) is defined as “A machining system designed for production of

a specific part type at high volume. Cost-effectiveness is the driver achieved through pre-planning and

optimization.” [4]

DMS are generally set up to manufacture a single product that will remain unchanged over the life

cycle of the product, the system comprises of machines and tools that all are hardwired and hard-

coded to carry out certain functions. DMS proved successful in delivering large volumes of products

and even better results were found when the products had long life cycles.

In the 1980’s there was a shift in the customer demands towards mass customization of products [4].

However DMS systems, “are not designed such that they may be cost-effectively converted, the

redesign and ramp-up of a modified (or entirely new) DMT will often be too costly.” [7] Therefore due

to the fixed nature of DMS, although they are robust and relatively inexpensive at initial capital

investment, they are not able to undergo upgrades of functionality changes thereby rendering DMS

impractical in the modern day manufacturing environment.

As a result, the need arose for a better manufacturing system that would be more flexible as well as

possess the ability to produce customized products. Lean Manufacturing Systems (LMS), which are

considered to be an improvement of DMS for mass production has a small degree of inherent

flexibility. This flexibility was centred on the technology selection and the automated equipment used

to build up the LMS. The flexibility allows configurations machining changes around the part family.

LMS, due to this degree of flexibility, has the ability to modify product design unlike DMS but similar to

DMS though, LMS have a production model which has optimum production efficiency when the

market has stabilised [8]. Thus DMS and LMS both have a high efficiency and throughput of products,

but with the limitation of a low responsiveness to market changes.

2.2 Flexible Manufacturing Systems

A Flexible Manufacturing System (FMS), “is an integrated system of machine modules and material

handling equipment under computer control for the automatic random processing of palletized

parts.” [4]

FMS are a combination of Computer Numerically Controlled (CNC) machines, robots and other

programmable automation electronics that is fixed in hardware but with software that can be

6

programmed to vary the functionality. Flexible manufacturing aims to bring together the key

advantages of dedicated and fixed manufacturing systems with programmed automated systems [8].

FMS aims to be selectively flexible in its software architectures in order to reduce the cost for

production of several types of parts that can evolve over a period of time while maintaining a high

degree of flexibility throughout the machine lifecycle. The idea is to maintain a minimum changeover

cost and minimum changeover time of the system when a new part of the same family needs to be

manufactured.

One of the aims of FMS was to increase its flexibility, thus allowing the system to be used to produce

products with a higher variety as compared to DMS. This higher variety of products comes at a cost of

lower throughput thereby limiting the success of FMS in the global market.

Due to the fixed mechanical architecture of the FMS, the system is limited in terms of customization,

add-ons, upgrades and production capacity modifications. In addition, the fixed nature of the system,

with the hope of being flexible to accommodate for changes in product requirements, means that the

system is often installed with excessive functionality and more machines that are required at the time

of installation. For example, “a five-axis CNC may use only two axes in a given operation or only 6 tools

of a 24-tool magazine may be utilized” [7]. As a result, a FMS often as a significant initial capital

investment.

In a survey by Mehrabi et al. [3], over 60% of FMS that are installed in industry are installed with more

capacity than is required in order to accommodate for future expansions, whereas 55% of FMS that

were installed with more features than required, did not utilize this excess capacity.

The strength of the FMS lies in its ability to manufacture and produce a range of products in a part

family. Due to the range of functionality built in apriori, it has the ability to be in use for a greater

period of time in the constantly changing markets of today. Unfortunately though the initial capital

investment for a system with such functionality and capacity is extremely high and when compared to

a DMS seems excessive and impractical.

Mehrabi et al. [3], established the following key points about FMS in industry:

 FMS not living up to its full potential;

 System often purchased with additional capacity for expansion, as a result a large initial

investment was required;

 Issues such as: training, reconfigurability, reliability, maintenance and software were hindering

the success of FMS.

Furthermore, the costs involved with modifying the system to change its functionality in hope of

increasing its life cycle are significantly high. Thus it is evident that although FMS’s are common in

industry, they have many drawbacks and due to the initial capital investments required and dormant

functionality that is not used, FMS are not practical.

The impracticality of FMS further leads to a desire for a new technology and system, which builds on

the flexibility of a FMS system, but reduces the capital investment required for upgrades due to the

constantly evolving manufacturing environment.

7

2.3 Intelligent Manufacturing Systems

The idea of Intelligent Manufacturing Systems (IMS) has come to the fore as a result of the global

market demands on manufacturing systems. Setlak and Pieczonka [9] state that IMS is group of

principles, methods and computer aided tools, “equipped with artificial Intelligence tools and

supporting designing, planning and manufacturing.”

IMS aim to use Computer Integrated Manufacturing (CIM), Computer Aided Design (CAD) and

Computer Aided Manufacturing (CAM) which gives the system the ability to learn, obtain knowledge,

adapt to a dynamic environment and to adapt to the arrangement of the IMS components [10].

The main idea behind IMS is the system reconfigurability and intelligence, where intelligence is defined

as the ability to learn based on machine actions and monitoring of the success of operations, and

reconfigurability is the capability of changing modules to achieve new functionality. IMS offer ultra-

precision motion control, high speed manufacturing and high quality finishing at lower costs with

better reliability [11].

Setlak and Pieczonka [9] highlight that IMS has had limited success primarily due to the problems in

achieving a unified standard for IMS and lack of development of software architectures. Therefore any

new IMS must be created with an OA system with a modular structure that allows for evolution as well

as a distributed modular architecture to allow the system to be adaptable. Table 1 summarises the

key features of the three manufacturing systems paradigms.

Table 1: Comparison of DMS, FMS and IMS

 DMS FMS IMS

Initial Capital
Investment

Dependent on
machining required for

product

High High

Expansion Capacity None Limited High

Manufacturing of New
Products

No Same part family Yes

Flexibility None Selected Yes

Throughput High Medium Medium

Reconfigurability N/A Limited Yes

2.4 Reconfigurable Manufacturing Systems

A RMS is a system that incorporates the advantages of DMS and FMS by, “designing it at the outset for

rapid change in structure, as well as in its machines and controls, in order to quickly adjust production

capacity and functionality in response to market or product changes.” [12]

A RMS aims to combine the advantages of the FMS and the DMS to produce a system that achieves a

high throughput in addition to the necessary flexibility, which allows the system to evolve and change

its production functionality efficiently and quickly when required to do so. A RMS system can be seen

as a combination of both the FMS and DMS systems, attempting to bridge the gaps between the two

and successfully produce large volumes of products while maintaining the flexibility required to

produce a variety of products as seen in Figure 2 [13].

8

The development of RMS was motivated for, primarily by the lack of alternate manufacturing

strategies such as DMS and FMS to manage the:

 Frequent introduction of new products;

 Fluctuations in consumer demand;

 Greater demand for product customization;

 Regular introduction of new technologies and legislations for production.

RMS have emerged in recent years for the application in advanced manufacturing environments. From

the conception of the ideas to the physical implementation of the RMS, the system is aimed at being

inherently flexible in both software and hardware. According to Katz RMS, “are designed to allow

changes in machine configuration according to changes in production requirements.” [5]

This flexibility ensures that the system is able to keep up with the constantly growing, evolving and

varying production requirements, while still maintaining a high throughput in addition to prolonging

the beneficial operation period of a machine.

Furthermore ElMaraghy [4] notes that the RMS paradigm focuses on:

 Reducing the time for setting up new systems;

 Reducing the time for reconfiguring current systems;

 Reducing the down time of systems for the addition/integration of new modules (hardware and

software) to modify the manufacturing process and add new functionality;

 Reducing the initial cost or capital investment of a system.

Unlike conventional DMS, FMS and CNC machines which are designed on a fixed hardware structure

and closed software system allowing only limited access to the user, RMS adopts a similar approach to

IMS, where the systems are designed to be reconfigurable in all aspects of hardware and software. In

order to achieve this reconfigurability, the various parts of the hardware sub-systems are designed as

separate modules which can be integrated together in a number of configurations to provide varying

functionality.

Similarly, the control systems for the RMS and IMS are required to be modular in nature and its control

functionality should vary depending on the available hardware modules. This modular concept is

critical to the reconfigurability of the system and ensures that the system capacity and functionality is

not fixed and predetermined. Rather these system characteristics allow for variability at any time thus

Figure 2: Manufacturing Systems Paradigms

9

contributing to the flexibility of the RMS [12]. In addition to this, the modular nature of these systems

allows the system to be flexible in both the production of parts and in the structure of the system.

In order to achieve a high level of reconfigurability in the production environment, the design of RMS

needs to address the following critical characteristics [14]:

 Modularity

o The hardware and software components of the machine are all created in modules with

well-defined interfaces such that a number of these modules may be integrated to produce

a desired functionality.

 Convertibility

o This refers to the ability to change/transform/convert the production functionality of the

system depending on the production requirements.

 Scalability

o This is the ability to add, integrate, remove or swap in new modules or machines thereby

scaling the system up or down in terms of throughput and functionality with modules.

 Integrability

o This refers to the ability to add, integrate or swap in new modules quickly, and precisely

through a set of well-defined internal interfaces.

 Customization

o This is the ability to adapt the functionality of the system to meet the needs of a specific

manufacturer.

 Diagnosability

o This refers to the ability to self-diagnose the state of the system in order to identify the

causes of production defects and reliability issues.

Ensuring that these key characteristics are deeply embedded within the design philosophy and are

addressed from early in the design phases ensures that the system has a high level of reconfigurability

and low reconfiguration times. Furthermore there are also economic benefits that are seen with the

implementation of RMS mainly from the increased life cycles of the systems, as well as the reusability

and scalability.

Manufacturers and designers hope for a system that allows for an incremental increase in both

capacity and functionality of the system when required. Unlike DMS and FMS, the RMS offers such

benefits [3].

“Highly productive and cost effective systems are created by 1) part family focus and 2) customized

flexibility that enables the operation of simultaneous tools. The flexibility of RMS is customized

flexibility, and provides all the flexibility needed to process the part family, and therefore is less

expensive than the general flexibility of an FMS.” [15]

From these definitions and explanations, it is evident that there are some similarities between IMS,

FMS and RMS, and it may even be argued that the RMS is merely a continuation of a FMS. However,

there are key differences between RMS and FMS. An FMS system has the ability to manufacture small

quantities of a variety of products [3]. Whereas from the start, a RMS is designed to be flexible in all

aspects of hardware and software thereby allowing manufacturing of new part families which require

10

totally different processing requirements in addition to production of a family of parts, while

maintaining a high level of throughput at all times [4]. IMS on the other hand aims at constantly being

at the optimum machine structure throughout its learning abilities, performance monitoring,

reconfigurability and modular structure.

In order to support the aforementioned explanation, a comparison between the key characteristics of

DMS, FMS and RMS is illustrated in Table 2. As demonstrated in the table, for a system to have a high

level of reconfigurability it should have an adjustable structure, be scalable and flexible.

The number of research and development attempts for modular machines in recent years further

strengthens ElMaraghys emphasis that modular machines are essential enablers for RMS. The

following research and development of modular reconfigurable machine systems has been conducted

over the past few years [12]: Flexible Manufacturing System Complex by MITI in Japan, the European

Modular Synthesis of Advanced Machine Tools project by Hanover University, The Special Research

Program 467 based at the Stuttgart University, The Engineering Research Centre of Reconfigurable

Machining Systems at the University of Michigan and others.

Table 2: Comparison Between DMS, RMS and FMS [9]

Jimenez and Salinas [8] highlight that RMS are crucial for continuous improvement of manufacturing in

the modern day global markets to match product changes and demand. However the unexpected

evolution of the market means that a competitive advantage of RMS systems is not necessarily

guaranteed if RMS systems are considered standalone systems.

Jimenez and Salinas note that although RMS indeed improves manufacturing system lifecycles, they

need to be linked and developed on the current manufacturing practices. As the linking of these new

RMS to the manufacturing plant as a whole is critical to the performance of RMS [8]. Therefore RMS

are not stand alone systems or an end in itself, but for high performance and extended system life

cycles, there needs to be a strong link between the current manufacturing plant systems and practices,

and the continuously improving RMS system. Based on this, it can therefore even be argued that RMS

is but a stepping stone towards the realisation of IMS.

11

Maier and Schroeder [16] have highlighted that the missing link between manufacturing systems in the

plant and the supporting and linking plant technology can contribute to the failure of new

manufacturing systems.

It is not practical, feasible, or financially viable for manufacturers to simply replace all of their

manufacturing systems with RMS systems. As a result research has been directed at developing RMS

systems that can utilise Commercially off the Shelf (COTS) modules for RMT [17]. Similarly, the current

manufacturing systems in a plant and the linking between systems, needs to be considered in detail

before RMS systems can be installed and implemented.

Furthermore an additional essential enabler for a RMS, much like IMS, is the software sub-systems or

OACS for a RMT as highlighted by ElMaraghy [4]. Although attempts to develop standards for OAC

such as: the Open system Environment for Manufacturing and the Open-controller Technical

Committee in Japan, the Open Modular Architecture controllers in the USA, the Open System

Architecture for Controls within Automation Systems in Europe [18], the Next Generation Controller

project, the Enhanced Machine Controller [19] and others have been made, no unified standard has

been accepted and sufficiently developed.

In summary, in an environment where the demands are so dynamic, a manufacturing system needs to

be able to cope with these market requirements to prolong the beneficial operation period of the

machine. This has led to the research of and motivation for the development of a Reconfigurable

Manufacturing paradigm. However the limiting factor to the success of RMS currently is the lack of

sufficient development of RMT and OACS which has been the primary motivation for this research

2.5 Manufacturing System Life Cycles

Due to the rapidly evolving market and consumer demands, product life cycles and, new technologies,

manufacturing systems have shortened life cycles. Coupled with the global market and increased

competition across the manufacturing industry, the ever evolving needs of the manufacturing industry

means that the new manufacturing technology needs to be designed in such a way that the

manufacturing system has a prolonged life cycle. The shortened product life cycles means it is too

costly and inefficient to be constantly changing and redesigning the manufacturing systems for each

new product in the market.

RMS are an example of systems which have the capacity for a prolonged life cycle. RMS

accommodates for upgrades such that new functionality and modules can be added on. This flexibility

allows for modification of the production capabilities, prolong the life span of the machines and

reduce the capital investments required without having to introduce a totally new machine [4].

Figure 3 [14] illustrates how the RMS can be reconfigured during its lifetime to adapt to the production

needs in terms of throughout and variations of manufactured goods. This reconfiguration offers

important economic benefits to companies using RMS. Furthermore RMS aims is to reduce both the

down time for reconfiguration and the ramp up time to production thereby furthering economic

benefits.

12

Figure 3: Illustration of the Reconfiguration of a RMS

2.6 Chapter Summary

Chapter 2 has presented a literature review analysing existing manufacturing paradigms, namely the

DMS, FMS and IMS. Due to the inability of these systems to meet the current manufacturing demands,

the RMS paradigm has emerged. RMS is expected combine the benefits of DMS, FMS and IMS to

achieve a system that can constantly adapt its functionality through a reconfiguration process of both

hardware and software. It is noted that although RMS has been researched, the two factors which are

limiting the realisation of RMS is RMT and OACS which has led to the motivation for this research.

13

3. Open Architecture, Modular and Distributed Control Systems

The review of manufacturing systems in Chapter 2 has revealed that the lack of research and

development of OA systems is currently one of the limiting factors for the realisation of RMS. To

develop a framework for an OA system, a review of the aims and standards for OA systems is

presented. This is followed by an analysis of industrially available Distributed Control Systems (DCS)

and industrially available modular controllers in a bid to understand what the basis of design is for

industrially available solutions.

3.1. Essential Characteristics of Open Architecture Controllers

The flexible nature of RMS requires equally flexible control systems that can quickly and reliably adjust

its control functionality depending on the systems available hardware modules at any given time.

Mehrabi et al. [3] have noted that software issues proved to be the area of greatest concern for the

successful development and implementation of RMS.

For the realization of RMS, the system is required to be open at all three levels, namely: system,

machine, and control. According to Koren [19] , the introduction of new modules in to a system may :

 Enable the production of new products on an existing system

 Improve the quality of production on the current system;

 Decrease diagnostic times;

 Lower the integration cost of discrete logic.

Furthermore, the addition of new modules may also:

 Lower the capital investments for system upgrades when new parts are required to be

produced.

The technical committee of open systems from Institute of Electrical and Electronic Engineers (IEEE)

define an open system as a system that: “provides capabilities that enable properly implemented

applications to run on a wide variety of platforms from multiple vendors interoperate with other

system applications and present a consistent style of interaction with the user. “ [18]

The openness of the system is key to the effectiveness of the overall system, where openness is

characterised by [18]:

 Portability:

o The re-use of modules on different platforms without the need for modifications while

maintaining the original functionality.

 Extendibility:

o The ability of a number of modules to run on a system without conflict.

 Interoperability:

o The integration of modules such that the modules function in a consistent way and

communicate via pre-defined protocols of data exchange.

 Scalability:

14

o The ability to add, integrate, remove or swap in new modules thereby scaling the system up

or down to adapt the performance or functionality of the system.

Further to these characteristics of an open system, there needs to be a strong link between the

software and hardware sub architectures of a RMS [11]. Similar to the modular hardware architecture

of a MRMT, modularity is also a key characteristic for the openness of the software system [19] where

modularity is defined as follows:

o The software parts of the system are created in modules with well-defined interfaces such

that a number of these modules may be integrated to produce a desired functionality.

Figure 4 [10] illustrates how these criteria affects the system both internally and externally.

Bearing in mind one of the aims of OACS is to allow a user to be able to integrate user specific

algorithms and programs, the user will require access to the internal data structures and variables in

order to implement such control algorithms. Koren [19] highlights two basic types of controllers:

 Vendor Specific (VS) controller:

o A system which is designed by a specific vendor and the possibility for expansion only exists

with the integration of modules and algorithms that are supplied by that vendor.

 Vendor Neutral (VN) controller:

o An open system designed by various vendors with the aim of allowing future integration of

modules and algorithms that can be supplied/developed by any vendor/end user.

On comparison of the two basic types of controllers:

 The closed architecture of a VS controller limits the possibility of future expansion unless the

system uses VS products.

 Open controllers aim to remove these VS limitations and introduce standardization across all

platforms

 Unlike the VS controller, the architecture of the VN controller is known; therefore any end

user/control vendor may develop and integrate new methods and algorithms.

 End users working on a VN system will have the option of choosing new modules or algorithms

from a number of control vendors allowing the best algorithms to be added to a system.

Pritschow et al. [18] and Koren [19] further note that for the success of OA systems, the system

must be:

Figure 4: Criteria for Open Control Systems

15

 Vendor neutral;

 Based on well-established open architecture standards;

 Provide well defined methods for data exchange and control reconfiguration.

Based on this it is evident that the development of a VN controller is a key enabling technology for an

OACS as it enables users to apply specific control algorithms and programs.

The architecture of the control system should be designed to allow the user to add, swap or integrate

new modules at any given time as illustrated in Figure 5 [19]. A VN system will support this as it will

allow the integration or addition of third party modules.

Figure 5: Three Critical Aspects of OA Controllers- Add, Swap and Integrate

Another key aspect for open systems is the reusability of basic modules in the creation of more

complex algorithms via the integration into larger modules [19]. For example a basic limit switch

module may be used in a position control module which in turn is used for an interpolation algorithm.

To accommodate for the effective re-use of software modules, a well-defined API is required for each

module. The API for each module defines the way in which the module interacts with other

modules [19].

Pritschow [18] emphasizes that the performance of the control system is influenced by the level of

interoperability between the basic modules. Since basic modules are used as building blocks for the

system, the development of well-defined API between the modules is crucial.

Most of the OA systems that have been developed are based on PC hardware and standard operating

systems [20] such as Windows or Linux. These have real time processing capabilities. These PC based

controllers have the ability to support commercially available peripherals. For example, interaction

with external electronics and control modules can be implemented via I/O cards which are readily

available for PC’s.

Since the robot programming languages are low level languages, the add on software development

packages on PC’s such as Microsoft Visual C#, Nokia’s QT Designer and others can be utilized to ease

the implementation of a PC based control system [20]. The OSACA Reference model in Figure 6 [21],

presents an architecture design for the implementation of an OACS based on PC hardware.

16

The system architecture describes how the control application is built on the standard PC hardware.

The specifics of the computing system are encapsulated and is unnecessary knowledge for users. This

encapsulation assists in control system portability and the interoperability between application

modules [18].

Birla et al. have reviewed the Open Modular Architecture Controller (OMAC) API and concluded that

the OMAC API seems the likely standard for the future [22]. The review covers the details of the API

allowing third parties to: understand the standard and also to develop add-ons or to modify the

current controllers using the OMAC API.

Further to the benefits of reconfigurability and scalability, the introduction of open control systems for

RMT also assists in the cost reduction of systems upgrades, add to the flexibility of manufacturing

systems in manufacturing new products and assist in prolonging the life cycle of RMS.

Since software issues proved to be the area of greatest concern for the successful implementation of

RMS [3], this introduction to OA systems has emphasized key standards and features of OA systems

and pointed out how the OACS will benefit RMS.

3.2. Emerson DeltaV

In a bid to understand what characterises industrially available DCS and modular controllers a review

of two of these systems follow.

Emerson’s latest DCS technology, DeltaV digital automation is a distributed control system designed

primarily for the process industry. However the ideas of a distributed control system that is scalable,

interoperable, has embedded intelligent control and the ability for third party integration is very

relevant and applicable for an OACS design. The DeltaV system incorporates the following key

features [23]:

 Input/Output(I/O) on demand:

o Input and output signal adaptability with easy online integration

 Inherent scalability:

o Well defined interfaces between all modules to allow scalability throughout the DCS system

as a whole

 Embedded intelligent control:

o Smart devices to ensure process performance and monitoring, as well as a choice on

controller options for optimum plant performance

 Inherent integration for maximum interoperability:

Figure 6: OSACA Reference Model

17

o To allow third party standard based add-ons to the software

Figure 7(a) [23] illustrates the DeltaV S-Series architecture divided into three levels by defining

interfaces between each level. The top level contains the application station, the middle level contains

the distributed controllers and input/output cards and the lower level the sensors and equipment.

The operation principle behind the three levels and the distributed control is that the control

programming and configuration occurs on the application station. When the configuration and

programs are entered, they are downloaded to the distributed controllers.

Each distributed controller then interfaces its sensors and equipment, via the I/O cards. The

controllers also control the equipment according to the programs downloaded onto the controllers.

The controllers periodically send status updates and data to the application station for monitoring.

Finally, at the lower level, the sensors are controlled by the distributed controllers and periodically

send updated sensor information to the controllers.

Furthermore, the latest DeltaV S-Series hardware is based on CHARM technology, where a CHARM is a

single channel card which can be for a digital or analog signal that connects the controller to the

external hardware, depicted in Figure 7(b). Any program input or output can be mapped to any

CHARM location which then links the control system to the field devices. This technology shows that

even a large system can be modular and not pre-determined in its electronic construction. Additionally

during operation, new I/O can be added to the system, and live time scans can be conducted to detect

new signals. These scans can be done without affecting the existing system operations demonstrating

a plug and play system which is scalable through a well-defined modular structure.

Figure 7: (a) DeltaV System Architecture (b) Plug and Play Modular Cards

Based on these points, although Emerson’s DeltaV is designed for the process industry, the ideas of

distributed control, scalability, interoperability and reconfiguration based on demand is applicable to

RMT and has influenced the design of an OACS.

18

3.3. Siemens SIMATIC

Another industrially available product which has influenced the OACS design is the modular SIMATIC

controller from Siemens. The SIMATIC controllers form part of Siemens Totally Integrated

Automation (TIA), which aims to make a control system last the complete lifecycle of a machine or a

plant by means of its modular structure. The SIMATIC controller can be based on a Programmable

Logic Controller (PLC) based system or a PC based system [24].

The SIMATIC controllers are based on different hardware and software architectures giving the user a

choice of different design modules to use. The controllers allow users to run custom programs on any

of the devices as all devices: whether controller or peripheral, are mutually compatible. Furthermore,

the SIMATIC controllers can be modified, upgraded or expanded using a number of compatible plug

and play modules such as [24]:

 Modular controllers:

o PC based

o PLC based controller

 Input/output modules:

o Digital/Analog Input cards

 Function modules:

o Memory expansion module

o PID control module

o Position detection module

o Motor Driver module

 Communication modules:

o Profibus

o Profinet

Similar to RMS, the SIMATIC range has been designed to allow the system to respond to competitive

pressure and ensure operation over the lifecycle of the machine [24], although it has the limitation of

being a VS solution.

To achieve this modular design throughout the controller architecture, Siemens implemented a well-

defined data transfer interface that is transparent at all automation levels. In addition the SIMATIC

system incorporates online diagnostic features to fault find and monitor the systems health. These

diagnostic systems also contribute to easy plug and play configuration when the system is modified by

minimising down times during system changes.

Furthermore, the SIMATIC system takes the modular approach not only in hardware design, but also in

the software design and management. The SIMATIC system creates software blocks and allows users

to duplicate and re-use code with ease. The reconfiguration and modification of the existing system

can be done quickly and easily due to the well-defined modular nature of the systems hardware and

software architectures [24].

19

Based on the above mentioned points, despite the Siemens SIMATIC controllers similar to DeltaV being

VS solutions, they exhibits key characterises that are desirable for an OACS and has influenced the

design of an OACS.

The research has also reviewed the following OA system development attempts: the PC based OA

software system-CNC system [25] ,OA platform for the PUMA robot System [26] ,OA system for

reconfigurable hardware-software multi-agent platform for CNC machines [11] , a reconfigurable and

modular OAC: the new frontiers [26] , Simulation and implementation of and OAC [27] . Each of these

have adopted different design approaches to achieve the similar objectives with varying degrees of

success. Based on the review of these design attempts by academia, it is evident that no unified

system for the development of and OACS exists. Although, research has also discovered that there are

certain design ideas such as embedded distributed modules, a plug and play interface and a one to one

software and hardware mapping are common to many of these OA systems and is central to the

realization of a practical OACS.

On the contrary the tried and proven systems such as Emerson’s Delta V charm based solutions and

Siemens SIMATIC systems are proprietary and not open. Whereas other proprietary control systems

are either not plug and play or do not allow for reconfiguration and adaptability over time as required

by RMS [25].

In summary, the review has found that there are certain design ideas such as embedded distributed

modules, a plug and play interface and a one to one software and hardware mapping are common to

many of these OA systems and is central to the realization of a practical OACS. However for the true

realization of an OACS, a standard need to be adopted which should have the necessary guidelines and

support structures for OACS development to be practical and effective.

In conjunction with the above, these findings of the industrial solutions, DeltaV and SIMTIC modular

controller as well as the findings from the review of other academia attempts at developing an OAC

has led to formation of the basic ideas from where the OACS design has been derived.

3.5. Chapter Summary

Chapter 3 has covered a review of industrially available distributed and modular controllers followed

by a literature review in which the standards and aims of OACS have been presented. A comparison of

these has revealed certain key similarities between the various systems and these ideas will be central

to any new OACS development. These findings and principles form the basis of the design of the OACS

covered in Chapter 5.

20

4. Mechanical Systems

Chapter 4 presents the core ideas of CNC machining systems to assist in understanding of the

functioning of the MRMT as similar design principles are adopted for the MRMT. Thereafter the design

principles for a MRMT are discussed. This is followed by a review of the engineering and design of the

library models that were used as the test rig for the OACS.

4.1 Computer Numerically Controlled Machines

CNC machines are mechatronic machines which produce products or parts automatically using

minimal human intervention during operation. Numerical Control (NC), the heart of CNC systems

incorporates a control system that activates servo motors through a driving mechanism to machine a

part [28]. CNC machines aim to perform complex or simple machining tasks rapidly and precisely each

time. In the 1970’s the introduction, advancement and availability of microprocessors and memory

occurred, leading to a better control system implementation for machines and this has allowed CNC

machines to evolve to mechatronic systems. Prior to this, machines were hardwired and only had NC

systems.

CNC machines comprise of a mechanical component and a numerical control system, which is the

electrical component [28]. A CNC machine can perform a number of operations on a part or product

depending on the type of CNC machine. Examples of different CNC machines include: drilling, milling,

turning, and welding as well as painting, shearing, boring and grinding. Figure 8 [28] illustrates the

architecture of a NC machine tool with the machining operation flow.

Figure 8: CNC System Architecture

From Figure 8 it is apparent that a CNC system consists of an offline and an online section. The offline

section consists of: the CAD, Computer Process Planning (CAPP) and CAM. Firstly a part that needs to

be manufactured will have a 2D or 3D CAD model. Thereafter the CNC system plans the machine

structure and generates the necessary information for machining. Finally the CAM is run to generate

the part program based on the CAD models and CAPP information.

21

The online part of the CNC system facilitates the actual machining of the part. The part program

generated by the CAM is used as the input for the machining. The part program is first read and

interpreted. Then, based on control theory, the machine axes are actuated via motor driving circuitry

and servo motor to machine the part. Live time and online monitoring of the machining process is

conducted, and where necessary, corrections are made by the CNC system to ensure accurate part

machining.

The CNC system interprets the part program and converts this to commands for servo motor driver

circuitry. The servo motors then converts these commands to electrical signals that power up the

servo motors. The servo motors are coupled to power screw couplings, the rotation of the power

screws translates to linear movement of a nut which in turn translates to movement of the work piece

or axis as depicted in Figure 9 [28].

Figure 9: CNC Servo Driving Mechanism

As discussed in Chapter 3, the CAM and the online features of CNC machines have been researched,

designed and implemented as they are relevant to this research. The CNC machine tool, like the

machine axes, is based on the following: a servo motor capable of high speed, good acceleration and

deceleration, wide speed range, quick response times and high torque. Depending on the type of

machining, the machine tool will either be directly mounted on the CNC machine or coupled with a

spindle driving mechanism based on a pulley and a belt.

4.2. Modular Reconfigurable Manufacturing Tool

The concept of MRMT has been derived from the basis of RMS which aims to combine the benefits of

DMS and FMS. No set of agreed principles exists for an RMT and the option is to have a system with

rigidity, such as DMT or to have a system with the flexibility of a CNC system, or even to have a system

with flexibility that exceeds the flexibility of CNC systems.

Machines that are rigidly designed face the risk of becoming redundant if the market demands change

significantly. In contrast, machines which exceed the flexibility of CNC machines are often too

expensive, as discussed in Chapter 2, and therefore unfeasible and impractical for to design and

implement.

RMS and RMT need to be inherently capable of adapting based on the current market demands and

manufacturing requirements. Based on this, and to ensure that the RMT is neither too rigid nor too

customized, the concept of the MRMT has been introduced.

The idea of a MRMT is to allow a machine tool to be implemented as required at the present time, and

as the production, manufacturing and machining requirements change in time, the RMT can be

22

modified by adding/swapping/removing modules on the system through a reconfiguration process.

However, for the realization of MRMT, the MRM needs to be completely modular and reconfigurable

in the mechanical and control architectures.

The concept of a modular machine has been researched, and there have been several attempts at

developing modular machines. However, a fully functioning modular machine has yet to be been

presented. This research was taken up as a MRMT had been developed in terms of mechanical

architecture, but just as in other attempts, the lack of truly modular control architecture limited the

functionality, operability and success of the MRMT.

The MRMT has a set of Library modules that allow rapid development and reconfiguration of the

MRMT to be able to respond to production requirements. The MRMT library modules [6]:

 Exist at physical level;

 Provide a solution that allows the complete synthesis of a modular machine;

 Are assembled and disassembled in a building block manner;

 Contain all electro mechanical component;

 Enable simple and easy after-market reconfiguration.

Figure 10 [6] shows a conceptual library of MRMT modules. Library modules can be classified as

motion, process or accessory modules. These can be defined as follows:

 Process modules are the tools of the MRMT that provide the MRMT with manufacturing

capability such as drilling, boring or cutting;

 Motion modules provide movement to the MRMT. They are combined to form the different

axes of the MRMT and as a result influence the Degrees Of Freedom (DOF) available.

 Accessory modules don’t directly influence the process or movement of the MRMT, but they

provide valuable support and assist in operation and efficiency of the MRMT. Clamping

modules, steady rests, flow rests and work table modules are examples of accessory modules.

Figure 10: MRMT Conceptual Module Library

23

A combination of the library modules can be assembled together to form a kinematically viable MRMT.

In terms of reconfigurability, by replacing process modules with another, the machining function of the

MRMT will change. Similarly by adding, swapping or removing a motion module, the MRMT can be

reconfigured to provide machine functioning in more DOF. Figure 11 [6] depicts how a 3-axis boring

machine is reconfigured to a 4-axis milling machine by the addition of an additional motion module

and replacement of the process module.

Figure 11: Machine Reconfiguration

The library modules of the MRMT were designed such that each module added a single DOF to the

machine tool and each module contained all peripherals required for its operation, such as servo

motors and sensors. A total of six modules, three linear axes (providing movement in the conventional

Cartesian planes, X, Y and Z), and three rotary axes (providing rotations about these planes, A, B

and C), from the conceptual library were designed and constructed for use with the MRMT.

Furthermore, the MRMT modules were designed with a consistent set of bolted interfaces such that

modules were interchangeable to maximise machine reconfigurability. The bolted interfaces enable

torque and force propagation throughout the machine structure and have the strength to support the

shear and tensile forces during machine operations [6]. Figure 12 [6] illustrates the two bolted

interfaces on a module; allowing different modules, with either of the interfaces to interface this

module.

Figure 12: Drawing Indication: Two Bolted Interfaces on Mechanical Module

For operation of the MRMT, or any machine tool for that matter, a practical position reference

methodology is required. The MRMT uses the conventional right hand Cartesian coordinate system

which covers all modules, linear and rotary, as shown in Figure 13(a) [29]. This coordinate system

needs to be fixed to an absolute position reference so that all modules can operate in respect of a

global location. The absolute position reference is located on the work table where the machining

24

would take place and is show in Figure 13(b) [29]. A further discussion of the representation of the

position of the axes and reference positions is presented in Chapter 7 along with the kinematic

computations for the MRMT.

Figure 13 (a) Coordinate System (b) Absolute Position Reference

The MRMT was designed and constructed with six DOF and two machining functions, namely drilling

and turning. The purpose of this research, as discussed in Chapter 1, is to prove the OACS concept on

the existing MRMT. Therefore all the axes and machining functions were not utilised. Only three

axes, Z, Y and C, and the drilling tool module were used to implement and test the OACS. It must be

noted that the axes were renamed from Y, Z and C to X, Z and A, due to the simplified implementation

with the aim of proving the OACS concept. Following from this, A represents the rotation about the Z

Axis.

If need be, the OA nature of the control system will allow easy reconfiguration to upscale the machine

structure to incorporate additional axes and machining functionality. The MRMT modules used will be

discussed further as this will assist the reader in gaining an understanding of the MRMT platform

which the OACS has been designed on. As mentioned, the axes chosen were two linear axes, X and Z as

well as one rotary axis, A. The linear axes are controlled in the same manner as the linear axes on a

CNC system as discussed Chapter 4.1.

The X axis forms the base module of the MRMT, and therefore needs to be strong to support the

remaining models, and to dampen the vibrations from movement. The X axis module also has the

platform for the work piece to be clamped on. Figure 14 [29] is an illustration of the drive mechanism.

The following list summarises the design of the X axis module [29]:

 Manufactured from steel to provide the necessary strength;

 Drive mechanism is based on a steel slide driven by an ISO metric M24x3 power screw;

 Power screw is supported by two deep groove ball bearings at either end;

 Power screw runs in a brass nut housed in the slide;

 Two additional 20mm silver steel rods add support and rigidity for the sliding mechanism.

25

Figure 14: X Axis Drive Mechanism

The Z axis forms the column module of the MRMT, and supports the machining module, which is the

drill tool piece for the MRMT. The drive mechanism is illustrated in Figure 15 [29]. The following list

summarises the design of the drive mechanism [29]:

 Manufactured from aluminium (295-T4) to limit weight while maintaining strength;

 Drive mechanism is centrally located and based on a steel slide driven by an ISO Metric M24x3

power screw;

 Four silver steel rods support the guide mechanism for the slide;

 Power screw runs in a brass nut housed in the slide;

 Power screw is supported by thrust bearings at the ends of the column.

Figure 15: Z Axis Drive Mechanism

The C axis, a rotational axis which rotates about the Z axis, is designed to have the work table mounted

on top of it. The drive mechanism is illustrated in Figure 16 [29]. The following list summarises the

design conditions of the module [29]:

 Manufactured from aluminium (295-T4) to limit weight while maintaining strength;

 Drive mechanism has an upper section rotated by a reduction worm gearbox;

 Upper section is supported by thrust bearing at its base;

 Worm gearbox is coupled to the motor by a 12 mm steel shaft;

 Worm gearbox ensures that rotation only occurs by the motor and not due to load forces.

26

Figure 16: A Axis Drive Mechanism

A single process module, namely a drilling head, is used by the OACS test platform. The drilling head

module incorporates a 12 V, 80 W DC motor and a spindle attached to an aluminium mounting.

Figure 17 [29] illustrates the internal mechanisms of the drilling module. The following list summarises

the specifications of the module [29]:

 The motor is coupled with a planetary gearbox;

 Maximum spindle speed of 580 rev/min;

 Internal gearbox has a back-torque limiter that connects the gearbox to the spindle;

 A slip clutch, being a back-torque limiter, prevents the motor stalling.

Figure 17: Drill Head Module

The Drilling head was attached to the machine tool via an accessory module, namely a modular range

extension arm. The arm, a spool piece, was created to allow the MRMT process module to reach the

workspace due to the length of the base module, as shown in Figure 18 [29]. The extension arm

increases the movement of the drilling head by 350 mm.

Figure 18: Accessory Module - Modular Range Extension Arm

Each of these modules, when assembled together, will need to be checked if they can work together.

To do this check, each module has an associated transformation matrix which is used to check the

kinematic viability of the machine configuration when the modules are assembled. The Kinematic

modeling theory required for this is covered in Chapter 7 and in further detailed in Appendix A.

27

The MRMT was designed and developed as part of a previous research by Padayachee et al. [6]. The

MRMT is designed from the base up to be reconfigurable, flexible, transformable, and scalable in its

mechanical architectures. The development of a modular OACS for the MRMT was not part of the

MRMT scope, and therefore the MRMT was designed and built with a fixed electronic and control

software solution. When a specific software configuration was selected in software, it assumed that

the mechanical modules were connected, and the associated electronics were ready and active. The

set up was predetermined in software, and therefore, to fully realize the potential of the MRMT, and

OACS which was modular and reconfigurable was needed. This then led to the motivation of this

research.

4.4. Chapter Summary

A summary of the operation of CNC systems has been presented to assist in understanding of the

functioning of the MRMT as similar design principles are adopted for the MRMT. Thereafter the design

principles for a MRMT are discussed. This is followed by a review of the engineering and design of the

library models that were used to test the OACS on.

28

5. Open Architecture System for a Modular Reconfigurable Machine

Tool

The work presented covers the research aims and outlines that builds on the review of modular and

distributed control systems to present a high level system design for the OACS. A core component of

the research and design is the distributed modules and the discussion details how they add value to

the system. This is followed by the introduction of buffer layers and how these layers add significant

value to the reconfigurability and customizability of the system as a whole.

5.1 Research and Design Outlines

Mehrabi et al. [3] highlight that software issues represent the area of greatest concern for the

successful development and implementation of RMS’s. For the realization of RMS’s, key technologies

such as modular machines and OACS need to be developed. These OACS need to be designed with

similar fundamentals to RMS.

The research development of this control system for the MRMT aimed at incorporating as many

features of OA systems as possible. In the early stages of research, comparisons between RMS systems

and OACS indicated a high level of correlation in the critical aims and features of both systems. The

following key features of RMS systems were identified for development in the OACS:

 Software Modularity

 Reconfigurability:

o Extendibility;

o Interoperability;

o Scalability.

These features would enable the control system to be open and allow for easy setup, configuration,

expansion, and diagnostics as well as a decrease in configuration times. On a higher level, the

following additional features were also incorporated into the design:

 User Customization:

o User specific algorithms;

o User specific programs.

These methods allow user specific customization, which is a key evaluation for open control systems.

Users are able to create customized programs via a programming interface. The user specific programs

and algorithms can be created and saved to be used again if necessary. The aim of user specific

customization is to allow users to create user specific programs and algorithms depending on their

MRMT structure, and consequently their control and manufacturing requirements.

5.2 Mechatronic Design Approach

For the benefits of a RMS system to be seen there needs to be a high level of correlation between

software and hardware components of the machine. Figure 19 [30] represents the mechatronic design

approach adopted for the development of the OACS.

29

Figure 19: Hardware/Software Co-Design Approach

The mechatronic design approach separates the system in three individual components, the

mechanical system, the electronics, sensors and actuators and information technology which is the

software design and automation [31]. The MRMT and OACS combination form a mechatronic system

with mechanical hardware, actuators, sensors, controllers and analog and digital electronics. The

design of the OACS followed a mechanical hardware and software-electronics hardware co-design

approach to ensure that the architecture of these systems correlated. The integration of the

mechanical and electronic system must be considered as one system from the very beginning to

ensure an optimum solution.

The system architecture, electronics and software were co-designed with the mechanical system at a

high level to ensure a high level of correlation. This comprised gaining an understanding of what was

required to achieve a one to one mapping in software and hardware such that the systems could be

aligned. Thereafter, the design focused on mapping the high level architecture to physical

implementation which comprised of the design of embedded hardware, a dynamic communications

interface and modular software implementation.

5.2 OACS High Level Design

The research proposes a novel solution, attaching a microcontroller based distributed module to each

of the mechanical modules on the MRMT to assist with reconfigurability and self-diagnosis as shown in

Figure 20. In addition, the design focuses on modularity and through the object orientated C++

implementation of the host PC, the system creates a specific software module for each corresponding

hardware module using classes in C++.

30

This one-to-one linking between mechanical modules, distributed modules and software ensured that

the system was modular in all aspects, reconfigurable, extendable, and scalable. It also allowed for an

easier set up after system reconfiguration. In addition, the distributed modules allow axes to be

added, swapped or integrated with ease.

To ensure consistency in this modular approach throughout the design process, a co-design process

was required, where the software on the host PC would need to be closely linked to the distributed

modules. A high level system design for the OACS is shown in Figure 21.

At the head of the system is the MRMT and as discussed each mechanical module of the machine tool

is connected to a specific distributed module which acts as an independent node on the CAN bus

communications network. The bus network is linked to all the distributed modules as well as the host

PC. The distributed modules are the interface between the host PC and the mechanical module on the

MRMT. Each distributed module contains a dedicated microcontroller, and all associated electronic

circuitry to control and communicate with the host PC.

The host PC is in constant communication with the distributed modules and initially data downloads

are initiated from the host PC. The host PC downloads critical configuration and control limitations

from the distributed modules. During operation the host PC transmits the control requirements to the

distributed modules. Data such as distances to move and speed of movement are transmitted.

Furthermore, tuning parameters, diagnostic and fault finding and performance evaluation is

transferred over the bus. Therefore, a robust, reliable, interoperable and scalable communication

system was required to handle the communication between the nodes on the MRMT.

The host PC processes the machining requirement for a part program, thereafter the control

algorithms process the machining requirements, where the data is passed through interpolation, PID,

acceleration and deceleration control routines. The memory of the host PC stores the control system,

control algorithms, and software modules for each hardware module.

Figure 20: Integration of Distributed Modules

31

The mechanical hardware modules of the MRMT are easy to visualize. The design aims to create a

similar, non-visible, modular implementation in the software libraries of the OACS. The aim was to

develop similar modules or containers of code for each mechanical axis and associated distributed

module connected to the system, ensuring consistency in creating the one to one links for all sub

sections as discussed.

In order to achieve modularity in software, the C++ programming language was used in the Visual C#

programming environment. The object orientated approach of C++ allows the modules to be defined

from generic classes with well-defined API.

The object orientated approach also allows for data abstraction and inheritance, which has been

useful to control what is visible to the end user [25]. Furthermore, the inheritance features of C++

allowed the design to initially create one class for all modules. Thereafter during set up and

configuration, when modules are detected and active, new classes are derived from the generic class

depending on the type of module that is connected. Figure 22 further illustrates this idea, and the key

points of the software system can be summarised as follows:

 Each hardware module has an associated class object that contains all the information with

respect to hardware and control functionality;

 For example, as in Figure 22, each translational axis which is connected via its distributed

module has a basic software module or class in the database;

 The distributed modules, contain the simple control algorithms such as collision detection,

speed control, position control etc;

Figure 21: High Level System Design

32

 A combination of the basic modules and the built-in simple control algorithms is used during

runtime of advanced user specific programs or algorithms such as interpolation, acceleration

and deceleration.

Figure 22: Examples of the Software Modules In System Memory

The final layer of the design is the GUI. The GUI is used to configure the MRMT, enter the physical

configuration of the MRMT, specify and choose controllers and enter user specific programs. The GUI

is also be used to display the relevant control processing and processed data to the user and allow the

user to conduct debugging and diagnostics on the system.

5.3 Distributed Modules

As mentioned, the distributed modules are be the link between the mechanical modules and the host

PC via a CAN bus interface. Each distributed control module contains all the hardware required for that

specific module. Figure 23 shows an example of the components that are grouped as a distributed

module, in this case, an axis/servo module.

The introduction of the distributed modules benefits the OACS in several ways:

 Since the distributed modules contains all the information specific to itself and the peripheral

modules it interfaces, the host PC does not need to store all the information of the

corresponding module, the host PC can rather download the information when required,

thereby assisting in the dynamic reconfigurability of the system;

 The following list summarises the data that is be stored and downloaded from a distributed

module:

o Module ID;

o Module type;

o Maximum/minimum operation speeds;

o Transformation matrix.

33

 Downloads can occur at start up, or during reconfiguration due to the addition or removal of a

module;

 Since the distributed controller lies between the host PC and the corresponding axis or servo or

sensor module, any type of module may be added to the system regardless of its

communication protocols or control requirements;

 If any module does not comply with the standardized communication protocols or control

requirements, a customized distributed module can bridge the gap and do the necessary

conversion for the non-standard axis or servo or sensor module, making the actual module

invisible to the host PC but ensuring system functionality;

 Similarly, a non-standard distributed module that may not have the correct communication

module can be interfaced with an additional transceiver component that matches the standard

communication protocol;

 These two points mean that the system has a level of invisibility between the layers such that as

long as the basic standard is adhered to, any axis or servo or sensor or microcontroller can be

used with interfacing circuitry to match the standard;

 In the case of an module being added or reconfigured, the distributed module microcontroller

does not need to be changed, but rather allow for software to be reprogrammed or updated,

decreasing the cost of upgrades or modifications to the system;

 Similarly, If the current distributed module microcontroller fails to satisfy the system

requirements, the microcontroller can be replaced with a new one that can be customized to

interface the existing axis or servo or senor, decreasing the cost of upgrades or modifications to

the system.

Figure 23: Example of the Components of a Distributed Controller

In summary, the introduction of distributed microcontroller based modules between the host PC and

the corresponding actuator or sensor module has assisted the system by:

 Increasing flexibility;

 Reducing the time for reconfiguration;

 Assisting in the rapid introduction of new technologies/module;

 Reducing the cost of system upgrades.

34

Based on the aforementioned points, it can be seen that the introduction of distributed

microcontroller based modules assists the system achieving the desired goals of an RMS and OACS.

5.4. Buffer Layers

The introduction of distributed modules in the OACS indirectly creates two buffer layers in the system

architecture. These two buffer layers, between the mechanical modules and the distributed modules,

and between the distributed modules and the host PC are depicted in Figure 24.

These two layers create a buffer layer or an invisible layer between each of the three tiers. This buffer

layer allows for the components at each tier to be of many variations, types and architectures.

Consequently all that is required to ensure system functionality is that the interface and data transfer

between the tiers is consistent and standardised.

The functioning of the OACS is therefore independent of the types of modules at each tier or what is

located at each tier. The components of a module in a tier can therefore change and be upgraded

without affecting system functionality.

For example, on tier 3, the mechanical modules, a user may choose to add in induction motors instead

of the 12 V DC servo motors. In this case, to ensure system functionality the motor driver and the

associated I/O from the microcontroller need to be customized to interface the new motor.

Figure 24: Module Linking With Buffers

Similarly, in the middle tier, the distributed module has an embedded microcontroller, this

microcontroller can be of any type, make or from many manufacturer. The supporting peripheral

electronic circuitry interfacing the microcontroller can also differ from other distributed modules. As

long as the interface and data transfer protocols between each layer are adhered to, the components

at each level can be customized to the user’s requirements.

35

To demonstrate this flexibility, the OACS has been designed and developed using three different

microcontroller development boards, and with customization of the supporting electronic circuitry,

the system has maintained complete overall functionality.

This design approach opens up the possibility for the integration of off-the shelf components into any

MRMT. With customization of the components in that tier to ensure that the interface and data

transfer between the other layers is consistent and standardised, the system maintained the required

functionality as a whole.

5.5. Chapter Summary

Chapter 5 covers the high level system design of the OACS that has been tested on the existing MRMT.

The work presented covers the research aims and outlines and builds on the review of modular and

distributed control systems to present a high level system design for the OACS. A core component of

the research and design is the distributed modules and the discussion detailed how they add value to

the system. Finally, from the high level system design, the system is segregated between host PC,

distributed modules and the remaining electro-mechanical sub-systems. The links between these

layers act as buffer layers and add significant value to the reconfigurability and customizability of the

system as a whole.

36

6. Electronic Subsystems

Chapter 6 covers the core aspects of the electronic sub systems of the research and design. The

multiple microcontroller implementations of the distributed modules is motivated for and presented

followed by a discussion presenting the communication interface, the sensors and the design methods

to overcome false triggering and noise interference. Finally a high level overview of the power

distribution network is presented indicating the key power distribution channels across the whole

electronic subsystem.

6.1 Overview

The electronic subsystems of the research and design cover the various components that lie in-

between the host PC and the mechanical modules on the MRMT. Figure 25 shows a high level diagram

of the system architecture focusing on the key components that will be covered in the remaining

sections.

Figure 25: OACS Architecture

6.2 Host PC

At the head of the OACS is the host PC. The introduction of faster processers for computers and a

reduction of prices and increased availability have allowed for an increased use of computers as PC-

based controllers for CNC machines [32]. PC based controllers are generally flexible, open and can be

easily integrated into multiple manufacturing configurations [32]. The open and flexible nature of PC

make PCs ideal for use as a host PC for the OACS, as openness and flexibility are the central and core

characteristics for and OA systems.

Users may use Microsoft’s Visual C# express to configure, modify and program the external distributed

control modules. In addition, the existing USB hardware further assists the end user with programming

the distributed modules with a readymade plug and play interface. Furthermore users may use C# to

edit, add in and then re-compile the application with user specific control algorithms, which is one of

the fundamental aims of an OA platform.

37

The PC has been fitted with a CAN bus PCI card which eases the integration of the distributed modules

as the 9 pole SUB-D connecter, which offers a plug and play interface with all external boards. The host

PC communicates with all the distributed modules via the two wire CAN bus communications network

according to the custom data packets, which are covered in section 6.4.

6.3 Distributed Modules

The distributed modules located at the different stations of the MRMT are designed around the FEZ

Panda 2 board. After reviewing and analysis, the FEZ Panda 2 board was chosen for two primary

reasons, firstly ensuring that the board had all the necessary functions required such as CAN bus,

timers and interrupt based operations. Secondly, the FEZ Panda 2 board runs on Microsoft’s .NET

Micro Framework [33]. Since the PC application is designed using Microsoft’s Visual C# which is also

based on Microsoft’s .NET framework, in order to have cross platform uniformity and standardisation,

as well as ease of understanding the use of a common language and framework was preferable.

The FEZ Panda 2 shown in Figure 26 [33], is a high performance 72 MHz 32-bit USBizi ARM7 processor,

with the following key features [33]:

 USB device connection for run-time debugging;

 54x Digital I/O ports;

 6x 10-bit analog Inputs;

 10-bit analog output 6x Hardware PWM channels;

 2x CAN channels;

 4x UART serial ports;

 Built-in Real Time Clock;

 Multi-Threading.

Figure 26: FEZ Panda 2 Board

The distributed modules are responsible for a number of tasks depending on its application. A

complete schematic showing all signal and electrical connections is attached in Appendix B. Figure 27

and Figure 28 summarise the tasks of the spindle and servo modules respectively.

38

Figure 27: Diagram Illustrating the Tasks of the Distributed Spindle Module

Figure 28: Diagram Illustrating the Tasks of the Distributed Servo Module

6.3 Multiple Microcontroller Implementation

Interoperability and openness are critical features for an OACS. The distributed modules were not only

implemented on the FEZ Panda 2 boards but also on two additional development boards. The aim of

this multiple platform implementation is to demonstrate that despite the varying differences of these

three development platforms, with a little customization and circuit design, the distributed modules

could be implemented on different platforms resulting in the same performance in linking to the host

PC and control.

The chipKIT MAX32 shown in Figure 29 [34], is a high performance 80 MHz 32-bit microcontroller

based on the PIC32MX795F512L, with the following key features [34]:

 Operating frequency: 80 MHz;

 I/O pins: 83 total;

 Analog inputs: 16;

 DC current per pin: 18mA;

 2 CAN controllers.

39

Figure 29: chipKIT Max32

The Arduino UNO, shown in Figure 30 [35], is a 16 MHz 8-bit microcontroller based on ATmega328,

with the following key features [35]:

 Digital I/O pins: 14 (6 PWM);

 Analog input Pins: 6;

 Clock speed: 16 MHz.

Figure 30: Arduino UNO

Table 3 summarises the key differences between the three chosen microcontrollers to implement the

distributed modules on. As can be seen, the microcontrollers are not only different in their

architectures and capabilities, but also their development environments and bootloaders.

40

Table 3: Comparison of Critical Features of the 3 Boards

 FEZ Panda 2 [33] chipKIT MAX32 [34] Arduino UNO [35]

Chipset USBizi ARM7 PIC32 Atmel ATmega328

Operating Voltage 5 V 3.3 V 5 V

Operating Frequency 72 MHz 80 MHz 16 MHz

Digital I/O 54 83* 14

Analog Input 6 16 6

PWM Channels 6 6(Digital I/O) 6 (Digital I/O)

Can Interface 1x CAN controllers 2x CAN controllers SPI via CAN-BUS Shield

Programming
Environment

Visual C# with .NET
Micro Framework

MPIDE Arduino IDE

*3.3V output, but 5V tolerant for inputs

6.4 Communications Network

The distributed control modules located at different points on the MRMT are addressed directly from

the host PC. The host PC communicates with each module individually or to all the modules requesting

data. Therefore, the communication interface had to satisfy the following criteria:

 Robust;

 Address and communicate with each module individually;

 Scalable and extendable – add, swap or remove modules with ease;

 Fast - handle real time control data;

 Sufficient Bandwidth – manage downloads and key control parameter transfers to modules;

 Reliable -minimize data packet losses;

 Interoperable – Ability to maintain communication links regardless of type of interfacing

modules;

 Diagnosable – built in error checking that assists in runtime debugging.

Communication networks with multiple nodes can be linked using two approaches:

 Point to Point wiring from each node to the main node

o E.g. RS232, RS485

 Bus network, wherein a bus is connected between two nodes and any other node can be

connected between these without affecting the communication link.

o E.g. Profibus, CAN bus, Foundation Fieldbus

Figure 31 illustrates the connections and complexity between these two connection approaches. From

Figure 31 and the requirements for the communication interface, it is evident that the traditional

approach of point to point communication links between all modules and the host PC would not be

practical or suitable. The point to point wiring approach would not satisfy the aims of scalability,

interoperability or a plug and play system with seamless integration. It would add to the complexity of

the electronic circuit design, thereby adding more points of failure and decreasing the diagnosability

by increasing the complexity of the network. In a scalable network which is likely to undergo

reconfiguration, such a wiring system is not ideal.

41

Figure 31: Comparison Between the Wiring for a Multi-wire vs CAN bus Network

The bus network approach reduces the complexity of the connections between nodes while adding

additional circuitry at each node to handle the data transfer. The reduction in connections decreases

the points of failure thereby increasing the diagnosability of the system.

Profibus, Foundation Fieldbus, Modbus and CAN bus are common industrially proven bus network

interfaces and were all compared so that the best solution could be chosen for the OACS.

Profibus and Foundation Fieldbus originated from the same working group, and therefore have many

commonalities, the key difference being the location of the interface between the field instrument and

the control system [36]. Profibus network control systems maintain control on the control system,

whereas Foundation fieldbus actually moves the control function to the field instrument.

Modbus is an open serial communication protocol that was developed in the 1979 for PLC [37].

Modbus is commonly used to link instrumentation and control devices, or in data gathering

applications to transmit data back to the main controller. A Modbus network has one master device

and up to 247 slaves on one network, with each having a unique address.

The Controller Area Network (CAN) bus communication protocol was developed by Bosch in the 1980’s

primarily for the automotive industry, but since then, it has been used and proven in many industrial

applications [38]. Just like Profibus, CAN bus maintains control of the control system and links the

control system to the module. A comparison of essential characteristics networks architectures is

presented in Table 4.

Table 4: Comparison Between Profibus, Foundation Field Bus, Modbus and CAN bus

 Profibus [36] Foundation Field
Bus [36]

CAN bus [39] Modbus [37]

Speed 400ms (loop cycle
time with 24 nodes)

400ms (loop cycle
time)

Loop cycle time
<120µSec (at 1MBPS)

Serial Baud
Rates

Nodes 24 12 127 247

Typical
Applications

Field instruments
Process industry

Field instruments
Process industry

Automotive and
Aerospace industries

PLC’s and
SCADA’s

42

Profibus and Foundation Fieldbus are primarily used in process industries, therefore wired loops need

to be Intrinsically Safe (IS), where IS is defined as a restriction of electrical energy as a source for

ignition [40]. The associated linking modules require advanced electronic circuitry to limit the power in

the loops and maintain a reliable communication network. This additional requirement to makes the

loops IS safe adds a significant additional cost to the network. A new Profibus network costs

approximately $13,500 for a 100 loop network and even more for a Foundation field bus network [36].

Unlike Profibus and Foundation Fieldbus, Modbus and CAN bus are used in the automotive industry

and industrial industries. Since CAN bus and Modbus are two wire serial bus protocols which require a

standard 2 wire serial cable to connect two capable nodes, Modbus and CAN bus do not bear the same

cost for the associated electronics and loop wiring as the IS rated Profibus and Foundation Fieldbus

communication networks and protocols.

The open Modbus standard makes the Modbus protocol extremely desirable and relevant for the

OACS. However the limitation with Modbus comes with the dedicated master and slave nodes and

each node requiring a unique address. As mentioned in Chapter 5 the OACS not only communicates

with each node individually, but also to all nodes during bus scans. Due to this requirement, the

Modbus communication protocol is not suitable.

CAN bus differs fundamentally from Profibus, Foundation Fieldbus and Modbus in that each node does

not necessarily need to have an address, but rather each message has a unique identifier [38].

Therefore, all nodes receive all transmitted messages and can choose to accept or reject the messages.

Due to the reduced complexity, simplified communication protocol, lower cost factor as well as the

message identifiers as opposed to dedicated node identifiers, the CAN bus protocol was chosen as the

best solution for the MRMT.

6.5 CAN bus

CAN bus is widely used in the automotive and aerospace industries making it a robust, tried and tested

communications network [41]. CAN bus has built-in collision avoidance and rescheduling of messages

in the case of nodes wishing to transmit at the same time [38], a valuable feature to have available in a

multi node network.

CAN bus has built-in collision avoidance and rescheduling and by monitoring the bus it checks if two

nodes attempt to transmit at the same time. If this occurs, the system commands the higher priority

node to transmit, and reschedules the second message [38]. Similarly when a collision occurs on the

bus, the nodes check the priority of the messages, and the message with the highest priority, or lowest

message identifier is transmitted immediately, while the lower priority message is delayed and

rescheduled [38].

Hence the CAN bus network architecture enables the communication interface to be scalable,

extendable and interoperable allowing up to 127 nodes which can be seamlessly integrated with its

plug and play interface. The communication protocols allow transmissions to an individual module or

to all modules at once. In addition, the built-in error checking and collision avoidance features

increases the reliability of the system. Due to the simplicity of connections the system has a high

inherent diagnosability.

43

The CAN bus communication protocol assigns a message identifier to each message and all nodes

receive all transmitted messages. Each node chooses to accept or reject the received transmission

based on this identifier. Due to the reconfigurability, un-determined structure of the MRMT such a

feature further assists the system by allowing system modifications changes and allowing the system

to adapt to manage the physical changes. ID of 0x00 is reserved as a general message and all nodes are

programmed to accept this message and reply with their unique ID and type of distributed module.

Each distributed module is assigned a unique ID or address on the network and in the case of a new

module being added to the system, the distributed controller can be assigned a unique ID or address.

When a new node is connected to the bus, any of the other modules is able to access it via its unique

ID or address. Furthermore, since the host PC runs a scan on the bus on start-up, there is no

predetermined setup and configuration of the system. This configuration allows the system to be truly

reconfigurable, scalable and extendable.

The OACS has been designed with the identifiers shown on Table 5 pre-programmed on to the

respective nodes. Any new module added onto the system can be assigned with unreserved IDs 0x06

and greater. A sample list of acceptable message transmissions is detailed in Section 6.7.

Table 5: Unique Node Addresses/Identifiers

ID Node Details

0x00 All General call to all modules

0x01 Host PC

0x02 Translational Module 1 X Axis

0x03 Rotary Module 1 A Axis

0x04 Translational Module 2 Z Axis

0x05 Spindle Module Drill

6.6 CAN bus Hardware

The PC is connected to the bus network via a PCAN PCI card from Peak Systems, the card uses a the 9

pole SUB-D connecter to output the CANH and CANL bus lines that connect to the nodes. The pin

configuration of the 9 pole SUB-D connector is shown in Figure 32 [42] and the PCI card in

Figure 33 [42].

Figure 32: Pin Out Configuration of a 9 pole SUB-D Connecter

44

Figure 33: Peak Systems PCAN PCI Card

Figure 34 illustrates how the different nodes are connected together along the bus, and the bus

termination resistors required ensuring that the transmissions do not reflect back on to the bus.

Figure 34: Illustration of CAN bus Network and Node Connections

The two bus lines, CANH and CANL, from the PCAN PCI card operate at 5V, whereas on the FEZ

Panda 2, these two ports operate at 3.3V. Therefore in order to communicate over the bus lines

conversion transceivers were required.

The 3.3V Texas Instruments SN65HVD231D CAN transceivers with a high input impedance that can

connect up to 210 nodes on the bus was used [43]. The transceivers convert the higher voltages on the

bus lines to TTL voltage levels that are compatible with the FEZ Panda 2.

The chipKIT based on the PIC32 microcontroller has an integrated CAN bus communication circuitry

and features, but as with the FEZ Panda 2, voltage level conversion is required. The chipKIT network

shield depicted in Figure 35 [44] has the following key CAN bus related features [44]:

 Two MCP2551 CAN Transceivers

 Two 12-pin header connectors for CAN

 32.768 KHz Oscillator for Real time clock

45

Figure 35: chipKIT Network Shield

Unlike the Fez Panda 2 and the chipKIT, the Arduino UNO doesn’t have built in CAN functionality.

However the CAN bus shield shown in Figure 36 [45], extends this for the Arduino Uno and has

following key features [45]:

 CAN v2.0B up to 1 Mb/s

 High speed SPI Interface (10 MHz)

 Standard and extended data and remote frames

 CAN connection via standard 9-way sub-D connector

With the addition of a CAN bus shield which is based Microchip MCP2515 CAN controller and the

MCP2551 CAN transceiver [45] , the CAN bus shield interfaces the Arduino UNO via high speed SPI

communication and converts this to the CAN communication protocols, thereby giving the Arduino

UNO full CAN bus capabilities.

Figure 36: CAN-BUS Shield

6.7 Message Packet Formatting

Each node has a unique address and when a message is transmitted from the host PC, the address of

the receiving node is assigned as the message identifier. The fields of a message are shown in

Figure 37.

46

Figure 37: CAN bus Message Fields

The start of frame and the end of frame characters in the message packet are automatically

generated. The Data, Message ID, and control field are generated depending on the type of message

packet being transmitted. The control field sets the number of data bytes with the default set-up being

8 data bytes.

The host PC initially calls for data from the distributed modules and later on during operation it

periodically sends and receives feedback data from the modules. Once this data has been processed

and updated movement and control requirements are generated. These requirements are sent out to

the respective distributed module.

The data calls from the host PC can either be a general call to all modules or a specific call to a module.

A general call is used initially during a bus scan to detect which distributed modules are active and

connected to the system. Thereafter during setup and configuration, the host PC asks each distributed

module for specific data about its operation and limits.

A sample set of transmitted message packets from the host PC to the distributed modules that has

been developed is shown in Table 6.

Table 6: Table Showing Packet Message Formats for Transmissions from Host PC

Message Type TX MSG Address TX data Request

1 – General Call to all

Modules

0x01 – reserved

address for a

general call

1 0 0 0 0 0 0 0 Modules to reply with their ID’s

and a code for the type of

module (e.g Servo/spindle)

2 – General Call to all

Modules

0x01 – reserved

address for a

general call

2 0 0 0 0 0 0 0 Modules to reply with their ID’s

and a the type of module (e.g

Linear Axis X)

3 – Move Command

(Start)

0x** - distributed

module ID

3 1 X Y 0 0 0 0 Module to Start - X is the value

to move

(Y =1 CW, Y = 0 CCW)*

4 – Move Command

(Stop)

0x** - distributed

module ID

3 0 X Y 0 0 0 0 Module to Stop - X is the value

to move

(Y =1 CW, Y = 0 CCW)*

5 – Move Command

(Switch Direction)

0x** - distributed

module ID

3 2 0 0 0 0 0 0 Module to Switch Direction

*CW – Clock Wise Rotation, CCW, Counter Clock Wise Rotation

** - Specific distributed module ID

47

Based on the messages received and the message identifier, samples of the format that the distributed

module uses to process the received data using is shown in Table 7.

Table 7: Table Showing Packet Message Formats for Transmissions from Distributed Modules

Message Type MSG Address TX data

Reply to General Call 1 - Modules replying
with their ID’s and a code for the type of
module (e.g Servo/spindle)

0x00 – addressed
to the PC

1 boardID d d d d d d (generic format)

e.g. 1 # S e r v M *

e.g. 1 # S p i n M*

* 1-reply to call 1, # is the board ID

Reply to General Call 2 - Modules to reply
with their ID’s and a the type of module (e.g
Linear Axis X)

0x00 – addressed
to the PC

2 boardID d d d d d d (generic Format)

e.g. 2 # L i n r X a*

e.g. 2 # D r i l l T *

*2-reply to call 2, # is the board ID

Reply to Move command 3 or 4– An
acknowledgement from the distributed
module signalling the command has been
carried out successfully.

0x00 – addressed
to the PC

4 boardID X Axis

4 boardID X Axis

X = 0 – Start Reply

X = 3 – Stop Reply

Periodic transmission from distributed
modules to PC indicating axis position(from
encoders)

0x00 3 BoardID X Axis Y . . .

X = 1 Axis Position,

Y is the actual position of the axis

The host PC sequentially decodes the received data from the distributed modules and stores it under

the corresponding classes, an explanation of the decoding and storage of data is covered in Chapter 7.

6.8 Spindle and Axis Speed Control

The 15 A Pololu H-Bridge motor drivers depicted in Figure 38 [46] were used to control the motors of

the servo axis and spindle tool head modules for digital spend and position control. The MOSFET H-

Bridge motor drivers are capable of bidirectional speed control of a single high voltage motor

delivering up to 15 A continuous current [46].

Figure 38: (a) Pin Out Configuration of Motor Driver (b) Assembled Motor driver

48

The H-Bridge motor drivers require two input signals, a Pulse Width Modulation (PWM) signal and a

direction signal [46]. These two signals are provided by the distributed modules. Table 8 summarises

the operation and controls required for the drivers.

Table 8: Control Signals and Operation for Motor Drivers

PWM Direction OUT A OUT B Operation

H L L H Forwards

H H H L Backwards

L - L L Stop

The chipKIT microcontroller is only capable of outputting 3.3V on a pin. As a result voltage level

conversion was required to ensure the motors could be driven with a consistent 5V PWM source.

6.9 Motor Noise Cancellation

The high voltages and currents that DC motors require for operation can result in Electromagnetic

Interference (EI) [47]. If this EI, more commonly known as noise, is close enough to low voltage

supplies or signal wires it can affect the stability as well as the values being transmitted on these lines.

Therefore it is necessary to filter these high frequency noise signals to ensure minimal interference.

Several methods to filter out the noise exist, varying in complexity and cost. Capacitors, ferrite rings,

power supply separation and twisted pairs of wires were all implemented to ensure that no

interference resulted between circuits.

Capacitors can hold the voltage on the line constant for a short period of time due to the voltage

stored in the capacitor. If a capacitor is on a voltage line and a voltage spike occurs as a result of the

motor noise, the capacitors hold the line at a steady state voltage for a short period of time, thereby

cancelling the effect of the short spike. The period of time is dependent on the value of the capacitor.

In order to filter out the motor noise from the DC motors, 3 capacitors were used in a parallel and

series combination as shown in Figure 39. The capacitors C1 and C2 connected between the motor

terminals and the motor casing has the effect of shorting the casing and the terminals together,

thereby making the casing of the motor a shield and assisting in reducing the radiated noise and the

electromagnetic interference with surrounding circuits [47]. The single capacitor C3 connected

between the motor terminals acts as short circuit for the high frequency nose. This connection does

not affect the power to the motor but reduces the conduction of noise along the motor wiring [47].

This use of capacitive filtering reduces high frequency interference. To complement the capacitors, a

low frequency conducting method was introduced. The motor wiring was looped several times

through a ferrite ring, this looped set of wires only conduct low frequency signals such as the power to

the motor and assist in further reducing out high frequency signals [47].

On start-up motors draw larger currents than during normal operation. If the power supply to the

motors and the other electronics are the same, due to the current demands of the motors on start-up,

the voltage and current supplied to the other circuitry can be affected. It is therefore best to

completely isolate and separate the power supplies for the motors and the other electronic circuitry.

The power distribution overview and design is covered in detail in section 6.13.

49

Figure 39: Motor Terminals With Added Capacitors to Filter Out Noise

In addition to the filtering and separation methods, a simple yet effective method of countering

electromagnetic interference is to use twisted pairs of wires to cancel the induced currents. When two

wires travel alongside each other they can have an induced current created in them depending on the

distance between the wires and the source of the electromagnetic noise source [47]. The distance

between the wires creates a potential difference between the wires, thereby resulting in a noise

current induced in the wires. If the wires are twisted, they alternate in being closer to the source of

electromagnetic noise and the potential differences in one section is of opposite polarity to the next

section, which results in a cancellation of noise along the whole wire [47].

6.10 Collision Detection

The translational modules which are controlled by the axis motors operate in a limited work space and

it is necessary to detect if the translational modules are approaching the end of the workspaces to

ensure no damage to components occur as a result of collisions. Limit switches, as shown in

Figure 40 [48], were used to detect the movement of a translational module at the ends of each axis.

Figure 40: Limit Switch

The number of limit switches surrounding a translational module differs depending on the type of

module. Figure 41 [29], further illustrates how two limit switches are placed at either end of a liner

translational axis to signal the end of movement for the motion module.

50

Figure 41: Illustration of Limit Switches on the MRMT

The limit switches were connected in a normally-closed configuration. When contact occurs as a result

of the moving translational module making contact with the limit switch, the limit switch circuitry

would open and the signal would trigger an interrupt on the distributed modules. By making the limit

switches “normally closed”, it ensures fails safe design as if the circuit breaks unexpectedly, the

interrupts would trigger and stop operation. If the design followed a normally-open configuration, and

if the circuit breaks with the MRMT in operation and when it approaches the axis limit, no signal would

trigger and this would lead to damage of the MRMT.

The output signal from the limit switch, which was initially a steady 5V signal, would fall to 0V. This

signal is connected to an external interrupt pins on the corresponding distributed module. When the

translational axis makes contact with the limit switches, the interrupt routines are triggered, and these

routines stop the PWM output signals to the motor drivers, in turn stopping the motor, ensuring no

damage to the translational modules.

A common problem with electro-mechanical switches is switch debouncing. When a switch is pressed,

there is a chance that the output may swing from rail to rail before finally settling at a steady output.

During this interval, due to the speed of the microcontrollers, the microcontrollers detects as if the

switch is pressed several times. To counter these erroneous detections, a software and hardware

solution was implemented.

The software solution on the Fez Panda 2 makes use of a glitch filter provided by Microsoft’s .NET

Micro Framework. The glitch filter checks the time between the interrupts coming in from the switch

and it rejects interrupts that are within a time set by the user [49].The glitch filter was used on all the

interrupts pins for the limit switches and is activated by the following lines of code:

 1: TimeSpan ts = new TimeSpan(0, 0, 0, 0, 100);//100ms Glitch filter
 2: Microsoft.SPOT.Hardware.Cpu.GlitchFilterTime = ts;

Similarly, on the chipKIT and the Arduino UNO, software routines checks the time between the

interrupts and only triggers the interrupt service routine to stop the motors when the time between

corresponding interrupts is greater than 100 ms.

51

In hardware a Schmitt trigger circuit, also known as an inverting buffer or a not gate, was added

between the output of the limit switch and the microcontroller. The Schmitt trigger circuit was

implemented using a 555 timer with the following pin configuration in Figure 42 [50].

Figure 42: Schmitt Trigger Connection Diagram for the 555 Timer

Table 9: Schmitt Trigger Detector Input Conditions and Outputs

Input Condition Output

LOW < 1/3 Vs High

HIGH >2/3 Vs LOW

LOW/HIGH 1/3Vs < X < 2/3 Vs Same as Input

The Schmitt trigger detector output is determined from Figure 9. From Table 9, when the output is

changed to logic HIGH or LOW, it must be changed by 2/3Vs to switch to its previous state, thereby

giving the circuit a high immunity to noise [50].

Both the software and hardware design to counter switch debouncing ensure that no false triggers

stop the motors. Only when the collision avoidance limit switches are activated is the routine to stop

the motors called.

6.11 Position Feedback Encoders

Three channel HEDS 5540 optical encoders were used to track the movement of the motors. The

encoders are capable of a resolution of 1024 counts per revolution or less depending on the

configuration used [51].

These optical encoders contain a lensed LED source and built-in detection and output circuitry. A block

diagram of the circuitry is shown in Figure 43(a) [51]. As the internal code wheel rotates between the

LED source and the detector circuitry, two quadrature square wave output signals are generated. In

addition to the two quadrature outputs, a third channel on the encoders, the index channel is also

generated.

52

Figure 43: (a) Block Diagram for the Optical Encoder (b) Output Signals From the Encoder

The index pulse is generated once per rotation of the code wheel and the channel A and channel B

pulses are generated in a quadrature format as shown in Figure 43(b). The 4 pulses generated by

Channels A and B are each generated 256 times in every rotation adding up to a count of 1024 per

revolution. The direction of rotation can be determined by analysis of the quadrature waveforms in

Figure 43(b) [51].

The output signals from the three channels are connected to the external interrupt pins on the

distributed modules. When the interrupts trigger, a counter is incremented or decremented

depending on the result of this check. The incrementing and decrementing of the counter imply a

movement of the axis which has a zero set point located at the midpoint of the axis.

The encoder output also followed a fail-safe design principle to ensure no false triggering occurs. The

three input channels A, B and Index were connected to the distributed module interrupt pins

via 2.7 kΩ pull-up resistors which sets the threshold voltage for triggering.

6.12 Vibration Sensor: Accelerometer

The MRMT would be set up and configured to operate a drill, being a CNC machine, it is critical to

assess the performance of the drilling action of the MRMT. In order to test and monitor the accuracy

of the stability of the drill module on the MRMT, a 3 axis accelerometer is installed on the drill module.

The chosen accelerometer was the ADXL335 from Analog devices, a 3 axis and 3G accelerometer [52].

The ADXL335 measures static acceleration of gravity in tilt applications in addition to dynamic

acceleration as a result of movement and vibration [52]. The drill head module would be moving and

to monitor the vibrations, the ADXL335 breakout board, shown in Figure 44 [53], was used.

53

Figure 44: SparkFun ADXL335 Breakout Board Triple Axis Accelerometer

6.13 Power Distribution Network

The power distribution network is powered from 230V AC 50Hz power source and uses three AC to DC

power supply units to power up the motors, distributed modules and all associated sensor circuits. The

three AC to DC power supplies are:

 One 12 V DC 29 A unit;

 One 5 V DC 7 A unit;

 One 3.3 V DC 6 A unit.

The actual power usage of the system is highly dependent on the number of mechanical modules and

in turn associated electronics, distributed module and sensors which are active on the system.

Therefore, the current power distributed network has been designed and implemented to ensure that

the system has the ability to be scalable and extendable in terms of adding additional mechanical

modules on to the MRMT and ensuring system functionality without the need to modify other aspects

of the overall system. Figure 45 summarises the power distribution network.

The dotted lines indicate the connections that will be wired in order to add in additional modules. An

analysis of the power distribution system in terms of current consumption and the limitation of

number of modules with the current power supplies are discussed in Chapter 9.

54

Figure 45: Power Distribution Network

6.14. Chapter Summary

Chapter 6 has presented the core aspects of the electronic sub systems of the research and design.

The multiple microcontroller implementations of the distributed modules has been presented

followed by a discussion presenting the communication interface, the sensors and the design methods

to overcome false triggering and noise interference. Finally a high level overview of the power

distribution network is presented indicating the key power distribution channels across the whole

electronic subsystem.

55

7. Control Algorithms for Open Architecture Control System

The OACS has several algorithms coded in to simplify the user interface, and to give the end user

access to: customizable, reconfigurable and control features. Five algorithms have been added into the

OACS. The algorithms and their corresponding purposes/functions/tasks are as follows:

 Kinematic Viability;

o The purpose of which is to determine if the mechanical configuration of the MRMT is

kinematically viable

 Control Theory;

o PI or PID control

o Tuning of PI or PID control loops

 Trial and Error

 Ziegler Nichols Method

 Text Interpretation and User program Validation;

o Interpretation of the user entered program

o Ensuring the user entered program is executable on the current MRMT

 Interpolation;

o Determining the movement requirements of each axis and relative speeds

 Acceleration and deceleration Control;

o To prevent mechanics shock and destination point overshoot

Figure 46 summarises the tasks that the user follows in order to setup and configure the MRMT. In

addition, the aforementioned algorithms are also illustrated in order of occurrence and are indicative

of when each algorithm is run.

56

Figure 46: Flowchart Illustrating Embedded Algorithms

7.1. Kinematic Modelling

The operation of the RMT is defined by the kinematic motion between the tool module and the work

piece. The kinematic motion describes the relationship between the joint position and the end effector

position with reference to an absolute reference. In order to determine if the chosen set of

mechanical modules on the MRMT combined to form a workable solution, the kinematic solution of

the module combination needed to be evaluated [54].

The mechanics of a MRMT can be described as a kinematic chain of rigid bodies connected by joints.

Any motion of the MRMT can be described by the computation of the individual motions of each

57

link in reference to the previous link. There is a kinematic relationship between two links, a

translational and rotary relationship [55].

At the ��� joint on the MRMT, let �� denote the joint variable at �. �� can either be an angle or

displacement depending on the type of joint, and is represented by equation 7.1 [56]:

�� = �
��

��
 (7.1)

If the matrix M, a Homogenous Transformation Matrix (HTM), represents the position and orientation

at � with respect to � − � for an axis. M is dynamic and can change as the MRMT undergoes

reconfiguration. For the MRMT, each axis is a function of only a single degree of motion, therefore:

� � = � � (��) (7.2)

Similarly the HTM that expresses the overall configuration of the MRMT, from position � with respect

to position and orientation �, is represented by equation 7.3 [56]:

��
� = � ��� … � � (7.3)

To simplify this, if the rotary motion can be defined as � �
�, a 3x3 rotation matrix and the translational

motion by � �
�, a 3x1 matrix [56], then equation 7.3 can be manipulated to equation 7.4:

� = � = �� �
� � �

�

� �
� (7.4)

Since each axis of the MRMT is limited to a single DOF, equation 7.4 can be represented as

equation 7.5:

� = ��
� = � � (��) … � � (��) (7.5)

Similarly, equation 7.6 can represent the task transformational matrix:

��
� = � ��� … � � = �

� �
� � �

�

� �
� (7.6)

To simplify the kinematic representation, the Denavit Hartenberg representation can be used. The D-H

convention represents each HTM � � by a product of four basic transformations as shown in

equation 7.7 and equation 7.8. The four parameters �� ,�� ,�� and �� derived from Figure 47 [56]

describe a relationship between movements [54].

 � � = � �,��
 ������,��

 ������,��
 � �,��

 (7.7)

= �

���
−���

���
���

0 0
0 0

0 0
0 0

1 0
0 1

��

1 0
0 1

0 0
0 0

0 0
0 0

1 ��

0 1

� �

1 0
0 1

0 ��

0 0
0 0
0 0

1 0
0 1

� �

1 0
0 ���

0 0
−���

0

0 ���

0 0

���
0

0 1

�

 � � = �

���
−���

���

���
���

���

���
���

�����

−���
���

�����

� ���

� �

���
��

� �

� (7.8)

58

Figure 47: Coordinates References Between Movements

Since each axis on the MRMT is a function of a single degree of freedom, the matrix � � can be

simplified by using Euler angles. The Euler representation simplifies the description of motion by

describing the orientation of a coordinate relative to another. For the MRMT, the rotations are fixed

along the principle axes X, Y and Z. We can define this rotation at orientation at � with respect to � − �

as follows in equation 7.9 [57]:

� ��� = �

���� ���� ���� ���� ���� − ���� ��� � ���� ���� ���� + ��������
���� ���� ���� ���� ���� + ���� ���� ���� ���� ���� − ���� ����

− ���� ���� ���� ���� ����
� (7.9)

Using the rotation description and combining it with the D-H representation, the HTM of each axis � �

can be represented as 7.10 [56]:

� ��
��� =

�

���� ���� ���� ���� ���� − ���� ��� �
���� ���� ���� ���� ���� + ���� ����

���� ���� ���� + �������� �
���� ���� ���� − ���� ���� �

− ���� ���� ����
� �

 ���� ���� �
 � �

� (7.10)

When the MRMT is configured, the HTM of each axis module is downloaded from the distributed

modules. Based on the user input, which requests the physical configuration of mechanical modules

on the MRMT, the computation for the complete task transformation matrix is determined.

����� ���� = � � … � ���� � (7.11)

This forward kinematic model is determined by the multiplication of the individual HTM of each axis

on the MRMT in an ordered manner. The task transformation matrix describes the position of the

MRMT tool module relative to the global reference on the work holding module at the base of the

MRMT.

Based on the derivation of the HTM of each axis, the HTM of each axis is presented in equations 7.12

to equation 7.16 using the offsets due to positioning of the modules on the MRMT:

 � � �����
��� = �

� �
� �

� �
� �

� �
� �

� −���
� �

� (7.12)

59

� � �����
��� = �

� �
� �

� −��. �
� �

� �
� �

� �
� �

� (7.13)

 � � �����
��� = �

���� −����
���� ����

� �
� �

� �
� �

� −���
� �

� (7.14)

� ������
��� = �

� �
� �

� −��
� �

� �
� �

� −��. �
� �

� (7.15)

� ��� ����
��� = �

� �
� �

� −���
� �

� �
� �

� �
� �

� (7.16)

7.2. Control Theory

The axis control modules for the MRMT can be categorized into three-tier architecture as depicted in

the overview in Figure 48. The three tiers in this architecture are as follows:

 The adaptive control module and error compensation in the top layer;

 The interpolation module in the middle layer;

 The servo and spindle control modules in the bottom layer.

The adaptive control module controls the spindle speed and feed rates based on the user programmed

values. The error compensation module uses the sensor feedback data and compares the expected

machine position with the actual position. Based on this comparison, the error compensation module

corrects any deviation in movement and operation by compensating the next set of values and data

sent out to the distributed modules.

The spindle speed rates generated by the adaptive control module are sent directly from the top layer

to the bottom layer and then to the spindle control module. The spindle control module in turn

generates the movement commands, and transmits these commands to the spindle driver circuitry.

The updated and compensated movement instructions as well as the updated feedrate commands are

sent form the top layer to the middle layer and then to the interpolation module. The interpolation

routine determines the interpolated position commands and in-turn sends them down to the

distributed modules at the bottom layer. The servo modules generate the movement commands and

transmit these commands to the axis driver circuitry.

The servo and spindle control modules are capable of controlling machine tool or axes movement over

a range of speeds. The spindle control module controls tool drilling or cutting speeds to ensure correct

machining operation, and the servo control modules controls axes movement for best accuracy. To

achieve such control, a closed loop control system is required. In a closed loop control system, external

60

sensors on the axes monitor the axes movement and constantly provide feedback data to the control

modules.

Figure 48: System Architecture Highlighting Control Functionality

Such a closed loop control system instructs the servo modules to carry out an instruction. However,

often due to physical and mechanical limitations, the instruction may not be completed in the

expected time. As a result, the controller uses the feedback data to compensate for the difference

between desired position and actual position, and this is known as error compensation. The

performance of the control module is therefore dependant on the following: mechanical and physical

modules or axes, the response times of circuitry and the control algorithms. The feedback from the

sensors is then fed back to the controller, and the servo motors on the MRMT are controlled to

minimise the position error.

The closed loop feedback control system has three embedded control loops that are illustrated in

Figure 49:

 The inner current loop;

 The middle speed control loop;

 The outer position control loop.

61

1

�
 ��� ��� +

���

�

Figure 49: Closed Loop Feedback Control System

The cascade control loops can easily be tuned to improve system performance. However to ensure

overall controller stability, it is necessary to ensure that the innermost loop is stable and the

dependency between the outer loops and the inner loops is minimised. Furthermore the current loop,

being the inner most control loop, needs to have a faster control loop response time than the outer

loops [28]. This response times is configured via the controller tuning parameters. In contrast, the

outer control loop, being the position controller, has the slowest response time.

The speed and current control is performed by the servo driver circuitry, and the position control loop

is the control carried out by the control system. Since the control system controls the position control

loop with the slowest response time, the machine movement and operation is highly dependent on

the performance and response characteristic of the position control loop. Unfortunately, the slow

response of the position control loop hinders performance and machining accuracy in systems of more

than two axes [28].

7.2.1 PID Controller

The controller is named after the three control actions namely: the Proportional, the Integral and

Derivative control actions. The main aim of the PID controller is to minimise the error between the

desired position and actual machine position. The performance of the PID controller is highly

dependent on the controller tuning. A further discussion on controller tuning is covered later on in the

research.

The MRMT, due to its multiple axes, is actually a multiple input and output system. However, each axis

can be controlled by an independent PID controller, as each axis is controlled separately based on its

specific interpolated data received from the interpolator. Therefore, each axis is controlled by an

independent PID controller with a single input and single output. Figure 50 illustrates the basic block

diagram of a PID controller. The PID controller output (u) is first fed into the process, the process

output (y) is then fed back to the block input where it is compared to the reference position (r), and

the difference is the error (e) which is then fed back to the PID controller. The system then repeats the

calculation.

Figure 50: PID Block Diagram

62

The transfer function for the process, for a servo motor on an axis is given by equation 7.17 [58],

where K is the electromotive constant, J is the moment of inertia of the mechanical system about the

axis of the motor, b is a damping coefficient of the mechanical system on the axis, L is the motor

inductance and R is the electrical resistance of the motor [59].

�(�) =
�

(����)(����)� �� (7.17)

The PID controller has three key parameters [60]. These parameters are listed with their

corresponding functions:

 P – Proportional control:

o The output is controlled depending on how far the actual position is from the desired

position

o The P control gain adds a sensitivity control due to the proportional gain, and makes the

system more responsive to output error

o The P control handles the immediate error

o P control decreases the rise time and the steady-state error, but also contributes to

overshoot

o �� – Proportional gain

 I – Integral Control:

o The output is controlled depending on how long it takes to reach the desired position

o As time to reach the desired position increases, the integral error builds up, and when the P

control output drops, the integral control takes over and drive the machine to the desired

position

o The I control handles future errors

o I control removes steady state error, decreases rise times, and causes an overshoot, but

drives it back to the desired position

o �� – Integral gain

 D – Derivative control:

o The output is controlled on the change in error

o D control allows the controller to react to a sudden change in error and assists the system in

maintaining a desired position

o The D control handles errors based on the learning or what has been learnt from past errors

o D control decreases overshoot and settling time

o �� – Derivative gain

The combined PID controller combines the three parameters, resulting in a controller that can

accurately maintain a desired position [60]. Equation 7.18 [60] is the generic transfer function of a PID

controller in the continuous domain.

��(�) = �� +
��

�
+ ��� (7.18)

Equation 7.19 shows the transfer function converted into the discrete time domain for digital control,

where T represents the time period iterations.

63

�(�) =
��� ������ �����

����� (7.19)

Where the constants ��,�� and �� are:

�� = �� + ��� +
��

�
 (7.20)

�� = − �� −
���

�
 (7.21)

�� =
��

�
 (7.22)

From Figure 51, the output of the PID controller can be represented as the difference equation 7.23

using the PID output and error input:

�(�) = �(� − �) + �� (�(�) − �(� − �)) + ����(�) +
��

�
(�(�) ��(� − �) +

 �(� − �)) (7.23)

From equation 7.23 it can be seen that the PID controller at the current iteration looks at: the

controller’s previous input data, the current error multiplied by a constant, the error from the previous

iteration multiplied by a constant, and the error from iteration before that is also multiplied by a

constant.

As previously mentioned, the actual position data, received from the feedback sensors, which are the

optical encoders on the axes, is fed back to the controller. The controller then compares the actual

position with the desired position. The result of this comparison, the error � = ��������������� −

�������������� is then fed into the controller with the assumptions �(�) = � and �(�) = � and

the result of the controller output is calculated according to equation 7.24 [60]:

�(�) = �� �(�) + �� ∫ �(�) �� + ��
�

��
�(�) (7.24)

The PID equation 7.24 can be used in the PID controllers for each axis, since each axis is independently

controlled. The key difference at each iteration for each controller, is the reference data received, the

desired position from the interpolater and the feed rates from the adaptive control block. Similar to

the calculation to derive equation 7.24, the discrete time implementation for a PI controller can be

shown as follows:

�(�) = �� �(�) + �� ∫ �(�) �� (7.25)

Users have the choice of selecting a PI or PID controller, alternatively a user may customize the system

to include an additional controller based on the users specific requirements. Sample code of the

implemented PID control routine can be found in Appendix C.

The integral error is limited to: within a range from -200 to 200, to counter the effects of integral wind-

up. Integral wind-up occurs when the set point limit is reached and the PID controller continues to

integrate for several iterations. As a result, the controller continues to integrate, increasing the

integral error, and expecting to reverse the controller through the integral, however due to the wind

up, the controller cannot respond. The problem occurs when the set point drops into a range when

the controller should be able to respond, but since the integral error is above the limit, the controller

cannot respond, and a lag is introduced until the controller has run for several iterations, where it has

decreased the integral error to below the limits. To counter this lag and integral wind-up effect, the

64

controller limits the integral error to a range of between -200 and 200 ensuring that the PID controller

can respond immediately when the set point drops into a range where the controller can affect

performance. Figure 51 [61] illustrates the windup phenomenon and the effects of lag.

Figure 51: Controller Response

Similarly, the output of the PID controller is also limited to a range of 0 to 255. The output of the PID

controller is used to set the duty cycle of the PWM signals required for the motor driver circuitry. The

PWM duty cycles have a physical limitation from the microcontroller’s specification, and therefore the

PID controller has to act within that range. If the output is not limited to the limits of the PWM duty

cycles then a similar problem, as described for integral windup occurs, resulting in lags introduced

when the axis is nearing its set point. This lag makes the controller unstable, and overshoot the

desired set point.

Additionally, the wiper motors on start-up had a stall current that had to be overcome. Therefore on

the first iteration of the PID controller, the output is set to a maximum value and thereafter the output

is manipulated as per the PID calculation. This was added in to ensure that the PID controller could

operate from the very first iteration thereafter the speed controller would pull the speed back to the

necessary point.

From the above, it can be seen that it is easy to implement a PID controller, but the performance of

the PID controller is crucially dependant on the tuning and setting of the individual gains. Furthermore,

users would have the ability to plot the response of their controllers in the program. They could then

analyse the response and tune the gains appropriately. The easiest method to tune the gains is by trial

and error, which includes manipulating the gains depending on the generic set of rules. Table 10

summarises the trial and error tuning guidelines of how changing each gain: Kp, Ki and Kd affects

performance.

Table 10: Trial and Error Tuning Guidelines

Response Rise Time Overshoot Settling Time S-S Error

Kp Decrease Increase -- Decrease

Ki Decrease Increase Increase Eliminate

Kd -- Decrease Decrease --

65

Table 10 can be used for the trial and error method to tune the PID controllers. However despite its

simplicity the trial and error method is by no means the most accurate and efficient method of tuning

control parameters. A more effective method used to tune controllers is the Ziegler-Nichols tuning

method. It is however more complex and requires calculations.

The Ziegler-Nichols method was developed through experimentation by Ziegler and Nichols. They

proposed a set of rules to determine the tuning parameters (Kp, Ki and Kd) using the transient step

response of the controller [62], also known as the reaction curve. The first Ziegler-Nichols method is

for controllers with no integrators or complex conjugate poles, whose step response or reaction curve

is S-Shaped, with no overshoot. Figure 53 [62] shows a reaction curve for a step response of a

controller as well as the critical points required for Ziegler-Nichols tuning.

Figure 52: Ziegler Nichols Tuning

Using the Ziegler-Nichols method and the reaction curve, if a tangent line is drawn at the inflection

point of the S-Shaped curve, two key constants are generated, namely the delay time L, and the time

constant T. These two constants are determined by locating the intersections of the tangent line with

the X-Axis, as well as the time and the steady state of the response curve [62]. Once these two

constants have been calculated, Ziegler-Nichols proposes setting new values for Kp, Ki and Kd based

on the formulas in the following table:

Table 11: Ziegler Nichols Tuning Rules

Controller Kp Ki Kd

P �/� 0 0

PI 0.9�/� 0.27 �/�� 0

PID 1.2�/� 0.6 �/�� 0.6�

7.3. Program Interpretation and Validation

The GUI presented to the user, has the option for the user to enter a user specific program for the

current MRMT configuration. Full details on the GUI can be found in Section 8.3. The user entered

program is interpreted and then validated against a selected set of NC code words. The validation

ensures that the user entered program is executable on the current MRMT.

Table 12 covers the NC and reduced instruction set that the text interpretation and user program

validation algorithms process:

66

Table 12: Reduced NC command Instruction Set

Function Address Example Units

Program Number P P00001 --

Block Number N N01 --

Preparatory Function G G01 --

Coordinate
(Translational Axis) X, Z X100, Z50 Mm

Coordinate
(Rotary Axis) A A25 Degrees

Feed rate F F100 mm/rev – mm/min

Spindle Speed S S1000 Rpm

The following code is an example of a part program (P001) consisting of 4 NC blocks. Each block

consists of several words, and each word consists of an address and a number. A part program such as

this example can be programmed into the GUI and is interpreted and validated.

 P001;
 N10 G01 X0 Y0;
 N20 G01 X100 A25 F100 S1000;
 N30 M00;
 N40 M02;

The part program and the NC words can be described as follows:

 N10 and N20 are the current code block numbers

 G01 is a preparatory function, in this case a movement command, which commands the

relative movement between the tool and workspace

Thereafter, the individual axis can be instructed to move to a desired location, as is demonstrated in

this example.

 In the code block N10, the X and Y axes are commanded to move to the origin or zero point at

the default feed rates

 In the code block N20, the X axis is requested to move to 100 mm towards the workspace

from the origin or zero point and the rotary axis A, 25 mm clockwise from its origin or zero

point

Finally, the F-code and S-code is entered, setting the feed rates for the axes and the spindle speed for

the tool head module. As per the example for code block N20:

 The feed rate is set at 100 mm/rev;

 The spindle speed is set to 1000 rpm;

 The “;” is the end of block character.

Code blocks N30 and N40 demonstrate the movement start and stop commands. The flow chart in

Figure 53 illustrates the sequence of events followed for text interpretation and user program

validation. Once the user has entered in the program, and the program is saved, the text

interpretation and program validation routine is called. The routine opens a .dat file and updates it as

67

the interpretation and validation is processed. Each code block is read sequentially and each word is

verified. The words are checked to see if they can be classified as:

 M or G code words

o Preparatory functions for modes or machine commands

 Coordinate commands

o Verification against the limits of the respective axis, depending on the current axis position

to ensure that the MRMT can carry out this command

 Feed rates

o Verification to ensure that the feed rate is less than the lowest feed rate of all the axes on

the MRMT.

 Spindle speeds

o Verification to ensure that the speed commanded is within the range of operation

 End Of Block (EOB commands)

o Signals end of the current code block

As each line of code is read, interpreted and verified, it is saved in the .dat file for machine operation.

During the verification, if NC code block fails to be interpreted or verified, the user is presented with

an error message, signalling that the code block is invalid. The text interpretation and validation

routine is then terminated and the .dat file is deleted. Sample code for the text interpretation routine

is attached in Appendix D.

The text interpretation is implemented for the reduced instruction set. Depending on the MRMT

requirements, a more complex text interpretation can be implemented on the OACS. If required, the

OACS can be modified by simplify editing the text interpretation routine only, ensuring that the

pointers to the input data and output data in the routines follows the conventions of the original text

interpretation routine. Changing this routine does not affect the performance and operation of the

rest of the OACS, thus making the OACS reconfigurable and customizable as per the user

requirements.

68

Figure 53: Text Interpretation and Validation Flowchart

End of Program

Updatej.dat fileJ
End of word

Error "Unable td
operate at thisj
feed rate. feed

L-------------1'---.! rate must be lower
than the lowest
feed rate of all

axes"

69

7.4. Interpolation

The interpolator determines the movement requirements of each axis depending on the: current

position, the destination or target point and the maximum speeds and feed rates of each axis. The user

entered program is read, and verified after which it is saved in a .dat file. The interpolator accesses the

movement commands entered by the user, compares the movement requirement to the current

MRMT axes positions and determines the optimum movement commands for the axes and the

required feed rate for each axis.

7.4.1. Linear Interpolation

Linear interpolation is used to move the MRMT axes from a start position to a destination position

using the shortest distance possible. The motion is a straight line from the start point to destination

point. As mentioned previously interpolation is the process of calculation of intermediate coordinate

points between start and end positions that follow the shortest path along the contour. The

interpolation routing controls the feed rates of each axes and updates the expected position via

updating coordinates.

Linear interpolation is computed for a single or two axial motions and each block of code that requires

axial movement uses the interpolation routine. The current machine tool axial coordinates, the

destination coordinates and the feed rates of each axis are required by the interpolator to compute

the interpolation coordinates. The easiest of the three is the single axis linear interpolation as in single

axis interpolation, the tool movement is always parallel to the axis [63].

Figure 54(a) illustrates the basic operation of an interpolator for point to point control method for a 2

axial movement requirement. The two axes linear interpolation is a very common movement

requirement for CNC systems and is used to further explain the interpolation computations. The

MRMT needs to move from P1 to P2. In order for a successful accurate movement, the interpolation

routine requires the following [28]:

 Interpolation data needs to match the actual part shape;

 Due to mechanical structure and servo motor speed limitations on the MRMT, the

interpolator needs to calculate velocity and feed rates that all axes can operate at.

Figure 54(b) shows an example of the interpolated results based on the movement requirements. The

total movement required by each axis is divided up into equal segments, and based on the lower feed

rate of the two axes, a constant time interval and the velocity of each axis calculated. The result is a

computation based on the shortest path between the two points. The illustrated result of this

calculation ensures that the two axes reach the destination point after the same time interval, despite

different movement distances for each axis via manipulation of the feed rates of each axis.

70

Figure 54: (a) 2 Axis Input Parameters (b) Interpolated results

To ensure that all the axes reach the destination point simultaneously and that the MRMT reaches the

destination by travelling along the shortest possible path, the interpolator calculates the feed rate of

each axis individually. The interpolator either “speeds up” or “holds back” an axis depending on

direction of motion to ensure that all axes reach the destination simultaneously.

The interpolation routine has been developed on the reference word interpolator [63]. Figure 55 [63]

shows the critical information required for a linear interpolation calculation. The actual tool motion

follows the path L, the length of L can be calculated by Pythagoras theorem for right angled triangles.

The following is a summary for the derivation of equation 7.29 and equation 7.31 [28].

Figure 55: 2 Axis Linear Interpolation Example

The interpolation routine calculates the required feed rate for each axis by the following

equation 7.26, where � is the lowest feed rate of all the axes.

 �� =
��

�∗�
 �� �� =

��

�∗�
 �� �� =

��

�∗�
 (7.26)

Central to the interpolation routine calculation is division of the axis displacement by the interpolation

time, ���� . The total displacement �� or �� is then divided by the interpolation time ���� to reveal the

Figure 56 [28].

71

Figure 56: Reference Word Algorithm

The area under the curves then equal velocity of each axis and can be converted to the feed rates:

∆� =
� ����

��
 (7.27)

The position of each axis at a given time can then be determined by:

���� = �� + ∆� (7.28)

This residual length can be calculated as follows:

��������� = � − �� (7.29)

The total number of iterations required by the interpolator is calculated by:

� =
�

∆�
 (7.30)

N is always rounded up to ensure that the residual displacement required is calculated and the

respective commands sent out by the interpolator. When the interpolation routine runs for the

��� time, the new feed rate required for the final iteration can be calculated as follows:

 �� =
 ��∗���������

����
 (7.31)

The interpolation routine runs and calculates the movement requirements for each axis based on

these calculations and the results are stored in a First In First Out (FIFO) buffer. The preparatory

command G01 is used for linear interpolation. Sample code for the linear interpolation routine is

attached in Appendix E.

7.4.2. Circular Interpolation

Circular interpolation is a control method for CNC machines to controlling a machine tool along an arc

or a complete circle depending on machining requirements. A circle is defined by its centre point and

its radius. The preparatory commands G02 and G03 are used for circular interpolation, with G02 for

Clockwise motion and G03 for counter clockwise motion.

The code block specifies the preparatory command, the plane of interpolation and the start and end

points which also defines the arc radius. The circular interpolator approximates the circular path or arc

72

by small straight line segments. The arc movement accuracy is dependent on the number of line

segments, although a trade-off between computation and accuracy is required as more interpolation

iterations are required for more line segments.

The reference word interpolator for circular interpolation was implemented and the velocity of the

MRMT during circular interpolation can be calculated as per the following derivation. The following is a

summary for the derivation of equation 7.44 and equation 7.45. The axes velocity is calculated by the

interpolation routine and used as the reference input for the position controllers.

��(�) = � ����(�) (7.32)

��(�) = � ����(�) (7.33)

where �(�) =
��

�
 (7.34)

Figure 57 [28] illustrates the data for two successive iterations for the circular interpolation routine. As

mentioned, there exists a trade-off between accuracy, computational power and the angle � is the

determining factor for the number of iterations. The following equations can be extracted from

Figure 57, using the theorem of Pythagoras for right angled triangles.

Figure 57: Reference Word Algorithm for Circular Interpolation

��� �� =
��

�
 (7.35)

��� �� =
��

�
 (7.36)

���� = �� + � (7.37)

Similarly, manipulating equation 7.35 and equation 7.36 we get equation 7.38 and equation 7.39:

�(� + �) = �(�) ��� ���� (7.38)

 �(� + �) = �(�) ������� (7.39)

Using the angle sum trigonometric identities and combining the results under the assumption

(� = ��� � and � = ��� �):

�(� + �) = ��(�) − ��(�) (7.40)

 �(� + �) = ��(�) + ��(�) (7.41)

73

Now using equation 7.40 and equation 7.41, and from Figure 58, the next interpolation coordinates

can be calculated as follows:

��(�) = �(� + �) − �(�) =(� − �)�(�) − ��(�) (7.42)

��(�) = �(� + �) − �(�) =(� − �)�(�) + ��(�) (7.43)

Finally, using Pythagoras theorem, the axial increments can be computed and the interpolation routine

can calculate the individual axes velocities as follows:

��(�) =
� ��(�)

��(�)
 (7.44)

��(�) =
� ��(�)

��(�)
 (7.45)

Where ��(�) = ���(�)� + ��(�)� (7.46)

To solve for �, A and B, a number of sampled data interpolation methods can be chosen with trade-

offs between iterations and the accuracy. Suh et al compares six different methods and based on this

comparison [28], the Improved Tustin method was chosen due to the lower number if iterations and

accuracy.

The improved Tustin method makes the radial error ER and chord height shown in Figure 58 [28] equal

to 1. In doing so, the angle � can be calculated as follows:

���
�

�
=

���

���
 (7.47)

Solving for �:

� ≅
�

√�
 (7.48)

Figure 58: Radial and Cord Height Errors for Circular Interpolation

And the number of iterations:

� =
�

�
√� (7.49)

Sample code for the circular interpolation routine is attached in Appendix F.

74

7.5. Acceleration and Deceleration Control

If the current OACS were implemented as is, the axis would approach its destination and abruptly stop.

In order to prevent this mechanical shock and to ensure smooth axes control, an acceleration and

deceleration routine and control algorithm has been implemented.

The interpolation routine calculates the axis displacements after which the acceleration and

deceleration routine performs the acceleration and deceleration on the axial commands.

Digital filter theory is used as the basis for the acceleration and deceleration control algorithm, where

if an input signal �[�] is the input to a filter with impulse response �[�] then the filter has an output

�[�] which is the convolution of �[�] and �[�] [28]. For a discrete system, the general convolution is

shown in equation 7.50, equation 7.51 and equation 7.52 [28].

�[�] = ��[�] ∗ ��[�] (7.50)

 �[�] = ��[�]��[�] + ⋯ + ��[�]��[� − �]

 + ⋯ + ��[�]��[�] (7.51)

�[�] = ∑ ��[�] ∗ ��[� − �]�
��� (7.52)

If �[�] denotes the interpolation output and �[�] be the impulse response with a normalized unit

summation, the convolution results is illustrated in Figure 59 [28] where for discrete time, � is the

product of n and the sampling time T.

Figure 59: Convolution Example

For acceleration and deceleration control the calculated pulse train is dependent on the type of

impulse response function used. The three common impulse responses are the linear type,

exponential type and the S-shape type as show in Figure 60 [28].

75

Figure 60: Input and Output Pulse Train Profiles

The S-shape method was chosen and implemented for the acceleration and deceleration control

routine as the S-Shape translates to a smoother acceleration and deceleration control of the axis. In

addition as is seen in an example, the S-Shape method can result in a linear type response if desired by

manipulation of the routine constants. The S-shape method can best be described in reference to

Figure 61, which shows a hardware implementation for the algorithm but can easily be converted to a

software calculation.

Figure 61: Illustration for S-Shape Acceleration/Deceleration Control [28]

From Figure 61 the output ∆�� is computed as equation 7.53 where �� is the multiplier values, and ��

the input data shifter at the ��� iteration.

∆�� =
∑ ����

�
���

∑ ��
�
���

 (7.53)

∆�� defines the acceleration and deceleration output pulses which are then stored in a first in first out

buffer file for transmission to the respective distributed control modules. The code for the

acceleration and deceleration routine is attached in Appendix G.

76

7.6. Encoder Position Algorithms

The index pulse is generated once per rotation of the code wheel, and the channel A and channel B

pulses are generated in a quadrature format as shown in Figure 62. The 4 pulses generated by

Channels A and B are each generated 256 times in every rotation adding up to a count of 1024 per

revolution.

The direction of rotation can be determined by analysis of the quadrature waveforms, if the code

wheel viewed from the encoder end of the motor and the code wheel is rotating in a counter

clockwise direction then channel A leads channel B. Similarly if the code wheel is rotating in a

clockwise direction then channel B leads channel A [51].

The output signals from the three channels are connected to the external interrupt pins on the

distributed modules and when the interrupts trigger a counter is incremented or decremented

depending on the result of this check.

The incrementing and decrementing of the counter imply a movement of the axis which has a zero set

point located at the midpoint of the axis. From Figure 62 [51] it can be seen that when Channel A

triggers, the direction of rotation is actually determined by the value of Channel B, similarly when

Channel B triggers, the direction of rotation is determined by the value of Channel A. Table 13,

summarises the decoding of the quadrature waveforms from the encoders [51].

Figure 62: Output Signals from the Encoder

Table 13: Logic for Decoding Quadrature Encoder Waveforms

Channel Interrupt 1 Rotation Interrupt 2 Rotation
A B = Low Clockwise B = High Counter Clockwise

B A= Low Counter Clockwise A = High Clockwise

The code for interrupt service routine on the Arduino UNO for Channel A is shown below.

 1: void EncoderAISR()
 2: {
 3: // check channel B to see which way encoder is turning
 4: //if Channel B is LOW then Clockwise rotation
 5: if (digitalRead(EncoderB) == LOW)

77

 6: {
 7: EncoderPos = EncoderPos + 1; // CW
 8: }
 9: Else
 10: //channel B is High, CounterClockWise Rotation
 11: {
 12: EncoderPos = EncoderPos - 1; // CCW
 13: }
 14: }

7.6. Chapter Summary

Chapter 7 has covered the various control and interpretation algorithms that the OACS uses from

start-up, configuration to machining. The algorithms covered include the kinematic viability routine,

control routines, text interpretation and user program validation, interpolation and acceleration and

deceleration routines. Examples of the code for the routines are also presented to illustrate how the

OACS actually implements the theory.

78

8. Open Architecture Control System Software

Chapter 8 covers a discussion on the GUI of the OACS. The various functions of the OACS is discussed

and the value add of each function highlighted. Furthermore a flowchart of sequence of events that

the user is expected to follow is presented which closely relates to the function of the OACS. Finally

the distributed module software is also covered, with a flowchart to illustrate what the distributed

modules are required to manage.

8.1 Overview

For the benefits of an OA system to be realized, a high correlation between RMS systems and the

control system needs to exist in both hardware and software. A MRMT, being a derivative of the RMS

paradigm, is designed and developed on the core principles of reconfigurability, modularity and

others.

Similarly, through the: research, design and development of the open control system, the aim was to

incorporate the following core principles in all aspects:

 Extendibility:

o The ability of a number of modules to run on a system without conflict

 Interoperability:

o The integration of modules such that the modules function in a consistent way, and

communicate via pre-defined protocols of data exchange

 Scalability:

o The ability to add, integrate, remove or swap in new modules thereby scaling the system up

or down to adapt the performance or functionality of the system

 User Customization

The following aspects were crucial to the design, development and realization of a control system with

the aforementioned characteristics: The proposed and implemented solution of distributed modules

in the field, derived classes, software modules and the one to one linking.

By creating a modular electronic hardware and software system with well-defined interfaces, the

control system has the ability to be scalable in all aspects. Distributed modules can be added on to the

communications network with ease. Furthermore by scanning the network, the host PC discovers this

new module and create an associated class for it. Alternatively modules can also be removed or

swapped, thereby satisfying the scalability requirements of the control system.

The implementation of the modular software and modular hardware system has also ensured that the

control system is indeed extendable. The design philosophy is based on a one to one link between

software and hardware. This approach ensures that a number of modules are capable of running on

the system without conflict.

The control system aims to address the customization requirements of open control systems by

including three methods to customize programs and control algorithms. As discussed previously, users

have the option to: program, compile and run custom applications for their MRMT. This allows for the

79

evaluation of the performance of the controllers and if need be the controllers can be tuned by the

user. These three methods provide flexibility, reconfiguration and customization to the end user,

which are critical evaluation aspects of open control systems.

8.2 Development Environment

At the head of the system is the host PC. The host PC is responsible for interfacing all the distributed

modules, which in turn interface the mechanical axis on the MRMT, as depicted in Figure 63.

Figure 63: System Architecture

The host PC software was developed using Microsoft Visual C#, which is based on Microsoft’s .Net

Framework. As highlighted in Chapter 6, the choice to have cross platform uniformity and

standardisation, as well as ease of understanding, the use of a common language and framework was

preferable. Furthermore, the CAN bus communication protocols have standard libraries for C#

application, which allows the user to set up and utilise the full features of the CAN bus hardware.

In addition the applications developed with Microsoft Visual C# have well defined external interfaces

and support for external inputs and interfacing with other software. Although this does not form part

of the scope of this research, the use of Visual C# can assist further research and development for the

integration of external interfaces. One of the aims, although not part of this research, is to enable the

OACS to have open external interfaces for users to load user specific control algorithms and programs

between different software platforms. The well-defined visual C# interfaces assists in the

implementation of this feature of OACS.

8.3 User Interface

The user interface, also known as the Human Machine Interface (HMI), or the GUI, developed in

Microsoft Visual C#, uses windows forms to present the user with an interface that is user-friendly.

When the OACS is initially run, a GUI is presented to the user. The tabbed GUI is presented with

different configuration and setup tabs for the user sequentially step through to configure the MRMT.

The start-up GUI that the user initially sees is shown in Figure 64.

80

Figure 64: Graphical User Interface

Due to the non-determined and dynamic structure of the MRMT, the user must follow the step by step

setup and configuration process to create the software for the structure of the MRMT as well as the

control requirements for the host PC.

The GUI shows the user several tabs that are followed sequentially during set up. The following tabs

are available for the user:

 Hardware Modules:

o After initialization of the CAN bus network, a bus scan is run to determine which modules

are connected and active, after which the user is to enter the physical configuration of the

MRMT to determine kinematic viability

 Data Download:

o Host PC downloads critical information such as control requirements, limitations and

transformation matrices, from each connected module

 Module Information:

o Displays information downloaded from each module

 CAN bus:

o To assist with debugging and diagnosis. The tab displays the raw CAN bus data received

 Controllers:

o Controller selection tab

 Motor Control:

o To assist with tuning and debugging. Individual control and movement of each connected

module can be setup

 Program Editor:

o Tab to allow the user to enter a custom program

 Algorithm Editor:

o Interface to allow the user to customize and tune the control parameters on each

distributed module

81

In order to better demonstrate the flow of operations that are run, the flow chart in Figure 65

illustrates the sequence of events on start-up. Sample code of the CAN bus class for the OACS is

attached in Appendix H where initialisation, general call, and data download calls and others have

been implemented.

8.4 Set-Up and Configuration

The system on start-up automatically determines which hardware modules are connected and active

by conducting a scan on the bus. Each distributed module that is connected to the bus replies with its

Figure 65: Flowchart of Sequence of Events

82

unique ID, thereby signalling its active status on the bus. Additionally, with active status and signal, a

predefined code is also be transmitted. This code informs the host PC of the type of module it is, e.g.

servo or spindle modules.

Each of the distributed modules have a dedicated software class object derived from a generic class

created for it. In order for this newly generated class to inherit the correct functions and parameters

from the generic class, the type of module needs to be known. Tables showing examples of the code

words transmitted have been covered in Section 6.7.

The flowchart in Figure 65 is a representation of the sequence of events that the OACS follows during

initialisation or reconfiguration process. The following sub-chapters cover each step in the initialisation

or reconfiguration process in more detail with screenshots of the GUI indicating the expected data that

the user sets up.

Figure 66 shows an example of the results received from a scan, where four modules are connected to

the bus. The same four modules are connected to the system in all GUI screenshots in this chapter for

consistency and to illustrate how the OACS handles the connected modules. The four connected

modules are as follows:

 Three servo modules

o Two translational axis

o One rotary axis

 One tool module

o Drill module

Figure 66: GUI Showing Results of a Bus Scan

The data that is received from the distributed modules is stored in temporary classes. This is because

the host PC does not yet know the physical configuration of the MRMT. It is necessary to know the

physical configuration of the MRMT, as a computation of the transformation matrix of the current

83

machine structure is required for control purposes. Furthermore, the complete transformation matrix

of the machine tool is used to determine if the structure of the machine tools is kinematically

viable [29].

After scanning the bus, the host PC has complete list of all the modules that are active and connected.

Thereafter, using this list, the host PC asks the user to input the details of the physical configuration of

the hardware modules. The numbering sequence starts at tool head and work towards the product

workspace as required, in order to determine the kinematic viability as depicted in Figure 67.

Sample code for a generic servo module class is attached in Appendix I where the methods and

variables of a generic software class can be found. New classes are derived from this generic class at

runtime depending on the user entered configuration and the available hardware modules. The

temporary software classes contain similar methods and variables as the generic servo class shown in

Appendix I.

Figure 67: GUI Showing Numbering Sequence

Once the user enters in the physical configuration details, the control system then re-assigns the initial

data downloaded from the modules to the new classes that are generated as shown in Figure 68.

Unlike the initial temporary classes which did not know where and how the modules link mechanically,

these new classes are specific and know the physical configuration details. These new classes are used

as part of the control algorithms that have been implemented.

84

Figure 68: Illustration of the Assigning of Classes

Sample code for the physical configuration and set up of the MRMT can be found in Appendix J, where

the functions of the buttons in Figure 68 are implemented. The code illustrates how the OACS

responds based on what hardware modules are detected and what physical configuration the user

enters. Furthermore since the data is temporarily stored until the physical configuration is entered,

the code shows how the data is copied across to new classes based on the user entered configuration.

Knowing the physical configuration and mechanical connections of the modules, the host PC then

downloads the specific data information that is required for control purposes from each distributed

module.

The system as implemented has both the ability to scan the bus on start-up as well as live time

readjust the control variables for the algorithms. The advantage of such a system is that if a new

module is added on, whether it may be slower or faster in control speeds to the existing modules, the

system caters for the lowest common denominator and uses that to determine the overall system

performance. This then ensure that regardless of the module added onto the system, the system is

able to function correctly.

8.5 Data Downloading and Module Information

The OACS conducts a data download from each of the connected distributed modules and requests

the following data from each module:

 Type of Module:

o Axis:

 Translational Axis

 Rotary Axis

o Tool:

 Drill

 Accuracy;

85

 Axis limitations and movement range;

 Resolutions;

 Motor speeds;

 Transformation matrix.

Each of these are crucial for ensuring correct operation of the control algorithms. Figure 69 shows an

example when data has been downloaded. Appendix K shows sample code for the data download tab

where the functions of the buttons in Figure 69 are presented and also covering how the OACS sends

out commands to the distributed modules based on the user input.

Figure 69: GUI Data Downloads

Once this data has been downloaded for each distributed module, the system automatically stores the

downloaded data in the corresponding software class. Thereafter, if the user requires, the respective

data for each module can be displayed. An example of the module information tab is shown in

Figure 70. This module information features allow users to conduct verification and assists in

diagnostics and debugging to verify that the correct modules are connected and the correct data has

been downloaded.

86

Figure 70: GUI Module Information

8.6 Contoller Selection

One of the requirements of the OACS is to allow user customization. One of the methods implemented

to allow user customization is to allow users a choice of control algorithms. The OACS presents the

user with two choices for control algorithms. This is shown in Figure 71, the choices being: PID or PI

control. These two controllers were chosen to show that a user can have a customized solution.

However the user may even write their own controller and add it to the OACS if desired.

Figure 71: GUI Controller Selection

87

Once the user has chosen his preferred control algorithm, the OACS updates the corresponding

software class or module, and in turn sends out the required data to the corresponding distributed

module. If required, the OACS can be updated with additional control algorithms, and the end user can

then be presented with additional control algorithm choices.

8.7 User Programming

A critical aspect of OA platform is to allow end users the ability to: program, edit and write custom

applications depending on their machining requirements and the MRMT available. The inclusion of

software modularity and reconfigurability, from the outset of the design and development of the

control system, has allowed for the addition of methods and functions for user specific customization

of the executed programs. The customization methods have been included in three different ways:

 Program Editor

 Algorithm Editor

 Performance Evaluation and Tuning

An end user has the option of writing and inputting their own program using a combination of M

and G word functions. A reduced set of M and G word functions has been discussed in Section 7.3.

The options for the user to enter the: program, limits and acceptable inputs, has been discussed in

Section 7.3.

The program that was entered is saved and compiled, and if a successful compiling flag is received, the

user is able to run the program by selecting the run command button. Figure 72 shows the program

editor window that the user can write, edit, compile and run programs with. Users can also save and

load programs in a program database when required, by simply clicking the corresponding screen

commands.

Figure 72: Program Editor

88

When the user entered program is run, the OACS sequentially steps through the program line by line,

transmitting commands to the distributed module, updating the control commands transmitted as

completed status messages are received from the modules, and updating the required fields of the

GUI as the received data is decoded. An example of the program editor window is shown in Figure 73,

where the program is currently executing line 1 of the program. As can be seen, the status of the Z axis

is set to “running” indicating that the MRMT is still executing the respective program.

Figure 73: Program Editor with User Entered Program

8.8 Motor Control, Debugging and Performance Evaluation

The motor control tab allows the end user to debug the MRMT and could help to assist in diagnosing

problems on axes. The end user has the option of individually controlling each axis, to a dedicated set

point, a distance of just a movement in either direction. Figure 74, shows the GUI motor control tab,

where the user has selected to move the distributed module with ID 4 a distance of 10 mm clockwise.

Sample code for the motor control tab is attached on Appendix L. Once programs are written,

compiled and run, the user may wish to evaluate the performance of the control algorithms and their

custom written programs. In order to evaluate the performance, the user can track the response of

the control algorithms by plotting the feedback response.

The performance evaluation process is started by: selecting a distributed module to test, entering a set

point for the axis and starting the MRMT. Once the set point has been reached, the feedback data is

saved and the user has the option of plotting the response. Figure 74 shows the motor control screen

presented to the user for performance evaluation.

The OACS has proven that an open system can allow end user customization throughout the life time

of the MRMT by allowing access to change and modify performance parameters such as controller

gains. Similarly, this can be up scaled to include additional end user customization and reconfiguration

89

options such as allowing users to change the interpolation times, cycle refresh times, PID sample times

linear interpolation intervals, acceleration and deceleration multiplier values and others.

Figure 74: GUI Motor Control and Debugging

8.9 Algorithm Editing and Tuning

After analysis of the controller response, and evaluating the performance from the motor control tab,

the user can access the algorithm editor screen to tune the controller. By selecting the distributed

module, the user can edit or change to tuning parameters of the controller associated with that

distributed module.

When the user loads the new tuning parameters, the OACS updates the corresponding software

module or class, and in turn transmit the updated parameters to the respective distributed module.

The algorithm editor tab, where tuning parameter editing and update can be achieved, is presented in

Figure 75. The PI or PID controller performance can be assessed and tuned as per the Ziegler Nichols

tuning method, or by manual tuning, covered in Section 7.2.

90

Figure 75: GUI Algorithm Editor

8.10. Distributed Module Software

The distributed modules were responsible for interfacing the mechanical modules and the associated

sensors. As covered in Section 6.3, the distributed modules were developed using multiple

microcontrollers to demonstrate the openness of the OACS. The programming environments for each

of the distributed modules differ depending on the type of microcontrollers. The following

programming environments were used:

 FEZ Panda 2;

o Microsoft Visual C#

 With Microsoft .Net micro Framework SDK

 FEZ Panda 2 libraries

 Arduino Uno;

o Arduino 1.0.1

 With CAN_BUS Shield Libraries

 chipKIT Max 32;

o MPIDE

 With chipKIT network Shield libraries for CAN bus

The programming of distributed modules, despite being on multiple microcontrollers, all followed the

generic flowchart shown in Figure 76. Depending on the programming environment, the

microcontroller features, and interfacing circuitry, the actual programs on the microcontrollers may

vary from the generic flowchart which forms part of end user customization and flexibility.

The flexibility in microcontroller choice is part of the end user customization to ensure that despite the

differences between distributed modules, with a small customization on the modules, the complete

91

system functionality is maintained, provided that the interface and data transfer between the tiers is

consistent and standardised.

8.11 Chapter Summary

Chapter 8 has covered a discussion on the GUI of the OACS. The various functions of the OACS that the

user is able to access has been discussed and the value add of each function highlighted. Furthermore

a flowchart of sequence of events that the user is expected to follow is presented which closely relates

to the function of the OACS. Finally the distributed module software is also covered, with a flowchart

to illustrate what the distributed modules are required to manage.

92

Start

Setup:
CAN bus
Inputs

Outputs
Timers

Interrupts

Loop

CAN bus
Interrupt

Encoder
Interrupt

Limit Switch
Interrupt

Update axis position Stop Motor

MSG addressed
to Module

Decode MSG

General MSG

Decode and send
out requested data

Load control
requirements

Reject MSG

PI/D Timer
Interrupt

Run PI/D iteration

Update PI/D output
Axis position =

Set Point

Run PI/D Iteration

Update PI/D

Control Update -
Start

Control Update -
Stop

End Interrupt
Routine

End Interrupt
Routine

End Interrupt
Routine

End Interrupt
Routine

Control Update -
Stop

Control Update
Routine

Start

Load Set point
Start PI/D controller

Stop

Clear Set Point
Stop PI/D controller

Control
Instruction

PI/D Tuning

Update PI/D tuning
parameters

End Control Update
Routine

Tuning

Update PI/D Tuning

Figure 76: Microcontroller Software Flowchart

93

9. System Testing and Performance

The performance of the researched, designed and developed OACS on the existing MRMT is firstly

evaluated in terms of accuracy, repeatability, power usage and vibration monitoring for machining and

control. Additionally the CPU load, reconfiguration times and response times based on a multiple

microcontroller implementation is also discussed to evaluate the success of the developed system.

9.1. MRMT Setup

To conduct tests for performance on the MRMT and the OACS, the MRMT was set up using the four

mechanical and electronic modules namely: two linear axes, one rotary axis and the spindle module.

The MRMT was configured as shown in Figure 77 for the tests.

Figure 77: MRMT Configuration for Testing

The distributed modules were each connected to a mechanical axis, thus ensuring that the associated

electronics such as: encoder input circuitry or limit switch input circuitry, for that axis, were available

on that distributed module. The microcontroller for each distributed module was mounted on a single

board with a Vera board, which contained all the circuitry to support the external interfaces, as shown

in Figure 78, Figure 79, Figure 80 and Figure 81. The Figures show pictures of each of the distributed

modules as constructed, with labels indicating key circuitry on each of the modules.

94

Figure 78: Distributed Module - Arduino UNO (Linear Axis Z)

Figure 79: Distributed Module – chipKIT (Linear Axis X)

Figure 80: Distributed Module – FEZ Panda 2 (Rotary Axis A)

95

Figure 81: Distributed Module – FEZ Panda 2 (Spindle Module)

9.2. Reconfiguration Times

The mechanical modules of the MRMT were set up with two different configurations, one with three

modules and the other with four modules. For each of the aforementioned scenarios, the time for the

distributed module reconfiguration, followed by the OACS reconfiguration, which included entering of

a generic user program, was captured. In order to compare the results to a reference, the tests were

conducted, firstly by a user familiar with the OACS, and thereafter by a new user who had no

experience on the OACS. The tests were conducted five times and the averaged results are

summarised in the Figure 82. The full set of results can be found in Appendix M.

Figure 82: Graph of Software Reconfiguration Time

From these results, the following can be seen:

 Reconfiguration and setup of the OACS is quicker when conducted by a user familiar to the

system;

 New users took approximately 1.75 times longer than familiar users to reconfigure the OACS.

0

100

200

300

400

500

600

1 2 3 4 5

Ti
m

e
 (

s)

Iteration

Graph of Software Reconfiguration Time - Familiar and
New User

Familiar User: 3
Modules

Familiar User: 3
Mod Avg

Familiar User: 4
Modules

Familiar User: 4
Mod Avg

96

9.3. PC Load

A windows performance monitor was used to test the load of the OACS on the PC. The performance

monitor allows the CPU and PC memory usage to be monitored. Figure 83 is a snapshot of the CPU

utilization during operation of the OACS.

Figure 83: CPU Load During OACS Operation

From this data, the following can be seen:

 During steady state, the average CPU usage is less than 4%;

 CPU load increases as the OACS program is started and the MRMT is: set up, configured and

programmed;

 The demand on the CPU increases significantly during machining. This is due to the

interpolation, acceleration and deceleration as well as the control routines are run;

 The maximum CPU usage recorded is 38%.

9.4. Acceleration and Deceleration Control Example

The acceleration and deceleration routine covered in Chapter 7 manipulates the interpolated data to

accelerate the axes on start-up, and decelerate the axis when it reaches its destination point in order

to: to minimise overshoot, smoothen the axis movement, and prevents mechanical shock and damage

to the MRMT. The S-Shape convolution method had been selected and implemented for the OACS.

The corresponding test data is attached in Appendix N, and the simulation graphs are presented in

Figure 84.

97

Figure 84: Graph of Acc/Dec Output Pulse

As seen in Figure 84, with constant multipliers, the output follows a linear relationship. However,

depending on the electromechanical components, a response curve that follows an S shape maybe

desirable for the end user. In order to achieve this S-shape, the same routine can be used with

different multiplier values. The example that follows changes the multiplier vales to k = [1,2,3,2,1]. The

resulting plot shown in Figure 85 has a more distinct S-Shape as desired for the smoother acceleration

and deceleration control of the axis which relates to the speeding up or holding back of the axis on

movement.

Figure 85: Graph of Acc/Dec Output Pulse

9.5. Accuracy and Repeatability

The OACS was designed and built with the aim of satisfying certain performance characteristics.

Table 14 summarises the design specifications for each of the MRMT axes which is used to evaluate

the performance of the OACS.

Table 14: Summary of MRMT Design Specifications

 Control
Resolution

Worst Accuracy Worst
Repeatability

Minimum Speed

X – Axis 5.9�10�� 1 mm ±0.5 mm 100 mm/min

Z – Axis 5.9�10�� 1 mm ±0.5 mm 100 mm/min

A – Axis 0.015⁰ 1.5⁰ ±1⁰ 360⁰/min

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12
O

u
tp

u
t

P
u

ls
e

Sampling Time

Graph of Acc/Dec Output
Pulse (constant multipliers)

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12

O
u

tp
u

t
P

u
ls

e

Sampling Time

Graph of Acc/Dec Output
Pulse (varying multipliers)

98

To evaluate the performance of the OACS in terms of accuracy and repeatability, a set of test results

was required. These tests results are then compared to the aforementioned design specifications, and

based on the comparison, the OACS performance was evaluated. From Table 14, the expected counts

per unit can be determined via inverting the resolution as shown below:

 X Axis – 169 counts per mm;

 Z Axis – 169 counts per mm;

 A Axis – 67 counts per degree.

These are used to check the accuracy of the test results by comparing the actual encoder count to the

expected count. The MRMT was tested by commanding each axis to execute a certain movement and

the results from the movements were captured. To ensure correct evaluation, each test was

conducted several times so that the data could be averaged and analysed. The encoder counts for

each of the axes were downloaded, from each of the distributed modules, after the move commands

were executed. A summary of this data is presented in Figure 86, Figure 87 and Figure 88. In these

figures the average counts, as well as the actual counts, for several iterations are all graphed. The

complete data set is attached in Appendix O.

Table 15 compares the average counts with the maximum deviations for all axes. From this data, the

repeatability in terms of in terms of worst case deviation from set points is computed.

Figure 86: X Axis Encoder Counts

13250

13350

13450

13550

13650

13750

1 2 3 4 5 6

C
o

u
n

t

Iteration

Encoder Count - X Axis 80 mm CW & CCW
Movement

CW

CW Avg

CCW

CCW Avg

99

Figure 87: Z Axis Encoder Counts

Figure 88: A Axis Encoder Counts

Table 15: Summary of Test Results for Repeatability

 X Axis CW % Variation Z Axis CW %Variation A Axis CW %Variation

Average
Count

13533 8438 22815

Smallest
Count

13483 0.36 8259 1.07 22643 0.75

Largest
Count

13591 0.42 8605 1.97 23017 0.88

 X axis CCW % Variation Z Axis CCW %Variation A Axis CCW %Variation

Average
Count

13537 8456 22801

Smallest
Count

13519 0.13 8375 0.82 22597 0.89

Largest
Count

13566 0.21 8529 0.99 23016 0.94

7400

7600

7800

8000

8200

8400

8600

8800

1 2 3 4 5

C
o

u
n

t

Iteration

Encoder Count - Z Axis 50mm CW &
CCW Movement

CW

CW Avg

CCW

CCW Avg

22200

22400

22600

22800

23000

23200

23400

1 2 3 4 5

C
o

u
n

t

Iteration

Encoder Count - A Axis 345º CW &
CCW Movement

CW

CW Avg

CCW

CCW Avg

100

To test the accuracy of the system, the smallest and largest encoder counts are compared to the

expected count based on the module control resolution. Through this computation, the worst case

accuracy is computed for test data. Table 16 summarizes the accuracy results for the translational

axes.

Table 16: Summary of Accuracy Test Results for Translational Axes

 X Axis CW Deviation Z Axis CW Deviation

Expected Count 13520 8540

Difference on
Lowest Count

37 0.22 mm 191 1.13 mm

Difference on
Highest Count

71 0.42 mm 155 0.92 mm

 X axis CCW Deviation Z Axis CCW Deviation

Expected Count 13520 8540

Difference on
Lowest Count

1 0.005 mm 75 0.44 mm

Difference on
Highest Count

46 0.27 mm 79 0.47 mm

The following can be deduced from these comparisons:

 All Axes show similar trends with the average encoder counts for CW and CCW rotations almost

the same;

 The X-Axis has the best performance with worst case deviation of 0.42 mm;

 A Axis has best repeatability % variations of less than 0.21% for CCW rotations and less than

0.42% for CW rotation;

 The Z-Axis CCW rotation is less than the acceptable 1% variation, though the CW rotations is

between 1 and 2 % in terms of repeatability;

 The Z Axis accuracy is within the acceptable 1 mm for the three of the four worst case readings;

 Both linear axes produce 169 counts per mm;

 This corresponds to the control resolution of 5.9�10�� mm.

Similar tests for the rotary A axis were conducted and revealed errors between 1-7% and worst case

repeatability of less than 1%. Further to this, measurement tests revealed that the A Axis had actually

rotated approximately 22 degrees over the target point of 360 degrees. Since the controller uses the

feedback from the encoders to determine the current axis position, the assumption was that either

the encoder was not outputting all signals or the microcontroller was not detecting these signals.

Initially, the encoders were changed and the interfacing circuitry checked but this did not reveal any

change in result. A further test was conducted where the axis was manually moved to a measured

point and a check on the encoder counts revealed that the microcontroller was actually only

recording 63 pulses per degree and not 67 as expected. This proved that the microcontroller was in

fact missing pulses.

To correct this, the encoder resolution for the A axis was halved to 512 counts per revolution

from 1024 counts per revolution. This change would affect the system control resolution by doubling it

101

to 0.03⁰ and halving the expected count per degree to 33, but would reveal if the microcontroller was

in fact missing encoder pulses. Figure 89 and Table 17 summarise the results captured.

Figure 89: A Axis Encoder Counts (Lower Encoder Resolution)

Table 17: Summary of Test Results for Accuracy and Repeatability for A Axis

 A Axis CCW % Variation A Axis CW % Variation

Average Count 11393 11409

Smallest Count 11359 0.29 11362 0.41

Largest Count 11428 0.31 11433 0.21

 A Axis CCW Deviation A Axis CW Deviation

Expected Count 11385 11385

Difference on
Lowest Count

26 0.78 ⁰ 22 0.69 ⁰

Difference on
Highest Count

43 1.3 ⁰ 48 1.45 ⁰

From this experimental data, the following can be deduced:

 Significant improvement in accuracy of results with the reduction of the encoder resolution;

 Accuracy to within 1.45⁰ of the expected position, with the specification of 1.5⁰;

 System performs repeatable performance with worst case variation of 0.41% for repeatability;

 Clear indication that the FEZ Panda 2 board despite running on 72 MHz cannot manage 1024

interrupts per rotation of the motor.

In order to further test the repeatability of the system, the time taken to complete a command for

each axis was recorded using Peak Systems PCAN view, which monitors the data on the bus. To ensure

a correct evaluation, each test was conducted several times so that the data could be averaged and

analysed. Figure 90 compares the time taken for movement of each axes, in a CW and CCW direction.

The average times were calculated from the time the movement command was transmitted from the

host PC, till the time the feedback messages was received. This data was monitored and captured

using PCAN view, a CAN bus data monitor [42] from PEAK systems.

11300

11320

11340

11360

11380

11400

11420

11440

1 2 3 4 5

C
o

u
n

t

Iteration

Encoder Count - A Axis 345º CW & CCW

Movement (Lower Encoder Resolution)

CW

CW Avg

CCW

CCW Avg

102

Figure 90: Axis Movement vs Average Time

Table 18: Comparison of Axis Speeds

 X Axis Z Axis A Axis

CW Movement 130 mm/min 110 mm/min 301 ⁰/min

CCW Movement 159 mm/min 135 mm/min 372 ⁰/min

Table 18, showing average axis speeds, can be derived based on the data captured. From these results

the following can then be deduced:

 There is consistency for all axes, where times for CW movement are larger than the

corresponding time for CCW movement;

 Analyzing the time graph reveals that CCW time is on average 81.3 % of CW time where:

o A Axis – 81.01 %;

o X Axis – 81.50 %;

o Z Axis – 81.42 %.

 The X and Z axes both satisfy the minimum speed requirements of 100 mm/min;

 The A Axis CCW movement satisfies the minimum speed requirement as per the design

specification. However the CW movement fails and does not achieve the minimum required

speed of 360 ⁰/min.

9.6. Vibrations

An accelerometer sensor formed part of the interfacing peripherals of the spindle distributed module

to allow machining operations to be monitored. The 3-way accelerometer measured the gravitational

accelerations in the X, Y and Z planes, and the system was tested for vibrations in three different

scenarios. These are as follows:

 Test 1: To check steady state vibrations as well as vibrations due to machine movement;

 Test 2: To check intensity of vibrations during 20 mm drilling operation;

 Test 3: To check intensity of vibrations during 40 mm drilling operation.

68.67702

55.63576

36.91803333
30.08952 27.10516667

22.06893333

0

10

20

30

40

50

60

70

80

CW CCW CW CCW CW CCW

345 degrees 180mm 50mm

A Axis X Axis Z Axis

Se
co

n
d

s

Axis Movements vs Time

103

The accelerometer measured gravitational acceleration and outputted an analog signal. This signal is

fed through an Analog to Digital Convertor (ADC). The results of the ADC are presented in Figure 91,

Figure 92 and Figure 93.

The system uses the 10-bit ADC on the microcontroller allowing 1024 levels on a 5 volt signal. At 3.3V

power to the accelerometer, the accelerometer uses a gravitational resolution of ���
��

�
 , and the

actual gravitation acceleration can be computed by equation 9.1 [52] where ���� is the reference

voltage, ����� the supply voltage to the accelerometer and n the number of the bits on the ADC.

 ������������� ������������ = �(����
�������

��
− �����) (9.1)

For each axis, the steady state value, when the accelerometer measured no gravitational acceleration,

as well as the maximum and minimum readings taken, are presented in the Table 19. The complete set

of data is attached in Appendix P.

Table 19: Range of Accelerometer Readings Captured

 X (mv/g) Y (mv/g) Z (mv/g)

Steady State Reading 404 522 499

Maximum Reading 481 566 558

Minimum Reading 378 426 422

Figure 91: Recorded Vibrations Due to Axis Movement and Drill Operation

Figure 91 is a record of the vibration intensity during the following stages:

 A: No axial or spindle operation, no vibrations recorded;

 B: Only spindle operation(no drilling on product), small vibrations recorded;

 C: Only axial movement, minor vibrations recorded;

 D: Axial and Spindle operation (not on product), recorded vibrations greater than B and C.

104

Figure 92: Recorded Vibrations from Drilling 20mm into Product

Figure 93: Recorded Vibrations from Drilling 40mm into Product

Figure 92 and Figure 93 are records of the vibration intensity during the following stages:

 A: No axial or spindle operation, no vibrations recorded;

 B: Axial and Spindle operation, movement towards product, small vibrations recorded;

 C: Axial movement and spindle operation(drilling in and out of product;

 D: Axial and Spindle operation, movement away from product, small vibrations recorded.

From Figure 91, Figure 92 and Figure 93, the following can be deduced:

 There is a distinct increase in recorded vibrations on the drill module, from steady state drill

operation to drilling on a product;

 From Figure 92, vibrations occur mainly from drill operation, but also from axial movement;

 Vibrations are a combination of MRMT axial movement and drill vibrations;

 As drill depth increases, comparing between 20 mm and 40 mm depth, the vibration intensity

increases significantly.

105

9.7. Power Distribution Network Loading

To evaluate the load on the power distribution network, the current usage and power efficiency of the

OACS was analysed. This analysis was based on the current consumption data recorded for several test

scenarios. Figure 94, Figure 95 and Figure 96 show the current consumption for the three axial

distributed modules, where values for: the CW rotations, CCW rotations and the average current

consumption.

Figure 94: Graph of X Axis Current Consumption

Figure 95: Graph of Z Axis Current Consumption

2.8

2.54

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
u

rr
e

n
t

C
o

n
su

m
p

ti
o

n
(A

)

Time(s)

Current Consumption vs Time - X Axis

CCW Avg

CCW

CW

CW Avg

4
3.68

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

C
u

rr
e

n
t

C
o

n
su

m
p

ti
o

n
(A

)

Time(s)

Current Consumption vs Time - Z Axis

CW Avg

CW

CCW

CCW Avg

Time (���� �)

Time (���� �)

C
u

rr
e

n
t

C
o

m
su

m
p

ti
o

n
 (

A
)

C
u

rr
e

n
t

C
o

m
su

m
p

ti
o

n
 (

A
)

106

Figure 96: Graph of A Axis Current Consumption

The following is evident from Figure 94, Figure 95 and Figure 96:

 Stall currents for CW rotation on linear axis is greater than stall current for CCW rotations;

 CCW average is greater than the CW average for X and A axes;

 For Z Axis, which is the upright column, the CW average is greater than the CCW average

current:

o CW motion on Z Axis corresponds to an upwards movement and the Z axis has to move up

the accessory and spindle module attached to it. Thus due to the added load, a higher

current consumption for upward motion as compared to downward motion is expected.

 Distinct sinusoidal-like trend on the current recordings for both translational axes implying

increased load during rotation of the motor shaft.

Figure 97 shows the current consumption when the drill is started to steady state operation when no

drilling is taking place. On the other hand, Figure 98 shows the current consumption during drilling into

a product. A full table of current consumption for the tool module can be found in Appendix Q.

Figure 97: Graph of Unloaded Drill Current Consumption

1.86
1.97

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
u

rr
e

n
t

C
o

n
su

m
p

ti
o

n
(A

)

Time(s)

Current Consumption vs Time - A Axis

CW Avg

CW

CCW

CCW avg

1.404

1.37

1.25

1.3

1.35

1.4

1.45

1.5

1 2 3 4 5 6 7 8 9

C
u

rr
e

n
t

C
o

n
su

m
p

ti
o

n
 (

A
)

Time (s)

Current Consumption vs Time - Unloaded Drill

CW Avg

CW

CCW

CCW Avg

Time (���� �)

Time (���� �)

C
u

rr
e

n
t

C
o

m
su

m
p

ti
o

n
 (

A
)

107

Figure 98: Graph Drill Current Consumption During Operation

The following can be deduced from the data in Figure 97 and Figure 98:

 The first spike correlates to when the drill bit makes first contact with the product, and as the

drill depth increases so too does the current required increase;

 In comparison to Figure 93, vibrations during drilling operation, as the drill depth increases

there is greater vibration, therefore there is greater resistance increase and thus the current

increases towards the middle of the graph.

9.8. Response Times

The OACS has been designed and implemented using multiple microcontrollers, each with different

architectures and operating frequencies, as discussed in Chapter 6. To verify if these modules are

operating and communicating as required, the communication interface and the microcontroller data

exchange is tested. To verify this, the response times of data exchange from the host PC, with each of

the distributed modules, has been captured and is presented in Figure 99. PCAN view from Peak

Systems, an online CAN bus monitoring and diagnostic tool, was used to monitor the bus activity and

bus health.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

C
u

rr
e

n
t

C
o

n
su

m
p

ti
o

n
 (

A
)

Time (s)

Current Consumption vs Time - During Drilling Opeation

Time (���� �)

108

Figure 99: Screenshot of Data from CAN bus Monitor

The screenshot in Figure 99 is captured from the data dump from PCAN view, and shows: the number

of the message, the timestamp of the message, the ID of the transmitting node and the data bytes

included in the messages. Decoding of the message data bytes is done as per the message packet

formatting presented in Section 6.7. The following information is used to analyze the response times:

 ID0x05: Fez Panda 2 board (Tool Module running at 72 MHz);

 ID 0x04: chipKIT board (Linear X Axis Module running at 80 MHz);

 ID 0x03: Fez Panda 2 board (Rotary A Axis Module running at 72 MHz);

 ID 0x02: Arduino UNO board (Linear Z Axis Module running at 16 MHz);

 Label A shows the general call made to all modules. The general call is a bus scan, to detect

which modules are connected to the bus. The modules then respond with their unique ID to

indicate their connection on the bus;

 Label B shows the transmitted data from the PC, requesting a data download from each

distributed module;

 Label C shows the responses to the data download messages from each of the distributed

modules.

Table 20 presents the response times computed from Figure 99. The following can be deduced from

the information:

 Despite having the second fastest clock frequency, the Fez Panda 2 boards have the slowest

response times;

 The Arduino UNO running at a clock frequency of 16 MHz, less than a quarter of the FEZ Panda 2

frequency, has a significantly faster response time;

 Despite the Arduino UNO running at a fifth of the clock frequency of the CHIPkit, it matches the

response times;

109

 The Arduino UNO and the CHIPkit use similar Arduino bootloaders, unlike the FEZ Panda 2

board which runs on the Microsoft .NetMicro Framework. The response times are therefore not

purely dependent on the microcontroller operating frequency, but are also based on the

microcontroller architecture and microcontroller bootloader framework.

Table 20: Summary of Distributed Module Response Times

Message Response Time (ms)

Board ID 0x05 ID 0x04 ID 0x03 ID 0x02

General Call 5.2 1.1 6.7 1.5

Data Download 5.3 1.4 6.9 2.2

9.9. Chapter Summary

Chapter 9 has presented the user with the test system used for testing the performance of the OACS

on the MRMT. The test results for: accuracy, repeatability, response times, power usage, CPU load,

algorithm outputs and reconfiguration times have all been shown and analysed. Following from these

results, a discussion is included in Chapter 10 where the value add, successes and problems with the

OACS is evaluated.

110

10. Discussion

The researched, designed and implemented OACS aims to verify whether the concept of modular

machines and OA platforms can assist RMS to cope with the dynamic manufacturing environment. The

MRMT had been developed previously, using mechanical modules. However the fixed electronic

hardware and control software solutions implemented on the MRMT limited its reconfigurability. The

discussion focuses on the test results covered in Chapter 9. Furthermore a discussion also follows

evaluating the successes and limitations of the developed OACS and OA systems in general.

10.1 Performance of Electronic Subsystems

The performance of the OACS on the existing MRMT based on the results presented in Chapter 9 is

discussed and evaluated in terms of accuracy, repeatability, power usage and vibration monitoring for

machining and control.

10.1.1 Position Control: Accuracy and Repeatability

The performance of the system in terms of position accuracy and repeatability was evaluated based on

a set of experimental tests performed on the system. All of the axes showed similar trends with similar

encoder counts for CW and CCW rotations. The X axis and the CCW rotation for the Z axis met the

desired repeatability requirements with worst case variations below 1%. On the other hand the CW

rotation of the Z axis had a worst case variation of 1.97%. In terms of accuracy, 9 of 10 test runs on

the translational axes have met the specification of accuracy to within 1 mm of the target point. Both

translational axes produced 169 counts per mm which corresponds to the specified control resolution

of 5.9�10�� mm.

The Z axis has added weight due to the attached accessory and spindle modules. CW motion on the Z

Axis corresponds to an upwards movement. Padayachee noted that the Z axis was designed with a low

cost sliding mechanism and had the lowest stiffness of all the modules [29]. These added weights as

well as the mechanical limitations on the module are the contributing factors that have ultimately

affected the performance in terms of repeatability and accuracy as highlighted above.

The A axis failed to meet the accuracy specification, and further analysis revealed that the distributed

module for the A axis, based on the FEZ Panda 2 microcontroller, failed to record all of the encoder

counts. Based on the minimum control resolution, the expected count per degree for the rotary axes

is 67 counts per degree. However the microcontroller only recorded 63 counts per degree. Further

tests were conducted after lowering the encoder detection to 512 counts per rotation, and these tests

showed worst case variation of 0.41% and accuracy of 1.45⁰, which is acceptable as per the design

specification. However, halving encoder resolution due to microcontroller performance is a trade-off

as the control resolution is doubled from 0.015⁰ to 0.03⁰. Despite the successes of this in terms of

acceptable performance, it introduces a key challenge to performance of OA systems and multiple

microcontroller implementations and this has been discussed in Section 10.6.

10.1.2. Axes Speeds and Time to Execute Commands

The time taken to execute the motion commands from the PC was captured, and from this it was

evident that there was a time difference between CW and CCW motion for all axes. There was

consistency with all the axes where the time to complete a command for CW motion was greater than

111

the time for CCW motion. The time taken for CCW motion was on average 81.3% of the time taken for

CW motion.

The 12 V DC motors used on the MRMT were slow to respond to acceleration commands. As a result,

the acceleration component of the acceleration and deceleration routine was negated. The motors

were driven to maximum speed and then the speed was reduced to allow the motors to reach their

target speeds. This consistency in different times due to CW and CCW rotation of the electrical motors

indicates that there is a loss of power and speed when the motors are driven in a counter clockwise

direction. Based on the time observation, it is evident that the motors used, exhibited lower

performance for CCW rotation as opposed to CW rotation and this was a contributing factor affecting

overall system performance.

Moreover, the modules were required to meet minimum speed requirements as per design. The

translational axes X and Z both met the minimum requirement of 100 mm/min. The X axis achieved a

speed of 159 mm/min during CCW rotation and a speed of 130 mm/min for CW rotation. Similarly,

the Z axis achieved a speed of 135 mm/min during CCW rotation and a speed of 110 mm/min for CW

rotation. The rotary axes achieved a speed of 388 ⁰/min for CCW rotation which met the minimum

requirement of 360 ⁰/min. However for CW rotation of the A axis, the maximum speed achieved

was 314 ⁰/min which was below the minimum requirement. It is likely that the lower speed

performance of the A axis is due to the power transfer loss due to the efficiency rates of worm gear

box systems [64].

10.1.3 Power Usage

The CCW average is greater than the CW average for X and A axes, where the CCW averages are 2.28 A

and 1.97 A respectively. In addition to this, there is consistency between the X and A axes when the

time to complete a command is compared to the current consumption. This comparison reveals that

the CCW current consumption, which is greater than CW consumption, conforms to the shorter time.

For the Z Axis, which is the upright column, the CW average is greater than the CCW average current

where the CW average is 4 A. CW motion on the Z Axis corresponds to an upwards movement, and as

mentioned previously, the Z axis has additional weight load due to the attached accessory and spindle

modules. Consequently a higher current consumption for upward motion as compared to downward

motion is expected despite the shorter time. These are additional factors which have affected the

performance of the Z axis in terms of accuracy, speed, repeatability and power usage.

The maximum current consumption of the axes, which occurs during starting motion of the motors,

totals 15.3 A. Similarly the maximum current required for drill operation was 4 A. Based on these

maximum currents, the existing 12 V 29 A power supply is sufficient for the system. Assuming similar

current consumption for additional modules, the existing power supply is only able to supply 2

additional modules, after which it will need to be upgraded.

An analysis of the drill current consumption shows the current usage between 1.3 A and 4 A for

drilling 40 mm into a product. As the drill depth increases, the current required also increases.

Furthermore when the current consumption is compared to the vibrations recorded during drilling,

112

there is a trend between the drill depth and vibration intensity. As the drill depth increases there are

greater vibrations, therefore greater resistance and thus the current required increases.

Thus, if the MRMT is required to drill deeper, the current consumption would rise which could trip the

power supply network. Therefore, running the system with these additional modules would not be

advised as the system would be operating at its limit. An additional PSU can be added in series with

the existing PSU in order to the increase the capacity of the power distribution network. This can be

achieved with minimal interference to the existing system design which is part of the scalable features

of the OACS. However, the idea of installing a system with excess capacity was one of the key

problems with FMS due to the increased initial capital investment and therefore an alternate solution

needs to be researched.

10.1.4 Vibrations

The current consumption for the translational axes shows a distinct sinusoidal like trend with the

graph, showing several peaks. The number of peaks in the trend actually relates to the number of

power screw revolutions that were needed for the commanded movement. This clearly indicated the

added load on the PSU during a certain section of the rotation of the power screw. Coupled with the

friction induced from movement due to mechanical imperfections, movement of the mechanical

modules produced vibrations.

There was a distinct increase in recorded vibrations on the drill module from steady state drill

operation to drilling into a product. Based on the accelerometer readings, it is seen that vibrations

occur mainly from drill operation, but also from axial movement. The axial movement vibrations

during steady operation result from uneven friction characteristics in the module drive and sliding

systems [29], thereby confirming that the source of the vibrations is from the mechanical system and

not induced by the control system. Furthermore as drill depth increases, comparing between 20 mm

and 40 mm depth, the vibration intensity increased significantly. These increased vibrations add an

additional load to the drill and Z axis, and this is seen by the increased current consumption during

drilling operation.

10.1.5 Distributed Module Response Times

The response times of the distributed modules were analysed to determine effects of the multiple

microcontroller implementation for the distributed modules. The Arduino UNO and the CHIPkit use

similar bootloaders unlike the FEZ Panda 2 board which runs on the Microsoft .NetMicro Framework,

which is slower than the Arduino based boards. Despite the Arduino UNO running at a fifth of the clock

frequency of the CHIPkit, it closely matched the response times of the other boards, implying that at

clock frequency of 16 MHz on the Arduino UNO is sufficient for operation of: the microcontrollers,

communications network and host PC.

The minimum operating frequency and the corresponding response time is thus dependant on when

the distributed module response time exceeds that of the sample time between PID controller

iterations. In this OACS design, the PID sample time is set to 500 ms. Experimental tests revealed that

when the FEZ Panda 2 Board clock frequency was lowered to 5 MHz, the response time exceeded

the 500 ms limit set by the sampling time. This would then be the low-end cut off frequency after

which the controller would fail.

113

However, the FEZ Panda 2 board, despite operating at 72 MHz, was unable to detect all of the encoder

pulses from the rotary axis. This implies that despite the clock frequency, the performance of the

distributed module microcontroller is also dependant on the bootloader.

In summary, the analysis revealed that the response times are not purely dependent on the

microcontroller operating frequency, but are also based on the microcontroller architecture and

microcontroller bootloader framework which poses a problem for OA systems.

10.2 Performance of OACS on PC

Further to the above control performance evaluation, the OACS is also evaluated on the CPU load,

reconfiguration times and response times based on a multiple microcontroller implementation to

evaluate the success of the developed system as a whole.

10.2.1 Reconfiguration Times

The introduction of OACS on an MRMT is aimed at assisting the MRMT to reduce the system downtime

during reconfigurations. Therefore the time that the OACS takes to reconfigure itself due to the

changes in the mechanical modules, is a critical assessment point of OACS. Experimental tests were

conducted to get reconfiguration times from users familiar to the OACS and from new users as well.

From test data, the reconfiguration and setup time of the OACS with 3 modules was, on average, 200

seconds when conducted by a familiar user and 366 seconds by a new user. Similarly, for a system

with 4 modules, the time taken on average for configuration by a familiar user was 240 seconds

and 440 seconds for a new user. The test data shows that on average it takes a new user

approximately 1.75 times longer (than a familiar user) to reconfigure the OACS.

Although these results are “soft results” with no real comparison, it is evident that due to the modular

nature of the OACS, as well as the seamless integration due to the plug and play features which

automatically determine active modules and download information from these modules for

configuration and control allow for the OACS to be configured for operation within minutes.

Therefore, the easy software reconfiguration assists the MRMT in reducing the down time between

machine changes.

10.2.2 CPU Load

The load on the CPU was monitored and on average the CPU usage is less than 4%. As expected during

operation and configuration the load increases and peaks at 38%. This peak is during machining

command calculations as the interpolation, acceleration and deceleration and the control routines are

run. Although these results are also “soft results” with no direct comparison, the load on the CPU

shows that the OACS operating for a 4 axis system does not overload a standard Windows PC.

10.3 OACS Integration with Mechanical System

Figure 100 and Figure 101 illustrate how the OACS integrates with the mechanical system based on

varying mechanical system configurations and DOF, which then translates to different controller

configurations. The following images illustrate how the OACS can dynamically reconfigure itself based

on the available hardware modules that are active on the bus, and how the OACS limits access to the

user depending on what physical configuration is entered by the user.

114

Figure 100 shows the MRMT configured with 2 modules, the Tool module and Z axis, whereas

Figure 101 shows a 4 module configuration. Although only screenshots of the Physical Configuration

and the Program Editor Windows are shown, the other parameters and aspects of the OACS are also

automatically configured based on the mechanical system configuration.

Although not visible to the user, as discussed in Section 8.4, the OACS temporarily stores the

downloaded data from the distributed modules in temporary module classes derived from a generic

class. Thereafter, when the user enters the machine configuration, a new class is derived from generic

tool, rotary axis or translational axis classes, and the data from the temporary class is copied to the

new derived class. This step is critical in evaluating what functions are necessary for the OACS and

which display options are to be configured for the GUI as shown in Figure 100 and Figure 101.

Figure 100: MRMT and OACS Configuration 2 Modules

115

Figure 101: MRMT and OACS Configuration 4 Modules

10.4 OACS and OA standards

The aim of an OACS is to verify whether the concept of modular machines and OA platforms can assist

RMS to cope with the dynamic manufacturing environment. Therefore the OACS was designed with a

set of core principles that are common to RMS and OA standards with the aim of proving that OACS

are vital for the realization of MRMT and RMS in general. Table 21 summarises the core principles and

describes how the various aspects of the research and design have incorporated and displayed these

principles. Since the control system was located on the MRMT, similar core concepts such as:

reconfigurability, modularity and scalability were required for the control system.

Table 21: Summary of OACS Core Principles

 Electronics Subsystems PC based OACS Communications
Interface

Core Principle

Modularity Stand-alone distributed
modules that are

customized to interface
the necessary sensors

and customized circuitry

Software modules create
one to one link between

hardware

2 of the microcontrollers
have plug and play boards

that provide CAN
communication with the
third requiring design of

an external CAN
transceiver circuit

Scalability Scalability is achieved
through modularity and

the supporting
communications

Object orientated design
that derives live time classes
from generic classes for the

number of modules

Plug and play
communications network

that allows up to 127
nodes to be added

116

interface connected to the system bus

Interoperability Multiple microcontroller
implementation

Generic Windows OACS
application development to
run on a standard Windows

PC

Any distributed module
microcontroller with
either built in CAN
module or CAN bus

circuitry can be added to
the bus

User
Customization

Buffer layers allow any
sensor/microcontroller/a

xis to be added to the
system as long as the

data exchange standard
between layers is

adhered to

User specific programs can
be programmed into the

system.
Users can choose controllers

based on preference.
Users can edit control

algorithms

End user to defines the
data exchange and packet

messages

Vendor
Neutrality

Multiple microcontrollers
and integration of off the

shelf sensors with
customization on
microcontrollers

Generic Windows OACS
application development to
run on a standard Windows

PC

CAN bus is an open access
communication protocol
allowing the end user to

define the data exchanges

Furthermore, the existing industrially available control solutions were closed systems and therefore

were only allowed reconfigurability and scalability based on the vendor’s products and add-on

modules. The discussion in Chapter 3 presents a selection of industrially available control solutions. It

also highlights the academic research attempts at developing an OA system. Based on the

aforementioned research, it was found that design ideas such as: embedded distributed modules, a

plug and play interface and a one-to-one software and hardware mapping, are common to many of

these OA systems. The OACS was designed and developed according to these principles. Table 22

presents a comparative analysis between the OACS and the solutions presented in Chapter 3.

Table 22: Comparison of OACS and Other Research Attempts

 OACS DeltaV Siemens

Electronic System Distributed modules DCS PLC with modular add-
ons

Software System Open VN system VS system VS system

Flexibility Yes I/O only Modular add-ons

Reconfigurability Hardware and
software

I/O only Yes

Customization Hardware and
Software

Limited in software Limited in software

Vendor Neutrality Yes No Limited Add-on modules

Mechanical
Platform

Hybrid MRMT N/A Customizable

Manufacturing
Performance

 N/A PLC optimised for fast
accurate machine

control

Software
Scalability

Yes No No

Hardware
Scalability

Yes I/O only Yes

117

The core principles of the OACS, together with the comparative analysis, shows how the OACS moves

towards a VN solution, embedded with the core ideas of RMS, to assist RMT in achieving

reconfigurability in hardware and software. Furthermore, the research has shown that design ideas

such as: embedded distributed modules, a plug and play interface and a one to one software and

hardware mapping, can all be successfully implemented on a VN system. The VN system goes further

to allow third party add-ons and COTS modules or sensors with customization to the hardware or

software on the distributed module, thereby maximising the possibilities for reconfiguration.

The OACS differs from other research attempts in that it aims at developing an open system from the

base up through its multiple microcontroller implementations. Furthermore, the system shows its

customizability and flexibility by allowing the integration of COTS modules and any sensor module to

any distributed module, with invisibility through a well-defined interface between tiers of the system

architecture.

10.5 OACS on MRM for RMS

The idea of a multiple microcontroller implementation allows end user customization, and illustrates

that the system is not limited in its software and electronic architectures. Testing has revealed that

with three different microcontrollers, the system exhibited acceptable performance results, but also

revealed key areas that could be problematic for the realisation of OA systems. The distributed

modules also divide the system architecture into different layers thereby creating buffer layers as

discussed in Chapter 5.

These two layers create a buffer layer or an invisible layer between each of the three tiers. This buffer

layer allows for the components at each tier to be of many variations, types and architectures.

Consequently all that is required to ensure system functionality is that the interface and data transfer

between the tiers is consistent and standardised.

The functioning of the OACS is therefore independent of the types of modules at each tier, or what is

located at each tier. The components of a module in a tier can be modified, changed or upgraded

without affecting system functionality, thus making the system flexible and reconfigurable.

Furthermore the OACS allows seamless integration of new modules or sensors via scalable, robust and

flexible plug and play communications interface between layers.

In the case of an axis or servo or sensor module being added or reconfigured, the distributed module

microcontroller does not need to be changed, but rather needs to allow for software to be

reprogrammed or updated, thereby decreasing the cost of upgrades or modifications to the system.

Similarly, COTS components can be integrated onto the MRMT, regardless of the type and functioning

of the component added. All that is required to ensure system functionality is customization on the

distributed module to ensure that the correct data exchange protocols are adhered to.

For example, if the added component is a motor driver that uses a digitally encoded communication as

opposed to PWM signals, the distributed module software routine can be customized to cater for this.

Similarly, the interfacing hardware on the distributed module can be customised to ensure that the

system maintains the necessary functionality.

118

The OACS also allows algorithms to be modified by the end user. The routines can be edited and

adapted by ensuring that the pointers to the input data and output data adhere to the original routine.

Once a new routine is added to the OACS, the system will need to be recompiled. Changing this

routine does not affect the performance and operation of the rest of the OACS, making the OACS

reconfigurable and customizable as per the user requirements. The OACS exhibits its flexibility and

customizability by allowing users to customize the control algorithms and to incorporate user specific

programs. The OACS has been developed with PID control algorithms, although if desired, this control

routine can be: edited, the system recompiled and performance re-evaluated.

The flexibility, reconfigurability and modular structure allows the system to be gradually upgraded

over time as production requirements change. This therefore allows the system to be installed with

the functions required, at a given time, thereby minimizing the initial capital investment required,

which was a key problem of FMS. Customization allows newer modules to be integrated, and the

flexible and adaptable software and control means that the machine can modify its functionality

thereby also prolonging its lifecycle. In a plant environment, modules can also be re-used and

interchanged between different machines as per production requirements. This further decreases the

costs for changes when the production requirements change.

Furthermore, as the lifecycle of the MRMT increases, users may upgrade and optimize modules on the

MRMT by replacing a component and by customizing the respective distributed module. Similarly, the

system can be installed and designed with cheaper/lower performance sensors or modules to lower

the initial capital investment. Additionally, as production requirements change or improved

performance is required, only the low performance sensors or modules need to be changed.

For example, on the existing MRMT that the OACS was developed for, the system uses 12V wiper

motors which exhibit low torque and the inability to operate at low voltages. These motors can be

upgraded, and with customization to the motor driver circuitry and distributed module software, the

OACS can have improved performance.

Furthermore, the OACS has proven that an open system can allow end user customization throughout

the life time of the MRMT by allowing access to change and modify performance parameters such as

controller gains. Similarly, this can be up scaled to include additional end user customization and

reconfiguration options such as allowing users to change the interpolation times, cycle refresh times or

even PID sample times.

It is now evident that due to the flexible, reconfigurable and modular nature of the OACS in its

electronic, control and software architectures, the OACS allows MRMT to help RMS by:

 Reducing the time for reconfiguration;

 Assisting in the rapid introduction of new technologies or modules;

 Reducing the cost of system upgrades.

10.6 Challenges and Limitations for OA Systems

The performance results from the multiple microcontroller implementations of the distributed

modules on the OACS showed one of the areas of concern for OA systems. The requirement for: end

user customization, VN and integration of off-the-shelf components led to the idea of a multiple

119

microcontroller implementation. However the system implementation has shown that if the system is

open and not defined within guidelines, it may ultimately have a negative impact on the system

performance.

Furthermore the three microcontrollers chosen to implement the distributed modules varied in:

architecture, bootloaders and clock frequency. The operating frequencies of the distributed modules

and the microcontroller bootloaders pose an additional challenge to the: operation, performance and

integration of the system. The developed OACS showed that despite the differences in frequencies and

bootloaders, the distributed modules all managed to communicate with the host PC. However the

problems occurred with the reading of the encoder from one of the distributed modules.

The MRMT will be performing CNC machining tasks in the manufacturing environment; therefore

accuracy and repeatability are critical points of success. Thus, performance trade-offs as demonstrated

by this implementation will not be acceptable for a commercially viable solution.

The problems and findings of this research have shown that unless unified standards and guidelines

for OA systems are developed and adhered to in system design, OA systems will be faced with

numerous challenges that will hinder and limit the machine performance. These guidelines need to

cover the standards for data exchange between the tiers in the architecture, as well as the types of

microcontrollers in terms of bootloaders and operating frequencies which have been tried, tested and

proven.

The OACS allows users to edit control algorithms provided that the input and output parameters are

matched to the existing data pointers. Although when an algorithm is edited, the system needs to be

recompiled. The process of recompiling the program, after an algorithm is edited, is functional though

not ideal. In addition, a further aim of OA platforms is to allow 3rd party add-ons and external

interfaces for programs and algorithms, although this falls out of the scope of this research. Further

research should then investigate how the new algorithms can be incorporated during system runtime.

The flexibility of the OACS, due to the multi-tier architecture, which creates buffer layers between the

tiers, can allow integration of COTS modules and different sensors to each distributed module. Since

the OACS uses the lowest common denominator in terms of feed rates, to ensure complete system

functionality, the integration of COTS modules or sensors can have a negative effect on system

performance. This intensifies the need for unified standards and guidelines to OA system development

as well as the need for further research into the development and integration of COTS modules onto

an existing MRMT.

This OACS was developed and tested for the hybrid MRMT, which has the motor for each module

located on each module to allow for modularity and easy system reconfiguration. This mechanical

design leads to an unfavourable mass distribution on the machine due to deflections [29].

Furthermore, the Z axis has additional mass due to the attached accessory module and process

module which has a negative effect on performance as discussed. The performance of OACS is

therefore also dependant on the mechanical integrity of the mechanical systems. Further research

should look at the possibility of redesigning the mechanical platform with greater rigidity, frictionless

contacts and a more favourable mass distribution to improve system machining performance.

120

Although this would have a cost impact, the current mechanical system design was built as a low cost

prototype and therefore not the ideal test bench for the OACS [29].

The number of active modules on OACS and the MRMT has an impact on the load of the power supply

system. The system can undergo a reconfiguration where new modules can be added, existing

modules can be upgraded, or newer and better motors can replace the existing motors. Under such

conditions, the overall load on the power supply system can increase due to more powerful motors or

additional sensors. The current OACS design can cater for 2 additional mechanical modules and its

associated distributed module and sensors. However, this solution to install a system with excess

capacity, like FMS, is not cost effective. Thus further research needs to be conducted to evaluate the

feasibility and practicality of a scalable power supply system. A fixed power supply system on the

MRMT is currently the only component that remains fixed and not scalable, and further research

aligned with the aims of modularity and scalability will benefit MRMT and RMS. The inclusion of such a

modular and scalable design on MRMT systems can also contribute to the cost effectiveness and

reconfigurability of MRMT and RMS in general.

The aforementioned points have indicated that due to the openness of the OA system and the need

for: end user customisation, VN and flexibility, the OA system requires well defined standards and

guidelines for development. OA systems in mobile phone industry have suffered as a result of a lack of

a unified standard among a vast number of platforms that software systems were being developed

for [65]. Furthermore, it was only after Android was developed for mobile platforms that there was

cohesion and alignment in development that allowed for rapid innovation and development of open

mobile system development [65]. Similarly, the OA systems for machine tools require standards and

guidelines, and in the long term, if these are not developed for OA systems, the performance of OA

systems on MRMT for RMS can be hindered.

Furthermore, the mechanical integrity of the MRMT of mechanical system that the OA system is

developed for, also plays a critical impact on the performance of the complete system.

10.7 Chapter Summary

Chapter 10 has presented a discussion on the performance of the researched, designed and developed

OACS which was tested on an existing MRMT. The discussion highlights the key successes and

achievements of the OACS. It also indicates problematic performance areas and goes on to evaluate

the reasons for these failures. Furthermore, the key characteristics of the OACS are compared to the

key characteristics of OA systems, and a discussion has covered and evaluated the successes of the

OACS based on the aims and objectives of this research. Finally, a summary of the challenges and

limitations facing OACS and OA systems in general has been presented alongside key areas for future

research.

121

11. Conclusion

The present day manufacturing environment has forced manufacturing systems to be flexible and

adaptable in order to a match the product demands and frequent introduction of new products. Based

on the literature review presented, which covers the current day manufacturing paradigm, it has been

shown that the reconfigurable manufacturing paradigm looks to incorporate the advantages of DMS

and FMS, to create system that allows high throughput and flexibility over time. Past research has

further shown that the lack of development of RMT and OA platforms is currently the limiting factor to

the establishment of RMS. These factors have been the primary motivation for this research.

The research has proposed, designed and developed a novel solution that incorporates the core

principles of RMS and OA platforms. The OACS has been developed as a modular solution that links

closely to the existing modularity on the RMT. The aim was to create a one to one link between

mechanical and electronic hardware and the software system. This has been achieved by the addition

of embedded microcontroller based distributed modules, which interface the electro-mechanical

machine axes as well as the host PC, via the CAN bus communication interface.

The OACS is dynamic in its setup as is able to conduct live time scans to determine what modules are

active on the machine tool. On the host PC, the user is presented with a GUI which allows the user to

configure the control system based on the MRMT physical configuration and the DOF available. The

physical machine configuration entered is used to determine the kinematic viability of the machine.

Based on the current configuration, the system automatically adapts the GUI to allow the user access

to functions relevant to the machine structure. The underlying software algorithms such as: text

interpretation, linear interpolation, PID/PI controllers and kinematic viability, are all part of the OACS

and are used at run time for machine operation.

For the successful one to one implementation, the system uses distributed modules that interface the

mechanical modules and the host PC. The distributed modules are based on different microcontrollers

which have successfully demonstrated the openness and customizability of the system. The multiple

microcontroller design allows end user customization and illustrates that the system is not limited in

its software and electronic architectures.

The OACS allows end user customization in: software, electronic hardware and mechanical hardware.

Software customization is achieved through: customization of control algorithms, electronic hardware

customization through the open and multiple microcontrollers and mechanical hardware

customization through selection of different library modules for machine configuration. Furthermore,

the distributed modules allow customisation in terms of COTS sensors or actuators that can be

integrated with any distributed module by customization on the module.

The interface to the host PC is designed with CAN bus communication network which supports

extendibility, interoperability and scalability. These features assist the whole system to be modular,

scalable and reconfigurable by allowing: seamless integration, and addition or removal of electro-

mechanical modules through a well-defined plug and play interface.

The discussion has shown how the OACS moves towards a VN solution embedded with the core ideas

of RMS, to assist RMT in achieving reconfigurability in hardware and software. Furthermore, the

122

research has shown that design ideas such as: embedded distributed modules, a plug and play

interface and a one to one software and hardware mapping, can be successfully implemented on a VN

system.

The flexibility of the OACS due to the multi-tier architecture which creates buffer layers between the

tiers allows integration of COTS modules and different sensors or actuators to each of the distributed

modules furthering the customizability of the system. The functioning of the OACS is also independent

of the types of modules at each tier or what is located at each tier provided the data exchange

between tiers in constant. The components of a module in a tier can therefore change and be

upgraded without affecting system functionality thus making the system flexible and reconfigurable.

Future research should look at the development of guidelines and standards for data exchange

between the tiers in the architecture, as well as the types of microcontrollers in terms of bootloaders

and operating frequencies to avoid control performance limitations. Additionally, the OACS needs to

be recompiled when algorithms are edited, although functional it is not ideal. Thus the possibility for

on-line recompilation and for the integration of third party algorithms should be investigated. The

performance of OACS is dependent on the mechanical integrity of the mechanical systems. Further

research should look at the possibility of redesigning the mechanical platform with greater rigidity,

frictionless contacts and a more favourable mass distribution than the MRMT to improve system

machining performance. Finally, the number of active modules on OACS and the MRMT has an impact

on the load of the power supply system. Further research needs to be conducted to evaluate the

feasibility and practicality of a scalable power supply system as setting up a system with excess

capacity has cost implications and was one of the drawbacks of FMS. The inclusion of such modular

and scalable designs on MRMT systems will contribute to the cost effectiveness and reconfigurability

of MRMT and RMS in general.

The flexibility, reconfigurability and modular structure allows the system to be gradually upgraded

over time as production requirements change. This then allows the system to be installed with the

functions required, at a given time, thereby minimizing the initial capital investment required.

Furthermore, as the lifecycle of the MRMT increases, users may upgrade and optimize modules on the

MRMT by replacing that component. By customizing the distributed module, the system can then

ensure correct functionality. The research has shown that the flexible, reconfigurable and modular

nature of the system in its electronic, control and software architectures assists the system to satisfy

the aims of OACS. Furthermore the distributed electronic modules, the intelligent communications

network and modular software system, which form the basis of the OACS, assist RMT’s and RMS to:

 Have greater flexibility;

 Assist in the rapid introduction of new technologies or modules;

 Reduce system upgrade costs;

 Provide consistent and repeatable control;

 Prolong the beneficial operation period of the MRMT.

123

References

1. Setchi, R.M. and Lagos, N. Reconfigurability and Reconfigurable Manufacturing Systems:
State-of-the-Art Review. in 2nd IEEE International Conference on Industrial Informatics.
2004. Berlin Germany: IEEE.

2. Bi, Z.M., Lang, S.Y.T., Verner, M., and Orban, P., Development of Reconfigurable Machines.
International Journal of Advanced Manufacturing Technology, 2008. 39(11): p. 1227-1251.

3. Mehrabi, M.G., Ulsoy, A.G., Koren, Y., and Heytler, P., Trends and Perspectives in Flexible
and Reconfigurable Manufacturing Systems. Journal of Intelligent Manufacturing, 2002.
13(2): p. 135-146.

4. ElMaraghy, H.A., Flexible and Reconfigurable Manufacturing Systems Paradigms.
International Journal of Flexible Manufacturing Systems, 2005. 17(4): p. 261-276.

5. Katz, R., Design Principles of Reconfigurable Machines. The International Journal of
Advanced Manufacturing Technology, 2007. 34(5-6): p. 430-439.

6. Padayachee, J., Bright, G., and Masekamela, I., Modular Reconfigurable Machine Tools:
Design, Control and Evaluation. South African Journal of Industrial Engineering, 2009. 20(2):
p. 127-143.

7. Landers, R.G., Min, B.K., and Koren, Y., Reconfigurable Machine Tools. CIRP Annals -
Manufacturing Technology, 2007. 50(1): p. 269-274

8. Jimenez, C.H.O. and Salinas, I.E. A Glance at Reconfigurable Manufacturing Systems (RMS):
Possible Connotation on a Path To High Performance. in 6th Latin American and Caribbean
Conference for Engineering and Technology. 2008. Tegucigalpa, Honduras: LACCEI.

9. Setlak, G. and Pieczonka, S., Design Concept of Intelligent Management Systems, in
International Book Series Information Science and Computing2009. p. 142.

10. Devedzic, V. and Radovic, D., A framework for building intelligent manufacturing systems.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
1999. 29(3): p. 422-439.

11. Morales-Velazquez, L., Romero-Troncoso, R.d.J., Osornio-Rios, R.A., Herrerra-Ruiz, G., and
Cabal-Yepez, E., Open Architecture System Based on Reconfigurable Hardware-Software
Multi Agent Platform for CNC Machines Journal of Systems Architecture, 2010. 56(9): p.
407-418.

12. Koren, Y., Heisel, U., Javone, F., Moriwaki, T., Pritschow, G., Ulsoy, G., and Brussel, H.V.,
Reconfigurable Manufacturing Systems. CIRP Annals - Manufacturing Technology, 1999.
48(2): p. 527-540.

13. Stecke, K.E., Flexibility is the Future of Reconfigurability. Paradigms of Manufacturing—A
Panel Discussion, in 3rd Confereence on Reconfigurable manufacturing2005: Ann Arbour,
Michigan, USA.

14. Koren, Y. Reconfigurable Manufacturing and Beyond. in CIRP 3rd International conference
on Reconfigurable Manufacturing. 2005. Ann Arbor, Michigan, USA.

15. Koren, Y., General RMS Characteristics. Comparison with Dedicated and Flexible Systems, in
Reconfigurable Manufacturing Systems and Transformable Factories A.I. Dashchenko,
Editor 2006, Springer: Berlin. p. 27-45.

16. Maier, F. and Schroeder, R., Competitve Product and Process Technology, in High
Perfromance Manufacturing, Global Perspectives, R.G. Schroeder and B.B. Flynn, Editors.
2001, John Wiley & Sons: New York. p. 93-114.

17. Mpofu, K., Kumile, C.M., and Tale, N.S. Adaption of Commercial Off the Shelf Modules for
Reconfigurable Machine Tool Design. in 15th International Conference on Mechatronics and
Machine Vision in Practice (M2VIP). 2008. Auckland, New Zealand: IEEE.

18. Pritschow, G., Altintas, Y., Jovane, F., Koren, Y., Mitsuishi, M., Takata, S., Brussel, H.v., Weck,
M., and Yamazaki, K., Open Controller Architecture – Past, Present and Future CIRP Annals -
Manufacturing Technology, 2001. 50(2): p. 463-470

124

19. Koren, Y., Open-Architecture Controllers for Manufacturing Systems - Summary of Global
Activity, in ITIA Series1998. p. 15-37.

20. Oliveira, A., Pieri, E.D., and Moreno, U., An Open-Architecture Robot Controller Applied to
Interaction Tasks, in Advances in Robot Manipulators2010, Ernest Hall.

21. Padayachee, J., Masekamela, I., Bright, G., Tlale, N., and Kumile, C., Modular Reconfigurable
Machines Incorporating Modular Open Architecture Control in 15th International
Conference on Mechatronics and Machine Vision in Practice (M2VIP'08)2008: Auckland,
New Zealand.

22. Birla, S., Faulkner, D., Michaloski, J.L., Sorenson, S., Weinert, G., and Yen, J.H.
Reconfigurable Machine Controllers using the OMAC API. in Proceedings of the CIRP 1st
International Conference on Reconfigurable Manufacturing. 2001. Ann Arbor, Michagan,
USA.

23. Emerson-Process-Management, DeltaV Digital Automation System System Overview, 2009,
Emerson: Austin, Texas.

24. Siemens-AG, SIMATIC Controllers:The innovative solution for all automation tasks, 2011:
Germany.

25. Xiong-bo, M., Zhn-yu, H., Yong-zhang, W., and Hong-ya, F., Development of a aPC-based
Open Architecture Software-CNC System. Chinese Journal of Aeronautics, 2007. 20(3): p.
272-281.

26. Farooq, M. and Wang, D.B., A Reconfigurable and Modular Open Architecture Controller:
The New Frontiers. International Journal of Automation Technology, 2008. 2(3): p. 205-214.

27. Proctor, F.M., Shackleford, W., Yang, C., Barbera, T., Fitzgerald, M., Frampton, N., Bradford,
K., Koogle, D., and Bankard, M. Simulation and Implementation of an Open Architecture
Controller. in Proceedings of the SPIE International Symposium on Intelligent Systems and
Advanced Manufacturing. 1995. Philadelphia, PA, USA.

28. Suh, S.-H., Kang, S.-K., Chung, D.-H., and Stroud, I., Theory and Design of CNC Systems.
Springer Series in Advanced Manufacturing, ed. P.D.T. Pham2008, Verlag, London, UK:
Springer. 466.

29. Padayachee, J., Development of a Modular Reconfigurable Machine for Reconfigurable
Manufacturing Systems, in School of Mechanical Engineering2010, University of KwaZulu-
Natal: Durban South Africa.

30. Tabbara, B. Breathing Life Into Hardware and Software Codesign. Embedded Systems
Programming 2005 June 2011 [cited 18 4]; Available from:
http://www.embedded.com/design/embedded/4006444/Breathing-life-into-hardware-
and-software-codesign.

31. Isermann, R., Modelling and Design Methodology for Mechatronic Systems. IEEE/ASME
Transactions on Mechatronics 1996. 1(1): p. 16-28.

32. Kommareddy, S., Kazuo, Y., and Yoshihito, K. PC-Based Open Architecture Servo Controller
For CNC Machining. in The Second Real Time Linux Workshop. 2000. Orlando.

33. GHIelectronics FEZ Panda || Board. 2011.
34. Digilent chipKIT Max32 Boar Reference Manual. 2012.
35. Arduino. Arduino Uno. 2012 [cited 2012 February]; Available from:

http://www.arduino.cc/en/Main/arduinoBoardUno.
36. Powell, J. PROFIBUS PA and Foundation Fieldbus - a cost comparision. 2007. 4.
37. Unknown. Modbus FAQ. 2011 [cited 2011 August]; Available from:

http://www.simplymodbus.ca/faq.htm.
38. Unknown. CAN - a brief tutorial. 2011 [cited 2011 10 October]; Available from:

http://www.computer-solutions.co.uk/info/Embedded_tutorials/can_tutorial.htm.
39. Nilsson, S. Controller Area Network - CAN Information. 2011 [cited 2011 14 October 2011];

Available from: http://hem.bredband.net/stafni/developer/frames.htm.
40. Unknown The basics of Intrinsic Safety. 1998. 4.

125

41. Unknown. What is CAN Bus. 2011 [cited 2011 9 October 2011]; Available from:
http://www.canbuskit.com/what.php.

42. PEAK-System, PCAN-PCI - PCI to CAN Interface - Uer Manual v2.0., 2011.
43. Texas-Instruments, 3.3-V CAN Transceivers, 2011.
44. Digilent chipKIT Network Shield Board Reference Manual. 2012.
45. sparkfun-Electronics. CAN-BUS Shield. 2012 [cited 2012 Februarty]; CAN-BUS Shield for

Arduino]. Available from: https://www.sparkfun.com/products/10039\.
46. Pololu. Pololu High-Power Motor Driver 18v15. 2011 [cited 2011 5 May 2011]; Available

from: http://www.pololu.com/catalog/product/755.
47. Vorkoetter, S. Electromagnetic Interference Reduction. 2010 [cited 2011 10 October];

Available from: http://www.stefanv.com/rcstuff/qf200005.html.
48. Octopart. Omron V-103-1A4. 2012 [cited 2012 October]; Available from:

http://sigma.octopart.com/8504533/image/Omron-V-103-1A4.jpg.
49. Issa, G. Beginners guide to c# and .NET Micro Framework. 2010.
50. Hewes, J. The Electronics Club. 555 and 556 Timer Circuits 2011 [cited 2011 10 October

2011]; Available from: http://www.kpsec.freeuk.com/555timer.htm.
51. Hewlett-Packard, Two and Three Channel Optical Encoders, 2011.
52. Analog-Devices ADXL335. 2009. 16.
53. Sparkfun-Electronics. Triple Axis Accelerometer Breakout - ADXL335. 2012 [cited 2011

September]; Available from: https://www.sparkfun.com/products/9269.
54. Tilbury, D. and Kota, S. Integrated machine and control design for reconfigurable machine

tools. in Proceedings of IEEE/ASME International Conference on Advanced Intelligent
Mechatronics. 1999. Atlanta, GA, USA: IEEE.

55. Hlavac, V. Robot Kinematics. 2011 September 2011; Pages 21]. Available from:
http://cmp.felk.cvut.cz/~hlavac/TeachPresEn/51Robotics/11KinematicsRobot.pdf.

56. Unknown. Forward Kinematics: The Denavit-Hartenberg Convention. Chapter 3 p.71-102].
Available from: http://www.cs.duke.edu/brd/Teaching/Bio/asmb/current/Papers/chap3-
forward-kinematics.pdf.

57. Murray, R.M., Li, Z., and Sastry, S.S. A Mathematical Introduction to Robotic Manipulation.
1994 November 2011]; Available from: http://www.cds.caltech.edu/~murray/mlswiki.

58. Franklin, G.F., Powell, J.D., and Emami-Naeini, A., Feedback Control of Dynamic Systems.
Sixth Edition ed2006, Upper Saddle River, NJ, USA: Pearson.

59. Unknown. DC Motor Speed: System Modeling. 2012 [cited 2012 February]; Available from:
http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SystemMod
eling.

60. Krass, M. PID Control Theory. 2006. 6.
61. Beauregard, B. Improving the Beginner’s PID – Introduction. 2011 April 15th, 2011 [cited

2011 September 2011]; Available from:
http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/.

62. Zhong, J. PID Controller Tuning: A Short Tutorial. 2006. 13.
63. Smid, P., CNC programming handbook: a comprehensive guide to practical CNC

programming2003: Industrial Press Inc.
64. Beardmore, R. Gear Efficiency. 2013 20/01/2013 [cited 2013 02/2013]; Available from:

http://www.roymech.co.uk/Useful_Tables/Drive/Gear_Efficiency.html.
65. Vaughan-Nichols, S.J. Andy Rubin, Android's founder, leaves project. 2013 13 March 2013

[cited 2013 March 2013]; Available from: http://www.zdnet.com/andy-rubin-androids-
founder-leaves-project-7000012563/?s_cid=e589.

126

Appendices

Appendix A: Kinematic Modelling Data

X Axis - Base Module

Figure A102: X Axis with i and i+1 Reference Points

Table A23: X Axis Design Data

Offset Euler Angles

X Determinant � 0

Y 0 � 0

Z -111 � 0

Range of Motion [433 0 733] Initial Position 583

�� �����
��� = �

1 0
0 1

0 �
0 0

0 0
0 0

1 −111
0 1

�

Z Axis - Column Module

Figure A103:Z Axis with i and i+1 Reference Points

Table A24: Z Axis Design Data

Offset Euler Angles

X -54.5 � 0

Y 0 � 0

Z Determinant � 0

Range of Motion [85 0 685] Initial Position 685

127

�� �����
��� = �

1 0
0 1

0 −54.5
0 0

0 0
0 0

1 �
0 1

�

A Axis – Rotary Module

Figure A104: (a) A Axis with i (b) i+1 Reference Points

Table A25: A Axis Design Data

Offset Euler Angles

X 0 � 0

Y 0 � 0

Z -152 � Determinant

Range of Motion [-180 0 180] Initial Position 0

�� �����
��� = �

�� −��
�� ��

0 0
0 0

0 0
0 0

1 −152
0 1

�

Drill Module

Figure A105: Drill Module i and i+1 Reference Points

Table A26: Drill Module Design Data

Offset Euler Angles

X -75 � 0

Y 0 � 0

Z -81.5 � 0

Range of Motion N/A Initial Position N/A

128

� ������
��� = �

1 0
0 1

0 −75
0 0

0 0
0 0

1 −81.5
0 1

�

Modular Range Extension Arm

Figure A106: Modular Range Extension Arm (a) i and (b) i+1 Reference Points

Table A27: Modular Range Extension Arm Design Data

Offset Euler Angles

X -370 � 0

Y 0 � 0

Z 0 � 0

Range of Motion N/A Initial Position N/A

� ��� ����
��� = �

1 0
0 1

0 −370
0 0

0 0
0 0

1 0
0 1

�

129

Appendix B: Distributed Module Schematics

Figure B107: Board ID 3 Schematic

0 I , I 2 I 3 I 4 I 5 6 I 7 I 8 I

A A

---.-----
12V 5\1 3.3\ - -

EE c to PCAN PCI card
FezPanda2 ~

1-RST 68-BAT I- ::; B - 2-3V3 67-GNO B
3-~v 66-SCKl ~ SN65HVD230D :;; r- "-GND 65-MISOI

t--- 5-GND 611-MOSil I- lrl !D 8R•
6-Vln 63-PWMl 1- 2GND 7CA.NH 7

62-PWM2 r- 3Vcc 6CAN~I= ru - 6 1-!?WM3 w r .. 5Vref - % -

60 - CANlT "-7 - AO 59- PWMG 1-
c 8- Al 58- •WMS I-- 1200 DSUB9F c 9-A2 57-CANlR

10-~3 56-SCL
~ 11-A4 55-SDA

12- i\S 54 - COMlout I-
53-COMlin I-

- -.., O.N.-lO 0\<Dr--\QIOCO...-MN.-+C z~ .n .. I""JN.-1 OM
>>:.:O.II'IIl'lll"l I""'MMM<"':IO<::MMMI""'f'"l NN NNNNN ">

~±±~6~ ~~~~~~~~~~~~
00

~*~~* ~~ NM

D I D

- L 8-GND J -
<IV'

2.7~0
1-DIRr---

~ 9- GND 6-PWHH
10-outA 5-RST

~ E 2 7~~ 11-outB 4-FFl 4700 E
12-V+ 3-FF2 I-);D "'

I
2-SV

2:'-!'ka l-V> 1 ~ I ~Q~ H O I MotorDriver 4700 - ..c:.o.c:.c:z
Lm

-
~!~X~

Encoder ~
F '1' \ 4700 F vv LED

To Motor

- -

G
FEZ Panda 2 Distributed Module

G

Board ID 3 I Rev3

- -
0 I , I 2 I 3 I 4 I 5 6 I 7 I 8 I

130

Figure B108: Board ID 2 Schematic

0 3 5 6

T '

A 1
VEE vee VDD

2V 5\i~ l\,- uHrJ.!;l. ~ ~
5 3.3 -:;;r~e >

A

VE cc DD

U3 8- GND 1-
7 - DIR 1-..... 9-GND 6-PWMH r-+-

AREFJ
- 10-outA 5 - RST f-t--

'---- 11-outB 4 - FFl f-

r-- RST ~ 12-V• 3-FF2 t-
3V3 . GND 2-SV f-- r---
sv 013 ~ 1 - V+

l._
GNO 012 ~

MotorDriver 1 GND. Dll
Vin 010

B B

09
AO D8
Al
A2 D7 ~

- AJ D& 1--
- A4 DS ~ .---- AS D4 1--

D3 ~ -
~ D2 f--

to PCAN PCI card : Dl 1-- ~ DO ~ -
LED X1 ArduinoUNO 7

..., .~.? -~
·~ ' Y. R1 If

LE~f"'f2' 4700 1200_

R6 DSUB9F
.i.-:1

c

D

c

D

~ v-v-
J1

LE~f"'A 4700

JA R7

£{; ·,"'
4700 E E

R2

R3 .?R8
v.--l'v S'"o ltJ' U5

;,. R1 1

R4 2.7k0 r--3.-r:- 10ka ltJ' U2
2.~~~ r-Lr:-

'Y.V" ,~ LM741C~
2.7k0 ~ -

r~~~HH ~
R9

~rv 4 ~!X!! 10k0 4

lJ Lim it Switches
Encoder W¥~ R1 3 Arduino UNO Distributed Module

~ v A

l '"'
'VV'v 10k0 Board ID 2 Rev 2

F

G G

U4
0 5 6

131

Figure B109: Board ID 4 Schematic

0 I 1 2 I 3 I 4 I 5 6 I 7 I 8

.•• GND

chip KIT AREF
To Motor . . GNO

VEE v e e VDD 085 - 0RJag~~2 A -,-----3~
084 - A

12V 5\ 3.3 >
VE cc VDD 083 -

013 -
082 - U3 8- GND -

I- 012 - 1 - DI R - I-
- RST 081 - 9-GND 6 - i'WMH = ~ 3V3 011 - ~ 10-outA 5-RST

svo - 080 = r ll - outB 4- rn = F GND. 010 12- V+ 3 - FF 2

B GND •. 019 - 2 - 5V - B
VIN 09 - 1-V+ l 018 -

08 - Motor Driver

I- AO 011 I-
A1 01
A2 076 = - A3 06

- M 075 =-- c c - AS 05
- A6 014 - -~ - A7 04 = to PCAN PCI card : 073

~ OJ - -
I- 072 - I-

02 - 1
071

-~ - AS 01 -
- A9 070

I
R1 •

0 - A10 DO - 1200~ ~ 0
- All
- A12 014 - DSUB9F
- A13 015 -
- A14 016 -

J1 - A15 017 -
I- - A16 018 - I-

019 =-020
021

· 0
C>
>c

E CZMN-O~OO~~~~MN~O~OO~~~~MN~O~~~~~~~ N~> E Z ~~~~~~ ~~ ~ ~ VVV~VMMMMMMMMMMNNNNNNNN - ~
U · O O OOOOOOOOOOOCOOOOOOOOOOOOCOOOOC · ·

R2 I
I- 1 I-

R3 <: R8
·¥VIr--- ~ R1 1

R4
10k0 llj5 us

'> 10k0 Jj5 U2 F 2.7k0 ED X1 --Lr:- F
·If'
~

,~x r-1--;
2.7k0 LM741e~
,t.t\r-- Elf'~ 4700 LM741e~

I- '~ I-2.7k0
~ :-2:--

~ R9 lm U ~M !~ :,,/ .c "taN
> 10k0 4

~ ! ~~ i
Elf'fJ'

4700

3 4

G
Encoder R,l_ ~.f!l R13 chipKIT Distributed Module G

'P ~ ./'

" 4700 v 10k0 Board 10 4 Rev 1

I- U4 Limit Switches HDR1x a.l2 I-

0 I 1 2 I 3 I 4 I 5 6 I 7 I 8

132

Figure B110: Board ID 5 Schematic

A

B

c

D

E

F

G

5

VEE vee VDD

GND

U2 to PCAN PCI card
~

oB-BAT - -~
67-GNOf--t----------, -;:;199

66- SCKI - SN651tMD2300 ~

65 - MISOl - r~~;:~§t=fr=:;:::::l-f0~18 64 ~MOSI1 - ~ lD 8Rs 63-PWMl - I r--1 2GNO 7CANHi~ru 7
62-Ph'M2 -=-J r 3Vcc 6Ci'\NL
6 1-Pti'M3 - L4_R __ sv_r_ef-' -fOb
~~-T ~
~9-,.'M6 - .. ""-c

5~~~~':n~- 1200 DSUB9F
56 - SCL - J1

FezPanda2

5 5 - SDA -
54 - COMlout -
53-COMlin -

I ~ I I

L 8-GND J
7 - 0IR -

~5

X1 /J;J
9- GND 6-PWMI\ r-:----rtt==Jii;:__l\fl~~-~

LU---Ll-----L-J~=~=l lO-oot/\ 5-RsT r 1 1- out:B 4 -fFl -
12-V+ 3- ee2 -

I
2-sv r-----++-----'

4700 :---
U4 -~

~l---+----------
adxl335 vv

Off9~e1

To Motor

MotorDriv~~v+ l

5

D7
X2 ~ v-

4700 'M X3 ~
4700 LED

A

B

c

D

E

133

Appendix C: PID Code

The following sample code shows the discrete time implementation of the PID control routine called during axis movement, as well as the function called to

update the three gains.

 1: Static double Kp = 15/10;
 2: Static double Ki = 15/10;
 3: Static double Kd = 10/10;
 4: Static double IterationCount = 0;
 5: Double PID_run(int AcutalPos, int DesiredPos)
 6: {
 7: double err;
 8: double d_err;
 9: double P_Out;
 10: double I_Out;
 11: double D_Out;
 12: double Output;
 13:
 14: Static double int_err;
 15: Static double last_err;
 16:
 17: err = actualPos – desiredPos;
 18: d_err = last _err – err;
 19: int_err = int_err + int_err;
 20:
 21: if (int_err > 200)
 22: {
 23: Int_err = 200;
 24: }
 25: Else if(int_err < -200)
 26: {
 27: Int_err = -200;

134

 28: }
 29:
 30: P_Out = err*Kp;
 31: I_Out = int_err*ki
 32: D_Out = d_err*Kd;
 33:
 34: Output = P_Out + I_Out + D_Out;
 35:
 36: if (Output > 255)
 37: {
 38: Output = 255;
 39: }
 40: Else if(Output < 0)
 41: {
 42: Output = 0;
 43: }
 44: last _err = err;
 45:
 46: if (IterationCount == 0)
 47: {
 48: Output = 255;
 49: IterationCount++;
 50: }
 51: Return Output;
 52: }

Gain Tuning routine
 1: Void GainTuning (double KpSet, double KiSet, double KdSet)
 2: {
 3: Kp = KpSet;
 4: Ki = KiSet;
 5: Kd = KdSet;
 6: }

135

Appendix D: Sample Code for Text Interpretation

 1: //Text Interpretation routine.
 2: // function will be called and passed the text file containing the user program
 3:
 4: #include <cstdlib>
 5: #include <iostream>
 6:
 7: using System.Text;
 8: using System.IO;
 9: using namespace std
 10:
 11: private bool TextInterpretation(string fileName)
 12: {
 13: try
 14: {
 15: string line;
 16: StreamReader theReader = new StreamReader(fileName, Encoding.Default);
 17:
 18: // read line 1
 19: using (theReader)
 20: {
 21: // do this loop until no more lines exist
 22: do
 23: {
 24: line = theReader.ReadLine();
 25: if (line != null)
 26: {
 27: // split entries from the line read by checking for spaces
 28: // deliniators, then send that array to DoStuff()
 29: string[] entries = line.Split(' ');
 30:

136

 31: // string[0] is the Block number
 32: // string[1] is preperatory function
 33: // string[2] is X axis position
 34: // string[3] is Z axis position
 35: // string[4] A axis movement
 36: // string[5] is feed rate
 37: // string[6] is spindle speed
 38:
 39: if (entries.Length > 0)
 40: //first check if start or stop command in preparatory function
 41:
 42: switch(string[1])
 43: {
 44: //start commnad
 45: case "M00":
 46: // edit global machine operation status to true
 47: MachineOperation == True;
 48: //stop command
 49: break;
 50:
 51: case "M02":
 52: MachineOperation == False;
 53: // edit global machine operation status to false
 54: break;
 55:
 56: // standard movement - linear interpolation
 57: case "G01":
 58: // call linear interpolaiton func as per below
 59: //LinearInterpolation(AcutalXPos, AcutalZPos, DesiredXPos,
DesiredZPos, FeedX, FeedZ);
 60: //convert from string to double

137

 61: LinearInterpolation(MRMTXPos, MRMTZPos,
Convert.ToDouble(string[2]),
 62: Convert.ToDouble(string[3]),
ServoM2.Get_Mod_Feed(),
 63: ServoM1.Get_Mod_Feed(),
Convert.ToDouble(string[5]));
 64: break;
 65:
 66: // cw circular interpolation
 67: case "G02":
 68: // call circ interpolaiton func as per below
 69: //if command == go2
 70: //CircularInterpolation(ActualXPos, ActualZPos,
DesiredXPos, DesiredZPos, FeedX, FeedZ)
 71: //convert from string to double
 72: CircularInterpolation(MRMTXpos, MRMTZpos,
Convert.ToDouble(string[2]),
 73: Convert.ToDouble(string[3]),
ServoM2.Get_Mod_Feed(),
 74: ServoM1.Get_Mod_Feed(),
Convert.ToDouble(string[5]));
 75:
 76: //ccw circular interpolation
 77: case "G03":
 78: // call circ interpolaiton func as per below
 79: //if command == go2
 80: //CircularInterpolation(ActualXPos, ActualZPos,
DesiredXPos, DesiredZPos, FeedX, FeedZ)
 81: //convert from string to double
 82: double Nfeed = -1*(Convert.ToDouble(string[5]));
 83: double NXFeed = -1*ServoM2Axis.Get_Mod_Feed();
 84: double NZFeed = -1*ServoM1Axis.Get_Mod_Feed();

138

 85: CircularInterpolation(MRMTXpos, MRMTZpos,
Convert.ToDouble(string[2]),
 86: Convert.ToDouble(string[3]), NXFeed,
 87: NZFeed, Nfeed);
 88: break;
 89:
 90: default:
 91: break;
 92:
 93: // end of switch
 94: }
 95: ///
 96: // Similarly the rest of the progam can be read and interpreted from the
text file.
 97: ///
 98: }
 99: }
 100: while (line != null);
 101:
 102: // Finished reading
 103: theReader.Close();
 104: return true;
 105: }
 106: }
 107:
 108: catch (Exception e)
 109: {
 110: return false;
 111: }
 112: }

139

Appendix E: Linear Interpolation Code

 1: //Linear Interpolation Routine
 2:
 3: // Functions
 4: // LinearInterpolation
 5: // SetTipo
 6:
 7: #include <cstdlib>
 8: #include <iostream>
 9:
 10: using namespace std
 11: //global definitions
 12:
 13: Static Double Tipo = 0.1;
 14:
 15: //Linear interpolation routine
 16: void LinearInterpolation(double AcutalXPos,
 17: double AcutalZPos,
 18: double DesiredXPos,
 19: double DesiredZPos,
 20: double FeedX,
 21: double FeedZ
 22: double CommandFeed)
 23: {
 24: //variable declerations
 25: double deltaX = DesiredXPos - ActualXPos;
 26: double deltaZ = DesiredZPos - ActualZPos;
 27:
 28: double L = sqrt(deltaX*deltaX + deltaZ*deltaZ);
 29:
 30: double deltaL;
 31: double LowestFeed;
 32:
 33: double incX;
 34: double incZ;
 35:

140

 36: int N;
 37:
 38: double Xresidual;
 39: double Zresidual;
 40: //calculate lower velocity
 41: //also includes calcuation if onle single axis is moved
 42: If (FeedX < FeedZ)
 43: {
 44: LowestFeed = FeedX;
 45: }
 46: elseIf (FeedZ < FeedX)
 47: {
 48: LowestFeed = FeedZ;
 49: }
 50: elseif (FeedX = 0)
 51: {
 52: LowestFeed = FeedZ;
 53: }
 54: elseif (FeedZ = 0)
 55: {
 56: LowestFeed = FeedX;
 57: }
 58: elseif(CommandFeed < FeedZ)
 59: {
 60: LowestFeed = CommandFeed;
 61: }
 62: elseif(CommandFeed < FeedX)
 63: {
 64: LowestFeed = CommandFeed;
 65: }
 66:
 67: //calculate delta length
 68: deltaL = LowestFeed*Tipo;
 69:
 70: //calculate axial increments
 71: incX = (deltaL)((deltaX) / (L));

141

 72: incZ = (deltaL)((deltaZ) / (L));
 73:
 74: //calculate number of iterations
 75: N = (L/deltaL);
 76:
 77: //define the output array with lenght N + 1 for the residual
 78: double OutputArrayX[N + 1];
 79: double OutputArrayZ[N + 1];
 80:
 81: //calculate residual lenghts
 82: Xresidual = deltaX - N*incX;
 83: Zresidual = deltaZ - N*incZ;
 84:
 85: for (i = 0 ; i = N - 1 ; I++)
 86: {
 87: OutputArrayX[i] = incX;
 88: OutputArrayZ[i] = incZ;
 89: }
 90:
 91: OutputArrayX[N] = Xresidual;
 92: OutputArrayZ[N] = Zresidual;
 93:
 94: //copy data to global Arrays
 95: for (i = 1; i = N ; i==)
 96: {
 97: *XLinInterpArray[i] = OutputArrayX[i];
 98: *ZLinInterpArray[i] = OutputArrayZ[i];
 99: }
 100:
 101: //calculate feedrates for residual length and updates the variables via its pointer
 102: *residualFeedX = ((60*Xresidual) / (Tipo));
 103: *residualFeedZ = ((60*Zresidual) / (Tipo));
 104:
 105: //update variables via their pointers
 106: // *Xresidual = Xresidual;
 107: // *Yresidual = Yresidual;

142

 108: }
 109:
 110: Void SetTipo(double T)
 111: {
 112: Tipo = T;
 113: Return 0;
 114: }

143

Appendix F: Circular Interpolation Code

 1: // Functions
 2: //CircularInterpolation
 3: //SetAlpha
 4:
 5: #include <cstdlib>
 6: #include <iostream>
 7:
 8: using namespace std;
 9:
 10: //global definitions
 11: double CircularInterpolationAlpha;
 12:
 13: void CircularInterpolation(
 14: double ActualXPos,
 15: double ActualZPos,
 16: double DesiredXPos,
 17: double DesiredZPos,
 18: double FeedX,
 19: Double FeedZ)
 20: {
 21: // variable declerations
 22: double Alpha = CircularInterpolationAlpha;
 23: double Pi = 3.14159265359;
 24:
 25: double deltaX = DesiredXPos - ActualXPos;
 26: double deltaZ = DesiredZPos - ActualZPos;
 27:
 28: double LowestFeed;
 29: double Radius;
 30: double DS;
 31:
 32: double FinalVelocityX;
 33: double FinalVelovityZ;
 34:
 35: bool CCW;

144

 36:
 37: //check if feeds are negatove, then rotation is ccw
 38: if (FeedX < 1 && if FeedZ < 1 && CommmandFeed < 1)
 39: {
 40: FeedX = -1*FeedX;
 41: FeedX = -1*FeedZ;
 42: CommandFeed = -1*CommandFeed;
 43: CCW = true;
 44: }
 45:
 46: if (FeedX < FeedZ)
 47: {
 48: LowestFeed = FeedX;
 49: }
 50: elseif (FeedZ < FeedX)
 51: {
 52: LowestFeed = FeedZ;
 53: }
 54: elseif(CommandFeed < FeedZ)
 55: {
 56: LowestFeed = CommandFeed;
 57: }
 58: elseif(CommandFeed < FeedX)
 59: {
 60: LowestFeed = CommandFeed;
 61: }
 62:
 63:
 64: DS = sqrt(deltaX*deltaX + deltaZ*deltaZ);
 65:
 66: FinalVelocityX = (((LowestFeed)(deltaX)) / DS);
 67: FinalVelocityZ = (((LowestFeed)(deltaZ)) / DS);
 68:
 69: if(CCW == True)
 70: {
 71: FinalVelocityX = -1*FinalVelocityX;

145

 72: FinalVelocityY = -1*FinalVelocityY;
 73: }
 74:
 75: Radius = (16 / (Alpha*Alpha));
 76:
 77: Double Iterations;
 78:
 79: Iterations = ((Pi)/(8))*(sqrt(Radius));
 80:
 81: //update variables via their pointers
 82: *XFeed = FinalVelocityX;
 83: *ZFeed = FinalVelocityZ;
 84: *Iterations = Iterations;
 85: }
 86:
 87: Void SetAlpha(int Alpha)
 88: {
 89: CircularInterpolationAlpha = Alpha;
 90: Return 0;
 91: }

146

Appendix G: Acceleration Deceleration Code

 1: //Acceleration Deceleration Routine
 2:
 3: // Functions
 4: //Void AccDeccRoutine (int iterations, int Axis)
 5: //void SetMultipliers (int N, int contant)
 6:
 7: #include <cstdlib>
 8: #include <iostream>
 9:
 10: using namespace std
 11:
 12: //global definitions
 13: int Multiplpiers[];
 14:
 15: Void AccDeccRoutine (int iterations, int Axis)
 16: {
 17: //get global variables
 18:
 19: // if axis == 1, then input is z axis
 20: // axis ==2, input x axis
 21: if (Axis == 1)
 22: {
 23: for (i = 1; i = N ; i==)
 24: {
 25: double Input[N] = *ZLinInterpArray[i];
 26: }
 27: }
 28: elseif (Axis == 2)
 29: {
 30: for (i = 1; i = N ; i==)
 31: {
 32: double Input[N] = *XLinInterpArray[i];
 33: }
 34: }
 35:

147

 36: // note last entry into array is residual length
 37:
 38: int N = sizeof(Input);
 39: N = N - 1;
 40:
 41: SetMultipliers(N, 2);
 42:
 43: double SumMultipliers;
 44:
 45: for (i = 0 ; i = N ; I++)
 46: {
 47: SumMultipliers = SumMultipliers + Multipliers[i];
 48: }
 49:
 50: double Ouput[N];
 51:
 52: for (i = 0 ; i = N ; I++)
 53: {
 54: Output[i] = (((Input[i])*(Multipliers[i])) / SumMultipliers);
 55: }
 56: }
 57:
 58: // copy data accross to global variable
 59: if (Axis == 1)
 60: {
 61: for (i = 1; i = N ; i==)
 62: {
 63: *ZAccDecOutputArray[i] = Output[i];
 64: }
 65: }
 66: elseif (Axis == 2)
 67: {
 68: for (i = 1; i = N ; i==)
 69: {
 70: *XAccDecOutputArray[i] = Output[i];
 71: }

148

 72: }
 73:
 74: }
 75:
 76:
 77: // set multiplier function
 78: void SetMultipliers (int N, int contant)
 79: {
 80: //set all to concstant
 81: for (i = 0 ; i = N ; I++)
 82: {
 83: Multipliers[N] = constant
 84: }
 85:
 86: //then modify first and last values of multiplier array
 87: Multipliers[0] = 1;
 88: Multipliers[1] = 2;
 89: Multipliers[2] = 3;
 90:
 91: Multipliers[N-2] = 3;
 92: Multipliers[N-1] = 2;
 93: Multipliers[N] = 1;
 94: }

149

Appendix H: Sample Code of CANbus Class

 1: #region Can Bus class
 2:
 3: class CANBusClass
 4: {
 5: public static void CB_initialize()
 6: {
 7: PCANBasic.Initialize(PCANBasic.PCAN_USBBUS1, TPCANBaudrate.PCAN_BAUD_500K);
 8: }
 9: public static void CB_Deinitialize()
 10: {
 11: PCANBasic.Uninitialize(PCANBasic.PCAN_USBBUS1);
 12: }
 13: public static void CB_Module_CALL()
 14: {
 15: TPCANMsg CANMsg;
 16: // We create a TPCANMsg message structure
 17: CANMsg = new TPCANMsg();
 18: CANMsg.DATA = new byte[8];
 19: CANMsg.ID = Convert.ToUInt32(1);
 20: CANMsg.LEN = Convert.ToByte(8);
 21: CANMsg.MSGTYPE = TPCANMessageType.PCAN_MESSAGE_STANDARD;
 22: // can MSG data - 10000000
 23: CANMsg.DATA[0] = Convert.ToByte(1);
 24: for (int i = 1; i < 8; i++)
 25: {
 26: CANMsg.DATA[i] = Convert.ToByte(0);
 27: }
 28: PCANBasic.Write(PCANBasic.PCAN_USBBUS1, ref CANMsg);
 29: }

150

 30: public static void CB_Module_Data_CALL(int[] BoardIDs, int modBoardCount)
 31: {
 32: TPCANMsg CANMsg;
 33: // We create a TPCANMsg message structure
 34: CANMsg = new TPCANMsg();
 35: CANMsg.DATA = new byte[8];
 36: CANMsg.LEN = Convert.ToByte(8);
 37: CANMsg.MSGTYPE = TPCANMessageType.PCAN_MESSAGE_STANDARD;
 38: // can MSG data - 20000000
 39: CANMsg.DATA[0] = Convert.ToByte(2);
 40: for (int i = 1; i < 8; i++)
 41: {
 42: CANMsg.DATA[i] = Convert.ToByte(0);
 43: }
 44: switch(modBoardCount)
 45: {
 46: case 1:
 47: CANMsg.ID = Convert.ToUInt32(BoardIDs[0]);
 48: PCANBasic.Write(PCANBasic.PCAN_USBBUS1, ref CANMsg);
 49: break;
 50:
 51: case 2:
 52: CANMsg.ID = Convert.ToUInt32(BoardIDs[0]);
 53: PCANBasic.Write(PCANBasic.PCAN_USBBUS1, ref CANMsg);
 54: CANMsg.ID = Convert.ToUInt32(BoardIDs[1]);
 55: PCANBasic.Write(PCANBasic.PCAN_USBBUS1, ref CANMsg);
 56: break;
 57:
 58: case 3:
 59: CANMsg.ID = Convert.ToUInt32(BoardIDs[0]);
 60: PCANBasic.Write(PCANBasic.PCAN_USBBUS1, ref CANMsg);
 61: CANMsg.ID = Convert.ToUInt32(BoardIDs[1]);

151

 62: PCANBasic.Write(PCANBasic.PCAN_USBBUS1, ref CANMsg);
 63: CANMsg.ID = Convert.ToUInt32(BoardIDs[2]);
 64: PCANBasic.Write(PCANBasic.PCAN_USBBUS1, ref CANMsg);
 65: break;
 66:
 67: case 4:
 68: CANMsg.ID = Convert.ToUInt32(BoardIDs[0]);
 69: PCANBasic.Write(PCANBasic.PCAN_USBBUS1, ref CANMsg);
 70: CANMsg.ID = Convert.ToUInt32(BoardIDs[1]);
 71: PCANBasic.Write(PCANBasic.PCAN_USBBUS1, ref CANMsg);
 72: CANMsg.ID = Convert.ToUInt32(BoardIDs[2]);
 73: PCANBasic.Write(PCANBasic.PCAN_USBBUS1, ref CANMsg);
 74: CANMsg.ID = Convert.ToUInt32(BoardIDs[3]);
 75: PCANBasic.Write(PCANBasic.PCAN_USBBUS1, ref CANMsg);
 76: break;
 77: }
 78: }
 79: public static void CB_Module_MoveCommand(int boardID, int Command, int value, int x)
 80: {
 81: TPCANMsg CANMsg;
 82: // We create a TPCANMsg message structure
 83: CANMsg = new TPCANMsg();
 84: CANMsg.DATA = new byte[8];
 85: CANMsg.ID = Convert.ToUInt32(boardID);
 86: CANMsg.LEN = Convert.ToByte(8);
 87: CANMsg.MSGTYPE = TPCANMessageType.PCAN_MESSAGE_STANDARD;
 88: // can MSG data - 3 - Move Command - 0 0 0 0 0 0
 89: CANMsg.DATA[0] = Convert.ToByte(3);
 90: //stop command
 91: if (Command == 0)
 92: {
 93: CANMsg.DATA[1] = Convert.ToByte(0);

152

 94: CANMsg.DATA[2] = Convert.ToByte(0);
 95: CANMsg.DATA[3] = Convert.ToByte(0);
 96: }
 97: //start command
 98: else if (Command == 1)
 99: {
 100: CANMsg.DATA[1] = Convert.ToByte(1);
 101: //x is 0, then value is positive
 102: //x is = 1 value is negative = CW rotation
 103: if (x == 1)
 104: {
 105: CANMsg.DATA[3] = Convert.ToByte(1);
 106: if (value <= 0)
 107: {
 108: value = value * -1;
 109: }
 110: }
 111: else
 112: {
 113: CANMsg.DATA[3] = Convert.ToByte(0);
 114: }
 115: CANMsg.DATA[2] = Convert.ToByte(value);
 116: }
 117: // switch direction command
 118: else if (Command == 2)
 119: {
 120: CANMsg.DATA[1] = Convert.ToByte(2);
 121: CANMsg.DATA[2] = Convert.ToByte(0);
 122: CANMsg.DATA[3] = Convert.ToByte(0);
 123: };
 124: // rest are 0's
 125: for (int i = 4; i < 8; i++)

153

 126: {
 127: CANMsg.DATA[i] = Convert.ToByte(0);
 128: }
 129: PCANBasic.Write(PCANBasic.PCAN_USBBUS1, ref CANMsg);
 130: }
 131: }
 132:
 133: #endregion

154

Appendix I: Sample Code for Generic Servo Module Class

 1: using System;
 2: using System.Collections.Generic;
 3: using System.Linq;
 4: using System.Text;
 5:
 6: namespace ServoModuleNS
 7: {
 8: class ServoModuleClass
 9: {
 10: private
 11: int Module_CB_ID;
 12: char Module_CB_IDchar;
 13: int ServoBoardCount = 0;
 14: string Mod_Info = "";
 15: string Mod_Type = "";
 16: double Feed = 0;
 17: double Speed = 0;
 18: double[,] TransMat = new double[4, 4];
 19:
 20: public ServoModuleClass(int ID)
 21: {
 22: Module_CB_ID = ID;
 23: }
 24: public void set_Module_CB_IDchar(char ID)
 25: {
 26: Module_CB_IDchar = ID;
 27: }
 28: public char Get_Module_CB_IDchar()
 29: {
 30: return Module_CB_IDchar;

155

 31: }
 32: public void set_Module_CB_ID(int ID)
 33: {
 34: Module_CB_ID = ID;
 35: }
 36: public int Get_Module_CB_ID()
 37: {
 38: return Module_CB_ID;
 39: }
 40: public int Get_ServoBoardCount()
 41: {
 42: return ServoBoardCount;
 43: }
 44: public void Set_Mod_Info(string A)
 45: {
 46: Mod_Info = A;
 47: }
 48: public string Get_Mod_Info()
 49: {
 50: return Mod_Info;
 51: }
 52: public void Set_Mod_Type(string A)
 53: {
 54: Mod_Type = A;
 55: }
 56: public string Get_Mod_Type()
 57: {
 58: return Mod_Type;
 59: }
 60: public void Set_Trans_Mat(int Row, int Col, double value)
 61: {
 62: TransMat[Row, Col] = value;

156

 63: }
 64: public double Get_Trans_Mat(int Row, int Col)
 65: {
 66: return TransMat[Row, Col];
 67: }
 68: public void Set_Feed(double A)
 69: {
 70: Feed = A;
 71: }
 72: public double Get_Mod_Feed()
 73: {
 74: return Feed;
 75: }
 76: public void Set_Mod_Speed(double A)
 77: {
 78: Speed = A;
 79: }
 80: public double Get_Mod_Speed()
 81: {
 82: return Speed;
 83: }
 84: }
 85: }

157

 Appendix J: Sample Code for Physical Configuration Tab

 1: #region Physical Configuration (under hardware Modules TAB)
 2:
 3: private void RefreshModulesButton_Click(object sender, RoutedEventArgs e)
 4: {
 5: PConfigDiagram.Visibility = Visibility.Visible;
 6: label3.Visibility = Visibility.Visible;
 7:
 8: switch (ModBoardCount)
 9: {
 10: case 0:
 11: break;
 12: case 1:
 13: UpdateComboBox0();
 14: break;
 15: case 2:
 16: UpdateComboBox0();
 17: UpdateComboBox1();
 18: break;
 19:
 20: case 3:
 21: UpdateComboBox0();
 22: UpdateComboBox1();
 23: UpdateComboBox2();
 24: break;
 25:
 26: case 4:
 27: UpdateComboBox0();
 28: UpdateComboBox1();
 29: UpdateComboBox2();
 30: UpdateComboBox3();

158

 31: break;
 32:
 33: default:
 34: break;
 35: }
 36: SavePConfigButton.Visibility = Visibility.Visible;
 37: }
 38:
 39: private void UpdateComboBox0()
 40: {
 41: label4.Visibility = Visibility.Visible;
 42: WorkToolComboBox.Visibility = Visibility.Visible;
 43:
 44: WorkToolComboBox.Items.Add(TMC0.Get_Module_CB_IDchar() + " " + TMC0.Get_Mod_Info());
 45: }
 46:
 47: private void UpdateComboBox1()
 48: {
 49: label5.Visibility = Visibility.Visible;
 50: Module1ComboBox.Visibility = Visibility.Visible;
 51:
 52: WorkToolComboBox.Items.Add(TMC1.Get_Module_CB_IDchar() + " " + TMC1.Get_Mod_Info());
 53:
 54: Module1ComboBox.Items.Add(TMC0.Get_Module_CB_IDchar() + " " + TMC0.Get_Mod_Info());
 55: Module1ComboBox.Items.Add(TMC1.Get_Module_CB_IDchar() + " " + TMC1.Get_Mod_Info());
 56: }
 57: private void UpdateComboBox2()
 58: {
 59: label6.Visibility = Visibility.Visible;
 60: Module2ComboBox.Visibility = Visibility.Visible;
 61:
 62: WorkToolComboBox.Items.Add(TMC2.Get_Module_CB_IDchar() + " " + TMC2.Get_Mod_Info());

159

 63:
 64: Module1ComboBox.Items.Add(TMC2.Get_Module_CB_IDchar() + " " + TMC2.Get_Mod_Info());
 65:
 66: Module2ComboBox.Items.Add(TMC0.Get_Module_CB_IDchar() + " " + TMC0.Get_Mod_Info());
 67: Module2ComboBox.Items.Add(TMC1.Get_Module_CB_IDchar() + " " + TMC1.Get_Mod_Info());
 68: Module2ComboBox.Items.Add(TMC2.Get_Module_CB_IDchar() + " " + TMC2.Get_Mod_Info());
 69: }
 70: private void UpdateComboBox3()
 71: {
 72: label7.Visibility = Visibility.Visible;
 73: Module3ComboBox.Visibility = Visibility.Visible;
 74:
 75: WorkToolComboBox.Items.Add(TMC3.Get_Module_CB_IDchar() + " " + TMC3.Get_Mod_Info());
 76:
 77: Module1ComboBox.Items.Add(TMC3.Get_Module_CB_IDchar() + " " + TMC3.Get_Mod_Info());
 78:
 79: Module2ComboBox.Items.Add(TMC3.Get_Module_CB_IDchar() + " " + TMC3.Get_Mod_Info());
 80:
 81: Module3ComboBox.Items.Add(TMC0.Get_Module_CB_IDchar() + " " + TMC0.Get_Mod_Info());
 82: Module3ComboBox.Items.Add(TMC1.Get_Module_CB_IDchar() + " " + TMC1.Get_Mod_Info());
 83: Module3ComboBox.Items.Add(TMC2.Get_Module_CB_IDchar() + " " + TMC2.Get_Mod_Info());
 84: Module3ComboBox.Items.Add(TMC3.Get_Module_CB_IDchar() + " " + TMC3.Get_Mod_Info());
 85: }
 86: private void SavePConfigButton_Click(object sender, RoutedEventArgs e)
 87: {
 88: label12.Visibility = Visibility.Visible;
 89:
 90: label28.Visibility = Visibility.Visible;
 91:
 92: CONTROLLERlabel.Visibility = Visibility.Visible;
 93: PIlabel.Visibility = Visibility.Visible;
 94: PIDlabel.Visibility = Visibility.Visible;

160

 95:
 96: ResetControllersButton.Visibility = Visibility.Visible;
 97:
 98: switch (ModBoardCount)
 99: {
 100: case 1:
 101: UpdateModClasses0();
 102: break;
 103: case 2:
 104: UpdateModClasses0();
 105: UpdateModClasses1();
 106: break;
 107: case 3:
 108: UpdateModClasses0();
 109: UpdateModClasses1();
 110: UpdateModClasses2();
 111: break;
 112: case 4:
 113: UpdateModClasses0();
 114: UpdateModClasses1();
 115: UpdateModClasses2();
 116: UpdateModClasses3();
 117: break;
 118:
 119: }
 120: }
 121:
 122: private void UpdateModClasses0()
 123: {
 124: label8.Visibility = Visibility.Visible;
 125: ToolHeadModule.Visibility = Visibility.Visible;
 126: THRadioButton.Visibility = Visibility.Visible;

161

 127:
 128: label24.Visibility = Visibility.Visible;
 129: THradioButtonPI.Visibility = Visibility.Visible;
 130: THradioButtonPID.Visibility = Visibility.Visible;
 131:
 132: switch (WorkToolComboBox.SelectedIndex)
 133: {
 134: case 0:
 135: ToolHM1.Set_Mod_Info(TMC0.Get_Mod_Info());
 136: ToolHM1.set_Module_CB_IDchar(TMC0.Get_Module_CB_IDchar());
 137: ToolHM1.set_Module_CB_ID(TMC0.Get_Module_CB_ID());
 138: break;
 139: case 1:
 140: ToolHM1.Set_Mod_Info(TMC1.Get_Mod_Info());
 141: ToolHM1.set_Module_CB_IDchar(TMC1.Get_Module_CB_IDchar());
 142: ToolHM1.set_Module_CB_ID(TMC1.Get_Module_CB_ID());
 143: break;
 144: case 2:
 145: ToolHM1.Set_Mod_Info(TMC2.Get_Mod_Info());
 146: ToolHM1.set_Module_CB_IDchar(TMC2.Get_Module_CB_IDchar());
 147: ToolHM1.set_Module_CB_ID(TMC2.Get_Module_CB_ID());
 148: break;
 149: case 3:
 150: ToolHM1.Set_Mod_Info(TMC3.Get_Mod_Info());
 151: ToolHM1.set_Module_CB_IDchar(TMC3.Get_Module_CB_IDchar());
 152: ToolHM1.set_Module_CB_ID(TMC3.Get_Module_CB_ID());
 153: break;
 154: default:
 155: break;
 156: }
 157: ToolHeadModule.Content = (ToolHM1.Get_Module_CB_IDchar() + " " +
ToolHM1.Get_Mod_Info());

162

 158: BoardIDs[0] = update_boardIDs(ToolHM1.Get_Module_CB_IDchar());
 159: BoardIDsASCII[0] = ToolHM1.Get_Module_CB_ID();
 160: }
 161: // similarly, the other update mod class functions will follow similar methods
 162: #endregion

163

Appendix K: Sample Code for Data Download Tab

 1: #region Data Download TAB
 2:
 3: private void RefreshAvailableModulesButton_Click(object sender, RoutedEventArgs e)
 4: {
 5: switch (ModBoardCount)
 6: {
 7: case 1:
 8: _DownlaodedItems.Add(ToolHM1.Get_Module_CB_IDchar() + " " +
ToolHM1.Get_Mod_Type());
 9: _MotorControlItems.Add(ToolHM1.Get_Module_CB_IDchar());
 10:
 11: break;
 12:
 13: case 2:
 14: _DownlaodedItems.Add(ToolHM1.Get_Module_CB_IDchar() + " " +
ToolHM1.Get_Mod_Type());
 15: _DownlaodedItems.Add(ServoM1.Get_Module_CB_IDchar() + " " +
ServoM1.Get_Mod_Type());
 16: _MotorControlItems.Add(ToolHM1.Get_Module_CB_IDchar());
 17: _MotorControlItems.Add(ServoM1.Get_Module_CB_IDchar());
 18: break;
 19:
 20: case 3:
 21: _DownlaodedItems.Add(ToolHM1.Get_Module_CB_IDchar() + " " +
ToolHM1.Get_Mod_Type());
 22: _DownlaodedItems.Add(ServoM1.Get_Module_CB_IDchar() + " " +
ServoM1.Get_Mod_Type());
 23: _DownlaodedItems.Add(ServoM2.Get_Module_CB_IDchar() + " " +
ServoM2.Get_Mod_Type());
 24: _MotorControlItems.Add(ToolHM1.Get_Module_CB_IDchar());

164

 25: _MotorControlItems.Add(ServoM1.Get_Module_CB_IDchar());
 26: _MotorControlItems.Add(ServoM2.Get_Module_CB_IDchar());
 27: break;
 28:
 29: case 4:
 30: _DownlaodedItems.Add(ToolHM1.Get_Module_CB_IDchar() + " " +
ToolHM1.Get_Mod_Type());
 31: _DownlaodedItems.Add(ServoM1.Get_Module_CB_IDchar() + " " +
ServoM1.Get_Mod_Type());
 32: _DownlaodedItems.Add(ServoM2.Get_Module_CB_IDchar() + " " +
ServoM2.Get_Mod_Type());
 33: _DownlaodedItems.Add(ServoM3.Get_Module_CB_IDchar() + " " +
ServoM3.Get_Mod_Type());
 34: _MotorControlItems.Add(ToolHM1.Get_Module_CB_IDchar());
 35: _MotorControlItems.Add(ServoM1.Get_Module_CB_IDchar());
 36: _MotorControlItems.Add(ServoM2.Get_Module_CB_IDchar());
 37: _MotorControlItems.Add(ServoM3.Get_Module_CB_IDchar());
 38: break;
 39:
 40: DownloadedDataListBox.ItemsSource = _DownlaodedItems;
 41: MotorControlListBox.ItemsSource = _MotorControlItems;
 42: }
 43:
 44: private void AvailableModuleListBox_SelectionChanged(object sender,
SelectionChangedEventArgs e)
 45: {
 46: DownloadData4ModuleButton.Visibility = Visibility.Visible;
 47: }
 48:
 49: private void DownloadData4AllModules_Click(object sender, RoutedEventArgs e)
 50: {
 51: label2.Visibility = Visibility.Visible;

165

 52: DownloadedDataListBox.Visibility = Visibility.Visible;
 53:
 54: CANBusClass.CB_Module_Data_CALL(BoardIDs, ModBoardCount);
 55:
 56: ResetAvailableModulesButton.IsEnabled = true;
 57: }
 58:
 59: private void DownloadData4ModuleButton_Click(object sender, RoutedEventArgs e)
 60: {
 61: label2.Visibility = Visibility.Visible;
 62: DownloadedDataListBox.Visibility = Visibility.Visible;
 63: }
 64:
 65: #endregion

166

Appendix L: Sample Code for Motor Control Tab

 1: #region Motor Control Tab
 2:
 3: private void MCStartButton_Click_1(object sender, RoutedEventArgs e)
 4: {
 5: //test code to determine if we kno what is selected
 6: //MCTestLabel.Content =
Convert.ToInt32(MotorControlListBox.SelectedItem.ToString());
 7:
 8: if (radioButtonCCW.IsChecked == true)
 9: {
 10: // 0 at the end is for CCW
 11:
CANBusClass.CB_Module_MoveCommand(Convert.ToInt32(MotorControlListBox.SelectedItem.ToString()), 1,
Convert.ToInt32(MCDistance.Text), 0);
 12: }
 13: else if (radioButtonCW.IsChecked == true)
 14: {
 15: // 1 at the is for CW
 16:
CANBusClass.CB_Module_MoveCommand(Convert.ToInt32(MotorControlListBox.SelectedItem.ToString()), 1,
Convert.ToInt32(MCDistance.Text), 1);
 17: }
 18:
 19: //CANBusClass.
 20: }
 21:
 22: private void MCStopButton_Click_1(object sender, RoutedEventArgs e)
 23: {
 24: int x = 0;

167

 25:
CANBusClass.CB_Module_MoveCommand(Convert.ToInt32(MotorControlListBox.SelectedItem.ToString()), 0,
Convert.ToByte(MCDistance.Text, 16), x);
 26: }
 27:
 28: private void MCSwitchButton_Click_1(object sender, RoutedEventArgs e)
 29: {
 30: int x = 0;
 31:
CANBusClass.CB_Module_MoveCommand(Convert.ToInt32(MotorControlListBox.SelectedItem.ToString()), 2,
Convert.ToByte(MCDistance.Text, 16), x);
 32: }
 33:
 34: #endregion

168

Appendix M: Reconfiguration Time Data

Table M28: Reconfiguration Times for 3 Modules (Familiar User)

Iteration Familiar User: 3 Modules (sec) Familiar User: 4 Modules (sec)

1 210 223

2 231 225

3 194 210

4 187 307

5 175 238

Table M29: Reconfiguration Time for 3 Modules (New User)

Iteration New User: 3 Modules (sec) New User: 4 Modules (sec)

1 302 354

2 307 425

3 371 537

4 462 394

5 388 489

169

Appendix N: Acceleration/Deceleration Control Example Data

Table N30: Acceleration/Deceleration Results (Constant Multiplier Values)

Interpolator Routine Results Acceleration/Deceleration Routine Results

Sampling
Time (k):

Interpolation
Output

 Sampling
Time (k):

Input pulse
∆�(�)

Adder output Output Pulse
∆�� (�)

1 5 1 5 5 1

2 5 2 5 10 2

3 5 3 5 15 3

4 5 4 5 20 4

5 5 5 5 25 5

6 5 6 0 25 5

7 5 7 0 25 5

8 5 8 0 25 5

9 0 9 0 20 4

10 0 10 0 15 3

11 0 11 0 10 2

12 0 12 0 5 1

Table N31: Acceleration/Deceleration Results (Varied Multiplier Values)

Interpolator Routine Results Acceleration/Deceleration Routine Results

Sampling
Time (k):

Interpolation
Output

 Sampling
Time (k):

Input pulse
∆�(�)

Adder output Output Pulse
∆�� (�)

1 5 1 5 5 0.56

2 5 2 5 15 1.67

3 5 3 5 30 3.33

4 5 4 5 40 4.44

5 5 5 5 45 5

6 5 6 0 45 5

7 5 7 0 45 5

8 5 8 0 45 5

9 0 9 0 40 4.44

10 0 10 0 30 3.33

11 0 11 0 15 1.67

12 0 12 0 5 0.56

170

Appendix O: Encoder Count Data

Table O32: Encoder Count - X Axis (80mm Movement)

Iteration CW CCW

1 13521 13552

2 13483 13519

3 13591 13534

4 13560 13566

5 13527 13521

6 13510 13524

Average 13533 13537

Table O33: Encoder Count - Z Axis (50mm Movement)

Iteration CW CCW

1 8605 8529

2 8454 8455

3 8259 8399

4 8516 8526

5 8359 8375

Average 8438 8456

Table O34: Encoder Count - A Axis (345° Movement)

Iteration CW CCW

1 11362 11424

2 11433 11359

3 11398 11428

4 11428 11375

5 11426 11381

Average 11409 11393

171

Time Comparisons Data

Table O35: Time (sec) Comparisons for Movement on All Axes

Rotary Linear

A Axis X Axis Z Axis

360 degrees 80mm 50mm

CW CCW CW CCW CW CCW

69,1229 56,9146 36,937 30,1213 27,7659 21,907

69,0258 55,7145 36,6825 29,3837 26,9468 22,1929

68,6396 55,3225 37,1531 30,4588 26,6028 22,1069

68,3864 55,3446 36,7625 31,0331 27,2334 21,8355

68,2104 54,8826 36,4346 29,4507 26,9866 22,3045

Average Average Average Average Average Average

68,68 55,64 36,92 30,09 27,11 22,07

172

Appendix P: Vibration Intensity Recording Data

Table P36: Vibration Intensity Due to Axis Movement and Drill Operation

Count X Y Z Count X Y Z

1 404 522 499 29 405 522 501

2 404 522 499 30 404 523 499

3 404 522 499 31 404 523 500

4 404 522 499 32 404 524 499

5 404 522 499 33 405 522 498

6 410 521 492 34 406 522 501

7 409 517 498 35 405 521 498

8 395 514 499 36 404 522 499

9 400 523 504 37 407 520 503

10 400 510 496 38 407 522 505

11 401 522 500 39 404 519 497

12 406 523 497 40 399 515 503

13 403 519 499 41 403 521 486

14 397 521 499 42 403 519 496

15 398 511 497 43 395 522 512

16 404 523 493 44 403 520 498

17 400 517 508 45 399 520 498

18 410 525 510 46 411 519 497

19 399 522 497 47 406 519 496

20 404 522 499 48 399 525 473

21 405 524 499 49 407 519 498

22 406 522 499 50 399 516 497

23 405 522 501 51 397 525 495

24 404 522 499 52 404 523 496

25 404 523 500 53 396 521 493

26 404 523 498 54 400 521 504

27 405 524 498 55 406 522 497

28 406 523 499 56 407 526 498

Table P37: Vibration Intensity During Drilling Operation – Drill In/Out 20mm

Count X Y Z Count X Y Z

1 403 523 499 82 417 524 518

2 403 523 499 83 389 526 502

3 404 524 499 84 427 508 514

4 403 523 499 85 458 520 506

5 403 523 499 86 382 522 488

6 404 524 499 87 400 513 491

7 403 523 499 88 408 526 535

8 403 524 498 89 393 519 506

9 403 523 498 90 413 523 495

173

10 403 523 499 91 431 526 478

11 403 524 499 92 396 516 482

12 403 523 499 93 395 511 465

13 403 523 499 94 392 516 514

14 401 524 501 95 381 514 514

15 404 523 493 96 431 497 538

16 405 524 480 97 439 522 533

17 400 521 519 98 396 524 516

18 401 518 507 99 405 512 458

19 408 530 486 100 396 516 490

20 409 522 502 101 412 528 474

21 400 515 496 102 403 520 552

22 406 526 497 103 418 541 518

23 403 526 499 104 399 522 535

24 408 522 493 105 388 518 461

25 404 526 502 106 418 523 508

26 406 525 504 107 395 510 501

27 403 528 493 108 426 532 436

28 401 521 513 109 412 528 507

29 405 524 504 110 406 519 523

30 399 523 503 111 417 520 542

31 411 501 534 112 402 522 504

32 403 520 498 113 400 526 472

33 406 523 503 114 398 495 497

34 406 516 507 115 418 517 523

35 399 515 489 116 397 511 524

36 400 527 496 117 405 521 516

37 399 525 504 118 389 523 514

38 398 518 508 119 410 521 512

39 408 529 506 120 406 516 480

40 402 519 494 121 404 511 505

41 398 520 480 122 417 528 494

42 396 530 496 123 410 529 503

43 406 521 516 124 405 522 490

44 401 522 496 125 393 507 500

45 398 518 529 126 409 512 520

46 395 515 511 127 398 513 515

47 398 533 489 128 422 529 496

48 409 521 510 129 402 532 500

49 399 525 499 130 415 513 499

50 390 507 507 131 431 532 500

51 407 519 535 132 415 515 489

52 412 536 486 133 418 523 509

53 405 520 509 134 402 524 505

54 407 520 537 135 405 526 495

174

55 432 535 500 136 402 518 503

56 395 517 510 137 401 506 525

57 406 523 480 138 407 523 495

58 403 520 476 139 402 518 507

59 410 518 487 140 399 525 503

60 404 537 477 141 405 523 491

61 399 513 510 142 402 514 497

62 408 501 537 143 411 518 503

63 395 520 503 144 401 518 488

64 390 519 492 145 407 512 502

65 403 503 528 146 408 518 494

66 405 518 479 147 406 523 500

67 396 519 531 148 406 526 493

68 414 511 494 149 404 519 502

69 398 499 505 150 405 522 507

70 408 525 526 151 401 525 500

71 403 518 497 152 405 525 500

72 412 516 525 153 405 514 506

73 433 552 521 154 403 523 499

74 419 523 481 155 403 523 499

75 398 533 478 156 404 524 499

76 401 524 511 157 403 523 499

77 411 518 521 158 403 523 499

78 396 507 463 159 404 524 499

79 417 528 520 160 403 523 499

80 393 527 499 161 403 524 498

81 407 514 515 162 403 523 498

Table P38: Vibration Intensity During Drilling Operation – Drill In/Out 40mm

Count X Y Z Count X Y Z

1 402 520 502 128 387 511 530

2 400 521 505 129 440 513 436

3 402 521 502 130 418 497 510

4 402 521 503 131 423 544 473

5 405 520 502 132 431 483 485

6 402 521 502 133 406 513 473

7 398 520 502 134 422 517 520

8 402 521 502 135 428 526 556

9 403 520 502 136 404 489 519

10 402 520 502 137 411 483 513

11 402 521 502 138 397 551 515

12 402 521 502 139 383 512 534

13 402 521 502 140 411 467 508

14 402 520 502 141 388 558 502

175

15 403 520 502 142 397 489 502

16 396 505 530 143 450 473 521

17 403 522 501 144 438 538 498

18 410 506 507 145 414 533 496

19 407 523 509 146 407 461 496

20 415 517 499 147 423 517 522

21 398 518 503 148 402 544 474

22 396 517 502 149 432 474 489

23 403 518 507 150 442 482 513

24 404 515 508 151 421 553 470

25 404 515 499 152 406 482 507

26 402 523 502 153 394 464 496

27 399 498 519 154 397 566 481

28 406 518 502 155 430 491 520

29 392 517 483 156 440 426 506

30 406 512 513 157 406 540 501

31 398 524 497 158 397 502 483

32 397 505 499 159 442 513 518

33 401 515 501 160 481 497 482

34 396 505 487 161 400 505 473

35 406 517 496 162 404 498 495

36 403 510 517 163 405 472 472

37 403 517 526 164 391 499 484

38 406 528 506 165 416 507 501

39 405 525 521 166 417 475 475

40 388 511 506 167 402 518 496

41 403 537 528 168 390 496 500

42 401 524 497 169 401 490 508

43 401 518 526 170 436 500 531

44 409 523 509 171 417 502 525

45 404 498 495 172 398 494 503

46 395 512 530 173 439 468 491

47 411 520 503 174 408 503 519

48 405 515 537 175 412 455 494

49 403 511 516 176 420 503 523

50 413 524 499 177 394 494 499

51 412 521 522 178 436 477 520

52 378 501 507 179 412 488 493

53 409 528 488 180 401 503 518

54 430 533 502 181 477 495 492

55 414 515 511 182 399 490 529

56 408 527 494 183 422 479 490

57 409 524 505 184 434 483 495

58 397 502 500 185 406 491 482

59 409 513 487 186 406 530 524

176

60 401 510 482 187 386 514 490

61 425 518 485 188 437 524 483

62 413 520 474 189 395 525 481

63 416 496 442 190 401 468 496

64 407 508 490 191 402 525 506

65 411 521 501 192 405 516 477

66 392 500 500 193 419 516 493

67 413 511 508 194 412 517 487

68 411 524 443 195 394 511 473

69 402 546 539 196 401 507 481

70 436 532 507 197 384 529 522

71 428 490 542 198 408 538 510

72 408 487 486 199 403 505 508

73 414 502 512 200 393 500 514

74 441 488 540 201 403 537 498

75 405 506 482 202 396 512 518

76 433 506 520 203 394 528 544

77 434 486 500 204 410 533 473

78 416 501 431 205 393 522 555

79 405 494 494 206 405 523 517

80 387 507 485 207 384 494 514

81 415 469 490 208 410 518 522

82 438 487 514 209 408 508 507

83 431 481 510 210 400 536 482

84 403 498 461 211 417 526 493

85 388 488 493 212 395 517 487

86 402 531 527 213 396 535 505

87 417 482 479 214 407 512 503

88 416 477 490 215 398 520 507

89 408 509 510 216 394 511 497

90 402 506 525 217 421 505 518

91 417 534 474 218 410 518 516

92 398 476 463 219 403 520 486

93 398 501 489 220 398 527 495

94 438 444 503 221 393 508 521

95 480 464 486 222 404 508 505

96 417 467 493 223 416 520 491

97 463 471 509 224 405 514 520

98 407 528 542 225 401 527 503

99 435 492 511 226 413 525 481

100 401 521 472 227 414 524 482

101 451 475 528 228 411 518 507

102 404 500 491 229 408 508 534

103 414 486 506 230 392 520 489

104 437 477 484 231 400 499 503

177

105 390 505 481 232 421 514 513

106 443 467 516 233 399 523 496

107 402 510 532 234 403 524 504

108 391 498 558 235 412 521 500

109 404 524 483 236 396 514 493

110 419 537 422 237 414 535 504

111 401 474 487 238 409 525 490

112 398 508 453 239 413 524 502

113 407 486 488 240 414 522 505

114 431 487 459 241 398 508 509

115 437 481 510 242 399 512 504

116 423 509 502 243 410 518 511

117 393 461 485 244 409 529 508

118 439 486 505 245 400 517 493

119 409 524 514 246 400 512 502

120 402 502 502 247 404 527 495

121 425 515 458 248 402 520 502

122 386 531 511 249 402 521 502

123 408 527 493 250 402 521 502

124 394 518 477 251 402 521 502

125 405 518 475 252 402 520 502

126 402 521 530 253 402 521 502

127 413 530 449 254 402 520 502

 255 402 521 502

178

Appendix Q: Current Consumption Test Data

Table Q39: Current Consumption (A) - A Axis

Reading CW CCW

1 3,22 3,9

2 1,95 2,3

3 1,67 2,1

4 1,86 2,02

5 1,88 1,99

6 1,86 1,96

7 1,78 1,95

8 1,81 1,91

9 1,76 1,8

10 1,78 1,81

11 1,77 1,75

12 1,76 1,78

13 1,77 1,77

14 1,74 1,76

15 1,77 1,77

16 1,8 1,82

17 1,79 1,78

18 1,75 1,76

19 1,77 1,79

20 1,81 1,82

Average 0,0905 0,091

Table Q40: Current Consumption (A) - X Axis

Reading CW CCW

1 4,39 5,11

2 2,89 2,35

3 2,13 3,07

4 2,98 3,04

5 2,47 2,62

6 1,89 2,54

7 2,52 3,18

8 2,83 3

9 2,43 2,49

10 1,95 2,59

11 2,54 2,74

12 2,77 3,22

13 2,24 2,7

14 1,98 2,98

15 2,66 2,33

16 2,88 3,05

179

17 2,27 2,51

18 2,15 3,02

19 2,58 2,39

20 2,95 2,73

21 1,97 3,08

22 2,42 2,69

23 2,63 2,34

24 2,98 2,78

25 2,67 3

26 1,94 2,35

27 2,63 2,67

28 2,84 3,04

29 2,67 2,48

30 1,98 2,33

Average 2,541 2,814

Table Q41: Current Consumption (A) - Z Axis

Reading CW CCW

1 6,2 4,96

2 4,85 4,35

3 4,47 3,04

4 3,7 4,83

5 3,36 4,9

6 3,48 3,88

7 3,66 3,07

8 4,78 3

9 4,56 4,09

10 3,63 3,49

11 3,46 3,55

12 3,92 3,12

13 4,86 3,11

14 4,34 4,51

15 3,92 4,07

16 3,49 3,18

17 3,42 3,07

18 4,15 3,64

19 4,89 4,54

20 4,87 3,75

21 4,16 3,15

22 3,39 3,02

23 3,52 4,17

24 3,44 4,37

25 4,82 3,49

26 3,98 3,16

180

27 3,35 3,12

28 3,99 4,44

29 3,51 4,11

30 3,55 3,24

31 4,65 3,09

32 4,77 3,45

Average 4 3,685

Table Q42: Current Consumption(A) Unloaded Drill

Reading CW CCW

1 1,48 1,4

2 1,44 1,37

3 1,42 1,36

4 1,4 1,38

5 1,38 1,36

6 1,37 1,35

7 1,39 1,36

8 1,37 1,35

9 1,39 1,38

Average 1,4 1,37

Table Q43: Current Consumption(A) During Drilling Operation

Reading Current Reading Current Reading Current Reading Current

1 1,48 26 2,36 51 3,21 76 2,88

2 1,44 27 2,52 52 3,34 77 2,85

3 1,42 28 2,69 53 3,36 78 2,4

4 1,4 29 2,88 54 3,41 79 2,34

5 1,38 30 2,66 55 3,29 80 2,38

6 1,37 31 2,75 56 3,11 81 2,23

7 1,39 32 3,24 57 3,16 82 2,11

8 1,37 33 3,21 58 3,07 83 2,05

9 1,39 34 3,25 59 2,92 84 1,96

10 2,21 35 3,29 60 2,88 85 1,84

11 1,57 36 3,31 61 2,98 86 1,76

12 1,5 37 3,4 62 3,02 87 1,74

13 1,53 38 3,37 63 3,05 88 1,72

14 1,53 39 3,43 64 3,01 89 1,67

15 1,6 40 3,9 65 3,2 90 1,6

16 1,65 41 3,48 66 3,17 91 1,59

17 1,72 42 3,54 67 3,16 92 1,57

18 1,81 43 3,42 68 3,14 93 1,55

19 1,82 44 3,45 69 3,1 94 1,52

20 1,88 45 3,48 70 3,09 95 1,5

181

21 2,01 46 3,22 71 3,13 96 1,47

22 2,04 47 3,3 72 3,08 97 1,44

23 2,09 48 3,28 73 3,05 98 1,4

24 2,21 49 3,33 74 3,02 99 1,41

25 2,38 50 3,3 75 2,92 100 1,4

	Title page

	Abstract

	Table of contents

	List of acronyms and abbreviations

	Nomenclature
	List of figures

	List of tables

	1. Introduction

	2. Manufacturing Systems
	3. Open Architecture, Modular and Distributed Control Systems
	4. Mechanical Systems
	5. Open Architecture System for a Modular Reconfigurable Machine Tool

	6. Electronic Subsystems
	7. Control Algorithms for Open Architecture Control System
	8. Open Architecture Control System Software
	9. System Testing and Performance
	10. Discussion
	11. Conclusion
	References
	Appendices
	Appendix A
	Appendix B

	Appendix C

	Appendix D

	Appendix E

	Appendix F

	Appendix G

	Appendix H

	Appendix I

	Appendix J

	Appendix K

	Appendix L

	Appendix M

	Appendix N

	Appendix O

	Appendix P

	Appendix Q

