

THE APPLICATION OF CLASSIFICATION

TECHNIQUES IN MODELLING CREDIT RISK

By

JONAH MUSHAVA

Submitted in fulfillment of the academic requirements for the degree of Master of Science

in Financial Mathematics in the School of Mathematics, Statistics and Computer Science,

University of KwaZulu-Natal, Durban, South Africa.

March 2014

As the candidate’s supervisor I have/have not approved this thesis/dissertation for

submission.

Signed: Name: Date:

ii

Preface

The experimental work described in this dissertation was carried out in accordance with

the rules and regulations of the School of Mathematics, Statistics and Computer

Science, University of KwaZulu-Natal, Westville, from March 2012 to March 2014,

under the supervision of Professor Mike Murray.

The research work represents original work by the author, and where use has been made

of the work of others, it is duly acknowledged by special reference in the text. Any

views expressed in the dissertation are those of the author and in no way represent those

of the University of KwaZulu-Natal. The work has not been submitted in any form for

any degree or diploma to any University.

Signed:........................ Date......................

Jonah Mushava (Student)

Signed:........................ Date......................

Prof. Mike Murray (Supervisor)

iii

Declaration - Plagiarism

I, Jonah Mushava, declare that

1. The research reported in this dissertation, except where otherwise indicated,

is my original research.

2. This dissertation has not been submitted for any degree or examination at

any other university.

3. This thesis does not contain other persons’ data, pictures, graphs or other

information, unless specifically acknowledged as being sourced from other

persons.

4. This thesis does not contain other persons’ writing, unless specifically

acknowledged as being sourced from other researchers. Where other written

sources have been quoted, then:

a. Their words have been re-written but the general information attributed

to them has been referenced

b. Where their exact words have been used, then their writing has been

placed in italics and inside quotation marks, and referenced.

5. This dissertation does not contain text, graphics or tables copied and pasted

from the Internet, unless specifically acknowledged, and the source being

detailed in the thesis and in the References sections.

Signed: …………………………………………………………………………………

iv

Abstract

The aim of this dissertation is to examine the use of classification techniques to model

credit risk through a practice known as credit scoring. In particular, the focus is on one

parametric class of classification techniques and one non-parametric class of

classification techniques. Since the goal of credit-scoring is to improve the quality of

the decisions in evaluating a loan application, advanced and interesting methods that

improve upon the performance of linear discriminant analysis (LDA) and classification

and regression trees (CART) will be explored. For LDA these methods include a

description of quadratic discriminant analysis (QDA), flexible discriminant analysis

(FDA) and mixture discriminant analysis (MDA). Multivariate adaptive regression

splines (MARS) are used in the FDA procedure. An Expectation Maximization (EM)-

algorithm that estimates the model parameters in MDA will be developed thereof.

Techniques that help to improve the performance of CART such as bagging, random

forests and boosting are also discussed at length.

A real life dataset was used as an illustration to how these credit-scoring models can be

used to classify a new applicant. The dataset shall be split into a ‘learning sample’ and a

‘testing sample’. The learning sample will be used to develop the credit-scoring model

(also known as a scorecard) whilst the testing sample will be used to test the predictive

capability of the scorecard that would have been constructed. The predictive

performance of the scorecards will be assessed using four measures; a classification

error rate, a sensitivity measure, a specificity measure and the area under the ROC curve

(AUC). Based on these four model performance measures, the empirical results reveal

that there is no single ideal scorecard for modelling credit risk because such a

conclusion depends on the aims and objectives of the lender, the details of the problem

and the data structure.

v

Table of Contents

Preface... ii

Declaration - Plagiarism .. iii

Abstract .. iv

Table of Contents ... v

List of Figures .. ix

List of Tables... xii

List of Algorithms .. xiii

Dedication .. xiv

Acknowledgements .. xv

1. Scope of the Study ... 1

1.1 Introduction ... 1

1.2 Motivation for this study ... 1

1.3 Objectives .. 2

1.4 Chapter layout ... 3

2. Conceptual and Contextual framework: An Overview of Credit Scoring 4

2.1 Introduction ... 4

2.2 Benefits of credit scoring .. 5

2.3 Credit scorecard applications .. 5

2.4 Credit-scoring methods ... 6

2.5 Credit scoring model performance measures .. 10

2.6 Conclusion ... 14

3. Linear Discriminant Analysis ... 15

3.1 Introduction ... 15

3.2 The Bayesian approach ... 15

3.2.1 The procedure ... 15

3.2.2 Implementing the procedure ... 17

3.2.3 Incorporating a misclassification cost .. 18

3.3 Fisher’s approach: The K=2 class problem ... 19

3.3.1 The procedure ... 19

3.3.2 Implementing the procedure ... 24

3.3.3 Equivalence between the Bayesian and Fisher approach ... 25

3.4 Fisher’s approach: The K>2 class problem ... 25

3.4.1 The procedure ... 26

vi

3.4.2 Implementing the procedure ... 30

3.5 An Optimal scoring approach ... 31

3.5.1 The procedure ... 32

3.5.2 Using the optimal scoring routine for classifying a new observation 36

3.5.3 Proof of the equivalence between Fisher’s and the optimal scoring approach 37

3.6 Judging variable importance ... 40

3.7 Conclusion ... 40

4. Quadratic, Flexible and Mixture Discriminant Analysis 42

4.1 Introduction ... 42

4.2 Quadratic discriminant analysis .. 42

4.3 Flexible discriminant analysis ... 44

4.3.1 The MARS regression procedure ... 44

4.3.2 Performing FDA using the MARS regression procedure ... 51

4.3.3 Using the FDA routine for classifying a new observation ... 55

4.4 Mixture discriminant analysis ... 55

4.4.1 The procedure ... 55

4.4.2 Implementing the MDA procedure using the EM algorithm 57

4.4.3 Integrating the optimal scoring routine into the MDA procedure 58

4.5 Conclusion ... 61

5. Classification and Regression Trees ... 62

5.1 Introduction ... 62

5.2 Growing the Tree .. 63

5.2.1 A standard set of questions for splitting the nodes ... 64

5.2.2 The criterion for splitting the nodes ... 64

5.2.3 A rule for controlling when to stop splitting the nodes .. 68

5.2.4 A technique for assigning a class label to a particular node 68

5.2.5 Incorporating misclassification costs ... 70

5.3 Pruning the Tree .. 71

5.4 Selecting an Optimal Tree ... 72

5.4.1 Testing sample validation ... 72

5.4.2 N-fold cross-validation ... 73

5.5 Judging variable importance ... 74

5.6 Conclusion ... 75

6. Bagging, Random Forests and Boosting .. 76

6.1 Introduction ... 76

6.2 Bootstrapping .. 76

6.3 Bagging ... 78

6.3.1 The procedure ... 78

vii

6.3.2 Proof that Bagging works ... 80

6.3.3 Judging variable importance .. 83

6.4 Random Forests ... 83

6.4.1 Implementing the procedure ... 85

6.4.2 Judging variable importance .. 86

6.5 Boosting .. 86

6.5.1 The AdaBoost procedure for a K=2 class problem .. 87

6.5.2 Extending the AdaBoost algorithm to the K>2 class problem 90

6.5.3 Judging variable importance .. 90

6.6 Conclusion ... 91

7. Applications and Results ... 92

7.1 Introduction ... 92

7.2 The dataset and preliminary analysis .. 92

7.3 Linear discriminant analysis .. 97

7.3.1 Bayesian approach .. 97

7.3.2 Fisher’s approach ... 98

7.3.3 Optimal scoring approach .. 101

7.3.4 Judging variable importance .. 102

7.4 Quadratic discriminant analysis .. 103

7.5 Flexible discriminant analysis ... 104

7.6 Mixture discriminant analysis ... 105

7.7 Classification and regression trees .. 107

7.7.1 Growing the tree ... 107

7.7.2 Pruning the Tree ... 108

7.7.3 Selecting the Optimal Tree ... 111

7.7.4 Scoring new credit applicants... 112

7.7.5 Judging variable importance .. 114

7.8 Bagging ... 115

7.9 Random Forests ... 116

7.10 Boosting .. 119

7.11 Summary and comparison of results ... 120

7.11.1 Classification error rates ... 121

7.11.2 Sensitivity ... 121

7.11.3 Specificity... 122

7.11.4 Discriminatory power ... 123

7.12 Conclusion ... 125

7.12.1 The best credit scoring model .. 125

7.12.2 The effect of techniques for improving the performance of LDA and CART 127

7.12.3 The most important predictor variables .. 128

viii

8. Summary and Conclusion .. 129

8.1 Summary ... 129

8.2 Results and Conclusion ... 129

8.3 Challenges and Recommendations .. 131

8.4 Future Research ... 131

References .. 133

Appendix A: The EM algorithm .. 140

A.1 Introduction .. 140

A.2 The maximum likelihood estimation problem ... 140

A.3 The maximum likelihood estimation solution using the EM algorithm 141

A.3.1 Convergence property of the EM algorithm .. 142

A.3.2 Computing the parameter estimates for Gaussian Mixture Models 144

A.4 Computing parameter estimates for a Gaussian density function 151

References .. 152

Appendix B: Variable Coding ... 153

References .. 155

ix

List of Figures

Figure 2.1: ANN perceptron ... 8

Figure 2.2: An illustration of a feed forward MLP artificial neural network (Source:

Hastie et al., 2009: 393) ... 9

Figure 2.3: ROC curve for data in Table 2.3 .. 14

Figure 3.1: A projection of two-dimensional observations onto a one-dimensional space

 .. 23

Figure 3.2: Changing the orientation of the projection vector 24

Figure 3.3: Distribution of the projected observations on the one-dimensional space

(assuming .. 25

Figure 4.1: An illustration of LDA and QDA decision boundaries for a two-class

problem. .. 43

Figure 4.2: A simple linear regression model (left) and a MARS model (right) 45

Figure 4.3: Conjugate pair (and (.. 46

Figure 4.4: Illustration of MARS model .. 46

Figure 4.5: Illustration of MARS forward process (Source: Hastie et al., 2009: 323)... 47

Figure 5.1: An illustration of a classification tree .. 63

Figure 5.2: Relationship between the Gini index and the proportion of observations in

class 1 for a two-class problem... 65

Figure 5.3: Change in Impurity .. 65

Figure 5.4: Change in the learning and testing sample -based error rate plotted against

the size of the tree ... 73

Figure 5.5: N-fold Cross-validation ... 74

Figure 6.1: Using bootstrapping to improve the performance of a classifier 77

Figure 6.2: Illustration of bagging .. 78

Figure 7.1: The average rank of categorical predictor variables as a function of

defaulters and non-defaulters.. 94

Figure 7.2: Variable importance as measured by absolute value of the difference

between average ranks of non-defaulters and defaulters .. 94

Figure 7.3: Duration of loan (in months) boxplot .. 95

Figure 7.4: Loan amount in DM boxplot .. 95

x

Figure 7.5: Age (in years) box plot .. 96

Figure 7.6: Ranking variable importance using absolute values of standardized

canonical coefficients ... 103

Figure 7.7: FDA models testing error rates .. 104

Figure 7.8: MDA using Optimal Scoring (multivariate linear regression functions) ... 105

Figure 7.9: Plot of the learning sample using MDA coordinates 106

Figure 7.10: Unpruned credit scoring classification tree .. 107

Figure 7.11: Subtree 1 with CP = 0.011848 ... 109

Figure 7.12: Subtree 2 with CP = 0.014218 ... 109

Figure 7.13: Subtree 3 with CP = 0.018957 ... 110

Figure 7.14: Subtree 4 with CP = 0.028436 ... 110

Figure 7.15: Subtree 5 with CP = 0.054502 ... 111

Figure 7.16: Evolution of the learning error rate against number of terminal nodes ... 111

Figure 7. 17: Evolution of the testing error rate against number of terminal nodes 112

Figure 7.18: Optimal classification tree for scoring new credit applicants 113

Figure 7.19: Ranking variable importance using CART .. 114

Figure 7.20: Evolution of the Testing error against number of trees 115

Figure 7.21: Ranking variable importance in the bagging estimate 116

Figure 7.22: Bootstrap error rates against number of trees .. 117

Figure 7.23: Change in average OOB error rate as the number of predictor variables

selected at each node varies .. 117

Figure 7.24: Mean decrease in Gini.. 118

Figure 7.25: Evolution of testing error rate against number of trees 119

Figure 7.26: Ranking variable importance in the boosting estimate 120

Figure 7.27: Comparison of the classification error rates of all the scorecards when

classifying testing sample applicants .. 121

Figure 7.28: Comparison of the sensitivity of all the scorecards when classifying testing

sample applicants .. 122

Figure 7.29: Comparison of the specificity of all the scorecards when classifying testing

sample applicants .. 122

Figure 7.30: ROC curves for CART, bagging, random forests and boosting when

classifying testing sample applicants .. 123

Figure 7.31: ROC curves for discriminant analysis when classifying testing sample

applicants .. 124

xi

Figure 7.32: AUC for all the scorecards when classifying testing sample applicants.. 125

Figure 7.33: Comparison of overall performance of the scorecards 127

xii

List of Tables

Table 2.1: A hypothetical sample of scored credit applicants .. 11

Table 2.2: Classification matrix illustration ... 12

Table 2.3: Change in sensitivity and specificity across a range of cut-off values 13

Table 3.1: Cost matrix for a two-class problem ... 18

Table 6.1: Illustration of bootstrap sampling ... 77

Table 6.2: Classifying new observations using bagging .. 79

Table 7.1: Characteristics of credit applicants.. 93

Table 7.2: Prior Probabilities for Groups ... 96

Table 7.3: Linear discriminant function coefficients.. 97

Table 7.4: Testing sample classification matrix for the Bayesian LDA 98

Table 7.5: Unstandardized Canonical Discriminant Function Coefficients 98

Table 7.6: Class means scores .. 99

Table 7.7: Testing sample classification matrix for Fisher’s LDA 100

Table 7.8: Optimal scoring based canonical discriminant function coefficients 101

Table 7.9: Standardized discriminant function coefficients ... 102

Table 7.10: QDA classification matrix for the testing sample 103

Table 7.11: FDA models performance ... 105

Table 7.12: Testing sample classification matrix for the MDA (2 subclasses, linear

regression) model ... 106

Table 7.13: Cost-Complexity pruning .. 108

Table 7.14: Classification matrix for classifying testing sample applicants using the

optimal classification tree ... 114

Table 7.15: Classification matrix of running the testing sample down the optimal

bagged estimate .. 116

Table 7.16: Classification matrix of running the testing sample through the appropriate

random forest model ... 118

Table 7.17: Classification matrix for the optimal boosted CART model for the testing

sample ... 120

Table 7.18: Point system for ranking overall performance of the scorecards 126

Table 7.19: Point system for ranking overall variable importance............................... 128

xiii

List of Algorithms

Algorithm 3.1: Optimal scoring routine for LDA .. 36

Algorithm 4.1: FDA algorithm ... 54

Algorithm 4.2: Optimal scoring routine for MDA ... 59

Algorithm 6.1: Bagging Algorithm .. 79

Algorithm 6.2: Random Forests Algorithm .. 85

Algorithm 6.3: AdaBoost algorithm for a two-class problem .. 89

Algorithm 6.4: Multi-class AdaBoost algorithm .. 91

xiv

Dedication

Mama naMati, you believed in me and here we are.

xv

Acknowledgements

This has been a journey, a learning curve and a bittersweet experience. Bitter in that it

posed seemingly insurmountable challenges but by His grace, it is finally here. Much

appreciation goes to my supervisor, Prof. Mike Murray without whom this dissertation

would not have seen its decent completion. Your tireless guidance, patience and

constructive criticism cannot be taken for granted, I thank you Prof!

I would also like to express my gratitude to the School of Mathematics, Statistics and

Computer Science for funding this research. May the department grow in leaps and

bounds.

I am also grateful to my friends and colleagues for their motivation, suggestions and

assistance. J Sylaides, N Mupure, P.A Sibanda, H Kayiya, S Reade, T Makeke, M Kika

and G S Rukanda and all those I did not get to mention by name, it is not because your

contribution was not valuable, space inhibits me, I value and thank you.

1

 CHAPTER 1

1. Scope of the Study

1.1 Introduction

Credit risk is one of the major challenges that is threatening the growth of the financial

markets today. Basel Committee on Banking Supervision (2000:1) defines credit risk as

the likelihood that once a borrower is given a loan, they may fail to adhere to the terms

of the credit agreement. A typical credit agreement obligates the borrower to pay back

the principal and interest on the loan every month for a fixed period. A borrower is

normally classified as a ‘defaulter’ if they miss three monthly instalments in a given

period or if they miss three consecutive monthly instalments within the stipulated period

(Crook, Edelman & Thomas, 2007). A lender’s aim is therefore to avoid granting loans

to borrowers who are likely to default. Therefore, a system that regulates this area of

banking or finance is required in order to address this anomaly or problem. This study

will amongst other things explore a method that can be used in this respect.

1.2 Motivation for this study

The birth of this study is attributable to many factors. These are given and explained in

this section.

Determining a good or a bad borrower is not an easy task because information in the

credit market is usually asymmetric which means that one party in the contract may

have more or less information about the other party. The resulting imbalance in

information may cause one party to take advantage of the other party, either before the

transaction through a condition known as adverse selection or after the transaction

through a condition known as moral hazard. A typical example of adverse selection

occurs when a person who is bankrupt hides this information when acquiring a loan. On

the other hand a typical example of moral hazard occurs when a person with a car

insurance policy deliberately has a car accident in order to profit from the payout or

compensation that has been promised by the insurance company.

In the respect of the above, many lenders especially in developing countries have

attempted to alleviate this challenge by having credit applicants evaluated by a loan

2

officer. A loan officer uses his or her experience to decide if a person is creditworthy or

not. Since this decision making is prone to a fair amount of subjectivity and thus

possible bias, a set of Basel II banking regulations have been developed to help quantify

and correctly price this credit risk giving rise to a practice known as credit scoring

(Engelmann & Rauhmeier, 2006). In this study the goal is thus to develop classification

techniques that can be used for credit scoring.

This study is also inspired by the interest of the researcher in credit risk related issues.

Of particular concern is the recent financial crisis in the USA that crippled the credit

markets globally. Poor credit risk management in the USA mortgage markets was cited

as one of the major causes (Shahrokhi, 2011). Interestingly, scholars in the discipline

have not shown much interest in this topic as evidenced by the limited number of

literature (Thomas, Edelman & Crook, 2002). Therefore any study that attempts to

understand how the effects of credit risk can be mitigated is essential.

Driven by this motive, it is the researcher’s hope that this study will contribute to the

extensive understanding of the theory that influences some of the classification

techniques that can be employed in modelling credit risk. The stages in the model

building strategy and the application of the classification procedures to a real life

situation will be fully engaged to maximize comprehension.

1.3 Objectives

The objectives of this study can be highlighted as follows:

1. To develop a parametric and a non-parametric model that can ‘accurately’

classify a new credit applicant as being either a potential defaulter or non-

defaulter based on their underlying baseline demographic factors/characteristics,

2. To improve the predictive capabilities of these aforementioned models.

3. To determine the effect that the above-mentioned baseline demographic factors

have on a possible default or non-default.

3

1.4 Chapter layout

This research is made up of eight solid chapters, which will be broken down in this

section. The first chapter was a broad contextual outline of the research. Chapter two

provides an overview to some of the credit scoring concepts that are being used in the

industry. The ensuing chapter then focuses on the development of a parametric

classification method called linear discriminant analysis (LDA). Some new extensions

have been developed to help improve the performance of the LDA classifier, chapter

four is dedicated to the exploration of these. Chapter five focuses on developing a non-

parametric classification technique that makes use of a classification and regression tree

(CART). In chapter six a bagging, random forests and boosting procedure will be

introduced to help improve the performance of the CART model. Chapter seven applies

these classification techniques on a real life credit-related dataset with chapter eight as

the summation of the study.

4

CHAPTER 2

2. Conceptual and Contextual framework: An

Overview of Credit Scoring

2.1 Introduction

The use of classification techniques to model credit risk dates back to the early 1940s.

Durand (1941), was the first to employ this technique to distinguish between a good and

a bad loan. Since then, advances in computer technology, improved data collection

methods and competition in the financial industry have created a plethora of techniques

for modelling credit risk. This process of modelling credit risk is generally known as

credit scoring. However, it is difficult to define credit scoring with certainty, as there is

no single attested definition of credit scoring. Therefore, it would be worthwhile to

explore some of the definitions that have been attached to the term credit scoring.

Anderson (2007) defines credit scoring as the assignment of an appropriate score

(numerical value) to a credit applicant that takes into account their baseline

demographic characteristics. On the other hand, Hand & Jacka (1998) defines credit

scoring as the process used by financial institutions in modelling creditworthiness. In

unpacking the definition of credit scoring, Thomas et al. (2002:1) explains it using the

concept of credit-scoring models, which are referred to as scorecards. These are defined

as “a set of decision models and their underlying techniques that aid lenders in the

granting of consumer credit.”

Whilst there is an appreciation of the several definitions given, the definition proposed

by Thomas et al. (2002:1) is quite relevant to this study. This is because the definition is

in line with the research objectives of developing classification techniques, which will

be used to decide whether a new credit applicant is likely to default or not. Anderson’s

(2007) definition also embeds crucial elements as it touches on the assignment of an

appropriate score to an applicant based on their baseline demographic characteristics.

These two therefore qualify as the working definition of this study.

Having defined credit scoring, it is important at this stage to consider some of the

benefits of credit scoring, some of its common applications and popular techniques used

5

as credit scoring models. These will be looked at underneath, together with some of the

procedures used to assess the performance of a scorecard. A consideration of these

aspects is crucial inasmuch as giving one an insight of the concept of credit scoring is

concerned.

2.2 Benefits of credit scoring

There are quite a number of benefits associated with credit scoring that have been

discovered all over the world. Chief among these are cost effectiveness, efficiency and

objectivity. Human based credit evaluation methods can be slow, costly and very

subjective in nature whereas credit scoring on the other hand is fast, automated, cost-

effective and objective in nature. Owing to this advantage associated with it,

TransUnion (2007) has indicated that the use of credit scoring methods in the US

mortgage market has managed to increase from 25% in 1996 to 90% in 2002. This

translates to the conclusion that decisions that were taking weeks to be completed or

passed in 1996 were now taking minutes to be completed in 2002. Apart from the

above, the use of credit scoring models managed to reduce the cost of a loan application

by an average amount of US$1500 per loan as asserted again by TransUnion (2007).

Due to these lower operating costs, more credit could now be given to prospective

clients.

2.3 Credit scorecard applications

The most prominent use of a credit scorecard relates to the processing of a loan

application. In a typical loan application, the baseline characteristics of a prospective

borrower are used to generate a score using a particular type of credit scoring model.

According to Abdou, Pointon & El-Masry (2008), some of the characteristics that may

be considered include the age of a particular applicant, their gender, ethnicity, marital

status, house ownership, telephone ownership, occupation, monthly income, level of

education and address location. In such a case, if the generated score lies below a

particular benchmarked value, then the application ought to be rejected because the

applicant is being classified as a potential defaulter on that loan. Bolton (2009) has

discussed how this technique is being applied in a South African context with Kocenda

& Vojtek (2009); Lee & Chen (2005) and Sustersic, Mramor & Zupan (2009)

reinforcing this by citing various examples of where credit scoring can be used in the

decision making process of granting a loan.

6

Quah & Srigaresh (2008) have shown how scorecards can also be used to help detect

and prevent credit card fraud. Other applications of credit scoring models include:

 the issuing of mortgages (Feldman & Gross, 2005),

 bankruptcy prediction and classification (Nanni & Lumini, 2009),

 the rating of bonds (Altman, 2005),

 portfolio management (Xia et al., 2000),

 financial distress forecasting (Hamdi & Karaa, 2012),

 financial decision making (West, Dellana & Qian, 2005),

 stock price forecasting (Quah & Srigaresh, 1999)

 the granting small business loans (DeYoung et al., 2008).

2.4 Credit-scoring methods

In a typical scorecarding methodology, there is a set of baseline characteristics for the

loan applicant. These vary from their age, marital status to their salary, which are then

fed into an appropriate model from which a particular score is generated. Assignment as

a potential defaulter depends then on this generated score lying below a particular

benchmarked value. This benchmarked value however needs to be obtained from a

sample of historical data, which is known as the training or learning sample. In this

sense, the process of constructing credit-scoring models can be categorized as being a

pattern recognition problem with supervised learning (Ripley, 1996).

In supervised learning, one is observing a set of training observations, of

the form (. The p-dimensional vector ()

contains predictor

variables for the case whose outcome on is known to belong to one of possible

groups viz . Consequently, the learning sample L would be of the

form:

 ((((

The objective of supervised learning then is to use L to create a rule for classifying a

new observation
 whose outcome on is unknown, to one of the above

classes.

7

For the special case where an applicant can only belong to one of two possible

classes , the following logistic regression model is popularly used to

model the assignment mechanism of an applicant to a particular class:

 (
 (

 (
) ̂ ̂ (

where ̂ and ̂ (̂ ̂ ̂) are regression coefficients that need to be estimated

(Hosmer & Lemeshow,1989).

 As a result that,

 ((

we can rewrite (2.2) in the following form

 (
 ̂ ̂

 ̂ ̂

 (̂ ̂
 (

One can then assign a new observation
 to one of the above two classes based on

the following classification rule: Set

 {
 (

 (

where is a threshold value for assigning this new observation
 to a particular

class that need to be determined. Abdou et al. (2008), Bolton (2009) and Lee & Jung

(2000), among others, shows how this technique is being used in the field as a credit-

scoring model.

Artificial neural networks (ANNs) are also being used to create credit scoring models

(Abdou et al., 2008; Akkoç, 2012; Baesens et al., 2003 and Tsai & Wu, 2008). The

basic building block of an ANN is a perceptron, the structure of which is illustrated in

Figure 2.1.

8

Figure 2.1: ANN perceptron

The attributes { } in Figure 2.1 represent the input features of the

perceptron to which a weight is assigned. The weighted sum of these input

features, ∑

 , then becomes an input to an activation function, (∑

),

which then produces a predicted outcome, ̂. The weights are generated from the

learning sample using a back propagation algorithm that attempts to adjust the weights

in such a way that the difference between the predicted outcome ̂ and the

corresponding known outcome is minimized. A sigmoid (S-shaped) function such as

the logistic function,

 ̂ (∑

)

 (∑

)

 (

is commonly used as an activation function. If the following identity activation

function,

 ̂ (∑

) ∑

 (

is used, then the ANN turn out to be the well-known multivariate linear regression

problem.

The most commonly used ANN model for classification purposes is the multilayer

perceptron (MLP), which comprises of an input layer, a hidden layer and an output

layer. An illustration of a feed forward MLP artificial neural network is given in Figure

2.2 where the vector of predictor variables () serve as input features

for a hidden layer with M perceptrons denoted by . The outcomes

9

from the perceptrons in the hidden layer then become the input features for each

perceptron in the output layer, as denoted by . Bishop (2006); Hastie,

Tibshirani & Friedman (2009) and Ripley (1996) provide a more detailed description of

how an artificial neural network works.

Figure 2.2: An illustration of a feed forward MLP artificial neural network (Source:

Hastie et al., 2009: 393)

ANNs have been shown to have excellent predictive power, performing better than

conventional credit scoring techniques in many cases. However, their main drawback is

that they are ‘black box’ methods meaning that they assign observations to classes

without the operator knowing what has happened in-between. The weights are often

difficult to interpret which creates a problem for lending institutions because the credit

regulatory authorities often require lenders to provide reasons to new applicants for

rejecting their loan applications.

This study focuses initially on developing a parametric classification technique known

as Linear Discriminant Analysis (LDA) that uses linear combinations of predictor

variables to come up with a class allocation rule. According to Hand (1997), LDA will

have several desirable properties if the observations in each group

follow a multivariate normal distribution with mean and each of the groups have a

common covariance matrix . In particular, three different approaches that results

10

in the LDA classifier will be explored. These approaches will enable us to extend the

LDA method so as to include the concept of quadratic discriminant analysis (QDA)

(Geisser, 1964), flexible discriminant analysis (FDA) (Hastie, Tibshirani & Buja, 1994)

and mixture discriminant analysis (MDA) (Hastie & Tibshirani, 1996).

Whilst focusing on the development of a classification technique that is non-parametric

in nature the concept of a Classification And Regression Tree (CART) that is based on

the work by Breiman et al. (1984) will be introduced. CART has become very popular

because it outlines one’s decision-making process using a tree-like structure, whose

inherent logic is easy to interpret and understand. Small changes in the dataset may

however produce an entirely different tree, thereby, casting doubts on CART’s

robustness as a classifier. To overcome this problem will be an exploration of some

methods that have been developed for improving the performance of CART such as the

concept of bagging (Breiman, 1996), random forests (Breiman, 2001) and boosting

(Freund & Schapire, 1997).

Other techniques that may be considered when building credit-scoring models, though

seldom used, include:

 linear regression (Hand & Henley, 1997; Orgler, 1970),

 probit analysis (Abdou et al., 2008),

 expert systems (Ben-David & Frank, 2009; Kumra, Stein & Assersohn, 2006),

 genetic programming (Lensberg, Eilifsen & McKee, 2006; Ong, Huang &

Tzeng, 2005),

 support vector machines (Bellotti & Crook, 2009; Li, Shiue & Huang, 2006),

 -nearest neighbor clustering (Baesens et al., 2003; Henley & Hand, 1996).

Koh, Tan & Goh (2006), Lee & Chen (2005) and Lee et al. (2002) have all attempted

to use a hybrid of one or more of the above models but their results are often difficult to

interpret and time consuming to construct.

2.5 Credit scoring model performance measures

Having developed a method for scorecarding, the performance of this method needs to

be evaluated. This leads to the concept of a specificity and sensitivity measure that we

11

will define using an example. Consider a credit-scoring model, which assigns a score

 to the applicant with a characteristic . Assume

that the actual class to which applicants belongs is also known:

 {

 (

Table 2.1 shows a set of hypothetical results that could have been observed for such a

credit-scoring model where someone is classified as being a non-defaulter (0) if their

credit score lies above a threshold value , viz

 ̂ {

 (

Table 2.1: A hypothetical sample of scored credit applicants

Applicant

(i)

Loan

amount

()

Actual

class

()

Credit

score

()

Assigned

class

 (̂)

1 20000 0 0.85 0

2 10000 1 0.70 0

3 30000 0 0.95 0

4 5000 1 0.35 1

5 12000 1 0.45 1

6 18000 1 0.50 0

7 7000 0 0.6 0

8 50000 1 0.8 0

9 5000 1 0.2 1

10 5000 0 0.25 1

This rule causes six applicants to be classified as non-defaulters (0) and the remaining

four applicants to be classified as defaulters (1). A comparison of column (3) with

column (5) shows that three out of the six applicants who were classified as being

potential non-defaulters actually default on their loan obligations. A similar comparison

12

shows that one of the four applicants who were classified as being possible defaulters is

in fact a non-defaulter. We can summarize the performance of this credit-scoring rule by

cross tabulating what was predicted in terms of class membership with what actually

happened with regard to class membership as shown in Table 2.2.

Known as a classification matrix or confusion matrix, Table 2.2 makes it easy to see

that four out of the ten applicants were incorrectly classified. Conversely, six out of the

ten applicants were correctly classified. Expressing these figures as a percentage one

obtains an error rate of 0.4 and an accuracy rate of 0.6 for this classification rule.

Table 2.2: Classification matrix illustration

Default status

Predicted Default status

Total 0 1

Actual

Default

Status

Count 0 3 3 6

1 1 3 4

% 0 50 50 100.0

1 25 75 100.0

One can also use the classification matrix above to define the following model

performance measures: a sensitivity measure, a specificity measure, a false alarm

measure and a miss measure:

 (

 (

 (

 (

Due to the fact that the class allocation rule that was given in equation (2.8) classifies

someone as being a non-defaulter if , the specificity measure (2.9) can be

interpreted as giving one the probability that a non-defaulter will be correctly classified

as a non-defaulter. Likewise, the sensitivity measure can be interpreted as giving one

the probability that a defaulter will be correctly classified as a defaulter. Thus, the

13

information in Table 2.2 shows a sensitivity measure of 75% and a specificity measure

of 50%. The primary focus of this study is on the error rate, sensitivity and specificity

measure that is being generated by a given classification method, noting that the other

three measures (an accuracy rate, a miss and a false alarm) complement these three

measures.

Table 2.3 shows how the sensitivity and specificity measures associated with the

classification rule (2.8) can change as the cut-off value c is varied across a range of

values.

Table 2.3: Change in sensitivity and specificity across a range of cut-off values

Cut-off
value, c

Sensitivity Specificity

0.2 1 0

0.25 1 0.166667

0.35 0.75 0.166667

0.45 0.75 0.333333

0.5 0.75 0.5

0.6 0.75 0.666667

0.7 0.5 0.666667

0.8 0.5 0.833333

0.85 0.5 1

0.95 0.25 1

A plot of the sensitivity values against the specificity values given in the above table is

traced by the red curve in the Figure 2.3 (page 14). This is known as the receiver

operating characteristic (ROC) curve.

A preferable model should have a high sensitivity and a high specificity value. Thus, its

ROC curve must lie towards the top right corner. As a result, the area under the ROC

curve (abbreviated AUC) would be greatest for the best model and lowest for the worst

model. The blue curve in Figure 2.3 shows the ROC curve of a perfect model whose

AUC value is one (1). Similarly, the diagonal green line is the ROC curve of a

classification by chance model (i.e. random guessing) whose AUC value equals to half

(0.5). The AUC value for our hypothetical model (red curve) which produced the values

in Table 2.3 is 0.708, which is relatively high.

14

Figure 2.3: ROC curve for data in Table 2.3

We shall mainly use ROC curves to compare the overall discriminatory power (not

accuracy) of the models we are going to develop, as the parameters of the classification

rule varies.

2.6 Conclusion

The overview of credit scoring casts into light a number of pertinent issues. Arising

from these issues is the need to develop better credit-scoring models that can accurately

predict whether a new credit applicant is a potential defaulter. Subsequently, this study

attempts to broaden one’s scope of some of the classification models that can be used as

scorecards. It also takes into account that credit scoring is increasingly becoming

popular and that there is still limited knowledge of the underlying theory behind the

credit-scoring models.

0.0 0.2 0.4 0.6 0.8 1.0

0
.4

0
.6

0
.8

1
.0

specificity

s
e

n
s
it
iv

it
y

perfect model

hypothetical model

classification by chance

15

CHAPTER 3

3. Linear Discriminant Analysis

3.1 Introduction

The objective of this chapter is to discuss a parametric classification technique called

linear discriminant analysis (LDA). The term linear discriminant analysis refers to the

way the classifier uses a linear combination of predictor variables to come up with a

class allocation rule (Fisher, 1936). In particular, we will look at three different

approaches that give rise to the LDA classifier. In developing these credit-scoring

models, we will assume that we have a set of training observations

contained in a learning/training sample, L:

 (((

where the p-dimensional vector ()

contain attributes of the

observation. We will also assume that each training observation belongs to one of K

possible classes, viz . Our goal is to develop a classification rule

based on L that assigns a new credit applicant
 in some optimal manner to

one of the available classes.

3.2 The Bayesian approach

Our first approach, herein called the Bayesian classifier, uses Bayes’ theorem to

compute the posterior probability that a particular applicant belongs to one of the

 groups (Geisser, 1964). Observations in a particular group are presumed

to follow a p-dimensional multivariate normal distribution with a common covariance

matrix. We will show that maximizing this posterior probability is equivalent to finding

a value of that maximizes a linear combination of the predictor

variables in the vector .

3.2.1 The procedure

Given a set of training observations (
 , Bayes’ theorem allows one to write

 (
 ((

∑ ((

 (

 (
 (

16

where, (denotes the posterior probability that the observation with

predictor variables belongs to class k and (denotes the prior

probability that this observation belongs to class k. Because the distribution of

observations in each of the K classes is presumed to follow a p-dimensional multivariate

normal distribution with a common covariance matrix , we have

 (

(

 ⁄

 ⁄
 (

(

 () (

where, denotes the mean vector and = Σ the common covariance matrix for

observations in class .

A classification rule for this Bayesian procedure assigns a new observation
 to a

class if that choice of value for maximizes the posterior probability

 (
 given in equation (3.1). Since the denominator in equation (3.1) is the

same for all values of k, we need only consider finding that value of k that maximizes:

 (
 (

(

 ⁄

 ⁄
 (

(

 (

) (

Because the natural logarithm function is monotonic, we need only find that value of k

that maximizes:

 (

(

 (

 (

 (

Omitting the expressions

 ,

 and (

 because they do not

depend on k, one only needs to find the value of k that maximizes the following

classification function:-

 (
 (

 (

17

3.2.2 Implementing the procedure

From a learning sample, (
 one can obtain the following parameter estimates

(see, equation A.32 and A.34 in Appendix A for the derivation of the maximum

likelihood based parameter estimates of sample mean ̅ and sample variance S):

 ̂

 (

 ̅

∑

 (

∑ (̅

(̅
 (

∑(

 (

where ∑

 denote the total number of observations in the group

and overall sample, respectively. One would then assign a new observation
 to that

class which maximizes,

 (
 ̂ (

 ̅

 ̅

 ̅ (

over all values of .

When dealing with a group classification problem, the above classification rule

collapses into one where we can assign a new observation
 to the first class (which

we will label as class 1) if we have

 (
 (

 (
 (

 (

 (̅ ̅ (
 ̂

 ̂
)

(̅ ̅

 (̅ ̅ (

Setting,

 ̂
 (̅ ̅ (

18

and,

 { (
 ̂

 ̂
)

(̅ ̅

 (̅ ̅ } (

one would assign a new observation
 to the class we have labeled 1 if we have

(
 ̂ ̂

 (

If we assume equal prior probabilities (̂ ̂ , then

(̅ ̅

 ̂

 ̂ (̅ ̅ (

and thus one would assign
 to the class we have labeled 1 if we have

 ̂

 ̂ (̅ ̅ (

3.2.3 Incorporating a misclassification cost

Granting a loan to someone who eventually defaults will result in the lender losing

some important revenue. On the other hand, not granting a loan to someone who will

not default will also result in the lender losing some potential revenue. To incorporate

misclassification costs into the modelling process, we define a cost matrix C,

where K denotes the number of classes in the sample. Let represent the cost of

assigning an observation to a class when its true class is . For a two

class problem, the cost matrix would be as shown in Table 3.1.

Table 3.1: Cost matrix for a two-class problem

 Classified as

True class k=1 k=2

k=1

k=2

In order to minimize the expected cost associated with misclassification, Anderson

(1958) suggested that one assign an observation to a particular class if:

19

∑ (

∑ (

 (

Assuming equal misclassification costs, for example

 (

the above decision rule (3.16) simplifies to one where we would assign an observation

 to class if

 (

 ((

Applying this rule to a two-class problem, one would assign an observation to a

class if we have

 ((((

 ((

3.3 Fisher’s approach: The K=2 class problem

Our second approach (known as Fisher’s method) will attempt to use a set of optimally

derived linear combinations of the predictor variables to map these

observations which occupy a dimensional space onto a (dimensional space

where . This section focusses on the special class problem.

3.3.1 The procedure

Given a set of training observations (
 , let denote the number of

observations belonging to the first group (which we will label group 1) and denote

the number of observations belonging to the second group (which we will label group

2). Furthermore, let

 ̅

∑

 (

and

20

 ̅

∑

 (

denote the p-dimensional mean vectors associated with the observations in the first and

second groups respectively and let

 ̅

∑

 (

denote an overall p-dimensional mean vector for all the observations in the learning

sample (where the assignment to a particular group is being ignored). Fisher’s method

seeks to find a direction vector ()

, which can then be used to project

each observation , using the following function

 (()

(

)

 (

onto a one-dimensional space (i.e. the real number line) where the separation between

the projected observations from both groups is a maximum. For example, letting

 (̅ (̅ ̅ ̅ (̅ ̅ (,

defines a distance measure between the mean of the projected observations in group 1

and those in group 2 that one may want to maximize with respect . One may also

want the projected observations within each group to have a variance, which is as small

as is possible. This suggests that one should rather attempt to find a projection vector

that maximizes

 (̅ ̅

 ̃

 (

where,

 ̃ ∑ (̅ (̅

 ∑ (̅ (̅

 (

21

denotes a measure of scatter for the projected observations within each of the two

different groups. Maximizing (3.24) with respect to amounts to finding a projection

vector that causes the projected observations (in the same group to be as close as

possible to each other in the transformed space (so that we have a small denominator

appearing in equation (3.24)). At the same time, the projection vector must force the

transformed groups’ means to be as far apart as is possible (so that we have a large

numerator appearing in equation (3.24)).

Letting,

 ∑(̅ (̅
 (

denote a within-class scatter matrix for the p-dimensional observations belonging to

class that come from our original space and

 (̅ ̅ (̅ ̅
 (

a between-class scatter matrix for these original (unprojected) observations, one can

write,

 (̅ ̅
 (̅ ̅ (̅ ̅

 (

and equation (3.25) becomes

 ̃ (

where,

 (

Thus, Fisher’s method can now be viewed as attempting to maximize

 (̅ ̅

 ̃

 (

with respect to which can be done by solving the following set of first-order

conditions,

22

 ((

 (

(

 (

The above system of equations is a generalized eigenvalue problem that needs to be

solved for . If is invertible then the above problem can be rewritten as a standard

eigenvalue problem:

 (

which is easier to solve.

In particular, for any vector , we will always have

 (̅ ̅ (̅ ̅
 (̅ ̅

 (̅ ̅ (

where (̅ ̅
 . Thus, one can write

 (̅ ̅ (

implying that

 ̂
 (̅ ̅ (

is a solution vector to (3.32) and thus to (3.33) when is invertible.

Multiplying the above solution vector by an arbitrary constant generates another

vector , which also produces the same maximum value for (3.31), viz

 (

Thus, our choice of criterion is invariant with respect to a rescaling of the solution

vector (3.36) that we have derived above. It should be noted therefore that what is of

23

essential importance is the direction of this solution vector rather than its overall

magnitude. For this reason, one can recast the above classification problem as a

constrained maximization problem where we want to maximize

 (

subject to the following normalization constraint

also being imposed on the entries in .

To have a better and insightful understanding of how Fisher’s approach is able to work,

consider Figure 3.1 and Figure 3.2 below. The figures contain a projection of two-

dimensional observations onto a one-dimensional space that is being defined by

a mapping , where is being represented by the orientation of the line supporting

the histograms of both groups of data in Figures 3.1 and 3.2, respectively.

Figure 3.1: A projection of two-dimensional observations onto a one-dimensional space

In Figure 3.1, it can be observed that there is a considerable amount of overlap between

the distribution functions of both groups. When we change the orientation of this slope,

however, the separation between the two histograms becomes more apparent eventually

producing the plot that we have in Figure 3.2.

24

Figure 3.2: Changing the orientation of the projection vector

3.3.2 Implementing the procedure

Given a new observation
 , one needs to project this observation onto a one-

dimensional space using the projection vector ̂
 (̅ ̅ . Assign

 to the

group labeled ‘1’ if the distance between this projected observation (
 ̂

and the mean value ̂ ̅ of all the projected observation in that group is smaller than

the distance between this projected observation and the mean value ̂ ̅ of all the

projected observation in the other group (that we have labeled group 2). Essentially, we

can assign a new observation
 to a particular class depending on whether the

projected value (
 ̂

 lies to the left or right of a cut-off point c that lies

exactly half way between the two-projected group means (see Figure 3.3);

 {

 ̂ (̅ ̅ } (

Thus, we will assign a new observation
 to class 1 if we have

 ̂

 ̂ (̅ ̅ (

Otherwise, one would assign this observation to the other class, which we have labeled

class 2.

25

Figure 3.3: Distribution of the projected observations on the one-dimensional space

(assuming ̂ ̅ ̂ ̅

Because of the equivalence of Fisher’s canonical discriminant coefficients (3.36) and

the Bayesian based discriminant coefficients (3.11), one may want to choose the

following cut-off point from the Bayesian classifier that is given in equation (3.12),

 { (
 ̂

 ̂
)

 ̂ (̅ ̅ } (

and use it in (3.40) in place of the cut-off point computed in (3.39). This has the effect

of adjusting Fisher’s classification function (3.40) to take into account the possibility

that the size of the two groups may not be the same. If the size of the two groups are the

same (implied by the similar shapes of the distribution curves in Figure 3.3), then the

cut-off point (3.41) would be the same as the one in (3.39) since we will now have

 ̂ ̂ .

3.3.3 Equivalence between the Bayesian and Fisher approach

Formula (3.15) indicates that the classification rule that has been derived under the

Bayesian approach becomes equivalent to Fisher’s class allocation rule (3.40) when we

assume equal prior probabilities.

3.4 Fisher’s approach: The K>2 class problem

For the sake of completeness, in this section we shall generalize Fisher’s approach to

LDA discussed in the previous section to the class problem.

26

3.4.1 The procedure

Instead of working with a single projection vector, for a class problem one may

want to consider an approach that attempts to include, as columns of a matrix ,

an appropriately chosen set of projection vectors } that

can then be used to project each observation onto a smaller J- dimensional

subspace (providing) with coordinates

 ((

where the separation between the K different groups becomes easier to identify.

Using observations (
 from a learning sample to produce the following

estimate for the mean vector of all the observations belonging to class k

 ̅
∑

 (

a total within-class scatter matrix for all the observations that are being projected onto

this smaller - dimensional subspace can be given by

 ̃ ∑ ∑ (̅

(̅

 (

where,

 ∑ ∑(̅ (̅

 (

denotes a within-class scatter matrix for all the observations in the learning sample that

have been collected in the original p-dimensional space. Similarly, setting

 ̅

∑

 (

a suitably weighted between class scatter matrix for all the observations in our learning

sample can be given by,

27

 ∑ (̅ ̅ (̅ ̅

 (

with

 ̃ ∑
 (̅ ̅ (̅ ̅

 (

representing a between class scatter matrix for all the projected observations,

 in our learning sample . An approach that mirrors the maximization of (3.31) for the

K=2 class problem would then attempt to maximize

 (

with respect to . However, this is no longer possible since both and

are now square matrices of order . To overcome this problem, Fukunaga (1990:448)

has suggested that one attempt (for each fixed value of J) to find a projection matrix

 that will maximize:

 ((((

However, it is important to note that because is a sum of K matrices each having a

rank equal to one (1), the following constraint

 ̅

∑

∑ ̅

 (

ensures that the dimensional matrix can have a rank at most equal to (.

Thus, in (3.50) one is attempting to maximize the trace of a dimensional matrix

((whose rank can equal at most (. Since the trace of a matrix

equals the sum of its eigenvalues and the rank of a matrix equals the number of non-

zero eigenvalues in that matrix, one will not be able to further increase the value of

 ((when viewed as a function of J) by projecting the p-dimensional observations

using (into a space of dimension higher than . With the above

choice of criterion in mind, we thus need to consider solely what happens when we

28

project a set of observations into a space of dimension J where J is less than or equal

to . If we include all discriminant vectors as column vectors in the

projection matrix then we get what is termed a full-rank LDA classification rule. If

we only use vectors then we get what is called a reduced-rank LDA

classification rule.

For a fixed , now consider the problem of finding a projection

matrix that maximizes (3.50). One needs to solve the following first order conditions

that generate that maximum, viz

 ((

 (

 (

 ((
 (

Since (see Fukunaga (1990: 566))

 (((((

equation (3.52) takes on the form (where
):

 (
 ((

 (((

 ((((

Multiplying both sides of (3.54) by gives,

 (((

If is a full rank matrix, multiplying both sides of (3.55) by
 will produce the

following system of equations that will need to be solved for ;

 (((

29

Theorem: Any two symmetric matrices and can always be simultaneously

diagonalized as,

 (

where, and denote the diagonalized eigenvalue and eigenvector matrices of
 ,

respectively.

Proof: (see Fukunaga (1990:31-32))

Note that ((and (thus,

 ((

implying that the entries in the diagonalized matrix and the column vectors of are

the eigenvalue and eigenvector matrices associated with the matrix
 , respectively.

 After setting

 (

and

 (

the above theorem implies that the equation system (3.56) that we are attempting to

solve for can be rewritten as

 (

or

 (((

where the diagonal components of and the column vectors in are eigenvalues and

eigenvectors of the matrix
 , respectively.

Since the trace of a matrix equals the sum of the eigenvalues associated with that

matrix, if we want to maximize

30

 ((((((

then we must choose as the J column vectors making up the matrix those

eigenvectors of
 that correspond with the largest J eigenvalues of

 .

Given any orthogonal matrix P (i.e.), because

 (((

 ((

 (((

we have a lack of uniqueness relating to the projection matrix that one can use to

maximize (3.50). One can therefore recast the above problem in a constrained

maximization framework, where we attempt to maximize (subject to the

following orthogonality and normalization constraints being applied to all

the column vectors that make up , viz

 (

or where we successively maximize
 subject to

 (

3.4.2 Implementing the procedure

A new observation
 can be assigned to a particular class using the following

set of rules:

Step 1: Use the observations (
 in one’s training sample to compute

 ∑ (̅ ̅ (̅ ̅

 ∑ ∑(̅ (̅

31

and fix the dimension , which you want to project your p-dimensional

observations .

Step 2: Find that projection matrix ̂ that maximizes

 {(̂ ̂)

(̂ ̂)}

applying an appropriate set of normalizing constraints to ̂ that will ensure the

uniqueness of this solution. Thus, one need to find those J eigenvectors of
 that

correspond with the J largest eigenvalues of
 and arrange them in descending

order as the column vectors in the (-dimensional solution matrix ̂.

Step 3: Use this projection matrix ̂ to compute a mean vector (centroid)

 ̅

∑ ̂

in this new J-dimensional subspace for all those observations in the training sample that

occur in each of the K different classes of our classification problem.

Step 4: Now use this projection matrix ̂ to map a new observation
 into this

J-dimensional subspace using

 (
 ̂

Step 5: Assign
 to that class whose centroid ̅ is ‘closest’ to the projected value

 ̂
 of this observation. This means that one assigns this new observation

 to

that class for which the following distance measure is a minimum:

 (
 ‖ (

 ̅ ‖

 (

3.5 An Optimal scoring approach

Our third approach, developed by Hastie et al. (1994), will attempt to make use of a

regression based argument, known as optimal scoring to recast LDA as a linear

regression problem. We will show how this method produces a set of discriminant

functions that are proportional to Fisher’s (1936) discriminant functions coefficients.

32

The benefit of using this approach is that it allows one to include non-parametric

regression methods in the model, which may lead to the creation of a better classifier.

3.5.1 The procedure

Classification can also be viewed as being a problem of prediction where we have a set

of characteristics that we want to use to predict the outcome of an associated but

discrete valued random variable y that assigns a class label to that particular

observation. Let,

 (

) (

contain as row entries the observed outcomes of the predictor variables
 :

 } that one has collected for one’s training sample. Given that records the

class to which the observation
 belongs, let us now create a class indicator

matrix for all the observations in the training sample that sets if the

observation
 lies in class j, i.e.

where denotes an indicator function for the set A. To illustrate this coding concept

more clearly, consider a class problem with the following class based outcomes

being recorded in one’s training sample

This training sample would then have the following class indicator

matrix representing their outcomes

(

)

 (

33

In principle, columns for the matrix would be sufficient to record all the

possible outcomes that one could observe in a K class problem but we will use all

columns in the discussion that follows.

Let represent a K-dimensional vector that we will be using to map each row of onto

the real number line by making use of the following mapping . Due to the nature of

the indicator matrix , if the observation
 in belongs to class then the

component of the vector will be using the component of as an optimal score

for that class.

Similarly, let represent a p-dimensional vector that maps each row of our learning

sample based outcomes onto the real number line by making use of the following

mapping .

With this notation in hand, the method of optimal scoring attempts to assign a set of

values to and that will minimize the following average squared residual (ASR) :-

 (

‖ ‖

(((

but with the following normalization constraint

‖ ‖

 (

being imposed on so that we do not have a trivial solution to the above problem

arising. Without the normalization constraint (3.71), and would minimize

ASR(.

Instead of using a pair of vectors and to map each row of and onto the real

number line, one could consider an extension of the above scoring algorithm where a

collection of vector pairs,

 (((

34

are used as columns of a matrix and respectively, to map each

row of and into a J-dimensional space with the entries in being chosen

so as to minimize:

 (

‖ ‖

 (((

To prevent a trivial solution and from occurring, the following set of

normalization constraints will have to be added to this minimization problem:

 (

Keeping fixed at a known set of values, minimizing the resulting ASR with respect

to produces a multivariate regression problem where we want to regress on .

Providing is of full rank,

 ̂ ((

will minimize this ASR. Substituting ̂ back into (3.73),

 (̂)

‖ (‖

‖(‖ (

 (

 []

 ((

since the restriction in equation (3.74) implies that we have

 (

35

Differentiating the following Lagrangian with respect to and the Lagrange multiplier

 viz:

 (

 ((

) (

produces the following first order condition for minimizing ASR

 (

 {

 (

 (}

 ̂ { ̂ } (

Furthermore, differentiating the Lagrangian (3.77) with respect to the Lagrange

multiplier produces

 (

where in the context of our discussion

 is a diagonal matrix whose diagonal

element equals

. From expression (3.78), it can be observed that minimizing

 (̂) with respect to amounts to finding those J eigenvectors of ̂ that

correspond with the J largest eigenvalues of ̂ and arranging them in descending

order as the column vectors in the matrix .

It is important to note that the matrix in (3.75) that was initially fixed at a known set

of values will need to be replaced with the matrix containing those J eigenvectors of

 ̂ that correspond with the J largest eigenvalues of ̂.

The above optimal scoring routine is summarized in Algorithm 3.1 on the following

page.

36

Algorithm 3.1: Optimal scoring routine for LDA

1. Initialize: Create the indicator response matrix .

2. Run a multivariate regression: Regress on producing a dimensional

matrix, ̂ (and thus an dimensional matrix of fitted

responses:

 ̂ ̂ (

3. Optimal scores: Solve ̂ for subject to the normalizing

condition

 . In other words, find those J eigenvectors of ̂

that correspond with the J largest eigenvalues of ̂ and arrange them in

descending order as the column vectors in the (-dimensional solution

matrix ̂.

4. Perform a multivariate regression of ̂ on :

Since ̂ ̂, there is no need to re-fit a regression of ̂ on

 . One can simply update the estimate ̂ obtained in step 2 to the matrix:

 ̂ ̂ ̂ (

 Therefore, the optimally scaled vector containing regression (or

canonical discriminant) functions is given by:

 (̂
 (

 where, ()

are the arguments of the p-dimensional predictor

 variables.

3.5.2 Using the optimal scoring routine for classifying a new observation

Given a new observation
 , the assignment of this observation to a particular

class can be done by making use of (3.80) to project this new

observation into this -dimensional subspace, viz:

37

 (
 ̂

 (

and to compute a mean vector (centroid),

 ̅

∑ ̂

 (

in this new -dimensional subspace for all those observations in the training sample that

occur in each of the K different classes of our classification problem. One would then

assign this new observation,
 to that class for which the following distance

measure is a minimum:

 (
 ‖ (

 ̅ ‖

 (

3.5.3 Proof of the equivalence between Fisher’s and the optimal scoring approach

Fisher’s LDA seeks to find the vector such that:

((

whilst optimal scoring seeks to find a pair of vectors (such that:

(

‖ ‖)

 (

Differentiating the following Lagrangian with respect to and the Lagrange multiplier

 viz:

 (

(((

)

 (

) (

produces the following first order condition for minimizing (3.85)

 ̂

(((

38

On substituting ̂ for in the optimization problem (3.85), we get the partially

optimized criterion:

(

‖

 (‖

)

(

(

 ()

(

 ())

(

) (

where,

 (is the between-class covariance matrix and

 is the total covariance matrix. Since the total-class covariance matrix (is the

sum of the within-class covariance matrix () and between-class covariance matrix

(,

equation (3.88) becomes

(

)

((

))

((

)

) (

For notational convenience, let:

 ̃

 ̃ (

 ̃

 ̃

 (

The optimal scoring vector in equation (3.89) can then be found as a solution to the

following problem:

39

 ̃
 ̃

((

)

 ̃ ̃ ̃ ̃ ̃) (

The minimizing ̃ for (3.92) can be found by differentiating its objective function

(

)

 ̃ ̃ ̃ ̃ ̃

with respect to ̃ and equating the derivative to the zero vector to get:

 (

)

 ̃ ̃ ̃

 ̃ ̃ ̃ (

)

 (

Therefore, is the eigenvalue of ̃ and ̃ is the eigenvector of ̃ . Substituting

 ̃ ̃ ̃ into the objective function in equation (3.92) we get:

 ̃
 ̃

((

)

 ̃ ̃ ̃ ̃)
 ̃

(

(̃ ̃) (

which is minimized when is large. Therefore, ̃ is the first eigenvector of ̃ .

Making use of the notation that we have introduced in (3.90) and (3.91), Fisher’s LDA

vector in (3.84) is obtained by solving:

 ̃

(̃ ̃ ̃) ̃ ̃ (

The maximizing ̃ for (3.95) can be found by differentiating the following Lagrangian

with respect to ̃:

 (̃ ̃ ̃ ̃ (̃ ̃) (

where is the Lagrange multiplier, which on equating the first derivative to the

zero vector gives the eigenvalue-eigenvector equation:

 ̃ ̃ ̃ (

Substituting ̃ ̃ ̃ into the objective function in (3.95), we get:

40

 ̃
 ̃

(̃ ̃) ̃ ̃ (

which is maximized when the eigenvalue is large as well. Therefore, the associated ̃

is the first eigenvector of ̃ .

To this end, the optimal

 ̃ for both Fisher’s LDA and the optimal scoring

approach to LDA is the first eigenvector of ̃ . Thus,

 (

where, and is being used to denote the optimal scoring and Fisher’s LDA

based canonical discriminant coefficients.

3.6 Judging variable importance

Variable importance can be assessed by considering the magnitude of the canonical

discriminant function coefficients. However, the value of these discriminant coefficients

can be misleading if the predictor variables have different units of measurement. To

measure variable importance, one needs first to standardize the predictor variables in

one’s dataset. This standardization can be achieved by computing the following z-scores

for all the observations in the training sample:

()

 (

where denotes an observed value for the component of the vector that one

observes in the learning sample, and denote the mean and standard deviation of

observations in the training sample belonging to the predictor variable , respectively.

3.7 Conclusion

This chapter brought to the fore a number of observations amongst them, the following:

In the class case, the Bayesian and Fisher’s approach to LDA produce the same

classifier when we assume equal prior probabilities. However, the Bayesian approach

also provides a convenient way of incorporating misclassification costs into the LDA

model. On the other hand, since Fisher’s approach is able to transform the observations

from a higher -dimensional space into a much lower (-dimensional space, this

41

method becomes particularly more useful when dealing with a high dimensional set of

data (. The optimal scoring approach provides one with another way of

producing Fisher’s canonical discriminant functions. The main advantage of using this

optimal scoring technique is that it allows one to replace the linear regression functions

with a class of far more flexible non-parametric regression functions. This idea will be

explored in depth in the next chapter.

42

CHAPTER 4

4. Quadratic, Flexible and Mixture Discriminant

Analysis

4.1 Introduction

The preoccupation of this chapter is to explore three techniques that have been designed

to handle some of the limitations of LDA. The first approach is to relax the assumption

of equal covariance matrices in the Bayesian classifier we have developed, which

results in the creation of quadratic decision boundaries (Geisser, 1964). This

modification is known as quadratic discriminant analysis (QDA). Hastie et al. (1994)

proposed that a class of even more flexible models could be created by replacing the

linear regression functions in the optimal scoring approach to LDA with a set of non-

parametric or semi-parametric regression functions. This approach is known as flexible

discriminant analysis (FDA). For multi-modal data, Hastie & Tibshirani (1996) have

developed another modelling approach called mixture discriminant analysis (MDA)

where each class is modelled as a Gaussian mixture of two or more subgroups within

that class. These extensions of LDA will be looked at underneath, together with

Friedman’s (1991) multivariate adaptive regression splines (MARS) procedure that we

will use in the FDA classifier in place linear regression functions.

4.2 Quadratic discriminant analysis

Quadratic discriminant analysis (QDA) follows directly from the Bayesian approach to

LDA discussed in section (3.2) were one assigns a new observation
 to a class

 that maximizes

 (

(

 (

 (

One can relax the assumption of equal covariance matrices (i.e.) such that a

new observation
 is assigned to a class that maximizes

 (

(

 (
 (

43

Since

 in (4.2) is independent of k, one would then assign a new observation

 to that class that maximizes the following discriminant function:

 (

(

 (
 (

where sample based estimates of the parameters , and are computed from the

learning sample using equations (3.5)-(3.7) given in chapter three. Thus, assign a new

observation
 to that class that maximizes:

 (
 ̂

(

 ̅

 (
 ̅ (

Figure 4.1 below is an illustration of two-dimensional observations that belong

to one of the classes, . The red line illustrates a quadratic decision

boundary (QDA) while the green line illustrates a linear decision boundary (LDA) on

the same dataset. A visual inspection shows that QDA fits the data better than LDA in

this case.

Figure 4.1: An illustration of LDA and QDA decision boundaries for a two-class

problem

44

4.3 Flexible discriminant analysis

Flexible discriminant analysis (FDA) is a generalization of the optimal scoring approach

to LDA that was developed in section (3.5). It allows one to substitute other appropriate

regression procedures in place of linear regression functions (Hastie et al., 1994).

To recap, the optimal scoring approach recasts LDA as a regression problem by using a

K-dimensional vector to map each row of an indicator type matrix of outcomes

 onto the real number line using the following mapping . By initially fixing at a

set of known values, a linear regression of the derived responses against the

matrix of predictor variables produces a p-dimensional vector of regression

coefficients:

 ̂ (

The value of is then updated to its optimal value which was shown to be the first

eigenvector of ̂ (, where is a so-called linear

operator that maps to ̂ (i.e. ̂).

The limitation with the aforementioned optimal scoring technique however is that, the

relationship between the optimally derived responses and the p-dimensional

predictor variables contained in the matrix may not be linear in nature. To deal

with this limitation, we will repeat the optimal scoring approach to LDA, only this time

using a non-parametric regression technique in place of linear regression. The

regression technique we have in mind is Friedman (1991)’s Multivariate Adaptive

Regression Splines (MARS). The MARS procedure is promising because it does not

assume a linear relationship between the covariates and the response variables , but

instead approximates the relationship entirely from the learning sample observations.

4.3.1 The MARS regression procedure

As a motivation for the MARS regression procedure, consider Figure 4.2, which shows

a simple linear regression model fitted to a dataset (
 on the left hand side

and a MARS model fitted to the same dataset on the right hand side. A visual inspection

of Figure 4.2 suggests that the MARS procedure provides a better fit to this dataset.

45

Figure 4.2: A simple linear regression model (left) and a MARS model (right)

A MARS model typically takes on the form:

 ̂(̂ ∑ ̂ (

 (

where, (denotes a set of basis functions that will be generated

from the following pool of paired hinge functions (which we shall call conjugate pairs)

by taking cross products in these functions:

 {()
 ()

}

where denotes an observed value for the component of the vector that one

observes in our learning sample and denotes an argument for the hinge function that

has been given in the set C above.

The coefficients that are given in (4.5) are obtained by minimizing the following

residual sum-of-squares (RSS) that one can associate the MARS model formulation

with:

 ∑(̂()

 ∑(∑ ̂ (

)

 (

The notation (on the hinge function considers the positive difference obtained

from (, viz:

()
 {

 ({

46

For a one-dimensional observation , the conjugate pair (and (is

illustrated in Figure 4.3, where the values and results in the same basis

function value, (. The basis functions have a value of zero at the knot point,

 .

Figure 4.3: Conjugate pair (and (

It is important to note that the hinge functions that make up the basis functions have a

value of zero for part of their range. For example, the hinge function (in

Figure 4.3 is zero when x is greater than 0.5. Likewise, the hinge function (is

zero when x is less than 0.5. It is because of this nature of these hinge functions that

they can be used to partition the dataset into mutually disjoint regions, each of which

can be treated independently.

As an example, the following one-dimensional MARS model

 ̂(((

is plotted in Figure 4.4.

Figure 4.4: Illustration of MARS model

47

Figure 4.4 shows that the MARS model has partitioned the dataset into two disjoint

regions, one defined for values of and one defined for values of . Thus,

the MARS model in Figure 4.4 can be viewed as dividing the dataset into two mutually

disjoint regions, and then fitting a linear regression model in each of two regions.

We can create piecewise non-linear regression functions by multiplying two or more

hinge functions together. In particular, the model building process is done using a

forward pass to add more hinge-pair based cross products to the model until a pre-

determined stopping criterion is satisfied. A backward pass is then implemented where

a pruning process takes place, removing the hinge functions themselves (rather than the

hinge function pairs) until only a constant term is remaining. Model subsets from the

pruning process are compared using a generalized cross-validation measure and the

optimal model selected.

Step 1: The forward pass

We will explain the MARS forward pass with the aid of an example. Consider Figure

4.5, which shows the set C of all the candidate basis functions (which are the conjugate

pairs of hinge functions such as the one in Figure 4.3) on the right hand side and the

basis functions that have been selected to be in the model are presented on the left hand

side.

Figure 4.5: Illustration of MARS forward process (Source: Hastie et al., 2009: 323)

48

We will denote by the observed value for the component of the vector in

the learning sample, where for the example in Figure 4.5 we have

observations and components. Thus, the components of the vector are

(dropping the subscript i which label the vector) (.

Starting with a basis function (, minimizing (4.6) will produce a fitted model

structure,

 ̂(̂ (

where ̂

∑

 , which is the constant shown to be initially in the model in Figure

4.5. Letting (̂ denote a residual sum of squares for this fitted model, a conjugate

pair from the set C is then added to the model producing a new MARS model that is

shown below:

 ̂(̂ ̂ ()
 ̂ ()

 (

Parameter estimates for the model that minimizes (4.6) can then be produced and a

resulting residual sum of squares (̂ ̂ ̂ can be computed. It is

important to note that the above residual sum of squares may change if we were to have

chosen another variable and a knot point from the conjugate pair set C. Thus, for

all the conjugate pairs in C that we have available, one can (if the knot points are all

different) produce a total of residual sum of squares, viz

 (̂ ̂ ̂) (

The conjugate pair generating the smallest value of RSS is then chosen as one’s best

MARS model for the first step of this forward pass routine.

Our example in Figure 4.5 shows that the following choice of index values and

has produced the smallest RSS so that our MARS model for the end of the first step

assumes the following form

 ̂(̂ ̂ (̂ ((

49

Given (from a model fitting point of view (4.10) indicates that a

predicted value for this observation will now be given by

 ̂(̂ ̂ (̂ ((

The second step in this forward pass routine now involves revisiting the set of hinge-

pairs that we have available in C and adding to (4.10) that hinge-pair function whose

addition causes the largest decrease in the RSS of the new model to occur. Our example

in Figure 4.5 shows that the following choice of index values and has produced

the smallest RSS when added to (4.10). Therefore, we consider adding to the model

(4.10) a term of the form

 (((((

where, (((are basis functions helping form (4.10).

Therefore, the largest possible MARS model from the second step will look something

like this:

 ̂(̂ ̂ (̂ (((

 ((((

 (((((

The model (4.13) reveals that at the end of the second step it is possible that one will

have cross products entering into the model depending on what hinge functions we

choose from the MARS model (4.10) to create cross products with new hinge functions.

In the model building process, each predictor variable is allowed to appear at most

once in a basis function. This has the effect of preventing higher-order powers of the

predictor variables from appearing which increase or decrease quickly near boundary

values of the domain of the covariates. For example, the following polynomial basis

function is not allowed:

()
()

 ()
()

 (

50

In the third step of our example in Figure 4.5, the choice of index values and has

produced the smallest RSS when added to the model in the second step. As a result, we

now add a term of the form:

 ̂ ()

 (̂ ()

 ((

where, (((((are basis

functions helping form the MARS model in the second step.

An advantage with the MARS procedure is that the user can set an upper limit (which

we shall denote by B) that controls the degree of interactions of the hinge functions

allowed. For example, a MARS model of degree makes (4.5) an additive model

because interaction between hinge functions will not be permitted. Using the same idea,

a MARS model of degree forces the hinge functions to interact at most twice

with each other. Higher orders of however makes the model complex and thus

difficult to interpret.

The following rules can be used to control when the forward pass should stop:

 Set a maximum number of terms that the MARS model (4.5) must have in the

forward pass (including the constant term ̂).

 Set a threshold value (the default is) such that the forward pass

stops when adding a term changes by less than .

At the end of the MARS forward pass, we have a large model which probably over fits

the data (i.e. provides the best fit to training sample observations but not generalizing

new data well). Thus, a backward pass is used to delete insignificant terms.

Stage two: The backward pass

The backward pass removes the hinge functions themselves (rather than the conjugate

pairs) one by one. This process occurs until we are left with the initial model, ̂(

 ̂ which is associated with the constant basis function (. It should be noted

that once a single hinge function has been removed, the following generalized cross-

validation (GCV) measure is calculated for a model with hinge functions:

51

 (
∑ (̂ ()

(
 (

)
 (

where, ̂ (denotes a MARS model with hinge functions such that the numerator of

(4.16) is the RSS associated with this model. The term (is the effective number

of parameters in the MARS model with hinge functions, which are defined as

 ((

where for the model ̂ (, r is the number of linearly independent basis functions, c is

a penalty parameter (usually and T is the number of hinge function knots.

Thus, (4.17) means a MARS model ‘pays’ a penalty of c for having additional knots.

The model ̂ (that gives the lowest value of GCV () is chosen to be optimal, viz

 ̂ (̂ ∑ ̂ (

 (

4.3.2 Performing FDA using the MARS regression procedure

Mirroring the optimal scoring approach to LDA developed in section (3.5), suppose we

have a set of training observations (
 . As usual, { } are p-

dimensional predictor variables associated with the class label .

The following steps can be used to perform FDA using the MARS procedure outlined in

the preceding section.

Step 1: Create a class indicator matrix for all the observations in the training

sample that sets if the observation lies in class j and otherwise sets

 (see equation (3.69) for example). Fixing to be the following diagonal matrix

of order K,

 {

√

√

√

} (

such that the following normalization constrain is satisfied,

52

 (

to prevent trivial solutions, let
 be the initial matrix of ‘scored’

responses.

Step 2: Perform a (multi-response) multivariate regression of
 on the matrix

of predictor variables using the MARS technique to get the matrix of fitted

values ̂
 . Let (̂ be a linear operator that fits the final chosen model such that we

have:

 ̂
 (̂)

 (

where ̂ represents the estimated optimal size of the MARS model ̂ (selected using

the GCV criterion (4.16).

It is important to note that (4.21) means that the same procedure (̂) is being used to

fit models to each of the levels of scored responses in
 . In particular, for each of

the levels of scored responses in
 , MARS models of the same size ̂ are

simultaneously fit sharing the same basis functions (but may

have different coefficients { ̂ }. Thus, a (multi-response)

multivariate regression of the optimal scores matrix
 on the original matrix of

predictor variables using the MARS technique produces the following regression

functions:

 ̂ (̂ ∑ ̂ (

 ̂ (̂ ∑ ̂ (

 ̂ (̂ ∑ ̂ (

53

Let,

 ((̂ (̂ ()

 (

be a K-dimensional vector of fitted regression functions.

Step 3: Generate a eigenvector matrix by performing an eigenvalue-based

decomposition on the following matrix,

 ̂

 (̂)

 (

to get the new matrix of optimal scores as, .

Step 4: Update the K-vector of regression functions in step 2 using the eigenvector

matrix to get the optimal dimensional vector of regression (canonical

discriminant) functions as

 (((

Because the basis functions (are treated as fixed once selected

((, we can replace the original data matrix

 (

) (

used in the optimal scoring Algorithm 3.1 with an data matrix

 (

 ((

 ((

) (

containing basis expansions of the original predictor variables (i.e. we have

expanded the predictor variables from a p-dimensional space to a Q-dimensional space

where).Using the optimal scoring Algorithm 3.1 with in place of should in

theory produce the following optimal dimensional vector of regression

functions that are equivalent to the ones in (4.25):

 (̂
 ((

54

where for all the training sample observations ;

 (((()

 (

is a Q-dimensional vector containing arguments of the fixed basis function variables

that have been created using the MARS technique and ̂ is a matrix of

regression coefficients. In this regard, we can think of the optimal scoring approach to

LDA summarized in Algorithm 3.1 as having the following fixed basis function

variables:

 (()

 (

The FDA algorithm is summarized below:

Algorithm 4.1: FDA algorithm

1. Initialize: Create the indicator response matrix and as an initial value,

set that satisfy the restriction

 . Let

 .

2. Multivariate non-parametric regression: Perform a (multi-response)

multivariate regression of
 on the original matrix of predictor variables

producing fitted values ̂
 . Let (̂) be the linear operator that fit the final

model and (be the vector of fitted regression functions.

3. Optimal scores: Generate an eigenvector matrix by performing an

eigenvalue based decomposition on the following matrix,

 ̂

 (̂

to get the new matrix of optimal scores as, .

4. Update: Update the fitted regression functions in step 2 using the eigenvector

matrix to get the optimal regression functions vector as,

 ((

55

The advantage of using this approach is that some of the features of the multivariate

regression technique used are inherited. In our case, using MARS to perform

discriminant analysis via optimal scoring means that model selection and regularization

can be performed by varying the degree of interaction terms, B and/or the penalty

parameter, c. Other candidate non-parametric regression techniques suggested by

Hastie et al.(1994) are neural networks (Lippman, 1989), multi-response projections

pursuit regression (Friedman & Stuetzle, 1981) and hinge functions (Breiman, 1993).

4.3.3 Using the FDA routine for classifying a new observation

Having determined (, a new applicant
 is assigned to a class that

minimizes the following distance measure:

 (
 ‖((

 ̅
)‖

 (

where,

 (
 : are the coordinates of the new applicant

 in this new -

dimensional subspace and

 ̅

∑ (; are the fitted group centroids in this new

J-dimensional subspace for all those observations in the training sample that

occur in each of the K different classes of our classification problem.

4.4 Mixture discriminant analysis

The LDA classifier that we have developed requires each class to have a

single mean, and a common pooled within-class covariance matrix, . If the data is

multi-modal (multiple group centroids per class), then this classifier may not perform

very well. Mixture discriminant analysis (MDA) exists to handle such a limitation.

4.4.1 The procedure

Suppose an observation belongs to one of latent classes of

class (which we shall call subclasses of class k). In other words, we are

assuming that each of the groups is made up of unobserved subgroups to which

the observation may belong. In order to model the multimodal response data that is

56

generated by this class, the following mixture model (assuming equal covariance

matrices:) is presumed to be generating the outcomes that we are observing:

 ((∑ (

 (

where, { ∑ denote the weights that are being associated with each of the

 Gaussian components of class k with probability density function,

 (((

where is the mean vector of the subclass of class and is the common

pooled-within class covariance matrix.

It is important to note that we are assuming that one of the Gaussian distributions

pertaining to class is generating the observation that we are observing as belonging

to class k. In order to be able to assign a new observation to a particular class applying

the Bayesian approach to LDA that we discussed in section (3.2), the posterior

probability of an observation belonging to class k is given by

 (
 ((

∑ (
 (

∑ (

∑ ∑ (

 (

where, (denotes the prior probability of an observation belonging to

class k. One can then assign an observation to that class that maximizes

 (for all . Noting that the denominator in (4.30) does not

depend on k, one need only find that value of k that maximizes,

 ((∑ (

 (

which is equivalent to finding that maximizes,

 (∑ (

(

 ()

 (

57

4.4.2 Implementing the MDA procedure using the EM algorithm

Given a set of training observations (, an estimate of the prior

probability can be obtained from the training observations as,

 ̂

 (

where, denotes the number of observations in class k and is the overall number of

observations in the training sample. Hastie & Tibshirani (1996) suggested an iterative

technique known as the Expectation Maximization (EM)-algorithm be used to compute

the maximum likelihood parameter estimates of , and , which are otherwise

difficult to compute directly (see Appendix A for a detailed discussion of the EM-

algorithm).

The EM-algorithm oscillates between the following E-step and M-step until the

parameter estimates ̅ converge:

E-step:

Given that the observation belongs to class k and initial parameter estimates

 ̅ , one estimates the probability that the subclass of class (which

we will denote by) is generating the observation as:

 (
 (̅

∑ (̅

 (

(̅

 ((̅)

∑

 (

(̅ ((̅)

 (

M-step:

The parameter estimates of the mixing probabilities , subclass-specific mean vectors

 ̅ and the common within-class covariance matrix are updated using the

probabilities from the E-step as follows:

∑ (

 (

58

 ̅
∑ (

∑ (

 (

∑ ((̅ (̅

∑ (

 (

The parameter estimates ̅ from the M-step are then used to update

subclass probabilities (in the E-step and the ensuing subclass

probabilities in turn used to re-calculate new parameter estimates in the M-step,

repeating the steps until convergence or a number of times. The iterative processes are

repeated times in order to compute the parameter estimates for all the

 classes and the pooled within covariance matrix can then be computed as:

∑ ∑

 (

A new observation
 will then be assigned to that class that

maximizes

 (
 ∑ (

(

 ̅

 (
 ̅)

 (

4.4.3 Integrating the optimal scoring routine into the MDA procedure

One can also integrate the optimal scoring routine introduced in section (3.5) into the

MDA procedure. This is achieved by replacing the dummy coded response

matrix in equation (3.69) with an response matrix that contains probabilities

associated with membership of an observation to a particular mixing distribution

within a particular class. Since each class k has unobserved classes,

 ∑

 (

is the total number of classes in our new classification problem.

59

As an example, a class problem with each of the classes containing

unobserved subclasses to which can belong would have a matrix of the form:

In (4.45), denotes the latent subclass of class k and denotes that the

case is being observed as belonging to class k. Therefore, focusing on the first row of

the matrix above, a case being observed as belonging to class actually

belongs to either the first unobserved subclass with probability 0.4 or the second

unobserved subgroup with probability 0.6. All the other row entries are set to zero

such that probabilities in a particular row add up to one. A similar interpretation can be

applied to the other rows of the matrix .

Algorithm 4.2 shows how the optimal scoring routine provided in Algorithm 3.1 can be

modified to incorporate the MDA procedure (Clemmensen et al., 2001).

Algorithm 4.2: Optimal scoring routine for MDA

1. Initialization: Initialize the response matrix containing the subclass

membership probabilities. For example, let the initial be a {0/1} indicator type

matrix.

2. Iterate until convergence or a maximum number of iterations:

I. Regress on to get fitted values ̂ ̂ where ̂ (

II. Find those eigenvectors of ̂ , that correspond with the

largest eigenvalues of ̂ and arrange them in descending order as the

column vectors in a (-dimensional solution matrix ̂. This is

subject to the normalizing condition:

60

III. Compute the optimal matrix of regression coefficients : ̂ ̂ ̂

IV. Calculate the transformed data matrix: ̃ ̂

V. Compute the parameter estimates ̅

 using equations ((and the transformed data

matrix ̃ instead of , viz:

∑ (̃

 ̅
∑ ̃ (̃

∑ (̃

∑ ∑

where:

∑ ̃ (̃ (̃ ̅ (̃ ̅

∑ ̃ (̃

VI. Calculate new estimates of the probabilities of latent subclass membership

(using the transformed data matrix ̃ instead of) and update matrix :

 (̃
 (

(̃ ̅

 (̃ ̅)

∑ (

(̃ ̅

 (̃ ̅)

3. Given a new observation
 , compute ̃

 ̂ ̃
 and assign the

new observation to a class , whose value of k results in the

largest value of

 ∑ (

(̃

 ̅

 (̃
 ̅)

61

Using the optimal scoring technique to perform MDA produces up to (

 canonical discriminant functions. These provide a good low-dimensional pictorial

view of the dataset when used as axis to plot the dataset.

4.5 Conclusion

In this chapter, it has been revealed that a desirable classifier is one that is flexible

enough to model both linear and non-linear separations between classes. QDA allows us

to fit quadratic decision boundaries in grouping observations in a dataset. Even more

flexible decision boundaries can be fitted by using non-parametric regression

procedures in the optimal scoring approach to LDA, a technique known as FDA. MDA

provides a way of handling multi-modal datasets. This has the potential to improve the

accuracy of the classifier.

62

CHAPTER 5

5. Classification and Regression Trees

5.1 Introduction

The classification techniques that have been looked into so far are parametric in nature.

This means that the data is presumed to follow a particular probability distribution that

is being governed by certain parameters. A response variable y is then estimated using a

parametric function ̂(whose model parameters have to be estimated based on the

minimization of some appropriately defined goodness of fit function:

 (

∑

 (

This chapter therefore focuses on the development of a classification/regression

technique that is now non-parametric in nature. More specifically the domain of the

covariate vector will be partitioned into a series of mutually disjoint rectangular

regions using a series of rules to identify regions that have the most homogeneous

responses to these predictor variables. A constant value is then fitted to each region with

classification trees fitting the most probable class as that constant value and regression

trees fitting the mean response for observation in that region.

More specifically,

 ̂(∑ ̂

is used as a predictor function for y with ̂ being used as a predictor value for y if

falls in the region being defined by . This procedure is known as Classification and

Regression Trees (CART). CART produces a classification tree if the outcome variable

is qualitative and a regression tree if the outcome variable is quantitative. A set of

‘yes/no’ responses to questions relating to the state of the predictor variables is used to

recursively split the data into subgroups resulting in an ‘upside-down tree-like’ structure

that is easy to interpret.

63

Figure 5.1 shows a hypothetical tree that can be constructed from a dataset with

predictor variables and a binary outcome variable .

Figure 5.1: An illustration of a classification tree

To create the tree in Figure 5.1, the CART algorithm starts with the entire learning

sample being assigned to the parent or root node of the tree. The entire dataset assigned

to this root node is then partitioned into two mutually disjointed subsets, which form the

two child nodes in the above tree (as represented by ovals in Figure 5.1). The

observations assigned to the same child node are as similar as is possible but the

observations assigned to the two differing child nodes are as different as is possible

based on some appropriately chosen measure of dissimilarity (or impurity index). The

covariates in are used to determine a splitting rule for the parent node with the

process of splitting continuing until some stopping criterion has been satisfied. We will

term child nodes that are not split any further terminal nodes or leaves (as represented

by squares in Figure 5.1) and the lines connecting the nodes shall be referred to as being

branches in the tree.

5.2 Growing the Tree

Given a set of training observations (
 , the CART procedure uses the

following guidelines to ‘grow’ a tree.

 a standard set of questions for splitting the nodes,

 a criterion for splitting the nodes,

64

 a rule to control when to stop splitting the nodes,

 a technique for assigning class labels to the terminal nodes in the tree.

We shall elaborate on the above guidelines and more in this section.

5.2.1 A standard set of questions for splitting the nodes

A splitting rule for node t will be denoted by s(t). CART splits the sample associated

with node t based on a decision rule that uses one of the predictor

variables { }. If the predictor variable is quantitative in value, the splitting

rule, (takes on the form:

 Is the condition: } or } true? (5.1)

where, c denotes a real number in the domain of that needs to be determined. If the

predictor variable is categorical in value, then the splitting rule s(t) takes on the

form:

 Is the condition :{ = m} or { m} true? (5.2)

for some value in the domain of that also needs to be determined. For a

particular observation in the parent node, if the response to the questions in (5.1) and/or

(5.2) is a ‘yes’ then this observation is cascaded down to the left child node of that

tree. Alternatively, the observation is cascaded down to the right child node of that tree.

5.2.2 The criterion for splitting the nodes

The underlying objective behind CART is to create a splitting rule that best splits the

dataset being associated with the parent node of a tree into two child nodes that are even

more homogeneous (or pure) in nature. This concept of homogeneity is defined in

terms of an impurity function, denoted by (that ideally will have the following

properties:

1. a unique maximum value for a K-class problem at the point (

) ,

2. a unique minimum value at the points (1,0,…,0) ,(0,1,…,0),….(0,0,…,1).

65

Letting (denote the posterior probability that the observations in a node t belong

to class an impurity function that one could consider using is the

following Gini index:

 ((∑ (

 (

Figure 5.2 shows the relationship that exists between this Gini index and (for a

 class problem.

Figure 5.2: Relationship between the Gini index and the proportion of observations in

class 1 for a two-class problem

It can be observed that the impurity at any given node t reaches its highest value

when this node contains an equal proportion of observations from each class in that

node and reaches a minimum value when the observations in that node belong to only

one of the two possible class.

Figure 5.3: Change in Impurity

66

Consider the diagram that has been given in Figure 5.3 and let (denote the measure

of impurity that exists at a node t. The goal of CART is to use a rule (to split a

parent node into a left child node and right child node in such a manner that

this split (causes the greatest reduction in the overall impurity of the parent node

 , measured by:

 (((((((((((

where, (and (denote the proportions of observations in the parent

node that will go to the left node and to the right node , respectively. Note

that in (5.4) we have used the fact that;

 ((((

where (denotes the proportions of observations contained in the parent node

 that is being split into the left node and into the right node .

Letting denote the number of observations in the parent node , if the number of

observations that fall into the child nodes and is and respectively, then

 and

 (5.6)

where it follows that, and (

 =1.

Criterion (5.4) provides one with a measure of how good a particular splitting rule will

be, with the best split of a node t being given by

 (
 (

 (
 (

 (((

 (
 (

 (((

The product of the number of observations in a node t, denoted by ; and (

produces what represents an improvement value for implementing that split in the

tree, viz:

 (((

67

Substituting the Gini index (5.3) into the optimization problem in (5.7) produces

 (
 (

{ (∑

(∑

()} (

Some other impurity functions that one could consider using include:

1. Entropy: (∑ ((

2. Classification error: ((

Bayes’ theorem allows us to develop the following expression for the conditional

probability (that an observation in node t belongs to class :

 (
 ((

 (

 (
 (

)

∑ (
 (

)

 (

where,

 (
 (

 (

denotes the conditional probability that an observation will be assigned to node given

that it belongs to class , (denotes the number of observations in node t that

belong to class k and denotes the total number of training sample observations that

belong to class k.

In (5.10), (denotes the prior probability that an observation belongs to class k,

which can be estimated from the training sample with observations as,

 ̂

 (

 or supplied by the user if known. If the sample based estimate (5.12) is used, then

(5.10) becomes,

68

 (
(

) (

 (

)

∑ (

) (

 (

)

 (

∑
 (

 (

 (
 (

Thus if sample based estimates of the prior probability are used, the conditional

probability (is simply the fraction of the number of class observations falling

into node t and the total number of observations falling into node .

5.2.3 A rule for controlling when to stop splitting the nodes

A simple rule that one could consider employing is one where the recursive partitioning

of nodes is terminated when each terminal node contains only observations from one

particular class. However, employing such a rule is likely to result in the generation of

an excessively large tree. To prevent this from occurring, one could consider declaring a

node as being a terminal node if splitting that node does not change the impurity

beyond a threshold value . Thus, declare a node terminal if

 (

 ((

Another rule that one could consider using is a rule that stops splitting a node t, if the

number of observations in the node (, is less than a positive real number r.

5.2.4 A technique for assigning a class label to a particular node

The assignment of a class label to a particular node proceeds as follows: Let denote

the class label that is being assigned to node t, then

 ((

where, (denotes the posterior probability associated with an observation in node

t belonging to class k as given by equation (5.10). With the above notation in hand,

given that an observation falls into node t a conditional probability of misclassification,

denoted by (, and called a resubstitution error rate can be given by

 ((

 ((

and an unconditional probability of misclassification at a node t by,

69

 ((((

where, (∑ (
 (

)

 denotes the probability of any observation falling into

node t, regardless of its class label. For an entire tree T, with terminal nodes ̃, an

overall misclassification rate can be given by

 (∑ (
 ̃

 (

Theorem

For any split of the parent node into its left and right child nodes and

respectively, we have:

 (((

Proof:

Let, be the class label being assigned to a node t according to the class

allocation rule (5.15). The probability that an observation belongs to class given that

it is in node t then takes on the value

 (((

 ((((

 ((

 (

 ((

It follows that,

 ((

 [

 (

 (]

 (

 () (

 ()

 (((

70

Thus,

 (((

 ((((

 ((((

 (((

The above theorem shows that the recursive splitting of nodes in the tree growing

process will always produce a new tree with a lower overall misclassification rate. Thus,

any splitting routine that focuses on minimizing the overall misclassification rate will

always produce a bigger tree (with more terminal nodes).

5.2.5 Incorporating misclassification costs

The theory developed section (5.2.4) assumes a cost of misclassifying an

observation as belonging to a class , when the observation actually belongs to

a class , as being the same for all . As has already been discussed in

section (3.2.3), a lender may want to incorporate misclassification costs into the

classification procedure that one develops. This is because in a credit-scoring context, it

is usually far less damaging to have incorrectly classified a non-defaulter as a defaulter

than the other way round.

 Letting,

∑ (

 (

denote an expected misclassification cost for this problem, a class label can be

assigned to node t that minimizes the expected misclassification cost (5.22), viz:

[∑ (

] (

Analogously, one can define

 (

∑ (

 (

71

and,

 (∑ ((
 ̃

 (

as an overall misclassification cost for this model.

5.3 Pruning the Tree

Pruning the tree is done to remove those branches that do not contribute much to its

predictive power. The following cost-complexity pruning criterion,

 (
 ((

 ((
 (

can be used to determine whether branches of a particular node t should be removed

from the tree (Breiman et al., 1984:66). In (5.26), (represents the resubstitution

error estimate for the entire tree T, (the resubstitution error estimate for this tree

T with the branches of node t removed, s ((the number of terminal

nodes in the trees T and , respectively

The theorem in section (5.2.4) shows that a larger tree will always have a lower

resubstitution error estimate. Thus:

 ((

which means that (because ((. The cost-complexity

function (5.26) represents a tradeoff between an increase in the resubstitution error

estimate (cost) that results from removing the branches of node t from the tree T and

the benefit of using a smaller (but less complex) tree that results from removing the

branches of that particular node t. A small value of (means that the removal of

branches of node t does not cause a significant increase in the resubstitution error

estimate of the tree T. Likewise, a large value of (means that the branches attached

to node t are significant.

Letting denote the original unprunned tree grown using the guidelines in section

(5.2), (is computed for each of its non-terminal nodes t using the formulae in

equation (5.26). That node t, generating the smallest value of (then has its branches

72

cut-off to produce a new tree (which we will call subtree). is then taken as the

original unprunned tree and (is computed again for every non-terminal node with

that node generating the smallest value of (having its branches pruned to produce

the subtree . This pruning process is repeated until all the branches have been pruned

off with the remaining root node being . Thus, this pruning mechanism results in a

series of simpler trees, , each of which is subsequently smaller

than the preceding tree. The smallest value of (that is being produced at each stage

is called the cost-complexity parameter or simply the cp-value (denoted by) for that

stage.

5.4 Selecting an Optimal Tree

Two approaches have been suggested in the literature, depending on the size of the

dataset. For large datasets, one uses part of that dataset to build a tree and prune it, and

the remaining part of the data to select the optimal tree. For small datasets, a technique

based on N-fold cross validation becomes more appropriate.

5.4.1 Testing sample validation

Testing sample validation is a technique utilized for evaluating the accuracy of the tree

by randomly splitting the dataset into a learning sample and a testing sample. The

learning sample is used for building and pruning the tree resulting in a series of simpler

trees as outlined in section (5.3). The testing sample is then

applied on each of the subtrees from the pruning process and the tree that gives the

lowest error rate is selected as being optimal. Breiman et al. (1984:72-80),

recommended that this technique be used for large datasets, typically greater than 900

observations.

Figure 5.4 shows a typical evolution of the error rate that can occur when both the

learning and testing samples are passed through each of the subtrees that have been

developed using the learning sample. As the size of the tree increases, the classification

error rate associated with each new tree decreases monotonically when applied to the

learning data. This supports the more formal result that we have derived in the theorem

in section (5.2.4). When applied to the testing data, however, the classification error rate

generally declines steadily before increasing as the size of the tree through which this

training sample has been passed increases.

73

Figure 5.4: Change in the learning and testing sample -based error rate plotted against

the size of the tree

Convention detects that it is advisable to choose a tree that produces the lowest error

rate when applied to the testing sample as the optimal tree.

5.4.2 N-fold cross-validation

N- cross-validation can be used if the dataset that we have available is too small to

be split into a learning and a testing sample. One begins by randomly splitting the

dataset into N subsets. One of these subsets is used as a testing sample, while the other

 subsets are combined and used as a learning sample for the model building

procedure. This model building procedure is then repeated a total of N times (see Figure

5.6), with a different subset of the data being reserved for use as a testing sample.

The proportion of times that a wrong classification has been made for the testing sample

 can serve as an estimate for the error rate for the tree constructed

using the other subsets that have been combined to give the learning sample. An

average cross-validation error estimate for these N models (which we shall denote by

) can then be given by the equation,

∑

 (

74

Figure 5.5: N-fold Cross-validation

5.5 Judging variable importance

According to equation (5.8) importance of a predictor variable can be measured by

considering the following improvement in the impurity of node t,

 ((

that occurs when a predictor variable is used to split the node . Let

 (denote the

best split of a node that is being based on the predictor variable , then

 () [

 (] (

will represent the improvement in impurity that occurs when is used as a splitting

variable at node t . Summing these improvements over all the non-terminal nodes of the

tree T, gives rise to an overall variable importance measure for the predictor variable

that is given by

 () ∑ ()

 (

75

5.6 Conclusion

Derivable from the above discussion is evidence to the effect that using CART is an

easier and comprehensible method that can be interpreted without much statistical

background or knowhow. However, a slight change in the dataset may result in an

entirely different tree being generated, rendering CART an unstable classifier. The

forthcoming chapter proffers a consideration of a set of methods that have been

specifically designed to help overcome this shortcoming in the model.

76

 CHAPTER 6

6. Bagging, Random Forests and Boosting

6.1 Introduction

In this chapter, the researcher delves into some techniques that have been developed to

help improve the predictive capability of unstable classifiers such as CART. The basic

idea behind each technique is to create a set of classifiers during the model development

process. Each of these classifiers is then combined in some optimal way to produce a

single predicted value for a new observation
 that one wants to classify.

Two types of ensemble methods will be discussed in this section:-

 a bagging and a random forests method where, for a new observation
 ,

one attempts to build several models independent of each other using datasets

generated by a bootstrapping technique and then combine the predictions

derived from these models in some optimal way.

 a boosting method where we fit a model to the data, modify the data in response

to the type of result that we have achieved and then refit the model repeating

this process a number of times and then combine the results that we have

obtained in some optimal way.

6.2 Bootstrapping

Bootstrapping is a technique developed by Efron (1979) where one randomly draws

(with replacement) B samples each of size N (which we will denote by , ,…,)

from the learning sample where (. This procedure is

illustrated in Table 6.1 for a learning sample L with observations where

bootstrap samples are being drawn from L. The probability that an observation will

not be selected equals

(

)

 (

file:///G:/mscjan30.docx%23_ENREF_33

77

Table 6.1: Illustration of bootstrap sampling

L

Figure 6.1 below indicates that B models are constructed using the bootstrap samples,

 . In classifying a new observation, each of the B models is then used to

generate an outcome.

Figure 6.1: Using bootstrapping to improve the performance of a classifier

78

For a classification problem, the predicted outcomes in Figure 6.1 may then be

combined by selecting that class label that has been chosen the most amongst the

models as one’s predicted outcome. For a regression problem, a predicted outcome for

that individual may be obtained by averaging all B outcomes that have been produced

by the procedure in Figure 6.1.

6.3 Bagging

Bagging is an acronym for ‘Bootstrap Aggregating’ that uses the above bootstrapping

technique to improve the performance of an unstable classifier. It achieves this by

averaging a particular method of classification over bootstraps samples in an attempt

to reduce the variance associated with such a classifier. We will introduce the concept

of bagging with the aid of an example (see section 6.3.1).

6.3.1 The procedure

Given a learning sample L, suppose we generate six bootstrap samples from L and on

applying the CART procedure to each of the six bootstrap samples we produce the

classification trees that appear in Figure 6.2 below.

Figure 6.2: Illustration of bagging

79

Let (
 denote the class label that is being predicted for a new observation

 when it is passed through the tree that has been constructed from the bootstrap

sample . In particular, assume that we want to assign a class label to a new

observation
 } using the method of bagging.

Running this
 down the six trees in Figure 6.2 produced the classifications in

Table 6.2.

Table 6.2: Classifying new observations using bagging

Tree based on bootstrap sample Predicted outcome; (

b = 1 1

b = 2 1

b = 3 1

b = 4 0

b = 5 0

b = 6 1

A bagging estimate for this new observation will then set,

 ̂ (
 (

 (

For an outcome variable that is quantitative, the bagging estimate ̂ (
) becomes

the average of all these predicted outcomes:

 ̂ (

∑ (

 (

We outline the bagging algorithm below as follows:

Algorithm 6.1: Bagging Algorithm

1. Generate B bootstrap samples , ,…, each of the same size N from the

learning sample L.

2. Fit a CART to each of the bootstrap samples. Do not prune the trees.

3. Predict the outcome of a new observation
 by selecting as a class label for

this new observation the class label that produces the majority of votes from all

 trees that have been generated for a classification problem or by selecting as

its value the average of all the predicted outcomes for a regression problem.

80

6.3.2 Proof that Bagging works

An insight into why aggregating models would work is best understood for a

quantitative response variable. Suppose the training observations (
 , where

is a quantitative variable, are being independently drawn from a population distribution

 that puts an equal weight of

 on each observation in the above sample. An outcome

for can be then be estimated using the following relationship:

 ((
 (

where, (̂ (] denotes the ‘true’ bagging estimate that has been

computed using the bootstrap datasets, {(
 ,

),(
 ,

),…,(
 ,

)} that have been

drawn from the population (and not from the learning sample, L). An expected

squared prediction error evaluated at an input point for the model ̂ that has been

constructed from a bootstrap sample {(
 ,

),(
 ,

),…,(
 ,

)} is given by

 ̂

(

 ((̂

(

 [(]

 [(] [̂

((]

 ̂

((

Since, ([̂

(] it follows that the middle term becomes

 [̂

((] ((

 ̂

(

 (

 ̂

((

 (

The term ̂

((

 denotes the variance of the predicted outcome

 ̂ (about its mean (thus

 ̂ ̂

(

 [̂ (]

 (

The above result implies that the bagging estimate (̂

(will always

have a lower mean square error than the estimate ̂ (that has been based on a single

sample. In practice, it is very difficult to get the ideal bagging estimate (because

81

the actual population from which the data is being generated is not available. The

estimate given in equation (6.3) is usually used as an approximation for (, i.e.

 ̂ (

∑ (

 (

where (denotes the outcome that is being generated from the model that is being

constructed from the bootstrap sample .

The underlying principle behind bagging is that by averaging the estimates that are

being produced by many noisy models one may be able to reduce the variance

associated with this estimator. The rationale for this is as follows: An average of B

independent and identically distributed random variables , each with

a common variance will have a variance

 (

∑

)

 ∑ (

 (

It follows that as , (

∑

) . Thus, by combining many classifiers,

we may subsequently be able to reduce the variance associated with using the average

of these classifiers to assign a class label to a new observation.

To help understand why bagging may also work for a categorical response based

outcome, suppose each of the observations belong to one of two possible

groups . Consider an observation whose true class label is known to be

 . Given that a set of B individual classifiers (

independently assign this observation to a class ,

 ∑ (

 (

will represent the total number of correctly predicted class classifications for this

observation amongst all B of the bootstrap sample based trees. Because the classifiers

are presumed to independent, (6.9) follows a binomial distribution:

82

 ((

where

 ((

denotes a constant error rate associated with the misclassification of to class

 when the true class label is Consequently,

 (

) (

provided that all B of the bootstrap sample based trees, have a misclassification rate

better than random guessing in this class problem (i.e. .

The proof of (6.11) can be established by noting that for large B, the central limit

theorem allows one to approximate the binomial distribution (6.10) using the following

normal distribution (Hansen, 2011):

 ((

where and (are the mean and variance of S, repectively.

 (

) (

(

)

√ (
) (

 (
√

(

)

√ (
) (

√

(

)

√ (

) (√

)

where
(

)

√ (
 is a negative constant for values of . Therefore,

 (√

) (

This means that as the number B of class based predictions that are being combined

increases, more than half of the cases will be correctly classified. This result is based on

83

the principle of “collective wisdom amongst a crowd” as discussed by Surowiecki

(2000). According to this principle, a committee composed of many people is more

likely to reach the correct decision compared to a committee with fewer people.

6.3.3 Judging variable importance

Since the bagging estimate represents a collection of CART based trees, the same

variable importance measure (5.29),

 () ∑ ()

that was developed in section (5.5) can be computed for each tree in the bagging

estimate. The average variable importance measure for the predictor variable in the

bagging estimate is then given by:

 ()

∑ ()

 (

where, () denotes the variable importance of in the tree. If

 () , then the predictor variable is not considered as being an important

variable to include in one’s classification algorithm.

6.4 Random Forests

The concept of a ‘random forest’ has been developed as a generalization of bagging

with the objective of reducing the amount of correlation that may exist amongst the

trees being grown from the bootstrap samples. As is the case with a bagging technique,

each tree in the forest is built from a bootstrap sample that has been drawn with

replacement from the learning sample.

However, it should be noted that with random forests when splitting a node during the

construction of a tree the split that is chosen is no longer the best split that results from

use of all p predictor variables to form a splitting rule. Instead, the best split results from

using a randomly generated subset of these predictor variables to form the

splitting rule. By randomly selecting these variables one is helping to reduce the

correlation that may exist between the trees that are being generated if one were to make

84

use of all p predictor variables when creating one’s splitting rule. Reducing the

correlation between the terms that compose the components of equation (6.7) should in

turn reduce the variance associated with the averaging of these components that

eventually produce a final classifier.

The rationale for this is as follows: An average of B independent and identically

distributed random variables , each with a common variance will

have a variance as shown in equation (6.8). If the variables are identicallly

distributed but have a positive correlation ρ then the variance of this average will be

 (

∑

)

[({ () (}

 (((]

 ((

 ∑(

 [{ (

 (

}]

 [({

 }]

 (

 (

 (

It follows that as , then (

∑

) . Thus, reducing the correlation

between the trees is desirable if one wants the resultant estimator to have a smaller

variance.

85

6.4.1 Implementing the procedure

Given the learning sample observations (
 , random forests attempt to improve

on the bagging Algorithm 6.1 by decorrelating the trees using the following

adjustment:

Algorithm 6.2: Random Forests Algorithm

1. Generate B bootstrap samples , ,…, from the learning

sample (((.

2. For each bootstrap sample, fit a tree with the following adjustments being made

at each node, t:

o Randomly select predictor variables.

o Use only the randomly selected predictor variables in finding the

best split of the node.

 Do not prune the trees.

3. Predict the outcome of a new observation
 by selecting as a class label for

this new observation the class label that produces the majority of votes from all

 trees that have been generated for a classification problem or by selecting as

its value the average of all the predicted outcomes for a regression problem.

The performance of these trees can be assessed by running the out-of-the-bag (OOB)

sample (those observations that have not been used in the construction of a particular

tree) down the constructed tree. The proportion of times that a wrong classification has

been made in this OOB sample can serve as an estimate for the error rate for that

tree. An average OOB error estimate for the entire forest can then be given by the

equation,

∑

 (

When the OOB-ER of the forest begins to stabilize, it is recommended to stop adding

more trees to the forest to avoid over fitting.

86

6.4.2 Judging variable importance

We now shift our focus on the problem of deciding which predictor variables to include

in our classification algorithm. It should be noted that the random forests technique also

uses a similar Gini index based variable importance measure to rank the variables that

one may want to include in one’s classification algorithm. Thus,

 ()

∑ ()

 (

where, () denotes the CART based variable importance measure that we

have developed in (5.29) for the predictor variable in the tree of the forest, can be

used as the random forests based variable importance measure (also known as the mean

decrease in Gini). If () , then the predictor variable is not considered as

being an important variable to include in one’s classification algorithm.

6.5 Boosting

Boosting is a method for improving the accuracy of a classification model. It is based

on the idea that it is often easier to find and average many ‘rough rule of thumb’

predictions than it is to find a single highly accurate prediction rule. Whereas bagging

also seeks to combine the predictions that are being produced by several models,

boosting is different in that when it fits a decision tree to the training sample it seeks to

identify an area of poor fit and then update the next tree accordingly. Instead of working

with a newly generated bootstrap sample, the boosting algorithm re-weights the

observations in the original learning sample. This has the practical effect of giving more

weight to those observations that were misclassified in the previous iteration and less

weight to those observations that have been correctly classified. Subsequently, the next

classifier to be fitted need only concentrate on observations incorrectly classified in the

previous round. The classifiers obtained by this method of successive reweighting are

then combined to produce a final classifier with better properties.

Boosting algorithms differ in how they quantify a lack of fit and how they then adjust

their settings for the next iteration of the algorithm. The original boosting algorithm was

developed for a classification problem by Schapire (1990). Schapire’s original

algorithm was limited to a two-class problem and combined the outcomes of only three

file:///G:/mscjan30.docx%23_ENREF_38

87

classifiers produced from three filtered versions of the learning sample by simple

majority voting. Freund (1995) improved upon Schapire’s (1990) algorithm using a

variation called boost by majority that combined many weak learners at the same time.

However both these algorithms required that the base classifiers have a constant error

rate. Freund & Schapire’s (1997) collaboration led to the development of the very

popular adaptive boosting algorithm termed AdaBoost, which dropped the assumption

of a fixed error rate. Breiman (1998) later developed adaptive resampling and

combining (arcing) algorithms, which generalized the overall technique of boosting.

Freund & Schapire’s (1997) AdaBoost algorithm is a special case of arcing algorithms.

For the purposes of this study, we will focus on Freund & Schapire’s (1997) AdaBoost

algorithm.

6.5.1 The AdaBoost procedure for a K=2 class problem

Given a set of observations (
 in a learning sample, with being given the

following binary coding , the AdaBoost algorithm proceeds as follows:

Step 1: As a starting point for the algorithm (), a weight (

 is assigned

to each of the observations in the learning sample.

Step 2: A base classifier (CART in our case) is then fitted to the learning sample

containing those observations that have been weighted by a factor (to give the

classification model for this iteration whose resubstitution error estimate is given

by

∑ ((

∑ (

 (

where (represents the predicted outcome at input point .

Step 3: The error rate is then used to create the following positive-valued scaling

factor

 (

) (

88

The scaling factors are strictly positive for values of
 ⁄ (this is the same

as demanding the model to be boosted to have an accuracy rate that is slightly

better than random guessing in the K=2 class problem). If becomes negative, the

weights will be updated in the opposite direction in the next step resulting in the failure

of the boosting procedure.

Step 4: The observations which have been incorrectly classified, then have the weights

associated with them inflated while the weights associated with those, which have been

correctly classified are deflated in value using the following function:

 (
 (

 {

 (

 (
 (

where is a normalization constant that ensures that the weights add up to one

(∑ thereby making a probability distribution function, viz

 ∑[({
 (

 (
]

 ∑ (

 (

 ∑ (

 (

 (

 ((

)

 (

)

 (

 (

 (

 (

 (

 √ ((

Step 5: The steps are repeated times updating the weights at each

stage using (6.18) to give weights and fitted classifiers. An observation is

assigned to the class by considering the sign of the following

weighted combinations of the predicted outcomes:

 ({∑

 (} (

89

An appropriate maximum number of iterations one may consider would be when

there is no significant change in the learning error rate of (viz:

 (

∑ (

 (

We summarize the AdaBoost algorithm for a two-class problem below:

Algorithm 6.3: AdaBoost algorithm for a two-class problem

1. Initialize: (

 for all .

2. Repeat for t = 1,..., T .

I. Fit the training algorithm (CART in our case) to the learning sample

weighted by , in order to obtain the model :

II. Compute the weighted error rate
 (

∑ ((

∑ (

III. Compute

 (

)

IV. Compute the new weights (for all the observations

 (
 (

 {

 (

 (

3. Assign a new observation
 to the class by using

the sign of the weighted combination of the base classifiers:

 (
 {∑

 (
 } (

90

6.5.2 Extending the AdaBoost algorithm to the K>2 class problem

The AdaBoost algorithm outlined in Algorithm 6.3 above can also be applied to a

 class problem, as long as for the resubstitution error rate in (6.16) we have

 (

by making the following adjustment to (:

 (

∑ (

 (

The above class allocation rule means that one now assigns an observation to the

class label that receives the most weighted votes. Without the

restriction imposed in (6.23), the weights become negative whenever

 leading

to the failure of the AdaBoost proposal.

Zhu et al.(2009) further modified the scaling factors (6.17) to

 (

) ((

such that is now positive whenever (

. This means that the accuracy rate

(of each of the base classifiers must be slightly better than

classification by chance in the K-class problem. For , the scaling factors (6.17)

and (6.25) are the same since we will now have in (6.25). A summary of the

AdaBoost algorithm for a multi-class problem is provided in Algorithm 6.4 (page 91).

6.5.3 Judging variable importance

Since the boosting estimate of the outcome (is a weighted sum of predictions

by CART based classifiers, variable importance (which we shall denote by ())

is measured using the following formulae:

 ()

∑ ()

 (

where, is the weight associated with the iteration and () is the CART

based variable importance measure in equation (5.29) of the predictor variable in the

file:///G:/mscjan30.docx%23_ENREF_76

91

tree of the iteration. If () , then the predictor variable is not

considered as being an important variable to include in one’s classification algorithm.

Algorithm 6.4: Multi-class AdaBoost algorithm

1. Initialize: (

 for .

2. Repeat for t = 1,2,..., T.

I. Fit the classification technique (CART in our case) to the learning sample

weighted by in order to obtain the classifier :

II. Compute the weighted error rate
 (

∑ ((

∑ (

III. Compute; (

) (

IV. Compute the new weight (for all the observations

 (
 (

 {

 (

 (

3. Assign a new observation
 to the class that get the

most weighted votes :

 (

∑ (
)

6.6 Conclusion

It can be concluded from the above that applying the bagging, random forests and

boosting procedures to CART destroys its interpretability appeal. This is because there

will not exist a single ‘combined’ tree to interpret afterwards. Nevertheless, the three

procedures tapped into in this chapter have a great potential to improve the predictive

capabilities of an unstable classifier such as CART.

92

CHAPTER 7

7. Applications and Results

7.1 Introduction

This chapter makes use of a publicly available dataset that was compiled by Hofmann

(1994) to demonstrate the concepts that we have been discussing in the previous

chapters. The dataset is widely known as the ‘German credit data’. The discussion that

follows essentially attempts to fulfill the research objectives of this study as outlined in

chapter one. Firstly, a description and preliminary analysis of the dataset is provided in

section (7.2). Sections (7.3) to (7.10) then focus on the application of each of the

classification techniques to the credit related dataset and the results obtained. In section

(7.11), a summary and comparison of the results will be provided before offering our

conclusion in section (7.12). The analysis is done using the following software

packages: SPSS (version 21), R-programming language (version 2.5.1) and Microsoft

Excel (2010 edition).

7.2 The dataset and preliminary analysis

The German credit dataset used to build the scorecards in this study consists of 1000

past credit applicants classified as either non-defaulters, denoted by ‘0’, or defaulters,

denoted by ‘1’. There are 700 non-defaulters and 300 defaulters in the dataset. Each of

these credit applicants has twenty measured characteristics, which are displayed in

Table 7.1 (page 93). We randomly split the dataset into a ‘learning sample’ and a

‘testing sample’ in the ratio 0.7:0.3 respectively.

The subsequent learning sample contains 489 non-defaulters and 211 defaulters whilst

the testing sample contains 211 non-defaulters and 89 defaulters. All the scorecards in

this study are developed using the learning sample. The testing sample is reserved for

evaluating (or testing) the predictive capabilities of the developed scorecards. Testing

sample based results give us an indication of how the developed scorecards will perform

in classifying new credit applicants.

93

Table 7.1: Characteristics of credit applicants

 Characteristic Abbreviation

1 balance of current account bankbal

2 duration of loan durloan

3 payment of previous credits payprevdebt

4 purpose of credit purcred

5 loan amount loanamt

6 values of savings or stock savings

7 time employed timeempl

8 instalment in percentage of

available income

instalmnt

9 value of asset valasset

10 age age

11 further running credits curcred

12 foreign worker alien

13 house ownership hsetype

14 number of previous credits

at the bank

histcred

15 occupation jobtype

16 number of dependents dependents

17 sex/marital status marital.sex

18 duration in current house durhse

19 guarantor guarantor

20 telephone ownership tel

There are seventeen (17) categorical predictor variables in the dataset that were assigned

an appropriate ordinal value or rank according to a method that is outlined in Appendix

B. The average rank of each of the 17 categorical predictor variables in the learning

sample is plotted in Figure 7.1 as a function of non-defaulters and defaulters.

94

Figure 7.1: The average rank of categorical predictor variables as a function of

defaulters and non-defaulters

A plot of the absolute difference between the average rank assigned to the applicants

classified as defaulters and those classified as non-defaulters (in ascending order) for

each of the categorical predictor variables in Figure 7.1 is given in Figure 7.2.

Figure 7.2: Variable importance as measured by absolute value of the difference

between average ranks of non-defaulters and defaulters

Intuitively, the bigger the absolute difference between the average ranks of defaulters

and non-defaulters for a given categorical predictor variable, the more ‘important’ it

may be in distinguishing between non-defaulters and defaulters.

0

0.5

1

1.5

2

2.5

3

3.5

4

b
an

kb
al

p
re

vd
eb

tp
ay

p
u

rp
cr

ed

sa
vi

n
gs

ti
m

ee
m

p
l

in
st

al
m

n
t

m
ar

it
al

.s
e

x

gu
ar

an
to

r

d
u

ri
n

h
se

va
la

ss
et

cu
rc

re
d

h
se

ty
p

e

h
is

tc
re

d

jo
b

ty
p

e

d
ep

e
n

d
e

n
ts te

l

al
ie

n

A
ve

ra
ge

 r
an

k

Characteristics (Abbreviation)

defaulters

non-defaulters

0

0.2

0.4

0.6

0.8

1

1.2

|d
if

fe
re

n
ce

 b
tn

 a
vg

e
 r

an
ks

|

Characteristics (Abbreviation)

95

The remaining three continuous predictor variables are; duration of loan in months,

amount of the loan in German deutsche marks (DM) and age in years. Figures 7.3 to

Figure 7.5 are box plots of the distribution of these three continuous predictor variables

as a function of non-defaulters (0) and defaulters (1).

Figure 7.3: Duration of loan (in months) boxplot

As expected, Figure 7.3 reveals that the longer duration based loans are associated with

defaulters as evidenced by the higher median value, higher third quartile value and a

longer upper tail with a maximum value at 60 months. On the other hand, shorter

duration loans are associated with non-defaulters with a few outlier applicants having

longer duration of loans. Outlier applicants are those whose behavior deviates

significantly from the other applicants in the same group (for example applicants

numbered 484,512,513).

Figure 7.4: Loan amount in DM boxplot

96

In Figure 7.4, we observe that the median amount of loan taken by both defaulters and

non-defaulters is similar. However, defaulters have a larger third quartile value and a

longer upper tail compared to non-defaulters. This is also anticipated because those

applicants who borrow large amounts of money are likely to default.

Focusing on the age boxplot in Figure 7.5 below, the distribution of the data in the two

groups is similar, with older people inclined towards being non-defaulters as evidenced

by the slightly higher median value.

Figure 7.5: Age (in years) box plot

Notably, the box plots for loan amount and age have numerous outliers (especially loan

amount in Figure 7.4) probably because there was a wide variation in the loan amount

and the age of the applicants in our dataset or it signifies measurement errors.

Throughout the development of the scorecards in the following sections, the

misclassifications costs are presumed to be constant and equal to one (1) (see, section

(3.2.3) and section (5.2.5)). In addition, the prior probabilities are computed from the

learning sample according to the formula given in equation (3.5), giving the results

shown in Table 7.2.

 Table 7.2: Prior Probabilities for Groups

Class Number of

Cases

Prior

Probability

0 489 0.699

1 211 0.301

Total 700 1

97

7.3 Linear discriminant analysis

The development of scorecards in this section follows the theory that we have outlined

in chapter three. One major assumption is that the observations in class (

follow a 20-dimensional multivariate normal distribution with equal population

covariance matrices.

7.3.1 Bayesian approach

Using SPSS to implement the Bayesian approach that is outlined in section (3.2), the

discriminant functions coefficients for a non-defaulter () and a defaulter ()

in Table 7.3 were produced.

Table 7.3: Linear discriminant function coefficients

Predictor

variables

b
a

n
k
b

a
l

d
u

rl
o

a
n

p
re

v
d
e

b
tp

a
y

p
u

rp
c
re

d

lo
a

n
a
m

t

s
a

v
in

g
s

ti
m

e
e

m
p
l

in
s
ta

lm
n

t

m
a

ri
ta

l.
s
e

x

g
u

a
ra

n
to

r

d
u

ri
n

h
s
e

v
a

la
s
s
e

t

a
g

e

c
u

rc
re

d

h
s
e

ty
p

e

jo
b

ty
p

e

d
e

p
e

n
d

e
n

ts

te
l

a
lie

n

(c
o

n
s
ta

n
t)

c
o

e
ff

ic
ie

n
ts

2
.0

8
3

0
.1

2
2

0
.9

9
7

0
.8

6
3

-0
.0

0
1

0
.5

4
8

0
.1

5
6

1
.2

8
8

4
.0

9
2

6
.0

6
9

5
.6

2
5

1
.9

3
4

6
.7

8
1

6
.9

3
3

5
.6

2
5

6
.7

8
1

7
.9

2
7

1
.4

7
5

3
4
.4

2
8

-7
2
.6

3
6

1
.4

5
1

0
.1

4
9

0
.5

7
8

0
.8

1
7

-0
.0

0
1

0
.3

7
1

-0
.0

2
4

1
.6

1
4

3
.8

5
7

5
.7

7
7

1
.9

8
8

1
.3

3
8

0
.0

5
0

6
.6

5
6

5
.1

4
3

6
.6

1
2

8
.1

3
3

1
.2

5
1

3
3
.5

7
9

-6
8
.7

3
6

The dimensions in Table 7.3 give rise to the following discriminant functions:

 ((

 ((

where, are the characteristics of the

applicant as given in Table 7.1.

Therefore, a new credit applicant
 will be classified as a non-defaulter () if

we have:

 (
 (

 (
 (

98

(

Otherwise, the new applicant will be classified as a defaulter(. An application of the

classification rule (7.3) to applicants in our testing sample produced the classification

matrix that is given in Table 7.4. The table shows that we have managed to achieve an

error rate of
(

 , a sensitivity of 43.8% and a specificity of 90%.

Table 7.4: Testing sample classification matrix for the Bayesian LDA

defaultstatus

Predicted Group Membership

Total 0 1

Original Count 0 190 21 211

1 50 39 89

% 0 90.0 10.0 100.0

1 56.2 43.8 100.0

7.3.2 Fisher’s approach

Using SPSS to implement Fisher’s LDA on the learning sample produced only one

canonical discriminant function (because the response variable is binary) whose

coefficients are given in Table 7.5.

Table 7.5: Unstandardized Canonical Discriminant Function Coefficients

Predictor

variables

b
a

n
k
b

a
l

d
u

rl
o

a
n

p
re

v
d
e

b
tp

a
y

p
u

rp
c
re

d

lo
a

n
a
m

t

s
a

v
in

g
s

ti
m

e
e

m
p
l

in
s
ta

lm
n

t

m
a

ri
ta

l.
s
e

x

g
u

a
ra

n
to

r

d
u

ri
n

h
s
e

v
a

la
s
s
e

t

a
g

e

c
u

rc
re

d

h
s
e

ty
p

e

jo
b

ty
p

e

d
e

p
e

n
d

e
n

ts

te
l

a
lie

n

(c
o

n
s
ta

n
t)

Coefficients

(unstandardized)

0
.5

2
7

-0
.0

2
3

0
.3

4
9

0
.0

3
8

0
.0

0
0

0
.1

4
7

0
.1

5
0

-0
.2

7
2

0
.1

9
6

0
.2

4
4

-0
.0

4
0

-0
.1

6
2

-0
.0

0
3

0
.2

3
0

0
.4

0
2

0
.1

4
1

-0
.1

7
2

0
.1

8
7

0
.7

0
8

-
4

.1
9

1

99

The dimensions in Table 7.5 give rise to the following Fisher’s canonical discriminant

function:

 ((

where, are the characteristics of the

applicant.

The canonical discriminant function (7.4) can now be used to calculate a discriminant

score (for each applicant in our learning sample. Table 7.6 show a mean value

for these scores that we have obtained for the non-defaulters () and defaulters

() in our learning sample.

Table 7.6: Class means scores

Class Mean score

 0.361

 -0.838

According to Table 7.6, if a new applicant’s discriminant score (lies close to

 , then he/she is more likely to be a defaulter than a non-defaulter. Conversely, if

the score lies closer to 0.361, the applicant is more likely to be a non-defaulter than a

defaulter. In practice, a cut-off point for distinguishing between these two classes is

taken to be the average between the individual groups’ mean scores:

(

 (

such that a new applicant
 will be classified as a non-defaulter () if:

 (

Otherwise, the applicant will then be classified as a defaulter (). Applying the

classification rule (7.7) to applicants in our testing sample produced the classification

matrix that is given in Table 7.7, which shows that we managed attain an error rate of

(

 , a sensitivity of 71.9% and a specificity of 73%.

100

Table 7.7: Testing sample classification matrix for Fisher’s LDA

defaultstatus

Predicted Group Membership

Total 0 1

Original Count 0 64 25 89

1 57 154 211

% 0 71.9 28.1 100.0

1 27.0 73.0 100.0

A link with the Bayesian approach can be made if we specify equal probabilities for our

two classes. According to the cut-off value in equation (3.12) of section (3.2.2), if the

prior probabilities were equal, the constant in the decision rule (7.3) would

decrease by a factor:

 (
 ̂

 ̂
) (

)

since we will now have ̂ ̂ . This means that the constant in the decision rule

(7.3) would change to: . Thus, if prior probabilities were

presumed to be equal in the Bayesian classifier (7.3), one would classify a new

applicant
 as a non-defaulter() if:

(

Multiplying equation (7.7) by the proportionality constant will result in the

same decision rule as the one in equation (7.8). This verifies our more formal proof in

section (3.3.3) which states that; the classification rule that has been derived under the

Bayesian approach becomes equivalent to Fisher’s class allocation rule when we

assume equal prior probabilities.

Following on our discussion at the end of section (3.3.2), to make Fisher’s classification

function (7.7) the same with the Bayesian based classification function (7.3) that

101

assumes unequal prior probabilities, one can scale the cut-off point in the

Bayesian classifier (7.3) to,

 (

and use it for the classification function (7.7). Thus, a new applicant
 will

now be classified as a non-defaulter () if

 (

Otherwise,
 will be classified as a defaulter (1).

It is important to note that multiplying Fisher’s classification function (7.10) by our

proportionality constant gives the Bayesian based classification function

(7.3). The modification done in (7.9) is often used to adjust the cut-off point computed

in (7.6) in order to create a cut-off point that takes into account the fact that the two

groups may be unequal in size. Because the two groups used in this study are unequal in

size (i.e. proportion of non-defaulters greater than proportion of defaulters), for the

remainder of the study we shall use the results in Table 7.4 as the working classification

matrix of the LDA classifier when applied to the testing sample.

7.3.3 Optimal scoring approach

Following the procedure that has been outlined in Table 3.2 of section (3.5), we

obtained only one optimal regression function coefficients (because the response

variable is binary) that appear in Table 7.8.

Table 7.8: Optimal scoring based canonical discriminant function coefficients

Predictor

variables

b
a

n
k
b

a
l

d
u

rl
o

a
n

p
re

v
d
e

b
tp

a
y

p
u

rp
c
re

d

lo
a

n
a
m

t

s
a

v
in

g
s

ti
m

e
e

m
p
l

in
s
ta

lm
n

t

m
a

ri
ta

l.
s
e

x

g
u

a
ra

n
to

r

d
u

ri
n

h
s
e

v
a

la
s
s
e

t

a
g

e

c
u

rc
re

d

h
s
e

ty
p

e

jo
b

ty
p

e

d
e

p
e

n
d

e
n

ts

te
l

a
lie

n

(c
o

n
s
ta

n
t)

Coefficients

(unstandardized)

0
.2

2
3
1

-0
.0

0
9
7

0
.1

4
7
8

0
.0

1
6
2

0
.0

0
0
0

0
.0

6
2
4

0
.0

6
3
6

-0
.1

1
5
0

0
.0

8
2
8

0
.1

0
3
2

-0
.0

1
6
9

-0
.0

6
8
5

-0
.0

0
1
2

0
.0

9
7
5

0
.1

7
0
2

0
.0

5
9
8

-0
.0

7
2
8

0
.0

7
9
3

0
.2

9
9
9

-1
.7

7
4
2

102

A comparison of Table 7.5 and Table 7.8 reveals that multiplying the optimal scoring

based unstandardized coefficients in Table 7.8 by a proportionality constant

 gives Fishers’ LDA unstandardized coefficients in Table 7.5. This verifies the

more formal proof in section (3.5.3) which shows that Fisher’s and the optimal scoring

approach to LDA produce the same first eigenvector (which is the vector containing the

discriminant coefficients). Therefore, proceeding in a similar manner as outlined in the

previous section for Fisher’s LDA will produce the same classification results since

according to the proof given in equation (3.37) it is only the direction of the vector that

matters rather than its magnitude.

7.3.4 Judging variable importance

The information in Table 7.9 includes standardized canonical discriminant coefficients

that can be used to determine the unique contribution that is being made by an

individual predictor variable in the multivariate model.

Table 7.9: Standardized discriminant function coefficients

Predictor

variables

b
a

n
k
b

a
l

d
u

rl
o

a
n

p
re

v
d
e

b
tp

a
y

p
u

rp
c
re

d

lo
a

n
a
m

t

s
a

v
in

g
s

ti
m

e
e

m
p
l

in
s
ta

lm
n

t

m
a

ri
ta

l.
s
e

x

g
u

a
ra

n
to

r

d
u

ri
n

h
s
e

v
a

la
s
s
e

t

a
g

e

c
u

rc
re

d

h
s
e

ty
p

e

jo
b

ty
p

e

d
e

p
e

n
d

e
n

ts

te
l

a
lie

n

 Coefficients

(standardized)

0
.6

2
0

-0
.2

7
9

0
.3

6
8

0
.1

0
4

-0
.1

2
8

0
.2

3
1

0
.1

7
7

-0
.2

9
8

0
.1

3
3

0
.1

1
0

-0
.0

4
4

-0
.1

6
7

-0
.0

3
1

0
.1

6
0

0
.2

0
9

0
.0

9
2

-0
.0

6
3

0
.0

9
2

0
.1

3
4

A plot of the absolute values of the standardized discriminant coefficients, in decreasing

order, is provided in Figure 7.6. The greater the absolute value of the standardized

discriminant coefficients, the more important the predictor variable is being considered

to include in one’s classification algorithm.

Figure 7.6 reveals that an applicant’s bank balance (bankbal) is considered as being a

very important characteristic to include in the classification model. One the other hand,

the age of an applicant is not considered as a very ‘important’ characteristics when

attempting to distinguish defaulters from non-defaulters.

103

Figure 7.6: Ranking variable importance using absolute values of standardized

canonical coefficients

7.4 Quadratic discriminant analysis

The ‘MASS’ package contained in R was used to develop the QDA based scorecard

using the learning sample. Table 7.10 shows the classification matrix that result from

applying the developed QDA model to our testing sample applicants. The table shows

that we have managed to realize an error rate of
(

 , a sensitivity of 57.3%

and a specificity of 81.0%.

Table 7.10: QDA classification matrix for the testing sample

defaultstatus

Predicted Group Membership

Total 0 1

Original Count 0 171 40 211

1 38 51 89

% 0 81.0 19.0 100.0

1 42.6 57.3 100.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

|s
ta

n
d

ar
d

iz
e

d
 d

is
cr

im
in

an
t

co
e

ff
ie

n
ts

|

Characteristics (Abbreviation)

104

7.5 Flexible discriminant analysis

Flexible discriminant analysis (FDA) was implemented on the learning sample using the

‘mda’ package contained in R. In using the MARS procedure, the forward process stops

when the change in the RSS of the model caused by adding a term is less than 0.001 and

a backward pruning procedure is employed using a penalty value of for the GCV

criterion. Depending on the parameter that is being used by the MARS model to

govern the degree of interaction of the hinge functions allowed, five FDA models where

created. On applying the created models to the testing sample applicants, the results in

Figure 7.7 were obtained.

Figure 7.7: FDA models testing error rates

According to Figure 7.7, the FDA model with MARS functions of degree one (additive

model) is the best. As the complexity of the MARS functions increases, the accuracy of

the FDA model decreases and then remains constant for values B greater than or equal

to four. The dashed reference line in Figure 7.7 at a value of 0.237 is the testing error

rate of the FDA model that uses multivariate linear regression functions, which is

equivalent to the optimal scoring approach to LDA. Figure 7.7 suggests that the FDA

models with MARS functions one, two and three are the most appropriate because they

improve upon the testing error rate of the LDA classifier we have developed.

Table 7.11 contains a summary of the error rate, sensitivity and specificity of these

appropriate models when applied to testing sample applicants.

1 2 3 4 5

0
.2

1
0

.2
2

0
.2

3
0

.2
4

0
.2

5

Degree of MARS model(B)

 T
e

s
ti
n

g
 e

rr
o

r
ra

te

105

Table 7.11: FDA models performance

Model Error rate Sensitivity Specificity

FDA (MARS, B=1) 0.210 46.1% 92.9%.

FDA (MARS, B=2) 0.227 51.7% 88.2%.

FDA (MARS, B=3) 49.4% 88.2%

7.6 Mixture discriminant analysis

Mixture discriminant analysis (MDA) was implemented on the learning sample using

the ‘mda’ package contained in R. Following the procedure that has been outlined in

Algorithm 4.3, we obtained six mixture discriminant analysis (MDA) models by

varying the number of latent subclasses per class from one to six. On applying these

models to our testing sample applicants, we obtained the results in Figure 7.8 depending

on the number of latent subclasses per class specified in the model.

Figure 7.8: MDA using Optimal Scoring (multivariate linear regression functions)

It is important to note that the MDA model with a single group centroid (one latent

subclass per class) is the LDA model produced by optimal scoring, which corresponds

to the dashed reference line in Figure 7.8 at a testing error rate value of 0.237. We

select the MDA model with two latent subclasses per class as the most appropriate

model, because, it improves the testing error rate of the LDA classifier we have

developed.

1 2 3 4 5 6

0
.2

2
0

.2
3

0
.2

4
0

.2
5

0
.2

6

Number of latent subclasses per class

 T
e

s
ti
n

g
 e

rr
o

r
ra

te

106

Table 7.12 shows the classification matrix when the testing sample applicants are

classified using the MDA (2 subclasses, linear regression) model we have chosen to be

the most appropriate. The table reveals that we have managed to get a testing error rate

of
(

 , a sensitivity of 48.3% and specificity of 89.1%.

Table 7.12: Testing sample classification matrix for the MDA (2 subclasses, linear

regression) model

defaultstatus

Predicted Group Membership

Total 0 1

Original Count 0 188 23 211

1 46 43 89

% 0 89.1 10.9 100.0

1 51.7 48.3 100.0

Figure 7.9 is a plot of observations in the learning sample against the first two canonical

discriminant functions (since they account for most of the variation in the data) from the

MDA (2 subclasses, linear regression) model we have chosen to be most appropriate.

Non-defaulters (0) are plotted in red and defaulters (1) in green. The latent subclass

centroids are circled.

Figure 7.9: Plot of the learning sample using MDA coordinates

-2 0 2 4 6 8 10

-3
-2

-1
0

1
2

3

Discriminant Plot for true classes

Discriminant Var 1

D
is

c
ri

m
in

a
n

t
V

a
r

2

0

0

0

0

0

0

0
0 00

0
0

0 0

00

0

0
00

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0
0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0
0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0
0

0

0

0
0 0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

00

0

0

0

0

0

0

00

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
00

0

0

0

0

0

0
0

0

0

0

0

0
00

00

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

00

0

0
0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0
0

0 0
0

0

0
0

0

0

0

0

0

0

0 0

0
0

0

0

0

0

0

0
0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0 0

0

0

00 0

0

0

0
0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

00
0

0

0

0

0

0

0

0 0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0 0

0

0

0

0

0

0 0

0 0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0

11

1

1

1

1

1

1

1
1

1
1

1

1

1
1

1 1

11
1

1

1

1

1

1

1
1

1
1

1

1
1

1

1

1 1

1

1
11

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1
1

1

1

1

1

1

1

1 1

1

1
1

1

1

1

1

1 1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1
1

1

1

11
1 1

1 1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1
1

1

11

1

1 1

1

1

1

1

1

1

1

1

1
1

107

7.7 Classification and regression trees

The stages in the development of a classification tree for credit scoring using a real life

credit-related dataset is illustrated in this section, as outlined in chapter five. The

Classification and Regression Tree (CART) procedure is implemented on the learning

sample using the ‘Rpart’ package contained in R.

7.7.1 Growing the tree

The unpruned classification tree in Figure 7.10 was constructed from the learning

sample using the method outlined in section (5.2).

Figure 7.10: Unpruned credit scoring classification tree

The Gini index was used as the impurity function. The standard set of questions used to

split each non-terminal node is shown. If the response to the splitting rule is affirmative,

the case is assigned to the left child node. If otherwise, a case is assigned to the right

child node. Since it is not known which node will become terminal after pruning, each

node is assigned a class label according to which group is predominant. For example the

root node contains 489 non-defaulters (0) and 211 defaulters (1); therefore, it is

assigned the class label ‘0’.

|
bankbal>=2.5

prevdebtpay>=1.5

durloan< 22.5

loanamt>=967

loanamt< 1178

loanamt>=1373

timeempl>=3.5

loanamt< 632

valasset< 2.5

durinhse>=2.5

instalmnt< 2.5

curcred>=1.5 durinhse< 1.5

prevdebtpay>=3.5

age>=28.5

0

489/211

0

280/42

0

209/169

0

197/134

0

132/58

0

110/39

0

17/1

0

93/38

0

81/25

1

12/13

0

8/2

1

4/11

0

22/19

0

10/1

1

12/18

0

11/9

0

9/4

1

2/5

1

1/9

1

65/76

0

31/18

0

30/11

1

1/7

1

34/58

0

7/1

1

27/57

0

13/10

0

12/4

1

1/6

1

14/47

1

12/35

108

A node becomes terminal if the change in the Gini index at node t caused by the making

the split is less than a factor, cp=0.01, where cp is the cost-complexity parameter. In

addition, a node is not split further if it contains less than 20 applicants. Before we use

the tree to classify new observations, it is advisable to prune it first in order to remove

unimportant branches.

7.7.2 Pruning the Tree

Table 7.13 shows the cost-complexity parameter (CP) value, number of splits and the

relative error for each of the subtrees obtained from cost-

complexity pruning.

Table 7.13: Cost-Complexity pruning

Subtree CP-value Number of splits Relative error

6 >0.054502 0 1

5 0.054502 4 0.77725

4 0.028436 6 0.72038

3 0.018957 8 0.68246

2 0.014218 10 0.65403

1 0.011848 12 0.65033

0 0.01 15 0.59716

The number of leaves (or terminal nodes) is obtained by adding one to the number of

splits. The relative error is the standardized re-substitution error estimate of each of the

subtrees such that the root node has an error rate of one. Since the root node makes 211

out of 700 misclassifications, we multiply the relative errors by 211 to get the total

number of misclassifications for a particular subtree.

The CP table is printed from the smallest tree with no splits (root node) to the largest

tree with 15 splits (16 terminal nodes). The pruned subtrees associated with the CP

values in Table 7.13 are shown in Figures 7.11 to 7.15. Note that subtree six(

) is just a root node and subtree zero () is the original tree in Figure

7.10. All the subtrees are nested around the original tree.

109

Figure 7.11: Subtree 1 with CP = 0.011848

Figure 7.12: Subtree 2 with CP = 0.014218

|
bankbal>=2.5

prevdebtpay>=1.5

durloan< 22.5

loanamt>=967

loanamt< 632

valasset< 2.5

durinhse>=2.5

instalmnt< 2.5

curcred>=1.5 durinhse< 1.5

prevdebtpay>=3.5

age>=28.5

0

489/211

0

280/42

0

209/169

0

197/134

0

132/58

0

110/39

0

22/19

0

10/1

1

12/18

0

11/9

0

9/4

1

2/5

1

1/9

1

65/76

0

31/18

0

30/11

1

1/7

1

34/58

0

7/1

1

27/57

0

13/10

0

12/4

1

1/6

1

14/47

1

12/35

|
bankbal>=2.5

prevdebtpay>=1.5

durloan< 22.5

loanamt>=967

loanamt< 632

instalmnt< 2.5

curcred>=1.5 durinhse< 1.5

prevdebtpay>=3.5

age>=28.5

0

489/211

0

280/42

0

209/169

0

197/134

0

132/58

0

110/39

0

22/19

0

10/1

1

12/18

1

65/76

0

31/18

0

30/11

1

1/7

1

34/58

0

7/1

1

27/57

0

13/10

0

12/4

1

1/6

1

14/47

1

12/35

110

Figure 7.13: Subtree 3 with CP = 0.018957

Figure 7.14: Subtree 4 with CP = 0.028436

|
bankbal>=2.5

prevdebtpay>=1.5

durloan< 22.5

instalmnt< 2.5

curcred>=1.5 durinhse< 1.5

prevdebtpay>=3.5

age>=28.5

0

489/211

0

280/42

0

209/169

0

197/134

0

132/58

1

65/76

0

31/18

0

30/11

1

1/7

1

34/58

0

7/1

1

27/57

0

13/10

0

12/4

1

1/6

1

14/47

1

12/35

|
bankbal>=2.5

prevdebtpay>=1.5

durloan< 22.5

instalmnt< 2.5

curcred>=1.5 durinhse< 1.5

0

489/211

0

280/42

0

209/169

0

197/134

0

132/58

1

65/76

0

31/18

0

30/11

1

1/7

1

34/58

0

7/1

1

27/57

1

12/35

111

Figure 7.15: Subtree 5 with CP = 0.054502

7.7.3 Selecting the Optimal Tree

Testing sample validation was used to determine the optimal size of the tree. A plot of

the change in the resubstitution error estimate as the number of terminal nodes (size of

the tree) increases is shown in Figure 7.16.

Figure 7.16: Evolution of the learning error rate against number of terminal nodes

|
bankbal>=2.5

prevdebtpay>=1.5

durloan< 22.5

instalmnt< 2.5

0

489/211

0

280/42

0

209/169

0

197/134

0

132/58

1

65/76

0

31/18

1

34/58

1

12/35

0 5 10 15

0
.1

8
0

.2
0

0
.2

2
0

.2
4

0
.2

6
0

.2
8

0
.3

0

Number of terminal nodes

 L
e

a
rn

in
g

 e
rr

o
r

ra
te

112

Figure 7.16 indicates that as the size of the tree increases, the classification error rate

decreases monotonically for the learning sample. This corresponds to the proof of the

theorem in section (5.2.4) which shows that a large tree will always give the best fit to

the learning/training dataset.

In contrast, a plot of the change in the classification error rate when classifying

applicants in the testing sample as the size of the tree increases that is given Figure 7.17

shows that the classification error rate decreases sharply. It then starts oscillating in a

zigzag manner. We select the tree with five terminal nodes, subtree five in Figure 7.15,

as the optimal size of the tree because it gives the lowest testing error rate.

Figure 7. 17: Evolution of the testing error rate against number of terminal nodes

7.7.4 Scoring new credit applicants

The chosen optimal tree is shown in Figure 7.18 and below can be used to classify new

applicants as follows:

1. If a new applicant is assigned a ‘bank balance’ rank that is greater than or equal

to 2.5, immediately classify the applicant as a non-defaulter (0);

2. If a new applicant is assigned a ‘bank balance’ rank that is less than 2.5 and a

‘repayment of previous debts’ rank that is less than 1.5, classify the applicant as

a defaulter (1);

0 5 10 15

0
.2

8
0

0
.2

8
5

0
.2

9
0

0
.2

9
5

Number of terminal nodes

T
e

s
ti
n

g
 e

rr
o

r
ra

te

113

Figure 7.18: Optimal classification tree for scoring new credit applicants

3. Otherwise, if a new applicant is assigned a ‘bank balance’ rank less than 2.5, a

rank greater than or equal to 1.5 for ‘payment of previous debts’ and the

‘duration of the loan’ the applicant require is less than 22.5 months, classify the

applicant as a non-defaulter (0). However, if the ‘duration of the loan’ the same

applicant requires is more than or equal to 22.5 months and the ‘instalment’ rank

is less than 2.5, classify the applicant as a non-defaulter (0). Otherwise, if the

‘instalment’ rank is greater than or equal to 2.5, the applicant is classified as a

defaulter (1).

One obvious advantage of the CART based scorecard is its simplicity. Furthermore, the

optimal decision tree model in Figure 7.18 makes decisions based on only four out of

the twenty-predictor variables. This is a huge dimension reduction, which results in

decisions being reached quickly.

Applying the testing sample to the optimal tree above produced the classification matrix

in Table 7.14.

|
bankbal>=2.5

prevdebtpay>=1.5

durloan< 22.5

instalmnt< 2.5

0

0

0 1

1

114

Table 7.14: Classification matrix for classifying testing sample applicants using the

optimal classification tree

defaultstatus

Predicted Group Membership

Total 0 1

Original Count 0 186 25 211

1 58 31 89

% 0 88.2 11.8 100.0

1 65.2 34.8 100.0

The table above reveals that we have managed to accomplish a testing error rate of

(

 , a sensitivity of 34.8% and a specificity of 88.2%.

7.7.5 Judging variable importance

The overall improvement to the impurity of the optimal tree in Figure 7.18 that is

attributed to each predictor variable in the learning algorithm is shown in Figure 7.19

below.

Figure 7.19: Ranking variable importance using CART

An applicant’s bank balance is by far the most important predictor variable in the

optimal classification tree. If the tree is allowed to grow bigger, then more predictor

variables have a chance to play a role in the tree construction process and not receive

zero improvement values.

0

5

10

15

20

25

30

35

40

b
an

kb
al

p
re

vd
eb

tp
ay

d
u

rl
o

an

in
st

al
m

n
t

lo
an

am
t

ti
m

ee
m

p
l

va
la

ss
et

p
u

rp
cr

ed ag
e

gu
ar

an
to

r

te
l

jo
b

ty
p

e

sa
vi

n
gs

m
ar

it
al

.s
e

x

h
se

ty
p

e

d
ep

e
n

d
e

n
ts

d
u

ri
n

h
se

al
ie

n

cu
rc

re
d

h
is

tc
re

d

Im
p

ro
ve

m
n

e
n

t

Characteristics (Abbreviation)

115

7.8 Bagging

In this section, we use the ‘adabag’ package contained in R to implement the bagging

procedure on the learning sample, using CART as the base classifier. In Figure 7.20,

applicants in the testing sample are being classified using the bagging estimate given in

equation (6.2) as more trees B are combined. The dashed reference line at a value of

0.283 is the testing error rate of the single unpruned classification tree in Figure 7.10.

Figure 7.20: Evolution of the Testing error against number of trees

A visual inspection of Figure 7.20 shows that the bagging procedure significantly

improved the accuracy of a single unpruned tree. It is suggested in Figure 7.20 that

over-fitting occurs when more than five trees are used for the bagging estimate. The

zigzag pattern that one observes in the evolution of the error rate can be attributed to the

random nature in which the bootstrap samples are being generated. We select five trees

as the optimal number of trees to ‘bag’ because that is when the testing error rate is

lowest.

The classification matrix is shown in Table 7.15 when this optimal bagging estimate

composed of five trees is used to classify applicants in the testing sample.

5 10 15 20

0
.2

0
0

.2
2

0
.2

4
0

.2
6

0
.2

8

number of trees in the bagging estimate

T
e

s
ti
n

g
 e

rr
o

r
ra

te

116

Table 7.15: Classification matrix of running the testing sample down the optimal

bagged estimate

defaultstatus

Predicted Group Membership

Total 0 1

Original Count 0 198 13 211

1 48 41 89

% 0 93.8 6.2 100.0

1 53.9 46.1 100.0

The classification matrix above shows that we managed to attain an error rate of

(

 , a sensitivity of 46.1% and a specificity of 93.8 %.

The figure below shows the average improvement, in descending order of importance,

attributed to each of the predictor variables in the optimal bagging estimate.

Figure 7.21: Ranking variable importance in the bagging estimate

7.9 Random Forests

The random forests procedure was implemented on the learning sample using the

‘randomForest’ package that is contained in R. The main tuning parameters are the size

of the forest B and the number of predictor variables to consider at each split, m.

Initially, default values of trees and [√

] predictor

variables are used to produce the error evolution in Figure 7.22.

0

5

10

15

20

25

30

av
e

ra
ge

 im
p

ro
ve

m
e

n
t

Characteristics (abbreviation)

117

Figure 7.22: Bootstrap error rates against number of trees

The average ‘out of bag’ error rate (OOB-ER), traced by the middle black line,

stabilizes at a value of approximately 0.2443 after about 200 trees are used in the

random forests procedure. Consequently, we fix the number of trees for the random

forests procedure at B=200. The top red line in Figure 7.22 traces the fraction of

defaulters incorrectly classified as non-defaulters (a miss) which converges at an error

rate of approximately 0.6066. The bottom green line traces the fraction of non-

defaulters incorrectly classified as defaulters (a false alarm), which converges at an

error rate of approximately 0.0879.

Figure 7.23: Change in average OOB error rate as the number of predictor variables

selected at each node varies

0 100 200 300 400 500

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

average OBB error rate against number of trees in the Random Forest model

trees

E
rr

o
r

5 10 15 20

0
.2

3
0

.2
4

0
.2

5
0

.2
6

0
.2

7
0

.2
8

0
.2

9

Number of predictor variables considered at a node

O
O

B
 e

rr
o

r
ra

te

118

Figure 7.23 shows that varying the values of m from 1 to 20 with the size of the forest

fixed at reaches a minimum average OOB-ER estimate at a value .

Consequently, we chose as appropriate the random forest model with 200 trees and 9

predictor variables at each node being randomly selected out the possible .

The classification of the applicants in the testing sample using a random forests model

with parameter values and produced the classification matrix in Table

7.16. The table shows that we have managed to realize a testing error rate of
(

 , a sensitivity of 46.1% and a specificity of 87.7%.

Table 7.16: Classification matrix of running the testing sample through the appropriate

random forest model

defaultstatus

Predicted Group Membership

Total 0 1

Original Count 0 185 26 211

1 48 41 89

% 0 87.7 12.3 100.0

1 53.9 46.1 100.0

A plot of variable importance is shown in Figure 7.24 below

Figure 7.24: Mean decrease in Gini

119

The higher the value associated with the ‘mean decrease in Gini’, the more important

the predictor variable is. There is a significant break between the top four-important

predictor variables and the other variables.

7.10 Boosting

The boosting procedure was implemented on the learning sample using the ‘adabag’

package that is contained in R. Figure 7.25 shows the evolution of the testing error rate

of the combined classifier, as the number of iterations increases. The dashed reference

line indicates the error of the single unprunned tree in Figure 7.10.

Figure 7.25: Evolution of testing error rate against number of trees

A plot of the change in the testing error rate as the number of iterations increases that is

given in Figure 7.25 shows that the testing error rate decreases sharply, reaching its

lowest point after only three iterations. Thereafter, it starts to oscillate in a zigzag

fashion. Consequently, we have selected three iterations as an optimal for boosting the

CART based scorecards that we have been developing.

Table 7.17 shows the classification matrix obtained when the chosen optimal ‘boosted’

CART model is used to classify applicants in the testing sample. The table shows that

we have managed to achieve a testing error rate of
(

 sensitivity of 48.3%

and specificity of 89.1%.

5 10 15 20

0
.2

3
0

.2
4

0
.2

5
0

.2
6

0
.2

7
0

.2
8

number of iterations

T
e

s
ti
n

g
 e

rr
o

r
ra

te

120

Table 7.17: Classification matrix for the optimal boosted CART model for the testing

sample

defaultstatus

Predicted Group Membership

Total 0 1

Original Count 0 188 23 211

1 46 43 89

% 0 89.1 10.9 100.0

1 51.7 48.3 100.0

Figure 7.26 shows the weighted average improvement, in descending order, of the each

of the predictor variables in the optimal boosting estimate. The greater the weighted

average improvement value, the more the predictor variable is considered as being an

important variable to include in one’s classification algorithm.

Figure 7.26: Ranking variable importance in the boosting estimate

7.11 Summary and comparison of results

In this section, we summarize and compare the performance of the scorecards we

developed in section (7.3) to (7.10) in terms of classification error rates, sensitivity and

specificity. In addition, the overall discriminatory power of the developed scorecards is

compared using the area under the ROC curve (AUC). The concept behind these four

model performance measures is discussed in section (2.5).

0

5

10

15

20

25

30

w
e

ig
h

te
d

 a
ve

ra
ge

 im
p

ro
ve

m
e

n
t

Characterisitcs (abbreviation)

121

7.11.1 Classification error rates

A summary of the classification error rates that we obtained when the developed

scorecards were used to classify the ‘new’ applicants contained in the testing sample is

displayed in Figure 7.27. In the figure, the best performing scorecard (one with the

lowest classification error rate) is at the top and the worst performing scorecard (one

with the highest classification error rate) is at the bottom.

Figure 7.27: Comparison of the classification error rates of all the scorecards when

classifying testing sample applicants

The bagging procedure, with the lowest testing error rate of 0.203, is the best scorecard.

The other scorecards all seemed to perform equally as well except QDA and CART.

7.11.2 Sensitivity

A summary of the sensitivity (in descending order) of the scorecards used in this study

when used to classify the new applicants in the testing sample is shown in Figure 7.28.

In credit scoring, a lender is more interested in how well the scorecard can correctly

identify defaulters (sensitivity) since they pose more risk to the firm.

Therefore, the best method to use to identify defaulters is QDA with a sensitivity of

57.3%.

0.277

0.263

0.236

0.236

0.233

0.233

0.23

0.23

0.227

0.203

0 0.05 0.1 0.15 0.2 0.25 0.3

CART

QDA

LDA

FDA(MARS, B=1)

RANDOM FOREST

FDA(MARS, B=3)

BOOSTING

MDA(2 subclasses, linear regression)

FDA(MARS, B=2)

BAGGING

Testing error rate

122

Figure 7.28: Comparison of the sensitivity of all the scorecards when classifying testing

sample applicants

7.11.3 Specificity

Figure 7.29 shows the specificity (in descending order) of the scorecards used in this

study when classifying the new applicants in the testing sample. The higher the

specificity, the greater the percentage of non-defaulters that are being correctly

identified is. In credit scoring however, specificity is not as serious a problem as

sensitivity because most lenders prefer to develop a scorecard that is good at detecting

defaulters rather than one that is good at detecting non-defaulters. The most appropriate

method to use to identify non-defaulters is bagging with a very high specificity of

93.84%.

Figure 7.29: Comparison of the specificity of all the scorecards when classifying testing

sample applicants

34.83
39.33

43.82
43.82

46.07
48.31
48.31
49.44

51.69
57.3

0 10 20 30 40 50 60 70

CART
RANDOM FOREST

LDA
FDA(MARS, B=1)

BAGGING
BOOSTING

MDA(2 subclasses, linear regression)
FDA(MARS, B=3)
FDA(MARS, B=2)

QDA

sensitivity (%)

81.04
88.15
88.15
88.15

89.1
89.1

90.05
90.05

92.42
93.84

70 75 80 85 90 95

QDA

FDA(MARS, B=3)

BOOSTING

LDA

RANDOM FOREST

Specificity (%)

123

7.11.4 Discriminatory power

Figure 7.30 shows the ROC curves that result when the testing sample is passed through

the CART based scorecards (bagging, random forests and boosting) as the parameters of

the classification rule varies.

Figure 7.30: ROC curves for CART, bagging, random forests and boosting when

classifying testing sample applicants

Curves closer to the top-right corner represent better scorecards since they imply a

higher AUC value. The diagonal broken line represents a model that is as good as

classification by chance. All the CART based scorecards are better than random

guessing. The numbers in brackets on the bottom left corner in Figure 7.30 are AUC

values of the corresponding scorecards. The random forest technique has the greatest

discriminatory power (AUC=0.8021). Evidently, all the techniques discussed in chapter

six (bagging, random forests and boosting) have quite significantly improved the

discriminatory power of CART.

Figure 7.31 below shows the ROC curves that result when the testing sample is passed

through the LDA based scorecards (QDA, FDA and MDA) as the parameters of the

classification rule varies.

Specificity

S
e

n
s
it
iv

it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CART (0.6682)

Bagging (0.7693)

Random Forests (0.8021)

Boosting (0.7665)

124

Figure 7.31: ROC curves for discriminant analysis when classifying testing sample

applicants

All the discriminant analysis based scorecards we have developed in this study perform

better than classification by chance (as represented by the diagonal broken line). MDA

(2 subclasses, linear regression) with an AUC of 0.8140 is the best scorecard among all

the models developed as extensions of LDA in chapter four. Interestingly, LDA has the

second highest AUC value of 0.7958, suggesting that it may be a competitive classifier

as compared to some its extensions.

A summary plot of the AUC values (in descending order) of all the models when

classifying testing sample applicants is shown in Figure 7.32. The MDA (2 subclasses,

linear regression) model with an AUC of 0.814 has the greatest discriminatory power

among all the scorecards that we have developed in this study.

Specificity

S
e

n
s
it
iv

it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

LDA (0.7958)

QDA (0.7862)

MDA-2: (0.8140)

FDA:MARS-1(0.7847)

FDA:MARS-2:(0.7844)

FDA:MARS-3:(0.7583)

125

Figure 7.32: AUC for all the scorecards when classifying testing sample applicants

7.12 Conclusion

In respect of the research objectives of this study set in the introductory chapter, it is

imperative that we address a set of key questions arising therein. Such questions will be

addressed based on the empirical results of this study. The questions in issue include;

what the best credit-scoring model is and what the effects of techniques that improves

upon the performance of LDA and CART are. It is also of paramount importance to

consider what the most important predictor variables are. As such, the exercise will

serve as a barometer that tests the effectiveness of the techniques that we have been

developing in theory, thus satisfying the objectives of this study.

7.12.1 The best credit scoring model

In order to determine the ideal credit-scoring model from among the 10 different

scorecards we have managed to create in this study, a score of 10 will be assigned to

that scorecard that has the lowest error rate. The same method of scoring will be used

for the other categories of predictive performance that the researcher is interested in,

namely, the model’s sensitivity, specificity and discriminatory power when applied to

the testing sample. The points allocated to each scorecard using this criterion are shown

in Table 7.18.

0.6682

0.7561

0.7583

0.7693

0.7844

0.7847

0.7862

0.7958

0.8021

0.8139944

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CART

BOOSTING

FDA(MARS, B=3)

BAGGING

FDA(MARS, B=2)

FDA(MARS, B=1)

QDA

LDA

RANDOM FOREST

MDA(2 subclasses, linear regression)

AUC

126

Table 7.18: Point system for ranking overall performance of the scorecards

According to the results that have been given in the above table:

 bagging had the lowest error rate and highest specificity ranking,

 QDA had the highest sensitivity ranking and

 MDA (2 subclasses, linear regression) had the greatest discriminatory power

ranking.

One could proceed further by computing a row sum for all the points that have been

assigned to the scorecards in Table 7.18, and then choose that method that produces the

highest rank sum as being the best method to use. This idea is illustrated in Figure 7.33,

where MDA (2 subclasses, linear regression) delivers the best credit scoring model

overall. ‘Bagged’ classification trees also performed equally well according to this

criterion.

However, one needs to note that this method of arriving at a best scorecard does not

necessarily take into account the risk appetite of a lender. For example, a risk averse

lender would prefer a scorecard that has high sensitivity because such a method would

be good at detecting defaulters. Thus, a risk averse lender would choose QDA as the

most appropriate credit-scoring model among the scorecards that we have developed.

Error rate Sensitivity Specificity
Discriminatory

power

CART 1 1 4 1

Bagging 10 5 10 4

Random forests 5 2 9 9

Boosting 7 6 5 2

LDA 3 3 7 8

QDA 2 10 1 7

FDA(MARS, B =1) 4 4 8 6

FDA (MARS, B=2) 9 9 2 5

FDA(MARS, B =3) 6 8 3 3

MDA(2 subclasses, linear regression) 8 7 6 10

 Scorecard

Testing sample validation model performance measure ranking

127

Figure 7.33: Comparison of overall performance of the scorecards

Similarly, a lender who wants to maximize income would prefer a scorecard that makes

use of ‘bagged’ classification trees since the technique has a high specificity value and

therefore performs well when attempting to identify a non-defaulter.

Because the structure and logic behind CART is easy to understand, a credit analyst

may want to choose this method for classifying a new applicant. The results in this

section however, indicate that CART is the worst performing scorecard amongst all the

credit-scoring models that we have developed in this chapter.

7.12.2 The effect of techniques for improving the performance of LDA and CART

The accuracy of CART, as assessed using four measures: a classification error rate, a

sensitivity measure, a specificity measure and the area under the ROC curve (AUC),

improved quite significantly on applying the bagging, random forests and boosting

procedures in chapter six.

It is also important to note that LDA could still be a competitive classifier, without

having to use some of its extensions discussed in chapter four (QDA, FDA and MDA).

This is evidenced by its high discriminatory power as measured by its AUC value (see

Figure 7.32).

0

5

10

15

20

25

30

35

R
an

k
su

m

Scorecards

128

7.12.3 The most important predictor variables

Using the same method of ranking that we have used in section (7.12.1) for choosing

the best scorecard, 20 points will be assigned to the best predictor, 19 points to the next

best predictor and so on. If this sequence of assignment is followed, 1 point will be

assigned to the worst predictor variable. Consequently, if a predictor variable does not

contribute anything to the model it will receive zero points. The points that have been

allocated to all the applicants’ characteristics based on this scoring system are shown in

Table 7.19, together with the total number of points they received (in descending order).

Table 7.19: Point system for ranking overall variable importance

From the results in the table above, one can observe that the balance on an applicant’s

current account is undoubtedly the most important predictor variable to include in one’s

credit scoring model. The duration of the loan, payment of previous credits and loan

amount are also very important predictor variables. The following characteristics may

not be important enough to include in one’s scorecard; telephone ownership, being a

foreign worker, number of previous credits at the bank and number of dependents.

Characteristic CART Bagging Boosting Random Forests LDA Total points

Balance of current account 20 20 20 19 20 99

duration of loan 19 18 18 17 17 89

payment of previous credits 18 17 17 16 19 87

Loan amount 16 19 19 20 8 82

Value of asset 15 15 10 13 13 66

Installment in percentage of available income 12 10 13 12 18 65

Values of savings or stock 17 8 8 11 16 60

Time employed 0 16 15 14 14 59

Purpose of credit 11 14 6 15 6 52

Age 0 13 16 18 1 48

House ownership 13 6 5 7 15 46

Sex/marital status 14 7 7 8 9 45

Duration in current house 10 4 11 10 2 37

Occupation 0 9 14 9 5 37

Guarantor 0 12 9 4 7 32

Further running credits 0 0 12 6 12 30

Telephone ownership 0 11 0 5 4 20

Number of previous credits at the bank 0 0 0 3 11 14

Foreign worker 0 0 0 1 10 11

Number of dependents 0 5 0 2 3 10

129

CHAPTER 8

8. Summary and Conclusion

8.1 Summary

The core of this research was to examine the use of classification techniques to model

credit risk. This study was broken down into eight chapters. At the beginning of this

study, we set out to model credit risk using one parametric and one non-parametric

classification technique, as our main objective. After developing these credit-scoring

models, also called scorecards, the second objective was to improve their predictive

capabilities. In the process of creating these scorecards, determination of baseline

demographic characteristics that are considered as being important variables to include

in one’s classification algorithm became the thrust. To achieve the aforementioned

objectives, the first phase was to explore the theoretical framework of various

classification techniques in order to be able to develop and apply them appropriately.

The second phase saw the creation of the credit scoring models discussed in theory

using a real life credit-related dataset and thus, their performance assessed.

8.2 Results and Conclusion

The study revealed that there is no single ideal scorecard for modelling credit risk.

Therefore, choosing the most appropriate credit-scoring model is dependent on the aims

and objectives of the lender, the details of the problem and the data structure.

Techniques for improving the accuracy of classifiers discussed in this study were

effective as well. Since the goal of credit scoring is to improve the quality of the

decisions when issuing loans, any slight increase in the accuracy of a scorecard will

translate into huge profits considering that many of these loans are usually issued. In

addition, the variable importance measures generally produced consistent results. The

knowledge of important characteristics is essential for the development of better

scorecards and for policy implementation.

More so, we gathered that there are some limitations and challenges associated with

credit scoring. Firstly, because the scorecards developed in this study are based on a

sample drawn from a particular population. These may not perform well if used to score

a different population. As a case in point, the sample used to develop the scorecards in

130

this study contains pre-screened then accepted credit applicants, who later turned out to

be either defaulters or non-defaulters. This suggests that such a sample would contain

more non-defaulters than defaulters since those apparent defaulters would have been

rejected during the pre-screening stages. Resultantly, a credit-scoring model developed

on such a dataset may not perform well when applied to the general population (which

includes those excluded in the pre-screening process). However, the scorecard will still

perform well when used to score pre-screened credit applicants.

The other limitation that came to the researcher’s attention in relation to the credit

scoring models developed in this study is that we are using historic data to predict the

future. The trends and patterns in the general population are susceptible to change over

time which consequently affects the accuracy of scorecards developed based on a

sample of past credit applicants. Yet again, it poses another challenge in that there is a

possibility of prospective borrowers manipulating the system in a bid to improve

characteristics considered as being important in determining creditworthiness. Some

companies have since been created to help borrowers improve their credit scores.

This study also revealed that credit scores and/ or posterior probabilities could be used

in other quantitative analysis of credit risk. For example, the posterior probability of

default (PD) is a key parameter in the estimation of econometric capital under the

BASEL II regulations for banks (Engelmann & Rauhmeier, 2006). This result is a

recommendable approach that can be adopted by financial institutions.

Furthermore, they can be used `to determine a fair price to charge prospective borrowers

where an applicant with a low credit score is charged a higher interest rate compared to

one with a high credit score. Lending institutions can also use credit scores to set credit

limits. In this case, a person with a high credit score is eligible to borrow more money

as compared to the one with a lower credit score. Furthermore, the loans can be divided

into different portfolios based on their risk levels (for example high, medium and low

risk loans), as measured by default probabilities or credit scores and thus managed

separately. Such risk-based credit management and pricing techniques should shield

lenders from huge losses in the event of defaults.

131

Having considered all the limitations recorded, the premise of this research, which

acclaims credit scoring as an undoubtedly essential and efficient tool for good credit

risk management, stands out. This in turn is crucial for the survival, competitiveness

and profitability of any lending institution thus the growth of the financial markets at

large.

8.3 Challenges and Recommendations

The major limitation was acquiring a relevant and current credit-related dataset to work

with. The reason for this impediment was that most lending institutions were very

reluctant to disclose such information, apart from the collection of a credit-related

dataset itself, being expensive. The rationale for this non-disclosure is that such a

dataset may contain sensitive information. Moreover, because a dataset containing

default patterns and trends of borrowers is the key ingredient to constructing a good

scorecard, which in turn gives the lender a competitive advantage over other lenders,

lenders are very protective of such datasets. To overcome the dataset challenge, a

publicly available dataset containing 1000 past credit applicants was used. This dataset

included past credit applicants who were granted loans and later turned out to be either

defaulters or non-defaulters. Albeit the encountered impediment, the researcher sought

for an alternative.

Even though there is no single ideal credit-scoring model, we recommend that lending

institutions consider various scorecards that can handle simple to complex data

structures. These range from simple and conventional classification techniques such as

LDA, QDA and CART to advanced, exotic and computer intensive techniques such as

FDA, MDA, random forests, boosting and bagging. CART may be a better tool when

the lender’s goal is simply to create an easy to understand and interpret credit-scoring

model. For predictive purposes, the researcher recommends that CART be strengthened

by the bagging, random forests and/or boosting procedures.

8.4 Future Research

Future studies on credit scoring could focus on an automatic method of updating the

credit scoring models, which takes into account current information on the performance

and behavior of existing loan holders. Future research could also focus on using more

than two class outcomes where the following outcomes are being considered: default,

132

partially default or fully default. One could also include those applicants denied credit

during the pre-screening process in the development of the credit scoring models.

Prospective research should also aim to incorporate misclassification costs into the

modelling approach to reflect the risk appetite of the lenders. Such prospective

researches could effectively overcome some of the limitations and challenges in the

discipline and hopefully contribute meaningfully to a healthy financial credit market.

133

References

1. Abdou, H., Pointon, J., & El-Masry, A. (2008). Neural nets versus conventional

techniques in credit scoring in Egyptian banking. Expert Systems with

Applications, 35(3), 1275-1292. doi: 10.1016/j.eswa.2007.08.030

2. Akkoç, S. (2012). An empirical comparison of conventional techniques, neural

networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System

(ANFIS) model for credit scoring analysis: The case of Turkish credit card data.

European Journal of Operational Research, 222(1), 168-178. doi:

10.1016/j.ejor.2012.04.009

3. Altman, E. I. (2005). An emerging market credit scoring system for corporate

bonds. Emerging Markets Review, 6(4), 311-323. doi:

10.1016/j.ememar.2005.09.007

4. Anderson, R. (2007). The credit scoring toolkit : theory and practice for retail

credit risk management and decision automation. Oxford: Oxford University

Press.

5. Anderson, T. W. (1958). An introduction to multivariate statistical analysis.

New York: John Wiley.

6. Baesens, B., Gestel, T. V., Viaene, S., Stepanova, M., Suykens, J., &

Vanthienen, J. (2003). Benchmarking State-of-the-Art Classification Algorithms

for Credit Scoring. Journal of the Operational Research Society, 54(6), 627-635.

7. Basel Committee on Banking Supervision. (2000). Principles for the

Management of Credit Risk. Retrieved from http://www.bis.org/publ/bcbs75.htm

8. Ben-David, A., & Frank, E. (2009). Accuracy of machine learning models

versus “hand crafted” expert systems – a credit scoring case study. Expert

Systems with Applications, 36((3/1)), 5264-5271.

9. Bellotti, T., & Crook, J. (2009). Support vector machines for credit scoring and

discovery of significant features. Expert Systems with Applications, 36(2/2),

3302-3308.

http://www.bis.org/publ/bcbs75.htm

134

10. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York:

Springer.

11. Bolton, C. (2009). Logistic regression and its application in credit scoring.

Thesis. University of Pretoria. Pretoria.

12. Breimam, L. (1998). Arcing classifiers (with discussion). Annals of Statistics,

26, 801–849.

13. Breiman, L. (1993). Hinging hyperplanes for regression, classification, and

function approximation. Information Theory, IEEE Transactions on, 39(3), 999-

1013. doi: 10.1109/18.256506

14. Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.

15. Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.

16. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. H. (1984).

classification and regression trees. london: chapman&hall.

17. Clemmensen, L., Hastie, T., Witten, D., & Ersboll, B. (2001). Sparse

Discriminant Analysis. Retrieved from http://www.standford.edu

18. Crook, J. N., Edelman, D. B., & Thomas, L. C. (2007). Recent developments in

consumer credit risk assessment. European Journal of Operational Research,

183(3), 1447-1465. doi: http://dx.doi.org/10.1016/j.ejor.2006.09.100

19. DeYoung, R., Frame, W. S., Glennon, D., McMillen, D. P., & Nigro, P. (2008).

Commercial lending distance and historically underserved areas. Journal of

Economics and Business, 60(1–2), 149-164. doi:

10.1016/j.jeconbus.2007.08.004

20. Durand, D. (1941). Risk elements in consumer instalment financing ((Technical

edition) ed.). New York: National bureau of economic research.

21. Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of

Statistics, 7(1),1-26.

22. Engelmann, B., & Rauhmeier, R. (Eds.). (2006). The Basel II Risk Parameters.

Berlin: Springer.

135

23. Feldman, D., & Gross, S. (2005). Mortgage Default: Classification Trees

Analysis. The Journal of Real Estate Finance and Economics, 30(4), 369-396.

doi: 10.1007/s11146-005-7013-7

24. Fisher. (1936). The use of multiple measurements in taxonomic problems.

Annals of Eugenics, 7, 179-188.

25. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of

online learning and an application to boosting. Journal of Computer and System

Sciences, 55(51), 119-139.

26. Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information

and Computation, 121(120), 256-285.

27. Freund, Y., & Schapire, R. E. (1999). A Short Introduction to Boosting. Journal

of Japanese Society for Artificial Intelligence, 14(15), 771-780.

28. Friedman, J. (1991). Multivariate Adaptive Regression Splines. The Annals of

Statistics, 19, 11-141.

29. Friedman, J., & Stuetzle, W. (1981). Projection Persuit Regression. Journal of

American Statistical Association,76, 817-823.

30. Fukunaga. (1990). Introduction to Statistical Pattern Recognition. San Diego:

Academic Press.

31. Geisser, S. (1964). Posterior Odds for Multivariate Normal Classifications.

Journal of the Royal Statistical Society. Series B (Methodological), 26(1), 69-76.

32. Hamdi, M., & Karaa, A. (2012). Predicting Financial Distress of Tunisian Firms:

A Comparative Study Between Financial Analysis and Neuronal Analysis.

School of Doctoral Studies (European Union) Journal, 145-153.

33. Hand, D. J. (1997). Construction and Assessment of Classification Rules. New

York: John Wiley & Sons Ltd.

34. Hand, D. J., & Henley, W. E. (1997). Statistical Classification Methods in

Consumer Credit Scoring: a Review. Journal of Royal Statistical Society, Series

A, 160(3), 523-541.

136

35. Hand, D. J., & Jacka, S. D. (1998). Statistics in finance. New York: John Wiley

& Sons Ltd.

36. Hansen, P. (2011). Approximating the Binomial Distribution by the Normal

Distribution – Error and Accuracy. Retrieved from http://uu.diva-portal.org

37. Hastie, T., & Tibshirani, R. (1996). Discriminant Analysis by Gaussian

Mixtures. Journal of the Royal Statistical Society,Series B (Methodological), 58,

155-176.

38. Hastie, T., Tibshirani, R., & Buja, A. (1994). Flexible Discriminant Analysis by

Optimal Scoring. Journal of the American Statistical Association 89(428), 1255-

1270.

39. Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The Elements of Statistical

Learning:Data Mining,Inference and Prediction. California: Springer.

40. Henley, W. E., & Hand, D. J. (1996). A k-nearest-neighbour approach for

assessing consumer credit risk. The Stastician, 45(1), 77-95.

41. Hofmann, H. (1994). Datasets at the Department of Statistics,University of

Munich, and the SFB386. Retrieved from http://www.stat.uni-

muenchen.de/service/datenarchiv/kredit/kredit_e.html

42. Hosmer, D. W., & Lemeshow, S. (1989). Applied Logistic Regression. New

York: John Wiley & Sons.

43. Kocenda, E., & Vojtek, M. (2009). Default Predictors and Credit Scoring

Models for Retail Banking. Retrived from http://www.SSRN.com

44. Koh, H. C., Tan, W. C., & Goh, C. P. (2006). A two-step method to construct

credit scoring models with data mining techniques. International Journal of

Business and Information, 1(1), 96-118.

45. Kumra, R., Stein, R., & Assersohn, I. (2006). Assessing a knowledge-based

approach to commercial loan underwriting. Expert Systems with Applications,

30(3), 507-518.

137

46. Lee, T.S., & Chen, I. F. (2005). A two-stage hybrid credit scoring model using

artificial neural networks and multivariate adaptive regression splines. Expert

Systems with Applications, 28(4), 743-752. doi: 10.1016/j.eswa.2004.12.031Lee,

47. Lee,T. S., Chiu, C. C., Lu, C. J., & Chen, I. F. (2002). Credit scoring using the

hybrid neural discriminant technique. Expert Systems with Applications, 23(3),

245-254. doi: 10.1016/s0957-4174(02)00044-1

48. Lee, T. H., & Jung, S. (2000). Forecasting credit worthiness: Logistic regression

vs. artificial neural net. The Journal of Business Forecasting Methods and

Systems, 10(4), 28-30.

49. Lensberg, T., Eilifsen, A., & McKee, T. (2006). Bankruptcy theory development

and classification via genetic programming. European Journal of Operational

Research, 169(2), 766-697.

50. Li, S.T., Shiue, W., & Huang, M.H. (2006). The evaluation of consumer loans

using support vector machines. Expert Systems with Applications, 30(4), 772-

782. doi: 10.1016/j.eswa.2005.07.041

51. Lippman, R. (1989). Pattern Classification Using Neural Networks. IEEE

Communications Magazine,11, 47-64.

52. Nanni, L., & Lumini, A. (2009). An experimental comparison of ensemble of

classifiers for bankruptcy prediction and credit scoring. Expert Systems with

Applications, 36(2, Part 2), 3028-3033. doi: 10.1016/j.eswa.2008.01.018

53. Ong, C., Huang, J., & Tzeng, G. (2005). Building Credit Scoring Models Using

Genetic Programming. Expert Systems with Applications, 29(1), 41-47.

54. Orgler, Y. E. (1970). A credit scoring model for commercial loans. Journal of

Money, Credit and Banking II, 4, 435-445.

55. Quah, J. T. S., & Sriganesh, M. (2008). Real-time credit card fraud detection

using computational intelligence. Expert Systems with Applications, 35(4), 1721-

1732. doi: 10.1016/j.eswa.2007.08.093

138

56. Quah, T. S., & Srinivasan, B. (1999). Improving returns on stock investment

through neural network selection. Expert Systems with Applications, 17(4), 295-

301. doi: 10.1016/s0957-4174(99)00041-x

57. Ripley. (1996). Pattern Recognition and Neural Networks. Cambridge:

Cambridge University Press.

58. Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5(2),

197-227.

59. Shahrokhi, M. (2011). The Global Financial Crises of 2007–2010 and the future

of capitalism. Global Finance Journal, 22(3), 193-210. doi:

10.1016/j.gfj.2011.10.010

60. Surowiecki, J. (2000). The Wisdom of Crowds: Why the Many are Smarter than

the Few and How Collective Wisdom Shapes Business, Economics. United

States: Doubleday;Anchor.

61. Sustersic, M., Mramor, D., & Zupan, J. (2009). Consumer credit scoring models

with limited data. Expert Systems with Applications, 36(3), 4736-4744. doi:

10.1016/j.eswa.2008.06.016

62. Thomas, L. C., Edelman, D. B., & Crook, J. N. (2002). Credit scoring and its

applications. Philadelphia, PA: Society for Industrial and Applied Mathematics.

63. TransUnion. (2007). The Importance of Credit Scoring for Economic Growth.

Retrieved from TransUnion website:

https://www.transunion.com/docs/interstitial/scoringWhitepaper.pdf

64. Tsai, C. F., & Wu, J. W. (2008). Using neural network ensembles for bankruptcy

prediction and credit scoring. Expert Systems with Applications, 34(4), 2639-

2649. doi: 10.1016/j.eswa.2007.05.019

65. West, D., Dellana, S., & Qian, J. (2005). Neural network ensemble strategies for

financial decision applications. Computers & Operations Research, 32(10),

2543-2559.

https://www.transunion.com/docs/interstitial/scoringWhitepaper.pdf

139

66. Xia, Y., Liu, B., Wang, S., & Lai, K. K. (2000). A model for portfolio selection

with order of expected returns. Computers & Operations Research, 27(5), 409-

422.

67. Zhu, J., Zou, H., Rosset, S. and Hastie, T. (2009): “Multi-class AdaBoost”.

Statistics and Its Interface, 2, 349–360.

140

Appendix A: The EM algorithm

A.1 Introduction

In section 4.4 (page 55) we introduced a technique called the the Expectation-

Maximization (EM)-algorithm as a means of estimating the parameters

 of the following Gaussian Mixture Model (GMM) (where we

assumed equal covariance matrices i.e.):

 (∑ (

 (

The aim of this section is to; describe the maximum-likelihood parameter estimation

problem for GMMs, find a solution to this problem using the EM algorithm and show

how this procedure give rise to the well-known parameter estimates of the mean and

covariance matrix used for the parametric classification procedures in chapter three and

four, viz:

 ̅

∑

∑(̅

(̅

A.2 The maximum likelihood estimation problem

The parameter estimates of the GMM in (A.1) are computed by

maximizing its likelihood function,

 (∏ (

 ∏[∑ (

]

 (

with respect to .

Because the natural logarithm function is monotonic, we need only find values of that

maximizes:

141

 ((∑ [∑ (

]

 (

However, the summation of the log terms makes (A.3) difficult to maximize directly.

A.3 The maximum likelihood estimation solution using the EM algorithm

The conventional and appropriate method for computing the maximum-likelihood

estimates (MLEs) for mixture distributions is the EM-algorithm (Bilmes, 1998;

Dempster et al., 1977).

The EM-algorithm is a technique used to find the MLE of parameters of incomplete

datasets or datasets with missing variables such that by assuming that our dataset has

additional variables that are missing, we can use the technique to estimate parameters of

likelihood functions that are complex.

Let be the set of independent and identically (i.i.d) observations,

which we shall call the ‘incomplete dataset’, where

 (((

Similarly, let be a set of i.i.d missing observations such that our

‘complete dataset’ is . In addition, let the joint distribution function of the

complete dataset be (.

Consequently, the complete-data likelihood function would be given by,

 ((∏ (

 (

and the incomplete-data likelihood function would be given by

 ((∏ (

 ∏[∑ (

]

 (

142

Because is unknown, the complete-data log-likelihood is a random variable. Thus, the

first step in the EM algorithm is to find the expectation of the complete-data log-

likelihood with respect to , given the observed data and the current parameter

estimates (

 at the iteration, i.e.

 (∑ ((

 ((

where, is the new set of parameters that will maximize (. The computation

of the expectation of the complete-data log-likelihood is known as the E-step.

The next step is to find the parameters that maximize the expectation of the

complete-data log-likelihood (A.6), i.e.

 ((

This implies that, we need new parameter estimates such that,

 (((

for all, iterations. The computation of new parameters that maximize

the expectation of the complete-data log-likelihood is known as the M-step.

The EM-algorithm finds the optimal parameter estimates that maximizes incomplete-

data likelihood function (A.5) by oscillating between the E and M steps until

converges.

A.3.1 Convergence property of the EM algorithm

Finding the parameter estimates that satisfy (A.8) will result in the log-likelihood

function being maximized, viz:

 (((((

Proof

From probability theory,

 (
 (

 (

 (

 (

 (

 (
 (

143

 ((((((

 (
 (

 (
 (

The incomplete-data log-likelihood given current parameter estimates can now be

expressed as:

 ((

 (∑ (

 { ∑ (

 }

 ∑ ((

 ∑ (
 (

 (

 (

 ∑ ((

 ∑ ((

 (((

where,

 (∑ ((

 (

and (follows from equation (.

On the other hand, the incomplete-data log-likelihood given the new parameter

estimates is:

 ((

 {∑ (
 (

 (

}

 { (
 (

 (
|)}

144

By Jensen (1906)’s inequality we have the following result for a convex function :

 ((

such that,

 { (
 (

 (
|)} { (

 (

 (
|)}

 {∑[{
 (

 (
}] (

}

 ∑ ((

 ∑ ((

 (((

Combining, the equations(, (and (we have,

 ((((

 (((

 ((

 ((

A.3.2 Computing the parameter estimates for Gaussian Mixture Models

Dropping the subscript on the GMM in (A.1) that label the class for which the

parameter estimates for the latent subclasses are being computed,

consider a problem where we want to find the parameter estimates of the following

GMM

 (∑ (

 (

145

where (̅ are the parameter estimates of the component Gaussian

distribution. The main challenge in estimating the parameter estimates (is

that the component generating the observation is unknown.

Let,

 {

such that,

 {

 (

If the component generating is known (i.e.
), the complete-data log-

likelihood (would be,

 ((∏ (

 ∑ (

 ∑ (

 (

 ∑

(|
)

 (

where,
 (can be thought of as the prior probability (if is known) of the

 case being generated by the mixture component (i.e.). In addition,

(|

) (is the probability density function of the observation

when and the parameter estimates are known. Bayes’ theorem allows one to

write

146

 (

 (
 (

 (

(|
)

∑

(|
)

 (

as the probability density function of the latent observations given

the observations and the parameter estimates at the iteration.

Consequently,

 (|
) ∏ (|

)

 (

1. E-STEP:

Inserting equations (A.18) and (A.20) into the expectation of the complete-data log-

likelihood (A.6) gives,

 ((

 ∑ ((

 ∑[∑

(|
)

]∏ (|
)

 ∑ ∑ ∑ [∑

(|
)

]∏ (|
)

 ∑ ∑ ∑ ∑∑

(|

)

∏ (|
)

 ∑∑

(|
)

∑ ∑ ∑

∏ (|
)

 (

Because
 if and zero otherwise, we can rewrite (A.21) as,

 (

 ∑∑ (

 { ∑ ∑ ∑ ∏ (|
)

} (

147

 ∑∑ (

{ ∏ ∑ (|
)

} (

 ∑∑ (

 (
 { ∑ (|

)

 }

 ∑∑

 (
 ∑∑ (

 (
 (

2. M-STEP:-

To maximize the expectation of the complete-data log-likelihood in (, we

separately consider its right hand side terms, viz:

∑∑

 (
 (

and,

∑∑ (

 (
 (

This is because the term (A.23) is independent of the unknown component

parameters (̅ and the term (A.24) is independent of the unknown

component weight .

To find the MLE of under the constrain, ∑
 ∑

 we use

the method of Lagrange multipliers to attach the constrain to the term (A.23) and solve,

(∑∑

 (
 (∑

))

where is the Lagrange multiplier, to get

∑

 (

148

 ∑ (

 (

Summing both sides of (A.25) over the r components gives:-

∑∑ (

 ∑

since, ∑ (

 and ∑

 .

Inserting, into (we get the MLE of as,

∑ (

 (

Turning our attention to the problem where we want to find the parameter estimates for

 (̅ that govern each r component Gaussian probability density function,

 (̅ (̅

we insert,

 (̅

(̅

 (̅ (

into the term (A.24) to get

∑∑ (

 (

 ∑∑(

(̅

 (̅)

 (
 (

Differentiating equation (A.28) with respect to ̅ and equating to the zero vector gives,

∑(
 (̅

 (

149

 ∑ (

 ̅ ∑ (

 ̅
∑ (

∑ (

 (

Finally, to find the MLE of we shall use the following results given square matrices

 , and a vector (see Fukunaga (1990:564-571)):

 ∑

 ∑

 (∑

 (

 (

 (

 (

where, diag () is a diagonal matrix .

Letting (̅ (̅
 , (becomes

 ∑∑ (

 (

 ∑ (

 |

 |

∑

(
)

 (

which on differentiating with respect to
 and equating to the zero matrix gives,

∑ (

 (

∑ (

 (

Since is asymmetric matrix (
),

150

∑ (

 (

∑ (

 (

∑ (

 ((

∑ (

 (

Let

∑ (

 (

 ∑ (

 (∑

 (

)

Let

∑ (

 (

 ((

The only solution to (above is .

∑ (

∑ (

 (

∑ (

 (

∑ (

∑ (

 (̅ (̅

∑ (

 (

In summary, the parameter estimates (̅ for the Gaussian mixture model,

 (∑

 (̅

151

 are,

∑ (

 ̅
∑ (

∑ (

∑ ((̅ (̅

∑ (

where,

 (
 (̅

∑ (̅

A.4 Computing parameter estimates for a Gaussian density function

For the usual Gaussian distribution, there are no hidden subclasses with a particular

class (i.e. and) such that the parameter estimates for the mean and

covariance matrix are:

 ̅
∑

 (

∑ (̅ (̅

 (

since (
 in (A.29) and (A.31). The sample based MLE of the covariance

matrix above is usually corrected to its unbiased estimate:

∑ (̅ (̅

 (

152

References

1. Bilmes, J. A. (1998). A Gentle Tutorial of the EM Algorithm and its Application

to Parameter Estimation for Gaussian Mixture and Hidden Markov Models.

Retrieved from http://www.icsi.berkeley.edu

2. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society,

Series B, 39, 31-38.

3. Fukunaga. (1990). Introduction to Statistical Pattern Recognition. San Diego:

Academic Press.

4. Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inegalites entre les

valeurs moyennes. Acta Mathematica 30(1), 175-193. doi:10.1007/BF02418571

http://www.icsi.berkeley.edu/

153

Appendix B: Variable Coding

The variable coding used for the dataset in this analysis is presented in this section as

follows (Hofmann, 1994):

DEFAULTSTATUS: binary outcome variable

 0: non- defaulters

 1: defaulters

BALACC: status of existing bank account in German currency: deutsche marks (DM)

 1: no running account

 2: no balance or debit

 3:

 4:

DURLOAN: duration of loan in months

PAYPREVCRED: Payment of previous credits

 0: hesitant payment of previous credits

 1: problematic running account / there are further credits running but at other

banks

 2: no previous credits / paid back all previous credits

 3: no problems with current credits at this bank

 4: paid back previous credits at this bank

LOANAMT: The loan amount borrowed in German Duetsche Marks (DM)

SAVINGS: Value of savings or stocks

 1: not available / no savings

 2:

 3:

 4:

 5:

TIMEEMPL: Time applicant been employed by current employer

 1: Unemployed

 2:

 3:

154

 4:

 5:

AGE: Age of applicant in years

INSTALMNT: Instalment rate as a percentage of available or disposable income

 1:

 2:

 3:

 4:

MARITAL.SEX:- Marital status or sex

 1: a male who is divorced or separated

 2: a female who is divorced or separated or married

 2: a single male applicant

 3: a male applicant who is married or widowed

 4: a single female applicant

GUARANTOR: Guarantors of the loan

 1: none

 2: co-applicant

 3: guarantor

DURHSE: Period applicant been living in current house

 1:

 2:

 3:

 4:

VALASSET: Most valuable available assets

 1: no assets

 2: Car/other

 3: Savings contract with a building society / Life insurance

 4: Ownership of house or land

CURCRED: Current or further running credits

 1: at other banks

 2: at department store or mail order house

 3: no further running credits

155

HSETYPE: Type of house or apartment

 1: free apartment

 2: rented flat

 3: owner-occupied flat

HISTCRED: Number of previous credits at this bank (including the running one)

 1: one

 2: two or three

 3: four or five

 4: six or more

JOBTYPE: Type of job or occupation of applicant

 1: unemployed / unskilled with no permanent residence

 2: unskilled with permanent residence

 3: skilled worker / skilled employee / minor civil servant

 4: executive / self-employed / higher civil servant

DEPENDENTS: Number of people dependent on the applicant

 1: more than 3

 2: 0 to 2

TEL: Telephone ownership

 1: no

 2: yes

ALIEN: Foreign worker

 1: yes

 2: no

References

1. Hofmann, H. (1994). Datasets at the Department of Statistics and the SFB386.

Retrieved from http://www.stat.uni-

muenchen.de/service/datenarchiv/kredit/kreditvar_e.html

http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kreditvar_e.html
http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kreditvar_e.html

