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Abstract 
 

The aim of this dissertation is to examine the use of classification techniques to model 

credit risk through a practice known as credit scoring. In particular, the focus is on one 

parametric class of classification techniques and one non-parametric class of 

classification techniques.  Since the goal of credit-scoring is to improve the quality of 

the decisions in evaluating a loan application, advanced and interesting methods that 

improve upon the performance of linear discriminant analysis (LDA) and classification 

and regression trees (CART) will be explored. For LDA these methods include a 

description of quadratic discriminant analysis (QDA), flexible discriminant analysis 

(FDA) and mixture discriminant analysis (MDA). Multivariate adaptive regression 

splines (MARS) are used in the FDA procedure. An Expectation Maximization (EM)-

algorithm that estimates the model parameters in MDA will be developed thereof. 

Techniques that help to improve the performance of CART such as bagging, random 

forests and boosting are also discussed at length. 

 

A real life dataset was used as an illustration to how these credit-scoring models can be 

used to classify a new applicant. The dataset shall be split into a ‘learning sample’ and a 

‘testing sample’. The learning sample will be used to develop the credit-scoring model 

(also known as a scorecard) whilst the testing sample will be used to test the predictive 

capability of the scorecard that would have been constructed. The predictive 

performance of the scorecards will be assessed using four measures; a classification 

error rate, a sensitivity measure, a specificity measure and the area under the ROC curve 

(AUC). Based on these four model performance measures, the empirical results reveal 

that there is no single ideal scorecard for modelling credit risk because such a 

conclusion depends on the aims and objectives of the lender, the details of the problem 

and the data structure. 
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    CHAPTER 1 

1. Scope of the Study 

 

1.1 Introduction 

Credit risk is one of the major challenges that is threatening the growth of the financial 

markets today. Basel Committee on Banking Supervision (2000:1) defines credit risk as 

the likelihood that once a borrower is given a loan, they may fail to adhere to the terms 

of the credit agreement. A typical credit agreement obligates the borrower to pay back 

the principal and interest on the loan every month for a fixed period. A borrower is 

normally classified as a ‘defaulter’ if they miss three monthly instalments in a given 

period or if they miss three consecutive monthly instalments within the stipulated period 

(Crook, Edelman & Thomas, 2007). A lender’s aim is therefore to avoid granting loans 

to borrowers who are likely to default. Therefore, a system that regulates this area of 

banking or finance is required in order to address this anomaly or problem. This study 

will amongst other things explore a method that can be used in this respect. 

 

1.2 Motivation for this study 

The birth of this study is attributable to many factors. These are given and explained in 

this section.  

 

Determining a good or a bad borrower is not an easy task because information in the 

credit market is usually asymmetric which means that one party in the contract may 

have more or less information about the other party. The resulting imbalance in 

information may cause one party to take advantage of the other party, either before the 

transaction through a condition known as adverse selection or after the transaction 

through a condition known as moral hazard. A typical example of adverse selection 

occurs when a person who is bankrupt hides this information when acquiring a loan. On 

the other hand a typical example of moral hazard occurs when a person with a car 

insurance policy deliberately has a car accident in order to profit from the payout or 

compensation that has been promised by the insurance company.  

 

In the respect of the above, many lenders especially in developing countries have 

attempted to alleviate this challenge by having credit applicants evaluated by a loan 
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officer. A loan officer uses his or her experience to decide if a person is creditworthy or 

not. Since this decision making is prone to a fair amount of subjectivity and thus 

possible bias, a set of Basel II banking regulations have been developed to help quantify 

and correctly price this credit risk giving rise to a practice known as credit scoring 

(Engelmann & Rauhmeier, 2006). In this study the goal is thus to develop classification 

techniques that can be used for credit scoring.  

 

This study is also inspired by the interest of the researcher in credit risk related issues. 

Of particular concern is the recent financial crisis in the USA that crippled the credit 

markets globally. Poor credit risk management in the USA mortgage markets was cited 

as one of the major causes (Shahrokhi, 2011). Interestingly, scholars in the discipline 

have not shown much interest in this topic as evidenced by the limited number of 

literature (Thomas, Edelman & Crook, 2002). Therefore any study that attempts to 

understand how the effects of credit risk can be mitigated is essential.  

 

Driven by this motive, it is the researcher’s hope that this study will contribute to the 

extensive understanding of the theory that influences some of the classification 

techniques that can be employed in modelling credit risk. The stages in the model 

building strategy and the application of the classification procedures to a real life 

situation will be fully engaged to maximize comprehension. 

 

1.3 Objectives 

The objectives of this study can be highlighted as follows: 

1. To develop a parametric and a non-parametric model that can ‘accurately’ 

classify a new credit applicant as being either a potential defaulter or non-

defaulter based on their underlying baseline demographic factors/characteristics, 

2. To improve the predictive capabilities of these aforementioned models. 

3. To determine the effect that the above-mentioned baseline demographic factors 

have on a possible default or non-default.  
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1.4 Chapter layout 

This research is made up of eight solid chapters, which will be broken down in this 

section. The first chapter was a broad contextual outline of the research. Chapter two 

provides an overview to some of   the credit scoring concepts that are being used in the 

industry. The ensuing chapter then focuses on the development of a parametric 

classification method called linear discriminant analysis (LDA). Some new extensions 

have been developed to help improve the performance of the LDA classifier, chapter 

four is dedicated to the exploration of these. Chapter five focuses on developing a non-

parametric classification technique that makes use of a classification and regression tree 

(CART). In chapter six a bagging, random forests and boosting procedure will be 

introduced to help improve the performance of the CART model. Chapter seven applies 

these classification techniques on a real life credit-related dataset with chapter eight as 

the summation of the study.  
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CHAPTER 2 

2. Conceptual and Contextual framework: An 

Overview of Credit Scoring 
 

 

2.1 Introduction 

The use of classification techniques to model credit risk dates back to the early 1940s. 

Durand (1941), was the first to employ this technique to distinguish between a good and 

a bad loan. Since then, advances in computer technology, improved data collection 

methods and competition in the financial industry have created a plethora of techniques 

for modelling credit risk. This process of modelling credit risk is generally known as 

credit scoring. However, it is difficult to define credit scoring with certainty, as there is 

no single attested definition of credit scoring. Therefore, it would be worthwhile to 

explore some of the definitions that have been attached to the term credit scoring. 

 

Anderson (2007) defines credit scoring as the assignment of an appropriate score 

(numerical value) to a credit applicant that takes into account their baseline 

demographic characteristics. On the other hand, Hand & Jacka (1998) defines credit 

scoring as the process used by financial institutions in modelling creditworthiness. In 

unpacking the definition of credit scoring, Thomas et al. (2002:1) explains it using the 

concept of credit-scoring models, which are referred to as scorecards. These are defined 

as “a set of decision models and their underlying techniques that aid lenders in the 

granting of consumer credit.” 

 

Whilst there is an appreciation of the several definitions given, the definition proposed 

by Thomas et al. (2002:1) is quite relevant to this study. This is because the definition is 

in line with the research objectives of developing classification techniques, which will 

be used to decide whether a new credit applicant is likely to default or not. Anderson’s 

(2007) definition also embeds crucial elements as it touches on the assignment of an 

appropriate score to an applicant based on their baseline demographic characteristics. 

These two therefore qualify as the working definition of this study.  

 

Having defined credit scoring, it is important at this stage to consider some of the 

benefits of credit scoring, some of its common applications and popular techniques used 
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as credit scoring models. These will be looked at underneath, together with some of the 

procedures used to assess the performance of a scorecard. A consideration of these 

aspects is crucial inasmuch as giving one an insight of the concept of credit scoring is 

concerned. 

 

2.2 Benefits of credit scoring 

There are quite a number of benefits associated with credit scoring that have been 

discovered all over the world. Chief among these are cost effectiveness, efficiency and 

objectivity. Human based credit evaluation methods can be slow, costly and very 

subjective in nature whereas credit scoring on the other hand is fast, automated, cost-

effective and objective in nature. Owing to this advantage associated with it, 

TransUnion (2007) has indicated that the use of  credit scoring methods in the US 

mortgage market has managed to increase from  25% in  1996 to 90% in 2002. This 

translates to the conclusion that decisions that were taking weeks to be completed or 

passed in 1996 were now taking minutes to be completed in 2002. Apart from the 

above, the use of credit scoring models managed to reduce the cost of a loan application 

by an average amount of US$1500 per loan as asserted again by TransUnion (2007). 

Due to these lower operating costs, more credit could now be given to prospective 

clients. 

 

2.3 Credit scorecard applications 

The most prominent use of a credit scorecard relates to the processing of a loan 

application. In a typical loan application, the baseline characteristics of a prospective 

borrower are used to generate a score using a particular type of credit scoring model. 

According to Abdou, Pointon & El-Masry (2008), some of the characteristics that may 

be considered include the age of a particular applicant, their gender, ethnicity, marital 

status, house ownership, telephone ownership, occupation, monthly income, level of 

education and address location. In such a case, if the generated score lies below a 

particular benchmarked value, then the application ought to be rejected because the 

applicant is being classified as a potential defaulter on that loan. Bolton (2009) has 

discussed how this technique is being applied in a South African context  with Kocenda 

& Vojtek (2009); Lee & Chen (2005) and Sustersic, Mramor & Zupan (2009)  

reinforcing this by citing  various examples of where  credit scoring can be  used in the 

decision making process of granting a loan. 
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Quah & Srigaresh (2008) have shown how scorecards can also be used to help detect 

and prevent credit card fraud. Other applications of credit scoring models include: 

 the issuing of mortgages (Feldman & Gross, 2005),  

 bankruptcy prediction and classification (Nanni & Lumini, 2009), 

 the rating of bonds (Altman, 2005),  

 portfolio management (Xia et al., 2000),  

 financial distress forecasting (Hamdi & Karaa, 2012), 

 financial decision making (West, Dellana & Qian, 2005),  

 stock price forecasting (Quah & Srigaresh, 1999) 

 the granting small business loans (DeYoung et al., 2008).  

 

2.4 Credit-scoring methods 

In a typical scorecarding methodology, there is a set of baseline characteristics for the 

loan applicant. These vary from their age, marital status to their salary, which are then 

fed into an appropriate model from which a particular score is generated. Assignment as 

a potential defaulter depends then on this generated score lying below a particular 

benchmarked value. This benchmarked value however needs to be obtained from a 

sample of historical data, which is known as the training or learning sample. In this 

sense, the process of constructing credit-scoring models can be categorized as being   a 

pattern recognition problem with supervised learning (Ripley, 1996). 

 

In supervised learning, one is observing a set of           training observations, of 

the form  (      . The p-dimensional vector      (            )
 
contains predictor 

variables for the     case whose outcome on    is known to belong to one of   possible 

groups viz                 . Consequently, the learning sample L would be of the 

form:  

   (        (             (                                                           (     

The objective of supervised learning then is to use L to create a rule for classifying a 

new observation   
       whose outcome on    is unknown, to one of the above   

classes.  
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For the special case where an  applicant       can only belong to one of two possible 

classes           , the following logistic regression model is popularly used to 

model the assignment mechanism of an applicant to a particular class: 

  (
 (        

 (        
)   ̂   ̂                                                     (     

where  ̂  and  ̂  ( ̂   ̂     ̂ ) are regression coefficients that need to be estimated 

(Hosmer & Lemeshow,1989). 

 

 As a result that,   

 (          (           

we can rewrite (2.2) in the following form  

 (         
  ̂   ̂   

    ̂   ̂   
     

 

    ( ̂   ̂    
                          (     

 

One can then assign a new observation   
    to one of the above two classes based on 

the following classification rule: Set   

   {
                     (       

      
 

                                                 

                                    (     

where   is a threshold value for assigning this new observation   
    to a particular 

class that need to be determined. Abdou et al. (2008), Bolton (2009) and   Lee & Jung 

(2000), among others, shows how this technique is being used in the field as a credit-

scoring model.  

 

Artificial neural networks (ANNs) are also being used to create credit scoring models 

(Abdou et al., 2008; Akkoç, 2012;  Baesens et al., 2003 and Tsai & Wu, 2008). The 

basic building block of an ANN is a perceptron, the structure of which is illustrated in 

Figure 2.1. 
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Figure 2.1: ANN perceptron 

 

The   attributes {          } in Figure 2.1 represent the input features of the 

perceptron to which a weight     is assigned. The weighted sum of these input 

features, ∑     
 
   , then becomes an input to an activation function,  (∑     

 
   ), 

which then produces a predicted outcome,  ̂. The weights     are generated from the 

learning sample using a back propagation algorithm that attempts to adjust the weights 

in such a way that the difference between the predicted outcome  ̂ and the 

corresponding known outcome   is minimized. A sigmoid (S-shaped) function such as 

the logistic function, 

 ̂   (∑    

 

   

)  
 

   
 (∑     

 
   )

                                                  (     

is commonly used as an activation function. If the following identity activation 

function,  

 ̂   (∑    

 

   

)  ∑    

 

   

                                                                 (     

is used, then the ANN turn out to be the well-known multivariate linear regression 

problem.  

 

The most commonly used ANN model for classification purposes is the multilayer 

perceptron (MLP), which comprises of an input layer, a hidden layer and an output 

layer. An illustration of a feed forward MLP artificial neural network is given in Figure 

2.2 where the vector of predictor variables    (          )   serve as input features 

for a hidden layer with M perceptrons denoted by               . The outcomes 
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from the perceptrons in the hidden layer then become the input features for each 

perceptron in the output layer, as denoted by               . Bishop (2006); Hastie, 

Tibshirani & Friedman (2009) and Ripley (1996) provide a more detailed description of 

how an  artificial neural network works. 

 

 

Figure 2.2: An illustration of a feed forward MLP artificial neural network (Source: 

Hastie et al., 2009: 393) 

 

ANNs have been shown to have excellent predictive power, performing better than 

conventional credit scoring techniques in many cases. However, their main drawback is 

that they are ‘black box’ methods meaning that they assign observations to classes 

without the operator knowing what has happened in-between. The weights    are often 

difficult to interpret which creates a problem for lending institutions because the credit 

regulatory authorities often require lenders to provide reasons to new applicants for 

rejecting their loan applications.  

 

This study focuses initially on developing a parametric classification technique known 

as Linear Discriminant Analysis (LDA) that uses linear combinations of predictor 

variables to come up with a class allocation rule. According to Hand (1997), LDA will 

have several desirable properties if the observations in each group             

follow a multivariate normal distribution with mean    and each of the groups have a 

common covariance matrix     . In particular, three different approaches that results 
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in the LDA classifier will be explored. These approaches will enable us to extend the 

LDA method so as to include the concept of  quadratic discriminant analysis (QDA) 

(Geisser, 1964), flexible discriminant analysis (FDA) (Hastie, Tibshirani & Buja, 1994) 

and mixture discriminant analysis (MDA) (Hastie & Tibshirani, 1996). 

 

Whilst focusing on the development of a classification technique that is non-parametric 

in nature the concept of a Classification And Regression Tree (CART) that is based on 

the work by Breiman et al. (1984) will be introduced. CART has become very popular 

because  it outlines one’s decision-making process  using a tree-like structure, whose 

inherent logic is easy to interpret and understand. Small changes in the dataset may 

however produce an entirely different tree, thereby, casting doubts on CART’s 

robustness as a classifier. To overcome this problem will be an exploration of  some 

methods that have been developed for improving the performance of CART such as the 

concept of bagging (Breiman, 1996), random forests (Breiman, 2001) and boosting 

(Freund & Schapire, 1997).  

 

Other techniques that may be considered when building credit-scoring models, though 

seldom used, include: 

 linear regression (Hand & Henley, 1997; Orgler, 1970), 

  probit analysis (Abdou et al., 2008), 

  expert systems (Ben-David & Frank, 2009; Kumra, Stein & Assersohn, 2006),  

 genetic programming (Lensberg, Eilifsen & McKee, 2006; Ong, Huang & 

Tzeng, 2005), 

  support vector machines (Bellotti & Crook, 2009; Li, Shiue & Huang, 2006), 

   -nearest neighbor clustering (Baesens et al., 2003; Henley & Hand, 1996).   

Koh, Tan & Goh (2006),  Lee & Chen (2005) and Lee et al. (2002) have all  attempted 

to use a hybrid of one or more of the above  models but their results are often difficult to 

interpret and  time consuming to construct. 

 

2.5 Credit scoring model performance measures 

Having developed a method for scorecarding, the performance of this method needs to 

be evaluated. This leads to the concept of a specificity and sensitivity measure that we 
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will define using an example. Consider a credit-scoring model, which assigns a score 

     to the     applicant with a characteristic                          . Assume 

that the actual class    to which applicants belongs is also known: 

   {
                      

 
                                       

                                    (     

Table 2.1 shows a set of hypothetical results that could have been observed for such a 

credit-scoring model where someone is classified as being a non-defaulter (0) if their 

credit score lies above a threshold value       , viz  

 ̂  {
                                     

 
                                           

                                                      (     

 

Table 2.1: A hypothetical sample of scored credit applicants 
 

Applicant 

(i) 

Loan 

amount 

(  ) 

Actual 

class 

(  ) 

Credit 

score 

(  ) 

Assigned 

class 

      ( ̂ ) 

1 20000 0 0.85 0 

2 10000 1 0.70 0 

3 30000 0 0.95 0 

4 5000 1 0.35 1 

5 12000 1 0.45 1 

6 18000 1 0.50 0 

7 7000 0 0.6 0 

8 50000 1 0.8 0 

9 5000 1 0.2 1 

10 5000 0 0.25 1 

 

This rule causes six applicants to be classified as non-defaulters (0) and the remaining 

four applicants to be classified as defaulters (1). A comparison of column (3) with 

column (5) shows that three out of the six applicants who were classified as being 

potential non-defaulters actually default on their loan obligations. A similar comparison 
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shows that one of the four applicants who were classified as being possible defaulters is 

in fact a non-defaulter. We can summarize the performance of this credit-scoring rule by 

cross tabulating what was predicted in terms of class membership with what actually 

happened with regard to class membership as shown in Table 2.2.  

 

Known as a classification matrix or confusion matrix, Table 2.2 makes it easy to see 

that four out of the ten applicants were incorrectly classified. Conversely, six out of the 

ten applicants were correctly classified. Expressing these figures as a percentage one 

obtains an error rate of 0.4 and an accuracy rate of 0.6 for this classification rule. 

 

Table 2.2: Classification matrix illustration 
 

  

Default status 

Predicted Default status 

Total   0 1 

Actual 

Default 

Status 

Count 0 3 3 6 

1 1 3 4 

% 0 50 50 100.0 

1 25 75 100.0 

 
 

One can also use the classification matrix above to define the following model 

performance measures: a sensitivity measure, a specificity measure, a false alarm 

measure and a miss measure: 

                                                                                             (     

                                                                                                      (      

                                                                                               (      

                                                                                           (      

 

Due to the fact that the class allocation rule that was given in equation (2.8) classifies 

someone as being a non-defaulter if     , the  specificity measure (2.9) can be 

interpreted as giving one the  probability that a non-defaulter will be  correctly classified 

as a non-defaulter. Likewise, the sensitivity measure can be interpreted as giving one 

the probability that a defaulter will be correctly classified as a defaulter. Thus, the 
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information in Table 2.2 shows a sensitivity measure of 75% and a specificity measure 

of 50%. The primary focus of this study is on  the error rate, sensitivity and specificity 

measure that is being generated by a given classification method, noting that the other 

three measures (an accuracy rate, a miss and a false alarm) complement these three 

measures. 

 

Table 2.3 shows how the sensitivity and specificity measures associated with the 

classification rule (2.8) can change as the cut-off value c is varied across a range of 

values.  

 

Table 2.3: Change in sensitivity and specificity across a range of cut-off values 
 

Cut-off 
value, c 

Sensitivity Specificity 

0.2 1 0 

0.25 1 0.166667 

0.35 0.75 0.166667 

0.45 0.75 0.333333 

0.5 0.75 0.5 

0.6 0.75 0.666667 

0.7 0.5 0.666667 

0.8 0.5 0.833333 

0.85 0.5 1 

0.95 0.25 1 

 

A plot of the sensitivity values against the specificity values given in the above table is 

traced by the red curve in the Figure 2.3 (page 14). This is known as the receiver 

operating characteristic (ROC) curve. 

 

A preferable model should have a high sensitivity and a high specificity value. Thus, its 

ROC curve must lie towards the top right corner. As a result, the area under the ROC 

curve (abbreviated AUC) would be greatest for the best model and lowest for the worst 

model. The blue curve in Figure 2.3 shows the ROC curve of a perfect model whose 

AUC value is one (1). Similarly, the diagonal green line is the ROC curve of a 

classification by chance model (i.e. random guessing) whose AUC value equals to half 

(0.5). The AUC value for our hypothetical model (red curve) which produced the values 

in Table 2.3 is 0.708, which is relatively high.  
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Figure 2.3: ROC curve for data in Table 2.3 

 

We shall mainly use ROC curves to compare the overall discriminatory power (not 

accuracy) of the models we are going to develop, as the parameters of the classification 

rule varies. 

 

2.6 Conclusion 

The overview of credit scoring casts into light a number of pertinent issues. Arising 

from these issues is the need to develop better credit-scoring models that can accurately 

predict whether a new credit applicant is a potential defaulter. Subsequently, this study 

attempts to broaden one’s scope of some of the classification models that can be used as 

scorecards. It also takes into account that credit scoring is increasingly becoming 

popular and that there is still limited knowledge of the underlying theory behind the 

credit-scoring models. 
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CHAPTER 3 

3. Linear Discriminant Analysis 

 

3.1 Introduction 

The objective of this chapter is to discuss a parametric classification technique called 

linear discriminant analysis (LDA). The term linear discriminant analysis refers to the 

way the classifier uses a linear combination of predictor variables to come up with a 

class allocation rule (Fisher, 1936). In particular, we will look at three different 

approaches that give rise to the LDA classifier. In developing these credit-scoring 

models, we will assume that we have a set of           training observations 

contained in a learning/training sample, L: 

   (        (             (         

where the p-dimensional vector    (             )
 
contain attributes of the     

observation. We will also assume that each training observation    belongs to one of K 

possible classes, viz               . Our goal is to develop a classification rule 

based on L that assigns a new credit applicant   
        in some optimal manner to 

one of the available   classes.  

 

3.2 The Bayesian approach 

Our  first approach, herein called the Bayesian classifier, uses Bayes’ theorem to 

compute the posterior probability that a particular applicant belongs to one of the 

            groups (Geisser, 1964). Observations in a particular group are presumed 

to follow a p-dimensional multivariate normal distribution with a common covariance 

matrix. We will show that maximizing this posterior probability is equivalent to finding 

a value of             that maximizes a linear combination of the predictor 

variables in the vector      . 

 

3.2.1 The procedure 

Given a set of training observations  (          
 , Bayes’ theorem allows one to write  

 (         
 (        (          

∑  (        (           
   

 
    (   

 (   
             (     
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where,  (         denotes the posterior probability that the     observation with 

predictor variables    belongs to class k and     (        denotes the prior 

probability that this observation belongs to class k. Because the distribution of 

observations in each of the K classes is presumed to follow a p-dimensional multivariate 

normal distribution with a common covariance matrix     , we have 

  (    
 

(   
 

 ⁄    
 

 ⁄
   ( 

 

 
(      

    (      )                   (     

where,    denotes  the mean vector and   = Σ the common covariance matrix for 

observations in class            .  

 

A classification rule for this Bayesian procedure assigns a new observation    
    to a 

class   if that choice of value for             maximizes the posterior probability 

 (       
     given in equation (3.1). Since the denominator in equation (3.1) is the 

same for all values of k, we need only consider finding that value of k that maximizes: 

 (       
          (  

     

                
  

(   
 

 ⁄    
 

 ⁄
   ( 

 

 
(  

       
    (  

       )            (     

Because the natural logarithm function is monotonic, we need only find that value of k 

that maximizes: 

       (  
            

 

 
     

 

 
       

 

 
(  

       
    (  

        

         
 

 
     

 

 
      

 

 
 (  

          
     (  

              
        

 

Omitting the expressions 
 

 
     , 

 

 
       and (  

          
     because they do not 

depend on k,  one only needs to find  the value of k that  maximizes the following 

classification  function:- 

  (  
           (  

           
 

 
  

                                       (     
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3.2.2 Implementing the procedure 

From a learning sample,  (        
   one can obtain the following parameter estimates 

(see, equation A.32 and A.34 in Appendix A for the derivation of the maximum 

likelihood based parameter estimates of sample mean  ̅  and sample variance S): 

 ̂   
  

 
                                                                                 (     

 ̅      
 

  
∑   

    

                                                                  (     

    
 

    
∑ (    ̅  

    

(    ̅  
                            (     

   
 

   
∑(  

 

   

                                                    (     

where          ∑   
 
    denote  the total number of observations in the     group 

and overall sample, respectively. One would then assign a new observation   
    to that 

class   which maximizes, 

  (  
         ̂  (  

       
   ̅  

 

 
 ̅ 

   
   ̅                                          (     

over all values of            . 

 

When dealing with a     group classification problem, the above classification rule 

collapses into one where we can assign a new observation   
    to the first class (which 

we will label as class 1) if we have  

  (  
       (  

       (  
        (  

       

 (  
       

  ( ̅   ̅     (
 ̂ 

 ̂ 
)   

 

 
( ̅   ̅  

   
  ( ̅   ̅                      (      

Setting,  

 ̂     
  ( ̅   ̅                                                                           (      
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and, 

  {  (
 ̂ 

 ̂ 
)   

 

 
( ̅   ̅  

   
  ( ̅   ̅  }                          (      

one would  assign a new  observation    
    to the  class we have labeled 1 if we have  

(  
      ̂               ̂   

                                                          (      

If we assume equal prior probabilities ( ̂   ̂  , then 

  
 

 
( ̅   ̅  

  ̂  
 

 
 ̂ ( ̅   ̅                                    (      

and thus one would assign   
    to the class we have labeled 1 if we have  

 ̂   
    

 

 
 ̂ ( ̅   ̅                                                           (       

 

3.2.3 Incorporating a misclassification cost 

Granting a loan to someone who eventually defaults will result in the lender losing 

some important revenue. On the other hand, not granting a loan to someone who will 

not default will also result in the lender losing some potential revenue. To incorporate 

misclassification costs into the modelling process, we define a     cost matrix C, 

where K denotes the number of classes in the sample. Let     represent the cost of 

assigning an observation    to a class       when its true class is      . For a two 

class problem, the cost matrix would  be as shown in Table 3.1. 

 

Table 3.1: Cost matrix for a two-class problem 

 Classified as 

True class k=1 k=2 

k=1         

k=2           

 

In order to minimize the expected cost associated with  misclassification, Anderson 

(1958) suggested that one assign an observation    to a particular class   if: 
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∑        (    

 

   

∑        (   

 

   

                              (      

Assuming equal misclassification costs, for example 

                                                                                     (      

the above decision rule (3.16) simplifies to one where we would assign an  observation 

   to class    if 

    (        
 

     (                                                              (      

Applying this rule to a two-class problem, one would assign an observation     to a 

class       if we have  

       (           (           (           (    

 

        (           (                                                    

 

3.3 Fisher’s approach: The K=2 class problem 

Our second approach (known as Fisher’s method)  will attempt to use a set of  optimally 

derived linear combinations of the predictor variables       to map these 

observations which occupy a   dimensional space onto a (     dimensional space 

where    . This section focusses on the special     class problem. 

 

3.3.1 The procedure 

Given a set of training observations  (          
 , let    denote the number of 

observations belonging to the first group (which we will label group 1) and     denote 

the number  of  observations belonging to the second  group (which we will label group 

2). Furthermore, let 

 ̅      
 

  
∑   

    

                                                 (      

and   
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 ̅      
 

  
∑   

    

                                                (      

denote the p-dimensional  mean vectors associated with the observations in the first and 

second groups respectively and let   

 ̅  
 

 
∑  

  

                                                          (      

denote an overall p-dimensional  mean vector for all the observations in the learning 

sample (where the assignment to a particular group is being ignored).  Fisher’s method 

seeks to find a direction vector   (          )
 
, which can then be used to project 

each observation   , using the following function  

 (         (          )

(

 
 

  

  

  
 

  )

 
 

                                         (      

onto a one-dimensional space (i.e. the real  number line) where the separation between 

the projected observations from both groups is a maximum. For example, letting   

   ( ̅    ( ̅        ̅     ̅      ( ̅   ̅                              (     , 

defines a distance measure between the mean of the projected observations in group 1 

and those in group 2 that one may want to maximize with respect  .  One may also 

want the projected observations within each group to have a variance, which is as small 

as is possible. This suggests that one should rather attempt to find a projection vector   

that maximizes  

  
   ( ̅   ̅   

 

 ̃ 

                                                           (      

where, 

 ̃  ∑   (    ̅  (    ̅  
  

    

 ∑   (    ̅  (    ̅  
  

    

      (      
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denotes a measure of scatter for the projected observations within  each of the two 

different groups.  Maximizing (3.24) with respect to   amounts to finding  a projection 

vector that causes the projected observations  (    in the same group to be as close as 

possible to each other in the transformed space (so that we have a small denominator 

appearing in equation (3.24)). At the same time, the projection vector must force the 

transformed groups’ means to be as far apart as is possible (so that we have a large 

numerator appearing in equation (3.24)).  

 

Letting,  

   ∑(    ̅  (    ̅  
                                          (     

    

 

denote a  within-class scatter matrix for the p-dimensional observations  belonging to  

class    that come from our original space       and  

   ( ̅   ̅  ( ̅   ̅  
                                                        (      

a between-class scatter  matrix for these original (unprojected) observations, one can 

write,  

   ( ̅   ̅   
    ( ̅   ̅  ( ̅   ̅  

                                      (      

and equation (3.25) becomes 

 ̃                                                                    (      

where, 

                                                                    (      

Thus, Fisher’s method can now be viewed as attempting to maximize 

     
   ( ̅   ̅   

 

 ̃ 

              
      

      
                                               (      

with respect to    which can be done by solving  the following set of first-order 

conditions, 
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    (         (          

         
   

 
   (       

     
  

(          

     
     

                                                                  (      

The above system of equations is a generalized eigenvalue problem that needs to be 

solved for  . If    is invertible then the above problem can be rewritten as a standard 

eigenvalue problem: 

  
                                                                   (      

which is easier to solve.  

 

In particular, for any vector     , we will always have 

    ( ̅   ̅  ( ̅   ̅  
    ( ̅   ̅     

         
  ( ̅   ̅     (      

where   ( ̅   ̅  
  . Thus, one can write  

  
         

  ( ̅   ̅                                                       (      

implying that  

 ̂     
  ( ̅   ̅                                                        (      

 

is a solution vector to (3.32) and thus to (3.33) when     is invertible. 

 

Multiplying the above solution vector   by an arbitrary constant   generates another 

vector     , which also produces the same maximum value for (3.31), viz 

     
       

       
 

     

     
                                         (      

Thus, our choice of criterion   is invariant with respect to a rescaling of the solution 

vector (3.36) that we have derived above. It should be noted therefore that what is of 
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essential importance is the direction of this solution vector rather than its overall 

magnitude. For this reason, one can recast the above classification problem as a 

constrained maximization problem where we want to maximize 

                                                                (      

subject to the following normalization constraint 

          

also being imposed  on the entries in  . 

 

To have a better and insightful understanding of how Fisher’s approach is able to work, 

consider Figure 3.1 and Figure 3.2 below. The figures contain a projection of two-

dimensional observations       onto a one-dimensional space that is being defined by 

a mapping     , where   is being represented by the orientation of the line supporting 

the histograms of both groups of data in Figures 3.1 and 3.2, respectively.  

 

 

Figure 3.1: A projection of two-dimensional observations onto a one-dimensional space  

 

In Figure 3.1, it can be observed that there is a considerable amount of overlap between 

the distribution functions of both groups. When we change the orientation of this slope, 

however, the separation between the two histograms becomes more apparent eventually 

producing the plot that we have in Figure 3.2. 
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Figure 3.2: Changing the orientation of the projection vector 
 

3.3.2 Implementing the procedure 

Given a new observation   
      , one needs to project this observation onto a one-

dimensional space using the projection vector  ̂    
  ( ̅   ̅  . Assign   

    to the 

group labeled ‘1’ if the distance between this projected observation   (  
      ̂   

    

and the mean value  ̂  ̅  of all the projected observation in that group is smaller than 

the distance between this projected observation and the mean value  ̂  ̅  of all the 

projected observation in the other group (that we have labeled group 2). Essentially, we 

can assign a new observation   
     to a particular class depending on whether the 

projected value  (  
      ̂   

    lies to the left or right of a cut-off point c that lies 

exactly half way between the two-projected group means (see Figure 3.3); 

  {
 

 
 ̂ ( ̅   ̅  }                                                    (      

Thus, we will assign a new observation   
        to class 1 if we have  

 ̂   
    

 

 
 ̂ ( ̅    ̅                                          (      

Otherwise, one would assign this observation to the other class, which we have labeled 

class 2. 
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Figure 3.3: Distribution of the projected observations on the one-dimensional space 

(assuming  ̂  ̅   ̂  ̅   

 

Because of the equivalence of Fisher’s canonical discriminant coefficients (3.36) and 

the Bayesian based discriminant coefficients (3.11), one may want to choose the 

following cut-off point from the Bayesian classifier that is given in equation (3.12),  

  {  (
 ̂ 

 ̂ 
)   

 

 
 ̂ ( ̅    ̅  }                                  (      

and use it in (3.40) in place of the cut-off point computed in (3.39). This has the effect 

of adjusting Fisher’s classification function (3.40) to take into account the possibility 

that the size of the two groups may not be the same. If the size of the two groups are the 

same (implied by the similar shapes of the distribution curves in Figure 3.3), then the 

cut-off point (3.41) would be the same as the one in (3.39) since we will now have 

 ̂   ̂ . 

 

3.3.3 Equivalence between the Bayesian and Fisher approach 

Formula (3.15) indicates that the classification rule that has been derived under the 

Bayesian approach becomes equivalent to Fisher’s class allocation rule (3.40) when we 

assume equal prior probabilities.  

 

3.4 Fisher’s approach: The K>2 class problem 

For the sake of completeness, in this section we shall generalize Fisher’s approach to 

LDA discussed in the previous section to the     class problem. 
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3.4.1 The procedure 

Instead of working with a single projection vector, for  a     class problem  one may 

want to consider an approach that attempts to include, as columns of a     matrix  , 

an appropriately chosen set of       projection vectors                } that 

can then be used to project each observation        onto a smaller J- dimensional 

subspace (providing     )  with coordinates 

 (                                                              (      

where the separation between the K different groups becomes easier to identify. 

 

Using observations  (        
  from a learning sample to produce the following 

estimate for the mean vector of all the observations belonging to  class k 

 ̅  
∑       

  
                                                  (      

a total within-class scatter matrix for all the observations that are being projected onto 

this smaller  - dimensional subspace can be given by  

 ̃   ∑ ∑   (    ̅  

    

(    ̅  
           

 

   

                   (      

where, 

   ∑ ∑(    ̅  (    ̅  
 

    

 

   

                                                    (      

denotes a within-class scatter  matrix for all the observations in the learning sample that 

have been collected in the original p-dimensional space. Similarly, setting 

  ̅      
 

 
∑  

 

   

                                                                                        (      

a suitably weighted between class scatter matrix for all the observations in our learning 

sample can be given by, 
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    ∑   ( ̅   ̅ ( ̅   ̅  

 

   

                                                   (      

with 

 ̃  ∑    
 ( ̅   ̅ ( ̅   ̅  

 

   

                             (      

representing a between class scatter matrix for all the  projected observations,       

   in our learning sample . An approach that mirrors the maximization of (3.31) for the 

K=2 class problem would then attempt to maximize  

  
     

     
                                                                            (      

with respect to  . However, this is no longer possible since both       and        

are now square matrices of order  . To overcome this problem, Fukunaga (1990:448) 

has suggested that one attempt (for each fixed value of J) to find a projection matrix 

        that will maximize: 

 (      (        (                                                            (      

However, it is important to note that because    is a sum of K matrices each having a 

rank equal to one (1), the following constraint  

  ̅      
 

 
∑  

 

   

 
 

 
∑   ̅ 

 

   

                                                   (      

ensures that the     dimensional matrix    can have a rank at most equal to (    . 

Thus, in (3.50) one is attempting to maximize the trace of a     dimensional matrix 

(        (       whose rank can equal at most (    . Since the trace of a matrix 

equals the sum of its eigenvalues and the rank of a matrix equals the number of non-

zero eigenvalues in that matrix, one will not be able to further increase the value of  

 (   (when viewed as  a function of J)   by projecting the p-dimensional observations    

using  (         into a space of dimension higher than      .  With the above 

choice of criterion in mind, we thus need to consider solely what happens when we 
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project a set of observations    into a space of dimension J where J is less than or equal 

to    . If we include all     discriminant vectors as column vectors in the 

projection matrix   then we get what is termed a full-rank LDA classification rule. If 

we only use        vectors then we get what is called a reduced-rank LDA 

classification rule. 

 

For a fixed             , now consider the problem of finding a     projection 

matrix   that maximizes (3.50). One needs to solve the following first order conditions 

that generate that maximum, viz 

    (        (        

  
   

 
 

   

    (  
      

  (             

   
 

   

    (        (  
                 (      

Since (see Fukunaga (1990: 566))  

 

  
    (               (        (     (                        (      

equation (3.52) takes on the form (where                            
  ): 

    (                     
   (         (                

       (                (              (            

    (             (                (                          (      

Multiplying both sides of (3.54) by       gives, 

       (         (                                             (      

If    is a full rank matrix, multiplying both sides of (3.55) by   
   will produce the 

following system of equations that will need to be solved for  ; 

  
       (         (                                    (      
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Theorem: Any two symmetric matrices    and    can always be simultaneously 

diagonalized as, 

                                                                         (      

where,   and   denote the diagonalized eigenvalue and eigenvector matrices of    
     , 

respectively. 

 

Proof: (see Fukunaga (1990:31-32))  

Note that    (         (       and      (        thus, 

   
         (                                              (      

implying that the entries in the diagonalized matrix    and the column vectors of   are 

the eigenvalue and eigenvector matrices associated with the matrix   
    , respectively. 

 

 After setting 

                                                                   (      

and  

                                                                    (      

the above theorem implies that the equation system  (3.56) that we are attempting to 

solve for   can  be rewritten as  

  
           

                                           (      

or  

  
    (    (                                                      (      

where the diagonal components of   and the column vectors in    are eigenvalues and 

eigenvectors of the matrix    
    , respectively.  

 

Since the trace of a matrix equals the sum of the eigenvalues associated with that 

matrix, if we want to maximize 
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 (      (        (           (         (                        (      

then we must choose as the J column vectors making up the      matrix    those 

eigenvectors of    
      that correspond with  the largest J eigenvalues of   

    .  

 

Given any orthogonal matrix P (i.e.      ), because  

 (      (        (        

                               (           (           

    (           (                               (      

we have a lack of uniqueness relating to the projection matrix   that one can use to  

maximize (3.50). One can therefore recast the above problem in a constrained 

maximization framework, where we attempt to maximize     (        subject to the 

following orthogonality and normalization constraints being applied to all  

the column vectors                  that  make  up  , viz 

                                                                     (      

or where  we successively maximize   
      subject to  

 

  
          

                                        (      

 

3.4.2 Implementing the procedure 

A new observation   
       can be assigned to a particular class using the following 

set of rules: 

Step 1: Use the observations  (        
  in one’s training sample to compute 

   ∑   ( ̅   ̅ ( ̅   ̅  

 

   

 

   ∑ ∑(    ̅  (    ̅  
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and fix the dimension            , which you want  to project your p-dimensional 

observations                . 

Step 2: Find that   projection matrix  ̂        that maximizes 

     {( ̂    ̂)
  

( ̂    ̂)} 

applying an  appropriate set of normalizing constraints to   ̂ that will ensure the 

uniqueness of this solution. Thus, one need to find those J eigenvectors of    
      that 

correspond with the J largest eigenvalues of   
     and arrange them in descending 

order as the column  vectors  in the (    -dimensional solution matrix  ̂. 

Step 3: Use this projection matrix  ̂ to compute a mean vector (centroid) 

 ̅     
 

  
∑  ̂   

    

                                  

in this new J-dimensional subspace for all those observations in the training sample that 

occur in each of the K different classes of our classification problem. 

Step 4: Now use this projection matrix  ̂ to map a new observation   
       into this 

J-dimensional subspace using 

 (  
      ̂   

    

Step 5: Assign   
    to that class whose centroid  ̅  is ‘closest’ to the projected value 

 ̂   
    of this observation. This means that one assigns this new observation   

    to 

that class   for which the following distance measure is a minimum: 

  (  
     ‖ (  

      ̅ ‖
 
                                               (      

 

3.5 An Optimal scoring approach 

Our  third approach, developed by Hastie et al. (1994), will attempt to make use of a 

regression based argument, known as optimal scoring to recast LDA as a linear 

regression problem. We will show how this method produces a set of discriminant 

functions that are proportional to Fisher’s (1936) discriminant functions coefficients. 
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The benefit of using this approach is that it allows one to include non-parametric 

regression methods in the model, which may lead to the creation of a better classifier.  

 

3.5.1 The procedure 

Classification can also be viewed as being a problem of prediction where we have a set 

of characteristics    that we want to use to predict the outcome of an associated but 

discrete valued random variable y that assigns a class label to that particular 

observation. Let, 

  (

  
 

  
 

 
  

 

)                                                                  (      

contain as row entries the observed outcomes of the predictor variables    
 :   

       } that one has collected for one’s training sample. Given that    records the 

class to which the observation   
   belongs, let us now create a     class indicator 

matrix   for all the observations in the training sample that sets       if the     

observation     
   lies in class j, i.e.  

            

where      denotes an  indicator function for  the set A. To illustrate this coding concept 

more clearly, consider a     class problem with the following class based outcomes 

being recorded in one’s training sample 

                              

This training sample would then have the following class indicator 

matrix   representing their outcomes 

  

(

  
 

   
   
   

 
   
   )

  
 

                                                         (      
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In principle,     columns for the matrix   would be sufficient to record all the 

possible outcomes that one could observe in a K class problem but we will use all   

columns in the discussion that follows. 

 

Let   represent a K-dimensional vector that we will be using to map each row of   onto 

the real number line by making use of the following mapping   . Due to the nature of 

the indicator matrix  , if the      observation    
  in   belongs to class   then the     

component of the vector    will be using the     component of   as an optimal score 

for that class.  

 

Similarly, let   represent a p-dimensional vector that maps each row of our learning 

sample based outcomes   onto the real number line by making use of the following 

mapping    . 

 

With this notation in hand, the method of optimal scoring attempts to assign a set of 

values to   and   that will minimize the following average squared residual (ASR) :-  

   (     
 

 
‖     ‖   

 

 
(       (                          (      

but with the following   normalization constraint 

 

 
‖  ‖  

 

 
                                                          (      

being imposed on   so that we do not have a trivial solution to the above problem 

arising. Without the normalization constraint (3.71),     and      would minimize 

ASR(     . 

 

Instead of using a pair of vectors   and   to map each row of   and   onto the real 

number line, one could consider an extension of the above scoring algorithm where a 

collection of vector pairs, 

 (                      (                                        (      
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are used  as  columns of a matrix         and        respectively, to map each 

row of    and     into a J-dimensional space with  the entries in         being  chosen 

so as to  minimize: 

   (     
 

 
‖     ‖      

 

 
   (       (                (      

To prevent a trivial solution      and     from occurring, the following set of   

normalization constraints will have to be added to this minimization problem:  

 

 
                                                          (      

Keeping   fixed at a known set of values, minimizing the resulting ASR with respect 

to   produces a multivariate regression problem where we want to regress    on  . 

Providing   is of full rank, 

 ̂  (                                                         (      

will minimize this ASR. Substituting  ̂  back into (3.73),  

    (   ̂)  
 

 
‖    (           ‖  

     
 

 
‖(       ‖                               (          

                            
 

 
       (         

                            
 

 
  [                   ] 

                            
 

 
                    

   
 

 
  (                                                                                     (      

since the restriction in equation (3.74) implies that we have  

 

 
              (      
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Differentiating the following Lagrangian with respect to   and the Lagrange multiplier  

  viz:  

 (       
 

 
  (             (

 

 
         )                            (       

 

produces the following first order condition for minimizing ASR 

  (    

  
         

                      
 

 
       

 

 
             {      

   (     

  
 (      } 

                                       

    ̂                                    {        ̂      }                       (      

Furthermore, differentiating the Lagrangian (3.77) with respect to the Lagrange 

multiplier    produces  

  (    

  
   

 

 
            

where in the context of our discussion 
 

 
    is a diagonal matrix whose     diagonal 

element equals 
  

 
. From expression (3.78), it can be observed that minimizing 

    (   ̂) with respect to   amounts to finding those J eigenvectors of    ̂ that 

correspond with the J largest eigenvalues of     ̂ and arranging them in descending 

order as the column vectors in the     matrix  . 

 

It is important to note that the matrix   in (3.75) that was initially fixed at a known set 

of values will need to be replaced with the matrix containing those J eigenvectors of 

   ̂ that correspond with the J largest eigenvalues of     ̂.  

 

The above optimal scoring routine is summarized in Algorithm 3.1 on the following 

page. 
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Algorithm 3.1: Optimal scoring routine for LDA 

 

1. Initialize: Create the        indicator response matrix  . 

2. Run a multivariate regression: Regress   on   producing a     dimensional 

matrix,  ̂  (         and thus an     dimensional matrix of fitted 

responses: 

 ̂    ̂   (              

3. Optimal scores: Solve    ̂          for   subject to the normalizing 

condition 
  

 
           . In other words, find those J eigenvectors of     ̂ 

that correspond with the J largest eigenvalues of     ̂ and arrange them in 

descending order as the column vectors  in the (    -dimensional solution 

matrix  ̂. 

4. Perform a multivariate regression of    ̂ on  :  

Since        ̂     ̂,  there is no need to  re-fit a  regression of    ̂ on 

 . One can simply update the estimate  ̂ obtained in step 2 to the     matrix:  

 ̂    ̂ ̂                                                       (      

     Therefore, the optimally scaled vector containing       regression (or 

canonical discriminant) functions is given by: 

 (     ̂  
                                                    (      

     where,    (             )
 
are the arguments of the p-dimensional predictor      

     variables. 

 

 

 

3.5.2 Using the optimal scoring routine for classifying a new observation 

Given a new observation   
      , the assignment of this observation to a particular 

class              can be done by making use of (3.80) to project this new 

observation into this  -dimensional subspace, viz:  
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 (  
      ̂  

   
                                                    (      

and to compute a mean vector (centroid), 

 ̅     
 

  
∑  ̂  

   

    

                                          (      

in this new  -dimensional subspace for all those observations in the training sample that 

occur in each of the K different classes of our classification problem. One would then 

assign this new observation,   
    to that class   for which the following distance 

measure is a minimum: 

  (  
     ‖ (  

      ̅ ‖
 
                                   (      

 

3.5.3 Proof of the equivalence between Fisher’s and the optimal scoring approach  

Fisher’s LDA seeks to find the vector   such that: 

        
 

(                                                     (      

whilst  optimal scoring  seeks to find a pair of vectors (    such that: 

          
   

(
 

 
‖     ‖ )           

 

 
              (      

Differentiating the following Lagrangian with respect to   and the Lagrange multiplier  

  viz:  

 (       
 

 
(       (        (

 

 
        ) 

 
 

 
                         (

 

 
        )             (      

produces the following first order condition for minimizing (3.85) 

 ̂  
 

 
(                      (                              (      
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On substituting   ̂ for   in the optimization problem (3.85), we get the partially 

optimized criterion: 

                                 
 

(
 

 
‖
 

 
 (             ‖

 

) 

       
 

(
 

 
(
 

 
 (             )

 

(
 

 
 (             )) 

       
 

(
 

  
      

 

 
           )                                     (      

where,    
 

 
   (           is the between-class covariance matrix and    

 

 
    is the total covariance matrix. Since the total-class covariance matrix (    is the 

sum of the within-class covariance matrix (  ) and between-class covariance matrix 

(   , 

         

equation (3.88) becomes 

        
 

(
 

  
      

 

 
                 ) 

       
 

((
 

  
 

 

 
  )           )                  

       
 

((
   

 
)
 

           )                                          (      

For notational convenience, let: 

 ̃    

 

         

 
 

  ̃                                              (      

 ̃    

 

     

 

       

 
 

  ̃   

 
 

                             (      

The optimal scoring vector   in equation (3.89) can then be found as a solution to the 

following problem: 
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 ̃        
 ̃

((
   

 
)
 

 ̃  ̃  ̃  ̃  ̃)                                   (      

The minimizing  ̃ for (3.92) can be found by differentiating its objective function 

(
   

 
)
 

 ̃  ̃  ̃  ̃  ̃ 

with respect to  ̃ and equating the derivative to the zero vector to get: 

 (
   

 
)
 

 ̃  ̃    ̃    

  ̃  ̃    ̃                        (
 

   
)
 

                   (      

Therefore,   is the eigenvalue of  ̃  and  ̃ is the eigenvector of  ̃ . Substituting 

 ̃  ̃    ̃ into the objective function in equation (3.92) we get: 

 ̃        
 ̃

((
   

 
)
 

  ̃  ̃  ̃  ̃)        
 ̃

( 
 

 
(     ̃  ̃)        (      

which is minimized when   is large. Therefore,  ̃ is the first eigenvector of   ̃ . 

 

Making use of the notation that we have introduced in (3.90) and (3.91), Fisher’s LDA 

vector    in (3.84) is obtained by solving: 

 ̃        
 

( ̃  ̃  ̃)                      ̃  ̃                                    (      

The maximizing  ̃ for (3.95) can be found by differentiating the following Lagrangian 

with respect to  ̃: 

 ( ̃     ̃  ̃  ̃   ( ̃  ̃   )                                          (      

where     is the Lagrange multiplier, which on equating the first derivative to the 

zero vector gives the eigenvalue-eigenvector equation: 

 ̃  ̃    ̃                                                      (      

Substituting  ̃  ̃    ̃ into the objective function in (3.95), we get: 
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 ̃        
 ̃

(  ̃  ̃)                  ̃  ̃                             (      

which is maximized when the eigenvalue    is large as well. Therefore, the associated  ̃ 

is the first eigenvector of   ̃ . 

To this end, the optimal     

 
 

  ̃   for both Fisher’s LDA and the optimal scoring 

approach to LDA is the first eigenvector of   ̃  . Thus, 

                                                                 (      

where,     and         is being used to denote the optimal scoring and Fisher’s LDA 

based canonical discriminant coefficients. 

 

3.6 Judging variable importance 

Variable importance can be assessed by considering the magnitude of the canonical 

discriminant function coefficients. However, the value of these discriminant coefficients 

can be misleading if the predictor variables have different units of measurement. To 

measure variable importance, one needs first to standardize the predictor variables in 

one’s dataset. This standardization can be achieved by computing the following z-scores 

for all the observations in the training sample:  

    
(      )

  
                                             (       

where     denotes an observed value for the     component of the      vector    that one 

observes in the learning sample,     and     denote the mean and standard deviation of 

observations in the training sample belonging to the predictor variable   , respectively.  

 

3.7 Conclusion 

This chapter brought to the fore a number of observations amongst them, the following: 

In the     class case, the Bayesian and Fisher’s approach to LDA produce the same 

classifier when we assume equal prior probabilities. However, the Bayesian approach 

also provides a convenient way of incorporating misclassification costs into the LDA 

model. On the other hand, since Fisher’s approach is able to transform the observations 

from a higher  -dimensional space into a much lower (    -dimensional space, this 
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method becomes particularly more useful when dealing with a high dimensional set of 

data (    . The optimal scoring approach provides one with another way of 

producing Fisher’s canonical discriminant functions. The main advantage of using this 

optimal scoring technique is that it allows one to replace the linear regression functions 

with a class of far more flexible non-parametric regression functions. This idea will be 

explored in depth in the next chapter. 
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CHAPTER 4 

4. Quadratic, Flexible and Mixture Discriminant 

Analysis 

 

4.1 Introduction 

The preoccupation of this chapter is to explore three techniques that have been designed 

to handle some of the limitations of LDA. The first approach is to relax the assumption 

of equal covariance matrices in the Bayesian classifier we have developed, which 

results in the creation of quadratic decision boundaries (Geisser, 1964). This 

modification is known as quadratic discriminant analysis (QDA). Hastie et al. (1994) 

proposed that a class of even more flexible models could be created by replacing the 

linear regression functions in the optimal scoring approach to LDA with a set of non-

parametric or semi-parametric regression functions. This approach is known as flexible 

discriminant analysis (FDA). For multi-modal data, Hastie & Tibshirani (1996) have  

developed another modelling  approach called mixture discriminant analysis (MDA) 

where  each class is modelled as a Gaussian mixture of two or more subgroups within 

that class. These extensions of LDA will be looked at underneath, together with 

Friedman’s (1991) multivariate adaptive regression splines (MARS) procedure that we 

will use in the FDA classifier in place linear regression functions. 

 

4.2 Quadratic discriminant analysis 

Quadratic discriminant analysis (QDA) follows directly from the Bayesian approach to 

LDA discussed in section (3.2) were one assigns a new observation   
    to a class 

           that maximizes 

       (  
            

 

 
     

 

 
       

 

 
(  

       
    (  

          (     

One can relax the assumption of equal covariance matrices (i.e.      ) such that a 

new observation   
    is assigned to a class            that maximizes 

       (  
            

 

 
     

 

 
       

 

 
(  

       
   

  (  
         (     

 



 

43 

 

Since   
 

 
      in (4.2) is independent of k, one would then assign a new observation 

  
    to that class              that maximizes the following discriminant function: 

  (  
          

 

 
       

 

 
(  

       
   

  (  
                         (     

where sample based estimates of the parameters   ,    and     are computed from the 

learning sample using equations (3.5)-(3.7) given in chapter three. Thus, assign a new 

observation   
    to that class              that maximizes: 

  (  
        ̂  

 

 
       

 

 
(  

     ̅  
   

  (  
     ̅                    (     

Figure 4.1 below is an illustration of two-dimensional observations       that belong 

to one of the classes,           . The red line illustrates a quadratic decision 

boundary (QDA) while the green line illustrates a linear decision boundary (LDA) on 

the same dataset. A visual inspection shows that QDA fits the data better than LDA in 

this case. 

 

 

Figure 4.1: An illustration of LDA and QDA decision boundaries for a two-class 

problem 
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4.3 Flexible discriminant analysis 

Flexible discriminant analysis (FDA) is a generalization of the optimal scoring approach 

to LDA that was developed in section (3.5). It allows one to substitute other appropriate 

regression procedures in place of linear regression functions (Hastie et al., 1994). 

 

To recap, the optimal scoring approach recasts LDA as a regression problem by using a 

K-dimensional vector   to map each row of an     indicator type matrix of outcomes 

  onto the real number line using the following mapping   . By initially fixing   at a 

set of known values, a linear regression of the derived responses    against the     

matrix of predictor variables   produces a p-dimensional vector of regression 

coefficients: 

 ̂  (           

The value of   is then updated to its optimal value which was shown to be the first 

eigenvector of    ̂      (               , where    is a so-called linear 

operator that maps   to  ̂ (i.e.  ̂      ). 

 

The limitation with the aforementioned optimal scoring technique however is that, the 

relationship between the optimally derived responses    and the p-dimensional 

predictor variables    contained in the matrix   may not be linear in nature. To deal 

with this limitation, we will repeat the optimal scoring approach to LDA, only this time 

using a non-parametric regression technique in place of linear regression. The 

regression technique we have in mind is Friedman (1991)’s Multivariate Adaptive 

Regression Splines (MARS). The MARS procedure is promising because it does not 

assume a linear relationship between the covariates    and the response variables   , but 

instead approximates the relationship entirely from the learning sample observations. 

 

4.3.1 The MARS regression procedure 

As a motivation for the MARS regression procedure, consider Figure 4.2, which shows 

a simple linear regression model fitted to a dataset  (           
  on the left hand side 

and a MARS model fitted to the same dataset on the right hand side. A visual inspection 

of Figure 4.2 suggests that the MARS procedure provides a better fit to this dataset. 
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Figure 4.2: A simple linear regression model (left) and a MARS model (right) 

 

A MARS model typically takes on the form:  

 ̂(      ̂  ∑  ̂   (   

 

   

                                                    (     

where,    (               denotes a set of basis functions that will be generated 

from the following pool of paired hinge functions (which we shall call conjugate pairs) 

by taking cross products in these functions: 

  {(      ) 
 (      ) 

}                                     

where     denotes an observed value for the     component of the      vector    that one 

observes in our learning sample and    denotes an argument for the hinge function that 

has been given in the set C above.  

 

The coefficients that are given in (4.5) are obtained by minimizing the following 

residual sum-of-squares (RSS) that one can associate the MARS model formulation 

with: 

    ∑(    ̂(   )
 

 

   

 ∑(   ∑  ̂   (   

 

   

)

 
 

   

                       (     

The notation (    on the hinge function considers the positive difference obtained 

from  (       , viz:                                                                                              

(      ) 
 {

                    

                   
         (         {

                     

                       
 



 

46 

 

For a one-dimensional observation  , the conjugate pair (        and (        is 

illustrated in Figure 4.3, where the values        and       results in the same basis 

function value,  (      . The basis functions have a value of zero at the knot point, 

     . 

 

Figure 4.3: Conjugate pair (        and (        

 

It is important to note that the hinge functions that make up the basis functions have a 

value of zero for part of their range. For example, the hinge function (        in 

Figure 4.3 is zero when x is greater than 0.5. Likewise, the hinge function (        is 

zero when x is less than 0.5. It is because of this nature of these hinge functions that 

they can be used to partition the dataset into mutually disjoint regions, each of which 

can be treated independently.  

 

As an example, the following one-dimensional MARS model 

 ̂(        (           (         

is plotted in Figure 4.4. 

 

Figure 4.4: Illustration of MARS model 



 

47 

 

Figure 4.4 shows that the MARS model has partitioned the dataset into two disjoint 

regions, one defined for values of        and one defined for values of      . Thus, 

the MARS model in Figure 4.4 can be viewed as dividing the dataset into two mutually 

disjoint regions, and then fitting a linear regression model in each of two regions.  

 

We can create piecewise non-linear regression functions by multiplying two or more 

hinge functions together. In particular, the model building process is done using a 

forward pass to add more hinge-pair based cross products to the model until a pre-

determined stopping criterion is satisfied. A backward pass is then implemented where 

a pruning process takes place, removing the hinge functions themselves (rather than the 

hinge function pairs) until only a constant term is remaining. Model subsets from the 

pruning process are compared using a generalized cross-validation measure and the 

optimal model selected.  

 

Step 1: The forward pass 

We will explain the MARS forward pass with the aid of an example. Consider Figure 

4.5, which shows the set C of all the candidate basis functions (which are the conjugate 

pairs of hinge functions such as the one in Figure 4.3) on the right hand side and the   

basis functions that have been selected to be in the model are presented on the left hand 

side.  

 

Figure 4.5: Illustration of MARS forward process (Source: Hastie et al., 2009: 323) 
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We will denote by     the observed value for the     component of the      vector    in 

the learning sample, where for the example in Figure 4.5 we have           

observations and           components. Thus, the components of the vector    are 

(dropping the subscript i which label the vector)    (          . 

 

Starting with a basis function   (     , minimizing (4.6) will produce a fitted model 

structure, 

 ̂(     ̂                                                              (     

where  ̂  
 

 
∑   

 
   , which is the constant shown to be initially in the model in Figure 

4.5. Letting    ( ̂   denote a residual sum of squares for this fitted model, a conjugate 

pair from the set C is then added to the model producing a new MARS model that is 

shown below: 

 ̂(     ̂     ̂ (      ) 
  ̂ (      ) 

                           (     

Parameter estimates for the model that minimizes (4.6) can then be produced and a 

resulting residual sum of squares    ( ̂   ̂   ̂          can be computed. It is 

important to note that the above residual sum of squares may change if we were to have 

chosen another variable    and a knot point     from the conjugate pair set C. Thus, for 

all the conjugate pairs in C that we have available, one can (if the knot points are all 

different) produce a total of    residual sum of squares, viz  

   ( ̂   ̂   ̂        )                                                 (     

The conjugate pair generating the smallest value of RSS is then chosen as one’s best 

MARS model for the first step of this forward pass routine. 

 

Our example in Figure 4.5 shows that the following choice of index values    and     

has produced the smallest RSS so that our MARS model for the end of the first step 

assumes the following form  

 ̂(     ̂     ̂ (          ̂ (                                    (      
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Given    (               from a model fitting point of view (4.10) indicates that a 

predicted value for this observation will now be given by 

 ̂(     ̂     ̂ (           ̂ (                                   (      

The second step in this forward pass routine now involves revisiting the set of hinge-

pairs that we have available in C and adding to (4.10) that hinge-pair function whose 

addition causes the largest decrease in the RSS of the new model to occur. Our example 

in Figure 4.5 shows that the following choice of index values    and     has produced 

the smallest RSS when added to (4.10).  Therefore, we consider adding to the model 

(4.10) a term of the form 

    (          (         (          (                     (      

where,   (       (         (          are basis functions helping form (4.10).  

 

Therefore, the largest possible MARS model from the second step will look something 

like this: 

 ̂(     ̂     ̂ (          ̂ (             (            (         

   (        (            (        (         

    (        (            (        (                      (      

The model (4.13) reveals that at the end of the second step it is possible that one will 

have cross products entering into the model depending on what hinge functions we 

choose from the MARS model (4.10) to create cross products with new hinge functions.  

 

In the model building process, each predictor variable    is allowed to appear at most 

once in a basis function. This has the effect of preventing higher-order powers of the 

predictor variables from appearing which increase or decrease quickly near boundary 

values of the domain of the covariates. For example, the following polynomial basis 

function is not allowed: 

(      ) 
(      ) 

            (      ) 
(      ) 

                          (      
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In the third step of our example in Figure 4.5, the choice of index values    and     has 

produced the smallest RSS when added to the model in the second step.  As a result, we 

now add a term of the form: 

 ̂ (      )
 
  (     ̂   (      )

 
  (                        (      

where,   (       (         (         (         (          are basis 

functions helping form the MARS model in the second step. 

 

An advantage with the MARS procedure is that the user can set an upper limit (which 

we shall denote by B) that controls the degree of interactions of the hinge functions 

allowed. For example, a MARS model of degree     makes (4.5) an additive model 

because interaction between hinge functions will not be permitted. Using the same idea,  

a MARS model of degree     forces the hinge functions to interact at most twice 

with each other. Higher orders of   however makes the model complex and thus 

difficult to interpret. 

 

The following rules can be used to control when the forward pass should stop: 

 Set a maximum number of terms that the MARS model (4.5) must have in the 

forward pass (including the constant term  ̂ ).  

 Set a threshold value   (the default is        ) such that the forward pass 

stops when adding a term changes      by less than  . 

 

At the end of the MARS forward pass, we have a large model which probably over fits 

the data (i.e. provides the best fit to training sample observations but not generalizing 

new data well). Thus, a backward pass is used to delete insignificant terms. 

 

Stage two: The backward pass 

The backward pass removes the hinge functions themselves (rather than the conjugate 

pairs) one by one. This process occurs until we are left with the initial model,  ̂(    

 ̂   which is associated with the constant basis function   (     . It should be noted 

that once a single hinge function has been removed, the following generalized cross-

validation (GCV) measure is calculated for a model with   hinge functions: 
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   (   
∑ (    ̂ (   )

  
   

(  
   (  

 
)
                                         (      

where,  ̂ (    denotes a MARS model with   hinge functions such that the numerator of 

(4.16) is the RSS associated with this model. The term    (   is the effective number 

of parameters in the MARS model with   hinge functions, which are defined as 

   (                                                                (      

where for the model  ̂ (   , r is the number of linearly independent basis functions, c is 

a penalty parameter (usually           and T is the number of hinge function knots. 

Thus, (4.17) means a MARS model ‘pays’ a penalty of c for having additional knots. 

The model  ̂ (    that gives the lowest value of GCV ( ) is chosen to be optimal, viz 

 ̂ (     ̂  ∑  ̂   (   

 

   

                                                     (      

 

4.3.2 Performing FDA using the MARS regression procedure 

Mirroring the optimal scoring approach to LDA developed in section (3.5), suppose we 

have a set of training observations  (          
 . As usual,    {             } are p-

dimensional predictor variables associated with the class label                . 

The following steps can be used to perform FDA using the MARS procedure outlined in 

the preceding section. 

Step 1: Create a     class indicator matrix   for all the observations in the training 

sample that sets         if the     observation      lies in class j and otherwise sets 

       (see equation (3.69) for example). Fixing   to be the following diagonal matrix 

of order K, 

       {
 

√  
 

 
 

√  
 

   
 

√  
 

}                               (      

such that  the following  normalization constrain is satisfied, 
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                                                          (      

to prevent trivial solutions, let   
      be the initial     matrix of ‘scored’ 

responses. 

Step 2: Perform a (multi-response) multivariate regression of    
  on the     matrix 

of predictor variables   using the MARS technique to get the     matrix of fitted 

values  ̂ 
 . Let  ( ̂  be a linear operator that fits the final chosen model such that we 

have: 

 ̂ 
   ( ̂)  

                                                    (      

where  ̂ represents the estimated optimal size of the MARS model  ̂ (    selected using 

the GCV criterion (4.16).  

 

It is important to note that (4.21) means that the same procedure  ( ̂) is being used to 

fit   models to each of the   levels of scored responses in   
 . In particular, for each of 

the   levels of scored responses in   
 ,   MARS models of the same size  ̂ are 

simultaneously fit sharing the same basis functions    (               but may 

have different coefficients { ̂                      }. Thus, a (multi-response) 

multivariate regression of the optimal scores matrix    
  on the original matrix of 

predictor variables   using the MARS technique produces the following   regression 

functions: 

 ̂ (     ̂   ∑  ̂    (   

 

   

 

 ̂ (     ̂   ∑  ̂    (   

 

   

 

  

 ̂ (     ̂   ∑  ̂    (   
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Let, 

  (    ( ̂ (      ̂ (   )
 

                                                   (      

 

be a K-dimensional vector of fitted regression functions. 

Step 3: Generate a     eigenvector matrix   by performing an eigenvalue-based 

decomposition on the following matrix, 

  
  

 ̂ 
     

  
 ( ̂)   

                                                    (      

to get the new     matrix of optimal scores as,      .  

Step 4: Update the K-vector of regression functions in step 2 using the eigenvector 

matrix   to get the optimal       dimensional vector of regression (canonical 

discriminant) functions as 

  (       (                                                            (      

 

Because the basis functions    (             are treated as fixed once selected 

(  (      , we can replace the     original data matrix 

  (

       

   
       

)                                        (      

used in the optimal scoring Algorithm 3.1 with an     data matrix 

    (

  (      (   

   
  (      (   

)                        (      

containing basis expansions of the original predictor variables       (i.e. we have 

expanded the predictor variables from a p-dimensional space to a Q-dimensional space 

where    ).Using the optimal scoring Algorithm 3.1 with   in place of   should in 

theory produce the following optimal       dimensional vector of regression 

functions that are equivalent to the ones in (4.25):  

 (     ̂  
  (                                                      (      
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where for all the training sample observations          ;  

 (    (  (        (   )
 

                           (      

is a Q-dimensional vector containing arguments of the fixed basis function variables 

that have been created using the MARS technique and  ̂        is a matrix of 

regression coefficients. In this regard, we can think of the optimal scoring approach to 

LDA summarized in Algorithm 3.1 as having the following fixed basis function 

variables: 

  (       (         )
 
                                   (      

The FDA algorithm is summarized below: 

 

 

Algorithm 4.1: FDA algorithm 

 

1. Initialize: Create the      indicator response matrix   and as an initial value, 

set      that satisfy the restriction   
  

 
          . Let   

     . 

2. Multivariate non-parametric regression: Perform a (multi-response) 

multivariate regression of    
  on the original matrix of predictor variables   

producing fitted values  ̂ 
 . Let  ( ̂) be the linear operator that fit the final 

model and  (    be the vector of fitted regression functions. 

3. Optimal scores:  Generate an eigenvector matrix   by performing an 

eigenvalue based  decomposition on the following  matrix, 

  
   ̂ 

     
   ( ̂   

  

to get the new matrix of optimal scores as,      .  

 

4. Update: Update the fitted regression functions in step 2 using the eigenvector 

matrix   to get the optimal regression functions vector as, 

   (       (    
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The advantage of using this approach is that some of the features of the multivariate 

regression technique used are inherited. In our case, using MARS to perform 

discriminant analysis via optimal scoring means that model selection and regularization 

can be performed by varying the degree of interaction terms, B and/or the penalty 

parameter, c. Other candidate  non-parametric regression techniques suggested by 

Hastie et al.(1994) are neural networks (Lippman, 1989), multi-response projections 

pursuit regression (Friedman & Stuetzle, 1981) and  hinge functions (Breiman, 1993).  

 

4.3.3 Using the FDA routine for classifying a new observation 

Having determined   (   , a new applicant   
       is assigned to a class   that 

minimizes the following distance measure:  

  (  
     ‖(  (  

      ̅ 
 )‖

 
                                        (      

where, 

   (  
    : are the coordinates of the new applicant   

    in this new  -

dimensional subspace and 

  ̅ 
  

 

  
∑   (        ;            are the fitted group centroids in this new 

J-dimensional subspace for all those observations in the training sample that 

occur in each of the K different classes of our classification problem. 

 

 

4.4 Mixture discriminant analysis 

The LDA classifier that we have developed requires each class            to have a 

single mean,    and a common pooled within-class covariance matrix,   . If the data is 

multi-modal (multiple group centroids per class), then this classifier may not perform 

very well. Mixture discriminant analysis (MDA) exists to handle such a limitation. 

 

4.4.1 The procedure 

Suppose an observation       belongs to one of              latent classes of 

class            (which we shall call subclasses of class k). In other words, we are 

assuming that each of the   groups is made up of unobserved    subgroups to which 

the observation    may belong. In order to model the multimodal response data that is 
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generated by this class, the   following mixture model (assuming equal covariance 

matrices:      ) is presumed to be generating the outcomes    that we are observing: 

  (      (           ∑    (         

  

   

                           (      

where, {    ∑       denote  the weights that are being associated with each of the 

  Gaussian components of class k with probability density function,  

    (           (                                                    (      

where     is the mean vector of the     subclass of class   and       is the common 

pooled-within class     covariance matrix. 

 

It is important to note that we are assuming that one of the    Gaussian distributions 

pertaining to class   is generating the observation    that we are observing as belonging 

to class k. In order to be able to assign a new observation to a particular class applying 

the Bayesian approach to LDA that we discussed in section (3.2), the posterior 

probability of an observation    belonging to class k is given by  

 (         
 (          (       

∑  (          
     (       

 
∑     (           

     

∑ ∑     (           
     

 
   

   (      

where,     (        denotes  the prior probability of an observation belonging to 

class k. One can then assign an observation       to that class      that maximizes 

 (         for all            . Noting that the denominator in (4.30) does not 

depend on k, one need only find that value of k that maximizes, 

 (          (         ∑    (         

  

   

                          (      

which is equivalent to finding             that maximizes, 

  (      ∑      ( 
 

 
(       

    (       )

  

   

                           (      
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4.4.2 Implementing the MDA procedure using the EM algorithm 

Given a set of           training observations (      , an estimate of the prior 

probability can be obtained from the training observations as, 

 ̂  
  

 
                                                                 (      

where,    denotes  the number of observations in class k and   is the overall number of 

observations in the training sample. Hastie & Tibshirani (1996) suggested an iterative 

technique known as the Expectation Maximization (EM)-algorithm be used to compute 

the maximum likelihood parameter estimates of    ,     and  , which are otherwise 

difficult to compute directly (see Appendix A for a detailed discussion of the EM-

algorithm).  

 

The EM-algorithm oscillates between the following E-step and M-step until the 

parameter estimates         ̅       converge: 

E-step: 

Given that the     observation belongs to class k and initial parameter estimates 

        ̅      , one estimates the probability that the     subclass of class   (which 

we will denote by    ) is generating the observation    as: 

  (              
    (    ̅      

∑     (    ̅       
   

 

 
      ( 

 

 
(    ̅   

 (     (    ̅   )

∑    
 
   ( 

 

 
(    ̅    (     (    ̅   )

  
   

                (       

M-step: 

The parameter estimates of the mixing probabilities    , subclass-specific mean vectors 

 ̅   and the common within-class covariance matrix    are updated using the 

probabilities from the E-step as follows: 

    
 

  
∑ (           

  

   

                                                                (      
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 ̅   
∑    (             

   

∑  (             

   

                                                               (      

 

    
∑    (           (    ̅   (    ̅   

   
   

∑    (             

   

                      (      

 

The parameter estimates         ̅        from the M-step are then used to update 

subclass probabilities  (            in the E-step and the ensuing subclass 

probabilities in turn used to re-calculate new parameter estimates in the M-step, 

repeating the steps until convergence or a number of times. The iterative processes are 

repeated   times in order to compute the parameter estimates for all the   

        classes and the pooled within covariance matrix can then be computed as: 

   
 

 
∑ ∑     

  

   

                                                          (     

 

   

 

 

A new observation   
       will then be assigned to that class             that 

maximizes 

  (  
       ∑      ( 

 

 
(  

     ̅   
   

  (  
     ̅   )

 

   

       (       

 

4.4.3 Integrating the optimal scoring routine into the MDA procedure 

One can also integrate the optimal scoring routine introduced in section (3.5) into the 

MDA procedure. This is achieved by replacing the dummy coded     response 

matrix   in equation (3.69) with an     response matrix   that contains probabilities 

associated with membership of an observation    to a particular mixing distribution 

within a particular class. Since each class k has    unobserved classes, 

  ∑   

 

   

                                                           (      

is the total number of classes in our new classification problem. 
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As an example, a     class problem with each of the   classes containing      

unobserved subclasses to which    can belong would have a matrix   of the form: 

  

 

In (4.45),     denotes the     latent subclass of class k and      denotes that the     

case    is being observed as belonging to class k. Therefore, focusing on the first row of 

the matrix   above, a case    being observed as belonging to class     actually 

belongs to either the first unobserved subclass     with probability 0.4 or the second 

unobserved subgroup     with probability 0.6. All the other row entries are set to zero 

such that probabilities in a particular row add up to one. A similar interpretation can be 

applied to the other rows of the matrix  .  

 

Algorithm 4.2 shows how the optimal scoring routine provided in Algorithm 3.1 can be 

modified to incorporate the MDA procedure (Clemmensen et al., 2001).  

 

 

Algorithm 4.2: Optimal scoring routine for MDA 

 

1. Initialization: Initialize the     response matrix   containing the subclass 

membership probabilities. For example, let the initial   be a {0/1} indicator type 

matrix. 

2. Iterate until convergence or a maximum number of iterations: 

I. Regress    on    to get fitted values  ̂    ̂ where  ̂  (          

II. Find those   eigenvectors of    ̂ , that correspond with the       

largest eigenvalues of      ̂ and arrange them in descending order as the 

column vectors in a (    -dimensional solution matrix  ̂. This is             

subject to the normalizing condition: 
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III. Compute the     optimal matrix of regression coefficients :  ̂     ̂ ̂  

IV. Calculate the     transformed data matrix:  ̃    ̂     

V. Compute the parameter estimates       ̅                      

         using equations (      (      and the transformed data 

matrix  ̃  instead of   , viz: 

    
 

  
∑ (     ̃    

  

   

 

 ̅   
∑  ̃  (     ̃      

   

∑  (     ̃      

   

 

   
 

 
∑ ∑     

  

   

  

 

   

 

where: 

    
∑  ̃  (     ̃    ( ̃   ̅   ( ̃   ̅   

   
   

∑  ̃  (     ̃      

   

 

VI. Calculate new estimates of the probabilities of latent subclass membership 

(using the transformed data matrix  ̃ instead of  ) and update matrix  :  

   (     ̃      
      ( 

 

 
( ̃   ̅   

   
  ( ̃   ̅   )

∑       ( 
 

 
( ̃   ̅      

  ( ̃   ̅   )
  
   

 

                       

3. Given a new observation   
      , compute  ̃ 

     ̂    ̃ 
     and assign the 

new  observation to a class            , whose value of k results in the 

largest value of 

  ∑       ( 
 

 
( ̃ 

     ̅   
   

  ( ̃ 
     ̅   )
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Using the optimal scoring technique to perform MDA produces up to    (  

   canonical discriminant functions. These provide a good low-dimensional pictorial 

view of the dataset when used as axis to plot the dataset. 

 

4.5 Conclusion 

In this chapter, it has been revealed that a desirable classifier is one that is flexible 

enough to model both linear and non-linear separations between classes. QDA allows us 

to fit quadratic decision boundaries in grouping observations in a dataset. Even more 

flexible decision boundaries can be fitted by using non-parametric regression 

procedures in the optimal scoring approach to LDA, a technique known as FDA. MDA 

provides a way of handling multi-modal datasets. This has the potential to improve the 

accuracy of the classifier.  
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CHAPTER 5 

5. Classification and Regression Trees 

 

5.1 Introduction 

The classification techniques that have been looked into so far are parametric in nature. 

This means that the data is presumed to follow a particular probability distribution that 

is being governed by certain parameters. A response variable y is then estimated using a 

parametric function  ̂(      whose model parameters have to be estimated based on the 

minimization of some appropriately defined goodness of fit function: 

 (   
 

 
∑  

 

   

    (                      

This chapter therefore focuses on the development of a classification/regression 

technique that is now non-parametric in nature. More specifically the domain of the 

covariate vector    will be partitioned into a series of mutually disjoint rectangular 

regions using a series of rules to identify regions that have the most homogeneous 

responses to these predictor variables. A constant value is then fitted to each region with 

classification trees fitting the most probable class as that constant value and regression 

trees fitting the mean response  for observation in that region.  

 

More specifically, 

 ̂(      ∑  ̂ 

 

   

           

is used as a predictor function for y with  ̂  being used as a predictor value for y if     

falls in the region being defined by   . This procedure is known as Classification and 

Regression Trees (CART). CART produces a classification tree if the outcome variable 

is qualitative and a regression tree if the outcome variable is quantitative. A set of 

‘yes/no’ responses to questions relating to the state of the predictor variables is used to 

recursively split the data into subgroups resulting in an ‘upside-down tree-like’ structure 

that is easy to interpret.  
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Figure 5.1 shows a hypothetical tree that can be constructed from a dataset with 

predictor variables              and a binary outcome variable        .  

 

 

Figure 5.1: An illustration of a classification tree 

 

To create the tree in Figure 5.1, the CART algorithm starts with the entire learning 

sample being assigned to the parent or root node of the tree. The entire dataset assigned 

to this root node is then partitioned into two mutually disjointed subsets, which form the 

two child nodes in the above tree (as represented by ovals in Figure 5.1). The 

observations assigned to the same child node are as similar as is possible but the 

observations assigned to the two differing child nodes are as different as is possible 

based on some appropriately chosen measure of dissimilarity (or impurity index). The 

covariates in    are used to determine a splitting rule for the  parent node with the 

process of splitting continuing until some stopping criterion has been satisfied. We will 

term child nodes that are not split any further terminal nodes or leaves (as represented 

by squares in Figure 5.1) and the lines connecting the nodes shall be referred to as being   

branches in the tree. 

 

5.2 Growing the Tree 

Given a set of training observations  (          
 , the CART procedure uses the 

following guidelines to ‘grow’ a tree. 

 a standard set of questions for splitting the nodes,  

 a criterion for splitting the nodes,  
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 a rule to control when to stop splitting the nodes,  

 a technique for assigning class labels to the terminal nodes in the tree.  

We shall elaborate on the above guidelines and more in this section. 

 

5.2.1 A standard set of questions for splitting the nodes 

A splitting rule for node t will be denoted by s(t). CART splits the sample associated 

with node t based on a decision rule that uses one of the predictor 

variables {          }. If the predictor variable    is quantitative in value, the splitting 

rule,  (   takes on the form:  

                                Is the condition:      } or      } true?                               (5.1)  

where, c denotes  a real number in the domain of    that needs to be determined. If the 

predictor variable    is categorical in value, then the splitting rule s(t)  takes on  the 

form: 

                            Is the condition :{    = m} or {     m} true?                                (5.2) 

for some value     in the domain of     that also needs to be determined.  For a 

particular observation in the parent node, if the response to the questions in (5.1) and/or 

(5.2) is a ‘yes’ then this observation  is cascaded down to  the left child node of that 

tree. Alternatively, the observation is cascaded down to the right child node of that tree. 

 

5.2.2 The criterion for splitting the nodes 

The underlying objective behind CART is to create a splitting rule that  best splits the 

dataset being associated with the parent node of a tree into two child nodes that are even 

more  homogeneous (or pure) in nature. This concept of homogeneity is defined in 

terms of an impurity function, denoted by  (   that ideally will have the  following 

properties: 

1. a unique maximum value for a K-class problem at the  point (
 

 
 
 

 
   

 

 
) , 

2. a unique minimum value  at the points  (1,0,…,0) ,(0,1,…,0),….(0,0,…,1). 
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Letting    (     denote the posterior probability that the observations in a node t belong 

to class             an impurity function that one could consider using is the 

following   Gini index: 

    (      (       ∑  (    

 

                                                (     

Figure 5.2 shows the relationship that exists between this Gini index and  (     for a 

     class problem.  

 

Figure 5.2:  Relationship between the Gini index and the proportion of observations in 

class 1 for a two-class problem 

 

It can be observed that the impurity at any given  node t  reaches its   highest  value 

when this node  contains an equal proportion of observations from each  class in that 

node  and reaches  a minimum value  when the observations in that  node belong to only 

one of the two possible class.  

 

 

Figure 5.3: Change in Impurity 
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Consider the diagram that has been given in Figure 5.3 and let  (   denote the measure 

of impurity that exists at a node t. The goal of CART is to use a rule  (    to split a   

parent node      into a left child node    and right child node    in such a manner that 

this split  (   causes the greatest reduction in the overall impurity of the parent node 

    , measured by: 

    (     (   (      (     (      (    (     (         (        (       (     

where,  (       and  (       denote  the proportions of observations in the parent 

node      that will go to the left node    and to the right node   , respectively. Note 

that in (5.4) we have used the fact that; 

 (       (     (                                       (     

where  (      denotes the proportions of observations contained in the parent node 

   that is being split into the left node    and into the right node   . 

 

Letting    denote the number of observations in the parent node    , if  the number of 

observations that fall into the child nodes    and    is    and    respectively, then 

    
  

  
               and                

  

  
                                            (5.6) 

where it follows that,          and  (      
  

  
 =1.  

 

Criterion (5.4) provides one with a measure of how good a particular splitting rule will 

be, with the best split of a node t being given by  

  (          
 (  

    (          
 (  

  (       (        (       

   (            
 (  

    (        (                                                   (     

The product of the number of observations in a node t, denoted by   ;  and     (    

produces what represents  an  improvement  value for implementing  that split in the 

tree, viz: 

         (          (                                                                (     
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Substituting the Gini index (5.3) into the optimization problem in (5.7) produces  

  (         
 (  

{ (  ∑   

 

   

(           ∑   

 

   

(     )}                  (     

 

Some other impurity functions that one could consider using include: 

1. Entropy:  (   ∑  (         (      

2. Classification error:  (           (      

 

Bayes’ theorem allows us to develop the following expression for the conditional 

probability  (     that an observation in node t belongs to class            :  

 (        
 (   (    

 (  
  

  (
  (  

  
)

∑   (
  (  

  
) 

   

                             (      

where, 

 (     
  (  

  
                                              (      

denotes the conditional probability that an observation will be assigned to node   given  

that it belongs to class  ,   (   denotes the number of observations in node t that 

belong to class k and    denotes the total number of  training sample observations that 

belong to class k. 

 

In (5.10),  (      denotes the prior probability that an observation belongs to class k, 

which can be estimated from the training sample with   observations as, 

 ̂   
  

 
                                                      (      

 or supplied by the user if known. If the sample based estimate (5.12) is used, then 

(5.10) becomes,  
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 (     
(
  

 
) (

  (  

  
)

∑ (
  

 
) (

  (  

  
) 

   

 

  (  

 

∑
  (  

 
 
   

 
  (  

 (  
                              (      

Thus if sample based estimates of the prior probability are used, the conditional 

probability  (     is simply the fraction of the number of class   observations falling 

into node t and the total number of observations falling into node  .  

 

5.2.3 A rule for controlling when to stop splitting the nodes 

A simple rule that one could consider employing is one where the recursive partitioning 

of nodes is terminated when each terminal node contains only observations from one 

particular class. However, employing such a rule is likely to result in the generation of 

an excessively large tree. To prevent this from occurring, one could consider declaring a 

node   as being a terminal node if splitting that node does not change the impurity 

beyond a threshold value   . Thus, declare a node terminal if 

   
  (  

    (                                                               (      

Another rule that one could consider using is a rule that stops splitting a node t, if the 

number of observations in the node  (  , is less than a positive real number r.   

 

5.2.4 A technique for assigning a class label to a particular node 

The assignment of a class label to a particular node proceeds as follows: Let    denote 

the class label that is being assigned to node t, then  

         
 

  (                                                           (      

where,  (     denotes  the posterior probability associated with  an observation in node 

t belonging to class k as given by equation (5.10). With the above notation in hand, 

given that an observation falls into node t  a conditional probability of misclassification, 

denoted by  (   , and called a resubstitution error rate can be given by 

 (      (           
 

 (                                      (      

and an unconditional probability of misclassification at a node t  by, 
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 (    (   (                                                                              (      

where,  (   ∑   (
  (  

  
) 

    denotes the probability of any observation falling into 

node t, regardless of its class label. For an entire tree T, with terminal nodes   ̃, an   

overall misclassification rate can be given by 

 (       ∑  (  
   ̃

                                                            (      

Theorem  

For any split of the parent node      into its left and right child nodes     and    

respectively, we have: 

 (    (     (     

Proof: 

Let,       be the class label being assigned to a node t according to the class 

allocation rule (5.15). The probability that an observation belongs to class    given that 

it is in node t then takes on the value 

 (       (          (                          

                    (       (       (       (      

    (          (       

      
 

 (           
 

 (                               (      

It follows that, 

                                              (      (      

                            [     
 

 (           
 

 (     ] 

                                        (     
 

 (     )    (     
 

 (     ) 

    (       (                                                           (      
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Thus, 

                                              (    (   (   

       (     (     (     (     

  (    (     (    (     

  (     (                                                                 (      

The above theorem shows that the recursive splitting of nodes in the tree growing 

process will always produce a new tree with a lower overall misclassification rate. Thus, 

any splitting routine that focuses on minimizing  the overall misclassification rate  will  

always produce a bigger tree (with more terminal nodes).  

 

5.2.5 Incorporating misclassification costs 

The theory developed section (5.2.4) assumes a cost     of misclassifying an 

observation    as belonging to a class      , when the observation actually belongs to 

a class       , as being  the same for all    . As has already been discussed in 

section (3.2.3), a lender may want to incorporate misclassification costs into the 

classification procedure that one develops. This is because in a credit-scoring context, it 

is usually far less damaging to have incorrectly classified a non-defaulter as a defaulter 

than the other way round. 

 

 Letting,  

∑     (    

 

   

                                                                (      

denote an expected misclassification cost  for this problem, a   class label    can be 

assigned to node t   that minimizes the expected misclassification cost (5.22), viz:  

         
 

[∑     (    

 

   

]                                                      (      

Analogously, one can define  

 (      
 

∑     (    

 

   

                                                               (      
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and,  

 (    ∑  (   (  
   ̃

                                                                    (      

as an overall misclassification cost for this model. 

 

5.3 Pruning the Tree 

Pruning the tree is done to remove those branches that do not contribute much to its 

predictive power. The following cost-complexity pruning criterion,  

 (   
 (      (  

    (       (    
                                            (      

can be used to determine whether branches of a particular node t should be removed 

from the tree (Breiman et al., 1984:66). In (5.26),  (   represents  the resubstitution 

error estimate for the entire  tree T,  (      the resubstitution error estimate for this  tree 

T with the branches of node t removed, s   (           (       the number of  terminal 

nodes in the trees T and     , respectively  

 

The theorem in section (5.2.4) shows that a larger tree will always have a lower 

resubstitution error estimate. Thus: 

 (      (   

which means that   (     because      (       (    . The cost-complexity 

function (5.26) represents a tradeoff between an increase in the resubstitution error 

estimate (cost) that results from  removing the branches of node t from the tree T and 

the benefit of using a smaller (but less complex) tree     that results from removing the 

branches of that particular node t. A small value of  (   means that the removal of 

branches of node t does not cause a significant increase in  the resubstitution error 

estimate of the tree T. Likewise, a large value of  (   means that the branches attached 

to node t are significant.  

 

Letting      denote the original unprunned tree grown using the guidelines in section 

(5.2),  (   is computed for each of its non-terminal nodes t using the formulae in 

equation (5.26). That node t, generating the smallest value of   (   then has its branches 
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cut-off to produce a  new tree (which we will call subtree   ).    is then taken as the 

original unprunned tree and  (   is computed again for every non-terminal node with 

that node generating the smallest value of  (   having its branches pruned to produce 

the subtree   . This pruning process is repeated until all the branches have been pruned 

off with the remaining root node being   . Thus, this pruning mechanism results in a 

series of simpler trees,               , each of which is subsequently smaller 

than the preceding tree. The smallest value of   (   that is being produced at each stage 

is called the cost-complexity parameter or simply the cp-value (denoted by  ) for that 

stage. 

 

5.4 Selecting an Optimal Tree 

Two approaches have been suggested in the literature, depending on the size of the 

dataset. For large datasets, one uses part of that dataset to build a tree and prune it, and 

the remaining part of the data to select the optimal tree. For small datasets, a technique 

based on N-fold cross validation becomes more appropriate. 

 

5.4.1 Testing sample validation 

Testing sample validation is a technique utilized for evaluating the accuracy of the tree 

by randomly splitting the dataset into a learning sample and a testing sample. The 

learning sample is used for building and pruning the tree resulting in a series of simpler 

trees                 as outlined in section (5.3). The testing sample is then 

applied on each of the subtrees from the pruning process and the tree that gives the 

lowest error rate is selected as being optimal. Breiman et al. (1984:72-80), 

recommended that this technique be used for large datasets, typically greater than 900 

observations. 

 

Figure 5.4 shows a typical evolution of the error rate that can occur when both the 

learning and testing samples are passed through each of the subtrees that have been 

developed using the learning sample. As the size of the tree increases, the classification 

error rate associated with each new tree decreases monotonically when applied to the 

learning data. This supports the more formal result that we have derived in the theorem 

in section (5.2.4). When applied to the testing data, however, the classification error rate 

generally declines steadily before increasing as the size of the tree through which this 

training sample has been passed increases. 
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Figure 5.4: Change in the learning and testing sample -based error rate plotted against 

the size of the tree 

 

Convention detects that it is advisable to choose a tree that produces the lowest error 

rate when applied to the testing sample as the optimal tree.  

 

5.4.2 N-fold cross-validation 

N-     cross-validation can be used if the dataset that we have available is too small to 

be split into a learning and a testing sample. One begins by randomly splitting the 

dataset into N subsets. One of these subsets is used as a testing sample, while the other 

    subsets are combined and used as a learning sample for the model building 

procedure. This model building procedure is then repeated a total of N times (see Figure 

5.6), with a different subset of the data being reserved for use as a testing sample.  

 

The proportion of times that a wrong classification has been made for the testing sample 

           can serve as an estimate for the error rate    for the tree constructed 

using the other     subsets that have been combined to give the learning sample. An 

average cross-validation error estimate for these N models (which we shall denote by  

       ) can then be given by the equation,  

         
 

 
∑  

 

   

                                                           (      
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Figure 5.5: N-fold Cross-validation 
 

 

5.5 Judging variable importance 

According to equation (5.8) importance of a predictor variable    can be measured by 

considering the following improvement in the impurity of node t,  

         (          (    

that occurs when a  predictor variable    is used to split the node  . Let    

 (   denote the 

best split of a node   that is being based on the predictor variable    , then  

        (  )      [   

 (  ]                                            (      

will represent the improvement in impurity that occurs when    is used as a splitting 

variable at  node t . Summing these improvements over all the non-terminal nodes of the 

tree T, gives rise to an overall variable importance measure for the predictor variable     

that is given by 

      (  )   ∑         (  )
   

                                       (      
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5.6 Conclusion 

Derivable from the above discussion is evidence to the effect that using CART is an 

easier and comprehensible method that can be interpreted without much statistical 

background or knowhow. However, a slight change in the dataset may result in an 

entirely different tree being generated, rendering CART an unstable classifier. The 

forthcoming chapter proffers a consideration of a set of methods that have been 

specifically designed to help overcome this shortcoming in the model.  
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 CHAPTER 6 

6. Bagging, Random Forests and Boosting 
 

 

6.1 Introduction 

In this chapter, the researcher delves into some techniques that have been developed to 

help improve the predictive capability of unstable classifiers such as CART. The basic 

idea behind each technique is to create a set of classifiers during the model development 

process. Each of these classifiers is then combined in some optimal way to produce a 

single predicted value for a new observation   
    that one wants to classify.  

 

Two types of ensemble methods will be discussed in this section:-  

 a bagging and a random forests method where, for a new observation   
    ,  

one attempts to build several models independent of each other using datasets 

generated by a  bootstrapping technique and then combine  the predictions 

derived from these models in some optimal way. 

 a boosting method where we fit a model to the data, modify the data in response 

to the type of result that we have achieved and then refit the model   repeating 

this process  a number of times and then combine the results that we have 

obtained  in some optimal way. 

 

6.2 Bootstrapping 

Bootstrapping is a technique developed by Efron (1979) where one randomly draws 

(with replacement) B samples each of size N (which we will denote by   ,  ,…,  ) 

from the learning sample                where    (        . This procedure is 

illustrated in Table 6.1 for a learning sample L with     observations where      

bootstrap samples are being drawn from L. The probability that an observation    will 

not be selected equals 

(   
 

 
)

 

                                                         (     
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Table 6.1: Illustration of bootstrap sampling 

 

L                         

                           

                           

                           

                           

                           

                           

                           

 

Figure 6.1 below indicates that B models are constructed using the bootstrap samples, 

          . In classifying a new observation, each of the B models is then used to 

generate an outcome. 

 

 

 

Figure 6.1: Using bootstrapping to improve the performance of a classifier 
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For a classification problem, the predicted outcomes in Figure 6.1 may then be 

combined by selecting that class label that has been chosen the most amongst the   

models as one’s predicted outcome. For a regression problem, a predicted outcome for 

that individual may be obtained by averaging all B outcomes that have been produced 

by the procedure in Figure 6.1.   

 

6.3 Bagging 

Bagging is an acronym for ‘Bootstrap Aggregating’ that uses the above bootstrapping 

technique to improve the performance of an unstable classifier. It achieves this by 

averaging a particular method of classification over   bootstraps samples in an attempt 

to reduce the variance associated with such a classifier. We will introduce the concept 

of bagging with the aid of an example (see section 6.3.1).  

 

6.3.1 The procedure 

Given a learning sample L, suppose we generate six bootstrap samples from L and on 

applying the CART procedure to each of the six bootstrap samples we produce the 

classification trees that appear in Figure 6.2 below.   

 

Figure 6.2: Illustration of bagging 
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Let   (     
     denote the class label that is being predicted for a new observation 

  
    when it is passed through the tree that has been constructed from the bootstrap 

sample   . In particular, assume that we want to assign a class label to a new 

observation   
                             } using the method of bagging. 

Running this    
    down the six trees in Figure 6.2 produced the classifications in 

Table 6.2. 

 

Table 6.2: Classifying new observations using bagging 
 

Tree based on bootstrap sample    Predicted outcome; (     
     

b = 1 1 

b = 2 1 

b = 3 1 

b = 4 0 

b = 5 0 

b = 6 1 

 

A bagging estimate for this new observation will then set, 

 ̂   (  
                     (     

        
                                 (     

For an outcome variable that is quantitative, the bagging estimate  ̂   (  
   ) becomes 

the average of all these predicted outcomes: 

 ̂   (  
      

 

 
∑  (     

     

 

   

                                                       (     

We outline the bagging algorithm below as follows: 

 

Algorithm 6.1: Bagging Algorithm 
 

1. Generate B bootstrap samples   ,  ,…,   each of the same size N from the 

learning sample L. 

2. Fit a CART to each of the   bootstrap samples. Do not prune the trees. 

3. Predict the outcome of a new observation   
    by selecting as a class label for 

this new observation the class label that produces the majority of votes from all 

  trees that have been generated for a classification problem or by selecting as 

its value the average of all the predicted outcomes for a regression problem.  
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6.3.2 Proof that Bagging works 

An insight into why aggregating models would work is best understood for a 

quantitative response variable. Suppose the training observations  (          
 , where     

is a quantitative variable, are being  independently drawn from a population distribution 

  that puts an equal weight of  
 

 
 on each  observation in the above sample. An outcome 

for     can be then be estimated using the following relationship: 

       (                                      (    
                   (     

where,     (         ̂ (     ] denotes the ‘true’ bagging estimate that has been 

computed using the bootstrap datasets, {(  
 ,   

 ),(  
 ,   

 ),…,(  
 ,   

 )} that have been 

drawn from the population   (and not from the learning sample, L). An  expected 

squared prediction error evaluated at an input point     for the  model  ̂  that has been 

constructed from a bootstrap sample {(  
 ,   

 ),(  
 ,   

 ),…,(  
 ,   

 )}  is given by 

        ̂
 
(    

 
           (         (     ̂

 
(    

 
 

                             [        (   ]
 
    [        (   ]  [ ̂

 
(         (   ]

     ̂
 
(         (    

 
 

Since,      (       [ ̂
 
(   ] it follows that the middle term becomes 

  [ ̂
 
(         (   ]      (        (       

         ̂
 
(    

 
             (    

 
      ̂

 
(         (    

 
                 (     

The term     ̂
 
(         (    

 
   denotes the variance of the predicted outcome 

 ̂ (     about its mean     (    thus 

    ̂    ̂
 
(    

 
   [ ̂       (   ]

 
                              (     

The above result implies that the bagging estimate     (         ̂
 
(       will always 

have a lower mean square error than the estimate  ̂ (    that has been based on a single 

sample. In practice, it is very difficult to get the ideal bagging estimate     (    because 
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the actual population   from which the data is being generated is not available. The 

estimate given in equation (6.3) is usually used as an approximation for      (   , i.e.  

 ̂   (     
 

 
∑  (       

 

   

                                                      (     

where  (       denotes the outcome that is being generated from the model that is being 

constructed from the bootstrap sample   . 

 

The underlying principle behind bagging is that by averaging the estimates that are 

being produced by many noisy models one may be able to reduce the variance 

associated with this estimator. The rationale for this is as follows: An average of B 

independent and identically distributed random variables               , each with 

a common variance    will have a variance 

   (
 

 
∑  

 

   

)  
 

  
 ∑   (   

 

   

 
 

  
   

  

 
                 (     

 

It follows that as    ,    (
 

 
∑   

 
   )   . Thus, by combining many classifiers, 

we may subsequently be able to reduce the variance associated with using the average 

of these classifiers to assign a class label to a new observation.  

 

To help understand why bagging may also work for a categorical response based 

outcome, suppose each of the observations       belong to one of two possible 

groups           . Consider an observation    whose true class label is known to be 

    . Given that a set of B individual classifiers   (                  

independently assign this observation     to a class        , 

   ∑    (            

 

   

                                                          (     

will represent the total number of correctly predicted class classifications for this 

observation amongst all B of the bootstrap sample based trees. Because the classifiers 

are presumed to independent, (6.9) follows a binomial distribution: 
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     (                                                                (      

where  

        ( (            

denotes a constant error rate   associated with the misclassification of     to class 

     when the true class label is       Consequently, 

  (  
 

 
)                                                    (      

provided that all B of the bootstrap sample based trees, have a misclassification rate 

better than random guessing in this     class problem (i.e.           . 

 

The proof of (6.11) can be established by noting that for large B, the central limit 

theorem allows one to approximate the binomial distribution (6.10) using the following 

normal distribution (Hansen, 2011): 

   (     (                          

where    and    (     are the mean and variance of S, repectively.  

   (  
 

 
)    (  
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   )

√   (     
)                   (     
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  )

√  (     
)    (  
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)

√ (       
 

)    (   √ 
 

) 

 

where   
(   

 

 
)

√ (       
   is a negative constant for values of       . Therefore, 

   
   

  (    √ 
 

)    (        

This means that as the number B of class based predictions that are being combined 

increases, more than half of the cases will be correctly classified. This result is based on 
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the principle of “collective wisdom amongst a crowd” as discussed by Surowiecki 

(2000). According to this principle, a committee composed of many people is more 

likely to reach the correct decision compared to a committee with fewer people. 

 

6.3.3 Judging variable importance 

Since the bagging estimate represents a collection of CART based trees, the same 

variable importance measure (5.29),  

      (  )  ∑        (  )

   

                 

that was developed in section (5.5) can be  computed for each tree in the bagging 

estimate. The average variable importance measure for the predictor variable     in the 

bagging estimate is then given by: 

     (  )  
 

 
∑       (   )

 

   

                                          (      

where,       (   ) denotes the variable importance of    in the     tree. If  

     (  )   , then the predictor variable    is not considered as being an important 

variable to include in one’s classification algorithm.  

 

6.4 Random Forests 

The concept of a ‘random forest’ has been developed as a generalization of bagging 

with the objective of reducing the amount of correlation that may exist amongst the 

trees being grown from the bootstrap samples. As is the case with a bagging technique, 

each tree in the forest is built from a bootstrap sample that has been drawn with 

replacement from the learning sample.  

 

However, it should be noted that with random forests when splitting a node during the 

construction of a tree the split that is chosen is no longer the best split that results from 

use of all p predictor variables to form a splitting rule. Instead, the best split results from 

using a randomly generated subset      of these predictor variables to form the 

splitting rule. By randomly selecting these variables one is helping to reduce the 

correlation that may exist between the trees that are being generated if one were to make 
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use of all p predictor variables when creating one’s splitting rule. Reducing the 

correlation between the terms that compose   the components of equation (6.7) should in 

turn reduce the variance associated with the averaging of these components that 

eventually produce a final classifier. 

 

The rationale for this is as follows: An average of B independent and identically 

distributed random variables               , each with a common variance    will 

have a variance      as shown in equation (6.8). If the variables are identicallly 

distributed but have a positive correlation ρ then the variance of this average will be 

   (
 

 
∑  

 

   

)   

            
 

   
[    (            {    (     )        (      }

       (            (              (        ]     

 
 

   
             (         (                

                 
 

   
       ∑(     
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    (       

     
   

 
                                                                                                   (       

It follows that as    , then    (
 

 
∑   

 
   )     . Thus, reducing the correlation   

between the trees is desirable if one wants the resultant estimator to have a smaller 

variance.  
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6.4.1 Implementing the procedure 

Given the learning sample observations  (        
 , random forests attempt to improve 

on the bagging  Algorithm 6.1 by decorrelating the trees using the following 

adjustment: 

 

Algorithm 6.2: Random Forests Algorithm 

 

1. Generate B bootstrap samples   ,  ,…,                  from the learning 

sample    (        (             (        . 

2. For each bootstrap sample,  fit a tree with the following adjustments being made 

at each node, t: 

o Randomly select       predictor variables. 

o Use only the randomly selected predictor variables in finding the 

best split of the     node. 

            Do not prune the trees. 

3. Predict the outcome of a new observation   
    by selecting as a class label for 

this new observation the class label that produces the majority of votes from all 

  trees that have been generated for a classification problem or by selecting as 

its value the average of all the predicted outcomes for a regression problem.  

 

The performance of these trees can be assessed by running the out-of-the-bag (OOB) 

sample (those observations that have not been used in the construction of a particular 

tree) down the constructed tree. The proportion of times that a wrong classification has 

been made in this OOB sample can serve as an estimate for the error rate    for that 

tree. An average OOB error estimate for the entire forest can then be given by the 

equation,  

        
 

 
∑   

 

   

                                                           (      

When the OOB-ER of the forest begins to stabilize, it is recommended to stop adding 

more trees to the forest to avoid over fitting.  
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6.4.2 Judging variable importance  

We now shift our focus on the problem of deciding which predictor variables to include 

in our classification algorithm. It should be noted that the random forests technique also 

uses a similar Gini index based variable importance measure to rank the variables that 

one may want to include in one’s classification algorithm. Thus,  

    (  )  
 

 
∑       (   )

 

   

                                          (      

where,        (   ) denotes the CART based variable importance measure that we 

have developed in (5.29) for the predictor variable    in the     tree of the forest, can be 

used as the random forests based variable importance measure (also known as the mean 

decrease in Gini). If     (  )   , then the predictor variable    is not considered as 

being an important variable to include in one’s classification algorithm.  

 

6.5 Boosting 

Boosting is a method for improving the accuracy of a classification model. It is based 

on the idea that it is often easier to find and average many ‘rough rule of thumb’ 

predictions than it is to find a single highly accurate prediction rule. Whereas bagging 

also seeks to combine the predictions that are being produced by several models, 

boosting is different in that when it fits a decision tree to the training sample it seeks to 

identify an area of poor fit and then update the next tree accordingly. Instead of working 

with a newly generated bootstrap sample, the boosting algorithm re-weights the 

observations in the original learning sample. This has the practical effect of giving more 

weight to those observations that were misclassified in the previous iteration and less 

weight to those observations that have been correctly classified. Subsequently, the next 

classifier to be fitted need only concentrate on observations incorrectly classified in the 

previous round. The classifiers obtained by this method of successive reweighting are 

then combined to produce a final classifier with better properties. 

 

Boosting algorithms differ in how they quantify a lack of fit and how they then adjust 

their settings for the next iteration of the algorithm. The original boosting algorithm was 

developed for a classification problem by Schapire (1990). Schapire’s original 

algorithm was limited to a two-class problem and combined the outcomes of only three 
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classifiers produced from three filtered versions of the learning sample by simple 

majority voting. Freund (1995) improved upon Schapire’s (1990) algorithm using a 

variation called boost by majority that combined many weak learners at the same time. 

However both these algorithms required that the base classifiers have a constant error 

rate. Freund & Schapire’s (1997) collaboration led to the development of the very 

popular adaptive boosting algorithm termed AdaBoost, which dropped the assumption 

of a fixed error rate. Breiman (1998) later developed adaptive resampling and 

combining (arcing) algorithms, which generalized the overall technique of boosting. 

Freund & Schapire’s (1997) AdaBoost algorithm is a special case of arcing algorithms. 

For the purposes of this study, we will focus on Freund & Schapire’s (1997) AdaBoost 

algorithm. 

 

6.5.1 The AdaBoost procedure for a K=2 class problem 

Given a set of observations  (        
  in a learning sample, with      being given the 

following binary coding        , the AdaBoost algorithm proceeds as follows:  

Step 1: As a starting point for the algorithm (   ), a weight      (   
 

 
  is assigned 

to each of the           observations in the learning sample. 

Step 2: A base classifier (CART in our case) is then fitted to the learning sample 

containing those observations that have been weighted by a factor   (   to give the 

classification model    for this     iteration whose resubstitution error estimate is given 

by  

   
∑   (       (        

 
   

∑   (  
 
   

                                      (      

where   (    represents the predicted outcome at  input point   . 

Step 3: The error rate    is then used to create the following positive-valued scaling 

factor  

   
 

 
  (

    

  
)                                                              (      
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The scaling factors      are strictly positive for values of        
 ⁄  (this is the same 

as demanding the model to be boosted to have an accuracy rate      that is slightly 

better than random guessing in the K=2 class problem). If    becomes negative, the 

weights will be updated in the opposite direction in the next step resulting in the failure 

of the boosting procedure. 

Step 4: The observations which have been incorrectly classified, then have the weights 

associated with them inflated while the weights associated with those, which have been 

correctly classified are deflated in value using the following function: 

    (    
  (  

  
 {

                      (   

                     (   
                            (      

where    is a normalization constant  that ensures that the weights add up to one 

(∑        thereby making    a probability distribution function, viz  

       ∑[  (    {
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                    (   
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   √  (                                                                                                            (      

 

 

Step 5: The steps     are repeated             times updating the weights at each 

stage using (6.18) to give    weights and    fitted classifiers. An observation    is 

assigned to the class              by considering the sign of the following 

weighted combinations of the predicted outcomes: 

      (        {∑  

 

  (   }                                       (      
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An appropriate maximum number of iterations   one may consider would be when 

there is no significant change in the learning error rate of        (    viz: 

                     (     
 

 
∑           (    

 

   

                                     (      

 

We summarize the AdaBoost algorithm for a two-class problem below:  

 

Algorithm 6.3: AdaBoost algorithm for a two-class problem 

 

1. Initialize:     (    
 

 
 for all        . 

2. Repeat for t = 1,..., T .        

I. Fit the training algorithm (CART in our case) to the learning sample 

weighted by   , in order to obtain the model    :                  

II. Compute the weighted error rate        
   (            

    
∑   (       (        

 
   

∑   (  
 
   

 

III. Compute    
 

 
  (

    

  
) 

IV. Compute the new weights     (   for all the observations            

    (    
  (  

  
 {

                      (   

                     (   
 

3. Assign a new observation    
       to the class              by using 

the sign of the weighted combination of the base classifiers: 

      (  
         {∑  

 

  (  
    }                      (      
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6.5.2 Extending the AdaBoost algorithm to the K>2 class problem 

The AdaBoost algorithm outlined in Algorithm 6.3 above can also be applied to a 

    class problem, as long as for the resubstitution error rate in (6.16) we have 

     
 

 
                                                       (      

by making the following adjustment to (     :  

      (           
  

∑      (      

 

   

                                          (      

The above class allocation rule means that one now assigns an observation    to the 

class label              that receives the most weighted votes. Without the 

restriction imposed in (6.23), the weights     become negative whenever    
 

 
 leading 

to the failure of the AdaBoost proposal. 

Zhu et al.(2009) further modified the scaling factors (6.17) to 

     (
    

  
)     (                                                    (      

such that    is now positive whenever (         
 

 
. This means that the accuracy rate 

(        of each of the base classifiers                must be slightly better than 

classification by chance in the K-class problem. For    , the scaling factors (6.17) 

and (6.25) are the same since we will now have       in (6.25). A summary of the 

AdaBoost algorithm for a multi-class problem is provided in Algorithm 6.4 (page 91). 

 

6.5.3 Judging variable importance 

Since the boosting estimate of the outcome       (    is a weighted sum of predictions 

by CART based classifiers, variable importance (which we shall denote by        (  ) ) 

is measured using the following formulae:  

       (  )  
 

 
∑        (   )

 

   

                                                 (      

where,    is the weight associated with the      iteration and       (   ) is the CART 

based variable importance measure in equation (5.29) of the predictor variable    in the 
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tree of the      iteration. If         (  )   , then the predictor variable    is not 

considered as being an important variable to include in one’s classification algorithm. 

 

Algorithm 6.4: Multi-class AdaBoost algorithm 
 

1. Initialize:   (    
 

 
 for        . 

2. Repeat for t = 1,2,..., T.        

I. Fit the classification technique (CART in our case) to the learning sample 

weighted by    in order to obtain the classifier      :        

          

II. Compute the weighted error rate        
   (         

    
∑   (       (        

 
   

∑   (  
 
   

 

III. Compute;      (
    

  
)     (     

IV. Compute the new weight     (   for all the observations            

    (    
  (  

  
 {

                      (   

                    (   
 

 

3. Assign a new observation    
       to the class              that get the 

most weighted votes : 

      (  
            

  

∑      (  
   )   

 

   

 

 

 

6.6 Conclusion 

It can be concluded from the above that applying the bagging, random forests and 

boosting procedures to CART destroys its interpretability appeal. This is because there 

will not exist a single ‘combined’ tree to interpret afterwards. Nevertheless, the three 

procedures tapped into in this chapter have a great potential to improve the predictive 

capabilities of an unstable classifier such as CART.  
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CHAPTER 7 

7. Applications and Results 

 

7.1 Introduction 

This chapter makes use of a publicly available dataset that was compiled by Hofmann 

(1994) to demonstrate the concepts that we have been discussing in the previous 

chapters. The dataset is widely known as the ‘German credit data’. The discussion that 

follows essentially attempts to fulfill the research objectives of this study as outlined in 

chapter one. Firstly, a description and preliminary analysis of the dataset is provided in 

section (7.2). Sections (7.3) to (7.10) then focus on the application of each of the 

classification techniques to the credit related dataset and the results obtained. In section 

(7.11), a summary and comparison of the results will be provided before offering our 

conclusion in section (7.12). The analysis is done using the following software 

packages: SPSS (version 21), R-programming language (version 2.5.1) and Microsoft 

Excel (2010 edition). 

 

7.2 The dataset and preliminary analysis 

The German credit dataset used to build the scorecards in this study consists of 1000 

past credit applicants classified as either non-defaulters, denoted by ‘0’, or defaulters, 

denoted by ‘1’. There are 700 non-defaulters and 300 defaulters in the dataset. Each of 

these credit applicants has   twenty measured characteristics, which are displayed in 

Table 7.1 (page 93). We randomly split the dataset into a ‘learning sample’ and a 

‘testing sample’ in the ratio 0.7:0.3 respectively.  

 

The subsequent learning sample contains 489 non-defaulters and 211 defaulters whilst 

the testing sample contains 211 non-defaulters and 89 defaulters. All the scorecards in 

this study are developed using the learning sample. The testing sample is reserved for 

evaluating (or testing) the predictive capabilities of the developed scorecards. Testing 

sample based results give us an indication of how the developed scorecards will perform 

in classifying new credit applicants. 
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Table 7.1: Characteristics of credit applicants 

 

 Characteristic Abbreviation 

 

1 balance of current account bankbal 

2 duration of loan durloan 

3 payment of previous credits payprevdebt 

4 purpose of credit purcred 

5 loan amount loanamt 

6 values of savings or stock savings 

 

7 time employed timeempl 

 

8 instalment in percentage of 

available income 

instalmnt 

9 value of asset valasset 

 

10 age age 

11 further running credits curcred 

 

12 foreign worker alien 

 

13 house ownership hsetype 

 

14 number of previous credits 

at the bank 

 

histcred 

 

15 occupation jobtype 

 

16 number of dependents dependents 

 

17 sex/marital status marital.sex 

 

18 duration in current house durhse 

 

19 guarantor guarantor 

20 telephone ownership tel 

 

 

 

There are seventeen (17) categorical predictor variables in the dataset that were assigned 

an appropriate ordinal value or rank according to a method that is outlined in Appendix 

B. The average rank of each of the 17 categorical predictor variables in the learning 

sample is plotted in Figure 7.1 as a function of non-defaulters and defaulters.  
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Figure 7.1: The average rank of categorical predictor variables as a function of 

defaulters and non-defaulters 

 

A plot of the absolute difference between the average rank assigned to the applicants 

classified as defaulters and those classified as non-defaulters (in ascending order) for 

each of the categorical predictor variables in Figure 7.1 is given in Figure 7.2.  

 

 
 

Figure 7.2: Variable importance as measured by absolute value of the difference 

between average ranks of non-defaulters and defaulters 

 

Intuitively, the bigger the absolute difference between the average ranks of defaulters 

and non-defaulters for a given categorical predictor variable, the more ‘important’ it 

may be in distinguishing between non-defaulters and defaulters.  
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The remaining three continuous predictor variables are; duration of loan in months, 

amount of the loan in German deutsche marks (DM) and age in years. Figures 7.3 to 

Figure 7.5 are box plots of the distribution of these three continuous predictor variables 

as a function of non-defaulters (0) and defaulters (1). 

 

 
 

Figure 7.3: Duration of loan (in months) boxplot 

 

 

As expected, Figure 7.3 reveals that the longer duration based  loans are associated with 

defaulters as evidenced by the higher median value, higher third quartile value and a 

longer upper tail with a maximum value at 60 months. On the other hand, shorter 

duration loans are associated with non-defaulters with a few outlier applicants having 

longer duration of loans. Outlier applicants are those whose behavior deviates 

significantly from the other applicants in the same group (for example applicants 

numbered 484,512,513). 

 

 
 

Figure 7.4: Loan amount in DM boxplot 
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In Figure 7.4, we observe that the median amount of loan taken by both defaulters and 

non-defaulters is similar. However, defaulters have a larger third quartile value and a 

longer upper tail compared to non-defaulters. This is also anticipated because those 

applicants who borrow large amounts of money are likely to default. 

 

Focusing on the age boxplot in Figure 7.5 below, the distribution of the data in the two 

groups is similar, with older people inclined towards being non-defaulters as evidenced 

by the slightly higher median value.  

 

 
Figure 7.5: Age (in years) box plot 

 

Notably, the box plots for loan amount and age have numerous outliers (especially loan 

amount in Figure 7.4) probably because there was a wide variation in the loan amount 

and the age of the applicants in our dataset or it signifies measurement errors. 

 

Throughout the development of the scorecards in the following sections, the 

misclassifications costs are presumed to be constant and equal to one (1) (see, section 

(3.2.3) and section (5.2.5)). In addition, the prior probabilities are computed from the 

learning sample according to the formula given in equation (3.5), giving the results 

shown in Table 7.2. 

                                    Table 7.2: Prior Probabilities for Groups     

Class Number of 

Cases 

Prior 

Probability 

0 489 0.699 

1 211 0.301 

Total 700 1 
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7.3 Linear discriminant analysis 

The development of scorecards in this section follows the theory that we have outlined 

in chapter three. One major assumption is that the observations in class   (     

follow a 20-dimensional multivariate normal distribution with equal population 

covariance matrices. 

 

7.3.1 Bayesian approach 

Using SPSS to implement the Bayesian approach that is outlined in section (3.2), the 

discriminant functions coefficients for a non-defaulter (   ) and a defaulter (   ) 

in Table 7.3 were produced.  

 

Table 7.3: Linear discriminant function coefficients 
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The dimensions in Table 7.3 give rise to the following discriminant functions: 

 

  (                                                              (     

 

  (                                                            (     

 

where,                                   are the characteristics of the     

applicant as given in Table 7.1.  

 

Therefore, a new credit applicant   
        will be classified as a non-defaulter ( ) if 

we have: 

  (   
       (   

       (   
        (   
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(     

                                                                

 

Otherwise, the new applicant will be classified as a defaulter(  . An application of the 

classification rule (7.3) to applicants in our testing sample produced the classification 

matrix that is given in Table 7.4. The table shows that we have managed to achieve an 

error rate of  
(      

   
      , a sensitivity of 43.8% and a specificity of  90%. 

 

Table 7.4: Testing sample classification matrix for the Bayesian LDA 

 

  

defaultstatus 

Predicted Group Membership 

Total   0 1 

Original Count 0 190 21 211 

1 50 39 89 

% 0 90.0 10.0 100.0 

1 56.2 43.8 100.0 

 

 

7.3.2 Fisher’s approach 

Using SPSS to implement Fisher’s LDA on the learning sample produced only one 

canonical discriminant function (because the response variable is binary) whose 

coefficients are given in Table 7.5.  

 

Table 7.5: Unstandardized Canonical Discriminant Function Coefficients 
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The dimensions in Table 7.5 give rise to the following Fisher’s canonical discriminant 

function: 

 (                                                           (     

where,                                   are the characteristics of the     

applicant. 

 

The canonical discriminant function (7.4) can now be used to calculate a discriminant 

score  (    for each applicant    in our learning sample. Table 7.6 show a mean value 

for these scores that we have obtained for the non-defaulters (   ) and defaulters 

(   ) in our learning sample. 

 

Table 7.6: Class means scores 

 

Class Mean score 

    0.361 

    -0.838 

 

According to Table 7.6, if a new applicant’s discriminant score  (    lies close to 

      , then he/she is more likely to be a defaulter than a non-defaulter.  Conversely, if 

the score lies closer to 0.361, the applicant is more likely to be a non-defaulter than a 

defaulter. In practice, a cut-off point for distinguishing between these two classes is 

taken to be the average between the individual groups’ mean scores: 

  
(             

 
                                                (     

such that a new applicant    
        will be classified as a non-defaulter ( ) if: 

                                                       

                                                                  (     

Otherwise, the applicant will then be classified as a defaulter ( ). Applying the 

classification rule (7.7) to applicants in our testing sample produced the classification 

matrix that is given in Table 7.7, which shows that we managed attain an error rate of  

(      

   
      , a sensitivity of 71.9% and a specificity of  73%. 
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Table 7.7: Testing sample classification matrix for Fisher’s LDA 

 

  

defaultstatus 

Predicted Group Membership 

Total   0 1 

Original Count 0 64 25 89 

1 57 154 211 

% 0 71.9 28.1 100.0 

1 27.0 73.0 100.0 

 

 

A link with the Bayesian approach can be made if we specify equal probabilities for our 

two classes. According to the cut-off value in equation (3.12) of section (3.2.2), if the 

prior probabilities were equal, the constant           in the decision rule (7.3) would 

decrease by a factor: 

  (
 ̂ 

 ̂ 
)    (

     

     
)       

since we will now have  ̂   ̂     . This means that the constant in the decision rule 

(7.3) would change to:                  . Thus, if prior probabilities were 

presumed to be equal in the Bayesian classifier (7.3), one would classify a new 

applicant    
    as a non-defaulter( ) if: 

                                                         

(     

                                             

Multiplying equation (7.7) by the proportionality constant         will result in the 

same decision rule as the one in equation (7.8). This verifies our more formal proof in 

section (3.3.3) which states that; the classification rule that has been derived under the 

Bayesian approach becomes equivalent to Fisher’s class allocation rule when we 

assume equal prior probabilities.  

 

Following on our discussion at the end of section (3.3.2), to make Fisher’s classification 

function (7.7) the same with the Bayesian based classification function (7.3) that 
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assumes unequal prior probabilities, one can scale the cut-off point       in the 

Bayesian classifier (7.3) to, 

  
   

     
                                                              (     

and use it  for the classification function (7.7). Thus, a new applicant    
        will 

now be classified as a non-defaulter ( ) if 

                                                           (      

Otherwise,    
    will be classified as a defaulter (1).  

 

It is important to note that multiplying Fisher’s classification function (7.10) by our 

proportionality constant         gives the Bayesian based classification function 

(7.3). The modification done in (7.9) is often used to adjust the cut-off point computed 

in (7.6) in order to create a cut-off point that takes into account the fact that the two 

groups may be unequal in size. Because the two groups used in this study are unequal in 

size (i.e. proportion of non-defaulters greater than proportion of defaulters), for the 

remainder of the study we shall use the results in Table 7.4 as the working classification 

matrix of the LDA classifier when applied to the testing sample. 

 

7.3.3 Optimal scoring approach 

Following the procedure that has been outlined in Table 3.2 of section (3.5), we 

obtained only one optimal regression function coefficients (because the response 

variable is binary) that appear in Table 7.8. 

 

Table 7.8: Optimal scoring based canonical discriminant function coefficients 
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A comparison of Table 7.5 and Table 7.8 reveals that multiplying the optimal scoring 

based unstandardized coefficients in Table 7.8 by a proportionality constant    

       gives Fishers’ LDA unstandardized coefficients in Table 7.5. This verifies the 

more formal proof in section (3.5.3) which shows that Fisher’s and the optimal scoring 

approach to LDA produce the same first eigenvector (which is the vector containing the 

discriminant coefficients). Therefore, proceeding in a similar manner as outlined in the 

previous section for Fisher’s LDA will produce the same classification results since 

according to the proof given in equation (3.37) it is only the direction of the vector that 

matters rather than its magnitude. 

 

7.3.4 Judging variable importance 

The information in Table 7.9 includes standardized canonical discriminant coefficients 

that can be used to determine the unique contribution that is being made by an 

individual predictor variable in the multivariate model. 

 

Table 7.9: Standardized discriminant function coefficients 
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A plot of the absolute values of the standardized discriminant coefficients, in decreasing 

order, is provided in Figure 7.6. The greater the absolute value of the standardized 

discriminant coefficients, the more important the predictor variable is being considered 

to include in one’s classification algorithm. 

 

Figure 7.6 reveals that an applicant’s bank balance (bankbal) is considered as being a 

very important characteristic to include in the classification model. One the other hand, 

the age of an applicant is not considered as a very ‘important’ characteristics when 

attempting to distinguish defaulters from non-defaulters. 
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Figure 7.6: Ranking variable importance using absolute values of standardized 

canonical coefficients 

 

 

7.4 Quadratic discriminant analysis 

The ‘MASS’ package contained in R was used to develop the QDA based scorecard 

using the learning sample. Table 7.10 shows the classification matrix that result   from 

applying the developed QDA model to our testing sample applicants. The table shows 

that we have managed to realize an error rate of  
(      

   
      , a sensitivity of 57.3% 

and a specificity of 81.0%.  

 

Table 7.10: QDA classification matrix for the testing sample 

 

  

defaultstatus 

Predicted Group Membership 

Total   0 1 

Original Count 0 171 40 211 

1 38 51 89 

% 0 81.0 19.0 100.0 

1 42.6 57.3 100.0 
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7.5 Flexible discriminant analysis 

Flexible discriminant analysis (FDA) was implemented on the learning sample using the 

‘mda’ package contained in R. In using the MARS procedure, the forward process stops 

when the change in the RSS of the model caused by adding a term is less than 0.001 and 

a backward pruning procedure is employed using a penalty value of     for the GCV 

criterion. Depending on the parameter   that is being used by the MARS model to 

govern the degree of interaction of the hinge functions allowed, five FDA models where 

created. On applying the created models to the testing sample applicants, the results in 

Figure 7.7 were obtained.   

 

Figure 7.7: FDA models testing error rates 

 

According to Figure 7.7, the FDA model with MARS functions of degree one (additive 

model) is the best. As the complexity of the MARS functions increases, the accuracy of 

the FDA model decreases and then remains constant for values B greater than or equal 

to four. The dashed reference line in Figure 7.7 at a value of 0.237 is the testing error 

rate of the FDA model that uses multivariate linear regression functions, which is 

equivalent to the optimal scoring approach to LDA. Figure 7.7 suggests that the FDA 

models with MARS functions one, two and three are the most appropriate because they 

improve upon the testing error rate of the LDA classifier we have developed.  

 

Table 7.11 contains a summary of the error rate, sensitivity and specificity of these 

appropriate models when applied to testing sample applicants. 
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Table 7.11: FDA models performance 

 

Model Error rate Sensitivity Specificity 

FDA (MARS, B=1) 0.210 46.1% 92.9%. 

FDA (MARS, B=2) 0.227 51.7% 88.2%. 

FDA (MARS, B=3)       49.4% 88.2% 

 

7.6 Mixture discriminant analysis 

Mixture discriminant analysis (MDA) was implemented on the learning sample using 

the ‘mda’ package contained in R. Following the procedure that has been outlined in 

Algorithm 4.3, we obtained six mixture discriminant analysis (MDA) models by 

varying the number of latent subclasses per class from one to six. On applying these 

models to our testing sample applicants, we obtained the results in Figure 7.8 depending 

on the number of latent subclasses per class specified in the model.  

 

Figure 7.8: MDA using Optimal Scoring (multivariate linear regression functions) 

 

It is important to note that the MDA model with a single group centroid (one latent 

subclass per class) is the LDA model produced by optimal scoring, which corresponds 

to the dashed reference line in Figure 7.8 at a testing error rate value of 0.237.  We 

select the MDA model with two latent subclasses per class as the most appropriate 

model, because, it improves the testing error rate of the LDA classifier we have 

developed. 

1 2 3 4 5 6

0
.2

2
0

.2
3

0
.2

4
0

.2
5

0
.2

6

Number of latent subclasses per class

 T
e

s
ti
n

g
 e

rr
o

r 
ra

te



 

106 

 

Table 7.12 shows the classification matrix when the testing sample applicants are 

classified using the MDA (2 subclasses, linear regression) model we have chosen to be 

the most appropriate. The table reveals that we have managed to get a testing error rate 

of  
(      

   
     , a sensitivity of 48.3% and specificity of 89.1%.  

 

Table 7.12: Testing sample classification matrix for the MDA (2 subclasses, linear 

regression) model 

 

  

defaultstatus 

Predicted Group Membership 

Total   0 1 

Original Count 0 188 23 211 

1 46 43 89 

% 0 89.1 10.9 100.0 

1 51.7 48.3 100.0 

 

 

Figure 7.9 is a plot of observations in the learning sample against the first two canonical 

discriminant functions (since they account for most of the variation in the data) from the 

MDA (2 subclasses, linear regression) model we have chosen to be most appropriate. 

Non-defaulters (0) are plotted in red and defaulters (1) in green. The latent subclass 

centroids are circled.  

 

Figure 7.9: Plot of the learning sample using MDA coordinates  
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7.7 Classification and regression trees 

The stages in the development of a classification tree for credit scoring using a real life 

credit-related dataset is illustrated in this section, as outlined in chapter five. The 

Classification and Regression Tree (CART) procedure is implemented on the learning 

sample using the ‘Rpart’ package contained in R. 

 

7.7.1 Growing the tree 

The unpruned classification tree in Figure 7.10 was constructed from the learning 

sample using the method outlined in section (5.2).  

 

Figure 7.10: Unpruned credit scoring classification tree 

 

The Gini index was used as the impurity function. The standard set of questions used to 

split each non-terminal node is shown. If the response to the splitting rule is affirmative, 

the case is assigned to the left child node. If otherwise, a case is assigned to the right 

child node. Since it is not known which node will become terminal after pruning, each 

node is assigned a class label according to which group is predominant. For example the 

root node contains 489 non-defaulters (0) and 211 defaulters (1); therefore, it is 

assigned the class label ‘0’.  
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A node becomes terminal if the change in the Gini index at node t caused by the making 

the split    is less than a factor, cp=0.01, where cp is the cost-complexity parameter. In 

addition, a node is not split further if it contains less than 20 applicants. Before we use 

the tree to classify new observations, it is advisable to prune it first in order to remove 

unimportant branches. 

 

7.7.2 Pruning the Tree 

Table 7.13 shows the cost-complexity parameter (CP) value, number of splits and the 

relative error for each of the subtrees               obtained from cost-

complexity pruning.  

 

Table 7.13: Cost-Complexity pruning 

  

Subtree CP-value Number of splits Relative error 

6 >0.054502 0 1 

5 0.054502 4 0.77725 

4 0.028436 6 0.72038 

3 0.018957 8 0.68246 

2 0.014218 10 0.65403 

1 0.011848 12 0.65033 

0 0.01 15 0.59716 

 

The number of leaves (or terminal nodes) is obtained by adding one to the number of 

splits. The relative error is the standardized re-substitution error estimate of each of the 

subtrees such that the root node has an error rate of one. Since the root node makes 211 

out of 700 misclassifications, we multiply the relative errors by 211 to get the total 

number of misclassifications for a particular subtree.  

 

The CP table is printed from the smallest tree with no splits (root node) to the largest 

tree with 15 splits (16 terminal nodes). The pruned subtrees associated with the CP 

values in Table 7.13 are shown in Figures 7.11 to 7.15. Note that subtree six(    

        ) is just a root node and subtree zero (       ) is the original tree in Figure 

7.10. All the subtrees are nested around the original tree. 
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Figure 7.11: Subtree 1 with CP = 0.011848 

 
Figure 7.12: Subtree 2 with CP = 0.014218 
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Figure 7.13: Subtree 3 with CP = 0.018957 

 

 

 
Figure 7.14: Subtree 4 with CP = 0.028436 
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Figure 7.15: Subtree 5 with CP = 0.054502 

 

7.7.3 Selecting the Optimal Tree 

Testing sample validation was used to determine the optimal size of the tree. A plot of 

the change in the resubstitution error estimate as the number of terminal nodes (size of 

the tree) increases is shown in Figure 7.16.  

 

Figure 7.16: Evolution of the learning error rate against number of terminal nodes 
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Figure 7.16 indicates that as the size of the tree increases, the classification error rate 

decreases monotonically for the learning sample. This corresponds to the proof of the 

theorem in section (5.2.4) which shows that a large tree will always give the best fit to 

the learning/training dataset.  

 

In contrast, a plot of the change in the classification error rate when classifying 

applicants in the testing sample as the size of the tree increases that is given Figure 7.17 

shows that the classification error rate decreases sharply. It then starts oscillating in a 

zigzag manner. We select the tree with five terminal nodes, subtree five in Figure 7.15, 

as the optimal size of the tree because it gives the lowest testing error rate. 

 
 

Figure 7. 17: Evolution of the testing error rate against number of terminal nodes 

 

7.7.4 Scoring new credit applicants 

The chosen optimal tree is shown in Figure 7.18 and below can be used to classify new 

applicants as follows: 

 

1. If a new applicant is assigned a ‘bank balance’ rank that is greater than or equal 

to 2.5, immediately classify the applicant as a non-defaulter (0); 

2. If a new applicant is assigned a ‘bank balance’ rank that is less than 2.5 and a 

‘repayment of previous debts’ rank that is less than 1.5, classify the applicant as 

a defaulter (1); 
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Figure 7.18: Optimal classification tree for scoring new credit applicants 

 

 

3. Otherwise, if a new applicant is assigned a ‘bank balance’ rank less than 2.5, a 

rank greater than or equal to 1.5 for ‘payment of previous debts’ and the 

‘duration of the loan’ the applicant require is less than 22.5 months, classify the 

applicant as a non-defaulter (0). However, if the ‘duration of the loan’ the same 

applicant requires is more than or equal to 22.5 months and the ‘instalment’ rank 

is less than 2.5, classify the applicant as a non-defaulter (0). Otherwise, if the 

‘instalment’ rank is greater than or equal to 2.5, the applicant is classified as a 

defaulter (1). 

One obvious advantage of the CART based scorecard is its simplicity. Furthermore, the 

optimal decision tree model in Figure 7.18 makes decisions based on only four out of 

the twenty-predictor variables. This is a huge dimension reduction, which results in 

decisions being reached quickly.  

 

Applying the testing sample to the optimal tree above produced the classification matrix 

in Table 7.14. 
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Table 7.14: Classification matrix for classifying testing sample applicants using the 

optimal classification tree 

 

  

defaultstatus 

Predicted Group Membership 

Total   0 1 

Original Count 0 186 25 211 

1 58 31 89 

% 0 88.2 11.8 100.0 

1 65.2 34.8 100.0 

 

The table above reveals that we have managed to accomplish a testing error rate of 

 
(      

   
      , a sensitivity of 34.8% and a specificity of 88.2%. 

 

7.7.5 Judging variable importance 

The overall improvement to the impurity of the optimal tree in Figure 7.18 that is 

attributed to each predictor variable in the learning algorithm is shown in Figure 7.19 

below.  

 

 

Figure 7.19: Ranking variable importance using CART 

 

An applicant’s bank balance is by far the most important predictor variable in the 

optimal classification tree. If the tree is allowed to grow bigger, then more predictor 

variables have a chance to play a role in the tree construction process and not receive 

zero improvement values. 
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7.8 Bagging 

In this section, we use the ‘adabag’ package contained in R to implement the bagging 

procedure on the learning sample, using CART as the base classifier. In Figure 7.20, 

applicants in the testing sample are being classified using the bagging estimate given in 

equation (6.2) as more trees B are combined. The dashed reference line at a value of 

0.283 is the testing error rate of the single unpruned classification tree in Figure 7.10. 

 
 

Figure 7.20: Evolution of the Testing error against number of trees 

 

A visual inspection of Figure 7.20 shows that the bagging procedure significantly 

improved the accuracy of a single unpruned tree. It is suggested in Figure 7.20 that 

over-fitting occurs when more than five trees are used for the bagging estimate. The 

zigzag pattern that one observes in the evolution of the error rate can be attributed to the 

random nature in which the bootstrap samples are being generated. We select five trees 

as the optimal number of trees to ‘bag’ because that is when the testing error rate is 

lowest. 

 

The classification matrix is shown in Table 7.15 when this optimal bagging estimate 

composed of five trees is used to classify applicants in the testing sample.  
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Table 7.15: Classification matrix of running the testing sample down the optimal 

bagged estimate 

 

  

defaultstatus 

Predicted Group Membership 

Total   0 1 

Original Count 0 198 13 211 

1 48 41 89 

% 0 93.8 6.2 100.0 

1 53.9 46.1 100.0 

 

The classification matrix above shows that we managed to attain an error rate of 

(      

   
      , a sensitivity of 46.1% and a specificity of 93.8 %. 

 

The figure below shows the average improvement, in descending order of importance, 

attributed to each of the predictor variables in the optimal bagging estimate. 

 

 
 

Figure 7.21: Ranking variable importance in the bagging estimate 

 

7.9 Random Forests 

The random forests procedure was implemented on the learning sample using the 

‘randomForest’ package that is contained in R. The main tuning parameters are the size 

of the forest B and the number of predictor variables to consider at each split, m. 

Initially, default values of       trees and               [√  
 

]    predictor 

variables are used to produce the error evolution in Figure 7.22.  
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Figure 7.22: Bootstrap error rates against number of trees 

 

The average ‘out of bag’ error rate (OOB-ER), traced by the middle black line, 

stabilizes at a value of approximately 0.2443 after about 200 trees are used in the 

random forests procedure. Consequently, we fix the number of trees for the random 

forests procedure at B=200. The top red line in Figure 7.22 traces the fraction of 

defaulters incorrectly classified as non-defaulters (a miss) which converges at an error 

rate of approximately 0.6066. The bottom green line traces the fraction of non-

defaulters incorrectly classified as defaulters (a false alarm), which converges at an 

error rate of approximately 0.0879. 

 

Figure 7.23: Change in average OOB error rate as the number of predictor variables 

selected at each node varies 
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Figure 7.23 shows that varying the values of m from 1 to 20 with the size of the forest 

fixed at       reaches a minimum average OOB-ER estimate at a value     . 

Consequently, we chose as appropriate the random forest model with 200 trees and 9 

predictor variables at each node being randomly selected out the possible     . 

 

The classification of the applicants in the testing sample using a random forests model 

with parameter values       and     produced the classification matrix in Table 

7.16. The table shows that we have managed to realize a testing error rate of  
(      

   
 

      , a sensitivity of 46.1% and a specificity of 87.7%.  

 

Table 7.16: Classification matrix of running the testing sample through the appropriate 

random forest model 

 

  

defaultstatus 

Predicted Group Membership 

Total   0 1 

Original Count 0 185 26 211 

1 48 41 89 

% 0 87.7 12.3 100.0 

1 53.9 46.1 100.0 

 

 

A plot of variable importance is shown in Figure 7.24 below 

 

 

Figure 7.24: Mean decrease in Gini 
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The higher the value associated with the ‘mean decrease in Gini’, the more important 

the predictor variable is. There is a significant break between the top four-important 

predictor variables and the other variables.  

 

7.10 Boosting 

The boosting procedure was implemented on the learning sample using the ‘adabag’ 

package that is contained in R. Figure 7.25 shows the evolution of the testing error rate 

of the combined classifier, as the number of iterations increases. The dashed reference 

line indicates the error of the single unprunned tree in Figure 7.10.  

 

Figure 7.25: Evolution of testing error rate against number of trees 

 

A plot of the change in the testing error rate as the number of iterations increases that is 

given in Figure 7.25 shows that the testing error rate decreases sharply, reaching its 

lowest point after only three iterations.  Thereafter, it starts to oscillate in a zigzag 

fashion. Consequently, we have selected three iterations as an optimal for boosting the 

CART based scorecards that we have been developing. 

 

Table 7.17 shows the classification matrix obtained when the chosen optimal ‘boosted’ 

CART model is used to classify applicants in the testing sample. The table shows that 

we have managed to achieve a testing error rate of  
(      

   
       sensitivity of 48.3% 

and specificity of 89.1%.  
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Table 7.17: Classification matrix for the optimal boosted CART model for the testing 

sample 

  

defaultstatus 

Predicted Group Membership 

Total   0 1 

Original Count 0 188 23 211 

1 46 43 89 

% 0 89.1 10.9 100.0 

1 51.7 48.3 100.0 

 

Figure 7.26 shows the weighted average improvement, in descending order, of the each 

of the predictor variables in the optimal boosting estimate. The greater the weighted 

average improvement value, the more the predictor variable is considered as being an 

important variable to include in one’s classification algorithm. 

 

 

 

Figure 7.26: Ranking variable importance in the boosting estimate 
 

 

7.11 Summary and comparison of results 

In this section, we summarize and compare the performance of the scorecards we 

developed in section (7.3) to (7.10) in terms of classification error rates, sensitivity and 

specificity. In addition, the overall discriminatory power of the developed scorecards is 

compared using the area under the ROC curve (AUC). The concept behind these four 

model performance measures is discussed in section (2.5). 
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7.11.1 Classification error rates 

A summary of the classification error rates that we obtained when the developed 

scorecards were used to classify the ‘new’ applicants contained in the testing sample is 

displayed in Figure 7.27.  In the figure, the best performing scorecard (one with the 

lowest classification error rate) is at the top and the worst performing scorecard (one 

with the highest classification error rate) is at the bottom.  

 

 

Figure 7.27: Comparison of the classification error rates of all the scorecards when 

classifying testing sample applicants 

 

The bagging procedure, with the lowest testing error rate of 0.203, is the best scorecard. 

The other scorecards all seemed to perform equally as well except QDA and CART.  

 

7.11.2 Sensitivity 

A summary of the sensitivity (in descending order) of the scorecards used in this study 

when used to classify the new applicants in the testing sample is shown in Figure 7.28. 

In credit scoring, a lender is more interested in how well the scorecard can correctly 

identify defaulters (sensitivity) since they pose more risk to the firm.  

 

Therefore, the best method to use to identify defaulters is QDA with a sensitivity of 

57.3%. 
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Figure 7.28: Comparison of the sensitivity of all the scorecards when classifying testing 

sample applicants 

 

7.11.3 Specificity 

Figure 7.29 shows the specificity (in descending order) of the scorecards used in this 

study when classifying the new applicants in the testing sample. The higher the 

specificity, the greater the percentage of non-defaulters that are being correctly 

identified is. In credit scoring however, specificity is not as serious a problem as 

sensitivity because most lenders prefer to develop a scorecard that is good at detecting 

defaulters rather than one that is good at detecting non-defaulters. The most appropriate 

method to use to identify non-defaulters is bagging with a very high specificity of 

93.84%. 

 

 

Figure 7.29: Comparison of the specificity of all the scorecards when classifying testing 

sample applicants 
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7.11.4 Discriminatory power 

Figure 7.30 shows the ROC curves that result when the testing sample is passed through 

the CART based scorecards (bagging, random forests and boosting) as the parameters of 

the classification rule varies.  

 

Figure 7.30: ROC curves for CART, bagging, random forests and boosting when 

classifying testing sample applicants 

 

Curves closer to the top-right corner represent better scorecards since they imply a 

higher AUC value. The diagonal broken line represents a model that is as good as 

classification by chance. All the CART based scorecards are better than random 

guessing. The numbers in brackets on the bottom left corner in Figure 7.30 are AUC 

values of the corresponding scorecards. The random forest technique has the greatest 

discriminatory power (AUC=0.8021). Evidently, all the techniques discussed in chapter 

six (bagging, random forests and boosting) have quite significantly improved the 

discriminatory power of CART.  

 

Figure 7.31 below shows the ROC curves that result when the testing sample is passed 

through the LDA based scorecards (QDA, FDA and MDA) as the parameters of the 

classification rule varies. 
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Figure 7.31: ROC curves for discriminant analysis when classifying testing sample 

applicants 

 

All the discriminant analysis based scorecards we have developed in this study perform 

better than classification by chance (as represented by the diagonal broken line). MDA 

(2 subclasses, linear regression) with an AUC of 0.8140 is the best scorecard among all 

the models developed as extensions of LDA in chapter four. Interestingly, LDA has the 

second highest AUC value of 0.7958, suggesting that it may be a competitive classifier 

as compared to some its extensions.  

 

A summary plot of the AUC values (in descending order) of all the models when 

classifying testing sample applicants is shown in Figure 7.32. The MDA (2 subclasses, 

linear regression) model with an AUC of 0.814 has the greatest discriminatory power 

among all the scorecards that we have developed in this study.   
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Figure 7.32: AUC for all the scorecards when classifying testing sample applicants 

 

7.12 Conclusion 

In respect of the research objectives of this study set in the introductory chapter, it is 

imperative that we address a set of key questions arising therein. Such questions will be 

addressed based on the empirical results of this study. The questions in issue include; 

what the best credit-scoring model is and what the effects of techniques that improves 

upon the performance of LDA and CART are. It is also of paramount importance to 

consider what the most important predictor variables are. As such, the exercise will 

serve as a barometer that tests the effectiveness of the techniques that we have been 

developing in theory, thus satisfying the objectives of this study. 

 

7.12.1 The best credit scoring model 

In order to determine the ideal credit-scoring model from among the 10 different 

scorecards we have managed to create in this study, a score of 10 will be assigned to 

that scorecard that has the lowest error rate. The same method of scoring will be used 

for the other categories of predictive performance that the researcher is interested in, 

namely, the model’s sensitivity, specificity and discriminatory power when applied to 

the testing sample. The points allocated to each scorecard using this criterion are shown 

in Table 7.18. 
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Table 7.18: Point system for ranking overall performance of the scorecards 

 

 

 

According to the results that have been given in the above table: 

 bagging had  the lowest error rate and highest specificity ranking, 

 QDA had  the highest sensitivity ranking and  

 MDA (2 subclasses, linear regression) had the greatest discriminatory power 

ranking. 

One could proceed further by computing a row sum for all the points that have been 

assigned to the scorecards in Table 7.18, and then choose that method that produces the 

highest rank sum as being the best method to use. This idea is illustrated in Figure 7.33, 

where MDA (2 subclasses, linear regression) delivers the best credit scoring model 

overall. ‘Bagged’ classification trees also performed equally well according to this 

criterion. 

 

However, one needs to note that this method of arriving at a best scorecard does not 

necessarily take into account the risk appetite of a lender. For example, a risk averse 

lender would prefer a scorecard that has high sensitivity because such a method would 

be good at detecting defaulters. Thus, a risk averse lender would choose QDA as the 

most appropriate credit-scoring model among the scorecards that we have developed.  

Error rate Sensitivity Specificity
Discriminatory 

power

CART 1 1 4 1

Bagging 10 5 10 4

Random forests 5 2 9 9

Boosting 7 6 5 2

LDA 3 3 7 8

QDA 2 10 1 7

FDA(MARS, B =1) 4 4 8 6

FDA (MARS, B=2) 9 9 2 5

FDA(MARS, B =3) 6 8 3 3

MDA(2 subclasses, linear regression) 8 7 6 10

                  Scorecard

Testing sample validation model performance measure ranking
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Figure 7.33: Comparison of overall performance of the scorecards 

 

Similarly, a lender who wants to maximize income would prefer a scorecard that makes 

use of ‘bagged’ classification trees since the technique has a high specificity value and 

therefore performs well when attempting to identify a non-defaulter. 

 

Because the structure and logic behind CART is easy to understand, a credit analyst 

may want to choose this method for classifying a new applicant. The results in this 

section however, indicate that CART is the worst performing scorecard amongst all the 

credit-scoring models that we have developed in this chapter.  

 

7.12.2 The effect of techniques for improving the performance of LDA and CART 

The accuracy of CART, as assessed using four measures: a classification error rate, a 

sensitivity measure, a specificity measure and the area under the ROC curve (AUC), 

improved quite significantly on applying the bagging, random forests and boosting 

procedures in chapter six.  

 

It is also important to note that LDA could still be a competitive classifier, without 

having to use some of its extensions discussed in chapter four (QDA, FDA and MDA). 

This is evidenced by its high discriminatory power as measured by its AUC value (see 

Figure 7.32).  
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7.12.3 The most important predictor variables 

Using the same method of ranking that we have used in section (7.12.1) for choosing 

the best scorecard, 20 points will be assigned to the best predictor, 19 points to the next 

best predictor and so on. If this sequence of assignment is followed, 1 point will be 

assigned to the worst predictor variable. Consequently, if a predictor variable does not 

contribute anything to the model it will receive zero points. The points that have been 

allocated to all the applicants’ characteristics based on this scoring system are shown in 

Table 7.19, together with the total number of points they received (in descending order).  

 

Table 7.19: Point system for ranking overall variable importance 

 

 
 

 

From the results in the table above, one can observe that the balance on an applicant’s 

current account is undoubtedly the most important predictor variable to include in one’s 

credit scoring model. The duration of the loan, payment of previous credits and loan 

amount are also very important predictor variables. The following characteristics may 

not be important enough to include in one’s scorecard; telephone ownership, being a 

foreign worker, number of previous credits at the bank and number of dependents. 

 

 

 

 

 

Characteristic CART Bagging Boosting Random Forests LDA Total points

Balance of current account 20 20 20 19 20 99

duration of loan 19 18 18 17 17 89

payment of previous credits 18 17 17 16 19 87

Loan amount 16 19 19 20 8 82

Value of asset 15 15 10 13 13 66

Installment in percentage of available income 12 10 13 12 18 65

Values of savings or stock 17 8 8 11 16 60

Time employed 0 16 15 14 14 59

Purpose of credit 11 14 6 15 6 52

Age 0 13 16 18 1 48

House ownership 13 6 5 7 15 46

Sex/marital status 14 7 7 8 9 45

Duration in current house 10 4 11 10 2 37

Occupation 0 9 14 9 5 37

Guarantor 0 12 9 4 7 32

Further running credits 0 0 12 6 12 30

Telephone ownership 0 11 0 5 4 20

Number of previous credits at the bank 0 0 0 3 11 14

Foreign worker 0 0 0 1 10 11

Number of dependents 0 5 0 2 3 10
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CHAPTER 8 
 

8. Summary and Conclusion 
 

 

8.1 Summary 

The core of this research was to examine the use of classification techniques to model 

credit risk. This study was broken down into eight chapters. At the beginning of this 

study, we set out to model credit risk using one parametric and one non-parametric 

classification technique, as our main objective. After developing these credit-scoring 

models, also called scorecards, the second objective was to improve their predictive 

capabilities. In the process of creating these scorecards, determination of baseline 

demographic characteristics that are considered as being important variables to include 

in one’s classification algorithm became the thrust. To achieve the aforementioned 

objectives, the first phase was to explore the theoretical framework of various 

classification techniques in order to be able to develop and apply them appropriately. 

The second phase saw the creation of the credit scoring models discussed in theory 

using a real life credit-related dataset and thus, their performance assessed.  

 

8.2 Results and Conclusion 

The study revealed that there is no single ideal scorecard for modelling credit risk. 

Therefore, choosing the most appropriate credit-scoring model is dependent on the aims 

and objectives of the lender, the details of the problem and the data structure. 

Techniques for improving the accuracy of classifiers discussed in this study were 

effective as well. Since the goal of credit scoring is to improve the quality of the 

decisions when issuing loans, any slight increase in the accuracy of a scorecard will 

translate into huge profits considering that many of these loans are usually issued. In 

addition, the variable importance measures generally produced consistent results. The 

knowledge of important characteristics is essential for the development of better 

scorecards and for policy implementation. 

 

More so, we gathered that there are some limitations and challenges associated with 

credit scoring. Firstly, because the scorecards developed in this study are based on a 

sample drawn from a particular population. These may not perform well if used to score 

a different population. As a case in point, the sample used to develop the scorecards in 
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this study contains pre-screened then accepted credit applicants, who later turned out to 

be either defaulters or non-defaulters. This suggests that such a sample would contain 

more non-defaulters than defaulters since those apparent defaulters would have been 

rejected during the pre-screening stages. Resultantly, a credit-scoring model developed 

on such a dataset may not perform well when applied to the general population (which 

includes those excluded in the pre-screening process). However, the scorecard will still 

perform well when used to score pre-screened credit applicants. 

 

The other limitation that came to the researcher’s attention in relation to the credit 

scoring models developed in this study is that we are using historic data to predict the 

future. The trends and patterns in the general population are susceptible to change over 

time which consequently affects the accuracy of scorecards developed based on a 

sample of past credit applicants. Yet again, it poses another challenge in that there is a 

possibility of prospective borrowers manipulating the system in a bid to improve 

characteristics considered as being important in determining creditworthiness. Some 

companies have since been created to help borrowers improve their credit scores. 

 

This study also revealed that credit scores and/ or posterior probabilities could be used 

in other quantitative analysis of credit risk. For example, the posterior probability of 

default (PD) is a key parameter in the estimation of econometric capital under the 

BASEL II regulations for banks (Engelmann & Rauhmeier, 2006). This result is a 

recommendable approach that can be adopted by financial institutions. 

 

Furthermore, they can be used `to determine a fair price to charge prospective borrowers 

where an applicant with a low credit score is charged a higher interest rate compared to 

one with a high credit score. Lending institutions can also use credit scores to set credit 

limits. In this case, a person with a high credit score is eligible to borrow more money 

as compared to the one with a lower credit score. Furthermore, the loans can be divided 

into different portfolios based on their risk levels (for example high, medium and low 

risk loans), as measured by default probabilities or credit scores and thus managed 

separately. Such risk-based credit management and pricing techniques should shield 

lenders from huge losses in the event of defaults.  
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Having considered all the limitations recorded, the premise of this research, which 

acclaims credit scoring as an undoubtedly essential and efficient tool for good credit 

risk management, stands out. This in turn is crucial for the survival, competitiveness 

and profitability of any lending institution thus the growth of the financial markets at 

large. 

 

8.3 Challenges and Recommendations 

The major limitation was acquiring a relevant and current credit-related dataset to work 

with. The reason for this impediment was that most lending institutions were very 

reluctant to disclose such information, apart from the collection of a credit-related 

dataset itself, being expensive. The rationale for this non-disclosure is that such a 

dataset may contain sensitive information. Moreover, because a dataset containing 

default patterns and trends of borrowers is the key ingredient to constructing a good 

scorecard, which in turn gives the lender a competitive advantage over other lenders, 

lenders are very protective of such datasets. To overcome the dataset challenge, a 

publicly available dataset containing 1000 past credit applicants was used.  This dataset 

included past credit applicants who were granted loans and later turned out to be either 

defaulters or non-defaulters. Albeit the encountered impediment, the researcher sought 

for an alternative.  

 

Even though there is no single ideal credit-scoring model, we recommend that lending 

institutions consider various scorecards that can handle simple to complex data 

structures. These range from simple and  conventional classification techniques such as 

LDA, QDA and CART to advanced, exotic and computer intensive techniques such as  

FDA, MDA, random forests, boosting and bagging. CART may be a better tool when 

the lender’s goal is simply to create an easy to understand and interpret credit-scoring 

model. For predictive purposes, the researcher recommends that CART be strengthened 

by the bagging, random forests and/or boosting procedures.  

 

8.4 Future Research 

Future studies on credit scoring could focus on an automatic method of updating the 

credit scoring models, which takes into account current information on the performance 

and behavior of existing loan holders. Future research could also focus on using more 

than two class outcomes where the following outcomes are being considered: default, 
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partially default or fully default. One could also include those applicants denied credit 

during the pre-screening process in the development of the credit scoring models. 

Prospective research should also aim to incorporate misclassification costs into the 

modelling approach to reflect the risk appetite of the lenders. Such prospective 

researches could effectively overcome some of the limitations and challenges in the 

discipline and hopefully contribute meaningfully to a healthy financial credit market.   
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Appendix A: The EM algorithm 
 
 

A.1 Introduction 

In section 4.4 (page 55) we introduced a technique called the the Expectation-

Maximization (EM)-algorithm as a means of estimating the parameters    

                  of the following Gaussian Mixture Model (GMM) (where we 

assumed equal covariance matrices i.e.      ): 

 (           ∑     (           

  

   

                               (     

The aim of this section is to; describe the maximum-likelihood parameter estimation 

problem for GMMs, find a solution to this problem using the EM algorithm and show 

how this procedure give rise to the well-known parameter estimates of the mean and 

covariance matrix used for the parametric classification procedures in chapter three and 

four, viz: 

 ̅      
 

  
∑   

    

                     

    
 

    
∑(    ̅  

    

(    ̅  
  

 

A.2 The maximum likelihood estimation problem 

The parameter estimates                 of the GMM in (A.1) are computed by 

maximizing its likelihood function, 

 (      ∏ (         

 

   

 ∏[∑    (           

  

   

]

 

   

                     (     

with respect to  .  

Because the natural logarithm function is monotonic, we need only find values of   that 

maximizes: 
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 (          (      ∑   [∑    (         

  

   

]

 

   

                                (     

However, the summation of the log terms makes (A.3) difficult to maximize directly. 

 

A.3 The maximum likelihood estimation solution using the EM algorithm 

The conventional and appropriate method for computing the maximum-likelihood 

estimates (MLEs) for mixture distributions is the EM-algorithm (Bilmes, 1998; 

Dempster et al., 1977).  

 

The EM-algorithm is a technique used to find the MLE of parameters of incomplete 

datasets or datasets with missing variables such that by assuming that our dataset has 

additional variables that are missing, we can use the technique to estimate parameters of 

likelihood functions that are complex. 

 

Let                be the set of independent and identically (i.i.d) observations, 

which we shall call the ‘incomplete dataset’, where 

 (             (             (         

Similarly, let                be a set of i.i.d missing observations such that our 

‘complete dataset’ is        . In addition, let the joint distribution function of the 

complete dataset be  (      .  

 

Consequently, the complete-data likelihood function would be given by, 

 (        (       ∏ (        

 

   

                        (     

and the incomplete-data likelihood function would be given by 

 (      (     ∏ (     

 

   

 ∏[∑    (           
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           (     
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Because   is unknown, the complete-data log-likelihood is a random variable. Thus, the 

first step in the EM algorithm is to find the expectation of the complete-data log-

likelihood with respect to  , given the observed data   and the current parameter 

estimates    (   
     

     
   at the     iteration, i.e. 

        (             ∑     (        (       

 

   (           (     

where,   is the new set of parameters that will maximize  (     . The computation 

of the expectation of the complete-data log-likelihood is known as the E-step.  

 

The next step is to find the parameters    that maximize the expectation of the 

complete-data log-likelihood (A.6), i.e. 

        
 

  (                                                        (     

This implies that, we need new parameter estimates   such that,  

 (       (                                                                        (     

for all,           iterations. The computation of new parameters   that maximize 

the expectation of the complete-data log-likelihood is known as the M-step.  

 

The EM-algorithm finds the optimal parameter estimates   that maximizes incomplete-

data likelihood function (A.5) by oscillating between the E and M steps until   

converges. 

 

A.3.1 Convergence property of the EM algorithm 

Finding the parameter estimates   that satisfy (A.8) will result in the log-likelihood 

function being maximized, viz: 

 (       (        (      (                                   (     

Proof 

From probability theory, 

     (           
 (      

 (  
  

 (      

 (    
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 (  
                   (      
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  (         (        (        (        (                     (      

  (       
 (      

 (      
                                   (      

The incomplete-data log-likelihood given current parameter estimates    can now be 

expressed as: 

 (          (      

      (       ∑ (       
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where, 

 (       ∑     (         (       

 

                                         (      

and  (       follows from equation (    . 

 

On the other hand, the incomplete-data log-likelihood given the new parameter 

estimates   is: 
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|    )}                                                         



 

144 

 

By Jensen (1906)’s inequality we have the following result for a convex function   : 

   (       (    

such that, 
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Combining, the equations(    , (     and (      we have, 

 (       (       (                                                    (       

    (        (                                                  (      

    (                                                                             (       

                    (      (      

 

A.3.2 Computing the parameter estimates for Gaussian Mixture Models  

Dropping the subscript   on the GMM in (A.1) that label the     class for which the 

parameter estimates for the           latent subclasses are being computed, 

consider a problem where we want to find the parameter estimates of the following 

GMM  

 (        ∑   (      
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where    ( ̅      are the parameter estimates of the      component Gaussian 

distribution. The main challenge in estimating the parameter estimates   (       is 

that the     component generating the observation       is unknown.  

 

Let, 

   {
                                                        

 
                                                                                           

 

such that,  

     
 {

                       
 

                     
                                                                              (      

If  the     component generating    is known (i.e.      
  ), the complete-data log-

likelihood (     would be, 
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where,    
  (      can be thought of as the prior probability (if   is known) of the 

    case being generated by the     mixture component (i.e.     ). In addition, 

   
(  |   

)    (         is the probability density function of the observation    

when      and the parameter estimates   are known. Bayes’ theorem allows one to 

write  
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           (      

as the probability density function of the latent observations                given 

the observations                and the parameter estimates    at the     iteration. 

Consequently, 
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1. E-STEP: 

Inserting equations (A.18) and (A.20) into the expectation of the complete-data log-

likelihood (A.6) gives, 
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Because      
   if      and zero otherwise, we can rewrite (A.21) as, 
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2. M-STEP:- 

To maximize the expectation of the complete-data log-likelihood in (     , we 

separately consider its right hand side terms, viz: 
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and, 
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This is because the term (A.23) is independent of the unknown     component 

parameters    ( ̅      and the term (A.24) is independent of the unknown     

component weight   . 

 

To find the MLE of     under the constrain, ∑      
    ∑         

    we use 

the method of Lagrange multipliers to attach the constrain to the term (A.23) and solve, 
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where     is the Lagrange multiplier, to get 

∑
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Summing both sides of (A.25) over the r components gives:- 
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Inserting,      into (      we get the MLE of     as, 
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Turning our attention to the problem where we want to find the parameter estimates for 

   ( ̅      that govern each r component Gaussian probability density function,  

  (    ̅       ( ̅      

we insert, 
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into the term (A.24) to get 
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Differentiating equation (A.28) with respect to  ̅  and equating to the zero vector gives, 
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Finally, to find the MLE of   we shall use the following results given square matrices 

 ,  and a vector    (see Fukunaga (1990:564-571)): 
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where, diag ( ) is a diagonal matrix  . 

 

Letting     (    ̅  (    ̅  
  , (      becomes 
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which on differentiating with respect to   
   and equating to the zero matrix gives, 
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Since      is asymmetric matrix (       
 ), 
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The only solution to (      above is      . 
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In summary, the parameter estimates    (    ̅      for the Gaussian mixture model, 
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 are, 
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where, 
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A.4 Computing parameter estimates for a Gaussian density function 

For the usual Gaussian distribution, there are no hidden subclasses with a particular 

class (i.e.     and     ) such that the parameter estimates for the mean and 

covariance matrix are: 
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since  (      
     in (A.29) and (A.31). The sample based MLE of the covariance 

matrix above is usually corrected to its unbiased estimate: 
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Appendix B: Variable Coding 
 

The variable coding used for the dataset in this analysis is presented in this section as 

follows (Hofmann, 1994): 

 

DEFAULTSTATUS: binary outcome variable 

 0: non- defaulters 

 1: defaulters 

BALACC: status of existing bank account in German currency: deutsche marks (DM) 

 1: no running account 

 2: no balance or debit 

 3:                      

 4:                    

DURLOAN: duration of loan in months 

PAYPREVCRED: Payment of previous credits 

 0: hesitant payment of previous credits 

 1: problematic running account / there are further credits running but at other 

banks 

 2: no previous credits / paid back all previous credits 

 3: no problems with current credits at this bank 

 4: paid back previous credits at this bank 

LOANAMT: The loan amount borrowed in German Duetsche Marks (DM) 

SAVINGS: Value of savings or stocks 

 1: not available / no savings 

 2:                                 

 3:                                     

 4:                                      

 5:                                  

TIMEEMPL: Time applicant been employed by current employer 

 1: Unemployed 

 2:        

 3:           
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 4:           

 5:         

AGE: Age of applicant in years 

INSTALMNT: Instalment rate as a percentage of available or disposable income 

 1:                     

 2:                        

 3:                        

 4:                     

MARITAL.SEX:- Marital status or sex 

 1: a male who is divorced or separated 

 2: a female who is divorced or separated or married 

 2: a single male applicant 

 3: a male applicant who is married or widowed 

 4: a single female applicant 

GUARANTOR: Guarantors of the loan 

 1: none 

 2: co-applicant 

 3: guarantor 

DURHSE: Period applicant been living in current house 

 1:        

 2:           

 3:           

 4:         

VALASSET: Most valuable available assets 

 1: no assets 

 2: Car/other 

 3: Savings contract with a building society / Life insurance 

 4:  Ownership of house or land 

CURCRED: Current or further running credits 

 1: at other banks 

 2:  at department store or mail order house 

 3:  no further running credits 
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HSETYPE: Type of house or apartment 

 1: free apartment 

 2: rented flat 

 3: owner-occupied flat 

HISTCRED: Number of previous credits at this bank (including the running one) 

 1: one 

 2: two or three 

 3: four or five 

 4: six or more 

JOBTYPE: Type of job or occupation of applicant 

 1: unemployed / unskilled with no permanent residence 

 2: unskilled with permanent residence 

 3: skilled worker / skilled employee / minor civil servant 

 4: executive / self-employed / higher civil servant 

DEPENDENTS: Number of people dependent on the applicant 

 1: more than 3 

 2: 0 to 2 

TEL: Telephone ownership 

 1: no 

 2: yes 

ALIEN: Foreign worker 

 1: yes 

 2: no 
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