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Abstract

This dissertation consists of four sections, with the focus on near- and mid-infrared

lasers using Yttrium Lithium Fluoride (YLF) crystals doped with various rare-earth

ions as a gain medium.

As introduction a general overview of the concepts pertaining to end-pumped solid-

state lasers are presented. The basic principles, components and operation of lasers are

discussed. Stimulated emission, laser gain media, pump sources and pump geometries

are elaborated upon. Three-, four-, quasi-three- and quasi-four-level laser schemes are

described. Finally, the advantages and disadvantages of end-pumping as opposed to

side-pumping schemes for solid-state lasers are discussed.

Thereafter, the design and results of a high-powered diode-end-pumped Nd:YLF

laser is presented. In conjunction with previously demonstrated methods, the thermal

fracture issues of Nd:YLF were addressed by utilizing the natural doping gradient

along the boule of the crystal. This, in addition to a novel crystal mounting technique,

resulted in the highest reported output power from a diode-end-pumped Nd:YLF laser

as well as record pumping powers.

In the third section, a compact Ho:YLF oscillator-amplifier system is reported. The

novel setup utilised the unpolarised pump power from a fibre-laser efficiently by using

the pump light transmitted by the oscillator crystal to pump the amplifier crystal,

which produced 21.3 mJ at 1 kHz, with an M2 better than 1.1.

Lastly, the conclusion is drawn that YLF as a host material can be used in a

highly successful manner for high-power applications. Additionally, the novel pumping

scheme implemented in the Ho:YLF oscillator-amplifier has been shown to be scalable

by a subsequent system which delivered record performance.
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Chapter 1

Introduction to End-Pumped

Solid-State Lasers

1.1 Introduction

Since the first laser was demonstrated nearly half a century ago in 1960 (Maiman,

1960), lasers have become an important part of modern life having contributed to

nearly every aspect of living.

Lasers are used today for research in the fields of physics, medical science, chemistry,

biology and earth science. In industry they are used to manufacture cars, CPUs and

even cellphone components; they are even used to entertain us. There are hundreds

of millions of diode lasers around the world tirelessly working in CD, DVD and Blue-

Ray players for our entertainment. Even laser televisions are now becoming a reality

(Coherent, 2009). Lasers are used for purposes varying from the seemingly frivolous

(laser hair removal), to the very serious (cancer treatment, defence, safety and security).

It is therefore no surprise that so many different kinds of lasers have been developed

to address these many divergent applications and needs. There are gas lasers and

bulk solid-state lasers, such as Nd:YAG lasers, and fibre lasers, that are the work

horses of industry. There are semiconductor lasers which are small, robust and efficient

and are thus used veritably everywhere. In addition there are waveguide lasers, dye

lasers, Raman lasers, Free-electron lasers, and chemically- and nuclear-pumped lasers

(Pachotta, 2008).
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CHAPTER 1. INTRODUCTION TO END-PUMPED SOLID-STATE LASERS

A discussion on the complete assortment of lasers however, is beyond the scope

of this dissertation. Instead, this work focuses on end-pumped solid-state lasers, in

particular a Nd:YLF laser system, and a compact Ho:YLF oscillator-amplifier system

which are both state of the art.

The architecture of these two laser systems are of interest due to the advantages

that they possess over many other systems. They are more efficient than lamp-pumped

lasers and have high average powers. Their design is simpler than lamp-pumped or

any other side-pumped lasers for that matter. The resultant simpler cooling geometry

is easier to implement. Solid-state lasers like these have higher brightness and sharper

emission spectra than conventional diode lasers. Finally, both the systems that are

presented exhibit good beam quality with nearly diffraction-limited output beams.

Additionally, the active laser materials used in these two systems have some excel-

lent properties that were exploited. The long upper-state lifetimes of Nd and Ho in

YLF can both deliver pulses with high peak powers. The host crystal (YLF) has a

natural birefringence, eliminating depolarisation losses in high-powered lasers, unlike

YAG which is isotropic. YLF also has a far weaker thermal lens than other host mate-

rials, which is advantageous for the construction of lasers with diffraction limited beam

quality.

In this chapter the basic principles and processes relating to laser operation are

presented, after which the basic components of solid-state lasers are discussed. Since

the focus of this work is end-pumped bulk solid-state lasers, specific attention is given

to pumping schemes. The basic layout of side-pumping and end-pumping is explained,

and the advantages and disadvantages of each scheme are weighed up against each

other.

2
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gain medium
laser mode

pump light

highly reflective
mirror

partially reflective
mirror

laser output beam

Figure 1.1: A schematic diagram of a bulk solid-state laser.

1.2 The Basic Principles and Components of Solid-

State Lasers

In its most basic form, a laser consists of two mirrors, a gain medium and an energy

source, as depicted in Figure 1.1. The two mirrors are placed opposite each other to

form a cavity. Either one or both of the mirrors may be curved so that light travelling

from the one side of the cavity to the other side will be repeatedly reflected between

the two mirrors. If the mirrors are properly aligned, the light will remain in the cavity,

travelling along the optical axis of the resonator. However, without replenishing or

amplifying the light in the cavity, less and less light will remain as some of the light

is lost with each round trip. Thus, a gain medium is needed to amplify the light with

each round trip by converting energy supplied by the energy (pump) source into light

travelling along the optical axis.

If the the gain is less than the resonator losses, the light in the cavity will diminish

with time, until there is none left. When the gain is equal to the losses the amount

of light, or optical power, stays the same. If the gain exceeds the losses, the optical

power in the cavity increases with each round trip. This increase in optical power can

not continue indefinitely as the intra-cavity intensity will eventually saturate the gain.

After some time a steady state will be reached where the gain will exactly match the

losses. This steady state is also called continuous wave (cw) laser operation (Siegman,

1986; Pachotta, 2009).

To extract a laser beam from the cavity one can make one of the mirrors slightly
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hv

Upper Energy Level

Lower Energy Level

hv

hv

hv

Incident photon

E2

E1

Figure 1.2: A schematic diagram illustrating stimulated emission of a photon from
an atom in an excited state; before (left), during (centre) and after (right) stimulated
emission.

transmissive. This output coupler then transmits a certain fraction of the intra-cavity

power. The output coupler’s chosen transmission depends on the gain and the overall

resonator losses of the laser.

As the acronym LASER, or rather Light Amplification through Stimulated Emission

of Radiation, states; the amplification of light is achieved through the process of stim-

ulated emission within the gain medium. This is further elaborated upon in the next

few sections.

1.2.1 Stimulated Emission

An excited atom or ion may, after some time, decay into some lower energy level,

releasing the energy in the form of a photon which is emitted in a random direction.

This is called spontaneous emission. Spontaneous emission plays an integral part in

many of today’s most common pieces of technology such as fluorescent lights, television

screens (cathode ray tubes) and plasma displays, not to mention the common light

bulb. It’s also the process that provides the first photons for lasing to begin in a

resonator. Classically, a single photon of the correct energy, resulting from spontaneous

emission, travelling in the correct direction in a laser cavity, is the first photon that

4
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starts stimulated emission of more photons in the gain medium, resulting in gain, and

subsequent lasing (resonator losses permitting).

Stimulated emission provides the gain in the resonator. This process was first

predicted by Albert Einstein in 1917 (Einstein, 1917). It can be explained by referring

to Figure 1.2. Assume we have an atom which is in an excited state E2 (Figure 1.2,

left). If a photon which passes nearby the excited atom has an energy similar to

the energy difference between the excited state E2 and a lower state E1 of the atom

(hν = E2−E1), stimulated emission may occur. This happens when the atom decays,

releasing a photon with the same energy and direction as the original incoming photon.

The incoming photon or radiation is therefore amplified. This process is the basis on

which light amplification in lasers and amplifiers operate.

1.2.2 Three- and Four-Level Lasers

In the energy level scheme studied in the previous section, there are only two energy

states an atom may find itself in (Figure 1.2). Consider a group of such atoms. Atoms

in an excited state can amplify light by decaying and thus emitting photons. Atoms

in the ground state can absorb photons to excite them back to the upper energy level.

In an optically pumped two-level scheme, the number of photons emitted can not

exceed the number of photons absorbed in the long term. There is therefore no net

amplification.

Positive amplification is only possible when more than half of the atoms are in the

excited state, in other words, when there is a population inversion. Population inversion

through optical pumping becomes feasible when we have a three-level system. The

diagram on the left in Figure 1.3 shows such a scheme. Pump photons can be absorbed

by atoms, exciting them from the ground state to the highest state (Pump level). From

the pump level, the atoms can quickly de-excite, through nonradiative decay, to the

upper laser level, which has a relatively long lifetime. The atom can then decay back to

the ground state through the laser transition, by stimulated emission. However, in this

scenario pump light can no longer induce stimulated emission from the upper laser level

to the ground state since the energy difference between the upper laser level and the

ground state differs too much from the pump photon energy. Therefore a population

inversion for the laser transition is now possible if there is sufficient pump light to
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Figure 1.3: A diagram of a three-level (left) and four-level (right) laser energy scheme.

excite the atoms at a rate faster or equal to the rate at which the atoms de-excite from

the upper laser level to the ground state (Walsh, 2009).

Population inversion and gain can be more easily achieved if there is some mech-

anism by which the number of atoms in the lower energy level is kept low by quickly

removing them from that state after each emission process. This can happen when

they quickly decay into an even lower state, and this is the case for the four-level sys-

tem (Figure 1.3, right). The lower laser level is above the ground state so that fast

decay to the ground state keeps the lower laser level population small. It means that

fewer atoms are required in the upper laser level for a population inversion to occur.

Therefore only moderate pumping is required for laser amplification.

1.2.3 Quasi-Three- and Quasi-Four-Level Lasers

Pure three- and four-level lasers are not the only lasers in existence. Many systems

exist which do not fall into these two categories, but do exhibit similar properties of

either. These are called quasi-three- and quasi-four-level lasers. The following manner,

recently proposed by Walsh, by which to classify these lasers according to the ratio of

the thermal Boltzmann factors of the laser energy levels, help explain the quasi-three-

and quasi-four-level behaviour (Walsh, 2009):
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The concept of quasi-three- and quasi-four-level lasers is easily understood by look-

ing at the laser gain. The small signal gain coefficient is given by (Barnes et al., 1996)

g0 = σe[γN2 − (γ − 1)CANs] (1.1)

where σe is the effective stimulated emission cross-section, and N2 is the population

in the upper laser manifold, CA is the concentration of active ions, Ns the number

density of the sites where the active ions can reside, and γ = 1 + fl/fu where fl and

fu are the thermal Boltzmann factors in the lower and upper laser levels respectively.

When γ = 1 we have a true four-level laser and when γ = 2 we have a true three-

level laser. We can therefore see that when γ is closer to 1 than to 2, we have a

quasi-four-level laser, and when γ is closer to 2, we have a quasi-three-level laser.

To explain why this is the case, we refer back to Figure 1.3. In a three-level laser,

the lower laser level is the ground state and therefore has a thermal population. In

a four-level laser, the lower laser level is an excited state with a negligible thermal

population. It follows from γ = 1 + fl/fu that γ must be 2 for a three-level laser when

fl = fu, and γ must be 1 for a four-level laser when fl = 0.

If one considers a quasi-four-level laser’s structure, it resembles that of a three-level

laser. However, its fl is small but not negligible, and accordingly behaves more like a

four-level laser; hence being labelled as quasi-four. Formally lasers with γ < 1.5 are

called quasi-four-level lasers, and lasers with γ > 1.5 are called quasi-three-level.

Examples of quasi-four-level lasers, according to this definition, are Ho:5I7 → 5I8

(wavelength ∼ 2.0µm) and Tm:3F4 → 3H6 (∼ 1.9µm) (Walsh, 2009).

Historically though, the energy level structure of an active ion in a given host

material was used to classify a laser as quasi-three- or quasi-four-level, and not the

actual behaviour of the material for a given operating environment (Eichorn, 2008).

Only time will tell whether the more recent and possibly more appropriate definition

proposed by Walsh will come into wide spread use.

1.2.4 Gain Media for Solid-State Lasers

As previously mentioned, a laser gain medium (also called an active laser medium) can

amplify light. It can either be used to compensate for resonator losses in a laser, or in

an optical amplifier (Pachotta, 2009).
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Figure 1.4: YAG crystals doped with Neodymium (Bagdasarov Crystals Group, 2009).
The pink tint of the crystals is caused by the Neodymium.

Many physical properties of the gain medium are important when considering which

gain material is most suited for a laser system (Koechner, 1999; Pachotta, 2008; Pa-

chotta, 2009):

• The gain material must have a laser transition at the required wavelength. It is

desirable that the maximum gain occurs in this wavelength region.

• The gain medium must be highly transparent for this wavelength region, to min-

imise loss.

• Pump sources should be available for the wavelength at which the gain material

needs to be pumped at. Pump absorption should be efficient.

• The upper-state lifetime of the upper laser level should be suitable for the appli-

cation. Long upper-state lifetimes are required for Q-switched operation, while

it should be short enough if fast modulation of the optical power is required.

• High quantum efficiency is desired. The gain medium’s energy output should not

be far less than the energy input.

• The gain medium should be robust, with a long lifetime. It should be chemically

stable.

• To obtain high gain and a low threshold pump power, the emission cross-section

and upper-state lifetime product should be large.

8
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• Strong pump absorption is desirable when using pump sources with low beam

quality.

• A large gain bandwidth is required for wavelength tuning.

• A high optical damage threshold and not too high saturation fluence is required

of the gain medium for high-energy pulse lasers and amplifiers.

The following criteria have specific bearing on bulk solid-state gain media:

• The host medium should be of good optical quality and be available in the re-

quired size.

• The host material should have lattice sites that can accept the dopant ions. The

local crystal field must induce the required spectroscopic properties in the ions.

For some applications it must allow for high doping with laser-active ions without

clustering.

• It must be chemically stable. For example, it should not be hygroscopic.

• It must have a good thermal conductivity to facilitate cooling.

• Low thermo-optic coefficients are required for weak thermal lensing during high-

power operation.

• High resistance to mechanical stress is needed to avoid fracture.

• Optical isotropy can be desirable. However, in other cases birefringence is desired

to reduce thermal depolarisation losses.

• Polarisation-dependent gain may be preferable for polarised laser emission.

As can be seen, there are some conflicting criteria. For example, a large bandwidth

generally entails having a small cross-section, and low quantum efficiency. Also, a high

quantum efficiency is not compatible with strong four-level behaviour. A high pump

absorption may be advantageous for pump sources with low beam quality, but the

accompanying short absorption length increases thermal issues.

It is apparent from this that different circumstances put widely varying requirements

on the gain medium. It is therefore imperative that the right gain medium is chosen

for the circumstances to ensure optimal system performance.

9
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Host Materials for Solid-State Lasers

There are three main types of host materials used in solid-state lasers. The most

common materials are crystals and glasses, followed by ceramics. Specifically, the

most highly used crystal in use today is yttrium aluminium garnet, more commonly

known as YAG (VLOC YAG Brochure, 2008). The work presented in this dissertation,

however, uses yttrium lithium fluouride (YLF) crystals. More detail will be given on

this material in the subsequent chapters.

Active Ions for Solid-State Lasers

Rare-earth ions are excellent dopants for use in solid-state laser materials. They have

numerous emission lines throughout most of the visible and infrared part of the spec-

trum (Weber, 2001). The spectral properties of the ions are not seriously affected by

the crystal field of various host materials (Stark effect) because the energy levels of

interest for laser transitions are shielded from the near crystal field by a filled outer

shell of electrons (Koechner, 1999).

The most common rare earth ion for use in lasers today is Neodymium (Nd3+). It

is mostly used as dopant in YAG crystals (Figure 1.4). One of the two lasers presented

in this work uses Neodymium as the active ion. The second system uses Holmium

(Ho3+).

Since the gain medium adds energy to the amplified light, it requires energy from

an external source. This process, called pumping, is typically done through electrical

currents (electrical pumping of diode lasers) or incident light (optical pumping). In

this work, optical pumping is implemented through the use of laser diodes (for the

Nd:YLF laser) and a fibre laser (for the Ho:YLF oscillator-amplifier). Optical pump

sources for solid-state lasers are discussed further in the next section.

1.2.5 Pump Sources for Solid-State Lasers

As pump source for optically-pumped systems, one may use lamps, diode lasers, fibre

lasers, or any other laser for that matter. Each of these sources has their own advan-

tages and disadvantages which need to be considered when designing a laser system.

The first laser demonstrated was pumped by a flash lamp (Maiman, 1960). Today
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flash lamps are still widely used despite laser diodes increasingly becoming a more

desirable alternative. Flash lamps are particularly attractive for pulsed laser systems,

delivering high pulse energies and peak powers, since they are for the moment still

cheaper than laser diodes for this application. They are therefore a common pump

source for pulsed solid-state lasers with low repetition rates and high peak power (Pa-

chotta, 2009). However, flash lamps have several drawbacks. They tend to be inefficient

as they emit broadband radiation while most solid-state gain media have far narrower

absorption spectral regions. They require gain media with broadband pump light ab-

sorption in spectral regions accessible with flash lamps. For lamp-pumped systems,

most of the electrical energy inserted into the system is converted to heat, which needs

to be removed to avoid damage to the system and degraded performance caused by

thermal effects. Flash lamps can only be used in side-pumped configurations, mak-

ing cooling of the laser crystal rods more difficult. Flash lamps require high-voltage

power supplies, an added safety hazard, and are a strong source of electromagnetic

interference which is undesirable in many laser applications. Although flash lamps are

relatively robust, their usable lifetime is fairly limited when compared to diode lasers.

Diode lasers have become the dominant laser as well as the dominant pump source

for solid-state lasers as their costs have decreased, while their output powers and avail-

able wavelengths have increased. The emission spectra of laser diodes are narrow,

which allows for strong and efficient absorption of the pump light in the laser crystal.

The subsequent decrease in the heat load in the laser crystal also alleviates detrimen-

tal thermal effects. The increasingly wider range of wavelengths at which diode lasers

operate, allows for a wide range of laser gain media (Weber, 2001). Diode laser light

is strongly directional, allowing either end-pumping or side-pumping of laser crystals.

Their electrical to optical efficiencies can be very high. This, in addition to efficient

pump absorption, can result in laser systems with high wall-plug efficiencies. Diode-

pumped lasers can be very compact when compared to similar lamp-pumped systems.

Laser diodes as a pump source do have a few drawbacks. They are very sensitive

to static discharges. Excessive currents and overheating, even for short durations of

time, can lead to damage. However, when operated within their specifications, they

have operating lifetimes in excess of tens of thousands of hours; far longer than that of

flash lamps. They are ideally suited for cw (continuous wave) and high repetition rate

systems (Pachotta, 2009).
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Solid-state lasers can also be pumped by other solid-state lasers such as fibre lasers

or slab lasers. The added complexity of having another solid-state laser in the sys-

tem generally complicates the design, and lowers the overall efficiency of the system.

However, this is often a feasible and efficient approach when certain characteristics

are required from a laser system. It may be that a specific laser material’s pump

wavelength is inaccessible by any other existing approach such as flash lamps or laser

diodes. It could be that the required pulse energy or pulse duration is easiest to obtain

by a laser-pumped laser system. These, as well as other arguments have led to many

demonstrated and commercial laser systems of this type (Weber, 2001). In Chapter 3

a Ho:YLF laser system is presented which uses a Tm:fibre laser as pump source. The

fibre laser, in turn, is pumped by diode lasers.

1.2.6 Pumping Configurations

There are two dominant configurations to optically pump bulk solid-state lasers, namely

side-pumping and end-pumping (Koechner, 1999). Figure 1.5 depicts the two pumping

schemes. The top of Figure 1.5 shows the side (left) and front (right) view of a side-

pumped circular laser rod, while the end-pumped scheme is shown at the bottom. The

pump light is indicated by the red arrows, the excited area of the crystal is shaded red,

and the laser mode is depicted by the yellow lines (side view, left) and yellow circles

(front view, right).

In the side-pumped scheme, the gain medium is pumped approximately perpendic-

ular to the laser resonator mode (top, Figure 1.5). In this scheme most of the crystal

is filled with pump light and therefore the whole crystal volume is excited, with most

pump light being absorbed, and therefore most excited ions being near the outer edge

of the crystal. However, energy is extracted only from the excited ions which spatially

overlap with the laser resonator mode in the centre. The energy deposited outside this

region is wasted and increases the heat load, contributing to the thermal stresses in

the crystal. The fact that most of the energy delivered by the pump is deposited in the

outer region of the crystal, where it’s not being extracted again as laser light, makes

this scheme less efficient. The higher absorption at the edge of the crystal results in

the gain being higher in the outer region than in the centre, where the laser mode

is. This can cause higher order modes to lase. The additional lasing of the higher
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pump light

gain medium

laser mode Side-Pumped

End-Pumped

Figure 1.5: A schematic diagram of side-pumped (Top) and End-Pumped (Bottom)
schemes. The pump light is indicated by the red arrows, the excited area in the crystal
is shaded red, and the resonator mode is indicated by the yellow lines.

order modes then degrades the beam quality of the laser. Special care thus needs to be

taken to prevent these higher order modes from lasing by designing the resonator to

force the laser to operate only on the fundamental TEM00 mode. This can be done by

inserting an aperture into the resonator cavity which only transmits the fundamental

mode, or increasing the losses for the higher order modes in some other fashion. The

side-pumped scheme is often used for diode-pumped, multi-kilowatt lasers.

In the end-pumped scheme, also known as longitudinal pumping, the gain medium

is pumped co-linearly with the resonator mode (bottom, Figure 1.5). End-pumping

tends to be more efficient than side-pumping since the pumped (and therefore excited)

volume is mostly restricted to the region where the laser mode is. This leads to higher

gain, allowing the generation of shorter Q-switched pulses (Pachotta, 2009). The good

spatial overlap of the resonator mode and pumped volume in the gain medium also

lowers the heat load. Since the sides of the crystal need not be accessible for pumping,

the crystal surface can be in direct contact with a cooled mount, simplifying cooling

significantly. The drawback is that end-pumping requires a pump source with sufficient

beam quality in order that the pump beam is sufficiently collimated over the length
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of the crystal, or at least the absorption length thereof. Another drawback is that

most of the pump light is absorbed at the end of the crystal, where there is no contact

with a cooling surface. The heat deposited subsequently leads to thermal stresses and

thermal lensing. This is discussed in greater detail in Sections 2.3.3 to 2.3.6. Despite

this, end-pumped lasers often achieve better beam quality than similar side-pumped

lasers.

In the work reported, only end-pumped configurations are considered.
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Chapter 2

High-Power Diode-End-Pumped

Nd:YLF Laser

2.1 Introduction

A relatively short time after the first laser was demonstrated in 1960 (Maiman, 1960),

the first reported Neodymium laser (Nd:CaWO4) was demonstrated at Bell Labora-

tories by L.F. Johnson and K. Nassau (Johnson & Nassau, 1961). Three years later

J.E. Geusic, H.M. Marcos and L.G. van Uitert demonstrated what was to be the most

widely used solid-state laser, namely the Neodymium-doped Yttrium Aluminium gar-

net (Nd:YAG) laser (Geusic et al., 1964). Since then Nd lasers using many different

host materials have been demonstrated (Weber, 2001).

The first Neodymium-doped Yttrium Lithium Fluoride (Nd:YLF) laser was demon-

strated in 1982 by T.M. Pollak et al. (Pollak et al., 1982). This could have been a

particularly attractive material for use in high-power end-pumped solid-state lasers if

not for its low thermal fracture limit.

The YLF crystal’s weak thermal lens on the σ-polarisation enables the construction

of lasers with diffraction-limited beams, while the long upper laser level lifetime of

525µs (Ryan & Beach, 1992) of Neodymium in YLF crystals support efficient pulsed

operation. In addition, the natural birefringence of YLF eliminates thermally induced

depolarisation in high-power applications.

However, the relatively low thermal conductivity of Nd:YLF, which can lead to
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Figure 2.1: A mounted Nd:YLF rod, fractured from thermally induced stress (Bollig
et al., 2005).

thermal runaway effects, and its low thermal fracture limit has made power scaling

difficult (Bernhardi, 2008). Furthermore, the astigmatic thermal lens of YLF also

requires special consideration when designing a resonator that compensates for this

(Hardman et al., 1999).

In this chapter a state of the art high-power diode-end-pumped Nd:YLF laser is

presented. The aim of this project was to demonstrate a Nd:YLF laser with high av-

erage output power delivered in a diffraction limited beam, while being highly efficient

in both continuous and pulsed mode. The subsequent good results were achieved by

addressing the issues mentioned above in several ways.

2.2 Previous Work

The highest previously reported diode-end-pumped Nd:YLF laser delivered 60.3 W cw

(Bollig et al., 2005). When Q-switched it delivered an average power above 52 W for
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all repetition rates between 5 and 30 kHz while maintaining a good beam quality. This

good performance was achieved by addressing the above-mentioned issue of thermal

fracture in several ways. The average doping concentration of the Nd:YLF crystals was

decreased to 0.5 at.% from the generally used 0.7 to 1.1 at.% doping (Clarkson, 1998;

Esser, 2004). Off-peak or “wing” pumping was implemented by pumping the crystals

at 805 nm instead of the conventional 792 nm where the absorption cross section peak is

(Figure 2.2). This resulted in a longer absorption length and improved heat distribution

in the crystals as well as equal absorption on the σ- and π-polarisation. This also had

the added advantage that laser diode modules were more readily available at this

wavelength.

The resonator was designed to support a relatively large mode radius of w= 0.5 mm

inside the crystals. The astigmatic thermal lens, which was a detrimental effect in pre-

viously demonstrated lasers, was addressed by using two crystals and rotating the c-axis

of the crystals by 90 degrees with respect to each other, with a λ/2-plate between them.

This caused the two astigmatic thermal lenses from the two crystals to compensate for

each other, resulting in a net non-astigmatic lens, while allowing the laser beam to be

the same polarisation in both crystals with regard to their crystal lattices.

Though these measures resulted in significant improvement on previous results

(Esser, 2004), one of the two crystals cracked when the laser repetition rate was reduced

to 5 kHz (Figure 2.1).

It was initially proposed that the fracture problem might be addressed by increasing

the pump and laser mode diameter in the crystals. The mode size was subsequently

increased to w = 1.3 mm. However, even after the mode size was increased, another

crystal was fractured.

It was then proposed that the doping concentration should be reduced even further

(Bollig, 2006). However, this would have entailed having crystals specially manufac-

tured as no crystals of such low doping were readily available. During the subsequent

discussions with crystal manufacturer VLOC, a lesser known fact was discovered in

that low-doped Nd:YLF crystals have an inherent doping gradient. It was thought

that either this inherent doping gradient of low-doped Nd:YLF crystals or improper

mounting may have been the reason why the one crystal fractured in the 60 W laser,

while the other remained intact - despite being pumped at full power while not lasing.

Aside from being the possible reason for the crystal fractures, the inherent doping
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Figure 2.2: The absorption spectra of 1 % doped Nd:YLF for the σ - and π - polarisation
(Cross, 2005).

gradient of low-doped Nd:YLF crystals could be exploited for the further power scaling

of Nd:YLF lasers. This idea has been successfully demonstrated in the work presented

in this chapter.

2.3 Properties of Nd:YLF

2.3.1 The Absorption and Emission Spectra of Nd:YLF

The absorption and emission spectra for Nd:YLF at the wavelengths relevant to this

work are shown in Figure 2.2 and 2.3 respectively.

The absorption spectra are essential for deciding at which wavelength the gain

medium should be pumped. Figure 2.2 shows the absorption spectra of Nd:YLF from

785 nm to 810 nm. This region is of interest for the laser-diode-pumping of Nd:YLF as

there are several absorption peaks in this region and laser-diodes are readily available

at these wavelengths.

Conventionally, Nd:YLF lasers which are pumped by laser-diodes are pumped at

18

1= 



CHAPTER 2. HIGH-POWER DIODE-END-PUMPED ND:YLF LASER

0

4

8

12

16

20

24

28

1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080

Wavelength [nm]

E
m

is
si

o
n

 C
ro

ss
 S

ec
ti

o
n

 [
10

-2
0  c

m
2 ]

Sigma polarisation
Pi polarisation

E || c-axis (π-polarisation)

1053 nm

1047 nm

E ┴ c-axis (σ-polarisation)

Figure 2.3: The emission spectra of Nd:YLF for the σ - and π - polarisation (Czera-
nowsky, 2002).

792 nm, where the highest of these absorption peaks for the π-polarisation occurs.

One should note that at 792 nm the absorption of pump light is highly polarisation

dependent, with the absorption of σ-polarised light being far weaker (∼10 times) than

for π-polarised light. The polarisation of the pump source is thus of utmost importance.

Alternatively one can pump at 805.5 nm where the absorption of σ- and π-polarised

light is the same (Figure 2.2, red ellipse). The crystal can then be pumped by an

unpolarised pump source such as a fibre-coupled laser-diode. However, the absorption

at 805.5 nm is ∼5 times weaker than at the conventionally used 792 nm, resulting in a

longer absorption length. This is actually an advantage, as mentioned in the previous

section, and will be elaborated upon in the subsequent sections.

The emission cross-sections for the wavelength region in which the largest emission

peaks of Neodymium in YLF occur, are shown in Figure 2.3. From this graph it can be

seen that the emission cross-sections differ drastically for the σ- and π-polarisation. The

highest emission cross-section (∼ 25 × 10−20cm2) is at 1047 nm on the π-polarisation.

Since the gain is highest at this wavelength, this is the most likely wavelength at which
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Figure 2.4: Schematic of the Nd:YLF four-level laser relevant to this work.

a Nd:YLF laser will operate. Another peak, which is roughly half that at 1047 nm, is to

be found at 1053 nm on the σ-polarisation. A Nd:YLF laser can also be made to work

at this wavelength, depending on the resonator design. Lasing on the σ-polarisation

instead of on the π-polarisation is highly desirable due to the σ-polarisation’s far weaker

thermal lens. This is further discussed in Section 2.3.5.

2.3.2 The Four-Level Nd:YLF Laser

The four-level laser scheme of Neodymium in YLF relevant to this work is shown in

Figure 2.4. Initially the ions are in the ground state 4I9/2. When an ion absorbs a

pump photon (∼805 nm) it gets excited from the ground state to the pump level 4F5/2

(red arrow). The pump photon energy is similar to the energy difference between

these two states. From the 4F5/2 pump level, the ion relaxes to the upper laser level

(4F3/2) through fast non-radiative decay (purple arrow). This is a meta-stable state

with a long lifetime. Given that pump light is absorbed at a sufficient rate, this allows

a population inversion to occur between the upper and lower laser level (4F3/2 and
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4I11/2). The excited ion can then de-excite through stimulated emission by emitting

a photon of 1053 nm (orange arrow). From the lower laser level 4I11/2 the ion relaxes

fast though non-radiative decay to the ground state, ready to be excited by a pump

photon once more.

2.3.3 Heat Generation in Nd:YLF

The energy difference between the pump photon and the laser photon, also called the

quantum defect, introduces heat into the gain medium. This happens through the fast

decay from the pump level to the upper laser level; as well as from the lower laser level

to the ground state. Subsequently, 23.6 % of the absorbed pump light is converted into

heat inside the crystal when the laser is operating at 1053 nm, while being pumped

at 805 nm (QuantumEfficiency = 1 − El/Ep = 1 − λp/λl) (Hardman et al., 1999).

Neglecting other heat-generating processes, this alone warrants serious consideration

in heat management for the laser crystal.

In addition to heat resulting from the quantum defect, the absorption of pump light

to levels other than the pump level, fluorescence, spontaneous non-radiative transitions,

and upconversion processes such as excited state absorption (ESA) and energy-transfer

upconversion (ETU), contribute to the heat load (Hardman et al., 1999).

Absorbed pump light may excite Nd3+ ions to levels other than just the pump level
4F5/2, depending on the other energy levels of Nd3+ and the spectral bandwidth of the

pump source. The relaxation processes that follow lead to extra heat in the crystal.

However this results in less heat in diode-laser-pumped systems, when compared to

arc-lamp pumped systems, due to the good spectral overlap of the laser diodes with

the 4I9/2 to 4F5/2 transition.

A small amount of heat is deposited in the gain medium by fluorescence and non-

radiative decay when an excited ion does not decay through stimulated emission. This

becomes nearly insignificant when the laser operates far above threshold and when

there is a good overlap between the volume of excited ions and the laser mode, which

ensures that most of the excited ions relax via stimulated emission (Pollnau et al.,

1998). Fluorescence is especially low in diode-end-pumped lasers thanks to the good

spatial overlap of the laser mode and pump light in this architecture.

Excited state absorption (ESA) can occur when the population of the upper laser
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Figure 2.6: Radial heat flow (red arrows) from the centre of an end-pumped crystal
rod, where heat is created, to the edge of the crystal which is in thermal contact with
a cooled copper mount.

level 4F3/2 leads not only to stimulated emission to the lower laser level 4F3/2, but also

to absorption processes for the pump or laser radiation where laser ions are excited to

a higher energy level (Pachotta, 2009). Not only does this lead to heat being deposited

in the crystal by the subsequent relaxation of the ion, but the additional loss can raise

the threshold pump power of the laser while reducing the slope efficiency.

When an excited ion in the upper laser level 4F3/2 relaxes to a lower level and

transfers its energy to a nearby excited ion which was also in the upper laser level, it is

called Energy-transfer upconversion (ETU). The possible ETU transitions in Nd:YLF

is shown in Figure 2.5 (Hardman et al., 1999). In addition to generating heat, this

also reduces the upper laser level population, shortening the apparent upper laser level

lifetime. ETU may be decreased by decreasing the crystal’s doping concentration, but

the resulting increase in the pump absorption length demands a pump source with

sufficient beam quality. Also in this regard end-pumped lasers have the advantage as

the architecture allows crystals of longer lengths.

2.3.4 Effects resulting from heat generation in Nd:YLF

The heat created by the various processes discussed in Section 2.3.3 results in a rise

in temperature in the crystal. In the case of end-pumped lasers, the crystal is usually

cooled along the edge of the rod, which results in a radially symmetric temperature

distribution (Figure 2.6).

Figure 2.7 shows the calculated radial and longitudinal temperature distribution in

an axial cross-section of an end-pump Nd:YAG rod. The highest temperature is found
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Figure 2.7: The analytical temperature distribution in a Nd:YAG laser rod which is
pumped by a 8.5 W top-hat beam with a radius of 650 µm from (Bernhardi, 2008).

in the centre of the end-face of the crystal on the side where it is pumped. This is

where the amount of pump light absorbed is highest.

As a result of the pump-induced temperature profile, several properties of Nd:YLF

come into play:

• The crystal’s refractive index changes. The refractive index of Nd:YLF has a

negative dependence on temperature. Furthermore, the crystal is anisotropic

in this regard with the change in refractive index with temperature (dn/dT )

for the π-polarisation (E‖c) being -4.3x10−6 K−1 and -2.0x10−6 K−1 for the σ-

polarisation (E⊥c) (Barnes & Gettemy, 1980; Pollak et al., 1982; Pfistner et al.,

1994).

• The crystal expands. The Nd:YLF crystal also has different thermal expansion

coefficients for the a- and c-axis. These coefficients are also temperature depen-

dent (Hardman et al., 1999). At 300 K the thermal expansion coefficients are

13x10−6 K−1 for the a-axis (⊥c) and 8x10−6 K−1 for the c-axis (‖c) (Koechner,

1999).

• Stress in the crystal arises from the non-uniform thermal expansion of the crystal,

also contributing to a change in the refractive index (Weber et al., 1999).

These effects give rise to thermal lensing and aberrations, and may result in thermal

fracture caused by thermally induced stress.
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2.3.5 Thermal lensing in Nd:YLF

Several effects contribute to the thermal lens in an end-pumped YLF crystal:

• The temperature gradient mentioned earlier causes a gradient in the refractive

index of the crystal. The resulting difference in the optical path across this

gradient effectively forms a lens (Pollnau et al., 1998).

• End-face bulging caused by differential thermal expansion of the crystal. This

is also complicated by the temperature dependence of the thermal expansion

coefficients.

• Stress-induced changes in the refractive index caused by the photo-elastic effect

(Weber et al., 1999).

The thermally induced lens for the π-polarisation is negative due to the strong

negative contribution from dn/dT which dominates the positive contribution from the

end face bulging (Hardman et al., 1999).

In the case of the σ-polarisation’s thermal lens, the end face bulging dominates the

contribution from the smaller negative dn/dT , resulting in a very weak positive lens

(Hardman et al., 1999).

The contribution to the thermal lens by stress-induced changes of the refractive

index is negligible in comparison to the contribution from the temperature dependent

change in the refractive index of Nd:YLF since the crystal has a strong natural bire-

fringence (Pollnau et al., 1998). The natural birefringence of the crystal also prevents

depolarisation losses caused by stress-induced birefringence - a common problem in

Nd:YAG lasers (Weber et al., 1999; Clarkson, 2001).

Solely considering the thermal lensing behaviour for the two polarisations, one may

conclude that it is desirable to operate the laser on the σ-polarisation, which has the

weaker thermal lens. However, care must be taken to lase on the σ-polarisation since

it has a lower cross-section than the π-polarisation.

Compared to YAG or YVO4, YLF has a much weaker thermal lens, especially on

the σ-polarisation, and should be a superb material for high power applications where

the thermal lens normally plays a dominating role in laser performance.
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2.3.6 Thermally induced fracture

Unfortunately the development of high powered Nd:YLF lasers is limited by the thermal

fracture problem which is much worse for YLF than it is for YAG, YVO4 and other

crystals.

The temperature gradient inside the laser rod caused by the pump light induces

stress in the crystal. When the induced stress in the laser rod exceeds the tensile

strength of the material, the crystal will fracture.

This is of particular concern for Nd:YLF lasers as Nd:YLF has a tensile strength

of only 33 MPa (Northrop Grumman Space Technology, 2009) to 40 MPa (Koechner,

1999). Compared to that of Nd:YAG, which has a tensile strength of 280 MPa (VLOC

YAG Brochure, 2008), this is very low.

Nd:YLF is also susceptible to thermal runaway effects since its thermal conduc-

tivity decreases as the temperature increases. This can occur when the laser losses

increase, while still being pumped with the same pump power. The increased heat

deposited through increased upconversion will then lower the thermal conductivity of

the crystal even further, decreasing heat extraction, and thus leading to even higher

temperatures. This may continue to the point where the thermally-induced stresses

fracture the crystal.

From the various effects caused by heat in the crystal, it is apparent that proper

thermal management of the laser crystal is of the utmost importance for good system

performance and reliability.

In conclusion to this section, it can be stated that Nd:YLF would be an excellent

gain material, superior to Nd:YAG, for high-powered lasers if one were to solve the

thermal fracture problem. The aim of the work presented here was to address this

problem. Subsequently, record pumping of Nd:YLF crystals without crystal fracture

was obtained.

2.4 Scaling Strategy

Pachotta defines power scaling as “a procedure for substantially increasing the output

power of lasers.” He however qualifies it as more than mere power increases with:

“The actual meaning of this term should include: a well-defined systematic scaling
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procedure which makes it possible to increase substantially and repeatedly the output

power without making the main problems more severe” (Pachotta, 2009).

With this in mind, to enable successful power scaling of Nd:YLF, the following

requirements have to be met to manage the detrimental effects discussed earlier:

• Upconversion has to be reduced.

• The heat load has to be spread more uniformly.

• The cooling efficiency has to be increased.

These requirements were met by taking the following actions:

• Crystals of even lower doping was used.

• The intrinsic doping gradient in low-doped YLF crystals were exploited by pump-

ing the crystals from their lower doped side.

• “Wing” pumping or “Off Peak” pumping was implemented in conjunction with

a large pump beam size.

• Crystals were mounted using a novel mounting technique.

• Four crystals were used, each pumped by their own laser diode module.

The actions mentioned above had several consequences. By using crystals of lower

doping, the crystals needed to be longer to allow for the increase in the absorption

length. This resulted in a larger cooling surface. Since the heat was also distributed

in a larger volume, the crystal temperature was also lower, decreasing thermal effects.

The increased crystal length required a pump beam of higher quality in order for the

pump light to be collimated over the whole length of the longer crystal.

The intrinsic doping gradient in low-doped YLF crystals was exploited by pumping

the crystals from their lower doped side. This also improved the heat distribution

through the length of the crystal, decreasing the end-face temperature - critical to

the management of thermal stress, and the thermal lens. This is discussed further in

Section 2.6.

The “Wing” pumping in conjunction with a large pump beam size led to a longer

absorption length and pumped volume. This method can be explained by referring
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to the absorption spectra of Nd:YLF shown in Figure 2.2 (Cross, 2005). The typical

wavelengths at which to pump Nd:YLF are 792 nm or 797 nm; on the absorption peaks

of the gain medium. For this experiment the crystals were pumped in the region of

805 nm, where the absorption coefficient is much lower. This increases the absorption

length and pumped volume. This also had the practical advantage that diode-laser

modules at this wavelength were easily obtainable and that the absorption of the pump

light is far less polarisation dependent, as later shown in Section 2.6.1.

The novel mounting technique improved the cooling of the crystals, as discussed in

Section 2.6. The better thermal contact lowered the thermal stress by improving both

heat removal and uniform cooling.

In the following three sections the implementation of the aforementioned solutions

are discussed in greater detail for the pump source, the gain medium and the resonator

design.

2.5 The Pump Source

Four Jenoptik fibre-coupled laser diode modules were used in continuous wave mode to

pump the Neodymium laser (JOLD-75-CPXF-2P). Each module delivered a maximum

of 75 W optical output power through a 0.4 mm diameter, 0.22 numerical aperture

(NA) fibre.

The four modules were labelled LD1 (Serial number: 06-160), LD2 (Serial number:

06-161), LD3 (Serial number: 06-158), and LD4 (Serial number: 06-159). The diode

modules included thermo-electric coolers (TEC) to actively control and set the tem-

perature with external temperature controllers (Ostech). The modules were mounted

on water cooled copper heat sinks in order to remove the heat from the hot sides of

the internal TECs (Figure 2.8). The water circulating in the copper heat sinks was

cooled by Thermo Haake (TC200) and Thermo Neslab (M33) chillers. The laser diodes

were powered by two Delta Elektronika power supplies (SM 15-100), each power supply

connected to two laser diodes in series. The current on both supplies was limited to

58 A in order to prevent exceeding the absolute maximum rating of the laser diodes.

At 25 ◦C and full output power (I=56 A), the laser diodes’ respective wavelengths were

specified by the manufacturer as 804.5 nm for LD1, 804.5 nm for LD2, 804.3 nm for

LD3, and 804.3 nm for LD4. The FWHM (Full Width Half Maximum) spectral width
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Figure 2.8: Jenoptik 75 W laser diode modules mounted on a water-cooled copper heat
sink.

was specified as 2.6 nm for LD1, LD2, and LD3, and 2.4 nm for LD4. This is ideal for

wing pumping of Nd:YLF. By having 4 of these laser diode modules, we had a laser

diode module for each of the four crystals and twice the available pump power than

the previous Nd:YLF laser discussed in Section 2.2.

2.5.1 Characterization of the Laser Diodes

The optical output power of the laser diodes at 25 ◦C was measured using a HTD-

LM200 power head with a Coherent Fieldmaster GS power meter. As shown in Fig-

ure 2.9, it is clear that the power output was linearly dependent on the input current,

making the linear fit Pout = 1.6× Iin− 15.5 a very good approximation. The manufac-

turer specified slope of 1.6W/A was therefore confirmed.

The dependency of the laser diodes’ wavelength on temperature and input current

was measured using an Ocean Optics HR4000 High Resolution Spectrometer (Figure

2.10). It was found that the average increase in wavelength with regard to increase

in temperature is 0.29 nm/◦C with the total variance in wavelength over the operating

temperature range of 20-30 ◦C and input current range of 10-55 A being 5 nm. These

results were essential to easily measure the wavelength dependence of the Nd:YLF

crystals’ absorption of pump light at a later stage.
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Figure 2.9: Average measured efficiency slope of Jenoptik laser diode modules at 25 ◦C.
The individual laser diode modules’s properties matched each other nearly exactly.
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Figure 2.11: Nd:YLF crystal boule doping concentration along the optical axis as
estimated by VLOC.

2.6 The Gain Medium

A Nd:YLF crystal boule (single-crystal ingot produced by synthetic means) was spe-

cially manufactured by VLOC. This boule had a much lower doping concentration than

those generally used. Subsequently, it exhibited the desired doping gradient along the

chosen optical axis, which is not as significant in higher doped crystals. The lower

doping concentration results in a longer absorption length of the pump light in the

crystals, and by pumping the lower concentration side of the crystals, the pump light

is absorbed more uniformly along the length of the crystals. The combination of these

two properties results in a more uniform heat load, and lower temperature at the pump

face of the crystal, and thus decreases the stresses experienced by the crystal under

high-power pumping.

The crystal orientation information was maintained during the manufacturing pro-

cess of the individual crystals. The estimated Neodymium doping gradient along the

optical axis (⊥ to crystal c-axis) was provided by VLOC (Figure 2.11). Four 45 mm

and four 75 mm long rods were cut from the boule, each with a diameter of 6 mm
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45 mm

6 mm

Figure 2.12: A 45 mm Nd:YLF crystal rod. The lower doped side is indicated by “Top”
by the manufacturer.

(Figure 2.12). The 75 mm crystal rods were extracted from the material on the left

side of the pink line in Figure 2.11, while the 45 mm rods came from the right side

of the line. As a result the integrated doping over the entire length of the crystals

was approximately the same for the 75 mm and 45 mm crystals. Therefore the average

absorption would be the same as well.

For the reported work, only the 45 mm rods were used and are subsequently dis-

cussed as the longer 75 mm crystals posed greater difficulties for the mounting technique

implemented. The four rods were labelled 1 (serial number: 5398), 2 (serial number:

5397), 3 (serial number: 5400) and 4 (serial number: 5399). The 45 mm crystal rods’

estimated doping gradient is shown in Figure 2.13. The low-doped or pump side (in-

dicated by arrow in Figure 2.13) had a relative doping concentration of 0.30 % with a

nearly linear increase along the optical axis resulting in a concentration of 0.52 % on

the other end, with an average doping of 0.41 %.

A finite element analysis of the temperature in these crystals was done by E. Bern-

hardi using programs he developed during his studies for his Master’s Degree in Science

(Bernhardi, 2008). For this analysis the same parameters as those of the laser presented

in this chapter were used, but a flat-top beam profile was assumed for the pump to

make the calculations easier. The resultant graphs are shown in Figure 2.14. The

results showed that the temperature of a crystal pumped from the high-doped end

would be significantly higher than the temperature of the same crystal when pumped

from the low-doped end with the same power. It was further found that to reach the

thermal fracture limit of the crystal when pumped from its low-doped end, it can be

pumped 58 % harder than when the crystal is pumped from its high-doped end. This

further supported the view that this would be a successful scaling approach.
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the optical axis.
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Figure 2.14: The simulated temperature in the 45 mm Nd:YLF crystals when pumped
with 75 W from the low-doped end (top) and the high-doped end (bottom) (Bernhardi,
2008).
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Crystal rod
Glue
Copper mount

Figure 2.15: Design of mounted Nd:YLF crystal.

For proper cooling the crystal rods were glued into copper sleeves with Norland

Optical Adhesive No. 61 (Figure 2.15). To ensure maximum accuracy in the diameter

and straightness of the holes in the sleeves, the holes were canon drilled and reamed.

The holes’ diameters were between 20 and 30µm larger than the crystals, thus the

resultant gap between the copper and crystal surfaces would be between 10 and 15µm.

Decreasing this gap to less than 10µm resulted in great difficulty during the gluing

process. By gluing the rods in this fashion, uniform conductive cooling was obtained

throughout the length of the crystals.

With these round rods, the crystal axis needed to be rotated while lasing in order

to orientate them correctly in the resonator to obtain lasing on the σ-polarisation.

The copper-sleeved crystals were then clamped into copper mounts which were

cooled with water supplied from the same chillers that cooled the laser diodes. The

water temperature was kept in the region of 18 ◦C. The four mounted crystals are

shown in Figure 2.16.

2.6.1 Absorption of laser diode light

To find the optimum wavelength at which to pump the crystals for maximum pump

light absorption, the wavelength dependence of the crystals’ absorption of pump light

was measured for both σ- and π-polarised pump light. Once the optimum wavelength

was found from the results, the laser diode modules’ temperature could then be adjusted

accordingly for the chosen wavelength by referring to the wavelength variance graph
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Figure 2.16: Four mounted Nd:YLF crystals in resonator.

shown in Figure 2.10. The experimental set-up is illustrated in Figure 2.17. The laser

light emitted from the fibre was collimated using a spherical lens with a focal length of

25 mm and was then passed through a polarising beam splitter cube. The transmitted

light was thus linearly polarised. The polarisation could then be arbitrarily rotated by

changing the λ/2-plate’s orientation. It was therefore possible to measure both the σ-

and π-absorption values with ease. An aperture was put in front of the crystal so that

only the crystal and not the mount was illuminated. The total and the transmitted

pump light was measured with a HTD-LM45 Coherent power meter by inserting and

removing the crystal in a reproducible manner. The pump light’s wavelength was

adjusted by changing the laser diode’s temperature and was measured using the same

Ocean Optics spectrometer which was used to obtain the results shown in Figure 2.10.

The laser diode’s operating current was in the region of 40 A. After any adjustment

of the laser diode, measurements were only made well after the output power and

wavelength of the laser had stabilised. The crystals were kept at a temperature of

∼18 ◦C.

The resultant absorption spectrum for crystal 1 is shown in Figure 2.18. The other

three crystals displayed similar characteristics. The averaged absorption peak in the
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Figure 2.17: Nd:YLF crystal pump light absorption setup. The pump light is split into
its two polarisations by a polarising beam splitter cube. The subsequently polarised
transmitted light’s polarisation could then be changed by rotating the λ/2-plate to
have either σ- or π-polarised light for the absorption measurements.
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Figure 2.18: Nd:YLF crystal 1 absorption of pump light. The other crystals exhibited
similar behaviour.

measured region was at 805.5 nm with the σ and π absorption being 94 % and 89 %

respectively. 806 nm was also a feasible pump wavelength as the σ- and π-absorption

values are the same in that region, resulting in more uniform absorption. It was

concluded from Figure 2.18 and 2.10 that at full power (∼55 A), the laser diode tem-

peratures should be set to 27 ◦C which resulted in a pump wavelength of 805.5 nm for

maximum pump absorption efficiency.

Normally the remaining 10 % of pump light that is transmitted through each crystal

in the resonator would be wasted. By placing the crystals back to back, as shown in

Figure 2.16, each crystal also absorbed the pump light transmitted by the crystal

standing right next to it, leading to optimal pump light absorption.
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Figure 2.19: Nd:YLF laser resonator layout.

2.7 The Resonator

The desired attributes mentioned in Section 2.1 in conjunction with the properties

of the materials and equipment used, impose the following criteria on the resonator

design:

• The resonator should be adjustable to compensate for the varying thermal lens

strengths of the crystal rods under different pump powers.

• The astigmatic thermal lens of the Nd:YLF crystals should be compensated for

by the resonator design.

• Lasing should be ensured on the 1053 nm (σ-polarisation) laser transition to

exploit the weak thermal lens, despite this polarisation having a lower emission

cross-section than the π-polarisation (1047 nm). This can be accomplished by

designing the resonator to be unstable for stronger negative thermal lensing which

induces high losses for the π-polarisation and thus forces the laser to operate on

the σ-polarisation.

• The resonator should be relatively long to increase the cavity round trip time of
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the laser light and subsequently increase the pulse build-up time when the laser

is operated in Q-switched mode. The resulting longer pulses reduces the chance

of damage, and the long build-up time facilitates AOM switching.

• Too high gain should be avoided as this may surpass the losses introduced by the

AOM, thereby causing the system to lase even when the AOM is active. This

would prevent pulsed operation.

• The resonator mode on the mirrors should be large in order to avoid optical

damage due to too high energy densities on their dielectric surfaces.

• The low doping end of all four crystals should be accessible for end-pumping by

the fibre-coupled laser diodes. There should be a good spatial overlap of the

pump beam and the resonator mode to ensure efficient use of the excited area in

the gain medium (Clarkson, 1998).

• The resonator mode in the crystals should be large. This results in having as

large an active volume as possible to maximise energy storage for optimal pulsed

operation.

As just mentioned, for maximum energy storage the resonator mode in the crystals

should be large in order to have as large an active volume as possible. However, this

increases the lasing threshold, as can be seen from the lasing threshold pump power

equation (Fan & Byer, 1988):

PTH =
hνP

4ηPσem
L τ

(AP + AL)(T + L) (2.1)

where hνP is the pump photon energy, ηP the pump efficiency, σem
L the effective emission

cross-section and τ the upper laser level lifetime. AP and AL are the cross-sectional

areas of the pump and laser beams respectively. T is the output coupler transmission

at the laser wavelength and L includes the other resonator losses.

The slope efficiency of the laser is given by (Fan & Byer, 1988)

ηslope = ηP
hνL
hνP

(
T

T + L

)
(2.2)

where hνL is the laser photon energy.
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Figure 2.20: A beam diagram of the resonator mode as calculated by Paraxia software.

From these equations, one can see that while increasing the output coupler transmis-

sion increases the laser threshold, it also increases the slope efficiency, and is therefore

beneficial for laser performance. However, while increasing AP and AL would increase

the laser Q-switching performance, it also increases the laser threshold while the slope

efficiency remains unchanged, therefore decreasing cw performance. Thus it is required

that both pulsed performance and cw performance are taken into consideration when

designing a laser that need do both.

To comply with these criteria a folded resonator cavity was implemented. The

physical layout of the resonator is shown in Figure 2.19. This resonator is conceptually

a three mirror cavity consisting of a short arm, from mirror M1 to mirror M2, and a

long arm, from M2 to M5, similar to the Nd:YLF laser discussed by D. Esser (Esser,

2004). By making M1 a convex mirror (as done by Esser) instead of a concave mirror

(as done by Clarkson (Clarkson, 1998)), the short arm length becomes shorter and the

spot size on mirror M1 increases. This is beneficial both from a space perspective and

from an optical damage point of view. The mode in the long arm is relatively large

and collimated in such a configuration, with the mode size being variable by changing

the short arm length (Clarkson, 1998). The resonator mode for this configuration, as

calculated by Paraxia software (SCIOPT, 2010), is shown in Figure 2.20. The long

arm is folded further by flat mirrors M3 and M4 to enable end-pumping of crystals C2,

C3 and C4.

Another feature of this resonator is that with a small adjustment of the short-arm,

the mode size can be changed to compensate for the thermal lens. One can therefore

compensate for the thermal lens introduced by the crystal rods by simply changing the

distance between M1 and M2.
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2.8 Experimental Setup

The overall layout of the experimental setup is shown in Figure 2.21. The light from

the four laser diode modules was coupled through optical fibres 0.4 mm in diameter

with a numerical aperture (NA) of 0.22. The light exiting the fibres were collimated

using plano-convex lenses with a focal length of 25 mm and diameter of 25.4 mm placed

approximately 25 mm from the end-tip of the fibre (Figure 2.22). After propagating

870 mm, the collimated light was focused into the crystals using a plano-convex lens,

25.4 mm in diameter, with a focal length of 175 mm. The beam waist was approximately

1.2 mm, occurring 226 mm from the focusing lens. This resulted in a pump beam with

a waist well matched to the resonator mode’s and a Raleigh length (∼56 mm) longer

than the crystal length (45 mm).

The intensity profile of light emitted from a highly multi-mode fibre is bell-shaped

in the far field (Bollig et al., 2005). This could be advantageous for end-pumping of

the crystals as the pump intensity profile would then match the intensity profile of

the laser light in the crystals, resulting in improved energy extraction from the gain

medium (Strauss, 2009). The pump lens setup was done with this in mind, resulting in

longer propagation distances between the collimation lens and focusing lens than one

would think necessary.

Each of the four 45 mm long Nd:YLF crystals were placed so that the focus of a

pump beam would be in the centre of the crystal. The low-doped end of each crystal

faced the incoming pump light. The crystals were placed in pairs (C1, C2 and C3, C4)

in order that any pump light transmitted by the one crystal (approximately 10 %) will

be absorbed by the other. In order to pump each crystal from its low-doped end, the

two crystal pairs were placed 90 ◦ with respect to each other.

The strong astigmatism of the thermal lens of the crystals was compensated for by

using two crystals with the c-axis vertical and two with the c-axis horizontal with a

λ/2 - plate in-between the two pairs. The λ/2 - plate ensured that the polarised laser

light in the resonator would experience the same crystal orientation in both crystal

pairs.

The laser cavity consisted of mirrors M1 through M5. M1 was a convex mirror

with a 150 mm radius, with a highly reflective dielectric coating for 1053 nm light. M2

was a concave mirror with a radius of 400 mm, highly reflective for the 1053 nm laser
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Figure 2.21: The experimental setup, including pump sources, laser resonator and
diagnostics.
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Figure 2.22: Pump optics setup. The light exiting the fibre is collimated with a
f=25 mm lens and focused with a f=175 mm lens. Distances. L1, L2, and L3 are
25 mm, 870 mm, and 226 mm respectively.

light and highly transmissive for the 805 nm pump light. M3 and M4 were flat mirrors

highly reflective at 1053 nm and highly transmissive for 805 nm. The output coupler

mirror (M5) could be interchanged in order to use mirrors with reflectivity R=50, 70,

and 80 % at 1053 nm.

The short-arm of the resonator was between mirrors M1 and M2. The distance

between M1 and M2 was approximately 55 mm and could be varied by a few millimeters

to compensate for the thermal lensing effects of the crystals. The long-arm was between

M2 and M5. The distance between M2 and M3 was 185 mm, between M3 and M4

275 mm, while the distance from M4 to M5 was 600 mm, giving a total long-arm length

of 1060 mm.

The diagnostic equipment consisted of a power meter, a spectrometer, and a CCD

laser beam profiler connected to a computer. A 200 W Coherent LM-200 power meter

head was used in conjunction with a Fieldmaster Power meter to measure the laser

output power. An Ocean Optics HR4000 fibre-coupled spectrometer was used to mea-

sure the laser wavelength. To record the laser beam profile, a Spiricon CCD camera

was used. Both the spectrometer and the CCD camera interfaced with the computer.
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Figure 2.23: The pump beam radius at the crystal position for crystal C4. The mea-
sured pump beam radius in air is shown by the magenta squares. The calculated beam
radius in the crystal is depicted by the thick solid red line. The crystal pump face is
at 0 mm with the opposite end-face at 45 mm. The beam quality factor (M2) can not
be accurately calculated since there are no data points which are sufficiently far away
from the focus.

2.9 Results

2.9.1 The Pump Light

The beam radii of the diode laser modules were measured using a Spiricon CCD camera

to confirm that the pump light in the crystal matched well with the calculated resonator

mode. These measurements were done with the laser diodes operating just above their

lasing threshold where their beam sizes are roughly the same size as at full power.

The measured beam radius in air of laser diode LD4 where crystal C4 was situated

is shown in Figure 2.23. However due to the higher refractive index of YLF (n=1.45),

the focus of the pump light was farther along the optical axis in the crystal. Figure 2.23

therefore also shows the calculated pump beam radius in the crystal along its optical

axis. From this we see that throughout the length of the crystal the pump beam radius
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Figure 2.24: The pump beam intensity profile at the focus in the far field, as indicated
in Figure 2.22.

varied between 1.1 and 1.2 mm with the focus being in the middle of the crystal. This

was well matched with the calculated resonator mode size where the crystals were

placed.

From the pump beam intensity profile shown in Figure 2.24 it was confirmed that

it was bell-shaped. The other crystals were set up in a similar fashion.

2.9.2 Laser Performance

The efficiency slopes of the laser for various output couplers are shown in Figure 2.25.

Output couplers with a reflectivity of 80, 70, and 50 % were used. The laser threshold

with respect to pump power was 18 W, 26 W, and 44 W for the the output couplers

respectively. The highest efficiency was obtained with the 50 % output coupler resulting

in a maximum output of 87 W cw with a slope efficiency of 36.5 % with respect to diode

power. This is the highest power from a diode-end-pumped Nd:YLF laser ever reported.

Good beam quality was observed across the power range of the laser, with the beam

diameter decreasing slightly with increased output power (Figure 2.26). Fluctuations
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Figure 2.25: Nd:YLF laser output power vs. input power for various output couplers.

in the output power and beam pointing were observed with the output power dropping

by up to 10 percent.

2.10 Discussion

No crystal fracture occurred during the experiments, even when all four diode laser

modules were pumping the crystals at full power under non-lasing conditions - the case

where thermal stresses are highest. When compared to other reported work where

crystal fracture was mentioned, it may be deduced that the improved mounting of the

crystals in addition to exploiting the doping gradient of low-doped crystals, resulted

in a decrease of thermally induced stresses. This view is supported by the simulation

work done by Bernhardi which indicated that the crystals can be pumped 58 % harder

when pumping from the low-doped side before reaching the thermal fracture limit,

when compared to the high-doped side (See Section 2.6) (Bernhardi, 2008).

The performance of the laser however, proved to be lower than expected when

compared to the laser reported by Bollig et al. which delivered 60 W cw when pumped
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53.7 W 65.2 W 71.7 W 87.6 W

Figure 2.26: Beam profile of the Nd:YLF laser at various output powers for a R=50 %
output coupler. The minor distortions seen were caused by various optics between the
output coupler and the CCD.

by 158 W (Bollig et al., 2005). In addition, the fluctuations in output power and beam

pointing showed the laser to be rather unstable in the second timescale.

2.10.1 Findlay-Clay and Caird Loss Analysis

Subsequently, both the resonator design and experimental setup were scrutinised. Us-

ing the laser threshold and efficiency slopes for the various output couplers, the res-

onator loss was estimated using Findlay-Clay and Caird analysis and was found to be

between 10 % and 15 % (Findlay & Clay, 1966; Koechner, 1970). This was far higher

than one would expect. The laser and its separate components were therefore studied

to ascertain what the cause of these high losses might be.

2.10.2 Laser Light Scatter Losses in Crystals

To determine whether the crystal rods were responsible for the high resonator losses,

the transmission of laser light through the crystal rods was measured using the ex-

perimental set-up shown in Figure 2.27. From this one may deduce the total losses

introduced into the resonator cavity by the crystals. A Coherent diode-pumped solid-
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Figure 2.27: Nd:YLF crystal scatter loss setup. The Brewster plate was only for initial
calibration of the polarisation and was later removed.

state laser emitting 10 W of linearly polarised, stable cw light at 1064 nm was used as

the probe beam. Using a 2.0 mm hard iris, the laser beam size was reduced to fit into

the crystal before passing through a rotatable λ/2 - plate which enabled easy rotation

of the plane of polarisation of the light before entering the crystal rod. Initially the

λ/2 - plate was used to see if the laser light transmission of the crystals was dependent

on the polarisation. The transmitted light from the crystal was then passed through

a second aperture shielding the HTD-LM45 power meter from as much scattered light

as possible by placing the aperture close to the power meter, and the power meter as

far from the crystal as possible. Thus even light scattered through a small angle would

not reach the power meter’s surface.

Even though the probe laser was very stable, care was taken to obtain accurate

readings of the very small losses by using dedicated data logging software and averaging

over long periods of time (in the order of tens of seconds). Many readings were taken for

each crystal by repeatedly inserting and removing the crystal while the logging software

was recording the optical power. Through this technique, the resulting uncertainty in

the measurements was less than 0.1 %.

The Brewster plate was initially used to calibrate the orientation of the λ/2-plate

and confirm the degree of polarisation of the probe laser, after which is was removed.
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The results showed that all of the 45 mm crystal rods transmitted more than

99.7±0.1 % of the incident light. Therefore, inserting the four crystal rods into a

resonator cavity, a maximum of 2.4 % is added to the resonator round trip loss.

It was concluded from these measurements that all the crystals were of good optical

quality and therefore not the cause of the laser’s behaviour.

2.10.3 Resonator Alignment Sensitivity

In order to evaluate the resonator design, the stability diagram of the laser is shown in

Figure 2.28 for lasing at 1053 nm. The following analysis has been derived from work

presented in (Magni, 1986). From Figure 2.28 we can see that the laser, depending

on the short arm length, can operate in one of two zones (thanks is given to Hencharl

Strauss for providing the helpful spreadsheet which generated this graph). With the

short arm between 200 and 246 mm long the resonator would operate in zone I, whereas

it would operate in zone II when the short arm is between 50 and 96 mm. The relative

alignment sensitivity of the resonator is depicted by the blue X’s. From this we can see

that the resonator, when operating in zone I, is quite insensitive to changes in alignment

and other interferences. However, one also observes that the resonator mode size on the

convex (M1) mirror is very small, about 80µm. This is far too small for high energy

laser resonators as it will result in optical damage of the mirror. The alternative is to

operate in zone II, which was the case for this experiment.

Operation in zone II entails working with a laser that is far more sensitive to

alignment and environmental changes (vibration, air, etc.). However, it does have the

advantage that the resonator mode on the mirrors is considerably larger, with the

smallest spot on mirror M1 being 550µm when the short arm length is 76 mm. In zone

II there is a good spatial overlap of the pump light with the resonator mode in the

crystals which should have boded well for optical-to-optical efficiency.

Due to restrictions discussed in Section 2.8, the long arm of the resonator was

1060 mm long. From the misalignment sensitivity shown in Figure 2.28 it is deduced

that the issues the laser exhibited at this long arm length could be because the laser

operated in the more sensitive area of zone II (indicated by arrow), which made the

laser very sensitive to misalignment and to small fluctuations in the pump overlap and

variations in diffraction in the air. The lower than expected output power may also be
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Figure 2.28: Mode size on resonator mirrors and misalignment sensitivity on short arm
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indicated by the arrow.
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ascribed to this, rather than to fixed resonator losses.

For future work a better option would be to increase the long-arm length of the

resonator to 2000 mm. The resulting graph is shown in Figure 2.29. One could then

operate the laser more towards the centre region of zone II by changing the short-arm

length to ∼60 mm. As one can see from the graph, the laser would then be far less

sensitive to misalignment while still having a well-collimated mode of similar size in

the crystals.

2.11 Conclusion

In this chapter the highest power diode-end-pumped Nd:YLF laser ever reported was

presented (Bollig et al., 2008). Our improved crystal mounting in conjunction with the

exploitation of the doping gradient of low-doped Nd:YLF crystals has been shown to

be effective in addressing the thermal fracture issues relating to Nd:YLF lasers. This

approach allowed the pumping of Nd:YLF with record pumping powers, demonstrating

further that this is a good approach for the power scaling of Nd:YLF lasers.

For future work, the laser should be redesigned to operate in the more stable area

of zone II (Figure 2.29). Efficient and stable operation in excess of 100 W should then

be achievable. Q-switched operation should also be investigated as it has the potential

to yield high average powers, even at repetition rates below 5 kHz.
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Chapter 3

Compact High Power Ho:YLF

Oscillator and Amplifier

3.1 Introduction

Q-switched lasers operating in the eye-safe 2 µm wavelength region have applications in

a number of areas, including remote sensing, defence, materials processing and medical

applications. Some of these fields require reliable and efficient operation in a compact

device.

Initial work on 2µm Holmium lasers concentrated on Thulium-Holmium co-doped

operation (Fan et al., 1988). More recently, work has concentrated on Ho lasers res-

onantly pumped by Tm lasers, both pumped intra-cavity (Bollig et al., 1998) and

extra-cavity (Budni et al., 2000). With the emergence of high-power Tm-doped fibre

lasers, efficient and robust Ho:YAG lasers pumped by Tm-fibre-lasers were demon-

strated (Lippert et al., 2003; Shen et al., 2004; Lippert et al., 2006).

In order to achieve high-energy Q-switched operation, Ho:YLF is a more attractive

laser material than Ho:YAG since it has a much longer upper laser level lifetime (∼14 ms

versus 7 ms in Ho:YAG) and higher emission cross-section (1.5 x 10−20 cm2 at 2050 nm

versus 1.0 x 10−20 cm2 at 2091 nm for Ho:YAG) (Payne et al., 1992; Walsh et al., 1998).

In addition, the very weak thermal lens on the σ-polarisation helps to deliver diffraction

limited beams even under intense end-pumping.

However, Ho:YLF has a somewhat stronger quasi-three-level nature than Ho:YAG
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(see Section 3.2.1). To reach gain at the 2065 nm line, 22 % of the Ho ions need to

be pumped into the upper laser level (at room temperature), but it already reaches

transparency at the 1940 nm pump wavelength with only 56 % of the Ho ions in the

upper laser level (see Appendix). In addition, the pump absorption at 1940 nm is

relatively weak and strongly polarised (Figure 3.1). Subsequently, the laser design

requires a trade-off between efficient pump absorption and low laser threshold.

In this chapter a compact Ho:YLF oscillator-amplifier system in a novel setup which

utilised the unpolarised pump power from a fibre laser efficiently, and produced 21.3 mJ

at 1 kHz, with an M2 better than 1.1 is presented. The amplified energies agreed

well with the predicted values from a two dimensional rotational symmetric amplifier

model developed by Dr Martin Shellhorn. His model considered upconversion losses

and ground-state depletion, as well as the spatial distribution of the pump beam (Koen

et al., 2009).

3.2 Properties of Ho:YLF

3.2.1 The Quasi-Three-Level Ho:YLF laser

The quasi-three-level laser scheme of Holmium in YLF relevant to this work is shown

in Figure 3.2.

Initially the ions are in the ground state 5I8. When an ion absorbs a pump photon

(∼1940 nm) it gets excited from the ground state to the upper laser level 5I7 (red

arrows). The pump photon energy is close to the energy difference between these two

states. This upper level is a meta-stable state with a long lifetime. The excited ion

can then de-excite back to the 5I8 state through stimulated emission by emitting a

photon of either 2050 nm or 2064 nm (blue arrows). Through rapid thermalisation, the

Boltzmann distribution in the ground state population is restored on the picosecond

scale. Thereafter the ion is ready to be excited by a pump photon once more. Given

that there is enough pump light and absorption thereof, a sufficient population may

occur in the upper state (5I7) to create gain at either 2050 nm or 2064 nm for lasing to

occur.

It must be noted that according to Walsh’s definition discussed in the introductory

chapter of this dissertation, this is a quasi-four-level laser (Section 1.2.3), and not a
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Figure 3.1: Ho:YLF absorption and emission cross-sections (Walsh et al., 1998).
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Figure 3.2: Schematic of the quasi-three-level Ho:YLF laser levels relevant to this work
(Cross, 2005).
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Figure 3.3: Schematic of the Ho-Ho energy transfer processes (Barnes et al., 2003).

quasi-three-level, as described in the literature in the past decades. Walsh’s definition

however, is related to the gain of the laser and for these wavelengths and transitions

the laser’s gain does resemble a quasi-four-level laser more than a quasi-three-level.

However, if one studies the transitions in the energy-level diagram (Figure 3.2),

it implies that this laser scheme is that of a quasi-three-level, despite behaving more

like a quasi-four-level. Since the definition proposed by Walsh is fairly recent (Section

1.2.3 (Walsh, 2009)) and has yet to enjoy widespread use, historical convention is rather

followed in this section, and therefore Ho:YLF lasers are referred to as quasi-three-level

lasers in this chapter.

3.2.2 Ho-Ho Energy Transfer

Within the gain medium processes can occur where two Ho atoms interact so that one

of the atoms is promoted from the 5I7 manifold to the 5I5 manifold, while the other

atom is demoted from the 5I7 manifold to the 5I8 manifold. This upconversion process

is indicated by the arrows in Figure 3.3 labelled as p77 (Barnes et al., 2003). There is
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also a self-quenching process where a Ho atom in the 5I5 manifold and one in the 5I8

manifold interact, resulting in two Ho atoms in the 5I7 manifold. This is the reverse of

the upconversion process p77, and is denoted by p58.

Although all energy transfer processes have a reverse process, their effectiveness

depends on the specific energy level structure of the ion in the relevant host. With

Ho:YLF the 5I5 manifold decays quickly to the 5I6 manifold and from there to the 5I5

manifold through nonradiative transitions. The p77 process therefore has a low chance

of being reversed. Subsequently this Ho:Ho upconversion has a net negative effect.

Since the upconversion process involves two Ho ions which are both in the 5I7

manifold and spaced close together, this process is most likely to happen when the

population density of the 5I7 manifold is high. It is therefore most important when the

energy storage in the gain medium is high, which is the case when a laser is Q-switched.

Upconversion therefore limits energy storage in Ho lasers, lowering both pulse energy

during Q-switching and laser efficiency. As upconversion is dependent on the doping

of the crystal, it can be reduced and even eliminated through the use of low-doped

crystals (Koen et al., 2009).

3.3 Design Approach

Efficient fibre-laser-pumped Ho:YLF oscillators have previously been demonstrated

(Bai et al., 2007), but to scale the output energy further, an oscillator-amplifier sys-

tem can be employed. The traditional approach when pumping an oscillator-amplifier

system with one fibre-laser pump source is to split the unpolarised pump beam into

two polarised beams in order to pump the oscillator and amplifier crystals separately,

as shown in Figure 3.4 (Dergachev et al., 2007).

In the novel approach presented here the full unpolarised beam from the fibre laser

was used to pump the oscillator, after which the partially polarised transmitted pump

light from the oscillator was used to pump the amplifier, with its crystal rotated by 90 ◦

with respect to the laser beam axis. This led to a small system footprint and kept the

path length of the pump light short, reducing the adverse effects of water absorption

(Rothman et al., 2003).

Figure 3.1 shows the emission and absorption spectra of Ho:YLF. The emission is

stronger on the π-polarisation than on the σ-polarisation. However, the σ-polarisation
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Figure 3.4: Schematic of a conventional layout for an end-pumped Ho:YLF Oscillator-
Amplifier. The pump light is split into two polarised beams using a polarizing beam
splitter (PBS). The one beam is then used to pump the oscillator while the second
beam is used to pump the amplifier (Dergachev et al., 2007).

has a much weaker thermal lens in YLF than the π-polarisation and is thus preferred for

a high-power oscillator. In an amplifier, on the other hand, gain is the most important

factor while the thermal lens is not as problematic as in an oscillator. Therefore, we

chose to utilise the σ-polarisation for the laser oscillator and the π-polarisation for the

amplifier.

3.4 Experimental Set-up

3.4.1 The Pump Source

A commercial Tm-fibre laser manufactured by IPG Photonics (Model TLR-80-1940)

was used as pump source (Shown in Figure 3.5). The fibre laser required water cooling

at a temperature setpoint of 20 ◦C which was supplied by a 1 kW cooling capacity

circulatory water chiller. The fibre laser delivered a maximum of 86.5 W in a near-

diffraction-limited beam with a specified M2 of 1.05. The fibre-laser’s wavelength

was specified to match the Ho:YLF absorption peak at 1940 nm. It was subsequently
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Figure 3.5: The IPG fibre laser used as pump source for the Ho:YLF oscillator-amplifier
system.

measured with a Jarrell Ash monochromator and found to be 1938.7±2.5 nm at full

power. The output power of the fibre laser as a function of setpoint was measured

using a LM-100 Coherent power meter. The results are shown in Figure 3.6.

Since there are strong water absorption lines in the 1.9µm wavelength region, it

was necessary to investigate if water vapour in the atmosphere would pose a problem

with the Tm:fibre laser as pump source for the Ho:YLF oscillator-amplifier system. In

order to do so, the transmission spectrum of air in the region of 1940 nm was calculated

using HITRAN (Rothman et al., 2003), and is shown in Figure 3.7. This calculation

was for a distance of 1 m in air with a relative humidity of 50 % at 300 K. The fibre

laser’s emission spectrum was superimposed on the graph to determine if there are any

water absorption lines overlapping with the laser’s output spectrum.

It was concluded that there are water absorption lines and that it should be inves-

tigated further. An experiment was devised where the fibre laser’s beam profile was

measured with a Spiricon Pyrocam after propagating a certain distance. The resultant

beam profile is shown in Figure 3.8.

The absorption of the light led to heating of the air, resulting in turbulence which in
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Figure 3.6: Power slope of the fibre laser with regard to the setpoint.

turn led to beam distortion and beam wandering. The beam profiles shown in Figure 3.8

illustrate how this affected the beam intensity profile. After propagating only 1.85 m,

the collimated beam was distorted at lower powers and severe beam wandering was

observed. This was despite the fact that only 4 % of the light was absorbed in the air

with the fibre laser running at 50 %. At higher fiber laser powers, these detrimental

effects decreased and the total amount of laser power absorbed was negligible. This

is attributed to a shift in wavelength of the fibre-laser with an increase of its output

power, possibly caused by the heating-up of the internal fibre Bragg grating of the fibre

laser.

From these measurements it became apparent that water absorption of the fibre

laser’s light had to be taken into careful consideration when designing a system pumped

by this laser, as pump beam distortion and beam wandering would affect an end-

pumped system adversely.

There are several ways in which this problem is typically resolved:

• A fibre bragg grating can be used to shift the fibre-laser’s wavelength to a re-

gion where there is no water absorption. There are limits to how far the laser’s
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Figure 3.7: The transmission spectrum of air in the region of 1940 nm over a length
of 1 m with a relative humidity of 50 %, and temperature 300 K. The fibre laser’s
wavelength at full power is also shown.

Figure 3.8: Beam profile measurements of the fibre-laser beam 1.85 m away from the
collimator at 50 % (left), and 100 % output power (right).
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Figure 3.9: A schematic diagram of the fibre-laser-pumped Ho:YLF oscillator-amplifier
system.

wavelength can be shifted though. This has already been implemented in the

fibre-laser. The fibre laser could also be run at full power since the beam is least

affected at full power. The beam must then be attenuated to obtain the desired

pump power.

• The system could be encased in a box which is flushed with dry air. The subse-

quent decrease in humidity would lessen the water absorption of the laser light.

This is the traditional solution to the problem.

• The distance the pump beam propagates in air before entering the laser crystal

could be minimised. This imposes spatial restrictions on the setup.

From these options, it was decided to implement a scheme where the beam’s prop-

agation distance is minimised as it would be the most practical solution. This would

entail having the oscillator crystal’s pump-face as close to the fibre laser’s end as pos-

sible, and the oscillator and the amplifier crystal close to each other. The spatial

restrictions on the layout of the system imposed by this resulted in a compact laser.

3.4.2 The Resonator

As discussed, several criteria were imposed on the design of the resonator and amplifier,

which resulted in the setup shown in Figure 3.9. The distance from the fibre laser’s

output to the Ho:YLF crystal in the resonator was kept to a minimum to minimise
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beam distortion caused by the water vapour in the air. The pump light transmitted

through the laser crystal was accessible by the amplifier crystal behind it with the

distance between the two crystals as short as possible.

To ensure good efficiency and beam quality, the pump laser beam and resonator

mode size inside the laser crystal had to match. To achieve this the pump laser beam

was collimated and then sent through a convex lens with a focal length of 100 mm

followed by a concave lens with a focal length of 50 mm. After collimation the beam

diameter was ∼4 mm and the pump spot radius after the two lenses was measured to

be approximately wp=600µm.

As with the Nd:YLF laser, the resonator had to be adjustable to compensate for

the varying thermal lens of the crystal.

Ho:YLF crystal rods supplied by VLOC were used as the gain medium in the

experiment. All crystals were a-cut and had a doping concentration of 0.5 at.%. They

were 6 mm in diameter with respective lengths of 30 mm and 50 mm. The crystals were

mounted in water-cooled copper mounts in the same fashion as the Nd:YLF crystals

used in the previous chapter. The water temperature was kept at 20 ◦C with the same

chiller used for the fibre laser. Either the 30 mm or the 50 mm crystals could be used

in the resonator.

The subsequent resonator was 370 mm long with a 500 mm concave back-reflector

and a flat output coupler which could be interchanged for various reflectivities. The

setup is shown in Figure 3.10.

The resonator length could be easily changed to compensate for the weak thermal

lens of the Ho:YLF crystal.

To keep the optical path of the pump light to the amplifier crystal to a minimum,

the resonator was folded using 45 ◦ dichroic mirrors with high transmission for the

pump light (s- and p-polarisation), high reflection for s-polarised laser light, and 20 %

transmission for p-polarised laser light, forcing the oscillator to operate on the vertical

polarisation. Having the c-axis of the crystal horizontal, lasing was ensured on the

σ-polarisation (E⊥c). Neglecting thermal lensing, the calculated TEM00 beam radius

in the YLF crystal was 580µm, which was assumed to increase at higher pump powers

due to the effect of the weak negative thermal lensing in Ho:YLF.

After the resonator’s cw performance was tested, a water-cooled, plane cut, AR-

coated crystalline quartz acousto-optic modulator manufactured by Gooch & Housego
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Figure 3.10: Top view of the Ho:YLF oscillator. The pump light is shown in orange,
the laser light in red.

(Model QS027-10M-NL5) was inserted for Q-switched operation. It delivered a loss

modulation of approximately 80 % at the maximum recommended RF power of 100 W

at 27 MHz. It was used with a gate time of 6µs at 95 W of RF power.

3.4.3 The Amplifier

The transmitted pump power from the fibre laser was subsequently used to pump

the amplifier crystal. In this instance a 30 mm long crystal was used in the oscillator

while a 50 mm long amplifier crystal was placed as close to the oscillator as possible to

minimise atmospheric water absorption of the 1940 nm pump light which would lead

to heating of the air and subsequent thermal turbulence. This negated the need for

any enclosure or dry-air flushing typically used for such setups to prevent pump-beam

distortions caused by thermal turbulence in the air.
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Figure 3.11: The Ho:YLF oscillator and amplifier. The pump light is shown in orange,
the laser light and amplified light in red.

Since the absorption at 1940 nm in Ho:YLF is strongly polarisation dependent (Fig-

ure 3.1), there was a difference between the transmissions of the two polarisations. This

made the transmitted light partially polarised. Therefore, in order to achieve maximum

absorption in the amplifier crystal, it was orientated with its c-axis rotated by 90 ◦ with

respect to the c-axis of the oscillator crystal. This effectively ”swapped” the polari-

sations for the amplifier crystal. Thus, the π-polarisation, with the higher emission

cross-section (Walsh et al., 1998) but stronger thermal lens, was used for amplification

while the σ-polarisation, with the weak thermal lens but lower cross-section, was used

in the oscillator. The laser output was coupled into the amplifier crystal using a lens

with a focal length of 350 mm. The complete oscillator-amplifier setup is shown in

Figure 3.11.

3.5 Experimental results

3.5.1 Pump Light Transmittance

The oscillator-amplifier system was designed such that a large portion of the pump light

was transmitted through the oscillator crystal in order to pump the amplifier crystal.

In order to know the incident pump power on the amplifier crystal, the pump light

transmitted through the laser crystal was measured. This was done for the different
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Figure 3.12: The percentage of pump power transmitted through the resonator versus
the incident pump power for various crystal lengths and output coupler reflectivities.

crystal lengths and output coupler reflectivities as it was expected that this would

influence the pump bleaching and therefore the amount of transmitted pump light.

The results are shown in Figure 3.12.

For all crystal and output coupler combinations, the percentage of transmitted

light increased slightly with an increase of pump light incident on the laser crystal.

The lowest percentage of pump light transmitted was when the 50 mm long crystal was

used in combination with a 20 % output coupler (R=80 %). For the same crystal length

of 50 mm, more pump light was transmitted for output couplers with lower reflectivities

due to a corresponding increase in pump bleaching within the crystal.

The highest percentage of pump light was transmitted when the 30 mm crystal was

used in combination with a 50 % output coupler. At full pump power this combination

transmitted 55 % of the incident pump light which could then be utilised to pump the

amplifier.
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Figure 3.13: CW output power of the oscillator versus incident pump power for various
output couplers and crystal lengths.

3.5.2 CW Oscillator Performance

The performance of the laser under cw operation was measured for various output

coupler reflectivities and crystal length combinations.

Figure 3.13 shows the slope efficiencies for both the 30 mm and 50 mm crystals

in combination with R=30, 50, and 80 % reflective output couplers as a function of

incident pump power. All combinations exhibited a linear response to an increase in

incident pump power. The highest slope efficiency was obtained with the 50 mm long

crystal and R=80 % output coupler, with a slope efficiency of 42 %. The lowest lasing

threshold of 26.4 W was obtained with the 50 mm crystal and R=80 % output coupler.

The highest threshold of 40.7 W was obtained with the 50 mm crystal in combination

with the R=30 % output coupler. Threshold could not be reached with the available

pump power for the 30 mm crystal, R=30 % output coupler combination.

Figure 3.14 shows the slope efficiencies for both the 30 mm and 50 mm crystals
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Figure 3.14: CW output power of the oscillator for various crystal lengths and output
couplers as a function of absorbed pump power.

in combination with R=30, 50, and 80 % reflective output couplers as a function of

absorbed pump power. All combinations exhibited a linear response to an increase in

absorbed pump power. The highest slope efficiency was obtained with the 50 mm long

crystal and R=50 % output coupler, with a slope efficiency of 67 %. The lowest lasing

threshold of 15.8 W was obtained with the 30 mm crystal and R=50 % output coupler.

The highest threshold of 25.8 W was obtained with the 50 mm crystal in combination

with the R=30 % output coupler. When comparing Figures 3.13 and 3.14, one observes

that the efficiency slopes differ drastically with regard to the incident pump power as

opposed to the absorbed pump power. While the R=80 % output coupler and 50 mm

crystal combination had the highest efficiency slope with regard to incident pump

power, the R=50 %, 50 mm combination had the highest efficiency slope with regard

to absorbed pump power. The latter combination would have been the obvious choice

if the oscillator was to be the only part of the system.

However, since the amplifier used the transmitted pump light from the oscillator,
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neither of these two combinations would have resulted in the most efficient oscillator-

amplifier system, given the other choices, as they both absorbed the most pump light

without having significantly higher efficiency slopes than the other combinations.

With the complete oscillator-amplifier system performance in mind, the R=50 %

output coupler and 30 mm crystal combination was the best choice. Not only did it

transmit far more pump light than the other combinations (see Figure 3.12), but it

also had an efficiency slope not much worse than the rest with regard to absorbed

pump light. In addition, this combination had the lowest absorbed pump threshold.

Subsequently the R=50 % output coupler in combination with a 30 mm crystal was

used in the oscillator for the final setup.

3.5.3 Pulsed Oscillator Performance

The laser was also operated in Q-switched mode. For initial performance measure-

ments, a 50 mm long Ho:YLF crystal was used in the resonator, in conjunction with

a R=30 % output coupler (Transmission of 70 %). The high output coupling was cho-

sen for low intra-cavity energy in order to avoid possible optical damage. The laser

was operated at pulse repetition frequencies (PRF) from 5 kHz down to 0.7 kHz. The

results are shown in Figure 3.15.

The laser pulse length decreased with a decrease in the PRF, while the energy

per pulse increased. The longest laser pulse and lowest pulse energy was obtained

at a PRF of 5 kHz. At 5 kHz the laser delivered a 2.86 mJ pulse with a full width

half maximum (FWHM) pulse of 250 ns. The highest pulse energy of 18.9 mJ (Total

intra-cavity energy of 35 mJ) delivered in a 51 ns pulse was obtained at a PRF of

700 Hz. Lower repetition rates could not be attempted with this configuration since

damage to the dielectric coating of the mirrors occurred when attempting to operate

the laser at 600 Hz. Thereafter, configurations with lower intra-cavity peak intensities

were examined in an attempt to avoid further damage to optical components in the

laser.

The 50 mm long crystal in the resonator was swapped with a 30 mm one and the

R = 30 % output coupler was changed to 50 % as threshold could not be reached with

the R = 30 % output coupler. The results for pulsed operation is shown in Figure 3.16.

This crystal/output-coupler combination resulted in an extra 10 % of pump light being
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Figure 3.15: Oscillator pulse energy and FWHM pulse length as a function of the
repetition rate at full pump power for the 50 mm long crystal and R=30 % output
coupler.

71

• 

• • -- • 
• • • 

• • -• • • 
•• 

, 
• •• • 

•• • 
•• • • 

l: l 



CHAPTER 3. COMPACT HIGH POWER HO:YLF OSCILLATOR AND
AMPLIFIER

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Repetition Rate [kHz]

P
u

ls
e 

E
n

er
g

y 
[m

J]

0

50

100

150

200

250

300

P
u

ls
e 

L
en

g
th

 [
n

s]
Pulse Energy 
Pulse Length

Figure 3.16: Oscillator pulse energy and FWHM pulse length as a function of the
repetition rate at full pump power for the 30 mm long crystal and R = 50 % output
coupler.
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transmitted through the laser crystal, as discussed in Section 3.5.1 (Figure 3.12), which

could be efficiently utilised in the amplifier crystal. This configuration exhibited the

same behaviour as the preceding set-up, but with lower output power. The lowest PRF

attempted was 1 kHz at full pump power which delivered a pulse energy of 10.4 mJ

(Total intra-cavity energy of 31.3 mJ).

3.5.4 Amplifier Performance

After the oscillator’s initial characterization was done, the amplifier setup was added.

The resonator configuration remained the same with a 30 mm crystal and 50 % output

coupler, while a 50 mm crystal was used for the amplifier. As shown in Figure 3.9, the

oscillator light was focused into the amplifier crystal using a convex lens with a 350 mm

focal length.

3.5.5 CW Amplifier Performance

The oscillator and amplifier output under cw operation is shown in Figure 3.17. The

navy data points indicate the laser output while the magenta points indicate the am-

plifier output power for various pump powers. The solid magenta line represents the

amplifier output power predicted by the theoretical model (See the Appendix, (Koen

et al., 2009)).

The oscillator had a threshold of 31 W (17 W absorbed) of pump power, with an

overall slope efficiency of 25 % (47 % vs. absorbed power). At 82 W of pump power

(incident), the oscillator power was 12.4 W and the amplified power was 23.7 W at

a centre wavelength of 2065 nm. This corresponds to a gain of the amplifier of 1.9.

The total pump power transmitted through the oscillator crystal was 47 W (55 % of

the pump power) at full power. The amplifier crystal absorbed 29 W (62 % of the

transmitted pump, 35 % of total pump), which left 18 W (22 %) of the total pump light

unused. The slope efficiency of the amplified beam versus total fibre pump power was

47 % with an overall optical-to-optical efficiency of 29 %. With respect to the total

absorbed power (35 + 29 W), the slope efficiency was 60 % and the overall efficiency

was 37 %. It is clear that the efficiency with respect to incident pump power could be

further increased by reflecting the 18 W transmitted pump light back into the amplifier

and oscillator crystals. This was not attempted as it was unclear at the time what
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Figure 3.17: Oscillator and amplifier output power versus incident fibre pump power
under cw lasing conditions (dots) together with the results of a numerical simulation
(solid line) (Koen et al., 2009).
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Figure 3.18: Oscillator and amplifier output energy and FWHM pulse lengths as a
function of the repetition rate at full pump power (dots) together with the results of a
numerical simulation (solid line).

the tolerance of the fibre laser to back reflection was. Additionally, a two dimensional

rotational symmetric amplifier model was developed by Dr Shellhorn (Koen et al.,

2009), the full details of which are available in the published paper attached to this

dissertation as an appendix. In brief, the model considered upconversion losses and

ground-state depletion, as well as the spatial distribution of the pump and laser beams.

Taking into account the measured transmitted pump power through the laser crystal,

the amplified laser power is calculated assuming a pump and laser spot radius of 550µm

(see Table 1 in the Appendix) at the position of the amplifier crystal. The solid lines

in Figures 3.17, 3.18, and 3.19 indicate the results of these calculations which agree

well with the experimental values. It also indicated that upconversion can be ignored

as it is negligible in the 0.5 % doped Ho:YLF crystals used.
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Figure 3.19: Amplifier output power and gain under cw operation (dots) for different
seed powers, together with the results of a numerical simulation (solid lines).

3.5.6 Amplifier Small Signal Gain

The amplifier small signal gain was measured under cw operation at a fixed pump

power of 75 W of the fibre laser. The oscillator output power was attenuated with

different partial reflectors to vary the seed power of the amplifier. The amplifier was

pumped with the transmitted pump power of 40 W. Figure 3.19 shows the measured

amplifier small signal output power and gain under cw operation (dots) together with

the results of the numerical simulation (solid lines). Assuming a pump and laser spot

radius of 550µm (see Table 1 in the Appendix) the results of the simulation show good

agreement with the experiment and the small signal gain of approximately 3.3 implies

that the amplifier is operated nearly in saturation at full cw power.
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Figure 3.20: Amplifier pulse shape measured with a PEM (cyan line) and an extended
InGaAs (yellow line) detector at 1 kHz pulse repetition rate. The PEM detector gives
the more accurate reading as the extended InGaAs detector is slower.

3.5.7 Pulsed System Performance

Finally, the oscillator was Q-switched between 5 kHz and 1 kHz to test the performance

of the complete system. The pulse energies of the oscillator and amplifier and the

FWHM pulse lengths as a function of the repetition rate are shown in Figure 3.18 at

full pump power together with the results of a numerical simulation. The highest pulse

energies for the system in our operating regime were achieved at a repetition rate of

1 kHz with the oscillator delivering 10.9 mJ per pulse and an amplified pulse energy

of 21.3 mJ with a FWHM pulse length of 74 ns (Figure 3.20). This corresponds to a

gain of 2.2. The results of the simulation show good agreement with the experiment

and the calculated small signal gain of 3.85 at 1 kHz repetition rate is slightly higher

than that measured in cw mode. The amplifier did not change the pulse length in any

measurable way compared to the oscillator.

The beam quality of the oscillator as well as the amplifier was measured by using

a knife edge. It was subsequently found that both the oscillator and amplifier had an

M2 value of better than 1.1 at full power. The intensity profile of the amplifier beam

is shown in Figure 3.21.
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Figure 3.21: Amplifier beam profile at 1 kHz pulse repetition rate.

3.6 Conclusion

A novel oscillator-amplifier scheme was developed and successfully demonstrated, where

the unused pump light transmitted by the oscillator was utilised to pump an amplifier

crystal. The system produced more than 21 mJ of energy per pulse at 1 kHz, with

an M2 better than 1.1. The amplified energies agreed well with the predicted values

from a two dimensional rotational symmetric amplifier model that was developed. The

model considered upconversion losses and ground-state depletion, as well as the spatial

distribution of the pump beam.

Future work entails building a single-frequency system with higher output energies

at low pulse repetition rates. This is elaborated upon in the next chapter.
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Chapter 4

Conclusion

Through the demonstration of the two laser systems presented in this dissertation YLF

has been shown to be an excellent host material for high-power laser systems in both

the near- and the mid-infrared regime, provided that the thermal issues of YLF are

correctly addressed.

In both these systems end-pumping, as discussed in Chapter 1, was implemented,

resulting in high efficiencies and excellent beam quality which demonstrated the benefits

of end-pumping solid-state lasers.

In Chapter 2 two scaling techniques for a Nd:YLF laser were demonstrated success-

fully. The novel mounting technique used for the Nd:YLF rods improved the cooling

of the crystal, while pumping the crystals from their low-doped end resulted in a more

uniform heat distribution along the optical axis. Both these techniques resulted in

lower maximum temperatures at the pump face of the crystal, thus decreasing ther-

mally induced stress in the crystals. This scaling approach subsequently led to the

highest reported power from a diode-end-pumped Nd:YLF laser (Bollig et al., 2008).

With these results limited solely by the available pump power, and not by thermal

fracture of the laser crystals used, power scaling should be possible with the use of

higher powered laser diodes of similar beam quality. Additionally, the longer crystals

mentioned in Section 2.6 (75 mm vs. 45 mm) of lower doping could be used should the

increased heat load prove too much for the current crystals.

In Chapter 3 a novel oscillator-amplifier scheme was developed and successfully

demonstrated where the unused pump light transmitted by the oscillator was utilised
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to pump an amplifier crystal. This pump scheme had two advantages:

Firstly, the compact design minimised the pump beam path in air. This decreased

pump beam distortions and beam wandering caused by laser light absorption by water

vapour in air, a common problem for lasers operating in this wavelength regime. It

eliminated the need for the laser to be enclosed and flushed with dry air - the solution

mostly used to solve this problem.

Secondly, the unpolarised pump light was absorbed efficiently despite the highly

polarisation dependent pump light absorption of the Ho:YLF crystals. The improved

pump light absorption led to a higher overall efficiency when compared to the con-

ventional pump schemes where the unpolarised pump light is split into two using a

polarising beam splitter to pump the laser crystal and the amplifier crystal separately

(Dergachev et al., 2007).

This pumping scheme has subsequently also been used successfully in a high-energy

single-frequency Ho:YLF system which delivered the highest reported pulse energies

(Bollig et al., 2009).
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Abstract We developed a compact Ho:YLF oscillator–

amplifier system in a novel setup to utilise the unpolarised

pump power from a fibre laser efficiently, and produced

21.3 mJ at 1 kHz, with an M
2 better than 1.1. The ampli-

fied energies agreed well with the predicted values from a

two dimensional rotational symmetric amplifier model that

we developed. The model considers upconversion losses and

ground-state depletion, as well as the spatial distribution of

the pump beam.

PACS 42.55.Xi · 42.60.Gd · 42.60.Da

1 Introduction

Q-switched lasers operating in the eye-safe 2 µmwavelength

region have applications in a number of areas, including re-

mote sensing, defence, materials processing and medical ap-

plications. Some of these require reliable and efficient oper-

ation in a compact device. Initial work on 2-µm holmium
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lasers concentrated on thulium–holmium co-doped opera-

tion [1]. More recently, work has concentrated on Ho lasers

resonantly pumped by Tm lasers, both intra-cavity [2] and

extra-cavity [3] pumped. With the emergence of high-power

Tm-doped fibre lasers, efficient and robust Ho:YAG lasers

pumped by Tm-fibre-lasers were demonstrated [4–6].

However, in order to achieve high-energy Q-switched

operation, Ho:YLF is a more attractive laser material than

Ho:YAG since it has a much longer upper laser level life-

time (∼14 ms) and higher emission cross section (1.8 ×

10−20 cm2 at 2050 nm versus 1.0× 10−20 cm2 at 2091 nm

for Ho:YAG) [7, 8]. In addition, the very weak thermal

lens on the σ -polarisation helps to deliver diffraction lim-

ited beams even under intense end-pumping. However,

Ho:YLF has a somewhat stronger quasi-three-level nature

than Ho:YAG. In order to reach gain at the 2065 nm line,

22% of the Ho ions need to be pumped into the upper laser

level (at room temperature), but it already reaches trans-

parency at the 1940 nm pump wavelength with only 56% of

the Ho ions in the upper laser level (see Appendix). In addi-

tion, the pump absorption at 1940 nm is relatively weak and

strongly polarised. Subsequently, the laser design requires

a trade-off between efficient pump absorption and low laser

threshold.

Efficient fibre-laser-pumped Ho:YLF oscillators have

previously been demonstrated [9], but to scale the out-

put energy further, an oscillator–amplifier system can be

employed. The traditional approach when pumping an

oscillator–amplifier system with one fibre laser pump source

is to split the unpolarised pump beam into two polarised

beams in order to pump the oscillator and amplifier crystals

separately [10]. In our approach, we use the full unpolarised

beam from the fibre laser to pump the oscillator, and then

use the partially polarised transmitted pump light from the

oscillator to pump the amplifier with its crystal rotated by
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90◦ around the laser beam axis. This leads to a small system

footprint and keeps the path length of the pump light short,

reducing adverse effects of water absorption [11].

Figure 1 shows the emission and absorption spectra of

Ho:YLF. The emission is stronger on the π -polarisation than

on the σ -polarisation. However, the σ -polarisation has a

much weaker thermal lens in YLF than the π -polarisation

and is thus preferred for a high-power oscillator. In an am-

plifier, on the other hand, gain is the most important factor

while the thermal lens is not as problematic as in an oscilla-

Fig. 1 Ho:YLF absorption and emission cross-sections [8]

tor. Therefore, we chose to utilise the σ -polarisation for the

laser oscillator and the π -polarisation for the amplifier.

2 Experimental set-up

The layout of the Ho:YLF oscillator/amplifier is shown in

Fig. 2. A single 82 W Tm-fibre laser (Model TLR-80-1940,

from IPG Photonics) was used as pump source. The fibre-

laser’s wavelength was selected to match the Ho:YLF ab-

sorption peak at 1940 nm. The pump light was collimated

and sent through a telescope consisting of two lenses with

respective focal lengths of 100 mm and −50 mm. The spot

radius wp of the pump beam was measured to be ∼600 µm.

We used the full unpolarised pump beam from the Tm-

fibre laser to pump the oscillator crystal, which was a

0.5 at.% doped, a-cut Ho:YLF crystal with a length of

30 mm and a diameter of 6 mm. The crystal was mounted in

a water cooled copper mount. The water temperature was

kept constant at 20◦C. The resonator was 370 mm long

with a 500 mm concave back-reflector and a flat output cou-

pler with a reflectivity of 50%. To keep the optical path of

the pump light to the amplifier crystal to a minimum, the

resonator was folded using 45◦ dichroic mirrors with high

transmission for the pump light (s- and p-polarisation), high

reflection for s-polarised laser light, and 20% transmission

for π -polarised laser light, forcing the oscillator to operate

vertically polarised. Having the c-axis of the crystal hori-

zontal, we insured lasing on the σ -polarisation. A plane cut,

AR coated crystal quarts acousto-optic modulator manufac-

tured by Gooch & Housego (Model QS027-10M-NL5) was

inserted for Q-switched operation. It delivered a loss modu-

lation of approximately 80% at the maximum recommended

RF power of 100 W. It was subsequently used with a gate

time of 6 µs at 95 W of RF power. Neglecting thermal lens-

ing, the calculated TEM00 beam radius in the YLF crystal

was 580 µm, which was assumed to increase at higher pump

power due to the effect of the weak negative thermal lensing

in Ho:YLF.

Fig. 2 A schematic diagram of the fibre-laser-pumped Ho:YLF oscillator–amplifier system
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Fig. 3 Oscillator and amplifier output power versus fibre pump power

under cw lasing conditions (data points) together with the results of a

numerical simulation (solid line)

Fig. 4 Amplifier small signal output power and gain under cw oper-

ation (data points) together with the results of a numerical simulation

(solid lines)

The transmitted pump power was subsequently used to

pump the amplifier crystal (50 mm long, also 0.5 at.%

doped) which was placed as close to the resonator as

possible to minimise atmospheric water absorption of the

1940 nm pump light which would lead to heating of the

air and subsequent thermal turbulence. This negated the

need for any enclosure or dry-air flushing typically used

for such setups to prevent pump-beam distortions caused

by thermal turbulence. Since the absorption in Ho:YLF is

strongly polarisation dependent, there is a difference be-

tween the transmissions of the two polarisations. This makes

the transmitted light partially polarised. Therefore, in or-

der to achieve maximum absorption in the amplifier crys-

tal, it was orientated with its c-axis rotated by 90◦ with re-

spect to the c-axis of the oscillator crystal. This effectively

“swapped” the polarisations for the amplifier crystal. Thus,

the π -polarisation, with the higher emission cross-section

[8] but stronger thermal lens, was used for amplification

Fig. 5 Oscillator and amplifier output energy and FWHM pulse

lengths as a function of the pulse repetition rate at full pump power

(data points) together with the results of a numerical simulation (solid

line)

Fig. 6 View of the energy levels of Ho:YLF taken into account in the

presented amplifier model [12]

while the σ -polarisation, with the very weak thermal lens

but lower cross section, was used in the oscillator.

The laser output was coupled into the amplifier crystal

using a lens with a focal length of 350 mm.

3 Experimental results

The oscillator and amplifier were first operated in cw mode.

The output power as a function of the fibre laser pump diode

power incident on the crystal is shown in Fig. 3. The oscilla-

tor had a threshold of 31 W (17 W absorbed) of pump power,

with an overall slope efficiency of 25% (47% vs. absorbed

power). At full pump power (82 W), the oscillator power

was 12.4 W and the amplified power was 23.7 W at a centre

wavelength of 2065 nm. This corresponds to a gain of the
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amplifier of 1.9. The total pump power transmitted through

the oscillator crystal was 47 W (57% of the pump power) at

full power. The amplifier crystal absorbed 62% (29 W) of

this transmitted pump light, which left 22% (18 W) of the

total pump light unused. The slope efficiency of the ampli-

fied beam versus total fibre pump power was 47% with an

overall optical-to-optical efficiency of 29%. With respect to

the total absorbed power (35 + 29 W), the slope efficiency

was 60% and the overall efficiency was 37%. The efficiency

with respect to incident pump power could be further in-

creased by reflecting the 18 W transmitted pump light back

into the amplifier and oscillator. This was not attempted as

it was unclear at the time what the fibre-laser’s tolerance to

back reflection was.

A two dimensional rotational symmetric amplifier model

was developed. The model considers upconversion losses

and ground-state depletion, as well as the spatial distribu-

tion of the pump and laser beam and is described in detail

in the Appendix. The parameter values used in the simula-

tion are listed in Table 1. Taking into account the measured

transmitted pump power through the laser crystal, the am-

plified cw laser power is calculated. The solid line in Fig. 3

shows the results of this calculation which agree well with

the experimental values, if we assume a pump and laser spot

radius of 550 µm, which is slightly smaller than the mea-

sured pump spot at the oscillator crystal of 600 µm. The to-

tal upconversion loss constant k6 must be set to zero in the

simulation. If a small amount of upconversion is considered

in the amplifier model (e.g. k6 = 1× 10−18 cm3/s) the gain

decreases and the pump and laser spot size must be set to

475 µm to get good agreement with the experimental data,

which was not the case in the experiments. Therefore, it can

concluded from the amplifier model, that upconversion at

the low dopant level of 0.5% in Ho:YLF is negligible.

The amplifier small signal gain was measured under cw

operation at a fixed pump power of 75 W of the fibre laser.

The oscillator output power was attenuated with different

partial reflectors to vary the seed power of the amplifier. The

amplifier was pumped with the transmitted pump power of

40 W. Figure 4 shows the measured amplifier small signal

output power and gain under cw operation (data points) to-

gether with the results of the numerical simulation (solid

lines). The results of the simulation show good agreement

with the experiment and the small signal gain of ∼3.6 im-

plies that the amplifier is operated nearly in saturation at full

cw power.

The oscillator was subsequently Q-switched with an

acousto-optic modulator at repetition rates between 5 kHz

and 1 kHz. The pulse energies of the oscillator and amplifier

and the FWHM pulse lengths as a function of the repetition

rate are shown in Fig. 5 at full pump power together with

the results of a numerical simulation. Repetition rates below

1 kHz were not attempted in order to keep the intra-cavity

Table 1 List of parameter values used in the simulation unless other-

wise stated

Description, symbol [unit] Ho:YLF

Dopant concentration 0.5%

Length of crystal, L [cm] 5

Upper level lifetime, τ2 [ms] [7] 14

Pump wavelength, λp [µm] 1.94

Laser wavelength, λl [µm] 2.065

Eff. Stim. em. cross-section, σeff [10−21 cm2
] 12.5

Eff. pump abs. cross-section, σabs [10−21 cm2
] 7

Refractive index, n 1.44

Temperature, T [K] 300

Ratio of Boltzmann factors, Fp 1.2576

Ratio of Boltzmann factors, Fl 0.2845

Pump beam radius, wp [µm] 550

Super-Gaussian pump parameter, sgp 2

Laser beam radius, wl [µm] 550

Super-Gaussian pump parameter, sgl 2

Eff. pump quantum efficiency, ηp 1

Total UC loss constant, k6 [10−18 cm3/s] 0

energy density below the damage threshold of the 45◦ pump

mirrors. As expected, the highest pulse energies for the sys-

tem in our operating regime was achieved at a repetition rate

of 1 kHz with the oscillator delivering 10.9 mJ per pulse and

an amplified pulse energy of 21.3 mJ with a FWHM pulse

length of 74 ns. This corresponds to a gain of 2.2. Assum-

ing a pump and laser spot radius of 550 µm (see Table 1)

the results of the simulation show good agreement with the

experiment and the calculated small signal gain of ∼3.85

at 1 kHz repetition rate is slightly higher than in cw mode.

The amplifier did not change the pulse length in any mea-

surable way compared to the oscillator. The beam quality of

the amplified beam was measured to be better than an M
2

of 1.1.

4 Conclusion

A novel oscillator–amplifier scheme was developed and suc-

cessfully demonstrated, where the unused pump light trans-

mitted by the oscillator was utilised to pump an amplifier

crystal. The system produced more than 21 mJ energy per

pulse at 1 kHz, with an M
2 better than 1.1. The amplified

energies agreed well with the predicted values from a two

dimensional rotational symmetric amplifier model that we

developed. The model considers upconversion losses and

ground-state depletion, as well as the spatial distribution of

the pump beam. From the good agreement between simula-

tion and experiment it can be concluded that upconversion at
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the low dopant level of 0.5% in Ho:YLF is negligible. Fur-

ther work entails building a single-frequency system with

higher output energies at low pulse repetition rates.

Appendix: Amplifier model

We consider a cylindrical amplifier crystal which is end-

pumped from one or both sides with a pump laser beam.

The beam quality of the fibre laser is excellent (M2
< 1.1).

Assuming a spot radius of the pump beam wp = 550 µm the

Rayleigh range zR (zR = πw
2
p
n/λpM

2
) is ∼640 mm inside

the crystal with refraction index n = 1.44 (λp is the wave-

length of the pump beam). Therefore, the amplifier model is

treated in a plane wave approximation. For the pump laser,

a super-Gaussian intensity distribution is assumed which is

given by

Ip(r) =

Pp

πw2
p

sgp

2
1− 2

sgp Ŵ(
2

sgp
)

exp

[

−2

(

r

wp

)sgp]

, (1)

where Pp is the pump power, sgp is the super-Gaussian ex-

ponent of the pump light and r is the radial position. The

launched pump photon density at the entrance surface is thus

given by

Plaunched(r, z = 0) =

Ip(r)n

c0hνp

, (2)

where c0 is the speed of light and hνp is the pump photon

energy.

When the YLF amplifier crystal is pumped with the

1940 nm fibre laser, the ground state ions in the 5I8 Ho man-

ifold can be excited to the upper lasing level of the 5I7 Ho

manifold as can be seen in Fig. 6. According to [13], the

rate equations for the local population densities of the Ho

manifolds read as:

dN2(r, z, t)

dt
=

c0

n
σabs(λp)ηp

[

P
+
(r, z, t) + P

−
(r, z, t)

]

×

[

N1(r, z, t) −

N2(r, z, t)

F (λp, T )

]

− k6N
2
2 (r, z, t) −

N2(r, z, t)

τ2
, (3)

N1 = Ntot − N2, (4)

where σabs(λp) is the absorption cross-sections at the pump

wavelength, ηp is the effective pump efficiency of the upper

lasing level, P
+ and P

− are the local photon densities of

the pump laser fields (the superscripts + and − refer to the

forward and backward propagation directions), Ni are the

population densities of the Ho ions of manifold i, Ntot is the

holmium dopant concentration, k6 is the total upconversion

loss constant [14] and F(λp, T ) is the ratio (f1g2)/(f2g1)

of Boltzmann population distributions of Ho, which can be

written as [15]

F
(

λp, T
)

=

f1

f2

g2

g1
=

Z2(T )

Z1(T )
exp

[

hc0

kT

(

1

λp

− E0

)]

, (5)

whereZ1(T ) andZ2(T ) are the partition functions of the 5I8
and 5I7 manifolds of Ho as function of the temperature T ,

and E0 is the energy of the lowest energy level of the
5I7 Ho

manifold.

The forward and reverse propagating pump fields P
+ and

P
− are iterated along the length of the amplifier crystal ac-

cording to

dP
±
(r, z, t)

dz
= ∓P

±
(r, z, t)σabs(λp)

×

[

N1(r, z, t) −

N2(r, z, t)

F (λp, T )

]

. (6)

Note that the negative sign in (6) relates to the forward (+z)-

direction and the positive sign to the reverse (−z)-direction.

The treatment considers either a cw or a Q-switched laser

beam to be amplified in a single or double pass through the

crystal. For cw, a super-Gaussian intensity distribution is as-

sumed:

Il(r) =

Pl

πw
2
l

sgl

2
1− 2

sgl Ŵ(
2

sgl
)

exp

[

−2

(

r

wl

)sgl]

. (7)

For Q-switching a Gaussian temporal pulse shape according

to

Il(r, t) =

El

π3/2t0w
2
l

sgl

2
1− 2

sgl Ŵ(
2

sgl
)

× exp

[

−2

(

r

wl

)sgl

−

(

t

t0

)2]

(8)

with

t0 =

tFWHM

2
√

ln(2)
(9)

is assumed, where Pl is the incident laser power (cw mode),

El is the energy (Q-switched mode) of the incident laser

pulse, wl is the laser spot radius, sgl is the super-Gaussian

exponent of the laser light and tFWHM is the full width at half

maximum pulse duration of the incident pulse. The launched

laser photon density at the entrance surface is therefore

given by

Slaunched(r, z = 0, t) =

Il(r, t)n

c0hνl

, (10)

where hνl is the laser photon energy.
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Inside the crystal the forward and reverse propagating

amplified laser fields S
+ and S

− (photon densities) are it-

erated along the length of the crystal according to

dS
±
(r, z, t)

dz
= ±S

±
(r, z, t)σeff(λl)

×

[

N2(r, z, t) − F(λl, T )N1(r, z, t)
]

+

1Ω

4π

N2(r, z, t)

τ2c0
. (11)

Note that the positive sign in (11) relates to the forward

(+z)-direction and the negative sign to the reverse (−z)-

direction. σeff(λl) is the effective stimulated emission cross-

section at the Ho wavelength λl,F (λl, T ) is the ratio

(f1g2)/(f2g1) of Boltzmann population distributions of Ho

at the lasing wavelength λl given by (5) (by replacing λp

with λl). The last term in (11) is amplified spontaneous

emission, where 1Ω is the solid angle given by the length

of the amplifier crystal L and the pump spot radius wp

(1Ω = 2π · (1− cosβ), with β = tan−1
(
wp

L
)).

Calculating the local population in (3) and iterating (6)

and (11) along the length of the amplifier crystal, we obtain

the extracted photon densities of the laser field after amplifi-

cation. The simulations have been done using the parameters

listed in Table 1.

A positive gain could be deduced from setting the first

term in (11), i.e. N2 − F(λl, T )N1 > 0, which results in

N2/Ntot = F(λl, T )/(1 + F(λl, T )) = 0.22. The amplifier

becomes transparent if (6) is set to zero, which results in

N2/Ntot = F(λp, T )/(1+ F(λp, T )) = 0.56.
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Compact Fibre-Laser-Pumped Ho:YLF Oscillator-Amplifier System 
 

C. Bollig1, H.J. Strauss1, M.J.D. Esser1, W. Koen1, M. Schellhorn2, D. Preussler1, K. Nyangaza1, 
C. Jacobs1, E.H. Bernhardi1,3 and L.R. Botha1 

 1.  National Laser Centre, Council for Scientific and Industrial Research, PO Box 395, Pretoria, 0001, South Africa 

2.  French-German Research Institute, ISL, 5, rue du Genéral Cassagnou, 68301, Saint-Louis, France 

3. Integrated Optical MicroSystems (IOMS), MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands 

Ho:YLF is an attractive laser material for 2 µm high energy sources since it has a much longer upper laser level 
lifetime (~14 ms) and higher emission cross section than Ho:YAG. In addition, the very weak thermal lens on 
the σ-polarisation helps to deliver diffraction limited beams even under intense end-pumping. However, Ho:YLF 
has a somewhat stronger quasi-three-level nature, which implies that in order to reach transparency at the 
2065 nm line, 22% of the Ho ions need to be pumped into the upper laser level (at room temperature), but it 
already reaches transparency at the 1940 nm pump wavelength with only 56% of the Ho ions in the upper laser 
level. In addition, the pump absorption cross section at 1940 nm is relatively low and strongly polarised. 
Therefore, the laser design requires a trade-off between efficient pump absorption and low laser threshold. 
 Efficient fibre-laser-pumped Ho:YLF oscillators have previously been demonstrated [1], but to scale the 
output energy further, an oscillator-amplifier system can be employed. The traditional approach when pumping 
an oscillator-amplifier system with one fibre laser pump source is to split the unpolarised pump beam into two 
polarised beams in order to pump the oscillator and amplifier crystals separately [2]. In our novel approach, we 
used the full unpolarised pump beam from our 82 W Tm-fibre laser to pump a relatively short oscillator crystal 
(30 mm long, 0.5% doped), which absorbs roughly half the pump power under lasing conditions, mainly on its 
π-polarisation . The transmitted pump power is subsequently used to pump the amplifier crystal (50 mm long, 
also 0.5% doped), as illustrated in Figure 1. We orientated the c-axis of the two crystals perpendicular to each 
other, in order to optimally utilise the unpolarised pump light and to facilitate lasing on the σ-polarisation (with 
the weak thermal lens) in the oscillator, while amplifying on the stronger π-polarisation. The distances between 
the pump fibre collimator and the crystals were kept short to minimise atmospheric water absorption at 1940 nm. 
This enabled us to work without any enclosure or dry-air flushing. 
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Fig. 1 A schematic diagram of the compact fibre-laser-pumped 
Ho:YLF oscillator-amplifier system. 
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Fig. 2 Output energy of the Ho:YLF oscillator, 
and of the oscillator-amplifier system. 

 
 The 370 mm long oscillator, initially operated CW, had a threshold of 31 W (17 W absorbed) of pump 
power, an overall slope efficiency of 25% (47% vs. absorbed power), and a maximum average output power of 
12.4 W at a centre wavelength of 2065 nm. The oscillator was subsequently Q-switched with an acousto-optic 
modulator at repetition rates of 5 kHz down to 1 kHz, which resulted in a maximum pulse energy of 10.9 mJ, as 
indicated in Figure 2. Lower repetition rates were not attempted in order to keep the intra-cavity energy density 
below the damage threshold of the two 45° dichroic pump mirrors. 
 After passing the laser output through the amplifier crystal, the slope efficiency of the system increased to 
47%. The maximum pulse energy at 1 kHz was 23.7 mJ in a FWHM pulse length of 74 ns. This gain factor of 
2.2 was not much less than the measured maximum small-signal gain of 3.3. The beam quality of the amplified 
beam had an M2 of better than 1.1. The amplified energies agreed well with the predicted values from a two 
dimensional rotational symmetric amplifier model that we have developed (solid line in Figure 2). The model 
considers upconversion losses and ground-state depletion, as well as the spatial distribution of the pump beam.  
 In conclusion, we demonstrated a Ho:YLF oscillator-amplifier system in a compact setup which efficiently 
utilises the unpolarised power from a fibre laser. The system produced more than 23 mJ energy per pulse at 
1 kHz, while maintaining an M2 of better than 1.1. These results agreed well with our amplifier model.  
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[1] Y. Bai, J. Yui, M. Petros, P.Petzar, P. Trieu, H. Lee, and U. Singh, "Highly efficient Q-switched Ho:YLF laser pumped by Tm:fiber 
laser." CLEO/QELS Conference. May 6–11 (2007) paper  CtuN5. Baltimore Convention Center, Baltimore, Maryland, USA 
[2] A. Dergachev, D. Armstrong, A, Smith, T. Drake, and M. Dubois, "3.4-µm ZGP RISTRA nanosecond optical parametric oscillator 
pumped by a 2.05-µm Ho:YLF MOPA system" Opt. Express 15, 14404 (2007).  
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70 mJ Single-Frequency Q-Switched Ho:YLF Ring Laser - Amplifier 
System Pumped by a Single 82-W Tm Fibre Laser 
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1.  National Laser Centre, Council for Scientific and Industrial Research (CSIR), PO Box 395, 

Pretoria 0001, South Africa (* cbollig@csir.co.za),
2.  French-German Research Institute, ISL, 5, rue du Général Cassagnou, 68301 Saint-Louis, France 
1 INTRODUCTION 
High energy 2-µm solid state lasers have applications in a number of areas, including remote sensing, medicine and 
defence. Furthermore, single-frequency operation is often required for applications such as remote trace gas monitoring 
and wind detection using coherent lidar. Traditionally, high-energy single-frequency Q-switched operation in the 2-µm 
region is achieved with side-pumped Tm,Ho:YLF or Tm,Ho:LuLF lasers.1 However, due to the high complexity and 
relatively low efficiency of these systems, recent work has focussed on Ho-doped solid-state lasers pumped by Tm fibre 
lasers, especially on Ho:YLF lasers.2,3 However, a single-frequency Q-switched fibre-laser-pumped Ho laser has, to our 
knowledge, not yet been reported. In this paper, we present an injection-seeded single-frequency Q-switched Ho:YLF 
oscillator-amplifier system pumped by a single 82-W Tm fibre laser, which delivers 70 mJ per pulse at 50 Hz repetition 
rate. 

2 PUMPING SCHEME 
Commercial high-power Tm fibre lasers are typically unpolarised. However, the 1940-nm absorption line of Ho:YLF is 
strongly polarisation dependent. At this wavelength, the absorption cross section on the �-polarisation is more than twice 
as high as the absorption cross section on the �-polarisation. In addition, the crystal needs to be kept short due to the 
quasi-3-level nature of Ho:YLF, requiring a trade-off between efficient absorption and low laser threshold. 
It is possible to improve the absorption by forcing the fibre laser onto a single polarisation through optical feedback.2
However, this results in a ~25% reduction of available power from the fibre laser.2 Another approach, which is more 
widely used, is to split the unpolarised pump beam into two polarised beams in order to pump the oscillator and amplifier 
crystals separately.3  
We recently reported an alternative approach,4 where the full unpolarised pump beam from our 82-W Tm-fibre laser was 
used to pump a relatively short oscillator crystal, which absorbed roughly half the pump power under lasing conditions. 
The transmitted pump power was subsequently used to pump the amplifier crystal. We orientated the c-axis of the two 
crystals perpendicular to each other, in order to optimally utilise the unpolarised pump light and to facilitate lasing on the 
�-polarisation (with the weak thermal lens) in the oscillator, while amplifying on the stronger �-polarisation.4
In the experiments reported here, a similar approach was used, with the main difference that the oscillator was a seeded 
single-frequency ring laser instead of the standing-wave laser reported in Ref. 4. As previously, the distances between 
the pump fibre collimator and the crystals were kept short to minimise atmospheric water absorption at 1940 nm. 

3 Ho:YLF RING LASER 
3.1 Setup 
The achievable energy at low repetition rates is often limited by either a too high gain or damage to coatings or the 
crystal. This can be avoided by increasing the laser mode size. On the other hand, a large mode size in the gain crystal 
leads to an increased laser threshold and reduced efficiency. Therefore, a careful trade-off between these two effects is 
required. Since the threshold depends only on the mode size in the crystal, the resonator design should ensure that the 
laser mode is at least as large on all mirrors and other optical surfaces as it is in the gain crystal. 
For the experiments reported here, a pump and laser mode radius of w = ~1 mm in the 40-mm long, 0.5%-doped Ho:YLF 
crystal was chosen. In order to achieve relatively long Q-switched pulses, a 2.4 m long ring resonator was used, which 
had the minimum mode size in the gain crystal (see Fig. 1). The ~125 mm distance between the convex mirror M6 
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(500 mm ROC) and the concave mirror M5 (-300 mm ROC) could be adjusted to fine tune the resonator mode size in the 
Ho:YLF crystal and to compensate for thermal lensing. The R = 80% output coupler proved to be the best compromise 
between efficient operation and intra-cavity fluence. 
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Figure 1: Setup of the Ho:YLF ring laser and amplifier with beam profile of the Q-switched amplified beam in the insert.
In order to enforce operation on the �-polarisation, a 4-mm thick crystalline quartz plate was inserted as Brewster plate 
and orientated for minimum loss. A 400-µm thick fused-silica etalon was used to fine-tune the oscillator wavelength to 
be close to the 2064 nm seeding wavelength. 
3.2 Injection seeding 
The single frequency diode laser emitted 13 mW cw power at 2064 nm. Seeding was performed through the first order of 
the 27 MHz acousto-optic modulator. The diode laser current was modulated with a 20 MHz RF signal, so that the 
Pound-Drever-Hall technique could be used for resonator locking.5 The detector DET1 was used to detect the oscillator 
resonance of the seed laser, with electronic feedback to the piezo-controlled mirror M3. Once locked, the seeding was 
stable and in resonance, ensuring reliable unidirectional, single-frequency operation. 
3.3 Oscillator performance 
Roughly 40 W of the 82 W Tm fibre laser pump power was absorbed in the Ho:YLF oscillator crystal in a single pass. At 
this pump power level, the oscillator delivered 31 mJ of single-frequency energy per pulse at 50 Hz repetition rate. This 
increased to 35 mJ when the double-pass pumping scheme was implemented, despite the fact that it added less than 1 W 
of absorbed pump power to the oscillator crystal. The pulse length was ~320 ns.  

4 AMPLIFIER 
4.1 Amplifier modelling 
The amplifier performance was predicted with a two dimensional rotational symmetric amplifier model that we 
developed. The model considers upconversion losses and ground-state depletion, as well as the spatial distribution of the 
pump beam. In the model, we simulated a 30 mJ seed pulse at 50 Hz pulse repetition frequency, amplified in a single 
50 mm long, 0.5% doped Ho:YLF crystal pumped by 40 W of 1940-nm pump power. Figure 2 shows the results for 
single-pass pumping and for double-pass pumping. 
It was decided to use a w = 1 mm seed beam in order to keep the peak fluence as low as possible. The pump beam at the 
amplifier crystal C2 was measured to also have a size of w = 1 mm and therefore it was decided not to insert any further 
beam shaping optics into the pump beam. 
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Figure 2: Simulated amplifier output energy and peak fluence for (a) single-pass pumping and (b) double-pass pumping as function of 
the laser beam size for various pump beam sizes. 
4.2 Amplifier setup 
After amplification with a single 50 mm Ho:YLF crystal (C2, inserted with its c-axis vertical), the remaining transmitted 
pump power was still 16.5 W. Since the maximum safe back reflection into the fibre laser was specified at 5%, a third 
30mm crystal (C3) was added before back-reflecting the pump for double pass absorption. The output energy was nearly 
independent of the rotation of the C3. However, with its c-axis horizontal (amplifying on the �-polarisation), the beam 
profile was significantly better. With all three crystals inserted, the transmitted pump power was 6 W, so that it was safe 
to reflect the pump back. 
4.3 Amplifier performance 
At 50 Hz, the output of a single 50-mm amplifier crystal with single-pass pump was 52 mJ. With both 50 and 30 mm 
crystals, but single-pass pumping the output energy was 54 mJ and with double-pass pumping the output energy was 
70 mJ. The big increase in performance is probably due to an increased performance of both the oscillator and the 
amplifier under double-pass pumping. So far, an M2-measurement was only performed cw under full pump power with 
the AOM constantly on to maintain unidirectional operation, which yielded a value of M2 < 1.1. However, the beam 
profile measured with a Pyrocam looks similar both for the cw case and under pulsed operation (see insert in Fig. 1). 

5 CONCLUSIONS 
A single-frequency Q-switched oscillator-amplifier system was demonstrated, with 70 mJ output energy. The laser 
system was operated daily over several weeks with robust locking at all times. During the time, the output energy varied 
between 60 and 80 mJ. To our knowledge, this is the first report of a fibre-laser pumped single-frequency Q-switched Ho 
laser and the highest energy ever reported of any Ho oscillator-amplifier system pumped by a single Tm fibre laser. 

REFERENCES 
1. M. Petros, J. Yu, B. Trieu, Y. Bai, P. Petzar and U. N. Singh, “300mJ, injection seeded, compact 2µm coherent 

Lidar transmitter,” Lidar Remote Sensing for Environmental Monitoring VII, Proc. of SPIE 6409, 64091A, (2006). 
2. Y. Bai, J. Yui, M. Petros, P.Petzar, P. Trieu, H. Lee and U. Singh, “Highly efficient Q-switched Ho:YLF laser 

pumped by Tm:fiber laser." CLEO/QELS Conference, paper CtuN5, Baltimore, Maryland, USA (May 2007) 
3. A. Dergachev, D. Armstrong, A, Smith, T. Drake and M. Dubois, “3.4-�m ZGP RISTRA nanosecond optical 

parametric oscillator pumped by a 2.05-�m Ho:YLF MOPA system,” Opt. Express 15 (22) pp 14404-14413 (2007) 
4. H. J. Strauss, W. Koen, C. Bollig, M. J. D. Esser, D. Preussler, K. Nyangaza and C. Jacobs, “Efficient Fiber-Laser-

Pumped Ho:YLF Oscillator and Amplifier Utilizing the Transmitted Pump Power of  the Oscillator,” CLEO/QELS 
Conference, paper CWH3, Baltimore, Maryland, USA (June 2009) 

5. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69 (1) pp 79-87 
(2001) 

99



Appendix: Publications

Q-switched Ho:YLF Laser Pumped by a Tm:GdVO4 Laser 
M. J. Daniel Esser,* H. Strauss, W. S. Koen, D. Preussler, K. Nyangaza and C. Bollig  

National Laser Centre, Council for Scientific and Industrial Research, PO Box 395, Pretoria, 0001, 
South Africa (*desser@csir.co.za) 

INTRODUCTION 
Orthovanadates are attractive host crystals for rare-earth doped diode-pumped solid-state lasers. This is also the case 
when doped with Tm3+ or Ho3+, which have been shown to exhibit certain advantages over other host crystals for Mid-IR 
lasers.1,2 In particular, it has been shown that Tm:GdVO4 has strong and broad absorption features at the emission 
wavelength of commercially available high power laser diodes at ~800 nm.1 In addition, the broad emission peak at 
1.9 µm in Tm:GdVO4 can be utilised for laser operation over a wide wavelength tuning range, including wavelengths 
which can be used to pump Ho3+ and Cr2+:ZnSe lasers.3 The highest laser output power was reported by Li et al who 
achieved a maximum continuous-wave output power of 2.8 W from a diode-end-pumped Tm:GdVO4 laser.4 In addition, 
with the use of an intra-cavity birefringence filter, they demonstrated a tuning range of 126 nm (1820 to 1946 nm). More 
recently, a comparative study of the tuning ranges of Tm:YVO4, Tm:LuVO4 and Tm:GdVO4 was conducted by Šulc et 
al, both in continuous wave (CW) and quasi-continuous wave (QCW) mode.5 Also, we have previously demonstrated a 
diode-end-pumped QCW Tm:GdVO4 laser operating at 1818 nm or at 1915 nm by appropriate selection of the resonator 
output coupling value.6 Thus, even though significant wavelength tuning has been demonstrated for Tm:GdVO4, to our 
knowledge, there has been no report of a Tm:GdVO4 laser pumping a Ho3+ laser. In this paper we report on the design 
and operation of a diode-end-pumped QCW Tm:GdVO4 laser selected to lase at 1892 nm, which was used to pump a Q-
switched Ho:YLF laser. 
SPECTRAL ANALYSIS 
To design a high-power diode-pumped Tm:GdVO4 laser for pumping a Ho:YLF laser, detailed spectroscopic studies of 
the laser materials are required. The absorption cross section data (�abs) of Ho:YLF for the 5I8 – 5I7 transition is shown in 
Figure 1.7 The absorption is highly polarised and it would be preferential to pump on either of the two absorption peaks 
of the �-polarisation (E||c), located at 1892 nm (0.72 x 10-20 cm2), and at 1940 nm (0.99 x 10-20 cm2).7 When pumped at 
either of these two wavelengths, the Ho:YLF laser can emit at 2.05 µm, (on �-polarisation) or at 2.06 µm when forced to 
lase on the weaker �-polarisation (E⊥c). 
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Figure 1: The absorption cross section of Ho:YLF; the emission cross section of Tm:GdVO4, and the calculated threshold power 
density of the Tm:GdVO4 laser with different transmission T output coupler mirrors. 
We have previously measured the absorption cross section (�abs) of our Tm:GdVO4 laser crystals at 1.9 µm to enable 
accurate predictions of the laser performance8. Based on the measurements, we calculated with the reciprocity method9

the emission cross section (�em) of Tm:GdVO4 for the 3F4 – 3H6 laser transition, also shown in Figure 1. From this graph 
it is evident that the Tm:GdVO4 laser emission will be stronger at the 1892 nm pump wavelength of Ho:YLF, compared 
to the 1940 nm absorption line.  
The wavelength of the quasi-three level Tm:GdVO4 laser can be roughly selected by choosing the correct output 
coupling value. To determine the output coupler transmission to operate at 1892 nm, we calculated the expected 
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threshold power and the operational wavelength of the Tm:GdVO4 laser for different output coupling values T. The 
calculations were made using the expression,10, 11
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where L represents additional resonator losses, assumed to be 1%; wl � wp � w is the laser mode and pump beam radius 
in the laser crystal, assumed to be equal for the end-pumped laser developed; N is the concentration of Tm3+ ions in the 
laser crystal (3% at. doping x 1.21x1022 cm3);12

�p is the frequency of the pump light; �p-q is the pump quantum 
efficiency, typically assumed to be 1.5 for diode-pumped Tm3+ lasers to incorporate the 2-for-1 pumping process; � is the 
lifetime of the 3F4 upper laser manifold, taken as 1.85 ms);1 and l is the length of the laser crystal, which was 3 mm.  
The result of the calculations for three output coupling values is shown in Figure 1. For a particular output coupling 
value T, continuous-wave laser oscillation will occur at the wavelength and polarisation for which the threshold power 
density is a minimum. This method of analysing a laser material for laser performance is complimentary to the “effective 
emission cross section” method used by other authors.1,13 The calculation method we used provides a clear indication on 
what polarisation and output coupling loss to select in order to operate the Tm:GdVO4 laser at 1892 nm. By selecting an 
output coupler transmission T = 5% (reflectivity 95%), and by inserting a Brewster plate inside the laser to force it to 
operate on �-polarisation, the Tm:GdVO4 wavelength will be approximately at 1890 nm. To further fine-tune the output 
wavelength of the Tm:GdVO4 laser onto the absorption peak of Ho:YLF at 1892 nm, we inserted an uncoated fused-
silica etalon of thickness 100 µm in the Tm:GdVO4 laser resonator. 
EXPERIMENTAL SETUP 
The 3% at. doped Tm:GdVO4 crystal (2.5 x 2.5 x 3 mm3) was end-pumped with two fibre-coupled laser diodes, as 
indicated in Figure 2. The laser diodes were operated in a quasi-continuous-wave (QCW) mode with the pump pulse on-
time set to 20 ms at 5 Hz repetition rate (10% duty cycle). The duty cycle was limited, as well as the launched pump 
power (maximum 30 W from each diode), to avoid thermal fracture of the Tm:GdVO4 crystal. The Tm:GdVO4 resonator 
was based on a compact design, with a concave high-reflector (HR) end-mirror with r = 200 mm, which was also coated 
for high transmission (HT) at the pump wavelength (804 nm). The plane output coupler reflectivity was 95% at 1.9 µm 
(unspecified at 804 nm). The Tm:GdVO4 resonator, containing a Brewster plate and a 100 µm etalon, had an optical 
length of approximately 73 mm. 
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Figure 2: Experimental setup of the Tm:GdVO4 pumped Ho:YLF laser. Figure 3: QCW output of the Ho:YLF laser. 
The output beam of the Tm:GdVO4 laser was transmitted through an optical isolator to protect the Tm:GdVO4 laser from 
back reflections from the Ho:YLF resonator. A lens with focal length 350 mm was used to produce a spot size of 480 µm 
diameter inside the 40 mm long, 0.5% doped Ho:YLF crystal. The folded Ho:YLF resonator was formed between the 
500 mm curved end-mirror and the 200 mm curved output coupler mirror. The fold mirror had a 25-30% loss for the p-
polarisation and a high reflection for the s-polarisation at the Ho:YLF laser wavelengths, and a high transmission for the 
pump light at 1892 nm. Due to this fold mirror, the Ho:YLF laser could be operated on either �-polarisation (2.05 µm) or 
�-polarisation (2.06 µm) by the appropriate orientation of the Ho:YLF crystal axis. The pump polarisation was controlled 
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with the �/2 plate at 1892 nm to ensure that the Ho:YLF crystal was pumped on the �-polarisation. The laser back mirror 
also reflected the pump beam to realise a double-pass pump scheme. The etalon inside the Tm:GdVO4 cavity was 
adjusted during lasing conditions to set its wavelength to the maximum absorption in Ho:YLF. An acoustic-optical 
modulator (AOM) was used as Q-switch for the Ho:YLF laser, which was synchronised to the QCW output pulse of the 
Tm:GdVO4 laser. 
RESULTS 
Three Ho:YLF output coupler mirrors with reflectivity R80%, R90% and R65% at 2 µm were used during the initial 
QCW experiments, the result of which is shown in Figure 3. Also shown in Figure 3 is the measured QCW pump pulse 
at 1892 nm (Channel 1), and the free-running Ho:YLF laser pulse (Channel 2) that followed the pump pulse after a delay 
of approximately 5 ms. The severe spiking behaviour of the Tm:GdVO4 pulse was attributed to instabilities caused by 
strong atmospheric water absorption at 1892 nm. The maximum average pump power from the Tm:GdVO4 laser incident 
on the Ho:YLF resonator was 365 mW, or 3.65 W peak power during the on-time of the 20 ms QCW pulse. With the 
R80% output coupler, the Ho:YLF laser produced a maximum of 70 mW average power, with pulse duration of 
approximately 15 ms. The Ho:YLF crystal was orientated to lase on �-polarisation, the measured centre wavelength of 
which was 2064 nm. Next, the AOM was inserted in the cavity to Q-switch the Ho:YLF laser. The output coupler 
reflectivity was R65%, and the Ho:YLF crystal axis was orientated to lase on the stronger �-polarisation. The laser 
threshold was slightly higher with the AOM inserted, at 200 mW of average pump power. The maximum output energy 
of 1.9 mJ in an 18 ns pulse, as shown in Figure 4, was achieved with only 270 mW of average pump power. Increasing 
the pump power beyond this point resulted in the Q-switched Ho:YLF laser to have unstable output and pre-lasing, since 
the AOM could not hold-off lasing with such high gain inside the resonator. The wavelength output of the Q-switched 
Ho:YLF laser was centred at 2050 nm. 

Figure 4: The 1.9 mJ output pulse of the Q-switched Ho:YLF laser pumped by the Tm:GdVO4 laser.
CONCLUSION 
We have shown that the Tm:GdVO4 laser wavelength can be operated at an absorption peak of Ho:YLF through careful 
analysis of the spectroscopic data of these laser materials. A diode-end-pumped QCW Tm:GdVO4 laser operating at 
1892 nm was demonstrated by implementing an output coupler transmission of 5%, and by inserting a Brewster plate 
and a 100 µm etalon. This laser was used to pump a Ho:YLF laser with a resonator design that enabled double-pass 
pumping and polarisation selection of the Ho:YLF laser output. Both the free-running and Q-switched performances of 
the Ho:YLF laser were evaluated, the best result of which was an energy of 1.9 mJ in an 18 ns pulse, at a wavelength 
output of 2050 nm. This is the first time to our knowledge that a Tm:GdVO4 laser has been used to pump a Ho3+ laser. 
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Efficient Fiber-Laser-Pumped Ho:YLF Oscillator and 
Amplifier Utilizing the Transmitted Pump Power of  the 

Oscillator 
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E-Mail: hstrauss@csir.co.za  
Abstract: We present a novel scheme for a compact and robust pulsed fiber-laser-pumped Ho:YLF 
oscillator and amplifier system, where the pump power transmitted by the oscillator is utilized to pump the 
amplifier.  
OCIS codes: 140.0140, 140.3070, 140.3480, 140.3580, 140.5680s 

1. Introduction
High energy 2 �m laser sources are of great interested for applications in remote sensing, medicine and defense. 
Ho:YLF is an attractive laser material to use since it has a very longer upper laser level lifetime (~14 ms) and higher 
emission cross section than Ho:YAG, which makes it ideal to produce high energy pulses. In addition, the very 
weak thermal lens on the � polarization helps to deliver diffraction limited beams even under intense end pumping. 
However, the Ho:YLF has a somewhat stronger quasi-three-level nature. In order to reach transparency at the 
2065 nm line, 22% of the Ho ions need to be pumped into the upper laser level (at room temperature). On the other 
hand, it already reaches transparency at the 1940 nm pump wavelength with only 56% of the Ho ions in the upper 
laser level. In addition, the pump absorption cross section at 1940 nm is relatively low and strongly polarized. Due 
to these constraints, a careful design is required with a trade of between efficient pump absorption and low 
threshold.  
 The traditional approach for a fiber-laser pumped Ho-laser system with amplifier is to split the unpolarized 
pump beam with a polarizing beam splitter and to use the two polarized beams to pump the oscillator and amplifier. 
In our approach, we use the full unpolarized pump beam to pump a relatively short oscillator crystal, which absorbs 
roughly half the pump power under lasing conditions. The transmitted pump power is then used to pump the 
amplifier crystal. The c-axis of the two crystals are orientated perpendicular to each other, in order to optimally 
utilize the unpolarized pump light and to facilitate lasing on the �-polarization in the oscillator while amplifying on 
the stronger �-polarization. The distances between the pump fiber collimator and the crystals were kept short to 
minimize water absorption at 1940nm. 
2. Experimental set-up and results 

Fig. 1: Schematic diagram of the oscillator/amplifier Ho:YLF system.  
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A schematic diagram of our experimental setup is illustrated in Figure 1. We used an 80W 1940 nm Tm:fiber laser 
from IPG Photonics to pump both oscillator and amplifier crystals. The pump beam radius entering the 30 mm 0.5% 
doped Ho:YLF oscillator crystal was 0.56 mm. The cavity had a length of 340 mm and consisted of a 500 mm CV 
back-reflector and a flat 50% output-coupler. Two 45° mirrors, which had a high transmission coating for the pump 
light, were used to couple the pump light in and out of the resonator. The resonator mode had a ~0.6mm radius in 
the crystal, which was relatively independent of the thermal lens strength.  
 The oscillator crystal was oriented such that the c-axis (� polarization) is horizontal. The 45° mirrors were 
coated to reflect vertical polarized light at 2065 nm and therefore selected the � polarization (�c-axis). The 
� polarization has a lower gain cross section (~0.8 × 10-20 cm2) but also a much lower thermal lens, which reduces 
thermal aberrations in the resonator and so maintains beam quality. The oscillator had a threshold of 31 W (17 W 
absorbed), an overall slope efficiency of 25% and a maximum average output power of 12.4 W.  
 The oscillator was then pulsed with a fused-silica AOM operating at 100 W RF power. A minimum repetition 
rate of 1 kHz was used, which resulted in a maximum pulse energy of 10.9 mJ, as indicated in Figure 2. The 
calculated 33 mJ intra-cavity energy was below the damage threshold of the two 45° mirrors, which was ~35 mJ as 
previously observed in a similar setup. 
 The pulsed output of the oscillator was then coupled back into a 50 mm 0.5% doped Ho:YLF amplifier crystal.  
The pump beam radius entering the amplifier crystal was 21% smaller than in the oscillator crystal due to pump 
bleaching. The oscillator output beam (the seed) therefore had to be reduced using a f = 350 mm focusing lens. The 
amplifier crystal was orientated with its c-axis vertical, so that the amplification would take place on the 
�-polarization with its stronger emission cross section of ~1.3 × 10-20 cm2. The much stronger (negative) thermal 
lens of the �-polarization is not critical in the single-pass amplifier. This was confirmed by a beam quality of the 
amplified beam of M2 better than 1.1. In addition, this orientation maximizes the absorption of the remaining pump 
light. 
 After passing through the amplifier crystal, the slope efficiency of the system almost doubled from 25 to 47%. 
The maximum pulse energy at 1 kHz was 23.7 mJ and had a pulse length of 74 ns. This gain factor of 2 was 
confirmed by small signal gain measurements. Measurements below 1 kHz were not attempted in order to prevent 
optical damage to the oscillator.  

Fig. 2: The CW and pulsed performance of the oscillator and amplifier is shown in (A) and (B) respectively 
  
3. Conclusion 
We have demonstrated that a Ho:YLF oscillator and amplifier system can be designed in a compact setup where the 
pump power from an unpolarized fibre laser utilized efficiently. The system produced more than 20 mJ energy per 
pulse at 1 kHz, while maintaining a M2 better than 1.1. This system only utilized single pass pumping of the 
oscillator and amplifier crystals, with 18 W of pump power which was not absorbed. This excess pump power can 
be carefully back aligned into the amplifier and oscillator, but we opted not to do this for fear of damaging the fiber 
pump laser. The seed can also be passed multiple times through the amplifier crystal. Our initial calculations show 
that by implementing both these measures it is possible to extract even higher energy pulses from this system. This 
proof of concept architecture therefore shows great promise of delivering highly efficient 2 µm pulsed output with 
excellent beam quality.
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Of the various Neodymium-doped materials, Nd:YLF is particularly attractive for use in high-power diode end-
pumped solid-state lasers due to its weak thermal lens, especially on the σ-polarisation, and it’s long upper laser 
level lifetime that enables efficient energy storage for Q-switching. However, due to the low thermal fracture 
limit in Nd:YLF, power scaling has proven to be difficult. 

In our previous work, we addressed several issues relating to Nd:YLF in a novel fashion and were 
subsequently able to demonstrate the highest published power for an end-pumped Nd:YLF laser [1]. The laser 
delivered a total output power of 60.3 W CW and an average power of 52 W when Q-switched between 5 and 
30 kHz, with good beam quality and no sign of lifetime quenching. However, we experienced fracture at 5 kHz. 

In order to address the fracture problem we decided to use crystals of a doping concentration below the 0.5% 
previously used. In addition, we decided to exploit the natural doping gradient along the length of the boule, 
which is especially pronounced at low concentrations but commonly ignored. In a collaboration, VLOC 
estimated the doping gradient of a specially manufactured boule (Fig. 2) and maintained the crystal orientation 
information during the manufacturing process of the 45 mm long, 6 mm diameter crystals. Initial thermal 
calculations indicate that for these crystals, the lower-doping end can be pumped 58% harder than the higher-
doping end before the thermal fracture limit is reached. 

To be able to pump each crystal rod from its low-doping end, we implemented a folded resonator (Fig. 1). In 
addition to using relatively low doping concentrations, we pumped at a wavelength of 805 nm, where the 
absorption of Nd:YLF is ~5 times lower than the conventionally used 792 or 797 nm. The combination of these 
techniques resulted in a more even distribution of the heat load along the length of the crystals. As in our 
previous work, we compensated for the strong astigmatism of the crystals by using two crystals with the c-axis 
vertical and two with the c-axis horizontal with a λ/2-plate in-between [1].  

 
Fig. 1 Laser resonator 
 

Fig. 2 Crystal doping gradient as 
estimated by VLOC 

Fig. 3 Power under CW operation

With this configuration, no crystal damage occurred, even with all four fibre-coupled 75 W diode laser 
modules at full power. A total output power of up to 87 W CW was achieved, which is the highest reported so 
far but still less than expected (Fig. 3). Using Findlay-Clay and Caird analysis, the resonator loss was estimated 
to be 10% and 15% respectively. The crystals’ total scatter loss was subsequently measured but was found to be 
only 1.64% round-trip loss at the laser wavelength.  

We observed significant fluctuations in the output power and beam pointing. These could be because the 
laser operates in Zone II of the thermal stability diagram [2], which makes the laser very sensitive to 
misalignment and to small fluctuations in the pump overlap and variations in diffraction in the air. We believe 
that the lower than expected output power is due to this as well, rather than to actual resonator losses.  

By redesigning the laser to operate in zone I, efficient and stable operation in excess of 100 W should be 
achievable. In the next step, Q-switched operation will be investigated, which has the potential to yield high 
average powers even at repetition rates below 5 kHz. 
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[1] C. Bollig, C. Jacobs, H. M. von Bergmann, and M. J. Esser, "High-power end-pumped Nd:YLF laser without lifetime quenching" 
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High-power diode-end-pumped Tm:GdVO4 laser operating at 1818 nm and 1915 nm 
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ABSTRACT 
High-power solid-state lasers operating in the 2 µm wavelength region are of interest for a 

wide variety of applications, including remote gas detection and laser spectroscopy, as drive lasers for 
high harmonic generation and attosecond applications and for free-space optical communication. One 
approach to achieve high output power is to optically pump Tm doped lasers that can lase at 1.9 µm, 
with high-power laser diodes at 0.8 µm. The Tm laser output can then be used to pump Ho doped 
lasers that can produce output at 2.1 µm. 

Tm:GdVO4 is a relatively new laser material that has attracted attention due to its broad 
absorption spectrum centred around 799 nm which makes it particularly suitable to be pumped with 
commercially available high-power laser diodes. In addition, it has a broad emission spectra which 
makes it feasible to operate such a Tm:GdVO4 laser over a wide wavelength range. Despite these 
advantages, there are a limited number of publications relating to the power scaling of this laser 
material. The highest output power previously demonstrated from a continuous wave Tm:GdVO4 laser 
was 2.6 W with its wavelength at 1910 nm [1]. 

In this paper we report on our initial experiments with a diode-end-pumped Tm:GdVO4 laser. 
The atomic doping concentration was 3 % and the dimensions of the crystal 2.5 x 2.5 x 3 mm3. The 
crystal was placed in a plano-concave resonator of approximate length 26 mm. Two output coupler 
mirrors were used during the experiments. The first output coupler had 95 % reflectivity at 1.9 µm with 
300 mm radius of curvature. The second output coupler had 28 % reflectivity at 1.8 µm and 250 mm 
radius of curvature. The laser was pumped with a fibre-coupled laser diode from one end only, the 
fibre of which had a core diameter of 400 µm and N.A. of 0.22. The laser diode was operated in a 
quasi-continuous wave (QCW) mode with 60 W maximum peak power incident on the crystal at 
800 nm. The duty cycle of the pump pulses was kept low in an attempt to prevent crystal fracture. The 
output at 1.9 µm was measured with a PbS photo diode and a power meter. 

The output wavelength of the laser with the 95 % reflectivity output coupler was measured to 
be 1915 nm (± 2.5 nm measuring uncertainty). The pump pulse had an on-time of 20 ms at 5 Hz 
repetition rate. The measured maximum peak power was 8.7 W for 37.3 W of incident power on the 
laser crystal. This corresponded to ~175 mJ per pulse of output energy. Increasing the pump power 
beyond this point resulted in thermal fracture of the laser crystal.  

Next the 28 % reflectivity output coupler was used and the pump pulse on-time was reduced 
to 10 ms. The damaged crystal was replaced with a crystal of similar doping concentration and 
dimensions. The output wavelength of the Tm:GdVO4 laser was measured to be 1818 nm (± 2.5 nm). 
This reduction in wavelength was expected from the quasi-three level laser with an output coupler with 
high transmission loss. The maximum peak output power of this laser was measured to be 8.4 W at 
full pump power from the laser diode, corresponding to ~84 mJ per pulse. 

It was shown here for the first time to our knowledge that a Tm:GdVO4 laser can be used in 
QCW mode with a pulse width of 10 – 20 ms with multi watt output power. It was concluded that this 
laser is suitable to be used as a pump source for Ho doped lasers which have upper state lifetimes in 
the 7 - 15 ms range. In addition we have shown that the Tm:GdVO4 laser wavelength can be operated 
over ~100 nm by adjusting the laser resonator losses. This makes the Tm:GdVO4 a suitable laser 
source for pumping different types of crystals doped with Ho. Our future work will include further power 
scaling and continuous wave operation of the Tm:GdVO4 laser. 
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