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Abstract

We have developed a new coarsening theory that more completely describes grain growth of a

system of anisotropic particles such as completely faceted crystals by Ostwald ripening. Our

model takes the anisotropy of surface energies on dissimilar facets into account, and the particle

sizes are described by a distribution function. The theory is applied to study the coarsening of

,B-silicon nitride in a liquid medium due to the anisotropic growth of grains in different crystal­

lographic directions. A model of the growth of silicon nitride grains is obtained based on the

numerical solution of the equations of the new theory.

Computer experiments are performed to determine how the distribution function evolves, to

investigate the influence of various parameters such as diffusion and interfacial reaction con­

stants on grain growth and to extract grain growth exponents from this model in order to

determine the growth mechanisms that are responsible for the anisotropic growth behaviour.

Only preliminary numerical results are available thus far due to 1/r instabilities that occur in

the theory as r ---t O.
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Chapter 1

Introduction

Silicon nitride (Si3N4) ceramics exhibit excellent mechanical properties over a wide range of

temperatures as well as good resistance to wear, corrosion and thermal shock. As a result,

their potential for technological applications is high and they are used in a wide range of appli­

cations such as cutting tools, engine components, ball bearings, metal forming and processing

devices and gas turbines. This makes Si3N4 ceramics one of the most important technical ce­

ramics available with annual growth rates of approximately 10 % [1, 2].

The properties of ceramic materials depend on the microstructure that forms during the ce­

ramic fabrication process and more importantly during sintering of the ceramic powder com­

pacts. ShN4 ceramics are produced by liquid-phase sintering of powder compacts. The powders

are composed of particles of the a-ShN4 crystal modification (which is the major component

of most Si3N4 powders), particles of the ,B-Si3N4 crystal modification and a small amount of

sintering additives which are additional compounds that are necessary to produce dense Si3N4

ceramics.
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At the sintering temperatures the additives form a liquid medium around the particles, and

a-Si
3
N4 which is unstable at these high temperatures dissolves into the liquid medium and

reprecipitates onto the large, stable ,B-Si3N4 particles. After the a to ,B transformation, the

,B-Si
3
N

4
particles grow anisotropically by Ostwald ripening into elongated, needle-like grains.

The aspect ratio of these grains is comparable to that of whiskers and this is the basis of in

situ fibre-reinforcement of Si3N4 ceramics which is responsible for the high fracture toughness

and strength which these ceramics exhibit. After sintering the liquid medium formed by the

sintering additives forms a glassy silicate phase which may be crystalline or amorphous around

the Si3N4 grains. This is referred to as grain boundary phase, and it influences the high tem­

perature properties and fracture toughness of the ceramics.

The formation of the needle-like microstructure during sintering of Si3N4 depends on sintering

parameters such as the type and amount of sintering additive, the amount and size of ,B nu­

clei present in the starting powders, the sintering times and temperatures and the annealing

times and temperatures. The experimental aims of sintering Si3N4 (and most other ceramics)

are concerned with achieving maximal densities, increasing aspect ratios to improve mechan­

ical properties and to achieve a narrow distribution of grain sizes. The ability to reproduce

favourable microstructures in the ceramics industry is determined by the ability to control the

evolution of microstructure during the ceramic fabrication stages, and increasing demands on

the requirements of the ceramic materials imply that more accurate control over microstructural

evolution is required. In order to achieve this, a fundamental understanding of the grain growth

mechanisms which are responsible for producing the desired microstructure must be understood.
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It is well known that Ostwald ripening is responsible for the elongated, needle-like grains which

characterise the microstructure of Si3N4 ceramics, and that this grain shape is determined by

the kinetics of grain growth, that is, the needle-like grain shape is not an equilibrium grain

shape. Therefore, the formation of this grain shape may only be understood on the basis of

growth mechanisms.

Despite intensive investigations of Si3N4 ceramics, tailoring of the microstructure, which deter­

mines the properties, is based mostly on empirically determined principles [1]. This is due to

the fact that the existing models of grain growth have at best provided a qualitative under­

standing of the process.

During the early 1960's, a quantitative theory describing Ostwald ripening, known as the LSW

theory [3, 4], was developed for a dilute dispersion of spherical particles in a medium. As a

result, it does not adequately describe Ostwald ripening in a system of anisotropic particles

such as completely faceted crystals. The existing theories of grain growth are based on isotropic

surface energies and growth mechanisms. This means that these theories are also unable to

give an adequate description of the anisotropic growth of Si3N4 materials due to the anisotropic

growth of grains in different crystallographic orientations [1]. Even recent models [5] of grain

growth are unable to account for the anisotropic growth in fine ,B-Si3N4 materials after the a

to ,B phase transformation [1]. Thus a more detailed model of the system based on the physics

and chemistry of the growth behaviour and numerical solutions of the basic equations of the

model is required.
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A new anisotropic coarsening theory has been formulated which describes gram growth in

an anisotropic system of particles.It is a generalisation of the LSW theory by Wagner [4]. The

anisotropic coarsening theory is a general theory that is based on a diffusion process, and the

basic equations of the theory must be solved selfconsistently in order to describe the growth

behaviour of an anisotropic system of particles. It is applicable to the liquid-phase sintering of

materials such as Si3N4 , silicon carbide (SiC) and diamond.

Although recent work by Kitayama et at [5] has made advances in the understanding of grain

growth behaviour of ,B-Si3N4 , our formulation of the anisotropic coarsening theory is more real­

istic since we take into account, for example, the anisotropy in the surface energies on dissimilar

crystal facets, a distribution function is included to describe the evolution of particle sizes and

a numerical solution of the basic equations makes it possible to go beyond a linear dependence

of the interfacial reaction rate on the concentration gradients.

In this thesis, the anisotropic coarsening theory is developed and applied to a system of hexag­

onal Si3N4 particles with the aim of modeling the anisotropic growth of the Si3 N4 grains based

on the numerical solutions of the basic equations describing the anisotropic growth model. The

aims of the project are to determine the numerical methods necessary for a stable solution

to the anisotropic problem by first conducting a comprehensive numerical investigation of the

LSW theory, and to apply the numerical methods to study the anisotropic system in detail.

Computational experiments are conducted to investigate the effects of the system variables

such as interfacial energies, diffusion and interfacial reaction constants and saturation concen-
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trations on the evolution of the particle size distribution function and the evolution of grain

aspect ratios. Growth exponents are also extracted from this model in order to determine the

grain growth mechanisms responsible for the anisotropic growth of Si3N4 grains.

The knowledge and understanding of the grain growth behaviour in Si3N4 gained from the

numerical solution of the anisotropic coarsening theory may be used for the tailoring of the

microstructure of Si3N4 ceramics.
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Chapter 2

State of the Art

2.1 Consolidation of ceramic materials and grain growth

Most technical ceramics are produced by sintering moulded ceramic powders. The ceramic

fabrication process consists of few basic stages, namely, powder processing, shaping and sinter­

ing which are common to the majority of the ceramic consolidation methods [2, 6, 7, 8]. The

techniques used in each of these stages are well known in the ceramics industry.

The goal of the ceramic fabrication process is to be able to produce a ceramic with the desired

microstructure and density which develops when the powder is consolidated and sintered. Mi­

crostructure is the structure of the ceramic sample that is visible with the aid of microscopes

such as the scanning electron microscope. It determines the physical properties of the ceramic

such as strength, fracture toughness, wear resistance and high temperature properties. There­

fore every step of the fabrication process, which has the potential to introduce microstructural

flaws in the ceramic, has to be carried out with extreme caution and precision so that the
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desired microstructure may be obtained. More importantly, a fundamental understanding of

each step in the fabrication process is required if fine control over microstructural evolution

during consolidation is to be achieved.

2.1.1 Powder processing

The characteristics of a ceramic powder have a major influence on the microstructure that

develops during shaping and sintering. Therefore the production of advanced ceramics requires

powders with a fine particle size, a narrow particle size distribution, spherical or equiaxial par­

ticle shapes for amorphous or crystalline particles respectively, no agglomeration (see glossary)

or soft agglomeration and high purity [9].

The starting materials of the ceramic fabrication process occur either naturally or may be

synthesised by an appropriate chemical reaction. The material may be amorphous or polycrys­

talline. A powdered material consisting of particles with the desired shape and size is obtained

either by grinding the starting material using various milling techniques or by chemical methods

such as precipitation of particles from a solution. Other chemical methods are used to clean

and de-agglommerate the particles.

Processing and sintering additives are mixed homogeneously into the powder by milling or

chemical methods. The processing additives that are mixed with the powder are dispersants,

binders, plasticisers and solvents. These are usually organic polymers, and their function is to

ensure that the feed material (usually slurries or suspensions) required for subsequent shaping
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have a uniform dispersion of the powder particles, no air bubbles and adequate viscosity. Pro­

cessing additives are removed from the shaped body prior to sintering by a burnout process

in which the shaped body is heated to temperatures at which these additives decompose. The

burnout temperatures are well below sintering temperatures and the process is controlled so

that no defects are introduced into the powder compact [2, 9].

Sintering additives are inorganic compounds that are added in very small quantities to ce­

ramics. They are used to achieve high densities and control over grain growth during sintering.

These additives usually form a second phase referred to as a grain boundary phase around the

ceramic grains after sintering. Another class of sintering additives consists of those compounds

that form solid solutions with ceramics. This means that ions from the sintering additive may

be incorporated into the crystal structure of the host material. These are used to engineer

alloys of ceramic materials with sintering additives which have specific property profiles.

2.1.2 Shaping

The processed powders may be moulded into various shapes by casting from a slurry (slip

casting, tape casting), pressing methods (axial and isostatic pressing), plastic-forming methods

(extrusion and injection moulding) and colloidal methods [9].

The processing additives in the powder help prevent defects from forming during shaping by

ensuring that the feed material for shaping has a uniform distribution of particles, a suitable

viscosity, plasticity and flexibility so that the result has a uniform density and a homogeneous
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microstructure.

The shaped, unsintered object is referred to as a green body. If the preceding steps were

carried out perfectly then the green body should have a homogeneous structure which is built

up by the homogeneous packing of the processed powder particle mixture. The density of a

green body may be between 50 and 70 %of the theoretical density. Therefore, an image of the

microstructure should have a homogeneous distribution of particles and pores which are the

spaces between particles in the green body. High green densities are often desired since this

improves the densification rates and reduces sintering times.

There is an emphasis on homogeneity in the properties of the green body such as particle

packing and arrangement, pore distribution and density since variations in these properties

within the green body gives rise to defects such as inhomogenious microstructure and density

within the ceramic during sintering. The final sintered sample exhibits variations in mechanical

properties which makes the ceramic unreliable for use in structural and other applications.

2.1.3 Sintering

A green body is converted into a dense solid with the desired microstructure by a heat treat­

ment known as sintering. Sintering causes the particles in the green body to bond together and

increase in size by mass transfer. During this process, the final microstructure of the ceramic

develops and most of the pores are eliminated as they are filled up with mass. The driving

force for sintering is the reduction in the overall surface area which accompanies grain growth
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and results in the reduction of the free energy of the system.

The redistribution of mass between particles occurs by diffusion and results in densification

when mass fills up the pores between particles thus reducing the pore volume and increasing

the average size of grains. The growth of grains without a reduction of the pore volume is

referred to as coarsening. Coarsening may hamper densification if it dominates the early stages

of sintering since it causes grain growth which reduces the driving force for densification. There­

fore densification and coarsening are referred to as competing mechanisms because the latter

reduces the driving force for sintering without increasing the density of the ceramic sample. If

coarsening is the dominant grain growth mechanism then the ceramics obtained are porous.

Ceramics with maximal densities may be obtained if densification is the dominant grain growth

mechanism.

The sintering techniques used most frequently are pressureless sintering, gas pressure sintering,

hot pressing and hot isostatic pressing (HIP). The apparatus used in each technique has a

furnace in which the green body is heated. Sintering temperatures are usually approximately

three quarters of the melting temperature of the ceramic material, for example, the melting

point of Si3N4 which is not known exactly, but is in the range of 2300 QC [1], is sintered at

temperatures between 1200°C and 1500°C. In the latter two techniques, an external pressure is

applied to the green body to enhance densification. The two most well-known types of sintering

are solid-state sintering and liquid-phase sintering.
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Solid-state sintering

In solid-state sintering, heating causes mass in the solid state to flow between particles by

atomic diffusion. The powder does not melt and, therefore, this method is also referred to as

dry sintering.

Pore

I_--Particle

1

i

Neck

Figure 2.1: A diagram of solid-state sintering illustrating neck formation between contacting
particles and the six mechanisms of mass transport between grains: (1) Surface diffusion, (2) Lat­
tice diffusion from the surface, (3) Vapour transport, (4) Grain boundary diffusion, (5) Lattice
diffusion from the grain boundary and (6) Plastic flow.

Particles in the compact are in contact with one another and the points of contact are referred

to as necks. The surfaces of the particles and the neck are not flat. The chemical potential

of the atoms on these two surfaces depends on the surface curvature. Convex surfaces have

a positive radius of curvature and concave surfaces have a negative radius of curvature. As a

result atoms on convex particle surfaces have a higher chemical potential compared to atoms on
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the concave neck surfaces, and accumulate at the necks during sintering causing the particles to

bond together and grow in size [9]. Six mechanisms of mass transport between particles have

been identified: (1) surface diffusion, (2) lattice diffusion from the surface of a particle, (3)

vapour transport, (4) grain boundary diffusion, (5) lattice diffusion from the grain boundaries

and (6) plastic flow. All six mechanisms result in neck growth, however only the latter three

mechanisms result in densification.

Grain boundaries in polycrystalline materials are characterised by gram boundary energies

and grain boundary areas which may be likened to the surface (or interfacial) energies and sur­

face areas associated with surfaces. Therefore changes in the grain boundary area contribute

to the change in the free energy of the system, and this affects the driving force for sintering

[9]. Grain boundaries also interact with pores which influences pore evolution during sinter­

ing. This interaction complicates the analysis and understanding of grain growth phenomena

in polycrystalline materials. Therefore, most theoretical models of densification as a first ap­

proximation ignore pore and grain boundary dynamics [9]. The interaction between the mass

transport mechanisms during sintering is also very complex, and existing models of sintering

treat these mechanisms separately.

An external pressure is often applied to the green body during sintering to prevent coars­

ening from dominating grain growth. The external pressure increases the driving force for

densification without affecting the coarsening rates [91. In practice, solid-state sintering does

not completely eliminate the pore volume and the microstructure of the ceramics consists of

grains separated by grain boundaries.
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Liquid-phase sintering

Ceramic materials with strong covalent bonds will not densify even with the application of

external pressures to the green body during dry sintering. In fact, there are some material such

as Si3N4 which decompose under these conditions of high temperatures and pressures. This is

remedied by adding small amounts of sintering additives to the ceramic powders before shaping,

which melt at the sintering temperatures thus forming a liquid which surrounds the particles.

This is known as liquid-phase sintering. Mass diffuses more easily and faster through the liquid

medium into the pores. Hence densification rates are enhanced in liquid-phase sintering.

If the amount of liquid material is sufficient and has good wettability, it fills the pores and

exerts a capillary force on the particles which causes them to rearrange themselves into more

stable, densely packed positions. This rearrangement process is responsible for a significant

amount of densification and occurs in the first few minutes of sintering [9].

Atoms on the particle surfaces with a higher chemical potential will dissolve into the liquid,

diffuse through it and precipitate onto surfaces with a lower chemical potential. This process

is referred to as the solution-precipitation stage of liquid-phase sintering. The higher the cur­

vature of a surface, the higher the chemical potential of that surface. In general, the smaller

particles in the system have a higher chemical potential than the larger particles. Therefore,

the smaller particles will tend to dissolve, and the smallest particles eventually disappear and

re-precipitate onto the larger particles. The growth of the larger particles at the expense of the

13



smaller ones is known as Ostwald ripening. The solution-precipitation process is responsible

for an increase in the average grain size of the system and for changes in grain shapes.

Once densification slows down, the final stage of liquid-phase sintering occurs during which

grains increase in size by coarsening which occurs by Ostwald ripening. This stage is charac­

terised by very little densification, an increase in the average size of the grains and grain shape

accommodation which describes the movement of grains into more stable positions relative to

one another.

The reduction of pore volume causes the compact to shrink during densification. The relation­

ship between shrinkage rates and temperature provides information about which mechanisms

dominate the sintering process, for example densification. This relationship is also used to

determine the progress of the sintering process.

Upon cooling, the liquid phase in general forms a glassy grain boundary phase around the ce­

ramic grains. The nature of the grain boundary phase influences the behaviour of the ceramic

at high temperatures. Most ceramics undergo a post-sintering heat treatment or annealing to

convert the amorphous grain boundary phases into crystalline phases.

2.1.4 Finishing

Finishing refers to polishing, cutting, grinding and drilling of the final product. This step is

a means of ensuring that the ceramic applications satisfy the high requirements that are ex-
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pected of technical ceramics. However it is expensive, and as the preceding steps in the ceramic

fabrication are improved, the sintered ceramic applications will require less finishing. Diamond

tools, laser cutting and spark erosion are examples of tools used for finishing.

2.1.5 Ceramic microstructure

The mechanical properties of a ceramic are controlled by the microstructure, namely grain size

and shape, grain size distribution, grain boundary phases and density. Technical ceramics are

used in industrial applications such as heat engines, cutting tools and bearings. Therefore they

must exhibit excellent mechanical and wear properties consistently. This is only possible if

the microstructure responsible for these properties is consistently reproduced by the ceramic

fabrication process.

The use of different techniques at each stage of the fabrication process gives rise to a variety

in the microstructures that may be obtained. In general, microstructural control is concerned

with obtaining maximal densities (that is, approaching theoretical densities), small grain sizes,

uniform particle size distributions and homogeneous microstructures since studies have shown

that these factors are associated with reliable applications.

The parameters that influence the formation of microstructure during sintering are powder

characteristics, the sintering time, the temperature, the heating rate, the sintering atmosphere

and the externally applied pressure. Slight variations in any of the parameters often result in

significant changes in the microstructure.
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2.2 Silicon nitride materials

Silicon nitride has the chemical formula SiaN4 . The bonds between the silicon and nitrogen

atoms are strong covalent bonds. Therefore it is only possible to produce fully dense SiaN4

ceramics by liquid-phase sintering.

Crystal structures

SiaN4 crystallises into three structures. The SiaN4 grains in the ceramics exist in the Cl:: and (3

hexagonal crystal structures, illustrated in the figure below.

Figure 2.2: The (l'- and ,B-Si3N4 hexagonal crystal structures.
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The building units of the hexagonal structures are SiN4 tetrahedra. Each nitrogen atom is

bonded to three silicon atoms which means that the tetrahedra connect at the corners forming

a layer of Si3N4 . The f3 crystal structure consists of one such layer whereas the a crystal struc­

ture consists of two such layers, shifted with respect to one another. This results in a doubling

of the c lattice parameter in the a-Si3N4 unit cell compared to that of the f3-unit cell.

The third crystal structure of Si3N4 (produced only very recently at high temperatures and

pressures) exists in a cubic, spinel crystal structure and is referred to as ,-Si3N4 in the liter­

ature. Studies of the ,-modification conducted to date [10, 11, 12] indicate that this material

exhibits excellent mechanical properties making its potential for structural applications very

high.

2.2.1 Overview of the preparation and properties

Powder synthesis and preparation

Silicon nitride does not occur naturally on earth, although inclusions of the material composed

mainly of the a crystal structure have been found in meteorites [6, 2, 7]. Thus the starting

materials for the fabrication process are synthesised via commercial chemical processes such

as the direct nitridation of metallic silicon, carbothermal reduction of silicon dioxide (Si02 )

in nitrogen and high temperature decomposition of silicon diimide [13, 2, 14, 9, 7, 8]. The a

modification of ShN4 always forms the major component of the starting materials. The final

product of the synthesis processes is, in general, a mass of large, agglomerated particles which
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may be polycrystalline or amorphous depending on the synthesis route used [2, 6, 7, 8]. This

is subsequently purified by various chemical methods [9], de-agglomerated and refined into a

powder with the desired characteristics such as equiaxed particle morphology, high specific sur­

face area, narrow particle size distribution by ball, planetary or attrition milling.

The starting materials produced by the different methods mentioned above differ from one

another with respect to the amount of a-Si3N4 to ,B-Si3N4 present, crystallinity, particle mor­

phology, amount of Si02 adhered to particle surfaces, agglomeration and impurities [2].

Processing and sintering additives are also mixed into the powder using the milling methods

mentioned above. Other techniques [2, 9] may also be used to accomplish this. However, stud­

ies [2] have shown that the Si3N4 ceramics obtained from powders produced by milling are of

a better quality compared to those obtained when other mixing techniques have been employed.

The processing additives such as dispersants, binders, solvents and plasticisers are added to

the powder to produce a suitable feed material with a uniform distribution of Si3N4 particles,

no bubbles and a suitable viscosity necessary for the subsequent shaping step. They are re­

moved from the green body by burnout which is carried out very slowly to prevent defects from

forming. Consequently, this process may take hours or even days to complete.

Sintering additives are a prerequisite for producing maximally dense silicon nitride ceram­

ics. The types of compounds that have successfully yielded dense Si3N4 ceramics are mixtures

of metal oxides such as Li20, CaO, MgO, Sr02' Ah03, Zr02 and Y203 or mixtures of metal
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oxides with non-oxides such as AlN, ZrN and Mg3N2 [2, 7, 8].

Shaping

The choice of shaping technique depends on the requirements of the application of the ceramic.

Casting and injection moulding are used to generate shapes with complex geometries while

objects with simple geometries are produced by uniaxial and cold pressing methods [2, 7, 8].

Densification methods

Dense Si3N4 ceramics are obtained by liquid-phase sintering. Gas pressure sintering has proved

to be the most economical sintering technique for producing Si3N4 ceramics and has had more

success in reproducing favourable microstructures. Hot pressing (HP), hot isostatic pressing

(HIP) and capsule hot isostatic pressing (capsule-HIP) are the other technologies that are used

to densify Si3N4·

HIP is the only sintering technique that may be used to produce dense Si3N4 without sin­

tering additives. The surface Si02 melts and often forms a sufficient amount of liquid around

the particles during HIP-ing to densify the green body. However the use of HIP is more expen­

sive compared to the other options and is used only to produce special applications.

Si3N4 ceramics are classified according to the sintering technique used. Therefore the types

of ShN4 ceramics that are manufactured are sintered Si3N4 (SSN), gas-pressure sintered Si3N4

19



(GPSN), hot pressed Si3N4 (HPSN), presintered hot isostatically pressed Si3N4 (HIP-SSN or

Sinter-HIP SN) and encapsulated hot isostatically pressed Si3N4 (HIP-SN).

Finishing

Diamond tools are used to finish Si3N4 ceramics due to the hardness of the materials [2].

Densification mechanism

Dense Si3N4 may only be produced with the aid of sintering additives. The additives react with

the Si02, which exists naturally as a surface layer around particles, at the sintering temperature

to produce a liquid which surrounds the particles in the system. This liquid provides a path

for mass transfer between particles which results in dense Si3N4 •

Densification of ShN4 starts at temperatures between 1200 and 1300 QC when the liquid formed

infiltrates the pores between particles and causes particle rearrangement. The a-Si3N4 parti­

cles which are metastable at the sintering temperatures and the subcritical ,B-particles dissolve,

diffuse through the liquid and re-precipitate on the larger, stable ,B-particles. This is referred

to as the a to ,B transformation. After this transformation, the ,B particles grow anisotropi­

cally by Ostwald ripening yielding the elongated, needle-like ,B-grains which characterise the

microstructure of Si3N4 ceramics. Densification continues as porosity is reduced by grain shape

accommodation.
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Upon cooling, the liquid forms an amorphous grain boundary phase around the particles. An­

nealing is often carried out to crystallise the grain boundary phase. However, a complete

conversion has never been accomplished even for very long annealing times. Thus an amor­

phous glassy boundary phase is always present in these ceramics.

Microstructure and properties of silicon nitride materials

The properties that Si3N4 ceramics exhibit are due to the inherent characteristics associated

with the hexagonal crystal structures and the microstructure that forms during sintering.

Si3N4 ceramics differ from one another with respect to grain morphology, composition and

structure of the grain boundary phase and the degree to which a- and ,B-solid solutions are

formed during sintering.

a- and ,B-solid solutions are formed when small amounts of the metal cations such as alu­

minium and beryllium, and oxygen anions occupy lattice sites in the Si3N4 crystal. The extent

to which this occurs depends on the sintering additive and temperature [2]. The most well

known Si3N4 solid-solutions are called SiAlON's. They are formed when Si4+ and N3- ions are

replaced by AP+ and 0 2
- ions [13, 2, 7, 8]. In general, the microstructure of Si3N4 ceramics

consists of hexagonal grains of ,B-solid solutions or a-solid solutions surrounded by an oxynitride

glassy phase.

ShN4 ceramics are known for their high strength, hardness and oxidation resistance over a
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wide range of temperatures, high fracture toughness, fatigue strength, heat conductivity, cor­

rosion resistance and good wear resistance. They are also light compared to other ceramics

[13, 7, 8] due to the low density of Si3N4 ·

The properties of high strength, hardness, fatigue strength and good wear behaviour at temper­

atures up to 1000 °C [2] are associated with fine or needle-like grains and low additive content

(where additive content refers to the amount of additive used for densification). The strength

of the materials at these temperatures ranges between 800 MPa and 1400 MPa. The ceram­

ics that contain a-solid solutions exhibit higher hardness than the materials in which the a-{3

transformation is complete. The hardness of {3-solid solutions at high temperatures increases

from 12 GPa to 16 GPa [13] as the amount of grain boundary phase and the average grain size

decreases. The values of the hardness also depend on the technique used to measure them.

The mechanical properties of the ceramics at high temperatures, that is, temperatures greater

than 1200 °C, are determined by the amount, composition and crystallinity of the grain bound­

ary phase. Amorphous grain boundary phases begin to weaken at lower temperatures compared

to crystalline grain boundary phases, and degrading phenomena such as creep, crack growth,

corrosion and oxidation occur with more ease. Therefore Y203 and rare-earth oxides which

produce crystalline grain boundary phases [15, 16] are used to engineer materials for high tem­

perature applications while the use of Ah03, MgO and AIN are avoided. HIP-ed materials

exhibit the best high temperature behaviour since low quantities of additives or no additives

are required for densification.
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High fracture toughness, heat conductivity and oxidation resistance are associated with large,

coarse needle-like grains or large needle-like grains embedded in a matrix of fine grains. These

properties are optimised when the additive content is low and free of A120 3 . The microstruc­

ture consisting of elongated, needle-like ,B-Si3N4 grains and low additive content give rise to

toughening mechanisms [2, 13] which increase the fracture toughness of the ceramics. Oxi­

dation resistance depends on the surface layer of Si02 which forms around Si3N4 grains by

oxidation. This layer hampers oxygen from diffusing into the grains thus reducing oxidation in

this manner. Sintering additives react with Si02 to remove this protective layer consequently

increasing the oxidation of the ceramics.

Si3 N4 ceramics with fine grains and a low additive content are more resistant to wear or fatigue

when exposed to cyclic pressures (or loads). Studies [13] have shown that wear resistance may

be increased by using small amounts of titanium nitride (TiN) or boron nitride (BN) to form

composites with Si3N4 [13].

The corrosion resistance of Si3N4 ceramics depends on the grain boundary phase, the Si02

content and temperature at which the ceramic materials are used. Studies [2, 13] have shown

that Si3N4 materials corrode in hot acids under hydrothermal conditions and in bases. Re­

sistance to corrosion increases as the temperature and additive content decrease. It has also

been found that corrosion resistance in acids under hydrothermal conditions increases with an

increase in the Si02 content, whereas corrosion resistance in bases decreases as the Si02 content

in the ceramic increases.
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The properties of the ceramics are also affected by defects that form during sintering. Pores,

inclusions (formed by the reaction of impurities present in the starting powders with sintering

additives and Si02), agglomerates of glasses, surface defects and even very large grains are all

examples of defects that affect the physical properties of Si3N4•

2.2.2 Experimental features of grain growth in silicon nitride mate-

rials

The microstructure of silicon nitride ceramics, in general, consists of elongated, needle-like

grains surrounded by an oxynitride grain boundary phase.

[210] direction .

Figure 2.3: Diagram of a hexagonal {3-ShN4 particle illustrating the hexagonal and prismatic
facets and the different crystallographic directions.

The needle-like grains form due to the anisotropic growth of grains along the c-axis of the

,B-Si3N4 particle. The ratio of grain length to grain width, referred to as the aspect ratio, is

comparable to that of whiskers which gives rise to the phenomenon of in situ fibre-reinforcement
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in Si3N4 ceramics, and is responsible for the materials' excellent mechanical properties such as

strength and fracture toughness.

The anisotropic growth of ,B-Si3N4 grains occurs by Ostwald ripening during liquid-phase sin­

tering of the ceramic powder compact. The presence of the liquid enhances diffusion and

densification. The starting powders are usually rich in the a-phase which is thermodynami­

cally unstable at the sintering temperatures and consequently transforms to the ,B-phase, which

is stable at high temperatures. The instability of the a-phase causes the liquid phase to be­

come supersaturated and, consequently, enhances the densification process as dissolved matter

nucleates on the small fraction of ,B-particles resulting in the growth of rod-like ,B-grains [8].

Although it is well known that Ostwald ripening is responsible for the anisotropic grain growth

in Si3N4 , there is no conclusive information about the mechanism of grain growth [5, 7]. This

is to mean that growth exponents extracted from different theoretical models and experimental

results indicate that grain growth is either controlled by diffusion through the liquid phase or

by the reaction at the Si3N4-liquid interface or both.

The anisotropic shape of the ,B-ShN4 grains suggests that growth in the [001] direction oc­

curs at a faster rate than growth in the [210] direction during sintering. Numerous experiments

(laboratory and computer simulations) studying grain growth of silicon nitride have been car­

ried out with the aim of resolving the question of the anisotropic grain growth mechanism.

Theoretical calculations [5, 17] have shown that the rod-like grain shape is the intrinsic growth

shape of ,B-Si3N4 · In addition, these calculations have predicted the growth of pyramid {101}

25



facets which have been observed experimentally [5]. The prediction and subsequent observation

of these pyramid {101} facets seems to imply that growth along the [210] and [001] directions

are controlled by the reaction at the solid-liquid interface.

Estimations of the ratio of the surface energies of the two facets by the so called Broken Bond

method have shown that the surface energy of the (100) facet is lower than that of the (001)

facet. This requires more careful measurement and calculation. The surfaces of the crystal are

not perfect, and surface defects provide sites where nucleation occurs. Assuming that the nu­

cleation site on each facet has the same geometry as the crystal itself, the nucleation site on the

hexagonal plane will have a lower chemical potential compared with the site on the prismatic

plane. As a result, mass will tend to nucleate on the hexagonal nucleation sites causing growth

to occur in the [001] direction and elongated grains to form. Preferential growth in the [001]

direction means that the surface area of the facet with the lower surface energy, namely the

(100) facet, increases and as a consequence of this, the grain attains the lowest possible free

surface energy.

A study mentioned in reference [5] found that grain growth in the [001] direction was con­

trolled"by diffusion while growth along the [210] direction was controlled by the interfacial

reaction. This could provide an explanation for the elongated grain shape since for such a

situation, mass would diffuse from the prismatic plane onto the hexagonal plane resulting in

immediate growth in the [001] direction due to the rapid reaction at the (001) facet-liquid in­

terface.
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The observation of roughening on the hexagonal plane and the atomically smooth prismatic

planes provides further evidence that growth on the hexagonal plane is controlled by diffusion

and growth on the prismatic plane is controlled by the interfacial reaction. Diffusion of mass

from the prismatic plane to the hexagonal plane can only occur one atom at a time. If the

reaction at the interface occurs at a faster rate than diffusion, then growth of the hexagonal

facet does not occur under equilibrium [17] and, as a result, this surface appears rough. Simi­

larly, the slow reaction at the interface between the prismatic facet and the liquid compared to

diffusion on this surface would account for this surface being atomically smooth.

It is evident from the findings of these studies that the mechanism of grain growth during

liquid-phase sintering of Si3N4 is still under debate.
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Chapter 3

Grain Growth Theories

The processes which occur during solid-state and liquid-phase sintering are complex and indis­

tinguishable from one another. This makes the analysis of sintering very difficult and theoretical

models of the interaction between the different mechanisms that occur during sintering have

not yet been fully developed.

There are numerous methods used to study Ostwald ripening theoretically, such as analyti­

cal models, scaling laws, numerical simulations, topological models and statistical models. The

analytical models have proved to be the most widely used technique and provides the basis for

the present understanding of coarsening by Ostwald ripening [9]. These techniques use simple

geometrical models to approximate the real systems (which are very complex in reality) and

derive expressions for the growth rates based on these. Due to such simplifications, the analyt­

ical models have at best provided a qualitative understanding of the coarsening process.

Numerical analysis of coarsening is a relatively new field of research. It is not as widely used as
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the analytical models because the calculations are complicated and the results are sometimes

difficult to interpret [9]. The existing models are still far too simplistic, and do not provide ade-

quate descriptions of the coarsening of microstructure by Ostwald ripening. Numerical analysis

does, however, have the advantage that the systems may be studied without making drastic

simplifications and more realistic models may be produced.

3.1 The LSW theory

During the early 1960's, a quantitative theory describing Ostwald ripening was developed inde-

pendently by Lifshitz, Sloyosov, Wagner [3, 4] and Greenwood. The theory is generally known as

the LSW theory and was developed for an isotropic system of spherical particles surrounded by

a second medium. It does not adequately describe Ostwald ripening in a system of anisotropic

particles such as completely faceted crystals [5, 3, 4].

In the analysis of Ostwald ripening by Wagner [4], the system is described in terms of a particle

radius distribution function f(r, t) which is defined as the number of particles per unit length

with radii in the range r to r + !::J.r at a time t [4]

f(r, t)
N (r, r + !::J.r, t)

Hm
Llr~O !::J.r (3.1)

It follows from the definition of f(r, t) that the total number of particles in the system is

z = 10
00

f(r, t) dr,
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the rate at which the particles disappear is

dZ d 1000
- = - f(r, t)dr
dt dt 0

and the total volume of solute in the system given by

lim U1'),
r-tO

(3.3)

4 100 3<P = - 1f r f(r, t) dr,
3 0

is assumed to be conserved.

(3.4)

Using flux conservation, Wagner showed that eq.(3.1) satisfies the following continuity equation

of = _ ~ (f1')
at or '

where l' is the rate at which a particle radius changes with time.

(3.5)

To solve the continuity equation (3.5), Wagner [4] required an expression for 1'. Wagner [4]

derived expressions for the rate of mass transfer from a particle due to diffusion

n = - 4 1f r D (C; - C), (3.6)

where D is the diffusion constant, C; is the actual concentration above a particle and C is the

concentration in the liquid medium, and the interfacial reaction

(3.7)

where k is the interfacial reaction constant and Cr is the ideal concentration above a particle.

These rates (eq.(3.6) and eq.(3.7)) are equal in equilibrium yielding an expression for the actual

concentration for C; and a general expression for mass transfer from a particle of radius r, that

is

n
41fr2 kDVm

kr + D (Cr - C).
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Since the change in the concentration of the liquid medium with time is negligible, Wagner [4]

made the approximation that

ac
at 10

00

n(r) f(r, t) dr ~ O. (3.9)

Substituting eq.(3.1) and eq.(3.8) into eq.(3.9) yields an expression for the concentration in the

liquid medium C. A geometrical argument which relates the growth rate of a particle n to the

change in the volume of the particle with time is used to obtain an expression for r:

r
2aCoV~

rRT
kD (!...- _ 1)

kr + D r* '
(3.10)

where r* is defined as the radius of a particle in equilibrium with the liquid medium and is

given by the expression

r* = 10
00

f(r, t) kr ~ D dr / 10
00

f(r, t) kr : D dr . (3.11)

All particles with radii smaller than r* reduce their radii with time, with the smallest particles

in the system disappearing altogether while the particles with radii greater than r* grow at

their expense. This is the phenomenon of Ostwald ripening.

Wagner solved the continuity equation (3.5) analytically for two special cases of diffusion con-

trolled and interfacial reaction controlled mass transfer [3, 18, 4].

Diffusion controlled mass transfer (D « kr)

Wagner obtained an analytical solution to the continuity equation (3.5) in the diffusion con-

trolled case in the limit of t --t 00 [4J. In this limit, a finite number of particles disappear from
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the system, therefore the distribution function has a finite value as r -+ 0 and it follows that

eq.(3.3) also has a finite value [4].

Considering particles with radii in the range r ~ r* it follows from eq.(3.10) that the rate

at which a particle radius changes with time in the diffusion controlled case (D ~ kr) is

r
-2 (J CO V~ D 1

RT r 2 ·
(3.12)

Substituting eq.(3.12) into eq.(3.3) yields the rate at which particles disappear from the system:

dZ 1. [ f( ) -2 (J CO V~ D 1]- = lm r,t - .
dt T~O RT r2 (3.13)

Since the expression above has a finite value as t -+ 00 and r -+ 0, it follows that f(r, t) is

proportional to r 2 as r -+ O.

Wagner assumed that after long observation times, it is possible to express the distribution

function as a product of a pure function of time and a function of the reduced radius p, which

is defined as

p = r jr*(t). (3.14)

The reduced radius is the ratio of a particle radius and the critical radius r*(t) which is itself a

function of time. Since the left hand side of eq.(3.13) has a finite value under these conditions,

Wagner assumed that f(r, t) may be written as

f(r, t) g(t) p2 h(p),
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where g(t) is a function of time and h(p) is a reduced radius distribution function. The value

of h(p) at p = 0 by definition is

h(p = 0) = 1. (3.16)

It follows from substituting eq.(3.15) into eq.(3.11), and using eq.(3.14) to obtain an expression

in terms of p, that h(p) is required to satisfy the condition that

Substituting eq.(3.15) into eq.(3.4) and using eq.(3.14) yields an expression for g(t)

3</J 1
g(t) = 47l' fooo p5h(p)dp r*4(t)'

(3.17)

(3.18)

Substituting equations (3.12), (3.14) and (3.15) into eq.(3.3) and using eq.(3.18) to eliminate

g(t) from the resulting expression yields

where

dr*
dt

2 a Co D V~

3,RT (3.19)

(3.20)

Assuming that it is possible to express the distribution function in the separable form given by

eq.(3.15) as t -+ 00 means that eq.(3.19) may be integrated to obtain an expression for r*:

where

(3.21)

T
, RT r*3(0)

2 a CO V'; D'
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is a constant with the dimensions of time.

Substituting equations (3.18) and (3.21) into eq.(3.15) yields the following expression for f(r, t):

f(r, t) = p2 h(p) 4 X const.
(1 + ~)3

(3.22)

Equations (3.22) and (3.12) are substituted into eq.(3.5). Using the approximation that D ~ kr

in the diffusion controlled case and the equations (3.14) and (3.21), the following differential

equation is obtained:

o. (3.23)

Since time does not appear explicitly in the above equation, Wagner assumed that eq.(3.23)

is an extension of the continuity equation (3.5) under steady state conditions in the diffusion

controlled limit [4].

Wagner made further approximations to obtain a value of 9/4 for the parameter 'Y [4], and an

expression for the reduced radius distribution function h(p) is obtained by integrating eq.(3.23):

h(p ::; 3/2)

h(p 2 3/2)

(
_3)7/3
3+p

O.

(
3/2 ) 11/3 [ p]

3/2 - p exp - 3/2 _ p ,
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Interfacial reaction controlled mass transfer (kr « D)

The same methodology is used to derive the expressions corresponding to the equations (3.12)

to (3.24) for the interfacial reaction controlled case. The approximation kr « D is made and

the system is studied in the limit of t ---+ 00 [4].

The expression that Wagner [4] obtained for r* is [4]

where

(3.25)

and

T
3RT, r*2(O)

40"coV~

, = 10
00

p h(p) dp,

In this limit the value of the parameter, is 4/3 and the expression for the reduced radius

distribution function h(p) is

h(p ~ 2)

h(p ~ 2)

(
_2)5 exp [_ ~] ,
2-p 2-p

O. (3.26)

The equations (3.21) and (3.25) are statements of the well known grain growth laws associated

with the LSW theory [3, 4]. The exponents in these expressions are referred to as growth expo-

35



nents. Therefore according to Wagner's analysis, a particle radius has a cubic growth exponent

for mass transfer controlled by diffusion and a quadratic growth exponent for the interfacial.

In both cases, Wagner found that when the final distribution function is scaled by the crit­

ical radius, the form of this scaled distribution function is universal, independent of the form of

the initial distribution function. In the diffusion controlled case, the distribution function has

a characteristic r 2 dependence close to the origin and in the interfacial reaction controlled case

the dependence of f(r, t) on r is linear close to the origin. These results were also obtained by

Lifshitz and Sloyozov [3].

Shortcomings of the LSW theory

Although the LSW theory was an advance in the understanding of Ostwald ripening, it has

several shortcomings:

1. The theory applies strictly to a dilute dispersion of spherical particles which means that

there are no interparticle diffusion interactions.

2. Since interparticle distances are larger than the dimensions of a particle Wagner [4] as­

sumed that the gradient of the concentration \7C may be approximated by the difference

between the actual concentration and the concentration in the liquid divided by the radius

of a particle, that is, \7C ~ (C; - C)/r. This approximation is used to derive eq.(3.6).

Such an approximation is unnecessary in a complete numerical solution of the problem.

3. The equations for mass transfer due to the interfacial reaction (eq.( 3.7)) is obtained by
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assuming that the rate of mass transfer due to the interfacial reaction is proportional to

the surface area of a particle and to the difference between the ideal concentration Cr and

the actual concentration C; above a particle. Studies [1, 13] have shown that the growth

rates of Si3 N4 particles do not depend linearly on the concentration gradients. Therefore

this assumption is not always true in reality.

4. It is assumed that the mass that dissolves from the subcritical particles precipitates on the

large particles without accumulating in the liquid. In reality there is a small accumulation

of mass in the liquid medium, and the liquid medium concentration changes with time.

5. Neither Wagner [4] nor Lifshitz and Sloyosov [3] provide sufficient information about

the time required for the system to reach the steady-state when the scaled particle size

distribution function is independent of time [18, 4].

6. The assumption of isotropic surface energies implies that particle geometries are spheri­

cal. As a result, the theory does not describe Ostwald ripening in an anisotropic system

of particles such as completely faceted crystals.

The shortcomings discussed above are the reasons why experimentally measured data such as

growth exponents, particle size distributions and interfacial reaction rates [13] do not generally

agree with the predictions of the LSW theory [5, 18].
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3.1.1 Solving the general isotropic problem in the limit of t --t 00

In the same manner that Wagner [4] studied Ostwald ripening in the two limiting cases of

diffusion controlled and interfacial reaction controlled mass transfer, we attempted to solve the

problem generally for the isotropic system.

In the limit of t --t 00, the number of particles that disappear from the system is finite.

The distribution function has a finite value as r --t 0 and particles disappear from the system

in accordance with eq.(3.3). Considering r « r* in eq.(3.10) yields

where

r

A

AkD
r (kr + D)'

2 a V~ CO

RT

(3.27)

It follows from eq.(3.27) that the distribution function must be proportional to r(kr + D) to

ensure that eq.(3.3) has a finite value as r --t O. Therefore, in the limit of t --t 00 we assume

that the distribution function may be written as the product of a pure function of time and a

function of the reduced radius p, defined in eq.(3.14):

f(r, t) = g(t) r (kr + D) h(p).

Dividing the left and right hand sides of the equation above by r* yields an expression in terms

of p:

f(r, t) g(t) r*p (k r* p + D) h(p).
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If eq.(3.28) is substituted into eq.(3.11)it may be shown that the reduced radius distribution

function satisfies the condition given by eq.(3.17):

00 r*3 p2 dp / (Xl r*2 p dp
r* = fa g(t)r*p(k r*p+D) h(k r*p+D) la g(t)r*p(k r*p+D) h(k r*p+D)'

This simplifies to give the condition that h(p) must satisfy:

An expression for g(t) is obtained by substituting eq.(3.28) into eq.(3.4) and eq.(3.14) is used

to obtain an expression in terms of p:

For convenience, the integral expressions above which are independent of time are called a and

(3 respectively, that is

a faoo kpsh(p)dp

(3 10
00

Dp4h(p)dp,

and g(t) is

g(t)
3cP r*-S(t)

471" (r* a + (3)' (3.29)

Differentiating eq.(3.29) with respect to time yields

. 3cP [-5 r*-6 f*] 3cP [ * S . * ]
g(t) = 4 71" (r*a + (3) + 4 71" (~*: r; ~2
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Substituting eq.(3.28) into eq.(3.3) and using eq.(3.14) and the above expression to eliminate

g(t), an expression for r* may be obtained:

The left hand side of eq.(3.3) is

dZ
dt

LHS = ~ 100 f(r, t)dr

Once again for convenience the integrals in the expression above are called cS" and c

cS" = 100 k l h(p) dp

€ = 10
00

D p h(p) dp,

and using the expression for g(t) above to obtain an expression in terms of gr* yields

gr* {3 r*2 + r*3 [-5 _ a ]} cS" + gr* {2 r* + r*2 [-5 _ alPha]} t:.
r* (r*a + ,8) r* (r*a + ,8)

Substituting eq.(3.27) and eq.(3.28) into the right hand side of eq.(3.3) and using eq.(3.14)

yields

RHS lim Ur)
r=O

-AkD
9 r* P (k r* p + D) x

r*p (k r*p + D)
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Equating the LHS and RHS of eq.(3.3) yields the expression for f*:

dr*

dt

-AkD
- ~ [ *2 0 r*3 ] [ 3 * 0 r*2 ].

u -2 r - (r*o+.B) + t - r - (r*o+.B)

(3.30)

It is clear from the expression above that we cannot proceed further with an analytical solution

in the manner that Wagner [4] did for the two limiting cases. However, a numerical solution to

the problem is possible.

In the diffusion controlled limit (D « kr) and the interfacial reaction controlled limit (kr « D)

equation (3.30) reduces to the analytical expressions which Wagner [4] obtained.

In the diffusion controlled limit D is set equal to zero in the expressions for integral expressions

(3 and t in eq.(3.30) and substituting the expressions for the constants A and 6 into eq.(3.30)

yields

dr* - 2aV';;cokD

dt - 3 r*2RT fooo k p2h(p) dp

2acoV';; D 1

3RT fooo p2h(p) dp r*2'

This expression is the same as the expression for f* obtained analytically by Wagner [4] for the

diffusion controlled case.

In the interfacial reaction controlled limit k is set equal to zero in the integral expressions

0: and 6 and substituting the expressions for the constants A and t into eq.(3.30) yields

dr* 2acoV';; k 1

dt 3RT fooo ph(p) dp r*'
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which is also the same as the analytical expression obtained by Wagner [4] in this limit.

3.2 Applications of grain growth theories to silicon ni­

tride

Existing theories of Ostwald ripening have led to significant advances in modeling the grain

growth behaviour of silicon nitride materials. However, these are also based on isotropic sur­

face energies and growth mechanisms. This means that these models do not take the hexagonal

geometry of ShN4 particles into account, nor the fact that the surface energies on the hexag­

onal and prismatic facets are different. As a result, they do not give a complete description

of anisotropic growth of ,B-Si3N4 grains due to the anisotropic growth of the grains in different

crystallographic orientations [1].

In a recent study by Kitayama et al [5], a thermodynamic model for anisotropic Ostwald ripen­

ing of a completely faceted crystal was developed and applied to hexagonal ,B-Si3N4 particles

dispersed in a liquid medium. The growth of a hexagonal ,B-Si3N4 particle (refer to fig.(2.3))

is represented by two variables, a(t) and c(t), which represent the width and the length of the

particle respectively, at time t. Expressions for the time derivatives of a and c are required to

determine how the shape of the particles evolve.

Kitayama et al [5J assumed that the driving force for mass transfer is due to a chemical po­

tential difference between the hexagonal and prismatic facets of a ,B-ShN4 particle and the
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surrounding liquid medium. Mass transfer between the facets of a particle is not considered

in this model. The chemical potential of a surface depends on the curvature of the surface.

Therefore the chemical potential of hexagonal and prismatic facets in terms of the curvature of

these facets are

and

/-Le (
2 a Vm )

/-Lo + ,
a

(3.31)

/-La = /-Lo + a Vm (~ + ~), (3.32)

respectively. /-Lo is the standard chemical potential of an infinitely large surface, a is the inter-

facial energy between the particle facets and the liquid medium and Vm is the molar volume

of the material. It is clear from the expressions above that Kitayama et al assume that the

interfacial energies between the two facets and the liquid medium are the same. In reality, the

surface energies on the hexagonal and prismatic facets are different (refer to §(2.2.2)).

An imaginary particle of radius Tt which is in equilibrium with the liquid medium is intro-

duced into the model. The chemical potential of the liquid medium may then be expressed in

terms of the curvature of this hypothetical particle Tt, that is,

(
2 a Vm )

/-Lt = /-Lo + Tt • (3.33)

A general expression for the flux Js of material crossing an interface due to the chemical poten-

tial difference between a surface s and the liquid medium is obtained by deriving equations for

the flux of material controlled by diffusion and the interfacial reaction processes, and equating

43



them in equilibrium. This yields

(3.34)

where kb is the Boltzmann constant, D is the diffusion constant, ks is the interfacial reaction

constant on a surface s, t:1s is the diffusion distance and Ms is the chemical potential of the

surface s.

The flux of material from a surface is related to the change in the dimensions of the surface

with time by the expression

ds
dt

(3.35)

where n is defined as the volume of a growth unit [5]. Substituting equations (3.31) to (3.34)

into eq.(3.35) yields expressions for the rates at which a and c change with time, that is,

and

da oVm Dka (2 1 1)
dt = RT D + kaa rl - -;;, - ~ , (3.36)

dc

dt (~ - ~),
rl a

(3.37)

respectively. The radius rl corresponding to the concentration in the liquid medium is calculated

using the mass conservation law. If there are n particles in the system then index i represents

the ith particle. The distance from the centre of the particle to the prismatic facet and the

hexagonal facet is ai and Ci, respectively. Applying the mass conservation law to the system

yields
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Substituting eq.(3.36) and eq.(3.37) into eq.(3.38) and solving for rl yields

n

L:
i=l
n
L:
i=l

(
2kaUjCj + kcU;)

D + kaUi D + kcCi

(
ka(Ui + Ci) + kCUj )
D + kaUi D + kcCi

(3.39)

The total grain growth during Ostwald ripening is obtained by solving eq.(3.36), eq.(3.37) and

eq.(3.39) selfconsistently and numerically [5].

In the computer simulations which Kitayama et al [5] performed, a system of 287 particles

are generated randomly [5], with the relationship between the length and width of each particle

being random. Grain growth simulations are performed to study the effect of the system param-

eters such as the relationship between the diffusion and interfacial reaction constants on grain

growth behaviour of the ,B-Si3N4 particles in the liquid medium. The evolution of aspect ra-

tios of the grains with time are studied and growth exponents are extracted from the model. [5].

Some of the conclusions drawn from this study are listed below:

• Length growth in the ,B-Si3N4 particles is a complex function of time and the relationship

between diffusion and interfacial reaction constants.

• For special relationships between the diffusion constants and the interfacial reaction con-

stants, the average aspect ratios in the system obtain constant values after a prolonged

time. This implies that the shape of the crystals are determined by kinetics instead of

thermodynamics.

• A growth exponent of n = 3 is predicted when grain growth is controlled by the interfacial

reaction. Higher values for the growth exponents are predicted as the value of the diffu-
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sion constant approaches the values of the product of the interfacial reaction constants

and the characteristic diffusion distance in the calculations.

Although the work by Kitayama et al has led to advances in the understanding of the grain

growth of ,B-Si3 4 grains, isotropic surface energies on the hexagonal and prismatic facets are

used in the calculations. This model also assumes that mass transfer between the facets of

a particle does not occur and eq.(3.38) implies that mass does not accumulate in the liquid

medium. They do not use a distribution function to describe the evolution of particles which,

for a microscopic sample of material, is more appropriate. Thus this model does not give a

complete description of anisotropic Ostwald ripening in ShN4 ceramics.
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Chapter 4

Numerical Studies of the Isotropic

System

The LSW theory applied to an isotropic system of spherical particles was studied numerically

in order to determine the numerical methods necessary for a stable solution to the anisotropic

problem.

Wagner [4] derived a general theory to describe Ostwald ripening in a system of spherical

particles and then obtained analytical solutions to the problem in the two limiting cases of

diffusion controlled and interfacial reaction controlled mass transfer in the steady state.

Numerical solutions for the two limiting cases and the general case were obtained. The numer­

ical methodology is described below.
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4.1 Numerical solution to the isotropic problem in the

diffusion and interfacial reaction controlled limits

The methodology used to obtain numerical solutions to the diffusion and interfacial reaction

controlled limits are identical. Therefore the numerical methods applied to only the diffusion

controlled case is described below.

A numerical solution to the diffusion controlled case was obtained by numerically integrat-

ing the ordinary differential equation (3.23) in order to determine a form for the reduced radius

distribution function h(p). The fourth order Runge-Kutta method [19] for integrating ordinary

differential equations was used to achieve this, and the numerical results were compared to the

analytical solutions (eq.(3.24)) obtained by Wagner [4].

The diffusion controlled case may be classed as an initial value problem where

h(p = 0) = 1. (4.1)

The fourth order Runge-Kutta method [19] was used to integrate a discrete version of the

ordinary differential equation (3.23)

(4.2)

in order to calculate h. The index i represents discrete points in space and hi represents the

value of the reduced radius distribution function at discrete points Pi in space, that is,

Pi i !:1p
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and

(4.3)

The Runge-Kutta method evaluates the slope at four points in the interval i to i + 1, namely

at the end points (i and i + 1) and at two estimated midpoints in the interval [19], that is,

k1 g(Pi, hi)

k2 9 (Pi + ~P, hi + kl/2)

k3 9 (Pi + ~P, hi + k2/2)

k4 9 (Pi + !:lp, hi + k3) , (4.4)

and hi+! is calculated by the expression [19]

(4.5)

The evolution of the function h(p) and the value of the parameter I are calculated in a self-

consistent manner described below:

In the calculation, the parameter 'Y is given an arbitrary initial value, hi+1 is calculated at

the points in the range i = 0 to i = I - 1 and a new value for I is calculated by numerically

integrating eq.(3.20) using Simpson's rule (eq.(4.16)). The new value of I is then used to re-

calculate h, and a new value for I is also recalculated. This cyclic calculation of h and I is

repeated until selfconsistency is achieved.

49



Structure of the calculation for the diffusion controlled case

1. Define all constants and variables.

2. Repeat the following cycle until selfconsistency is achieved:

• h(O) = 1.

• For i = 0 to i = 1-1 calculate hi+l using eq.(4.5).

• Calculate a new value for 1 using eq.(3.20) and Simpson's rule.

• if the difference between the previous value of 1 and the new value is less than 10-6
:

- write data to a file,

- stop the cycle.

• Otherwise use the new value of I, and

• repeat the calculation.

3. Stop.

4.2 Numerical solution of the general isotropic problem

The general isotropic problem may be classed as a one dimensional flux-conservative problem.

The change in the spherical particle size distribution function f(r, t) [4] with time is obtained

by differentiating a discrete version of the isotropic continuity equation (3.5). The Two-Step

Lax-Wendroff finite differencing method is used to achieve this.
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Figure 4.1: Schematic representation of the two step Lax-Wendroff differencing method. The
solid dots represent the initial values of the distribution function. These are used to calculate the
values at the half space and half time step, represented by the unfilled circles, and are then used
to calculate the value of the distribution function at the next full time step.

It is referred to as a two-step method since the intermediate quantities f;:1/22 are calculated at

the half space steps rj+1/2 and the half time steps tn+1/2, which are then used to calculate fjn+l,

the value of the distribution function at the next time step (refer to fig.(4.1)). This method

is second-order in time and space [19], that is, the errors are second order in !::it and in !::ir.

The subscripts j and n are used to represent discrete points in space and time respectively, and

f(rj, tn) is represented by r;. The numerical scheme used to calculate the quantities f;:1/22

and f?+l/2 was adopted from reference [20].

The finite-difference representation of the left and right hand side of equation (3.5) at an
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intermediate point (j + 1/2, n) is

f n+l/2 fn
j+l/2 - j+l/2

(~t)
S I · £ fn+l/2 . Ido vmg or j+l/2 Yle s

1

~r
(fn.n fn .n)j+1rj+l - j r j . (4.6)

f n+l/2 fn ~t (fn.n fn on)
j+l/2 = j+l/2 - 2~r j+l rj+l - j rj . (4.7)

The direction of the flux of particles fr at the point (j + 1/2, n) is used to determine fj~1/2' If

the direction of the flux is to the right, that is, rj+l/2 > 0 let

d1 fj + ~ (fj - fj-l)

d2 ~ (fjn + fhl)

then

fj, (4.8)

(4.9)
{

max [ ds, min(d1, d2)] if fjn :::; fl+ 1
f n -j+l/2 -

min [ ds, max(d1, d2)] if fjn ~ fjn+l'

In (4.8) d1 is obtained by interpolating between fl and fl- 1and d2 is the average of fl and fl+l'

Similarly if rj+l/2 < 0 let

d1 fj+l + ~ (fjn+l - fj+2)

d2 ~ (fj
n + fjn+l)

ds fjn+l

then

{ max [ d3, min(d., d2 ) ] if fjn < f j
n+1

f j
n
+1/2

min [ds,max(d1,d2)] if fl > fl+l'
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Calculating f
j
n+l/2 in this manner ensures that its value is bounded between 0 and the lowest

positive value which guarantees a smooth well behaved function.

Similarly the equation corresponding to (4.7) for the point (j - 1/2, n) is obtained, the fluxes

f7;1;trj±1/2 are calculated and 1";+1 is obtained by the properly centred expression [19],

f n+1 _ fn _ !:It (fn+1/2 .n+l/2 _ f n+l/2 .n+l/2)
j - j !:lr j+l/2 rj+1/2 j-1/2 r j- 1/2 . (4.12)

If the calculation produces negative values for f;+l an interpolation is carried out to correct

this. The furthest point j from the origin at which f;+l has a negative value is determined

and from j = 0 to that point the values for f;+l are recalculated using eq.(3.28). The discrete

version of eq.(3.28) is

rj (k rj + D). (4.13)

Equation (3.28) was chosen as the interpolating function which is the small-r Taylor-expanded

version of f close to the origin. This interpolation ensures that the distribution function re-

mains positive, and that the flux at the origin, namely ff attains a finite value in the steady

state.

A stable solution to the problem requires that the time step used in the calculations must

be neither too large nor too small. According to the von Neumann stability analysis [19] of the

Lax-Wendroff method, the time step is required to satisfy the condition that

!:It ~ I~; I '-11 3 2 JJ - 2' '2' , ... , .
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Reference [20] found that a time step given by

t:.t = 0.81 ~r I '
r1/2

(4.15)

produced stable solutions for the numerical solution of island coarsening on thin films which

was described by the LSW theory [3, 4]. Consequently, this expression for Ilt was adopted and

used in the calculations for the isotropic system.

The change in the total number of particles in the system, the total volume of solid parti-

cles (refer §(2.3.1) for the expressions) and the volume per particle as a function of time are

calculated by numerical integration using Simpson's rule

rb Ilr [ J-1 J ]la f(rj) dr ~ 3 f(a) + 2f; f(r2j) + 4f; f(r2j-1) + f(b) . (4.16)

The initial distribution function may be described by a Gaussian, logarithmic, log-normal or

bimodal expression. It is represented by its value at a discrete number of equally spaced points,

that is,

where

f (r, t) -+ f(rj, tn ), (4.17)

and

j t:.r J 0,1,2, ... , J, (4.18)

n = O,1,2, ... ,N. (4.19)

The growth exponents n are obtained by plotting (volumejparticle)i versus time for different

values of the diffusion constant D, where n = 1,2,3,4,5. The value of nand D which yield
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linear relationships represents the value of the growth exponent and the mechanism of grain

growth, respectively.

Basic structure of the calculation

1. Declare all constants and variables.

2. At t = 0:

• Generate the initial distribution function f(rj, 0) and normalise it using eq.(4.16).

• Calculate:

- the total volume of solid using eq.(3.4)

- the critical radius r* using eq.(3.11),

- rl/2

- the time step 6.t using (4.15).

3. Loop over time:

• Calculate

- f?+l/2 using equations (4.9) and (4.11))

f n+l/2 . ()- j+l/2 usmg eq. 4.7

- r* at n + 1/2

- f j
n+l using eq.(4.12)

If f n+l . t" I* j IS nega lve mterpo ate to the origin:
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find Tj for which J"/+1 is negative,

for j = 0 to j recalculate J"/+1 using eq.(4.13).

- the total volume, and

- the total number of particles in the system.

• Write out data to files.

4. Stop.

4.3 Results and discussion

4.3.1 Numerical solution to the diffusion and interfacial reaction

controlled limits of mass transfer

The diffusion controlled and the interfacial reaction controlled limits of the LSW theory [3, 4]

were studied numerically. The values for the parameter I and the final form of the reduced

radius distribution function h(p) were determined and compared with the analytical results

that Wagner [4] obtained in his study of these two special cases.

Diffusion controlled mass transfer

The numerical solution to the problem in the diffusion controlled limit yielded a value of 2.2499

for the parameter f. The form of the reduced radius distribution function h(p) that was

obtained numerically is presented below:
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Figure 4.2: The reduced radius distribution function in the diffusion controlled limit obtained
numerically. The value of the parameter, was calculated to be 2.2499.

Wagner obtained a value of 9/4 for the parameter 'Y [4J and the analytical expression eq.(3.24)

for the distribution function h(p) which was plotted and is presented below:

5r--------------------

4

3--a.
'E

2

1.5

P =r/r*

Figure 4.3: The reduced radius distribution function obtained analytically by Wagner [4] for
diffusion controlled mass transfer. The value of the parameter, was 9/4.
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The numerical solution of the problem in the diffusion controlled case is in excellent agreement

with the analyical solution obtained by Wagner [4].

Interfacial reaction controlled mass transfer

The numerical solution of the interfacial reaction controlled limit yielded a value of 1.3334 for

the parameter [. The reduced radius distribution function that was calculated is presented

below:

21.50.5
0"--~-----1--~----'----~--I..-~~_ ___J

o

0.5

2.---------------------~

1.5

p =r/r*

Figure 4.4: The reduced radius distribution function obtained numerically corresponding to a
value of 1.3334 for the parameter I in the interfacial reaction controlled limit.

These numerical solutions compare excellently with the results obtained by Wagner in this limit

[4]' which are presented below:
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Figure 4.5: The reduced radius distribution function obtained analytically by Wagner [4] in the
interfacial reaction controlled limit. A value of 4/3 was obtained for the parameter ,.

Once again the agreement between the analytical and the numerical solutions is excellent. The

numerical solutions were obtained by solving eq.(3.23) (and the corresponding equation for the

interfacial reaction controlled limit) without making further approximations. After deriving

eq.(3.23) (and the corresponding equation for the interfacial reaction controlled limit) Wagner

[4] made further approximations to obtain the analytical solutions. Therefore the agreement

between the numerical and the analytical solutions implies that the approximations made by

Wagner are justified.

4.3.2 Numerical solution to the general isotropic problem

The isotropic system was studied numerically in a great deal of detail to develop the numer-

ical methods necessary for a stable solution to the anisotropic problem. However numerical
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instabilities associated with the l/r term as r ---t 0 in eq.(3.10) arose in the calculations and at

present we are still trying to cope with these numerical instabilities. As a result, we are only

able to present some preliminary results from the calculations carried out to date.

Data used for modeling

Our best estimates to date of the values for the fundamental parameters such as the interfacial

energies, diffusion and interfacial reaction constants and saturation concentrations for a system

of isotropic Si3N4partic1es are listed in the table below:

Sintering temperature: 2123 K

Diffusion constant: Do = 104 m2s-1 , Q = -545 kJ mol- 1

D = Do exp (QIRT)

Reaction constant: k100 = 9.9 X 10-9 ms- 1

Interfacial energy: 0"100 = 0.10 Jm-2

Saturation: Cfoo = 1.3 x 104 mol m-3

Table 4.1: A table of the values of the fundamental parameters of Si3 N4 used in the numerical
study of the isotropic system.

The values for the surface energies and diffusion and interfacial reaction constants used in our

calculations were selected from data used by Kitayama et al [5] and Herrmann [1]. The values

for the interfacial energy and the interfacial reaction constant associated with the prismatic

(100) facet of a Si3N4crystal were used in the calculations.
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Evolution of the distribution function

The initial distribution function was chosen to be a Gaussian function of the form

[
1 ( rj - r0 ) 2]f (r j, t = 0) = exp - 2" ~ .

The value for the constant ra, which is the radius at which f(r, t = 0) has a maximum value,

was chosen to be 5.0 J-lm. The value of the constant ~ which represents the spread in the parti-

cle radii was chosen to be 1 J-lm. Comparing the values for D and kro indicated that kro « D.

Therefore mass transfer in this calculation is controlled by the interfacial reaction.

The evolution of the distribution function was obtained using the Lax-Wendroff two-step

method described in §(4.2):

Evolution of the Distribution Function
kr« D

0.4 ,..----------"..,.-------------,

0.3

~ 0.2

0.1

108
O:=-~-=::_~------L-~----'--~~--=-......I

o 2 4 6
TIme step

Figure 4.6: Evolution of the distribution function with time.

In fig. (4.6) above, the final distribution function achieves the form predicted by Wagner in the

reaction controlled limit with the characteristic linear dependence on r close to the origin.
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Change in the number of particles with time

The number of particles as a function of time appears in the figure below:

Number of Particles vs Time
kr« 0

1

en 0.95Q)

<.>
€
ctl
a..-0
"-
Q)
.0
E
::J

0.9z

0.85
o 1e+07 2e+07

Time Step
3e+07 4e+07

Figure 4.7: Change in the number of particles as a function of time.

The number of particles in the system decreases with time. This is expected since the particles

in the system grow by Ostwald ripening.
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Change in the total volume with time

Volume vs Time
kr« D

140.04

140.02

140
Q.)

E
:::J
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0 1e+07 2e+07 3e+07 4e+07

Time Step

Figure 4.8: Change in the total volume of solid particles in the system as a function of time.

The total volume of solid in the system decreases as a function of time. This means that mass

is not conserved as is assumed in the LBW theory. Instead, mass accumulates in the liquid

medium, although this accumulation is small.
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The volume per particle as a function of time is presented below:

Volume/Particle
kr« D

160

155
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Q)

U
t
IIIa.. 145--Q)

E
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135

130
0 1e+07 2e+07 3e+07 4e+07

Time Step

Figure 4.9: Volume per particle as a function of time.

As expected, the volume per particle increases as a function of time since the average size of

the particles increases with time by Ostwald ripening.

Extraction of growth exponents

Growth exponents n were obtained by plotting (volumejparticle)n/3 for various values of n.

The results are presented below:
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(Volume/Particle)**(n/3) vs Time
kr« D
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Figure 4.10: Growth exponents obtained from plotting (volumeJparticle)n/3 vs time for n =
1,2,3,4,5.

Since these are preliminary results, no conclusions about the mechanism of grain growth may

be drawn as yet. This is the subject of on-going work, and will be the basis of a PhD study.

The use of lower values for Do in calculations resulted in singularities at the origin due to

the l/r term in eq.(3.10). This has hampered further investigations of the isotropic system at

present. We are trying to understand these numerical instabilities in order to overcome them

so that we may continue with the study of the isotropic system as the basis of an eventual

complete numerical analysis of the anisotropic system.
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Chapter 5

Anisotropic Coarsening Theory

5.1 Formulation of the anisotropic coarsening theory

The anisotropic coarsening theory (ACT) is a generalisation of the formulation of the LSW

theory by Wagner [4]. It describes grain growth in a system of anisotropic particles such as

completely faceted crystals. It is based on a diffusion process, and the basic equations of the

model have to be solved selfconsistently in order to describe the grain growth behaviour of

the anisotropic system of particles surrounded by a second medium. In this thesis, the case

example of the anisotropic coarsening of hexagonal Si3 N4 is investigated.

The ACT is a general theory applicable to anisotropic systems such as silicon nitride and

other faceted crystals. The motivation for applying the ACT is that the liquid is assumed

to have good wettability so that all particles in the system are completely surrounded by the

liquid medium and the liquid fills all the pores in the system completely. Consequently, pore

dynamics may be ignored. Neck formation between particles does not occur since the particles
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grow by Ostwald ripening. This also allows for grain boundary dynamics to be ignored. The

grains are assumed to be essentially independent and only interact with each other via the

surrounding liquid medium.

A silicon nitride particle may be viewed as a tiny hexagonal prism. Half the distance be-

tween opposite prismatic facets is called the lateral radius a and half the distance between the

hexagonal facets is called the longitudinal radius c.

[001] direction

hexagonal facet

[210] direction

Figure 5.1: Diagram of a hexagonal {1-Si3 N4 particle illustrating the hexagonal and prismatic
facets, and the lateral radius a and the longitudinal radius c.

The volume of a hexagonal crystal is

v (5.1)

The surface area of the hexagonal and prismatic facets are
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and

respectively.

A lOO
4

J3 ac, (5.3)

A prism grows epitaxially by adding layers of ShN4 either along the (001) or along the (100)

direction. The energy per atom required to add a layer of atoms onto a surface is defined to

be the chemical potential of that surface. The expressions for the chemical potential of the

hexagonal and the prismatic facets are derived below.

A layer of Si3N4 of thickness de added along the (001) direction corresponds to a change in e.

The change in the volume of the crystal due to the change in e is

(5.4)

The number of moles of Si3N4 in a hexagonal prism having volume V, given by eq.(5.1), is

V
n = V

m
' (5.5)

where Vm is the molar volume of the material. Therefore, the corresponding change in the

number of moles due to a change in e is

(5.6)

Similarly, adding a layer of material of thickness da along the (100) direction corresponds to

a change in a, and the corresponding equations for the change in the volume and number of

moles are

8V3 ae da,
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and

SV3 ac dc

Vm

respectively.

The total surface energy E of a particle is

(5.S)

E 2 x 4V3 a2
(TOOl + 6 x SV3 ac (TlOO, (5.9)

where (TOOl and (TlOO are the surface energies of the hexagonal and the prismatic facets, respec-

tively. When the particles are in contact with a liquid medium, as is the case during liquid

phase sintering, the surface energy is in reality the interfacial energy between the surface and

the liquid medium.

The change in surface energy of the single hexagonal facet due to a change in c and a is

(TlOO SV3 ac dc,

and that for the single prismatic facet is

(dE)c - (TOOl SV3 a da + (TlOO SV3 c da.

(5.10)

(5.11)

From the expressions derived above, it follows that the chemical potential of the hexagonal and

the prismatic facets are given by

J.lOOl
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and

respectively.

P,lOO (5.13)

During liquid-phase sintering, the system tries to achieve its lowest possible free energy. The

particles reduce their overall surface area as a means of achieving this. It is clear that smaller

particles have a higher chemical potential and will shrink in size, while larger particles which

have a lower chemical potential will grow in size at the expense of the smaller particles. This

phenomenon is known as Ostwald ripening.

Since the ACT is based on a diffusion process, it is necessary to find expressions for the concen-

trations above the hexagonal and prismatic facets. The expressions for the ideal concentrations

are derived below.

atom on
surface

D'L------'Il 11"

L------------=::=
the

..

Medium 2

Infinite flat surface

Medium 1

Figure 5.2: Ulustration of an atom on a infinite flat surface. The energy required to create a
vacancy on the surface is €.
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As illustrated in fig.(5.2), the movement of an atom from an infinite flat surface into the second

medium results in the creation of a vacancy on the surface. The surface is assumed to be a few

atomic layers thick. The chemical potential of an infinite flat surface is zero and the energy

required to create a vacancy is c. For convenience, a lattice is used to represent the position of

atoms on the infinite flat surface. If there are N s lattice sites then the number of vacancies in

equilibrium at temperature T is

n(T)

where c ~ RT. It follows that the concentration above the surface will be obtained by dividing

the expression above by the molar volume of material in medium 2, that is,

Cs(T)

A surface with a positive radius of curvature has a higher chemical potential than an infinite

flat surface.

)'
l!

./- ...........
~ "\/

Medium 2

• Curved surface

Medium 1

Figure 5.3: Illustration of an atom on a curved surface. The energy required to create a vacancy
on the surface is € - JotS'
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Therefore, the atoms on the surface will have a higher energy due to the curvature of the

surface and, as a result, the energy required to create a vacancy on a curved surface will be

lower compared to that for a flat surface. If /-Ls is the chemical potential of the curved ~llrface, it

follows that the energy required to create a vacancy is (E - /-Ls). Replacing Ein the expressions

above by (E - /-Ls) yields the number of vacancies on the curved surface in equilibrium at

temperature T:

The number of vacancies on the surface is equal to the number of atoms above the surface.

Dividing the expression above by the molar volume in medium 2 yields the equilibrium con-

centration above the surface:

c~ (Ns/~) e- ElRT is the saturation concentration above an infinite flat surface.

In liquid-phase sintering, medium 1 consists of the solid particles and medium 2 is the liq-

uid medium which surrounds the particles.

The equilibrium concentration above a surface is that concentration for which the surface

energy of the crystal is a minimum [4], and for which the surface is in equilibrium with the

liquid medium. It is also referred to as the ideal concentration above the surface. Substituting

the expressions for the chemical potentials above the hexagonal (eq. (5.12)) and prismatic facets

(eq.(5.13)) for /-Ls into the expression above yields expressions for the equilibrium concentrations
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above the respective facets:

o [ 2 alOO Vm ]
COOl exp aRT '

and

o [Vm (alOO a oOl )]C lOO = C lOO exp RT ---;;: + -c- .

(5.14)

(5.15)

C80l and C100 are the saturation concentrations above the corresponding infinite large surfaces

and Vm is the molar volume of SisN4 . In general, the exponent is very much less than 1 [4].

Therefore the Taylor expansion may be applied to equations (5.14) and (5.15) giving the fol-

lowing approximate expressions:

COOl

and

CO [1 + 2alOO Vm ]
001 aRT' (5.16)

C lOO [ Vm (alaOO + a O

c
Ol ) ] .Cfoo 1 + RT (5.17)

The system of hexagonal Si3N4 particles is described in terms of a distribution function which

is defined as

f(a,c,t)
N(a, a + ~a, c, c + ~c, t)

lim
Lla-+O ~a~c
Llc-+O

(5.18)

where N(a, a + ~a, c, c + ~c, t) is the number of particles with lateral radius in the range a to

a + ~a and longitudinal radius in the range c to c + .6.c at an instant t in time.
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It is assumed that the system consists of a dilute dispersion of particles, which means that

the interparticle distance is larger than the largest dimension of a particle. The particles in

the system either grow or shrink by Ostwald ripening. The change in the number of particles

with lateral radius in the range a to a + da and longitudinal radius in the range e to e + de is

obtained as follows:

J , (a + OO,c,t)

/-;1------- Cross-hatched area: panicles with lateral radius

in the range a 10 a+OO and longitudioal radius in the

range C 10 C+dc.J ,(a,e,l)

A

Y

e +dc 1-------!-T/~_7____r_T/.......J---

J,(o,c,t)
'-- --'--- --l ~

a+da

Figure 5.4: Diagram illustrating the change in the number of particles within the cross-hatched
region.

[AJ It follows from the eq.(5.18) that the number of particles in the cross-hatched area at time

t is

dN(t) f(a, c, t) da de.

At a later time t + dt the number of particles in the cross-hatched area is

dN(t + dt) f(a, c, t + dt) da de

'" [I(a, e, t) + ~ dt] da de.
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Therefore, the change in the number of particles in the cross-hatched area when t --t t + dt is

8f
8t dt da dc.

[B) The flux of particles at a point (a,c) at time t in the i: and the fj directions is given by

Jx(a, c, t) =
f(a, c, t) da dc

= f(a, c, t) a,
dc dt

and

Jy(a, c, t)
f(a, c, t) da dc

f(a,c,t) c,
da dt

respectively. aand care the rates at which the lateral and longitudinal radii change with time.

The change in the number of particles in the cross-hatched area when t --t t + dt is therefore

given by

[Jx(a, c, t) - Jx(a + da, c, t)] de dt + [Jy(a, c, t) - Jy(a, e + de, t)] da dt

8Jx(a, c, t) d d d 8Jy(a, c, t) d d d- act- cat
8a 8c

- ~ (f(a, c, t)a) da dc dt :c (f(a, c, t) c) dc da dt.

It follows from [A] and [B) above that

8f 8. 8.
- = - -(fa) - 8c(fc).8t 8a (5.19)

Equation (5.19) is a continuity equation and it is the rate at which the distribution function

changes with time.
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The total number of particles in the system, from the definition of eq.(5.18), is

N = 10
00

f(a, c, t) dadc.

The number of particles within a area element dadc is

dN = f(a, c, t) dadc.

The change in the total number of particles with time is

(5.20)

dN
dt

d 100

- f(a, c, t) dadc
dt 0

100 Bf(a, c, t) d d
a a c.

o t

Using the continuity equation (5.19) in the expression above:

dN
dt

((X) [B(fa) + a(fe) ] dadc
lo Ba ac
10

00

B(fa) dc - 10
00

B(fe) da.

However as a -7 0 or c -7 0, the change in the number of particles is due to a disappearance of

particles. Hence the change in the total number of particles in the system is

dN
-d = Hm (fa) + lim (fe),t a~O c~o

and is equal to the flux of particles at the origin.

The total volume of the solid particles in the system, from equations (5.1) and (5.20) is

(5.21)

(5.22)

The continuity equation (5.19) has to be solved in order to describe the behaviour of the system.
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This requires expressions for aand cwhich are obtained by finding general expressions for the

rate of mass transfer due to the diffusion process and the interfacial reaction process.

The rate of mass transfer by diffusion from the two hexagonal facets and the six prismatic

facets are obtained by using Fick's first law for the diffusional flux of material. The flux J s

of material from the hexagonal or prismatic surface of a particle is defined as the number of

moles of material crossing the corresponding surface-liquid interface per unit area per unit time.

Employing Fick's first law yields

which implies that

1 dn

A dt

Substituting the expressions for the surface area of the hexagonal (eq. (5.2)) and prismatic

(eq.(5.3)) facets for A and the ideal concentrations above the two facets in the expression

above, the equations for the rate of mass transfer due to diffusion from the two hexagonal and

six prismatic facets are

and

nlOO
4

-6 x V3 acD \lelOo ,

where D is the diffusion coefficient and nODI and nlQO are the number of moles transfered per

unit time from the two crystal facets.
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In the LSW theory [3, 4], the system consisted of a few particles which meant that the di-

mensions of the particles were much smaller compared to the distance between them. Based on

this assumption the gradient of the ideal concentration above each facet is assumed to be of the

J: 't"'7C COOl - C d 't"'7C ......, c;oo - C t' 1 [4] h C' d C' thlorm v 001 ~ c an v 100""'" a respec lVe y , were 001 an 100 are e

actual concentrations above the (001) and the (100) facets and C is the average background

concentration in the liquid medium. Therefore the two equations above simplify to give

a2

- 2 x 2V3 x - D (C~Ol - C),
c

and

-6 x ~ cD (C~oo - C).

(5.23)

(5.24)

The number of moles of material transfered per unit time by the interfacial reaction process is

assumed to be proportional to the area of the interface and to the difference between the ideal

and actual concentrations above the two facets, that is

and

nlOO 6 4 ( I- - x J3 ack lOO ClOO - ClOO )'

(5.25)

(5.26)

where kOOl and k lOO are the interfacial reaction constants associated with the hexagonal and

prismatic facets respectively.
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The rates of mass transfer due to the diffusion process and the interfacial reaction process on

the hexagonal facets (eq.(5.23) and eq.(5.25)) and the prismatic facets (eq.(5.24) and eq.(5.26))

are equal in equilibrium. Hence expressions for Cb01 and C~oo may be obtained:

Cb01 =
DC + ek001 COOl (5.27)

D + ekOOl

and

C~oo
DC + aklOOClOO (5.28)

D + aklOO

Substituting eq.(5.27) into either eq.(5.23) or eq.(5.25), and eq.(5.28) into one of the equations

(5.23) or (5.26) yields the general expressions for the rate of mass transfer from the hexagonal

and prismatic surfaces:

and

nlOO

-4V3 a
2
koOl D (C _ C)

D + k
001 ,

e 001

-8V3 aeklOOD (C
lOO

_ C).
D + aklOO

(5.29)

(5.30)

A geometrical argument relating the change in the number of moles in a particle with time

to the rate at which the volume of a hexagonal particle changes with time is used to obtain

expressions for the time derivatives of a and e. It follows from equations (5.5) and (5.1) that,

dn(a, e) _ 1 ( r.:; da r.:; 2 de )
dt - V

m
8y 3 ae dt + 4y 3 a dt .

A change in the number of moles at the (001) surface corresponds to a change in e and a change

in the number of moles at the (100) surface corresponds to a change in a. Therefore,

. 1 dVOOl
nOOl = ---

Vm dt
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4V3a2 dc
Vm dt

-4V3 a2Dko01
D + ck001

(COOl - C).

Rearranging the above equation and solving for cgives

- VmDko01 (C - C)
D + k

001 ,
COOl

and similarly,

(5.31)

a
-VmDklOO---- (ClOO - C).
D + aklOO

(5.32)

In a dilute medium, it is assumed that very little accumulation of mass occurs in the liquid

medium. This means that as the small particles dissolve in the liquid medium, most of this mass

diffuses through the liquid and precipitates onto the larger particles, and the approximation

that the change in the concentration of the liquid medium with time is negligible is made:

ac
at - 10

00

n(a, c) f(a, c, t) dadc

- 10
00

(SV3 ac a + 4V3 a2 c) f(a, c, t) dadc

~ o. (5.33)

Substituting the equations (5.31), (5.32), (5.16) and (5.17) into eq.(5.33) yields an expression

for the concentration in the liquid medium C:

C [ 2klOOCfoo {OO D ac k f(a, c, t)dadc + k001Cg01 (:>0 D a
2

f(a, c, t)dadc
lo + a 100 lo + ckOOl

+ 2klOOCfoo VmO"lOO 100 c f( t)d d
RT D k

a,c, a c
o + a 100

2klOOCfooVmO"OOl {oo a
+ RT lo D + aklOO f(a, c, t)dadc

so



+ k001C80lVmalOO tx! a f(a,c,t)dadc]
RT lo D + ckOOl

[
2kIQO f

o

oo
D ac k f(a, c, t)dadc + kOOl f

o

oo
D a

2

f(a, c, t)dadc]. (5.34)
lo + a 100 la + ckOOl

In a numerical solution to the problem, the approximation that the concentration of the liquid

medium is constant need not be made as the equations of the ACT are solved selfconsistently

to determine the grain growth of the system.

5.2 Diffusion-controlled and interfacial reaction-controlled

processes

There are four cases that may be studied:

1. If ckOOl » D and aklOO » D, mass transfer is said to be diffusion controlled on the

(001) and the (100) facets. Equations (5.31) and (5.32) simplify to

-lI. D
c m (COOl - C), (5.35)c

and

-lI. Da m (ClOO - C). (5.36)a

2. If ckOOl « D and aklOO « D, mass transfer is said to be controlled by the interfacial reaction.
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It follows from equations (5.31) and (5.32) that

c = -Vmk001 (GOOl - G),

and

- Vmk IOO (GIOO - G).

(5.37)

(5.38)

3. If ck001 » D and akIOO ~ D, mass transfer is controlled by diffusion on the (001) surface

and it is controlled by the interfacial reaction on the (100) surface. It follows from equations

(5.31) and (5.32) that

and

c

a

-lI, D
m (GOOl - G),
c

- Vmk IOO (GIOO - G).

(5.39)

(5.40)

4. If ckOOl ~ D and ak IOO » D, mass transfer is controlled by the interfacial reaction on the

hexagonal facets and by diffusion on the prismatic facets. Then the equations (5.31) and (5.32)

simplify to

and

-lI, D
m (GIOO - G).
a
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In principle, one has the ability to vary D by choosing different liquid media and hence a partic-

ular system, such as Si3N4 , may exhibit one or all of the above cases with different liquid phases.

5.3 Chemical isotropy and physical anisotropy

Physical anisotropy and chemical isotropy imply that a Si3N4 grain is a hexagonal prism, how-

ever the different facets of the grain have the same chemical properties. The system becomes

chemically isotropic if the interfacial energies, the interfacial reaction constants and the satu-

ration concentrations associated with the hexagonal and the prismatic facets are equal, that

is

aOOl = alOO =a

k001 = k lOO = k· (5.43)

Co - Croo = Co001 -

In this limit, the expression for the concentration in the liquid medium (eq.(5.34)) reduces to

C 2kaVm- = 1 +
Co RT

roo a !(a,c,t) dadc + (a+c) !(a,c,t) dadc
JO D+ck D+ak

roo a2 !(a,c,t) dadc + 2 roo ac !(a,c,t) dadc .
JO D+ck JO D+ak

(5.44)

The critical lateral radius a* and the critical longitudinal radius c* are equal to each other in

this limit and are given by the expression [4]

2 roo ac !(a,c,t) dadc + roo a2 !(a,c,t) dadc
a* = c* = JO D+ak JO D+ck

];00 (a+c) !(a,c,t) dadc + roo a !(a,c,t) dadc .
o D+ak JO D+ck

(5.45)

By substituting eq.(5.43) and eq.(5.45) into the expressions for the ideal concentrations above

the hexagonal and prismatic facets (eq.(5.16) and eq.(5.17)) it may be shown that the ideal
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concentrations above the two different facets are equal when the system is chemically isotropic:

COOl = Co [
1 + 2 a Vm ]

a*RT '
(5.46)

o [ 2a Vm ]
C100 = C 1 + a*RT . (5.47)

Substituting equations (5.46), (5.47) and (5.44) into the equations (5.32) and (5.31) yields

a (a*,c*,C) = c (a*,c*,C)

[(
2aVm)

1 + a*RT (
2aVm) ]- 1+--
a*RT

o. (5.48)

Thus the ACT collapses into the LSW theory in the limit of chemical isotropy and physical

anisotropy.

5.4 Comparison between the model developed by Ki-

tayama et al and the anisotropic coarsening theory

The model of anisotropic Ostwald ripening developed Kitayama et at [5] and the anisotropic

coarsening theory are both general theories which describe anisotropic Ostwald ripening in

an anisotropic system of particles such as completely faceted crystals. Numerical solutions of

the basic equations describing these theories is used to model the anisotropic growth in an

anisotropic system of particles. These models are applied to investigate the anisotropic coars-

ening of hexagonal ,B-Si3N4 (refer to fig.(3.1)) in a liquid medium.
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In Kitayama's [5] model, the system consists of a finite number of discrete particles. The

particles are described by two parameters a(t) and c(t) which represent the width and length of

a particle at a time t. The grain growth behaviour of the particles in the system is determined

by solving the equations (3.36), (3.37) and (3.39) selfconsistently. In the ACT, the system

consists of a dilute dispersion of particles surrounded by a liquid medium, and is described in

terms of a distribution function f(a, c, t) (refer to eq.(5.18)) which is a function of the lateral

radius a, the longitudinal radius c and time t. The distribution function satisfies a continuity

equation (5.19) which conserves the number of particles in the system and allows for the parti­

cles disappearing by Ostwald ripening. The grain growth behaviour of the system in the ACT

is determined by the evolution of the distribution function f(a, c, t), and the evolution of the

distribution function is obtained by solving the equations of the theory selfconsistently.

The driving force for mass transfer in both these models is a chemical potential gradient be­

tween the hexagonal and prismatic facets and the liquid medium. The expressions for the

chemical potential on the hexagonal (eq.(3.31)) and prismatic (eq.3.32) facets in Kitayama et

al [5] do not account for the different interfacial energies on the dissimilar facets, and in further

investigations [21, 17] conducted the interfacial energies are still isotropic. In the ACT, the

chemical potential expressions (eq.(5.12) and eq.(5.13)) take the different interfacial energies on

the hexagonal and prismatic facets into account. Furthermore, the chemical potentials of the

hexagonal and prismatic facets are related to the ideal concentrations (eq.(5.16) and eq.(5.17))

above these facets. This step introduces the saturation concentrations cg
Ol

and Cfoo of the re­

spective facets into the equations eq.(5.32) and (5.31) through the equations (5.16) and (5.17).
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The values of these saturation concentrations depend on the liquid medium and is an indication

of the solubility on the different facets in the liquid medium.

By considering a discrete system of particles, Kitayama et at [5] avoid dealing with the nu­

merical difficulties associated with the l/a and l/e terms in eq.(5.16) and eq.(5.17) as a and

e ---* 0, and the disappearance of particles from the system due to Ostwald ripening is not taken

into account in their model.

Studies [1, 13, 22] have shown that the growth mechanism on the hexagonal facets are not

isotropic, and that the growth rate on the hexagonal facet does not depend linearly on the con­

centration gradients for mass transfer due to the interfacial reaction process. Kitayama et al

[5] assume that the growth mechanisms on the hexagonal and the prismatic facet are isotropic

and no attempt to improve on this in later applications of the model [21, 17] has been made.

The ACT also makes this assumption as a first approximation. However, in future applications

of the theory a more realistic expression for eq.(5.25) which describes the growth rate of the

hexagonal facet due to the interfacial reaction process, will be used in the numerical studies

since the complete set of equations are solved selfconsistently to determine the grain growth

behaviour of the system.
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Chapter 6

Numerical Studies of the Anisotropic

System

6.1 Numerical methodology

The numerical methods necessary for a stable solution to the anisotropic problem were devel­

oped by first studying the LBW theory applied to an isotropic system of spherical particles.

However, due to the numerical instabilities that arose when studying the isotropic system, only

a preliminary investigation of the anisotropic system was possible. The resolution of this prob­

lem is the subject of on-going work.

The anisotropic problem is a two dimensional flux-conservative initial value problem. The

Lax finite differencing method is used to differentiate a discrete version of the continuity

equation (5.19) to obtain the evolution of the particle size distribution function f(a, c, t)

with time. The calculation of the intermediate values of f at half-space and half-time steps,
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(ai+I/2, Cj+l/2, tn+l/2)' is more complicated in the two dimensional case. Hence the Two-Step

Lax-Wendroff method was not used in our initial calculations. The indices i and j represent

discrete points in space along the a and C directions respectively, n represents discrete points

The finite difference form of the left and right hand sides of (5.19) is

f n+1 - fn 1
i,j i,j _ ( fn· fn· fn. fn.)

.6.t - - 2.6. i+l,jai+l - i-I,jai-I + i,j+lCj+1 - i,j-I Cj-I ,

where .6.a = .6.c = .6. is chosen for convenience and

(6.1)

and

C·J

i.6.

j.6.

i=0,1,2, ... ,I,

j = 0,1,2, ... , 1.

(6.2)

(6.3)

In the Lax method replacing the term fTt. by its average I (fn + fn + fn + fn )
~,J '4 i+l,j i-I,j i,j+1 i,j-I'

makes the method more stable [19]. Solving for fi~/I yields

f!£+1 =
~,J

(6.4)

If stable solutions are to be obtained using the Lax method, then it must satisfy the Courant
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stability condition [19] which requires the time step to be of the form

(6.S)

for a two dimensional flux-conservative equation. The time step used in the calculations was

chosen to be

!::J.t
0.8 !::J.

(6.6)

The initial distribution function was chosen to be the product of two Gaussian functions. The

change in the total number of particles (eq.(S.20)), the total volume of solid particles (eq.(S.22))

and the volume per particle with time and the growth exponents are calculated in the same

manner as for the isotropic system.

Basic structure of the calculation

The structure for the calculation of the anisotropic system is given below:

1. Declare all constants and variables.

2. At t = 0:

• Generate the initial distribution function f(ai, Cj, 0) and normalise it using (4.16).

• Calculate:

- the time step !::J.t using (6.6).
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- the total volume of solid using (5.22) as a function of time,

- the concentration in the liquid medium using (5.34) as a function of time,

- ai and Cj using (5.32 and 5.31) as a function of time, and

3. Loop over time:

• Calculate

- fi~fl using (6.4),

- the concentration in the liquid medium,

- the total volume, and

- the total number of particles in the system.

• Write out data to files.

4. Propagate the system until a steady state situation is attempted.

6.2 Results and discussion

6.2.1 Data used for modeling

The values for the fundamental parameters used in the calculations are obtained from references

(5] and [1] and are listed in the table below:
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Sintering temperature: 2123 K

Diffusion constant: Do = 10-2 - 104 m2s-1 , Q = -545kJmoZ-1

D = Doexp(Q/RT)

Reaction constant: k lOO = 9.9 X 10-9 ms-1

Interfacial energy: alOO = 0.10 Jm-2

Saturation: Cfoo = 1.3 x 104 mol m-a

Table 6.1: A table of the values of the fundamental parameters of Si3N4used in the numerical
study of the anisotropic system.

6.2.2 Preliminary results for the anisotropic system

The initial distribution function f(a, c, t) for the anisotropic system of SiaN4 particles is ob-

tained from the product of a Gaussian function depending on a with a Gaussian function

depending on c. The graph below is obtained by plotting f(a, c, t) against a and c.
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Initial Distribution Function

f(a,c)

Figure 6.1: The initial distribution function of the anisotropic system.

The number of particles decreases as a function of time since particles disappear from the sys-

tern as a result of the Ostwald ripening process.

Number of Particles vs Time
Anisotropic System
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Figure 6.2: The change in the number of particles as a function of time.
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The total volume of solid material in the system reaches a maximum value and then decreases

as time increases.

Volume vs Time
Anisotropic System

10

9.8
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Q) 9.2E
::l
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iii
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8.6

8.4

8.2

8
0 10000 20000 30000

Time Step

Figure 6.3: The total volume of solid particles in the anisotropic system as a function of time.

This is a new and interesting result which will be investigated further once the numerical

instabilities associated with the isotropic system are understood, in order to determine the im-

plications of this result if it is not an artifact of the calculation. If this is a real effect, then this

could have profound implications on the understanding of the coarsening of anisotropic systems.

The behaviour of the volume per particle as a function of time is similar to the total volume

of the particles in the system. It obtains a maximum value and then decreases as time increases.
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Volume/Particle vs Time
Anisotropic System
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Figure 6.4: The volume per particle as a function of time for the anisotropic system.

Growth exponents are obtained by plotting the (volumejparticle)n/3 versus time for various

values of n.

(Volume/particle)**(n/3) vs Time
Anisotropic System
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Figure 6.5: The (volume/particle)n/3 as a function of time for the anisotropic system.
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The numerical instabilities in the isotropic system arise from the 1/r singularity at the origin

in eq.(3.10). In the anisotropic system, the 11a and lie in equations (5.16) and (5.17) diverge

as a and e -t 0, which indicate that small particles disappear at a very rapid rate which is

the source of the instabilities in the calculations. Once the instabilities associated with the

numerical solution of the isotropic problem are better understood, a more complete study of

the anisotropic problem will be conducted. This is the subject of future studies.

6.3 Future directions

The efforts to understand the instabilities that have hampered the numerical solution to the

isotropic and consequently the anisotropic problem is on-going, and a more complete study of

the anisotropic problem forms the basis for a PhD study.

There are several phenomena that affect the grain growth behaviour of Si3N4 particles dur­

ing sintering such as the Cl! to (3 transformation for example, which have a significant influence

on microstructural evolution. The anisotropic coarsening model may be extended to study and

understand the effects of such phenomena on the grain growth behaviour of Si3N4 materials.

The purpose of theoretical models of coarsening are to provide qualitative and quantitative

understanding of the coarsening (and the sintering) process. The current models have provided

a more qualitative understanding of sintering in terms of the mechanisms, processing param­

eters (such as particle size, temperature and applied pressure) and fundamental parameters.
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The lack of information on the fundamental parameters [9] such as interfacial energies, reaction

concentrations and saturation concentrations make quantitative investigations very difficult at

present. More careful measurements and calculations of these parameters are required if more

accurate quantitative predictions are to be made.

The current models for grain growth of faceted crystals such as Si3N4 assume the surface

energies of all crystal facets to be the same. Experimental investigations show that the growth

rate on the prismatic facet of a ShN4 particle (refer to fig.(5.1)) does not depend linearly on

concentration gradients [22, 13] and that this has a significant influence on the evolution of the

grain aspect ratios during sintering [22]. The advantage of numerical solutions is that these

unrealistic assumptions are unnecessary, and the actual values of the surface energies for the

different facets as well as the actual expressions describing the growth rates may be used in the

model calculations.

The preliminary results on the change in the total volume with time in the isotropic and

the anisotropic systems (refer to fig.(4.8) and fig.(6.3)) indicate that accumulation of mass in

the liquid medium is not negligible as was assumed in the LSW theory [3, 4]. We would like

to develop a finite element analysis solution to the problem since this would be a more real­

istic model of the system because the effect of the accumulation of mass in the liquid phase

on grain growth may be studied. In addition, the effects of grain orientations relative to one

another in the system and the effects of the diffusion and interfacial reaction constants on grain

growth may also be studied. This will enable us to go beyond the dilute limit of our calculations.
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The a-{3 transformation which occurs during liquid-phase sintering of Si3N4 has a significant

influence on the final microstructure [5]. The present theory may be extended to account for

this transformation.

Seeding of a-Si3N4 powders with a small amount of large, elongated {3-nuclei has been used

extensively to tailor the microstructure SisN4 ceramics as a means of improving properties such

as fracture toughness and strength. The presence of the {3-nuclei affects the solubility of Si3N4

in the liquid medium which in turn influences the size and shapes which the grains achieve dur­

ing liquid-phase sintering. We would like to apply the anisotropic coarsening theory to study

the effects of seeding on the grain growth behaviour of Si3N4 particles.

Finally, we would like to apply this theory to study liquid-phase sintering of other anisotropic

systems in the future, for example SiC which form hexagonal platelet structures.
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Chapter 7

Conclusions and Final Remarks

We have formulated a new anisotropic coarsening theory applicable to anisotropic grain growth

in a system of completely faceted crystals such as Si3N4 • It is a general theory. In the limit of

chemical isotropy and physical anisotropy, the anisotropic theory collapses into the LSW theory.

The fact that small particles disappear at very rapid rates from the system gives rise to nu­

merical instabilities in the numerical analysis of the LSW and anisotropic coarsening theories.

Consequently, only preliminary numerical results for the evolution of the distribution function

and growth exponents are presented in this thesis.

Numerical analysis of coarsening is a relatively new technique compared to the frequently

used analytical methods. As a result, the numerical instabilities that arise from the 1/r term

as r -t 0 in eq.(3.10) - regardless of the numerical method used to solve the continuity equa­

tion (3.5) - have not been dealt with in the literature in previous numerical studies of Ostwald

ripening. This is one of the factors that has caused the progress in the understanding of the
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numerical instabilities to be very difficult and slow. The efforts to overcome these numerical

difficulties are on-going.

Numerical difficulties aside, a numerical solution to the problem of Ostwald ripening in isotropic

and anisotropic systems is more accurate and realistic compared to other analytical techniques

[9]. The approximations made in the LSW theory, which were made out of convenience to

obtain an analytical solution to the problem, are unnecessary since the exact equations of both

the LSW and anisotropic coarsening theories may be solved self-consistently without having to

make approximations.

The anisotropic coarsening theory has numerous fundamental parameters such as the surface

energies, diffusion and interfacial reaction constants, and the saturation concentrations Cfoo

and C80l' The values for the surface energies and diffusion and interfacial reaction constants

used in our calculations were selected from data used by Kitayama et al [5] and Herrmann

[1]. The purpose of theoretical models of sintering are to provide qualitative and quantitative

understanding of the sintering process. The current models have provided more qualitative

understanding of sintering in terms of the mechanisms, processing parameters (such as particle

size, temperature and applied pressure) and fundamental parameters. The lack of informa­

tion on these fundamental parameters [9] makes quantitative investigations difficult at present.

More careful measurements and calculations of these parameters are required if more accurate

quantitative predictions are to be made.
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The current models for grain growth of faceted crystals such as ShN4 are based on isotropic

surface energies and growth rates [1]. This assumption is unnecessary, and the actual values of

the surface energies for the different facets must be used in the model calculations.

Future applications of the anisotropic coarsening theory to hexagonal ShN4 particles involve:

• including expressions for growth rates which do not depend linearly on concentration

gradients in numerical calculations to model the growth behaviour more accurately and

realistically,

• developing a finite element analysis of the problem in which the effects of the accumulation

of mass in the liquid medium and grain impingement on grain growth may be studied,

• extending the anisotropic theory to account for the a to f3 transformation which occurs

during liquid-phase sintering of ShN4 materials and which has a significant influence on

grain growth, and

• studying the effects of seeding on the evolution of grain size distributions and aspect

ratios.

We plan to apply the anisotropic coarsening theory to study coarsening in other faceted crystals

such as silicon carbide.

This will be the basis of a PhD study.
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Glossary of Technical Terms

Additives: Compounds that are added in low concentrations to the ceramic powder prior to

sintering to control microstructural evolution and to improve the sintering process.

Agglomerate: A cluster of particles which are held together by weak surface bonds or by

liquid and solid bridges.

Amorphous: Devoid of crystalline form. Amorphous materials lack a regular arrangement of

their constitutive atoms.

Annealing: An isothermal heat treatment which is administered to ceramic materials to re­

duce thermal stresses within the compact or to change the chemical composition of the

microstructure. Annealing temperatures are high but are lower than sintering tempera­

tures.

Aspect ratio: The ratio of grain length to grain width.

Attrition milling: A milling technique which uses balls as the grinding media. The material

to be milled and the grinding media are stirred vigourously with a rotating stirrer within

a milling chamber. The frequency of the stirrer varies between 1 Hz and 10 Hz.

Axial pressing: A consolidation method in which pressure is applied along a particular di-

101



rection (or axis) to a powder compact in a die.

Ball milling: A milling technique which uses balls as the grinding medium. The balls are made

to collide with the starting material, and finer particles are obtained in this manner.

Binder: A processing additive which strengthens the green body, provides plasticity in feed

material for the plastic-forming shaping methods and helps to produce a granular feed

material for the pressing methods. Long-chain organic polymers are often used as binders.

Burnout: The heat treatment which is used to remove processing additives from the green

body prior to sintering.

Capsule HIP: A powder compact is encapsulated in a deformable metal container referred to

as a can and then densified by HIP.

Carbothermal reduction: Si3N4 is produced by the carbothermal reduction of Si02 by car­

bon at approximately 1500°C.

Casting: Consolidation techniques which involve consolidation of powders from a slurry. In

general, these methods are used to produce relatively thin green bodies. Slip casting and

tape casting are examples casting techniques.

Ceramics: Inorganic, nonmetallic compounds that are, in general, crystalline and are formed

between metallic and nonmetallic elements such as silicon and nitrogen (Si3N4 ) and alu­

minium and oxygen (A120 3).

Coarsening: The growth mechanism which results in grain growth and pore growth without

an increase in the density of the ceramic.
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Cold pressing: A powder shaping technique in which pressure is applied uniaxially to the

powder in a die and is used to shape the powder.

Colloidal methods: Powder shaping methods in which a mould is obtained from concentrated

suspensions of particles in a liquid by allowing the particles in the suspension to settle

into a shape under the influence of gravity or by centrifuging.

Composites: A second phase is added to a ceramic to improve the properties of the ceramic,

for example, SiC fibres are added as a reinforcing phase to Al20 3 to improve the strength

of the Al20 3 sample.

Creep: The gradual change in the shape of grains as a means of relieving compressive stresses

within the ceramic sample.

De-agglomeration: The process in which the bonds between the agglomerated particles are

broken yielding smaller individual particles.

Densification: The growth mechanism which is responsible for grain growth and an increase

in the density of the ceramic.

Dispersant: Processing additives which are used to stabilize slurries by increasing the repul­

sion between the particles. Dispersants influence the viscosity of the slurries.

Extrusion: A powder shaping technique in which a stiff feed material is shaped by forcing it

through a nozzle.

Feed material: The material that is shaped into a green body by the various shaping tech­

niques. The feed material consists of a homogeneous distribution of the ceramic particles,

103



sintering and processing additives, and must have the required viscosity, plasticity and

flexibility for shaping.

Finishing: A stage in the ceramic fabrication process in which the ceramic sample (either the

green body or the sintered sample) are cut, polished or ground so that they meet specific

requirements.

Fracture toughness: A property of a ceramic material which determines the strength of the

ceramic. Fracture tougness depends on the grain shapes and sizes and on the composition

of the grain boundary phase.

Furnace: An apparatus used to heat powder compacts to the sintering temperatures. Heat is

generated by a furnace element such as a current-carrying resistor.

Gas-pressure sintering: A pressureless sintering technique in which a small external pressure

is applied with the aid of a gas to prevent the powder compact from decomposing at the

sintering temperatures.

Grain boundary: The region which separates grains in a ceramic compact. In polycrystalline

materials, grain boundaries are areas where the periodic arrangement of the atoms is

disrupted, and consequently the atoms in this region have a higher energy compared to

atoms within the bulk.

Green body: The shaped, unsintered ceramic.

Green density: The density of a green body. It includes the sum of the pore volume and the

volume occupied by the solid particles in the compact.
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Grinding: A finishing technique in which friction is used to smoothen the surfaces of the

ceramic sample.

Growth rate: The rate at which mass is added or removed from the surface of a particle.

Hard agglomerates: Clusters of particles that are bonded together chemically by solid bridges.

Hardness: The ability of a ceramic to withstand high pressures. Hardness may be determined

by how easily it is to scratch or dent the surfaces of a ceramic sample.

Heating rate: The amount by which the temperature is change in a unit of time during the

sintering process.

High-temperature properties: The behaviour of ceramic material above the temperature

at which the grain boundary phase begins to weaken.

Hot pressing: A pressure sintering technique in which pressure is applied uniaxially to the

powder in a die. Applied pressure may be as high as 40 MPa and only samples with

simple geometries may be obtained.

Hot isostatic pressing: A form of pressure sintering in which pressure is applied isostatically

to the powder in a pressure vessel with the aid of a gas. Applied pressures of up to 200

MPa are possible, and the samples with complex geometries may be obtained.

Impurity: These are elements or compounds that contaminate the ceramic powder. They are

introduced into powders at any stage in the ceramic fabrication process, for example, as

by-products of powder synthesis or during milling if the grinding medium is not the same

as the ceramic material being milled. Impurities are one of the sources of defects during

sintering.
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Inclusion: A second phase within a ceramic compact which is added to the ceramic powder

prior to sintering as a reinforcing phase (e.g. fibre-reinforcement) or which forms dur­

ing sintering by unfavourable reactions between impurities and sintering additives for

example, and which have a negative influence on the properties of the ceramic.

Injection moulding: A shaping technique in which the feed material is transported in to an

injection chamber where it is heated to produce a viscous mass and then injected under

pressure into a mould cavity. Once the mould cools the solid object is ejected from the

mould cavity.

Isostatic pressing: A powder shaping technique which applies a uniform hydrostatic pressure

to a powder contained in a rubber container.

Liquid-phase sintering: A sintering method in which sintering additives form a liquid at

sintering temperatures which enhances mass transport rates and reduces sintering times.

Microstructural design The tailoring of microstructures to improve the properties of ce­

ramic materials.

Microstructure: The structure of a ceramic that is visible with the aid of microscopes such

as the scanning electron microscope.

Milling: A mechanical technique that uses mechanical forces such as collision, shear and com­

pression to reduce particle sizes. Milling media such as balls or rods are made to collide

with the material to be milled within a milling chamber by rotating or vibrating the

chamber or by stirring the two components within the milling chamber.
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Neck: The region of contact between adjacent particles in a compact which has a lower chem­

ical potential compared to the particle surfaces. As a result mass tends to accumulate at

the neck.

Nitridation: The reaction between metallic silicon and nitrogen at temperatures between 1200

and 1400 DC to produce Si3N4 •

Plasticiser: Processing additives that are used to soften the binder in the preparation of a

feed material. Low molecular weight organic compounds are used as plasticizers.

Plastic-forming: Powder consolidation methods in which a mouldable feed material is de­

formed plastically. Injection moulding and extrusion are examples of plastic forming

methods.

Polishing: A finishing technique which is used to refine or smoothen the surfaces of a ceramic

sample.

Polycrystalline: A large crystalline material which is composed of numerous smaller crystal­

lites separated by grain boundaries.

Pore: The spaces (or interstices) between particles in a compact. They are filled with a vapour

phase or gases from the sintering atmosphere during sintering. The structure of the pores

changes during sintering as a result of densification.

Porosity: The volume occupied by the pore in a powder compact.

Powder processing: The first stage in the ceramic fabrication process which produces ce­

ramic powders with specific characteristics.
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Pressing: Refers to the consolidation of ceramic powders in a die by the application of pressure.

Pressure sintering: An external pressure in the range of 40 MPa to 200 MPa is applied

during sintering of a ceramic powder compact to enhance densifiction rates.

Pressureless sintering: Refers to the conventional sintering techniques used to sinter powder

compacts. External pressures of up to 20 MPa may be applied during sintering.

Processing additive: Organic polymers that are mixed into the ceramic powder in small

quantities to produce a suitable feed material for shaping in order to control the properties

of the green body such as uniform particle packing and density.

Rearrangement: The movement of particles into more stable, densely packed positions during

liquid-phase sintering. The force of the liquid medium on the grains in a compact causes

rearrangement.

Room-temperature properties: In ceramics room temperature refers to the temperatures

below the temperature at which the grain boundary phase begins to weaken. Thus room­

temperature properties refer to the behaviour of the ceramics below that critical temper­

ature.

Shaping: The second stage in the ceramic fabrication process in which ceramic powders are

moulded into specific shapes that are referred to as green bodies.

Shrinkage: The change in the dimensions (such as length) of a compact during sintering

divided by the initial value (that is, the value before sintering) of these dimensions.

Sintering: A heat treatment which causes particles in a green body to bond together to form

a dense, solid ceramic by mass transfer between particles.
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Sintering additive: An inorganic compound which is mixed into the ceramic powder and is

used to enhance densification 'fates or to control grain growth.

Sintering atmosphere: The atmosphere which surrounds the powder compact during sinter­

ing for example, nitrogen, carbon monoxide, inert gases such as helium and argon and

vacuum. Chemical reactions between the gas and the powder system, and the solubility of

the gases in the powder have a significant influence on the ability to achieve high densities

and controlled grain sizes.

Slip casting: A slurry is poured into a plaster of paris mould which contains micropores. The

liquid from the slurry drains out slowly through the pores by an action similar to capillary

rise leaving behind a consolidated layer of solid referred to as a cast. Once the cast of

sufficient thickness forms, the excess slurry is removed and the cast is dried.

Slurry: A suspension of particles in a solvent which is used as the feed material for the casting

methods.

Soft agglomerates: Clusters of particles that are held together by weak van der Waals forces.

Solid-state sintering: A type of sintering in which grain growth occurs as mass in the solid

state is transferred between particles in the system.

Solvent: An organic liquid in which processing additives are dissolved before they are mixed

into the ceramic powder. Water may be used as a solvent.

Starting material: The unprocessed ceramic material from which the ceramic powder is ob­

tained.
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Strength: A measure of the ability of ceramics to withstand the application of (compres­

sive, tensile or shear) stresses. The strength of ceramics is proportional to the fracture

toughness and inversely proportional to the square root of the defect size in the ceramic

compact.

Suspension: Solid particles are dispersed in general in a liquid medium and prevented from

settling to the bottom of the container by viscosity of the liquid and the forces between

the particles in the system.

Tape casting: A casting technique in which the slurry is spread over a removable sheet of

paper or plastic with the aid of a blade referred to as a doctor blade. Once dry, the tape

is peeled from the surface and cut into the desired shapes.

Technical ceramics: Refer to ceramics that have, in general, been produced within the last 50

years and are used in electrical, magnetic and optical applications as well as in structural

applications where high strength over a wide range of temperatures is required.

Theoretical density: The density of the ceramic material that may be obtained if all the

pores in the ceramic sample have been completely filled with mass.

Whiskers: Short single-crystal fibres with aspect ratios in the range 15 to 20. These are used

in microstructural engineering to increase the fracture toughness and strength of ceramics.
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