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Abstract 

This thesis focuses on aspects of the tectonic history, sediment delivery and subsequent 

sediment redistribution within the Natal Valley and Mozambique Basin of the southwest 

Indian Ocean.  It aims to 1) better constrain the tectonic history of these basins based on 

anomalous seafloor features, 2) understand the timing, evolution and formative processes of 

sediment delivery systems within the Natal Valley and Mozambique Basin, 3) account for the 

redistribution of seafloor sediments within the southwest Indian Ocean.  The southwest 

Indian Ocean opened during the Gondwana breakup event giving rise to two north/south 

orientated rectangular basins separated by the Mozambique ridge.  Early research (1980’s) 

within these basins discussed basin features in terms of the available data at the time.  By 

modern standards these data sets are relatively low resolution, and did not allow early 

researchers to fully account for the existence, development or evolution of many 

morphological features within the southwest Indian Ocean.  This study uses recently acquired 

multibeam bathymetry and PARASOUND/3.5 kHz seismic data sets to describe and account 

for the geomorphology of the southwest Indian Ocean.  Antecedent geology is discussed with 

respect to its development, in association with regional regimes, and role in provision of 

accommodation space and sediment redistribution within the study area.  Sediment delivery 

pathways from the continental shelf to the deep marine basins are discussed, outlining the 

evolution of these systems under the control of antecedent geology and regional uplift.  The 

redistribution of sediment is then discussed from the microtopography observed within the 

southwest Indian Ocean.  Results show anomalous seafloor mounds in the northern Natal 

Valley, and extensional structures within the Mozambique Basin, are likely linked to the 

southward propagation of the East African Rift System.  Dynamic current regimes and 

antecedent geology have played a significant role in the availability of sediment and 

subsequent delivery of sediment to the Natal Valley and Mozambique Basin via submarine 

canyons and channels.  Once delivered to the basins, sediments are redistributed by deep and 

bottom water thermohaline Circulation.  In the Natal Valley this is manifest as an atypical, 

current swept and winnowed, submarine fan (associated with the Tugela Canyon).  While in 

the Mozambique Basin significant sediment wave fields reflect the influence of 

Thermohaline Circulation within this basin, and interaction with the seafloor.  This 

relationship between Thermohaline Circulation and seafloor sediments has allowed existing 

deep and bottom water pathways to be better constrained and, in some instances, modified to 

better represent the actual circulation within specific regions of the study area. 
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Chapter 1 

1. Introduction 

1.1. Introduction and rationale  

The primary objective of this study was to account for sediment delivery and 

redistribution in two adjacent marine basins, taking into account certain aspects of the basins’ 

tectonic regime and the associated regional context (Fig. 1.1).  The basins in question are the 

Natal Valley and Mozambique Basin of the southwest Indian Ocean (SWIO) (Fig. 1.2).  The 

majority of sediment input to these basins is shed from the African continent and introduced 

into either basin.  Both are north-south orientated, rectangular confined basins that deepen to 

the south and provide relatively restricted topographic accommodation space (negative relief 

areas) to incoming sediments. 

The three factors mentioned above account for much of the macro/microtopography 

within general ocean basins.  Whereas macrotopography describes large basin scale (ca. > 10 

km) basin topography, typically defined by oceanic crust protuberances, microtopography is 

the result of bedforms developing in the sedimentary cover, draped over the oceanic crust, 

that are not typically resolved in basin scale studies.  The microtopography that develops is 

dependent on the form of the antecedent geology (oceanic/continental crust), sediment in-

put/out-put and the interaction between the seafloor and bottom water circulation (Fig. 1.1).  

The resulting bedforms are largely produced through the movement of bottom water currents, 

but are also influenced by sediments introduced into the basin by turbidity currents cascading 

down from continental shelves, submarine channels or bathymetric highs.  

Until the 1960’s, these microtopographic features were regarded as being of too small 

a scale to be mapped in deep ocean basins because of the poor resolution of the mapping 

equipment.  Pioneering research into bottom water currents and the associated 

microtopography initially commenced in the Atlantic Ocean and was then extended into the 

SW Indian Ocean and Mozambique Basin (Damuth, 1980; Kolla et al., 1980) (Fig. 1.2).  

However, in the past three decades this aspect of the ocean floor evolution in the latter 

regions has been neglected, despite the considerable improvement in resolution of 

geophysical imaging of the ocean floor through techniques such as multibeam bathymetry.  

New bathymetric data collected during recent research cruises over the Natal Valley and 

Mozambique Basin have provided much higher resolution data sets, concerning 
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microtopography, than available in the past, allowing new microtopographic interpretations 

to be made and considered in terms of antecedent geology and bottom water circulation. 

Fig.1.1: A schematic diagram illustrating the relationship between sediments, currents (bottom water and 

turbidity currents) and the ocean crust. Macrotopography is controlled primarily by the morphology of the ocean 

crust (antecedent geology), while microtopography reflects the dynamic relationship between sediments and 

currents within the macrotopographic framework. 

1.2 Aims of research 

The main aims of this research project are to better constrain the tectonic history of 

the Natal Valley and Mozambique Basin, understand the timing and evolution of sediment 

delivery to the Natal Valley and Mozambique Basin, and to document and account for the 

redistribution of sediments within the Natal Valley and Mozambique Basin,  

micro\macrotopography of the southwest Indian Ocean, offshore of SE Africa as well as the 

significance of antecedent geological control through the study of bathymetric and shallow 

seismic datasets (Fig. 1.2).  The objective is to use this understanding to establish the tectonic 

history of, sediment delivery to, and bottom water circulation within the SWIO. 
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Fig. 1.2. The general format and circulation of the southwest Indian Ocean. Left: International borders within 

southeast Africa, major rivers (TR = Thukela River, LR = Limpopo Rivers, ZR = Zambezi River), and 

significant features of the southwest Indian Ocean (MzF = Mozambique Fan, CT = Central Terrace, LP = 

Limpopo Cone, TC = Tugela Cone, NR = Naudé Ridge, SP = Serpa Pinto Channel, AG = Ariel Graben, DP = 

Dana Plateau, GP = Galathea Plateau). Right: General circulation; Agulhas Current (Black), North Atlantic 

Deep Water (Green), Antarctic Bottom Water (Purple), eddies associated with the East Madagascar and 

Mozambique Current (Red). Significant seamounts are shown as black circles (MtB = Mount Bourcart, JS = 

Jaguar Seamount, BdI = Bassas da India, Eu = Europa Island). 

To this end, the following questions are asked: 

1. What is the regional significance of anomalous macrotopographic features within the 

southwest Indian Ocean? 

2. What sediment delivery mechanisms exist within the Natal Valley and Mozambique 

Basin? 

3. When and how did these sediment delivery systems develop and evolve? 

4. What role does antecedent geology play in sediment delivery, redistribution and 

accommodation space within the SWIO? 

5. What microtopography exists within the Natal Valley and Mozambique Basin? 
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6. Are the formative controls of the microtopography associated with Thermohaline 

Circulation or gravity driven processes (e.g., turbidity currents)? 

7. In areas where the microtopography is due to bottom current circulation, is it possible 

to differentiate between the influences of various water masses on the seafloor 

sediments? 

8. Can the Thermohaline Circulation pathways be better constrained based on 

macrotopographic controls and microtopography distribution? 

To answer these questions recently acquired multibeam bathymetry and 3.5 kHz 

PARASOUND single-channel seismic data will be used.  These data are described and 

discussed in section 1.3 below. 

1.3 Materials and methods 

The overall materials and methods pertinent to this thesis are outlined below. The data 

referred to below are used in part for each chapter and are not presented in a materials and 

methods section within each chapter.  Rather, specific methods associated with individual 

chapters are outlined in those respective chapters. 

Data from two recent research cruises, AISTEK II (20th of May – 7th of July, 2005) 

aboard the R/V Sonne (Jokat, 2006) and AISTEK III (9th of April – 1st June, 2009) aboard the 

R/V Pelagia (Jokat, 2009), were used in this study.  AISTEK II investigated the Mozambique 

Basin and Ridge using a SIMRAD EM120 multibeam echosounder.  A Kongsberg EM300 

multibeam echosounder was used to acquire bathymetry data over the Mozambique Ridge 

and Natal Valley during the AISTEK III survey.  Both multibeam data sets were processed 

onboard using CARIS HIPS and exported as xyz ASCII files.  Interactive Visualization 

Systems' DMagic (version 7.3.1a) was used to grid the data, which were then displayed in 

Fledermaus (version 7.3.1a) for interpretation.  The final bathymetry data have an output 

matrix of ~35 m, providing a relatively high resolution dataset.  Specific portions of these 

data are presented in this study to illustrate the results and discussion graphically. 

A 3.5 kHz (AISTEK III) and a parametric ATLAS PARASOUND echosounder 

(AISTEK II) were used to collect seafloor and sub-bottom seismic reflection data during the 

respective cruises.  These data sets provide very high frequency seismic data with a vertical 

resolution ca. 1 m. Due to technical difficulties, complete seismic coverage along track was 

in some instances not achievable.  In-house designed software, in addition to SEISEE 
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(version 2.17.1.), were used to process the data.  These data were incorporated into SEISEE 

for visualization and interpretation of the echo character.  Band pass filter adjustments and 

colour gains were applied to the data. 

The echo character classification used in this thesis is based on that of Damuth 

(1975).  These works represent some of the most extensive deep marine echo character-based 

studies from varied settings to date.  The echo character types described by Damuth (1975; 

1978) and summarily related to formative processes are a significant baseline against which 

the echo character of the Natal Valley and northern Mozambique Basin can be compared. 

Although these bathymetric and shallow seismic data do not yield information 

relating to the opening history of the basins concerned, they provide insight into the 

contemporary and recent basin dynamics in terms of both sedimentary and current regimes. 

They also offer new insight into the significance of some macrotopographic features within 

the study area.  The importance of 3.5 kHz and PARASOUND (shallow seismic) data in the 

study of microtopography was demonstrated by many workers (such as Damuth, 1975; 1978; 

Johnson and Damuth, 1979; Damuth, 1980; Kolla et al., 1980; Lee et al., 2002) who maintain 

that the study of echo-character can yield significant results with respect to understanding 

sedimentation processes of the deep sea (Johnson and Damuth, 1979; Damuth, 1980).   

1.4 Structure and layout of Thesis 

This thesis comprises a series of papers published in international peer-review 

journals and collated as individual chapters (Chapters 3, 4 and 5), as well as papers that are 

still in the manuscript preparation stage and envisioned for future submission (Chapters 6, 7 

and 8).   

The thesis first discusses the Natal Valley (Chapters 3, 4 and 5) in terms of its tectonic 

setting and attributes, the mechanisms of sediment delivery to the basin, and finally the 

redistribution of sediment.  Chapters 6, 7 and 8 follow the same structure and discuss the 

Mozambique Basin/Channel in terms of the tectonic attributes, delivery of sediment, and 

finally sediment redistribution.  The distinction between these two basins is made as each 

represents a discrete system that has evolved under different tectonic regimes and fed by 

different source areas.   
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Chapter 2 

2. Regional setting 

2.1. Geology and physiography 

2.1.1. Natal Valley  

The Natal Valley is bound to the east by the Mozambique Ridge and to the west by 

the south east coast of southern Africa (Fig. 1.2).  The adjacent continental shelf is straight 

and narrow (4 – 15 km) compared to global standards (Dingle and Robson, 1985; Green, 

2011a, b) but widens substantially to 45 km offshore the Thukela River.  On average the 

continental shelf in this region dips at 0.2° toward a poorly defined shelf-break at ca. 100 m 

(Goodlad, 1986; Martin and Flemming, 1988).  The Natal Valley deepens toward the south 

where it merges with the deep Transkei Basin at 4000 m depth (Fig. 1.2).  Sediment input to 

the basin occurred at ca. 4.9 x106 m3/yr, over the past 65 Myr (Dingle et al., 1987) and was 

attributed to rivers along the KwaZulu-Natal coast.  These rivers, the most prominent being 

the Thukela River (Fig. 1.2), have been in existence since mid-Cretaceous times (Partridge 

and Maud, 2000) and presently deliver sediment (4.405 – 106 m3) to the coast on a seasonal 

time scale (Flemming, 1980).   

This sedimentary basin can be subdivided into a northern and southern area at 30° 

south (Fig. 1.2).  The basement of the northern Natal Valley is oceanic in origin, the result of 

a SW – NE spreading centre (now the present-day southern Mozambique coastline) that 

produced the initial basin during early Gondwana break-up ca. 183 – 159 Ma (Leinweber and 

Jokat, 2011a). The southern Natal Valley, also floored by an oceanic basement, opened ca. 

138.9 – 130.3 Ma via a southwest/northeast spreading centre to the east of the present-day 

basin (Leinweber and Jokat, 2011b). Spreading in the Natal Valley was complete by 90 Ma 

(Martin and Hartnady, 1986; Ben Avraham et al., 1993).  

The sedimentary fill of the Natal Valley comprises sedimentary rocks of the Zululand 

Group’s Makhatini Formation; fossiliferous shallow marine clays of mid Barremian to lower 

Aptian age that represent the rift succession.  Uncomformably overlying this is the mid 

Aptian to lower Cenomanian Mzinene Formation that comprises fossiliferous shallow marine 

silts, sands and interbedded hardgrounds (Shone, 2006).  Basin deposition was interrupted by 

a hiatus spanning the mid Cenomanian to upper Turonian times.  This is defined by a regional 
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seismic reflection termed “McDuff” by Dingle et al. (1978).  Deposition of fossiliferous 

shallow marine silts, sands and conglomerates of the St. Lucia Formation resumed from this 

point to upper Maastrichtian times.  Another regional reflection, “Angus”, marks the top of 

the St. Lucia Formation and defines another hiatus (Dingle et al., 1978; Shone, 2006).  Post-

Angus deposits are associated with the construction of the Tugela Cone (Fig. 1.2), the large 

(180 x 250 km) subaqueous delta of the Thukela River that displays a complex onlap/offlap 

configuration in the offshore stratigraphy (Goodlad, 1986).  A Lower Pliocene unconformity, 

marked by regional reflection “Jimmy” truncates the underlying units.  Post-Jimmy, 

sediments continue to exhibit an onlap/offlap configuration, with bottom current interaction 

noted in seismic records (cf. Goodlad, 1986).  Overall Pleistocene aged deposits are rare.  

Lower Pleistocene unconsolidated sediments occur on the outer shelf (Green et al., 2008) and 

mid-upper Pleistocene aeolianite cordons span the inner to outer shelf. These cordons are 

mantled by thin unconsolidated Holocene sediments that are reworked and redistributed by 

energetic gyres and eddies associated with the southward flowing Agulhas Current 

(Flemming, 1980; Green, 2009). 

Bathymetric features of the Natal Valley pertinent to this study are the Central 

Terrace, Naudé Ridge, Mozambique Ridge (Dana Plateau in particular), Ariel Graben, Tugela 

Cone and Limpopo Cone (Fig. 1.2).  The Central Terrace is a north-south orientated 

basement high that provides the initial northern bathymetric depth constraint within the 

northern Natal Valley (Fig. 1.2).  The Central Terrace has a smooth convex surface flanked to 

the east and west by prominent valleys, whereas the southern flank comprises a steep, smooth 

slope that extends southward to the deep central northern Natal Valley (Dingle et al. 1978).  

The steep southern slope is the topographic expression of the Naudé Ridge, a prominent 

basement high now overlain by sediment (thickness of 1 sec TTWT) (Dingle et al. 1978).  

The Tugela and Limpopo cones represent fan shaped features prograding into the Natal 

Valley from offshore of the Thukela and Limpopo rivers respectively (Fig. 1.2).  The Tugela 

Cone exhibits a steep, west/east orientated southern flank, while the eastern flank has a more 

moderate gradient and hummocky surface.  Numerous terraces create complex bathymetry 

over the surface of the cone, which is crosscut by the Tugela Canyon (Dingle et al. 1978; 

Chapter 4).  The Limpopo Cone lies north of the Tugela Cone, and northwest of the Central 

Terrace, extending 300 km south of the Limpopo River (Martin 1981a).  This sedimentary 

cone is separated from the continental shelf of southern Mozambique by a narrow valley, 

similar to that of the Central Terrace to the southeast (Dingle et al. 1978).  To the east of the 
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Natal Valley, the north/south orientated Mozambique Ridge provides further bathymetric 

constraint in the form of numerous submarine plateaus.  Of importance to this study are the 

Dana and Galathea plateaus of the northern Mozambique Ridge (Fig. 1.2).  The northern 

Dana Plateau is the larger or the two, measuring 120 x 130 km in dimension, and rising to a 

depth of 1795 m below the sea surface.  The northern flanks of the Dana Plateau deepen into 

the Ariel Graben (comprising the southern flank of the Ariel Graben), a west/east orientated 

12 km wide saddle that crosses the Mozambique Ridge at 28°30”S (Fig. 1.2).  South of the 

Dana Plateau, the Galathea Plateau rises to shallower depths (1600 m) extending 150 km in a 

west/east orientation and 80 km north/south. 

2.1.2. Northern Mozambique Basin and Channel 

Located in the southwest Indian Ocean, the Mozambique Basin is a north/south 

orientated rectangular marine basin (Fig. 1.2).  The Mozambique Basin shoals from a depth 

of 5500 m in the south to a depth of 2500 m where it enters the Mozambique Channel in the 

north.  Flanking the Mozambique Basin are the Mozambique and Madagascar ridges.  The 

Mozambique Basin is the product of the second stage of Gondwana break-up (167 M.y), 

although two stages of extensional development have been noted off the southern coast of 

Mozambique (Leinweber, and Jokat, 2011; Mahanjan, 2012).  The development of the 

Mozambique Ridge, to the west of the Mozambique Basin, took place at a later stage 

(Leinweber, and Jokat, 2011). 

The Mozambique Channel is confined by the east coast of Mozambique and the west 

coast of Madagascar (Fig. 1.2).  Within the Mozambique Channel there are two significant 

topographic features; the Davie Ridge and the Bassas da India/Europa islands and associated 

volcanic seamounts, including the Jaguar Seamount and Mount Bourcart (Fig. 1.2).  The 

Davie Ridge is a curvilinear fracture zone that facilitated the relative southward migration of 

Madagascar away from Africa in the Late Jurassic to Early Cretaceous (Bassias, 1992; 

Scrutton, 1978).  This north/south orientated feature divides the northern Mozambique 

Channel longitudinally, interfering with bottom water circulation and sediment transport 

regimes in the region.  To the southwest of the southern Davie Ridge, the Bassas da 

India/Europa islands and associated seamounts provide further restrictions to deep water and 

bottom water flow, in addition to restricting sediment transport. 

Laterally discontinuous, stratified to chaotic reflectors have been recognised as 

overlying the stretched continental basement.  These represent pre-rift sedimentation and are 
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truncated to the northeast by either break-up or rift-onset unconformities, and pinch out to 

seaward (Mahanjan, 2012).  The Mozambique fan comprises the main sedimentary body 

covering much of the Mozambique Channel and northern Mozambique Basin at present 

(Droz and Mougenot, 1987; Kolla et al., 1980).  Several canyons along the Mozambique 

continental margin transport sediments to the upper fan region which is considered the main 

staging area for sediment delivery to the deeper basin (Droz and Mougenot, 1987; Kolla et 

al., 1980; Walford et al., 2005).  Sediment transport to the lower fan is facilitated by the 

Zambezi Channel, with input from the Tsiribihina Channel which sheds sediment from the 

west Madagascan margin (Droz and Mougenot, 1987) (Fig. 1.2).  Previous accounts of the 

Zambezi Channel describe it as being the deep extension of the Zambezi Valley. This is 

considered to originate ca. 50 km southwest of Pembane, southern Mozambique (Droz and 

Mougenot, 1987; Schulz, et al., 2011).  Unlike the Amazon, Zaire, Indus and Bengal systems 

(cf. Kolla, 2007); the Zambezi Canyon/Channel system is not directly connected to a 

significant fluvial source (Schulz, et al., 2011).  The most significant source of sediment is 

the Zambezi River, ca. 200 km to the southwest of the suggested location of the Zambezi 

Canyon head (Schulz, et al., 2011).  The Serpa Pinto Channel, now inactive, was once 

considered as the primary deliverer of sediment to the proto Zambezi Channel system (Droz 

and Mougenot, 1987) (Fig. 1.2).   

Seismicity in the Mozambique Channel originates offshore of Tanzania and northern 

Mozambique by virtue of the southeastern branch of the East African Rift System (EARS).  

This branch follows the Davie fracture zone, making use of Cretaceous-age grabens 

associated with the southward shearing of Madagascar from Africa.  The marine extension of 

the EARS along this southeastern branch, first discussed by Mougenot et al. (1986) and 

Grimison and Chen (1988), is considered to continue into the southern Mozambique Channel.  

Despite being included in recent kinematic models, this zone in the Mozambique Channel is 

described as diffuse with respect to extensional deformation and is difficult to define 

(Horner-Johnson et al., 2007, Déprez et al., 2013; Saria et al., 2013; 2014).  Plate boundaries, 

tectonic regimes and their relation to the southward propagation of the EARS thus remain 

unclear.  Some aspects of the EARS are discussed in relation to the SWIO (Chapters 3 and 6). 

 

 

 



Microtopography and Bottom Water Circulation of the Southwest Indian Ocean 

14 
 

2.2. Oceanography 

2.2.1 Natal Valley 

Circulation within the Natal Valley, and surrounding SWIO, is complex owing to the 

macrotopography of the basins and the adjacent narrow continental shelf (Fig. 1.2).  Two 

main circulation systems are recognised, the Agulhas Current and the North Atlantic Deep 

Water (NADW) current. 

The Agulhas Current is a fast (4 knots), poleward-flowing, wide (ca. 100 km) 

geostrophic current that dominates the upper ocean flow along the western boundary of the 

Natal Valley (Bang and Pearce, 1976; Dingle et al., 1987, Martin, 1981a; 1981b; Donohue 

and Toole, 2003; Lutjeharms, 2007, McDonagh et al., 2008) (Fig. 1.2).  The precise source 

area for the Agulhas Current is unknown; however sedimentological studies suggest this 

source area occurs between 26°S and 30°S offshore the east African coast (Flemming, 1980; 

Martin, 1981a; 1981b; Lutjeharms, 2006a; 2006b).  This is a dynamic region influenced by 

several water masses.  Southward flowing eddies from the Mozambique Channel meet with 

eddies of the East Madagascar Current, with additional input from the Agulhas Return 

Current (Stramma and Lutjeharms, 1997; de Ruijter et al., 2003; Quartly and Srokosz, 2004; 

Quartly et al., 2006; Lutjeharms, 2007).  A deep-reaching current, the Agulhas Current is 

considered by some to progressively extend to depths of as much as 2500 m by 32°S along 

South Africa’s southeast coast (Bang and Pearce, 1976; Pearce, 1977; Dingle et al., 1987; 

Beal and Bryden, 1999; Donohue and Toole, 2003).  However, in some instances it has only 

been the upper 500 m of the Agulhas Current that was intensely studied (Pearce, 1977), 

whereas the structure below 1000 m was estimated or shown to be shallower than the sea 

bottom (Donohue et al., 2000).  As such a complete understanding of the variability of depth 

changes and the influencing factors of the Agulhas Current remains elusive (Lutjeharms, 

2006a).   

The northern section of the current system is remarkably stable, owing to the steep, 

linear continental shelf of the northern South African margin that steers the current flow (de 

Ruijter et al., 1999; Lutjeharms, 2006a; Lutjeharms, 2007).  A consequence of this stable 

linear flow path is that the southward flow associated with the Agulhas Current terminates ca. 

200 km offshore (Lutjeharms, 2006b).  Inshore of this northern Agulhas Current, Beal and 

Bryden (1997) describe an undercurrent at ca. 31°S flowing northward along the continental 

slope at 1200 m depth, and directly beneath the surface core of the Agulhas Current.  
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Numerical models have produced comparable flows at ca. 34°S, with the depth of the 

undercurrent varying from 300 – 2500 m (see Lutjeharms, 2006a). 

Other authors (Toole and Warren, 1993; van Aken et al., 2004; Schlüter and 

Uenzelmann-Neben, 2008a) consider the bottom water circulation within the Natal Valley to 

be governed by the northeasterly flowing NADW, a deep western boundary current.  Two 

possibly contemporaneous pathways have been proposed to describe the passage of NADW 

(ca. 1.2x106 ms-1) into the Natal Valley (Fig. 1.2).  The first (southern) pathway is facilitated 

by the South Atlantic Current.  This pathway is envisaged as transporting NADW around the 

southern tip of Africa.  The NADW core then bifurcates; the northern branch (confined to a 

depth of 2000 – 3500 m, and salinity of 34.83%) continuing northeast-ward, via the Agulhas 

and Transkei basins, into the Natal Valley.  In contrast, the southern branch of NADW 

continues eastward beneath the meandering Agulhas Return Current and does not enter the 

Natal Valley (Toole and Warren, 1993; van Aken et al., 2004). 

The second (northern) NADW pathway is considered to flow along the African 

continental slope at depths between 2000 – 2500 m.  This NADW core passes, via the 

Agulhas Passage, into the Transkei Basin on its pathway into the Natal Valley (Toole and 

Warren, 1993; Aken et al., 2004; Schlüter and Uenzelmann-Neben, 2008a).  Confined by 

shoaling bathymetry within the Natal Valley, the NADW is believed to return southward 

along the eastern boundary of the Natal Valley (constrained by the western slopes of the 

Mozambique Ridge) (Dingle et al., 1987; McDonagh et al., 2008).  Van Aken et al. (2004) 

considered some leakage across a saddle in the Mozambique Ridge at ca. 31°S and at depths 

of 2500 – 3000 m. 

Within the southern Natal Valley a net northeastward flow of NADW, west of 32°E 

was confirmed (Beal and Bryden, 1999; Donohue et al., 2000; Donohue and Toole, 2003, 

McDonagh et al., 2008).  It is this deep northward flow of the NADW which is likely 

responsible for winnowing of the Tugela fan in the mid-western Natal Valley (Chapter 4).   

In the northernmost and shallowest portions of the Natal Valley, seafloor/current 

interactions were recorded as areas of non-deposition on the Limpopo Cone and Central 

Terrace (Martin, 1981a; 1981b; Preu et al., 2011).  This interaction between the Agulhas 

Current and the northernmost Natal Valley has a minimum age of Early/Middle Miocene 

(Martin, 1981a; Preu et al., 2011).  Although initially variable, the Agulhas Current pathways 
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were thus fairly stable following the Early Miocene.  Erosion and redistribution of sediment 

on the Limpopo Cone and Central Terrace, between depths of 400 – 1500 m, can therefore be 

attributed to the net southward flow of the Agulhas Current.  

Deeper into the Natal Valley (ca. 2500 – 3000 m) and further south (ca. 33°S), Dingle 

et al. (1987) recognise recirculation of NADW within the Natal Valley based on the location, 

orientation, depth and character of sediment drifts in the basin.  Through interactions with the 

seafloor sediments, the NADW has developed two elongate, north/south orientated, sediment 

drifts.  The western drift and eastern drift associated with northward and southward flow 

respectively since the Late Eocene (Dingle et al., 1987). 

2.2.2. Northern Mozambique Basin and Channel 

Similar to the Natal Valley, circulation within the northern Mozambique Basin and 

Channel is complex owing to the setting of the basin and the macrotopography of the basin 

floors (Fig. 1.2).  The southern Mozambique Channel is particularly variable, with two main 

currents (Mozambique Current and East Madagascar Current) converging in this region (de 

Ruijter et al., 2002; Ridderinkhof and de Ruijter, 2003, Quartly and Srokosz, 2004; Ullgren et 

al., 2012) (Fig 1.2).  The Mozambique Current is best described as a repetitive series of anti-

cyclonic eddies, with a net southward transport of water through the Mozambique Channel, 

rather than a steady western boundary current (de Ruijter et al., 2002; Ridderinkhof and de 

Ruijter, 2003).  The East Madagascar Current is less stable, being defined by various 

transient eddie pathways originating at the southern tip of Madagascar (de Ruijter et al., 

2003; Quartly and Srokosz, 2004).  These eddies, both cyclonic and anti-cyclonic, propagate 

westward toward the Agulhas Current source region (Quartly and Srokosz, 2002; Quartly et 

al., 2006).  This dynamic region in the southern Mozambique Channel and northern Natal 

Valley is the source area for the Agulhas Current (Stramma and Lutjeharms, 1997; de Ruijter 

et al., 2003; Quartly and Srokosz, 2004; Lutjeharms, 2007).  The formation of anti-cyclonic 

eddies, and the transient nature of transport pathways facilitate variations in the Agulhas 

Current which manifest as Natal Pulses, and ultimately the shedding of Agulhas rings into the 

south Atlantic (van Leeuwen et al., 2000). 

Further north, hydrographic observations from the Mozambique Channel show a 

variable northward flowing undercurrent along the western channel at 1500 – 2400 m depth, 

inshore of the southward migrating Mozambique Current eddies (de Ruijter et al., 2002; 

DiMarco et al., 2002; Ullgren et al., 2012).  The deep core of this undercurrent comprises 
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NADW (flowing at 4x106m3 s-1) which, at 2000 m, is able to cross the shallow sill of the 

Mozambique Channel (2500 m) and continue into the Somali Basin (Donohue and Toole, 

2003; van Aken et al., 2004).  The NADW that does not cross this sill is considered to return 

southward along the eastern side of the Mozambique Channel and Basin (Donohue and 

Toole, 2003).  
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Chapter 3 

Anomalous seafloor mounds in the northern Natal Valley, southwest Indian Ocean: 

Implications for the East African Rift System 

3.1. Introduction 

The geological evolution of ocean basins is reflected in the shape and form of the 

deep seafloor (Dietz, 1963; Norton and Sclater, 1979; Cochran; 1981; Goff and Jordan, 

1988).  This typically comprises a variety of features that range in horizontal scales from the 

micro (10-3 km) to basin-scale (104 km) level.  At the macro scale (10 km and above), 

seafloor features are usually determined by the nature of the basin margins (passive vs. 

active), the location of oceanic ridges (including past spreading centres and abyssal hills) (cf. 

Goff et al., 1997; Leinweber and Jokat, 2011a; 2011b), fracture zones (Cochran, 1981; 

Courtillot, et al., 1999), and sediment input to the basin over time. 

With respect to the shape and form of the deep seafloor, morphological characteristics 

may vary with the type of feature encountered.  Parameters such as the height to width ratio, 

length to width ratio, slope angle and flatness are useful measures for the morphological 

comparison of different features.  Furthermore, these parameters are suggestive of general 

formative processes related to the origin of seafloor features (Das et al., 2007; Smith, 1988; 

Mukhopadhyay and Khadge, 1990; Mukhopadhyay and Batiza, 1994: Kodagali, 1989). 

This chapter describes a series of macro scale (ca. 30 km) seafloor mounds in the 

Natal Valley, southwest Indian Ocean (SWIO).  The Natal Valley has a complicated and 

protracted opening history, during the Jurassic and Cretaceous, which is reflected in the 

mixture of rifting, shearing and drifting of the margin, coupled with episodic submarine 

volcanism.  The adjacent African continent, too, has a long tectonic and seismic history.  

Following the break-up of Gondwana (Watkeys, 2006), the EARS is by far the most 

dominant active feature on the continent (Chorowicz, 2005).  The EARS represents a 3000 

km long discrete intracontinental rift zone initiated some 30 million years ago between the 

Nubian and Somalian plates (Calais, 2006).  EARS rift kinematics have resulted in the 

development of two microplates, the northern Victoria plate, and southern Rovuma Plate, 

with a possible third microplate, Lwandle, developing further south (Calais, 2006; Stamps et 

al., 2008) through the interaction of several rift segments comprising the EARS (Koehn et al., 

2008).  The East African Rift is comparable in size to the West Antarctic Rift, and far more 
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accessible as it lacks the ice cover of the West Antarctic Rift (Fig. 3.1, insets, lower right).  

Since the initiation of the EARS in the Afar region (NE Africa), rift propagation has been 

southward (Burke, 1996), developing two distinct southern extensions, the older eastern 

branch and younger western branch (Ebinger, 1989; Ruppel, 1995; Wolfeden, 2004).  Both of 

these branches avoid the Archean cratons, taking advantage of Proterozoic orogenic belts 

which represent preferential avenues for rift propagation (Morley, 1999).  The possible 

seaward extension of the eastern branch of the EARS was discussed by Mougenot et al. 

(1986).  These workers suggested that the eastern branch joins up with submerged Cretaceous 

age grabens (located on the Tanzanian continental shelf) associated with the drift of 

Madagascar away from Africa.  Similarly, this chapter discusses the possible southward 

extension of the western branch (southern Malawi Rift) into the Natal Valley.  

The Natal Valley Mounds have been previously partly documented (cf. Martin, 1984; 

Goodlad, 1986); however their significance was not recognised at that time and they were 

considered non-descript basement outcrop within the Natal Valley.  Their significance as 

recorders of the geological history of the Natal Valley and SE African margin has been over-

looked with little attempt made to identify their origin, evolution and tectonic significance.  

This chapter aims to describe these features from a morphological and shallow seismic 

perspective and to use their occurrence as a means to better understand the geological and/or 

oceanographic evolution of this basin. 

3.1.1. Previous bathymetric work 

As in all other basins, early work in the Natal Valley relied heavily on high frequency 

seismic echo-character to describe the bathymetry and shallow sub-bottom characteristics of 

the seafloor (cf. Dingle et al., 1978; Dingle and Camden-Smith, 1979; Kolla et al., 1980).  

The primary focus of this was to establish the acoustic stratigraphy and magnetic character of 

the Natal Valley.  The bathymetric and seismic data sets were of sufficiently high resolution 

to resolve basin-scale features but insufficient to resolve the scale and complexity of 

complicated seafloor features that are easily revealed with modern multibeam and high 

resolution seismic tools.  With the introduction of multibeam bathymetry systems to scientific 

research (in conjunction with high frequency seismic systems), the capacity to document and 

describe the deep-seafloor at far higher resolutions has been greatly increased. 
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Fig. 3.1. The south-west Indian Ocean (The GEBCO_08 Grid, version 20091120), showing notable basin 

features.  The black arrow shows passage of the Agulhas Current, the dark-grey arrow shows the NADW 

pathways, while the light grey arrows describe the route of the AABW. The study area (white box), offshore of 

Durban (red circle), is enlarged showing the location of the mounds. The mounds are identified as follows: 1 - 

northernmost, 2- southwestern and 3- southeastern. North-south transects (a, b and c) through the northern Natal 

Valley are depicted by white lines. West Antarctic Rift System (WARS) inset modified after Schmidt and 

Rowley (1986). 

Compared to Dingle et al. (1978), Martin (1984) and Goodlad (1986) were able to 

resolve significantly more of the Natal Valley, providing 20 m interval bathymetry charts, 

and seismic reflection profiles (with 10, 40, 300 cubic inch air-guns).  Seismic coverage was 

such that the majority of the seafloor mounds were inadvertently missed, while the 20 m 

interval bathymetric charts could not resolve the complex seafloor in sufficient detail.  

Present technologies and techniques allow data to be acquired at far higher resolutions.  It is 
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from the perspective of increased resolution in both bathymetry and seismic data that this 

chapter re-investigates aspects of the Natal Valley seafloor and shallow subsurface 

geomorphology.  

3.2. Material and Methods 

Morphological parameters for slope (average change in elevation over distance), 

flatness, height to width ratios (H/W), and length to width ratios (L/W) were measured (Fig. 

3.2).  The use of such parameters is common practice when investigating the morphology of 

seafloor features (cf. Smith, 1988; Mukhopadhyay and Khadge, 1990; Mukhopadhyay and 

Batiza, 1994; Kodagali, 1989; Das et al., 2007). The slope angle is calculated as an average 

value describing the change in elevation over horizontal distance.  The flatness parameter 

reflects the ratio of summit width to basal width.  Changes in flatness are typically manifest 

in changes in slope angle, basal width and summit width, but not necessarily height.  The 

H/W ratio is symptomatic of the flatness and slope parameters, thus changes in this ratio are 

associated with changes in flatness and slope angle (Das et al., 2007).  The H/W ratio allows 

comparisons of submarine igneous features to be made and is suggestive of formative 

processes, varying from point to fissure type igneous sources (Smith, 1988; Mukhopadhyay 

and Khadge, 1990; Mukhopadhyay and Batiza, 1994; Kodagali, 1989).  Das et al. (2007) 

describe four types of relationships between flatness and slope, with varying H/W ratio.  

Type one, for low H/W (< 0.08) typically indicates low slope angles (<10°) and low flatness 

(<0.12).  Varied slope angles (6 – 15°) and flatness (0.08 – 0.3) are associated with H\W 

ratios of 0.081 to 0.16 (Type 2).  Type 3 intermediate H\W ratios (0.161 – 0.23) suggest high 

slope angles (>10°) and high flatness (>0.2).  Height to width ratios of >0.23 are associated 

with high slope angles (>10°) and low to moderate flatness (<0.2) are typical of type 4. 
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Fig. 3.2. The schematic above shows the various parameters that were used in the morphological analysis of 

seafloor features. Flatness represents the ratio of summit width (SW) to basal width (BW), as measured from the 

summit and basal surfaces respectively. The height to width ratios is determined by the features elevation in 

relation to its basal width. Basal length (BL) versus basal width (BW) gives the length to width ratio. While the 

slope angle is given by the average change in elevation (EL) over horizontal distance (HD) recorded from the 

feature. 

3.3. Results 

3.3.1 Bathymetry 

The multibeam bathymetry data reveal three laterally extensive, macro scale, seafloor 

mounds in the northern Natal Valley (Figs. 3.3 – 3.5). One is located in the northern portion 

of the northern Natal Valley (Fig. 3.3), while two occur in the southern portion (Figs. 3.3 and 

3.4).  The bathymetric character of these mounds varies greatly from the character of the 

adjacent bathymetry.  In general, the Natal Valley is typified by smooth seafloor with gradual 

changes in gradient, punctuated by rugged basement outcrop (mostly confined to the north).  

The Tugela Cone (mid Natal Valley) provides a notable departure from the gentle gradient of 

the Natal Valley as it progrades into the basin from the South African east coastline. 

Partial coverage of the northernmost mound (Fig. 3.3) shows a north-south orientated 

feature, 25.4 km in length and at least 3000 m wide, standing 472 m proud of the surrounding 

seafloor sediments. The crown occurs at a depth of 502 m.  The flanks (crown to base) 

average a gradient of 7.3° with localised steepening of up to 30° on the northern flank.  A 

moat, 25 m deep in the south, and 240 m deep in the north, is observed at the base of the 

mound.  The moat merges with the shoaling bathymetry to the north. 
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Fig. 3.3. The northernmost mound in plan-view (north to the right). The convex crown, with off centre (to the 

south) apex is evident, as are the steepened flanks. There is very little distinction between the bathymetric 

character of the mound crown and adjacent smooth seafloor. The S – N profile (P – P’) below the bathymetry 

image clearly shows the mounded morphology of the feature.  

Figure 3.4 shows bathymetry data associated with the second mound, situated in the 

southwestern portion of the northern Natal Valley.  Orientated east-west, this mound is 33 km 

in length and 17.5 km wide.  The shallowest mapped portion of the mound is 420 m above 

the adjacent seafloor, at 1959 m deep.  A discontinuous moat, 34 m deep, fronts the northern 

flanks of the mound.  The moat is less prevalent in the east, where it merges with the smooth 

low gradient seafloor typical of the greater Natal Valley.  The average gradient of the mound 

(crown to base) is 8.5° with a maximum of 44° on the steepened flanks. 

The third mound (Fig. 3.5) is located in the southeastern portion of the Natal Valley, 

the crown lying at a depth of 1845 m.  Like the previous mound, this is similarly east-west 

orientated.  Overall it is 29.7 km long, with a width of 16.2 km and height of 422 m above the 

surrounding seafloor sediments.  A discontinuous moat, 255 m deep, is observed along the 

northern flanks of the mound.  More prevalent in the west, the moat narrows toward the east, 

terminating at the eastern extent of the mound with a relief of 50 m. The flanks of the mound 

have an average gradient of 11.3°, steepening to 31° in places. 
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Fig. 3.4. The south western mound (perspective view above, plan view below), and locations of 3.5 kHz profiles 

(a – a’ and b – b’). Ridges are evident on the eastern and southern flank of the mound. 

Figure 3.6 shows a perspective and plan view of rugged as well as smooth seafloor of 

the Natal Valley.  The rugged seafloor is dominated by elongated conical features 100 – 350 

m in height, reaching local maximums of 65° in gradient.  The adjacent smooth seafloor 

shows gentle changes in gradient. 
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Fig. 3.5. Bathymetry of the south-eastern mound. The mound flanks, and convex crown are clearly evident in 

the perspective view (top), while in plan (bottom) the oval west\east orientation of the mound is clear. The 

location of 3.5 kHz profiles (c – d, d – e and e – f) is shown. 

Figure 3.7 depicts three profiles (a, b, and c) from transects through the bathymetry 

data, as well as a slope angle map for better discrimination of the seafloor types found in the 

area. The profiles are N – S transects through areas of smooth, rugged and mounded 

bathymetry (see figure 3.1 for profile locations).  The overall smooth seafloor with gradual 

changes in gradient of the northern Natal Valley is clearly evident, as are the anomalous 

mounds.  Rugged basement outcrop is shown in the enlargement of box ii, on profile a.  This 

type of bathymetry is largely confined to the northern extent of the basin.  The slope map 

showing a northern portion of profile a (box i) illustrates the distinct character of the mound, 

compared to smooth and rugged seafloor.  Bands of steepened gradient are found on the 

mound flanks, while cones of steepened gradient (including the steepest gradients, ca. 65°) 

are associated with the flanks of rugged seafloor.  The intervening smooth seafloor is fairly 

uniform in slope showing gentle changes in an overall low gradient, similar in character to 

the mound crown area.  Areas of gentle slope are confined to the smooth seafloor and mound 
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crowns.  These are not typically associated with the crowns of the rugged seafloor, although 

smooth seafloor is noted in the valley floors between peaks of rugged bathymetry (Fig. 3.7). 

Fig. 3.6. Typical morphology of rugged seafloor, confined to the northern portion of the Natal Valley. The 

basement outcrop is conical in appearance. Note perspective view on top and plan view on bottom. The 3.5 kHz 

seismic record associated with profile f – g is shown in figure 3.10. This outcrop is located 38 km south of the 

northernmost mound, along the same ship track. 

3.3.2 High frequency seismic character 

Figures 3.8 – 3.10 show high frequency seismic records collected across two of the 

mounds.  The echo character from the southwestern mound (Fig. 3.8, profiles a – a’ and b – 

b’) show limited penetration, semi-prolonged echoes as well as broad hyperbolic reflectors 

with little variance in vertex depth below the seafloor and low angle sub-parallel reflectors 

(see figure 4 for profile locations). 

The seismic profiles in figure 3.9 are associated with the southeastern mound (see 

figure 3.5 for profile locations).  Three profiles (c – d, d – e, and e – f) show the varied 

reflector characteristics between different areas of the mound.  Semi-prolonged echoes are 

noted once more, in conjunction with continuous isolated reflectors, discontinuous sub-

parallel, continuous sub-parallel reflectors and chaotic reflectors.  Continuous isolated 

reflectors are confined to the main body of the mound, while discontinuous and chaotic 

reflectors are observed toward the rim of the mound. 
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Fig. 3.7. (a) Three N – S transects through the northern Natal Valley are shown (see Fig. 3.1. for location). Note 

the contrast in morphology between the mounds, smooth and rugged seafloor over each transect. Typical rugged 

seafloor (see Fig. 5) is shown by the enlarged portion of Profile “a”. (b) Box i is enlarged to better illustrate the 

contrasting morphology of the mounded and rugged bathymetry. The accompanying slope map highlights the 

change in slope, and so morphological character, across smooth, mounded and rugged seafloor. 

Vastly different echo character is observed elsewhere in the northern Natal Valley.  

Rugged seafloor shows distinct hyperbolic reflectors (Fig. 3.10), while smooth seafloor 

exhibits continuous to discontinuous sub-parallel reflectors (Fig. 3.9, southern portion of 

profile e – f).  The hyperbolic echoes associated with rugged bathymetry display varied 

vertex elevations above the seafloor as well as varied amounts of overlap.  Continuous to 

discontinuous sub-parallel reflectors are noted either side of the rugged terrain, and are 

prevalent throughout areas of smooth seafloor within the Natal Valley. 

3.3.3 Morphological character 

The morphological characteristics of the Natal Valley mounds are listed in Table 3.1, 

along with the morphological characteristics of similar mound-like features, and seamounts 

located along the eastern African margin.  Selected characteristics are plotted in figure 3.11.  

Slope angle is plotted as an average against flatness (Flatness = summit width/basal width) 

for all the features (Fig. 3.11a).  Although there is no clearly defined trend, the Natal Valley 

mounds have higher flatness values with lower slope angles than the seamountTB and 

seamountsIOB (Fig. 3.11), for which the inverse is true.  Terrestrial alkaline complexes 
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display varied slope and flatness characteristics, scattered between those of the seamounts 

and Natal Valley mounds.  Plotted height-width and length-width ratios (figure 3.11b) reveal 

that the Natal Valley mounds and alkaline complexes are comparable in terms of these 

parameters, while other features are more varied in character. 

Fig. 3.8. A 3.5 kHz seismic record crossing the south western mound. Semi-prolonged echoes, as well as high, 

low and hyperbolic reflectors are evident. See figure 3.4 for profile locations. 
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Fig. 3.9. 3.5 kHz seismic record crossings of the southeastern mound. Note the difference in character between 

the mounds and adjacent smooth seafloor (profile e – f). Figure 3.5 shows the profile locations. 
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Fig. 3.10. A 3.5 kHz seismic record crossing of the rough terrain south of the northern mound. This 3.5 kHz 

record shows the echo character associated with both rugged and smooth seafloor. Note the conical expression 

of the rugged basement outcrop typical of the northern Natal Valley. See figure 3.6 for location.
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Table 3.1. Morphological characteristics for the various mounded features discussed in this study. The northern mound has an estimated width due to a lack of data coverage. 

Overall, the similarity in geomorphology between the terrestrial features, and those of the Natal Valley is noteworthy. Ns, Nepheline syenites; Gs, Granite/Syenite; Ns/S/Qs, 

Nepheline syenite, Syenite and Quartz syenite; SeamountTB: Lone seamount from the Transkei Basin; SeamountIOB: Large seamounts of Das et al., 2007. 

Name Length 

(km) 

Width 

(km) 

Height 

(km) 

(H/W) (L/W) Volume 

(km3) 

Flatness Slope (°) Lithology Location 

Gorongosa 30 19 1.046 0.06 1.58 1891.02 0.52 12.12 Ns/S/Qs Mozambique 

Salambidwe 10.08 7.31 0.318 0.04 1.38 97.91 0.46 10.11 G/S Mozambique 

Morrumbala 16.5 9.2 0.795 0.09 1.79 504.24 0.46 10.63  G/S Mozambique 

Muljane 30 16.5 1.258 0.08 1.82 2601.88 0.56 12.31 G/S Malawi 

Zomba 22 13 0.859 0.07 1.69 1026.5 0.55 12.05 G/S Malawi 

Junguni 4.6 4.4 0.12 0.03 1.05 10.15 0.78 14.73 Ns Malawi 

Mongolowe 13.39 8.47 0.429 0.05 1.58 203.29 0.63 10.55 NS Malawi 

Chaone 11.63 9.62 0.448 0.05 1.21 209.43 0.62 11.9 Ns Malawi 

Chikala 9.17 5.55 0.523 0.09 1.64 111.22 0.38 15.78 Ns Malawi 

Nuanetsi 52.96 38.1 0.158 0.01 1.39 1328.94 0.29 3.25 G/S Zimbabwe 

Marungudzi 12.47 8.33 0.1 0.01 1.50 31.25 0.39 11.4 G/S Zimbabwe 

SE Mound (3) 29.7 17 1.12 0.07 1.75 2362.79 0.86 11.3 ? Natal Valley 

Mid Mound (1) 25.4 16 1.272 0.08 1.59 1079.97 0.79 7.3 ? Natal Valley 

SW Mound (2) 31 18 1.22 0.07 1.72 2844.43 0.62 8.5 ? Natal Valley 

Sedom 11 1.25 5 4.00 8.80 68 0.15 7.02 Salt Dead Sea 

Lisan diapir 13 10 6 0.60 1.30 780 ? ? Salt Dead Sea 

SeamountTB 15 13 2.24 0.17 1.15 145.6 0.06 16.75 ? Transkei Basin 

SeamountsIOB 16.21 12.59 1.33 0.24 1.29 54.3 0.16 13.25 ? Indian Ocean 

Giant contourite 200 45 0.9 0.02 4.44 3870 0.08 1.3 Sediment Argentine Basin 
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Fig. 3.11. Plots of selected morphological parameters associated with mounded features.   a) The mounds (solid 

black circles), generally plot away from traditional seamounts (open and crossed circles), while terrestrial 

alkaline complexes of varied lithologies (Nepheline syenites, open square; Granite/Syenite, open diamond, and 

Nepheline syenite, Syenite and Quartz syenite, crossed square) show a scattered distribution between the 

seamount morphologies. b) Nepheline syenites (open square), Granite/Syenite (open diamond) and Nepheline 

syenite, Syenite and Quartz syenite (crossed square) show strong morphological similarities with the Natal 

Valley mounds (solid black circles). Salt related features (cross), as well as giant mounded drifts (solid black 

square) do not exhibit comparable morphological characteristics. 
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3.4. Discussion 

3.4.1 Bathymetry 

These mound features create oval-like (plan view), positive dome-shaped (cross-

section) features on the seafloor of the Natal Valley.  These features are distinct from the 

typical bathymetry of the Natal Valley, which includes irregular rugged and smooth seafloor 

(Fig. 3.7).  The mounds rise over 400 m above the surrounding seafloor sediments and similar 

features are not evident elsewhere in the Natal Valley.  The three mounds have off-centre 

high points; the gradient from these high points is gentle (2.3° average), until an abrupt 

change is noted at the mound flanks (9° average for the three mounds).  The rugged seafloor, 

typically associated with oceanic crust outcrop (Fig. 3.5), exhibits an average gradient of 

13.15° (mounds average 7.2°, from crown to base), steeper on the upper portion of the feature 

with the gradient lessening toward the base, in contrast to the mounds for which the inverse is 

true.  By comparison, the smooth seafloor, a product of depositional / erosional processes on 

the basin floor (Damuth, 1980), generally deepens toward the south with an average gradient 

of 0.2° (Fig. 3.6).  It is clear that these mounds represent anomalous bathymetric features, 

dissimilar in character from adjacent bathymetry. 

This dissimilarity is highlighted by the distribution of areas of seafloor affected by 

significant changes in slope (Fig. 3.6).  In plan-view, rugged seafloor displays grouped 

circular patterns of steepening slope amidst low gradient seafloor of fairly uniform slope.  

Whilst little distinction can be made between the smooth seafloor and crown of the mounds, 

the mound flanks are notably different.  The flanks are seen as bands of steepened bathymetry 

between the smooth seafloor and mound crowns.  Similarities between the smooth seafloor 

and mound crowns can be described by sediment draping during deposition, and reworking 

by currents (e.g., NADW), whereas the flanks (which provide a significant change in gradient 

and substrate) are prone to current scouring and moat development. 

3.4.2 High frequency seismic character 

With respect to echo character, there is a marked difference between typical rugged 

seafloor of the Natal Valley and the mounds (Figs. 3.6 – 3.8).  The rugged features exhibit 

large, individual to overlapping, irregular hyperbolae with varied vertex elevations about the 

seafloor.  Such a strongly reflective echo character is characteristic of basement highs or 

outcrop (Damuth, 1980; Lee et al., 2002).  On either side of the rugged basement outcrop, 
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like the mounds, smooth seafloor occurs (Figs. 3.9, profile e – f, and 3.10).  Semi-prolonged 

echoes, with continuous to discontinuous sub-parallel sub-bottom reflectors characterise this 

smooth seafloor.  Such echo character is common to deep seafloor globally; the product of 

depositional/erosional processes on the basin floor (cf. Damuth, 1980). 

In contrast to the smooth and rugged seafloor, the mounds show prolonged, semi-

prolonged and continuous isolated echoes, with lesser discontinuous, sub-parallel and chaotic 

echoes.  Broad hyperbolic (Fig. 3.8, profile b – b’) and high angle (Fig. 3.9, profile e – e’) 

echoes are associated with hard ridges (Fig. 3.4), rather than irregular rugged bathymetry 

(Fig. 3.6).  The regularly overlapping hyperbolae lie below the seafloor, with little variation 

in depth.  As such; these echoes are distinct from those associated with the rugged basement 

outcrop discussed above. 

Of particular interest are the continuous isolated echoes, the lowermost of which 

drape the pre-existing bathymetry of the mound while the upper (shallower) reflectors 

encompass packages of homogenous sediment.  This type of echo character is not observed in 

areas of rugged seafloor associated with typical basement highs (small seamounts) in the 

Natal Valley.  Furthermore it is atypical of seafloor-penetrating salt diapirs as described by 

Kelling et al. (1979); rather salt diapirs return isolated transparent hyperbolic echoes amidst 

continuous seafloor reflectors with multiple parallel sub-bottom reflectors.  In addition, 

continuous isolated echoes are not associated with areas of smooth seafloor. 

With respect to morphological and seismic character, these mounds are distinct from 

the surrounding seafloor.  It is highly unlikely, then, that they were produced by the same 

processes responsible for the development of either smooth or rugged seafloor types. 

3.4.3 Mound origins 

There are three plausible options that could account for the presence of these mounds 

within the Natal Valley.  These formative processes and factors are discussed below, while 

the corresponding morphological characteristics are shown in Table 3.1. 

3.4.3.1 Salt 

Salt, as described by Hudec and Jackson (2007), is often associated with deformation 

when it is present in significant volumes within the stratigraphy.  Salt is a common 

stratigraphic constituent of passive margins, deposited both during and following continental 
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rifting (Brun and Fort, 2011).  Inherently weak, salt is relatively easily mobilised in 

accordance with regional tectonic and/or gravity driven regimes (Hudec and Jackson, 2007; 

Brun and Fort, 2011). 

Along the passive west coast of Africa, salt tectonics have played a role in the 

development of the contemporary bathymetry (Hudec and Jackson, 2007; Davison, 2005; 

Davison and Dailly, 2010; Liu and Li, 2011; Gee and Gawthorpe, 2006).  Diapiric features 

ranging from round to elongate in plan are well documented (cf. Hudec, 2007).  The 

geometry of salt diapirs can, most simply, be described by three end-member forms; upward-

narrowing, columnar, and upward-widening (Koyi, 1997).  Each end-member is associated 

with particular sedimentary and tectonic settings (cf. Koyi, 1997).  Most favourable in this 

instance would be the columnar end-member, as this is most likely to produce circular 

mounds or oval mounds on the seafloor.  The shortcomings of this hypothesis are several-

fold.  Firstly, the morphological character of the Natal Valley mounds is at odds with that 

expected of salt diapirs.  Surface penetrating salt diapirs are not known to reach the size of 

the mounds described in the Natal Valley from multibeam bathymetry data.  Additionally, the 

echo character of the mounds is distinct from the echo character associated with salt diaper 

related structures (cf. Kelling et al., 1979).  Furthermore, there is insufficient salt to produce 

significant diapirs.  The basin, as inspected from the onshore portions where boreholes 

intersect both the rift and drift phase of margin development, is devoid of evaporite deposits 

(cf. Shone, 2006).  As such these features appear unrelated to salt tectonics by virtue of an 

absence of salt and will thus not be discussed further.  It is, however, incorporated within the 

morphological plots provided in figure 3.11 for simple comparison. 

3.4.3.2 Bottom water circulation 

The second option is that these anomalous mounds are the result of current activity.  

Bottom current activity in the basins off the southeast coast of South Africa has been shown 

to have a significant effect on sedimentation in both the Natal Valley (Chapter 4), and 

neighbouring Transkei Basin (Schlüter, 2007; Schlüter, 2008).  Bedforms produced by 

bottom water currents may cover extensive (>1000 km2) tracts of seafloor.  However, despite 

the impressive wavelengths associated with these features (>10 km), the amplitude is 

typically on a scale of tens of meters (Wynn and Masson, 2008) and clearly does not 

approach the scale of the mounds discussed here.  Giant contourite drifts, as described by 

Hernández-Molina et al. (2010) (ca. 40 – 50 km wide and 250 – 300 km long), by far exceed 
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the horizontal scale of the Natal Valley mounds, in addition to other contrasting 

morphological characteristics (Table 3.1).  Additionally, such bedforms are not typified by 

abrupt scarps or moats, features characteristic of the anomalous mounds.  Consequently, they 

are not comparable to these mounds found in the Natal Valley and current activity may be 

regarded as an unlikely origin for the Natal Valley mounds. 

3.4.3.3 Submarine igneous activity 

Submarine igneous activity is the third option.  Dingle et al. (1978) tentatively alluded 

to this as a possible cause for the mounds (described by these authors as basement highs) in 

the Natal Valley, but without more detailed bathymetric imagery this has not been possible to 

confirm nor refute.  On the basis of the size and position of these mounds, igneous activity 

appears to be a plausible factor in their genesis. 

Leinweber and Jokat (2011a) identified an extinct spreading centre at 30°S, extending 

eastward from ~34°E to ~35° 30’ E.  The southeastern mound coincides exactly with this 

extinct spreading centre (Fig. 3.1).  The northern mound (Fig. 3.1) is located in the vicinity of 

the northernmost magnetic lineaments associated with an early spreading centre identified by 

Leinweber and Jokat (2011a).  Furthermore, the mounds lie in the north/south (30° E – 40° E) 

corridor of igneous activity associated with the southern portion of the EARS’s western 

branch, as well as Karoo age alkaline igneous activity (Fig. 3.12). 

3.4.4 Seamount geomorphology 

In terms of their size and shape (bearing in mind sediment accumulation in the Natal 

Valley), the Natal Valley mounds bear a striking resemblance to several igneous complexes 

of south-east Africa (Fig. 3.13).  These terrestrial features relate to three distinct periods; 

those of Jurassic age are associated with Karoo igneous activity, the late Jurassic to early 

Cretaceous are associated with the breakup of Gondwana, while the Tertiary features are 

related to the southward propagation of the EARS.  The H/W ratio of features has been used 

as a means of morphological classification that is suggestive of formative processes (Smith, 

1988; Mukhopadhyay and Khadge, 1990; Mukhopadhyay and Batiza, 1994; Kodagali, 1989; 

Das et al., 2007).  In comparison, the L/W ratio is useful in relating the plan-view shape of 

features (from circular to oblate).  Both the H/W and L/W ratios, along with flatness and 

slope are useful morphological measures when comparing various features of differing 

origins.  When compared in terms of slope angle vs. flatness, and height to width (H/W) vs 
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length to width (L/W), the mounds of the Natal Valley are well placed within the spread of 

possible morphological character associated with other similar features from the African 

continent (Fig. 3.11).  Included in figure 3.11 are examples of salt diapirs, giant contourite 

mounds, and other seamounts for comparison.  Seamounts from the central Indian Ocean 

Basin (seamountsIOB hereafter), described by Das et al. (2007) and plotted as an average (in 

terms of measured morphological parameters) for all large single peaked seamounts, plot 

away from the Natal Valley mounds illustrating differences  in the morphological character 

between these features.  A lone (the only one for which the bathymetry is known), single 

peaked, seamount (seamountTB hereafter) from the Transkei Basin also plots away from the 

Natal Valley mounds, with morphological character more akin to the seamounts of Das et al. 

(2007).  These plots illustrate the similarities in morphological character between these types 

of seamounts, and differences when compared to the Natal Valley mounds.  

The Natal Valley mounds have H/W ratios of <0.08, a class defined as low by Das et 

al. (2007).  This morphological class is said to be associated with low flatness ratios (<0.12) 

and low slope angles (<10°), suggestive of a point source of magma, that flows along the 

slope of the seamount.  In contrast to these findings, the Natal Valley mounds exhibit high 

averaged flatness ratios (0.74), and average slopes of 9.03° (local maximum slopes reach up 

to 44°).  It is clear that the Natal Valley mounds are morphologically distinct from those 

observed by Das et al. (2007), based on these morphologic parameters.  The lone 

seamountTB from the Transkei Basin has a flatness of 0.06, slope angle of 16.75°, and 

intermediate H/W ratio (0.17).  As the H/W ratio is indicative of the mode of origin of 

seamounts (Smith, 1988; Mukhopadhyay and Khadge, 1990; Mukhopadhyay and Batiza, 

1994; Kodagali, 1989; Das et al., 2007), it appears that the origins of the Natal Valley 

mounds differ from those of the Central Indian Ocean Basin seamounts, as well as the lone 

seamount from the Transkei Basin.   

Comparison of volume to L/W reveals a similar trend (Table 3.1); seamounts in 

general differ from the Natal Valley mounds, whereas terrestrial alkaline features are more 

comparable to the Natal Valley mounds.  Differences in morphological character between 

conventional seamounts and the Natal Valley mounds are most evident when comparing 

flatness and slope angle, with alkaline complexes grouped toward the Natal Valley mounds, 

while the seamounts occupy a zone of inverse slope/flatness character (Fig. 3.11a).  This 

trend is more evident in the second plot where the total morphology (X, Y, and Z axes) of the 

features is compared (Fig. 3.11b).  Here the Natal Valley mounds and alkaline complexes are 
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tightly grouped, whereas the traditional seamounts occupy a slightly different zone in the 

plot.  Again, this illustrates the variation in morphological character between the Natal Valley 

mounds and other seamounts. 

3.4.4.1 Alkaline igneous activity 

A great deal of the igneous activity in this area is associated with the southern portion 

of the western branch of the EARS (southern Malawi Rift) (Fig. 3.12), which lies directly 

north of the Natal Valley.  Alkaline igneous activity is common to the EARS, and there are 

many documented cases with volcanic features ranging from metres to tens of kilometres in 

scale (Chorowicz, 2005; Mollel and Swisher, 2012).  The area around and south of Lake 

Malawi hosts numerous igneous features on a scale directly comparable to the mounds of the 

Natal Valley.  In particular, alkaline complexes bear the greatest resemblance in terms of 

geomorphology to the Natal Valley mounds (Fig. 3.13) with the long axis profiles of the 

features displaying a similar morphological character.  The greatest geomorphological 

departure is the seafloor mounds lack of erosional features that are evident in the subaerial 

setting (e.g. streams and gullies).  Of interest too is the possibility that a few smaller features 

could be combined to create one large feature.  The alkaline complexes Mongolowe, Chaone 

and Chikala (Fig. 3.13), if draped with sediment and not eroded (to the extent that terrestrial 

features are naturally) would provide another possible analogue to the mounds of the Natal 

Valley.  The average H/W ratio for these terrestrial mounds is 0.05, with a flatness of 0.51, 

and slope of 11.35°.  The Natal Valley mounds plot in similar morphological zones to these 

terrestrial features, suggesting similar formative processes and origins.  Such alkaline igneous 

activity in a marine setting is not uncommon and is usually associated with rift systems.  The 

Cameroon line, a series of Tertiary to Recent (generally alkaline volcanoes), is a good 

example of this (cf. Fitton and Dunlop, 1985; Barfod and Fitton, 2013). 
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Fig. 3.12. Circles (please refer to the key) represent significant cases of alkaline igneous activity of south-east 

Africa, black circles show the relative position of mounds in the Natal Valley. The present accepted extent of 

the EARS (black dot-dash lines) lies to the north of the southern coastal plains of Mozambique, an area that 

shows evidence of E – W extension (see location of normal faults).  Black lines (main figure and inset) show the 

location of the major rift features of the EARS.  The Natal Valley mounds are located directly south of this area, 

within the northern Natal Valley. The city of Durban is shown, for reference, by the black square. This map is 

modified after Chorowicz, 2005, and the Geological Map of Mozambique (Ministerio dos Recursos Minerais, 

1987). 
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Fig. 3. 13. Google Earth images of alkaline complexes compared to bathymetry data showing the mounds of the 

Natal Valley (left). The overall morphological similarity is striking, particularly if one removes the effects of 

weathering and erosion by fluvial and similar processes, from the subaerial alkaline complexes. Profiles across 

the long axis of the alkaline complexes, and Natal Valley mounds are shown on the left. The effect of subaerial 

weathering and erosion on the alkaline complexes is evident. The mounds have not been affected by subaerial 

processes, however, the Natal Valley basin has accumulated ca. 800 m of sediment since deposition commenced 

(a = Zomba; b = Mongolowe-Chaone-Chikala; c = Gorongosa; d = SW mound; e = N mound; f = SE mound). 

3.5 Timing and tectonic significance 

It may be hypothesised that these mounds may be related to the southward 

propagation of the East African Rift system during the Neogene period.  The EARS is 

typified by, among other characteristics, elongate zones of thinned continental crust.  

Weaknesses in the crustal structure are further exploited by rift propagation and associated 

volcanism (Chorowicz, 2005).  Corti (2009) and Stamps et al. (2008) outline the location of 

plate boundaries associated with the Victoria, Rovuma and Lwandle microplates which 

developed in response to regional extensional regimes; the Victoria and Rovuma microplates 

being continental expressions of deformation related to the EARS.  In contrast, the Lwandle 

microplate occurs in a marine setting between the Nubian and Somalian plates, thus 

representing rift associated deformation in that environment.  It is therefore apparent that the 
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region south of the EARS is active, and that the activity is associated with zones of 

predefined weakness (Morley, 1999).   

In addition, the lowlands of southern Mozambique mark the southern extension of the 

Pan-African Mozambique Belt, another zone of weakness.  This area lies to the east of the 

Kaapvaal craton, through which a rift is unlikely to propagate.  Additionally, along the 

eastern boundary of the Kaapvaal craton lies the Lebombo monocline of the Mesozoic Karoo 

Igneous Province, a further zone of weakness (Klausen, 2009).  The transitional crust along 

the western Natal Valley is located east and south of these zones of weakness, representing 

another zone marked by a weak crust with continental affinities (cf. Leinweber, and Jokat, 

2011a).  These factors combined present a considerable north-south zone of crust predisposed 

to rifting with a long history of activity. 

Igneous activity in the southern EARS began at ca. 10 Ma, sometime after the 

initiation of the EARS (30 Ma) and shows a definitive southward younging of the rift 

kinematics as the rift propagated in that direction (Chorowicz, 2005; Albaric et al., 2009).  

Recent seismic activity in the south confirms this (Fairhead and Stuart, 1982; Albaric et al., 

2009).  Although it has low overall seismicity, the Natal Valley does show some recent 

activity in the northern portion of the basin (Fig. 3.14).  To the north of the study area, 

seismic activity is focused along two main N – S orientated regions.  These regions mark the 

eastern, western and southeastern boundaries of the Rovuma Plate (Stamps et al., 2008), 

defined by the western and southeastern branches of the EARS (Chorowicz, 2005).  The 

intersection of these plate boundaries is proximal to the study area (Fig. 3.14).  The northern 

and southwestern mounds are located close (within 50 km) to epicentres ranging in 

magnitude from 3 – 4.6 ML, while elsewhere in the basin earthquakes of 6.8 ML have been 

recorded (International Seismological Centre, On-line Bulletin, 2011).   

This argument suggests that these mounds may mark a southerly extension of the 

EARS into the Natal Valley and show the progression of rifting into a deep (~ 2400 m) ocean 

system.  This appears to be contrary to the typical propagation of continental rift systems that 

open seawards and spread into the continental interior (Cratchley et al., 1984).  No other such 

examples have been documented for rift systems elsewhere.  Beyond this unique point, there 

are also implications for the oil and gas industry.  Exploration for petroleum could be affected 

by elevated thermal gradients in this region, raising temperatures through the oil/gas window. 
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Fig. 3.14. Earthquake epicenter data from the vicinity of the study area for the period 1904 – Present are plotted, 

along with the locations of the mounds (black circles). Interestingly, activity is focused along the boundaries of 

the Rovuma Plate. The study area is located at the southern edge of this plate, proximal to the intersection of the 

western and southeastern plate boundaries. Epicentre Data were sourced from the International Seismological 

Centre, On-line Bulletin (2011), and the Rovuma Plate boundaries after Stamps et al. (2008).
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Chapter 4 

The evolution of the Tugela Canyon and submarine fan: A complex interaction between 

margin erosion and bottom current sweeping, southwest Indian Ocean, South Africa. 

4.1. Introduction 

Submarine canyons are known the world over as significant morphological features 

that have modified continental margins over significant periods of time via erosion and 

ultimately the deposition of fan complexes.  Typically, submarine canyons are classified as 

either “shelf-breaching”, “shelf-indenting” or “slope-confined” based on their relationship 

with the continental shelf (Farre et al., 1983).  The mechanism responsible for the former is 

believed to be a combination of eustatic sea level change and submarine erosion, often 

associated with subaerial exposure of the shelf to fluvial processes.  Slope-confined and 

shelf-indenting categories are likely the result of retrogressive failure, fluid venting and tide-

driven bottom currents (Ridente et al., 2007).  Submarine canyons, particularly the shelf-

breaching class, represent preferential sediment transport pathways (via tectonosedimentary 

processes) to the World’s major sedimentary basins, albeit episodic in nature (Dingle and 

Robson, 1985; Ridente et al., 2007; Lastras et al., 2011). 

Very few examples of across slope transport pathways in deep water have been 

documented from the passive eastern margin of South Africa.  This is in comparison to the 

notable examples from North America (Farre et al., 1983; Pratson et al., 1994; Vachtman et 

al., 2012) and Europe (Lastras et al., 2011).  Deep water studies of the South African 

continental slope and rise have tended to focus on bottom water flows and sedimentation 

rather than the role submarine canyons play in the delivery of sediment to the deep oceans 

(cf. Dingle et al., 1978, 1987; Martin et al., 1982; Schlüter and Uenzelmann-Neben, 2007, 

2008). In the Natal Valley, offshore the east coast of South Africa, only a single very large 

submarine canyon (120 km long, 50 km offshore of the Thukela River) has been identified 

(Dingle et al., 1978; Goodlad, 1986).  This is an example of a large submarine canyon 

restricted to the mid-lower slope and attributed with the delivery of detrital material from the 

Thukela River (South Africa’s second largest river) to the deep ocean basin.  Despite having 

no contemporary connection to the upper slope and shelf, the canyon is deeply incised and 

the exact structure and origin of this canyon is unknown.  Similarly, the associated fan is 
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poorly understood; previous sampling efforts having been frustrated by the lack of 

geophysical data required to accurately delineate this feature (Türkay and, Pätzold, 2009). 

This study incorporates new multibeam bathymetric and sub-bottom data collected in 

the Natal Valley, located in the SWIO (Fig. 4.1) in an attempt to understand the evolution of 

the Tugela Canyon and fan system.  By examining the geomorphology of these features, 

insights into the sedimentary processes responsible for sculpting the southeast African margin 

can be made.  As such, this chapter aims to present a model for a submarine canyon-fan 

system with a sediment starved upper limit and a bottom current swept lower region. 

Fig. 4.1. GEBCO (30 s grid) DTM showing the study area (white box and inset) and adjacent southwest Indian 

Ocean bathymetry. Note the location of the Natal Valley, Mozambique Ridge and the Transkei Basin. The black 

arrow illustrates Agulhas Current flow, mid-gray arrows illustrate North Atlantic Deep Water flow, light grey 

arrows shows the passage of Antarctic Bottom Water (Flow paths compiled after: Toole and Warren, 1993; 

Schlüter and Uenzelmann-Neben, 2008; Bang and Pearce, 1976; Dingle et al., 1987). Ship tracks (white dashed 

lines) are overlain with white rectangles delineating portions of the Tugela Canyon discussed in this study, see 

main text for further detail. 

 

 

4.2 Results 
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The Tugela Canyon is intersected by five lines of multibeam bathymetry.  Partial 

coverage spanning depths of 644m (at the canyon head) to 2828 m (where the canyon ends in 

the Natal Valley) was achieved. 

Swath TC1 (TC being an identifier of the swath in question) displays an area of the 

canyon between 842 m and 990 m depth (Figs. 4.1, box b and 4.2).  In this section, the 

canyon incises 240 m into the adjacent slope and exhibits an average axial gradient of 3.7°. 

Closer to the canyon axis, wall gradients of 20° are apparent.  Slump scarps (five) and rills 

(six) occur and are interspersed with sporadic, high relief basement outcrop.  Slump scarps 

are more prevalent on the western margin, with rills and basement exposure confined to the 

eastern canyon margin.  A gradient knickpoint, associated with a 1.81° change in gradient, is 

noted above the confluence of the Tugela Canyon and a canyon tributary. 

Very high resolution 3.5 kHz records show a distinct contrast between the eastern and 

western margins of the canyon (Fig. 4.2, profile T – T1).  The latter is dominated by parallel 

reflectors, truncated by a well-defined scarp. At the foot of the scarp parallel reflectors are 

once again visible within a cohesive landslide block.  The eastern margin is defined by 

extensive hyperbolic returns draped with isolated thin packages of parallel reflectors.  These 

reconcile with the rugged portions of seafloor identified as basement outcrop. 

Approximately 15 km southeast of TC1 the Tugela Canyon (Figs. 4.1, box c and 4.3) 

now possesses a “U”-shaped cross-sectional profile.  The canyon has incised 492 m into the 

surrounding slope (gradient ca. 1°) and steepens to a maximum slope of 28°.  Mass wasting is 

evident on both sides of the canyon.  On either side of the canyon the seafloor is relatively 

smooth, although basement does crop out to the west.  Notably, axial incision is evident from 

a depth of 1490 m, a feature not observed inshore of this point. 

Southeast of TC2 (ca. 10.5 km), the overall morphology of the Tugela Canyon 

changes drastically although the bottom of the canyon remains “U”-shaped (TC3).  Terraces, 

separated by substantial escarpments, dominate the western margin (Figs. 4.1, box d and 4.4).  

The upper terrace is littered with blocky debris while the lower terraces appear free from 

debris.  The eastern margin is dominated by slide/slump scarps.  A canyon axis gradient of 

0.6° is observed here.  While the canyon walls reach a gradient of up to 30° locally, the 

escarpments within the terraces attain gradients of up to 39°.  Beyond the canyon walls, the 

seafloor is smooth with no signs of basement cropping out. 



Microtopography and Bottom Water Circulation of the Southwest Indian Ocean 

46 
 

 

Fig. 4.2. Swath TC1 from the innermost portion of the Tugela Canyon. Note apparent basement outcrop (Bs), 

and rill (Ri) development, associated with the eastern canyon wall. Slide/slump scarps (Sl) are evident either 

side of the canyon axis. The thalweg (Th) is well defined below the knickpoint (Kp) and confluence of the main 

canyon and canyon tributary (Cr). Profiles k-k’ and T1-T1’ illustrate the change in gradient across the 

knickpoint and 3.5 kHz echo trace across the Tugela Canyon respectively. 
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Fig. 4.3. A distinct change in canyon morphology is illustrated by Swath TC2. The profile is now decidedly 

“U”-shaped and shows evidence of minor axial incision (Ai) at 1490 m (profile a – a’). This is not apparent 

upslope at 1450 m (b – b’). Slump/slide scarps (Sl) are common to both canyon flanks. Note the difference in 

the character of the seafloor either side of the canyon. Smooth (Sm) seafloor on the west is markedly different 

from rough seafloor in the east, suggesting some basement (Bs) outcrop or subcrop. 

Fig. 4.4. Swath TC3 from the mid-slope. Note the development of terraces (Tr) along the western canyon wall 

(profile t – t’ ), Escarpments (Es), blocky debris (Bl) and slide/slump scarps (Sl) are also evident. Smooth 

seafloor (Sm) occurs on either side of the Tugela Canyon. A minor cut terrace denotes flow bias toward the 

western side of the main canyon floor, associated erosion and incision (profile c – c’). The 3D inset illustrates 

the terraced nature of this portion of the canyon. 

Directly south of swath TC3 (ca. 4 km), swath TC4 (Fig. 4.1, box e) reveals a vastly 

different morphology from the upper reaches of the Tugela Canyon.  Despite still possessing 

a “U” shape with terraces (Fig. 4.5a), the lowest terrace now supports an inner branch of the 

canyon which enters the main canyon floor at 32°40’E/29°55’S (Fig. 4.5b).  Four smaller 
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channels feed into the inner branch near the base of the lowest escarpment. Interestingly, two 

channels are evident in the main canyon floor, one on the eastern side directly related to the 

upper reaches of the canyon and one on the western side associated with the inner branch 

(Fig. 4.5, profile e – e’).  The two are initially separated by a longitudinally orientated mound 

of material that elevates the central portion of the canyon 40 m above the canyon floor and 

extends for at least 4 km, narrowing from 750 m to 350 m wide downstream (at the limit of 

data coverage). 

3.5 kHz echosounder traces over the blocky deposits adjacent to the inner gorge area 

reveal significant hyperbolic echoes.  The central portion of the line exhibits a package 

characterised by chaotic reflectors, while further east discontinuous parallel reflectors are 

evident (Fig. 4.5, profile d – d’). 

Terraces are no longer evident in swath TC5 (21 km southeast of TC4) (Figs. 4.1, box 

f and 4.6). Here the Tugela Canyon reaches its maximum degree of incision (1000 m) into the 

surrounding slope.  Two minor hanging branches (cf. Lastras et al., 2011) enter the canyon. 

Cut-terraces are a feature of the main canyon floor showing at least five periods of axial 

incision (Fig. 4.6, profile g – g’).  
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Fig. 4.5. 3.5 kHz seismic profile and bathymetry of Swath TC4 (a). The canyon’s inner branch (dashed box in 

(a)) is shown from a 3D perspective in the inset (b). Echo character, associated with mass-wasting debris (D) is 

illustrated in profile d – d’. Profile f – f’ is orientated north-south across the inner branch. The location of the 

main canyon floor relative to the inner branch canyon can be seen in profile e – e’. 

The Tugela Canyon widens into the abyssal Natal Valley, where a crude sub-

horizontal (0.12°) terrace extends 100 km to the south west (Fig. 4.1, box g and 4.7).  The 

echo character of the 3.5 kHz record is dominated by regular overlapping hyperbolae with 

varied vertex elevations extending ca. 40 km to the south west (Fig. 4.7b).  This irregular 

seafloor extends distally into smooth seafloor.  Another package of reflectors is apparent 

underlying the smooth seafloor.  These high amplitude parallel reflectors appear to interfinger 
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with the adjacent hyperbolae-dominated seismic unit (Fig. 4.7a).  No distributary channels, 

lobes or levees are evident in either the bathymetry or 3.5 kHz record. 

Fig. 4.6. Bathymetry of Swath TC5. Cut-terraces are illustrated by profile g – g’. The 3D perspectives illustrate 

hanging branches (Hb) and blocky debris (Bl) along the canyon flanks. 

 

 

 



Microtopography and Bottom Water Circulation of the Southwest Indian Ocean 

51 
 

[Previous page] Fig. 4.7. Multibeam bathymetry and 3.5 kHz profile from the Tugela Canyon fan region. Inset 

(a) shows the distal transition from type IIIC echoes (cf. Damuth and Hayes, 1977) to IB echoes further south. 

Inset (b) illustrates the overlapping hyperbolae of IIIC echoes. A crude terrace is dominated by IIIC echoes. The 

character of the seafloor noted in the 3.5 kHz record is confirmed in the bathymetry, rough seafloor (Ro) 

changes abruptly to smooth seafloor (Sm) as it extends southwest into the deep Natal Valley. 

The deep penetration multichannel seismics from the mid slope reveal several phases 

of canyon incision and fill that underlie the head of the Tugela Canyon (Figs. 4.1, box a and 

4.8).  These occur as a series of high amplitude reflectors that incise into the underlying 

stratigraphy and are truncated by successively younger reflectors, the overall incision pattern 

of which is nested within the deepest incised reflector.  On the basis of these discordant 

relationships, three phases of canyon incision and fill can be recognised: the youngest canyon 

fill, is characterised by an onlapping drape relationship with the palaeo-canyon walls.  The 

contemporary Tugela Canyon head is located in the topographic low preserved within these 

series of drapes. 

Table 4.1 shows down-canyon characteristics associated with canyon width, relief, 

margin and gradient for the areas covered by multibeam bathymetry.  Canyon relief and 

width were noted at the up-canyon and down-canyon limits of data coverage in order to best 

describe the canyon long-profile.  Overall, the Tugela Canyon shows an increase in width and 

relief with increasing distance from the continental shelf, and increasing water depth.  The 

gradient of the canyon floor varies but, generally decreases with increasing distance from the 

continental shelf, and increasing water depth. 
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[Previous page] Fig. 4.8. Along strike multi-channel seismic record and interpretation from the mid-slope 

portion of the Tugela Canyon. Note the three stacked paleo-canyons, the youngest of which is dominated by an 

onlapping drape fill. Note the stacked nature of the canyons and the position of the contemporary Tugela 

Canyon within the low point of the drape succession. 

Table 4.1 Down-canyon comparison of relief, width and gradient. 

Swath TC1 TC2 TC3 TC4 TC5 

Width (km) 3.1 6.4 11.5 12.2 18.3 

Relief (m) 72 435 572 579 874 

Width (km) 6 6.8 13 13.8 19.6 

Relief (m) 260 458 599 615 1028 

Margins (km) Straight Straight, 

diverging 

Meandering, 

diverging 

Meandering, 

diverging 

Meandering, 

diverging 

Gradient (°) 3.7 0.3 0.6 0.6 0.6 
 

4.3 Discussion 

4.3.1 Erosional styles 

The canyon morphologies of the northern KwaZulu-Natal continental margin, (Green 

et al., 2007; Green and Uken, 2008; Green, 2011a), differ significantly from the expression of 

the Tugela Canyon.  Notably absent from the slope confined Tugela Canyon is the 

amphitheatre-shaped canyon head morphology, associated with upslope eroding retrogressive 

failure (cf. Farre et al., 1983).  Furthermore, the Tugela Canyon displays a marked increase in 

relief and width with increased distance from the continental shelf and water depth (Table 

4.1).  Gradient, although variable, shows a decreasing trend in angle with increasing distance 

from the shelf (concave upward profile) and water depth (Table 4.1).  This suggests that 

downslope erosive processes dominated the formation of this canyon (cf. Goff, 2001; 

Mitchell, 2004).  When compared to other slope canyon systems such as the submarine 

canyons of the American Atlantic (Vachtman et al., 2012) or Argentinian margins (Lastras et 

al., 2011), the Tugela Canyon is particularly isolated from other erosive features.  These other 

canyons show a significant number of tributary branches whereas no significant tributaries 

exist for the Tugela Canyon.  This character approaches the “Type Ia” (straight slope 

systems) morphological class of Vachtman et al. (2012) and linear canyon class of Mitchell 

(2005).  Such systems are associated with fluvial-like erosion dominated by bypassing of 

sedimentary flows, particularly during lowstand intervals.  The absence of mass wasting 

debris along the thalweg of the Tugela Canyon further reinforces the notion of downslope 

excavation as the principal factor in canyon formation (Vachtman et al., 2012). 
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Fig. 4.9. An evolutionary model for the Tugela Canyon and fan evolution. Note periods of uplift (a, c, e) set-

apart by infilling (b, d, f) of the upper canyon, stagnation of the mid to lower reaches during quiet phases, and 

interfingered fan/pelagic sediments in the deep Natal Valley. 

Axial incision (Fig. 4.3) noted at 1490 m further illustrates the significance of 

downslope erosion as a contributor to canyon formation.  Baztan et al. (2005) found axial 

incision in canyons of the Gulf of Lion to be associated with river connection during 

lowstands.  Hyperpycnal plumes generated by flooding rivers provide the necessary energy to 

develop axial incisions of considerable downslope length (>50 km) (Baztan et al., 2005), an 

attribute not associated with axial incision within the Tugela Canyon.  In this instance dilute 

turbidity currents (cf. Laberg et al., 2007; Jobe et al., 2011), rather than hyperpycnal plumes, 

are believed to be responsible for limited axial incision present in the Tugela Canyon.  Such 

turbidity currents can ignite from an over steepened muddy/silty upper slope (Pratson et al., 

1994; Mitchell, 2005).  It is highly unlikely that a river connection existed, certainly not at -

1490 m, furthermore incision is limited to less than 10 km alluding to short lived erosive 

events.  Axial incision was, however, sufficient to induce further instability resulting in mass 

wasting of the canyon flanks down slope.  Cut-terraces evident in the lower course (Fig. 4.6, 

profile g – g’) illustrate five lesser periods of vertical erosion, while two significant periods of 

incision are envisioned for the canyon system as a whole (discussed in Section 4.3.2).  
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Escarpments (Figs. 4.4 and 4.5), formed by the erosion of sedimentary strata as opposed to 

displacement via faulting, are confined to the western flank of the Tugela Canyon.  This is 

likely controlled by bed geometry, a topic discussed by McGregor (1981).  In this instance, 

SE dipping strata of the western flank are inherently unstable.  These strata dip in towards the 

void excavated by the Tugela Canyon, resulting in preferential erosion of these strata. 

Conversely, strata of the eastern flank are less susceptible to erosion and more stable, given 

that these strata dip into the eastern flank.  This accounts for the canyon wall asymmetry 

depicted in figures 4.4 and 4.5. Basement outcrop becomes less evident down canyon; 

certainly by swath TC3 no basement outcrop is apparent.  The prominent outcrop up canyon 

from this point suggests an increase in basement control, over canyon development, toward 

the continental shelf. 

4.3.2. Timing and mechanisms of canyon development 

The cross-cutting relationship between the Tugela Canyon and Cretaceous units (Fig. 

4.8) clearly shows that the formation of the Tugela Canyon post-dates the deposition of the 

upper Maastrichtian age basin fill (Goodlad, 1986).  The multi-channel seismic sections 

upslope of the modern canyon head show several phases of incision.  Here it is proposed that 

the earliest of these corresponds to a mid-Oligocene stage of hinterland uplift, the first to 

occur during the Neogene (Walford et al., 2005).  Uplift, combined with regressive 

conditions (Fig. 4.9a), resulted in considerable sediment shedding in the hinterland, and 

transport across the shelf.  Sediment was thus provided directly to the slope where 

downslope-eroding mass wasting processes associated with sediment loading and over-

steepening initiated the proto-Tugela Canyon (Figs. 4.9a and 4.10).  Subsequent transgression 

would subsequently reduce downslope eroding sediment flows to the canyon, resulting in a 

period of dormancy corresponding to the first stage of infilling (Fig. 4.9b). 

The Tugela Canyon was later reactivated during the subsequent early Miocene uplift (Fig. 

4.9c), as evidenced in the second canyon incision in the upslope seismic sections (Fig. 4.8) 

and an associated second phase of terracing in the lower canyon portions.  This is reconciled 

to the early hiatus documented in the shallow shelfal portions of the Tugela Cone and 

suggests a significant period of regression, sediment bypass and associated incision in the 

shelf (Green and Garlick, 2011).  This is likely to have translated downslope and thus 

substantially rejuvenated the Tugela Canyon.  This is linked to the generation of a modified 

“U” profile (Figs. 4.4 and 4.5) and the hanging branches depicted in figure 4.6. 
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Another period of quiescence followed this and was associated with infilling (Fig. 4. 

9d) prior to a third stage of late Pliocene uplift occurred on a scale greater than that of the 

Miocene phase (Fig. 4.9e) (Walford et al., 2005; Moore and Blenkinsop, 2006).  This resulted 

in canyon incision into both the previous palaeo-canyons, pronounced axial incision and 

additional terracing in the walls (Figs. 4.4 and 4.6). 

Fig. 4.10. Mid Cretaceous to Pliocene sea-level curve (a, modified after Dingle et al., 1983) compared to the 

global eustatic sea-level curve (b, modified after Miller et al., 2005). Grey arrows denote uplift episodes. Note 

the poorly constrained Tertiary sealevel curve. 

Comparable studies from the western South African margin indicate similar erosional 

periods.  A protracted early to mid-Oligocene hiatus is recognised by Wigley and Compton 

(2006) and is contemporaneous with a recognised global sea level lowstand of the mid 

Oligocene (Miller et al., 1998). It is likely that off-shelf shedding of sediment during 

regression to this lowstand (cf. Compton and Wiltshire, 2009) would have resulted in 

downslope erosion.  Overall, the most protracted amount of uplift occurred during the 

Pliocene (Partridge and Maud, 2000).  This is considered to have caused several slumps on 

the southern African margin (Dingle, 1980), initiated the head of the Cape Canyon on the 

western South African margin (Wigley and Compton, 2006) and caused several submarine 

canyons to form on the northern KwaZulu-Natal margin (Green, 2011a). 

4.3.3. Modern canyon and fan activity 

Given the age and the amount of sediment that was likely to have passed through the 

Tugela Canyon since its inception; the absence of a well-developed submarine fan prograding 

into the Natal Valley is surprising.  A situation similar to the Congo deep-sea fan would be 

expected (cf. Anka et al., 2009), however fan deposits directly offshore the Tugela river are 

completely absent (Türkay and Pätzold, 2009).  Instead a poorly developed fan extending 

from the sudden opening of the Tugela Canyon is present (Fig. 4.7).  Echosounder records 

show the fan as a crude terrace dominated by regular overlapping hyperbolae with varied 

vertex elevations extending ca.40 km to the south west (Fig. 4.7b).  These correspond to the 
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Type IIIC echo facies of Damuth and Hayes (1977).  Such echo character is associated with 

erosional/depositional bedforms, either the result of erosion in the bottom boundary layer 

(Flood, 1980) and syndeposition (Tucholke, 1979) related to bottom water circulation or 

gravity driven processes (Damuth, 1975) depending on the setting.  This irregular seafloor 

extends distally into smooth seafloor as the Natal Valley deepens toward the south (Fig. 4.7). 

Another package of reflectors is apparent underlying the smooth seafloor (Fig. 4.7a).  

These comprise distinct high amplitude parallel reflectors (echo facies IB of Damuth, 1975) 

that appear to interfinger with the adjacent hyperbolae-dominated seismic unit.  Such seismic 

facies have been recognised by Damuth (1975) and interpreted to be the proximal variant of 

turbidites on the abyssal rise, or the result of pelagic sedimentation. Such flat lying deposits 

(in this area the slope is sub-horizontal, averaging 0.12°) have been recognised by others as 

pelagic deposits and their flat parallel nature is indicative of bottom current winnowing and 

episodic seafloor smoothing in association with drift development (Schlüter and 

Uenzelmann-Neben, 2008).  Contrary to what one might expect, there are no surface 

expressions of distributary channels or levees etc.  The interfingering of hyperbolae-

dominated IIIC facies with parallel, flat-lying facies (IB) is likely the result of intermittent 

unconfined turbidite introduction to the area (Fig. 4.7a). 

This suggests that there is significant interaction between the two systems whereby 

sporadic and energetic turbidites overprint NADW deposition before being winnowed and 

redistributed into an echo facies 1B configuration.  No other features associated with deep-

sea fans, lobes, or distributaries are recognised in the Tugela Canyon fan region.  It should 

therefore be described as an atypical, sediment starved deep-sea fan that is strongly modified 

by the NADW.  Other examples of such fans are poorly described. Eschard (2001) maintains 

that such interactions between deep-sea fans and bottom water circulation (erosion and 

redistribution of sediment) are underrated. 

In the proximal staging grounds for downslope eroding flows, the overspilling of 

sediment from the shelf to the slope is limited by the Agulhas Current.  In these areas, the 

current re-organises sediment in a coast parallel manner and it only overspills the shelf break 

where major inflection points in the coast occur (Flemming, 1980).  Despite these being a 

possible source for turbidity currents (Boyd et al., 2008) the wholesale starvation of the shelf 

has occurred to the extent that the submarine canyons along the northern KZN coast have 

been quiescent since the late Pliocene (Green, 2011b).  Since then an overall period of 
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starvation has prevailed and has limited the primary canyon driving mechanism, namely 

upper slope sediment loading and resultant mass wasting.  During these times, pelagic 

sedimentation on the upper and mid-slope has been dominant (Fig. 4.9f). This is responsible 

for the development of the most recent onlapping drape fill in the upper canyon which has not 

fully filled the palaeo-canyon form (Fig. 4.8).  Further down canyon, erosion may still be 

occurring (as evidenced by some smaller cut terraces developed in the canyon walls) but is 

limited in comparison to that of the Neogene. 

During the current highstand where sediment delivery is commonly not as prominent 

as lowstand periods, even less sediment is released to the shelf.  This is further held up in the 

poleward moving sediment conveyor of the Agulhas Current thereby starving the upper slope 

region. The fan deposits that are preserved from periods of canyon activity are currently in 

the process of being reworked by the NADW, a scenario similarly encountered in the 

adjacent Transkei Basin (Schlüter and Uenzelmann-Neben, 2007, 2008). 
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Chapter 5 

A new pathway for deep water exchange between the Natal Valley and Mozambique Basin? 

5.1. Introduction 

The global transfer of heat and nutrients is driven by THC within the ocean basins.  

The THC system comprises a network of bottom, deep and surface currents that conserve 

mass and energy in the World’s oceans by the creation of a complex system of circulation 

cells.  The southwest Indian Ocean (SWIO) is a dynamic region of ocean exchange between 

the Indian, Atlantic and Southern Oceans representing a pivotal component of the THC 

system.  In general, both bottom and deep water circulation pathways around the globe and 

within the SWIO are well known and constrained.  The residence times of these deep and 

bottom waters have significant implications for long-term climate state as well as CO2 

sequestration (Martin, 1981a; 1981b; Ben-Averaham et al., 1994; Srinivasan et al., 2009).  As 

a result, the greater THC system has garnered increased attention over the past two decades, 

particularly in light of their potential roles driving both palaeo and future climate change 

(Martin 1981a; 1981b; Raymo et al., 1990; Winter and Martin, 1990; Raymo et al., 1997; 

Schmieder et al., 2000; Srinivasan et al., 2009; Gutjahr et al., 2010).  However, at a more 

localised scale, THC pathways are often poorly constrained.  Many factors, including the 

Earth’s rotation (Coriolis Effect), ocean basin macrotopography, ocean gateways, prevailing 

winds, and glacial/ inter-glacial cycles have a direct impact on THC circulation and transport 

volumes.  This research examines deep water bottom currents in the context of seafloor 

macrotopography and interprets these in light of several possible deep water circulation 

systems in the Natal Valley, SWIO.   

Since the initial research thrust in the Natal Valley (cf. Martin 1981a; 1981b; Dingle 

et al., 1978; Dingle et al., 1987, Winter and Martin, 1990), little additional research 

associated with the Natal Valley has been undertaken; this is especially true for the deep, 

northern portions of the Natal Valley.  Notable exceptions include studies on the interactions 

between bottom water currents (those deep currents in contact with the seafloor) and 

sediments from the Natal Valley (Niemi et al., 2000; Chapter 4), and submarine canyons of 

the upper slope (Green et al., 2007; Green and Uken, 2008; Green, 2011a). 
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This chapter presents a new, higher resolution dataset of the area, highlighting several 

key seafloor and subsurface features that reveal a potential new deep water pathway across 

the Mozambique Ridge (via the Ariel Graben) to the Mozambique Basin, as described by 

new multibeam bathymetry and high frequency seismic data from the Natal Valley, SWIO. 

The aim of this chapter is to reconcile this with the major THC systems in the area. 
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[Previous page] Fig. 5.1 The general bathymetry (The GEBCO_08 Grid, version 20091120) of the southwest 

Indian Ocean. Presently known THC pathways are shown; black arrow illustrates the Agulhas Current, red - the 

North Atlantic Deep Water, and grey - the Antarctic Bottom Water (after Bang and Pearce, 1976; Casal et al. 

2006; Dingle et al., 1987; Toole and Warren, 1993; Schlüter and Uenzelmann-Neben, 2008a; van Aken et al. 

2004). Eddies associated with the Mozambique and East Madagascar Currents are shown by dashed circular 

arrows (Quartly and Srokosz, 2004). The Tugela Cone (TC), Limpopo Cone (LC) and Central Terrace (CT) are 

located west of the study area (white box), which is enlarged to show the ship tracks. The Dana (DP) and 

Galathea Plateaus (GP) of the northern Mozambique Ridge are indicated by dashed circles. North of the Dana 

Plateau lies the Ariel Graben (AG), a west/east saddle across the Mozambique Ridge. The most prominent rivers 

flowing into this Natal Valley region are the Thukela River (TR) in South Africa, and the Limpopo River (LR) 

in Mozambique. The Naudé Ridge (NR) is a buried basement high. A more detailed overview of the study area 

is provided in figure 5.2.  

5.2. Results 

A wide, channel-like feature is evident in the multibeam bathymetric data, leading 

from the mid-Natal Valley across the Mozambique Ridge toward the Mozambique Basin 

(Fig. 5.2).  Confined to the north-west by the Central Terrace, and the south-east by the Dana 

Plateau (Mozambique Ridge), the channel is located in the bathymetric depression associated 

with the Ariel Graben (Fig. 5.2).  Rugged bathymetry is more common on the northern flanks 

of the Dana Plateau (i.e., southern flank of the Ariel Graben) than on the Central Terrace, 

where seafloor is smooth (Fig. 5.2).  This rugged bathymetry is confined to depths of 2000 – 

3000 m on the northern flank of the Dana Plateau where there is a significant amount of 

basement control on topography.  Evidence of this is manifest in the highly irregular, rugged 

bathymetry, and seismic character presented in figures 5.3 and 5.4.  Although the Ariel 

Graben has created an overall west to east orientated saddle, the actual depression follows a 

curved path (Fig. 5.2).  The degree of change in channel axis orientation increases more 

rapidly in the west in the vicinity of box c (Fig. 5.2). 

Boxes a and b (Fig. 5.2.) are enlarged in figures 5.3 and 5.4 respectively.  These 

figures illustrate in detail the bathymetry and shallow seismic character of this portion of the 

Mozambique Ridge.  The northern flanks of the channel return distinct bottom echoes, with 

several discontinuous sub-bottom echoes (profile A – A’ in Fig. 5.3, and profile B – B’ in 

Fig. 5.4).  The seafloor is smooth, with no apparent basement outcrop or subcrop visible 

within the limit of penetration (20 m) and coverage.  The gradient of the northern flank is 

variable, (0.3° – 2.1°, total slope average is 1°), typically increasing with depth (north/south 



Microtopography and Bottom Water Circulation of the Southwest Indian Ocean 

61 
 

toward the channel) to a maximum of 5.7° nearest the channel.  Steepest gradients (5° – 6°) 

are noted in the central region of the saddle across the Mozambique Ridge (Figs. 5.3 and 5.4). 

The channel floor ranges in width from 4385 m to 5100 m with a variable echo 

character.  In the western portions of the channel, hyperbolic reflectors are evident in the 5.5 

kHz profile (profile A –A’ in Fig. 5.3).  The hyperbolae are of a similar height above the 

seafloor, and vary from individual to overlapping in organisation.  Bathymetric data show 

this area to be rough/undulating.  Smooth seafloor in the bathymetry is associated with 

distinct seafloor returns and continuous and sub-parallel sub-bottom reflector packages 

(profile B – B’ in Fig. 5.4).  An elongate terrace, orientated parallel to the base of the 

southern flank, is evident in both the bathymetry and shallow seismic data suggesting some 

degree of lateral and vertical erosion (profile B – B’ in Fig. 5.4).  

The southern flanks of the channel are distinct from the northern flanks in both 

bathymetric and seismic character.  Large, irregular, hyperbolae, ranging in size, amplitude 

and spacing (over-lapping to 1 km) dominate the seismic profiles (Figs. 5.3 and 5.4).  Intense 

overlapping is focused on the more rugged areas, while individual hyperbolae are observed 

where the bathymetry is less complex.  Rugged bathymetry associated with such echoes, 

exhibit highly variable gradients (0.3° – 19.6°).  Overall, the channel floor is relatively flat, 

while the profile of the channel is “U”-shaped.  Scouring has modified this “U” shape in 

certain areas of the lower channel flanks suggesting sustained reworking and removal of 

sediment (Fig. 5.3).  

There is a notable eastward change in character of the seafloor on the northern flanks 

of the channel (Fig. 5.5).  At depths between 2100 m and 3000 m, the seafloor displays an 

undulating morphology (Fig. 5.5 and profile C – C’ in Fig. 5.6).  These undulations are 

straight crested and parallel/sub-parallel to the local isobaths, with crest long axes orientated 

west to east.  Spacing between the crests is variable.  The middle zone (2330 – 2677 m) is 

typified by undulations with 600 – 900 m wavelengths, whereas the upper and lower zones 

have distances of 1000 – 1200 m between crests.  Cross- sectional symmetry of these features 

varies from symmetrical to asymmetrical, with broad crests and narrow troughs (Fig. 5.5).  

When asymmetrical, the downslope (south-facing) limb is longer (511.76 m average) than the 

up-slope (north-facing) limb (323.53 m average) (Table 5.1).  The lower limbs are also 

steeper than the upper limbs; calculated averages being 3.80° and 1.55°, respectively (Table 

5.1).  Overall the total slope on which the undulations are found is south-facing with a 
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gradient of 1.54°, however, the area affected by undulations is slightly steeper with an 

average slope of 1.75°.  Beyond 3000 m (the lower limit of the undulations), the gradient 

increases to 4.71° at the flank/channel floor transition.  North of the undulations (above 2100 

m) the seafloor becomes smooth once more, reflecting similar characteristics to that of the 

western portion of the study area (Fig. 5.5 and profile D – D’ in Fig. 5.6).  The total slope 

average in this eastern region is 0.54°, thus steeper than to the west.  The channel floor, no 

longer flat, is ca. 440 m wide at 3160 m depth.  The profile now has a more “V”-shaped 

section. 

The southern flank of the channel is more rugged than the northern flank (Fig. 5.5).  

Hyperbolic echoes (from the 3.5 kHz echo trace) are associated with rugged bathymetry 

(profile E – E’ in Fig. 5.6).  Distinct bottom echoes, with several sub-parallel sub-bottom 

reflector packages are noted in areas of flat lying bathymetry (profile E – E’ in Fig. 5.6).  

These packages onlap the rugged subcrop, showing varied package thickness and amplitude.  

The lowermost packages comprise low amplitude, transparent packages that thicken from 

south to north, while toward the seafloor surface, high amplitude packages of uniform 

thickness are evident.  The gradient of the southern flank is highly variable, reaching a 

maximum of 10.5° in the rugged areas, whereas areas of subdued bathymetry exhibit low 

gradients (0.18°).  The total gradient is 1.34° but is a poor indicator of the seafloor character 

due to marked variability in the gradient of the area (Fig. 5.7).  The variation of the rugged 

southern flank is far greater and widespread than that of the north (Fig. 5.7).  Only in the 

eastern portions of the study area, on the northern flank, does the gradient begin to vary as the 

undulation field is encountered (Fig. 5.7). 
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Fig. 5.2. An overview of the northern Natal Valley and northern Mozambique Ridge. Note the 2000 m isobaths 

to the NW (Central Terrace) and SE (Dana Plateau), as well as the saddle created by the Ariel Graben. Boxes a, 

b, and c show areas enlarged in figures 5.3, 5.4, 5.5 and 5.6, and are referred to in text.   
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Fig. 5.3. Enlarged bathymetry of box a in figure 5.2. The contrast between the smooth seafloor (Sm) of the 

northern flank and the rugged seafloor (Bs), reflecting some basement control, of the southern flank is evident in 

the multibeam bathymetry (bottom) and high frequency seismic record (profile A – A’, top). Note the apparent 

scouring (Sc) around basement outcrop in the saddle floor. 

Fig. 5.4. Enlarged bathymetry of box b in figure 5.2. The contrast between the smooth seafloor (Sm) of the 

northern flank and the rugged seafloor (Bs) of the southern flank of the Ariel Graben is clear in the multibeam 

bathymetry (bottom) and high frequency seismic record (profile B – B’, top). Note the change in character of the 

floor of the saddle. A terrace (Tr) is apparent at the base of the southern flank. 
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Table 5.1. Length and gradient characteristics of undulations. 

ID Upslope limb (m) Downslope limb (m) Upslope limb (°) Downslope limb (°) 

1 550 650 1.66 -3.88 

2 500 550 0.86 -5.64 

3 400 600 2.81 -3.17 

4 500 700 0.54 -3.15 

5 400 600 2.11 -4.66 

6 400 600 1.71 -2.80 

7 400 450 0.65 -4.25 

8 200 450 0.86 -5.09 

9 200 400 1.18 -4.62 

10 300 300 1.79 -3.28 

11 300 400 0.41 -3.98 

12 150 350 4.21 -5.59 

13 200 350 0.26 -2.87 

14 200 350 0.16 -3.15 

15 200 800 3.04 -3.48 

16 200 400 2.26 -5.46 

17 200 750 1.78 -5.84 

Average 323.53 511.76 1.55 -3.80 
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Fig. 5.5. The eastern region of the Ariel Graben revealed in the multibeam data (See figure 5.2, Box c for 

location). Note elements of basement control (Bs), smooth seafloor (Sm), and undulation field (Sw). The 

channel floor (Ch) is now narrower than in the west toward the Natal Valley. Profiles C – C’, D – D’, and E – E’ 

shown in figure 5.6. 
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Fig. 5.6. Seismic character of profiles C – C’, D – D’, and E – E’ (see figure 2, Box c, and figure 5 for location).  

Undulating seafloor is associated with hyperbolic echoes with indistinct sub-bottom returns. This is in contrast 

to the discontinuous sub-parallel reflectors of profile D – D’, which is associated with smooth seafloor.  On the 

southern flank of the Ariel Graben, hyperbolic echoes are similarly associated with rugged seafloor (Bs in figure 

5.5), while horizontal, discontinuous sub-parallel echoes are evident in troughs adjacent to the rugged seafloor. 
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[Previous page] Fig. 5.7. 3D perspective view slope map for the Ariel Graben looking south to north from the 

Dana plateau across the Ariel Graben. The strips of data reflect the slope of the seafloor as calculated from the 

bathymetry data from the same area. Note the difference in slope and relief between the northern and southern 

flanks of the Ariel Graben. The northern flank is relatively uniform, the exception being the undulations to the 

east which exhibit regular variance in gradient over short distances. In contrast, the southern flank exhibits 

varied gradients throughout the study area reflecting an irregular seafloor relief. The change in the orientation of 

the Ariel Graben (from west to east) is shown by the black arrow. 

5.3. Discussion 

5.3.1 Echo character contrasts 

There is distinct contrast in the echo character of the Ariel Graben’s northern and 

southern flanks.  The northern flank (western area) shows distinct, high amplitude, bottom 

echoes with several discontinuous parallel/sub-parallel sub-bottom reflectors.  This echo 

character is synonymous with the development of crude plastered drifts, as described from 

other regions (cf. Damuth, 1975; Damuth, 1980; Jacobi, 1982; Faugères et al., 1999; Stow 

and Mayall, 2000; Masson et al., 2002; Maldonado et al., 2003; Stow et al., 2008), and the 

same deposit is envisioned in this study (Figs. 5.3, 5.4 and 5.6).  This is further demonstrated 

by the areas of smooth seafloor (Sm in figures 5.3, 5.4 and 5.5) where current-plastering has 

created a uniform surface relief.  This seafloor character has similar associations to plastered 

drifts, discussed from other regions by multiple authors (Damuth, 1975; Damuth, 1980; 

Jacobi, 1982; Faugères et al., 1999; Stow and Mayall, 2000; Masson et al., 2002; Maldonado 

et al., 2003; Stow et al., 2008).  Along the northern flanks of the eastern Ariel Graben, 

seafloor undulations (Fig. 5.5) are associated with large, individual hyperbolic echoes (Fig. 

5.6) that approach the IIB-2 character of Damuth’s (1975) scheme.  The origin of this echo 

character is said to be varied; bottom current and gravity-driven processes are postulated as 

possible formative processes, with setting being an important consideration.  In the case 

presented by Damuth (1975) IIB-2 echoes are located adjacent to levees and distributary 

channels of the Amazon cone.  However, more consolidated gravity controlled flows and 

mass movements may also result in type IIB-2 echoes being recorded from the respective 

deposits. 

The floor of the Ariel Graben (Ch in figures 5.3, 5.4, and 5.5) has a varied echo 

character.  In the west it is rough, with small overlapping hyperbolae (IIIC of Damuth, 1975) 

showing evidence of erosional/depositional bedforms.  Such bedforms from other basins have 

been ascribed to erosion in the bottom boundary layer (Flood, 1980) and syndeposition 
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(Tucholke, 1979) related to bottom water circulation or gravity driven processes (Damuth, 

1975) depending on the setting.   

The southern flank of the Ariel Graben is rugged, dominated by large hyperbolae.  

Such a strongly reflective, hyperbolic echo character typifies basement highs or outcrop 

(Damuth and Hayes, 1977; Damuth, 1980; Lee et al., 2002).  In this case, the lower northern 

flank of the Dana Plateau is cropping out due to an overall lack of sediment deposition on the 

southern flank.  As shown in figure 5.6 (profile E – E’), ponds of sediment (discontinuous 

sub-parallel reflectors) are present in troughs and depressions of the southern flank.  This 

suggests a sediment-starved environment on the southern flank of the Ariel Graben, and 

implies differential deposition within the study area 

Fig. 5.8. Schematic of the study area (refer to figures 5.1 and 5.2) illustrating the proposed NADW pathway 

through the Ariel Graben. Once the water mass has entered the Ariel Graben its passage is determined by the 

axis of the graben. Proximally northeast orientated, the graben axis changes to east-southeast towards the distal 

areas in the east. 

5.3.2 Interpretation of bathymetric and 3.5 kHz data 

The development of a crude plastered sediment drift in the west (on the northern 

flank) gives way to soft sediment deformation fields in the east of the northern flank of the 

Ariel Graben.  This demonstrates changes in the depositional/erosional setting from west to 

east through the Ariel Graben along the northern flank.  The plastered drifts are typical of 

depositional features associated with bottom water current circulation (Stow et al., 2008), yet 

the transition to the field of undulations is atypical and requires that others factors be 

involved in their formation. 



Microtopography and Bottom Water Circulation of the Southwest Indian Ocean 

70 
 

The presence of these undulations could be explained by several processes including 

contour current/seafloor interactions, turbidity current activity and mass-wasting/soft 

sediment deformation.  Although the undulation dimensions are similar to features created by 

turbidity currents (see Table 5.2 for a comparison).  In the setting presented here, the 

formative process associated with IIB-2 echoes is potentially related to deposition by 

turbidity currents.  However, the undulation field is not associated with any deep sea 

canyon/channel/fan system.  The nearest continental shelf that could shed sediment directly 

to the Ariel Graben is 380 km to the west.  Apart from being sediment starved (Green, 2009; 

Flemming, 1980), this margin is separated from the Ariel Graben by the Central Terrace, 

disrupting the pathway of sediment by turbidity current.  The Mozambique Ridge is 

obviously a feature which could play host to turbidity currents, however, in the setting of the 

Ariel Graben this is unlikely.  There is no suitable staging area/source, directly to the north of 

the Ariel Graben, for the generation of turbidity driven flows.  Hence, given the location of 

the undulation field of this study, deposits associated with turbidity currents are highly 

improbable. 

Furthermore, from a morphological perspective, the character of the undulations is 

atypical of the surface expression of turbidites (Faugères et al., 2002; Wynn and Stow, 2002).  

The wave-form (i.e., the general morphology of the undulations) dimensions of the 

undulations are larger in the upslope and downslope areas, decreasing in dimension toward 

the middle of the flank as opposed to the general decrease in wave dimension downslope (i.e., 

with distance from the source) expected of turbidity current-fed bedforms. 

With regards the genesis of sediment waves by bottom current interaction, the 

dimensions of the wave-forms observed in this study are similar to those of fine-grained 

bottom sediment waves (cf. Wynn and Stow, 2002; Table 5.2 this study).  Such fine-grained 

bottom sediment waves are found in sediment drift environments on the basin floor, lower 

slope and rise.  At odds with this interpretation are the general orientations of the wave-form 

crests themselves.  Typically, the crests of fine-grained bottom current sediment wave 

systems are oblique to the slope, or perpendicular to the flow direction of the current, with 

evidence of upslope and up-current migration of bedforms.  In this study, the crests are 

parallel/sub-parallel to the maximum slope, orientated west/east; ca. 90° to the expected 

orientation (north-south) had they been directly developed by a current flowing west to east 

through the graben. As with a turbidity current-induced setting, the decrease then increase of 

the wave-form dimensions is in contrast to that of a bottom current sediment wave setting 
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that generally produces decreasing wave-form dimensions with increased transport distance 

(Faugères et al., 2002; Wynn and Stow, 2002).   

The final alternative of downslope creep appears to be a viable option for the genesis 

of these features.  There has been much discussion concerning the distinction between current 

generated sediment waves and undulations generated by creep/soft sediment deformation 

(Dillon et al., 1993; Gardner et al., 1999; Holbrook, 2001; Lee and Cough, 2001; Holbrook et 

al., 2002; Lee et al., 2002; Trincardi et al., 2004; Schwehr et al., 2007; Shillington et al., 

2012).  The debate stems from the similarities in bathymetry and seismic characteristics of 

these features.  However, having excluded generation by bottom or turbidity current, soft 

sediment deformation is a likely formative process.  In addition, the dimensions and 

characteristics of the seafloor undulations in this study (Table 5.2) are comparable to those 

associated with creep as described by Wynn and Stow (2002). 

In keeping with the discussion in section 5.3.1 and in the context of the bathymetry 

signatures discussed above, it is clear that the northern flank of the Ariel Graben is dominated 

by sediment cover, whereas the southern flank of the Ariel Graben exhibits basement control 

on sedimentation in a sediment starved setting with ponds of sediment filling low lying areas 

amidst the rugged bathymetry of the Dana Plateau’s northern flank.  The local outcrop of 

basement is likely to increase turbulence and promote the resuspension and redistribution of 

sediment rather than deposition.  The net result is preferential deposition on the northern, 

rather than southern flank of the Ariel Graben. The resultant uneven depositional regime is at 

odds with the uniform distribution of sediment thicknesses attributed to pelagic deposition.  

Preferential drift deposition on the northern flank of the Ariel Graben is thus the likely driver 

of downslope creep here.  

5.3.3. Significance of creep 

Seafloor undulations generated by soft sediment deformation are often related to 

seismic activity.  Examples from the Adriatic and Californian continental slopes describe 

such occurrences of seismically induced soft sediment deformation.  However, such settings 

are far removed from the deep Ariel Graben of the Mozambique Ridge.  The former two 

regions have recent and sustained seismic histories accounting for extensive soft sediment 

deformation fields (cf. Dengler, 1993; Tinti et al., 1995), whereas the Mozambique Ridge is 

comparatively stable (Leinweber and Jokat, 2012).  Recent findings suggest that there may be 

some tectonic activity associated with the southward propagation of the East African Rift 
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System (Saria et al., 2014; Chapter 3). However, seismically induced deformation seems 

unlikely at this location as the soft sediment deformation is restricted to a specific area within 

the region rather than a wide-spread occurrence in line with seismically-induced deformation 

fields.  High sedimentation rates, storm waves, and biological processes may also induce 

downslope movements through the increase of applied shear stress or reduction of the critical 

shear strength of sediments (Stow et al., 1996). At the depth of the undulations, storm waves 

are not considered, while biological activity is an unknown variable. A high sedimentation 

rate is therefore suggested as the most prominent factor in this instance, likely delivered by 

deep water bottom-interacting currents in the area. 

5.3.4 Sediment redistribution via the Agulhas Current or NADW? 

In the northernmost Natal Valley, sediment redistribution at depths of between 400 – 

1500 m on the Central Terrace, Limpopo Cone and adjacent continental shelf has been 

attributed to action of the Agulhas Current (Flemming and Hay, 1988; Martin, 1981a; 1981b; 

Preu et al., 2011).  However, it is unlikely that the Agulhas Current at 27°S is as deep seated 

as it is to the south (32°S), where it reaches depths of 2500 m (Bang and Pearce, 1976; 

Dingle et al., 1987, Beal and Bryden, 1997; Donohue and Toole, 2003).  Three reasons 

account for this.  Firstly, in this source region the Agulhas Current is still forming from the 

amalgamation of eddies from the north and east (Preu et al., 2011).  Secondly, the Central 

Terrace lies in ca. 1500 m of water, so a deeper extension of the current to 2500 m is not 

possible.  Thirdly, the observation by previous authors of a northerly flowing NADW in the 

west and a southerly flowing NADW in the east of the Natal Valley implies recirculation of 

this current system whereby NADW passes beneath the Agulhas Current at a deeper level.  

On this basis the alternative hypothesis is considered valid, bottom current activity and 

sediment re-organisation by the NADW.  

 

 

 

5.3.4.1 Oceanographic constraints to potential NADW flow and a revised pathway 

As a deep western boundary current plastered up against the east coast of South 

Africa by the Coriolis Effect, it is unlikely that its northward passage would be impeded until 
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obstacles to that flow are encountered (Dingle et al., 1987; van Aken et al., 2004; Martínez-

Méndez et al., 2008; McDonagh et al., 2008).  The shoaling of the northern Natal Valley 

provides the necessary bathymetric restriction to change the pathway of the NADW.  

However, this restriction within the known depth range of NADW is gradual and 

asymmetrical.  The northern Natal Valley does not terminate in a horseshoe between 2000 m 

– 3500 m (Fig. 5.8), but rather the Tugela Cone and Central Terrace (fronted by the Naude’ 

Ridge) provide initial restrictions from the west and northwest respectively (Fig. 5.8).  These 

restrictions would force the NADW to shift from its original north northeast flow direction 

towards the northeast.  The 2000 m isobath marks the shallow edge of the Central Terrace, 

and consequently the northward limit of NADW flow in the northern Natal Valley.  

Continuing to the northeast, the 2000 m isobaths of the Central Terrace merges with the top 

of the Ariel Graben’s northern flank (Figs. 5.2 and 5.8).  The Dana Plateau, located south east 

of the Central Terrace, rises to a minimum depth of 1795 m and consequently restricts the 

direct eastward flow of NADW into the Mozambique Basin (Fig. 5.8).  The Dana Plateau 

thus offers a potential point divergence for NADW flow whereby a portion of the water mass 

can continue northeast into the Ariel Graben, while the remainder recirculates southward 

along the eastern margin of the Natal Valley. 

Once the NADW enters the Ariel Graben its passage is likely defined by the graben 

long-axis; the orientation of which is not constant.  From west to east the axis migrates in a 

clockwise manner, not confined to the orientation of the saddle axis.  The average gradient of 

the graben flanks, particularly the northern flank, typically increases from west to east with 

the steepest gradient found where the saddle axis changes direction to the east (Fig. 5.7).  It is 

in the east that the maximum axis curvature takes place and it is here that the upper portion of 

the NADW is likely to over-spill on to the northern flank, effectively over-shooting the bend 

in the graben axis.  This over-spilling results in reduced velocity, and deposition of suspended 

load on the northern flank.  Coriolis Effect is likely to also play a role.  Deflection to the left 

(north in this case) further promotes preferential deposition of the northern flank of the Ariel 

Graben thereby compounding the result of over-spilling in the region of undulations.  Such 

rapid sedimentation is said elevate pore pressure, and create weak planes within the deposited 

sediments (Shillington et al., 2012).  Subsequent slow gravity-driven downslope motion and 

deformation generates the region of seafloor undulations on the northern flank of the Ariel 

Graben.  Hence, this area represents an over-steepened plastered drift, developed in response 
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to over-spilling of NADW in the Ariel Graben, the failure of which is manifest as seafloor 

undulations generated by down slope creep (Fig. 5.8). 

5.3.5 The relevance of a revised deep water pathway 

The complex macrotopography of the SWIO, as demonstrated by Dingle et al. (1987), 

van Aken et al. (2004) and Casal et al. (2006), represents a significant factor in the control of 

deep THC flow (Donohue and Toole 2003).  In this study, a previously unrecognised 

northern-most pathway for deep water exchange between the Natal Valley and the 

Mozambique Basin at 28°S is proposed (Fig. 5.9).  The recognition of this pathway means 

the Natal Valley system and its effect on the SWIO region should be re-evaluated as the THC 

system and global climate are strongly linked (Martin 1981b; Martin 1987; Martin and 

Flemming 1988; Winter and Martin 1990; Martínez-méndez et al., 2008; Blome et al., 2012; 

Li et al., 2013; Menary and Scaife, 2014).   

With respect to NADW circulation interglacial periods typically see increased flow of 

NADW, while glacial periods are associated with reduced flow (Ben-Averaham et al., 1994; 

Alley et al., 1999; Rutberg et al., 2000).  Increased flow, especially the proposed northern 

incursion of NADW, has implications for the ocean basins in which this water body is found, 

affecting deep water exchange between sub-basins within the SWIO (Fig. 5.9).  The forcing 

of this deep water mass into rugged regions of shoaling bathymetry of the northern Natal 

Valley and Mozambique Ridge has the potential to increase upwelling in these regions, 

resulting in increased diapycnal mixing between water masses (Polzin et al., 1997).   

As long-lived CO2 sinks, such diapycnal mixing could be of ecological and 

climatological significance.  It is suggested that CO2 flushing from deep water masses is a 

step-wise process that includes elevated nutrient supply to the mid-depths, subsequently 

resulting rapid rage expansion of species, increased productivity and CO2 sequestration 

within the mid-Ocean (Galbraith et al., 2007; Henry et al., 2014). These have important 

ramifications for the east coast of Africa’s future fishery potentials.
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Table 5.2 Summary of characteristics for different types of sediment waves, and also soft sediment deformation features (modified after Wynn and Stow, 2002). 

Wave-forming  
process 

Turbidity current Turbidity current Bottom current Bottom current Soft sediment deformation 
(e.g. creep folds) 

This study 

Sediment grain 
Size 

Fine-grained 
(mud and silt dominated) 

Coarse-grained (sand 
and gravel dominated) 

Fine-grained (mud 
and silt dominated) 

Coarse-grained (sand 
and gravel dominated) 

Varied: usually fine-grained 
(mud/silt dominated) 

Unknown: 
presumed fine-
grained 

Environment Channel levees, 
continental slope/rise 

Canyons, channels 
and canyon/channel 
mouths 

Sediment drifts on 
basin floor/lower 
slope/rise 

Topographic ridges, 
continental slopes, b-c 
passages 

Varied: potentially any 
submarine slope 

Ariel Graben 
northern flank 

Wavelength Up to 7 km Usually up to 1 km, 
rarely larger 

Up to 10 km Up to 200 m Up to 10 km 600 m – 1.2 
km 

Wave height Up to 80 m Up to 10 m Up to 150 m A few metres Up to 100 m 35 – 70 m 
Key features Usually on slopes of 0.1 

to 0.7° 
Wave dimensions 
progressively decrease 
downslope 
Wave asymmetry usually 
decreases downslope 
Crests are roughly 
parallel to regional slope 

Crests aligned 
perpendicular to flow 
direction 
Can show decrease in 
dimensions at channel 
margin 
Morphology is often 
irregular/disrupted 
Migration direction 
variable 

Wave dimensions 
decrease near edge 
of wave field 
Wave symmetry 
decreases near edge 
of wave field 
Waves on slopes are 
aligned oblique to 
slope 
Most waves on 
slopes migrate 
upcurrent and 
upslope 
Crests are straight or 
slightly sinuous 

Can occur as straight 
waves or barchans 
Both types aligned 
perpendicular to flow 
Barchans common 
where sediment supply 
is poor, migration is 
upcurrent 
Ripple patterns show 
peak flow near barchan 
crest 

Most common on slopes of 
>2° 
Orientated perpendicular to 
maximum slope 
Do not show true lateral 
migration 
Usually show broard crests 
and narrow troughs 
Typically random scatter of 
dimensions 

Orientated 
perpendicular 
to maximum 
slope 
Usually show 
board crests 
and narrow 
troughs 
Dimensions 
increase 
toward the 
edges, up and 
down slope. 

Key examples Monterey Fan levees 
(Normark et al., 1980) 
Bounty Channel levees 
(Carter et al., 1990) 
Toyama Channel levees 
(Nakajima and Satoh, 
2001) 
Var Fan levees (Migeon 
et al., 2000, 2001) 
Canary Islands slopes 
(Wynn et al., 2000a,b) 

Var Canyon 
(Malinverno et al., 
1988) 
Stromboli Canyon 
(Kidd et al., 1998) 
Valencia Channel 
mouth (Morris et al., 
1998) 
Canary Islands (Wynn 
et al., 2000a) 
Laurentian Fan 
(Piper et al., 1985) 

Argentine Basin 
(Flood et al., 1993) 
Rockall Trough 
(Howe, 1996) 
Blake-Bahama Ridge 
(Flood, 1994) 
Gardar Drift (Manley 
and Caress, 1994) 
Falkland Trough 
(Cunningham and 
Barker, 1996) 

NW European slope 
(Kenyon, 1986) 
Iceland-Faroe Ridge 
(Dorn and Werner, 
1993) 
Carnegie Ridge ( 
Lonsdale and Malfait, 
1974) 
Gulf of Cadiz (Kenyon 
and Belderson, 1973) 
Various sites (Lonsdale 
and Speiss, 1977) 

South Korea Plateau (Lee and 
Chough, 2001) 
Beaufort Sea (Hill et al., 1982) 
Tingin Fjord (Syvitski et al., 
1987) 
Landes Marginal Plateau 
(Kenyon et al., 1978) 
New England slope (O’Leary 
and Laine, 1996) 
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Fig. 5.9. The postulated passage of deep water (2000 – 3000 m), in this case NADW, through the SWIO is 

shown by black arrows, after van Aken et al. (2004). The 2000 m isobaths are shown for reference by the solid 

black line. The inset shows the study area, where the Ariel Graben creates a saddle across the Mozambique 

Ridge. The suggested NADW pathway across this saddle, through the Ariel Graben, is illustrated by the black 

dot-dash line. Abbreviations in insert: CT = Central Terrace, AG = Ariel Graben, DP = Dana Plateau, NV = 

Natal Valley. 
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Chapter 6 

Surface expression of East African Rift System propagation in the Mozambique Channel, 

southwest Indian Ocean. 

6.1. Introduction 

The EARS is currently the dominant tectonic feature on the African continent.  It is 

manifest as a series of long axis aligned rift valleys orientated north/south through east and 

southern Africa (Chorowicz, 2005; Saria et al., 2014) (Figs. 3.1 and 6.14).  The EARS is 

typically characterised by elongate zones of thinned continental crust, where weaknesses in 

the crustal structure of the African plate are exploited allowing rift propagation, seismic 

activity and associated volcanism to extend southward (Fairhead et al., 1982; Chorowicz, 

2005).  Two main terrestrial branches, the older eastern and younger western branches 

respectively, characterise the EARS which was initiated in the Afar region 30 Ma ago and 

now extends ca.3000 km across Africa, defining a zone of extension between the Nubian and 

Somalian plates (Calais, 2006).  Between the main Nubian and Somalian plates two 

microplates, the northern Victoria and southern Rovuma plates, have developed in response 

to rift kinematics with a third, the Lwandle microplate, developing further south in a marine 

setting (Hartnady, 2002; Calais, 2006; Stamps et al., 2008; Saria et al., 2014).   

A lack of data has hampered efforts to fully understand seismicity in the diffuse 

region represented by the Mozambique Channel. This is especially so in the context of the 

EARS.  However, neotectonic activity in the Natal Valley and Mozambique Basin/Channel 

has been associated with a postulated link between the African continent and the southwest 

Indian Ridge (Figs. 1.2, 3.12 and 3.14) (Hartnady et al., 1992; Ben-Avraham et al., 1995; 

Calais et al., 2006). 

The terrestrial portions of the EARS have received much attention when compared to 

the southeastern marine branch, particularly in light of modern geophysical and positioning 

techniques that can better be used to explain the present-day kinematics (Déprez 2013; Saria 

et al., 2013; 2014).  Efforts to examine the submarine aspects of the EARS have received far 

less attention. Chapter 3 outlined the formation of a series of mounds in the Natal Valley and 

ascribed them to the southward propagation of the EARS during the Neogene.  This zone of 

activity was located at the postulated plate boundary of the southern Rovuma and northern 

Lwandle microplates as defined by Corti (2009) and Stamps et al. (2008).  Although the 

kinematics of the Nubia-Somalia-Victoria-Rovuma plate system have recently been 



Microtopography and Bottom Water Circulation of the Southwest Indian Ocean 

78 
 

discussed, the Lwandle microplate kinematics are more difficult to model (Déprez 2013; 

Saria et al., 2013, 2014) and the southward propagation of the EARS in the SWIO thus 

remains uncertain (Saria et al., 2014). 

In this chapter, the seafloor and shallow subsurface geomorphology within the 

northern Mozambique Basin are investigated with an aim to identifying and reconciling 

various geomorphic features with the current tectonic regime, as defined by the EARS. 

6.2 Material and Methods 

Seismicity data were acquired online from the International Seismological Centre 

(ISC) using the latest ISC Bulletin.  Only those data relevant to the study area are presented.  

These data are plotted together with significant plate boundaries within the study area, the 

outlines of which have been lifted from the latest literature. 

6.3. Results 

6.3.1 Bathymetry 

The bathymetry of the general area ranges from smooth seafloor, to sediment waved and/or 

irregular seafloor (Fig. 6.2).  Two seamounts to the west (Mt Bourcart - MtB) and east 

(Unnamed seamount - Smt) of the study area are also noted (Fig. 6.2).  Smooth seafloor is 

restricted to the northern reaches of the site, while irregular and sediment wave dominated 

areas are located in the central and southern portions of the site respectively.  The smooth 

seafloor gradients range between 0.170 and 0.2 degrees at depths typically below 3000 m.  

Above 3000 m sediment waves, with wave lengths of 1000 – 1400 m and amplitudes of 

between 15 – 35 m are interspersed with irregular seafloor (Fig. 6.2).  The irregular seafloor 

in the central area occurs atop a west/east orientated, broad crested ridge (Fig. 6.2).  A 

west/east bathymetric depression has formed within this ridge (Fig. 6.2, profiles M1 – M1’ 

and M2 – M2’).  The depression ranges in width from 12 – 14 km, and 100 – 160 m deep.  

The inner flanks of the depression reach gradients of 18°, although the average is 4 – 7°.  

Either side of this depression the gradient is reduced to <1° as the seafloor deepens away 

from the ridge and depression.   
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Fig. 6.2. Bathymetric data from the general study area shows the northern portion dominated by smooth seafloor 

(Sm). Sediment waves (Sw) and irregular (Ir) seafloor are restricted to the central and southern areas. Two 

seamounts (Smt) are located in the southwest and northeast respectively. Profiles M1 – M1’ and M2 – M2’ 

show the irregular seafloor north and south of the west/east orientated depression in section. Note the steeper 

northern flank. (Box i in shown in Fig. 6.3.) 

 

 

Fig. 6.3. Slope map extracted from bathymetric data, showing the variation in slope around the depression 

(enlarged from Box i, Fig. 6.2). Sediment waves (Sw) manifest as regular, linear changes in slope, whereas 

irregular seafloor (Ir) shows a non-uniform pattern with an irregular distribution of slope variation. Smooth 

seafloor (Sm), in contrast, shows little variation in slope as one would expect. 
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The area depicted in box i from figure 6.2 is enlarged and presented in figure 6.3 as a 

slope map.  The slope map shows the variation in slope around the depression and ridge area.  

Areas of sediment waves manifest as regular slope changes describing the linear crest and 

trough of these features.  Areas of smooth seafloor show little variation in slope as to be 

expected.  Irregular seafloor, which includes the depression, is associated with markedly 

irregular changes in slope, unlike that of the sediment waves.  The steepened flanks of the 

depression are clearly noticeable, and can be followed across the data gap as significant 

features forming the margins of the depression.  

6.3.2 High frequency seismic character 

Sub-bottom profile lines are shown in figure 6.2 for comparison with the bathymetry 

data.  The echo character across the depression shows various reflectors and surface 

characteristics.  In the east, the smooth basin floor is characterised by a distinct bottom echo 

followed by several continuous to discontinuous sub-parallel sub-bottom returns (Fig. 6.4).  

At the basin margin (signified by the toe of the ridge), sub-bottom reflectors onlap onto 

prolonged echoes and are associated with an abrupt change in slope angle (although it 

remains <1°).  The seafloor continues to shoal southwards, and the echo character changes to 

display crude, semi-prolonged hyperbolic echoes (associated with irregular seafloor in the 

bathymetry data).  This echo character continues until the edge of the depression’s northern 

flank where there is a distinct reduction in signal amplitude upon entering the depression.  

The floor of the depression has a distinct bottom return, however the sub-bottom returns are 

poorly defined comprising discontinuous sub-parallel to diverging reflectors.  Beyond the 

steep southern flank of the depression, the seafloor return remains distinct, however reflector 

style changes to a more discontinuous parallel reflector configuration. 
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Fig. 6.4. A PARASOUND profile across the depression (M1 – M1’) and surrounding area shows varied echo 

character associated with this region. Basin deposits on lap onto the ridge core. There is an abrupt increase in 

gradient at this point, and the seafloor character changes from smooth to irregular. 

To the east a palaeo-surface lies beneath the smooth seafloor and the prolonged 

echoes associated with the present-day deposits (Fig. 6.5).  The prolonged echo character 

continues upslope; however, the seafloor now displays asymmetrical undulations.  This 

undulating surface is dissimilar from sediment waves observed elsewhere (Chapter 5), and is 

associated with irregular seafloor in the bathymetry data.  The undulations have longer 

steepened downslope limbs (ca. 1520 m at 1°), with low gradient upslope limbs (ca. 310 m at 

0.6°), and a separation of ca. 2000 m between crests.  The internal geometry of these 

undulating features is not discernable.  Further south the undulating seafloor abuts against a 

region of transparent packages.  The sub-surface shows two distinct reflectors of similar 

geometry, over which a transparent package is draped (Fig. 6.5, inset).  This transparent 

package overfills depressions in the underlying surface, smoothing off the topography.  The 

upper unconformity surface of the transparent package onlaps an upper transparent package, 

the upper surface of which downlaps onto the sub-bottom reflectors.   North of the depression 

flanks, the subsurface displays discontinuous sub-parallel reflectors beneath a distinct 

seafloor reflector.  The depression area is characterised by large individual hyperbolic echoes 

with varied vertex elevations above the seafloor. 
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Fig. 6.5 A PARASOUND profile across the depression (M2 – M2’) and surrounding area showing the varied 

echo character associated with the depression. Undulating seafloor is evident in the north, shoaling toward 

transparent packages beneath a smooth seafloor. The depression is marked by steep flanks and hyperbolic 

seafloor echoes. 

6.3.3 Seismicity 

The study area shows a long history of seismic activity within a region that hosts 

significant seismic activity both in the marine and terrestrial settings (Fig. 6.6).  Within the 

Mozambique Channel the general trend of seismic activity between 10 – 19°S is elongate, 

and orientated north/south at ca. 41°E.  At ca. 19°S, the zone of activity rotates clockwise, 

orientated northeast/southwest and maintaining the elongate character of the most active 

zone.  The study area itself is marked by a zone of seismic activity.  Despite this active zone 

maintaining an overall linear arrangement, the area itself broadens.  The depression discussed 

above is located within this broadened zone of seismic activity (Fig. 6.6, inset).  Here, 

epicentres associated with earthquakes ranging in magnitude from 3 – 6.5 (n=41 recorded 

events) are scattered around the depression, ridge, and Mt. Bourcart.  Several events are 

recorded from beneath Mt. Bourcart, while the remainder occur across the ridge and 

depression. 
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Fig. 6.6. Seismicity of the Mozambique Channel and surrounding region (ICS Bulletin). Inset shows study area. 
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6.4. Discussion 

6.4.1 Bathymetry 

Bathymetry data from the study area display a varied seafloor topography (Fig. 6.2) 

comprising smooth seafloor in the northeast and northwest, irregular seafloor in the central 

and southeastern regions and areas of sediment waves in the central zone.  Much of the 

seafloor in this region is swept by bottom water circulation associated with the Global THC 

system (as discussed in Chapter 5).  The AABW is credited with creating giant 

northwest/southeast orientated erosional scours in the seafloor sediment to the south of the 

study area, associated with recirculation of the water mass in this region (Brietzke et al., 

subm.).  Although similar in morphology to the west/east depression observed in the study 

area, no comparable giant scours were identified as being associated with either the NADW 

or Mozambique Current eddies (Brietzke et al., subm.).   

6.4.2 High frequency seismic character 

Several echo character types are recorded in the study area.  The distinct seafloor 

returns with several distinct parallel sub-bottom reflectors are common to deep marine basins.  

Such echoes, described by Damuth (1975) as type IB echoes, are typically associated with 

either turbidite deposits, or pelagic sedimentation.  Others attribute such echo character to 

seafloor smoothing by bottom water circulation and winnowing of the deposit.  Within the 

study area, these IB echoes (after Damuth, 1975) have an onlapping relationship with the 

ridge in which the depression is located.  To the north of the study area, a relatively large 

basin is characterised by comparable reflectors intercalated with transparent lenses associated 

with mass wasting deposits (Brietzke et al., subm.).  The geometry and nature of these basin 

deposits (Fig. 6.4, transparent package) when in contact with the base of the ridge as well as 

the transparent packages noted on the ridge flanks (Fig. 6.5) suggest that turbidity and mass 

wasting flows are common to the area.  The smooth seafloor is the likely result of distal 

gravity flows, later winnowed by deep seated circulation.   

Hyperbolic echoes are observed on the northern flank of the ridge, as well as within 

the eastern depression. The character of these hyperbolic echoes, however, differs with the 

setting.  On the ridge flanks (Fig. 6.4) the hyperbolic echoes are smaller and lie at or below 

the seafloor, whereas within the depression the hyperbolic echoes are large and distinct, 

extending above the seafloor (Fig. 6.5).  This suggests they are returned from different 
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seafloor/sub-bottom features, and likely result from different formative processes.  The 

echoes returned from the northern flank are similar in character to the IIB-2/IIB-4 echoes of 

Damuth (1975) from the abyssal western equatorial Atlantic.  Such echoes were ascribed to 

bedforms generated in response to bottom water circulation.  The same is considered likely in 

this instance.  The hyperbolic echoes from within the depression approach the IIB-1 character 

of Damuth (1975), and are associated with rugged seafloor morphology typically associated 

with seamounts and fracture zones (Damuth, 1978; Lee et al., 2005). 

The undulating, asymmetric, seafloor features with a prolonged echo character noted 

on the northern flank (Fig. 6.5) are similar to features associated with downslope creep 

discussed from the Ariel Graben (Chapter 5) as well as features described from the Adriatic 

and Californian continental slopes (Dengler, 1993; Tinti et al., 1995).  Given the mass 

wasting-related deposits noted elsewhere on the northern flank, as well as at the base of the 

ridge, the area appears to be prone to the downslope movement of material.  Whether the 

instability is brought on by oversteepening of the flank deposits, or seismicity is unclear. 

6.4.3 Seismicity 

The study area occurs in a region of the Mozambique Channel where there is a higher 

density of seismic activity than elsewhere in the basin (Fig. 6.6).  Comparison with previous 

research shows that the study area falls in the vicinity of the postulated southeastern Rovuma 

microplate boundary (Fig. 6.7).  Saria et al. (2014) recently discussed seismicity in the 

Mozambique Channel as associated with the movement of the Rovuma microplate.  In the 

region considered in this study, plate movement is to the southeast, suggesting extension is 

the same direction, presently occurring at 0.7 mm/yr (Saria et al., 2014).  To the southwest, 

along the Nubian-Lwandle plate boundary, southeast extension is estimated at 1.1 mm/yr 

(Fig. 6.7).  Clearly this region is tectonically active and the activity is associated with the 

kinematics of the East African Rift System.   

6.4.3.1 Seafloor expression of southeasterly extension? 

Of the bathymetric and PARASOUND data, many features are accounted for based 

on circulation/erosional/depositional processes within the Mozambique Channel.  The 

formative processes associated with the asymmetric undulations and particularly the west/east 

depression, remain unclear.  The depression flanks mark areas of steepened seafloor 

topography.  Given the seismicity in the area, the asymmetric undulations may be generated 
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through seismically induced soft sediment deformation on the flanks of the ridge extending 

east from Mt. Bourcart.  The floor of the depression, despite representing a basin, lacks 

significant sedimentary fill.  Rather, the depression floor exhibits character associated with 

basement outcrop and sparse sedimentary cover, usually corresponding to seamounts and 

rifts.  Furthermore, the depression flanks have developed as mirror images of each other.  

Tentatively, these flanks could reflect northwest/southeast divergence (Fig. 6.7).  If so, given 

the location of the depression and postulated Rovuma microplate boundary, this depression 

could represent a surface expression of southeast extension associated with the EARS 

kinematics described by Saria et al. (2014). Such a case of extension could account for the 

complementary orientation of the depression flanks, as well as the lack of sedimentary cover 

in the floor of the depression.  As the floor represents more recently exposed outcrop, 

sedimentation has not yet had time to drape the floor with deposits of significant thickness. 
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Fig. 6.7. Location of the Rovuma/Lwandle microplate boundaries. Units in mm/yr (after Saria et al., 2014). 
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Chapter 7 

Anatomy, high frequency seismic character and depositional processes of the lower Zambezi 

Channel, Mozambique Basin, SWIO 

7.1. Introduction 

Deep-sea channels represent preferential sediment transport conduits to the deep 

ocean floor, funnelling gravity flows from canyons towards deep-sea fans.  After their 

existence was first noted in the 1950’s they have become the focus of numerous studies 

globally since the 1980’s as interest in deep-sea processes grows and technology advances 

(Garrison et al., 1982; Damuth et al., 1983).  Deposits associated with these deep-sea 

channels may accumulate over millions of years, providing longstanding records of changing 

climate, hinterland tectonics, and ocean circulation (Mutti et al., 1999; Zhang et al., 2001).  

Not only of academic value, such systems are of particular interest to the hydrocarbon 

industry as a potential hydrocarbon source, thus an understanding of their evolution and 

architecture is imperative across a variety of disciplines (Stow and Mayall, 2000).   

Submarine channels are typically located in distal regions of the slope, where they 

form meandering systems as a result of erosional/depositional processes (Abreu et al., 2003; 

Deptuck et al., 2003; Mayall et al., 2006; McHargue et al., 2011; Pirmez et al., 2000).  The 

initiation and evolution of these systems is complex, resulting from a combination of factors 

associated with basin tectonics, climate and sea-level changes, as well as local controls on the 

type, supply and deposition of sediment from the source region (Bouma, 2004; Kolla, 2007; 

Richards et al., 1998; Chapter 4). 

New multibeam bathymetric and sub-bottom data collected in the northern 

Mozambique Basin and Channel reveal an unprecedented view of the Zambezi Channel.  Due 

to apparent morphological differences between the Zambezi Channel and other deep-sea 

channels, a number of questions are raised regarding the evolution of this system as well as 

how it should be classified.  This research investigates the anatomy and shallow seismic 

character of the lower Zambezi Channel system, outlining its possible evolution in relation to 

basin opening, sediment load and current activity (Fig. 1.2). 

 

 



Microtopography and Bottom Water Circulation of the Southwest Indian Ocean 

89 
 

7.2. Results 

Four lines of bathymetric and sub-bottom data that cover a 530 km long portion of the 

Zambezi Channel were acquired parallel to the channel axis.  The lower portion of the 

Tsiribihina Channel, where it joins the Zambezi Channel, is also included in these results.  

Data quality of the eastern-most line was affected by inclement weather, although the reduced 

record still portrays several discrete seafloor features.  Overall, the Zambezi Channel has a 

sinuosity of 1.08 with a variable channel width 5 km in the north to 7 km downstream.  At 

28° 16’S the main channel branches into several distributaries which extend for 

approximately 230 km southward into the Mozambique Basin, and beyond the data coverage.  

7.2.1 Zambezi Channel 

Initially “U”-shaped (and symmetrical), with a near horizontal floor (Fig. 7.1), the channel 

profile at the northern limit of data has a steeper eastern bank that reaches a maximum 

gradient of 18° as compared to a maximum of 16° for the western flank.  Zones of maximum 

gradient are confined to the lower flanks, below a series of terraces and reach elevations of up 

to 200 m above the channel floor.  The terraces are 0.5 – 1.4 km wide, with gradients of 1 – 

3°.  Side wall scarps, between terraces are not well defined.  These features have gradients of 

7 – 9°, are 0.3 – 0.6 km wide, and have a vertical distance of 0.1 – 0.2 km between terraces.  

The channel floor is 4.2 km wide with a downslope gradient of 0.16°, the thalweg occupying 

the centre of the channel.  The channel floor displays semi prolonged seafloor echoes, as well 

as chaotic reflectors with no apparent layered reflectors (Fig. 7.1).  Distinct bottom echoes, 

with discontinuous sub-bottom reflectors characterise the channel flanks, which have a 

hummocky character at elevations above the terraces.  

Continuing downslope (Fig. 7.2), the 3.5 kHz echo character records show 

undulations in the 4.2 km wide channel floor surface. Overall the channel floor here is 

relatively smooth with a downslope gradient of ca. 1.4°.  The channel floor deepens slightly 

from west to east with an average gradient (across channel) of 0.1°.  The eastern flank of the 

channel displays a smooth inclined surface, which becomes crudely terraced as it nears the 

channel floor.  The terraces are not as well defined as in the north (Fig. 7.1).  With respect to 

shallow seismic character, the seafloor of the channel is characterised by a diffuse seafloor 

return pattern, while the subsurface echoes are either prolonged or transparent (Fig. 7.2).  The 

western floor of the channel is characterised by an acoustically transparent mound.  In 

contrast, the shallow seismic character of the eastern flank differs from the character of the 
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flank to the north as it is smooth (not hummocky) and with no sub-bottom echoes.  The 

western flank (outer bank) is steeper (with an average of 10°, reaching 34° toward the 

channel floor), than the eastern flank (average of 2° reaching a maximum of 4°), as shown by 

the canyon profile (Fig. 7.2).  

In contrast, the central portion of the lower Zambezi Channel displays a smooth 

channel floor (still 4.2 km wide), with both sub-parallel sub-bottom reflectors, and prolonged 

echoes present (Fig. 7.3), rather than the undulations found in the north.  There is no district 

across channel change in depth.  A pool (zone of channel deepened through erosion) is 

evident, extending downstream toward the subsequent bend apex, downstream of the bend’s 

maximum point of inflection (maximum inflection point not covered by data) (Fig. 7.3).  The 

outer (upslope) bank gradient is slightly reduced (7.3°), with local maximums of 24° toward 

the channel floor.  The inner (downslope) bank has an average gradient of 2.3°, while the 

maximum gradient has increased to 9° in the vicinity of the terraces.  The terraces range from 

0.2 – 0.6 km wide, with gradients of 0.1 – 0.6°.  The terraces shoal toward an area of levee 

development, apparently perched on one of the terraced surfaces (Fig. 7.3).  The levee is an 

elongate, crescent shaped feature, which follows the curved inner bank of the channel.  

Although there are no apparent bedforms visible in the bathymetry, the shallow seismic 

character shows a distinct, undulating seafloor on the levee surface, while internally the levee 

displays several continuous sub-bottom echoes.  Side wall scarps are not a prominent feature 

and range in gradient from 3 – 7°. Their heights can vary between 25 – 55 m between the 

terraces.  Mass wasting features are uncommon in this portion of the channel with only one 

significant mass wasting scar apparent.  
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Fig. 7.1 The northern limit of data coverage shows a “U” shaped channel, with a hummocky western flank, and 

smooth eastern flank. The channel floor is distinct from the flanks in that the subsurface exhibits indistinct 

hyperbolic echoes and mounds. 
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[Previous page]Fig. 7.2. The bathymetric and shallow seismic character of the northern portion of the Zambezi 

Channel. Note the varied echo-character across the channel floor, in contrast to the uniform echo-character of 

eastern flank. Hummocky seafloor is restricted the west of the channel, while smooth seafloor lies to the east.   

The southern Zambezi Channel debouches into a frontal splay (Fig. 7.4).  Here the 

main trunk of the channel widens and shallows, becoming less distinct as it merges with the 

Zambezi Cone.  At the mouth of the frontal splay, the Zambezi Channel floor is ca. 10 km 

wide.  The channel floor still deepens toward the east as it does upstream, although it is now 

steeper (0.3° across channel).  The downslope bank, although steeper than the upslope (1.2° 

average gradient, 2.5° local maximum) averages 2.1° (5.5° local maximum), thus having a 

more subdued morphologic character than in the north.  Numerous distributary channels (10 – 

20 m deep) now extend south and southwest across the poorly defined sediment cone.  East 

of the mouth there are no distributaries present.  Given the lack of distributaries to the east, an 

asymmetrical distributary system exists at present.  Many of the northern distributaries are 

located at a shallower depths than, and perched above the series of distributaries that exit the 

main trunk of the Zambezi Channel.  As such, these northern distributaries are likely 

abandoned channels resulting from avulsion and incision of new active distributary channels 

farther south.  Approximately 200 km south of the Zambezi Channel mouth, the bathymetry 

shoals by 20 m, causing a divergence in distributary channel pathways around this slight 

bathymetric high.  In this area, the western Zambezi cone area has an irregular seafloor 

surface, while to the north undulating bedforms (orientated west/east) are common.  Overall, 

the cone deepens to the southwest (average gradient of 0.04° over 287 km) (Fig. 7.4). 
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Fig. 7.3.Still “U”shaped, the Zambezi Channel flanks now exhibit mass wasting scars (Sl) in the terraces (Tr) of 

the steepened upslope (outer bank) flanks. The subsurface echo character is now more varied reflecting 

indistinct and sub-parallel echoes. Terraces are clearly evident in both the bathymetry and subsurface data, and 

extend beneath the levee (Le). A pool (PL) is evident downstream of the upslope bank. 
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Fig. 7.4. The Zambezi Channel extends southward developing into an extensive frontal splay. Distributary 

channels continue south and west beyond the data coverage, while the main Zambezi Channel bifurcates around 

a topographic high to the south. Sediment waves, associated with Antarctic Bottom Water circulation are 

evident in the northwest (Breitzke et al., Subm.). 

7.2.2 Tsiribihina Channel 

The Tsiribihina Channel represents the only significant tributary to the lower Zambezi 

Channel (Fig. 7.5).  In the east (limit of data coverage), the Tsiribihina Channel floor is 2 km 

wide, deepening slightly across channel to the north (across channel gradient of 0.4°).  The 
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inner bank has an average gradient of 7° (maximum 15°), while the cut bank averages 11° 

(maximum 22°).  The downstream gradient in the east is 0.2°; this gradient steepens to 0.3° 

as the Tsiribihina Cannel approaches the Zambezi Channel, where the channel widens to 3 

km.  In profile, the channel is decidedly “U”-shaped, although there are various examples of 

mass wasting scars and terraces which modify the profile locally (Fig. 7.5, profile P4 – P4’). 

Terraces range from 0.3 – 1 km wide, with gradients of 0.9 – 2.7°.   

A crude levee has been developed midway along the channel’s southern side.  

Superimposed on the lower to mid-levee are a series of elongate, slope oblique bedforms 

(wave length ca. 1 km, amplitude ca. 80 m) which grade into smooth seafloor further south 

(Fig. 7.5).  These undulating bedforms are manifest as obtuse overlapping hyperbolae, which 

display occasional sub-surface bowtie reflectors (Fig. 7.5, box i; Fig. 7.6).  These hyperbolic 

reflectors transition abruptly to several continuous parallel sub-bottom reflectors beneath a 

distinct seafloor reflector in the south.   

7.2.3 Confluence of Zambezi and Tsiribihina Channels 

The southwest/northeast orientated Tsiribihina Channel joins the main trunk of the 

Zambezi Channel as a tributary at 22° 10’S (Fig. 7.5).  The “Y” shaped junction is 

asymmetrical with the Tsiribihina Channel entering (ca. 20 m above the main channel floor) 

from the east (Fig. 7.7, profile W – E). A gradient knick point, associated with a 1.1° change 

in gradient (0.3° to 1.4°) where the Tsiribihina Channel enters the main Zambezi Channel, is 

evident ca. 1 km upstream of the confluence.  This defines the confluence as a pure, unequal, 

asymmetrical type confluence.   

Upstream of the confluence, the Tsiribihina Channel shoals more rapidly than the 

Zambezi Channel. Approximately 100 km upstream (the limit of Tsiribihina Channel 

coverage) there is a difference of 220 m between the depths of the two channel floors, with 

the Zambezi Channel thalweg at 3577 m depth (Fig. 7.5).  Downstream of the confluence the 

Zambezi Channel immediately deepens, associated with a downstream increase in gradient of 

0.7°.  The confluence width to tributary width ratio of the Zambezi/Tsiribihina confluence is 

1.05.  
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Fig. 7.5. The Tsiribihina Channel (TrC), the only significant tributary to the lower Zambezi Channel. The 

channel flanks are terraced (Tr), with slump scars (Sl) in channel bends. Box i is enlarged in Fig. 7.6. 

 

Fig. 7.6. PARASOUND (3.5 kHz) record for box i (Fig. 7.4). Individual to overlapping hyperbolic reflectors 

with occasional bow-tie reflectors transition abruptly to several continuous sub-bottom echoes below a distinct 

seafloor echo. The levee (Le) shows varied character, with hyperbolic reflectors returned in the north, and 

continuous parallel reflectors returned from the southern portion of the feature. 
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Fig. 7.7. The “Y” shaped confluence between the Zambezi (Zc) and Tsiribihina (TrC) channels is distinct in 

both plan (left) and three dimensional perspective (right, looking northwards).  The cross sectional profile shows 

the slight elevation of the Tsiribihina Channel over the main trunk of the Zambezi Channel.   

7.3 Discussion 

7.3.1 Current classification of deep sea channels 

Submarine channels are currently classified by channel geometry (Clark et al., 1992), 

sinuosity, slope gradient, and sediment type (Reading and Richards, 1994), and in some 

instances, sediment cohesion (Clark and Pickering, 1996; Piper and Normark, 2001).  Based 

on this classification scheme, high-sinuosity, low-gradient, fine-grained systems, commonly 

occurring in equatorial regions (Gee et al., 2007; Wynn et al., 2007; Peakall et al., 2012), are 

distinct from low-sinuosity, high-gradient, coarse grained systems, typically located in higher 

latitude regions (Clark and Pickering, 1996; Klaucke et al., 1997; Peakall et al., 2012) (Table 

7.1).  Coriolis force appears to be a dominant control on sinuosity as it acts to restrict 

perturbations on channel bends, this effect thus increasing with increasing latitude (cf. 

Peakall et al., 2012 for a full discussion).   

Flow nature (velocity structure, stratification, rheology, size of downslope flow within 

the channel) and sediment type are secondary factors to the Coriolis force.  Flow type appears 

to be linked to the source and manner of sediment delivery.  Low latitude submarine channels 

are typically directly or indirectly fed by river input (Mulder and Syvitski, 1995; Peakall, 



Microtopography and Bottom Water Circulation of the Southwest Indian Ocean 

98 
 

2012), while high latitude submarine channels are affected by a range of factors, comprising 

glacial meltwater outbursts (Shaw and Lesemann, 2003; Piper and Normark, 2009), dense 

cold water underflows (Dowdeswell et al., 2002), and shifting ice streams (Escutia et al., 

2000) giving rise to significant flux in sediment delivery periods and volumes.   

Based on these factors, dynamic and changeable conditions, sediment supply and 

source type, channel sinuosity may be influenced by episodic increases in sediment supply. 

These can be from dynamic indirect supply sources and result in straight channel 

morphologies, whereas regular sediment supply from direct stable sources promotes the 

formation of meanders and increased sinuosity (Peakall et al., 2012).  Coriolis force exerts a 

further control in the higher latitudes as previously discussed.  The Zambezi Channel has a 

history of variable fluvial sediment sources and volumes (Droz and Mougenot, 1987; 

Walford et al., 2005). As such, one might expect the  low latitude indirectly river fed 

Zambezi Channel to exhibit low gradient, high sinuosity characteristics akin to other 

equatorial channels.  This does not appear to be the case as the Zambezi Channel has 

attributes of both high and low latitude systems (Figs. 7.9), yet does not fall within the 

bounds of Skene and Piper’s (2006) classification (Fig. 7.9) (see Skene and Piper, 2006 for a 

full discussion).  The following sections demonstrate the unique character of the Zambezi 

Channel when compared to such models. 

Table 7.1. Typical character of high and low latitude submarine channels (after Peakall et al. 2014) 

Latitude Sinuosity Gradient Grain size Sediment supply Coriolis force effect 

Low High Low Fine Constant (River) Low 

High Low High Coarse Intermittent (Glacial) High 

7.3.1.1 The Zambezi Channel system 

In contrast to the Amazon, Zaire, Indus and Bengal systems (cf. Kolla, 2007) the Zambezi 

canyon/channel system is not directly connected to a significant fluvial source (Schulz, et al., 

2011).  The Zambezi River, is located 200 km to the southwest of the suggested location of 

the Zambezi Canyon head, and represents the most significant source of sediment to the shelf 

system (Schulz, et al., 2011).  Furthermore, the sinuosity of other equatorial deep sea 

channels is typically greater than 1.2, and morphologically they exhibit numerous cut-off 

meanders associated with channel migration, and multiple lobes that spread unimpeded into 

the associated deep ocean basins (with apparently little oceanographic control).  This is in 

stark contrast to the Zambezi Channel which is not sinuous (sinuosity of 1.08), does not 
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exhibit meanders, “Ox-bow” lakes, abandoned channels (except in the frontal splay area), nor 

multiple lobes.  Elevated channel levee complexes are also a common feature of typical deep 

sea channels, developed by aggradational overbank sedimentation.  Although levees 

associated with the Zambezi Channel are evident, they are not elevated above the surrounding 

bathymetry.  In contrast the Zambezi Channel and its levees rest below the majority of the 

northern Mozambique basins bathymetry (see Chapter 8). 

Fig. 7.8. Comparison of channel width and relief over distance along the channel axis, using data from this 

study, Skene and Piper (2006) and Bourcart et al. (2008).  

Fig. 7.9. Comparison of channel aspect ratio and slope. (ZC = Zambezi Channel, Z = Zaire Channel, T = 

Tanzania Channel, N = NAMOC, A= Amazon Channel, V = Var Channel, LQ = Laurentian Quaternary 

Channel, H= Hueneme Channel (H), R = Reserve Fan after Skene and Piper (2006) and Bourcart et al. (2008)). 

The nature of the margin (passive Vs. active) precludes a simple classification of the 

Zambezi Channel as the passive margin in question has a complex opening history, the result 
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of several spreading phases dictated by both transform and normal faulting (Jokat, 2011).  

The resulting macrotopography is unlike most passive margins from which other deep-sea 

channels are described (cf. Kolla, 2007).  Instead the Mozambique and Madagascar Ridge’s 

various seamounts (e.g., Jaguar Seamount, Mount Bourcart, Bassas da India and Europa 

Island) and sub-bottom structures (e.g., Beira High) offer significant control over basin shape 

in the form of inheritance of antecedent geology by the bathymetry. This is dissimilar to most 

margins where the abyssal reaches of typical channel systems are essentially unconfined, 

allowing erosional/depositional processes to act unimpeded as channel evolution occurs 

within a largely unobstructed accommodation space.   

7.3.2. Shallow seismic character of the Zambezi Channel 

PARASOUND data show a variation in the echo character associated with the 

different components of the lower Zambezi Channel.  The channel floor typically shows 

prolonged echoes with no sub-bottom reflectors (Figs. 7.1, 7.2, 7.4) and is associated with 

small, regular erosional/depositional bedforms less than 100 m in wavelength.  Coarse 

bedded sediments, associated with high velocity currents, have been found to return such 

echoes (Damuth and Hayes 1977; Damuth 1975; 1980).  This suggests that given the location 

of these echoes along the main channel floor, they represent rapid downslope flows (in 

accordance with the bedform/upper flow regime bedded interpretation). In this light, the 

lower Zambezi Channel is likely still active, fed from tributaries originating in the north. If it 

were inactive, these areas would be zones of pelagic settling, however, finely laminated 

planar reflectors with considerable thickness are absent from the channel. 

Terraces show two dominant echo characteristics along the length of the lower 

Zambezi Channel; both Type IIB and IIIC (after Damuth and Hayes 1977; Damuth 1975; 

1980) are evident (Fig. 7.3) and suggest a mix of processes that affect these areas. These are 

represented by a lower assemblage and an upper assemblage.  Type IIB, discussed above, 

reflects periods where high volume and velocity flows reach the level of some terraces, 

thereby producing seafloor characteristics associated with coarse, bedded sediment.  Type 

IIID echoes, are also associated with finer grained non-migrating erosional/depositional 

features.  Areas of strong contour or downslope flows often reflect this echo character 

(Damuth and Hayes 1977; Damuth 1975; 1980).  Given the location of these echoes within 

the Zambezi Channel, contour currents are an unlikely proposition.  In this case, this echo 

character likely represents finer grained overflow deposits on the upper terraces; these 
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terraces thus represent relict features associated with a downslope progradational wave as 

described by Métvier et al. (2005). These have been subsequently left perched above the 

present-day channel floor.  These terraces are periodically overlain by overflow deposits 

represented by a distinct seafloor reflector with several continuous to discontinuous sub-

parallel sub-bottom reflectors (IB) (Fig. 7.3).  Lower terraces show less of the Type IIID 

character, and are likely swept by the coarse fraction of high volume downslope flows thus 

accounting for their echo-character similarity with those of the channel floor. 

Levee echo character is predominantly restricted to type IB echoes (Fig. 7.3).  Such 

echo character has been associated with sediments that contain only very minor amounts of 

bedded sand/silt (Damuth and Hayes 1977; Damuth 1975) and indicate lower energy 

processes.  This echo character is most common in the submarine setting covering hundreds 

of kilometres of the continental slope, rise and abyssal plain in numerous marine basins 

associated with pelagic and hemipelagic deposition, together with deposition by bottom water 

currents and the distal-most (low energy) deposits of turbidity currents (Damuth and Hayes 

1977; Damuth 1975; 1980).  In this instance, the deposition of the fine fraction by 

overtopping the main channel, generally at channel bends, seems a plausible mechanism for 

their genesis.  In this light, settling of this sediment creates levees of finer material, which 

overlie a series of relict terraces (see Fig. 7.3).  A departure from the typical Type IB levee 

echo character is observed only along the Tsiribihina Channel where echoes approaching type 

IIIA are observed.  The bathymetry shows a series of related bedforms that are superimposed 

on the levee of the Tsiribihina Channel.  The change in echo character is associated with a 

change in bedform orientation, as well as the presence/absence of bedforms, across the levee 

from north to south.  Where bedform crests are orientated oblique to the ship track, 

hyperbolic echoes, with occasional bow tie reflectors, are present.  The bedform crest 

orientation changes across the levee, eventually becoming parallel with the ship track, 

associated with sediment waves characterised by IIIA echoes (Fig. 7.6).  

7.3.3. Comparison of the Zambezi Channel with empirical results 

With respect to the anatomy of the channel, it approaches the character of 

experimental channel results obtained by Métvier et al. (2005) (Fig. 7.10).  In many 

instances, the locations and geometries of the side wall scarps, terraces, levees and pools are 

directly comparable between the experimental model and the Zambezi Channel.  The model 

of Métvier et al. (2005) was created with a significant degree of control over the 
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“depositional setting” responsible for the formation of the channel; the associated formative 

processes thus responsible for the anatomy and geometry of the experimental channel can be 

inferred for the Zambezi Channel.  To this end, Métvier et al. (2005) suggest that a 

progradational wave of downslope sediment movement and aggradation, may precede an 

erosional wave of downslope sediment erosion during the formation of the channel.  The 

progradational waves are responsible for the build-up of sediment (i.e., development of lobes 

on the channel flanks), while the subsequent erosional wave removes these progradational 

deposits along the channel thalweg leaving the lobes as relict, perched, features on the 

channel flanks in the form of terraces.  This model still allows for the formation of cut-

terraces, in accordance with thalweg migration and axial incision, within the main channel.  

In light of the terraces may represent relict progradational wave lobes subsequently eroded by 

the erosional wave propagating downslope, rather than the result of lateral channel migration.  

Métvier et al. (2005) also show that there is a distinct relationship between sediment flux and 

slope where low sinuosity channels are more likely to develop on moderate slopes with low 

sediment flux. However, as sediment flux increases straight channels can develop on higher 

gradient slopes.  The low sinuosity Zambezi Channel has experienced a significant degree of 

sediment flux throughout its evolution within the Mozambique Basin (discussed in 7.3.5. 

Evolution of the Zambezi Channel system).  This highlights another similarity between the 

behaviour of the modelled result and the likely evolution of the Zambezi Channel. 

Departures from the model experiments and the Zambezi Channel do exist. There are 

several reasons for the departure in morphological character and genesis of the Zambezi 

Channel.  Firstly, the particle size and density in the experimental channel was strictly 

controlled, the result was little variation in grain size and density.  Turbidity currents that 

were released down the model profile would not have a clear enough distinction between the 

flow traction carpet and the tail to promote the process of overspilling or flow stripping (cf. 

Parsons et al., 2007). As such, fine grained levee deposits would not be expected in the 

experimental result.    

Secondly, the sediment delivery along the southeastern Mozambique continental 

margin and deep Mozambique Channel is affected by a dynamic current regime (Walford et 

al., 2005; Schulz, et al., 2011) that controls sediment dispersal and delivery to the slope and 

abyssal plain.  Recent studies show that the sedimentation to the west of the Zambezi 

Channel, within the northern Mozambique Basin, is dominated by reworking in accordance 

with bottom-water circulation (Kolla et al., 1980; Breitzke et al., Subm.; Chapter 8).  Thus 
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not all the sediment delivered to the shelf reaches the slope.  A portion of the sediment that 

does reach the slope is redistributed by deep reaching circulation, effectively removing this 

sediment from the Zambezi Channel system. 

Thirdly, the underlying structural control on accommodation space by antecedent 

geology must play some role in the morphology of the Zambezi Channel.  The Zambezi 

Channel is not free to develop in an unconfined manner. Rather, the course is initially 

directed from the Zambezi continental shelf region, coast perpendicular, toward the southern 

Davie Ridge.  However, this course is not sustainable and is subsequently forced to migrate 

clockwise continuing southwards, in an elongate north/south topographic low, now confined 

between the west coast of Madagascar, the Madagascar Ridge and the aforementioned islands 

and seamounts (Fig. 7.10).  Thus, antecedent geology acts to confine the development of the 

Zambezi Channel, resulting in the “dog-leg” morphology exhibited by the present-day 

channel system. 

7.3.4. Evolution of the Zambezi Channel system 

The present-day anatomy of the Zambezi Channel is linked to the evolution of the 

system as a whole.  Droz and Mougenot (1987) suggest that the Zambezi Channel was 

initiated in the Oligocene to early Miocene as the downslope, southern extension of the Serpa 

Pinto Channel (Fig. 7.11).  It was during this time that Walford et al. (2005) postulate the 

initiation of the Mozambique Current.  Over this period sediment loads to the Zambezi delta 

show a marked increase, associated with hinterland uplift that affected southeastern Africa 

(Walford et al. 2005).  This period of uplift, associated with forced regression and increased 

sediment transport past the shelf-edge, was also recorded along the east coast of South Africa 

by the development of the Tugela Canyon along the east coast of KwaZulu Natal (Dingle et 

al., 1983; Chapter 4). 
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Fig. 7.10. a) Experimental channel of Métvier et al. (2005). b) Zambezi Channel, this study. Note the location, 

and relative position, of side wall scarps (SWS), terraces (Tr), channel pools (Pl) and levees (Le) in each figure. 

By the mid-Miocene, activity in the Serpa Pinto valley decreased and the dominant 

sediment supply to the Zambezi Channel switched to the Zambezi Valley (mid-Miocene to 

Pliocene) rather than the northern sources (via the Serpa Pinto Channel) (Droz and 

Mougenot, 1987) (Fig. 7.11).  With the development of the EARS, and uplift of southern 

Africa, the sediment load delivered to the Zambezi delta and shelf once more increased 

(Dingle et al., 1983; Droz and Mougenot, 1987, Walford et al. 2005). This developed a new 

staging area for sediment supply that would ultimately be transported via the Zambezi valley 

to the Zambezi Channel.  During this period, river capture upstream of the Victoria Falls took 

place and resulted in elevated sediment flux to the continental margin (Walford et al., 2005).  
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The contemporaneous southerly transport of sediment via the Serpa Pinto Channel continued 

to decrease, being dominated by infilling, rather than transport of sediment to the Zambezi 

Channel (Droz and Mougenot, 1987).  Major channel building periods, during which 

progradational/erosional waves are the dominant process in channel development, are likely 

linked to these periods of hinterland uplift in which sediment delivery to the Mozambique 

continental shelf (Walford et al., 2005).  

The period of increased sediment flux to the Zambezi margin is mirrored along the 

east coast of South Africa where a second phase of incision on the shelf and increased 

sediment transport from the hinterland to the Natal Valley was recorded in the Tugela 

Canyon (Chapter 4, Fig. 4.10).  The protracted late-Miocene to Pliocene uplift (Partridge and 

Maud, 2000), also resulted in the initiation of the Cape canyon (Wigley and Compton, 2006), 

caused several submarine canyons to form on the northern KwaZulu-Natal margin (Green, 

2011a), and is considered to have caused several slumps on the southern African margin 

(Dingle, 1980).    Relatively minor flows, during the intervening periods of reduced sediment 

delivery, are likely responsible for channel maintenance, rather than modification.   

As a tributary to the Zambezi Channel the Tsiribihina Channel must have played a 

role in the evolution of the Zambezi Channel, downslope of the confluence.  Droz and 

Mougenot (1987) posit that the Tsiribihina channel only became a tributary to the Zambezi 

Channel in the Pleistocene.  This would suggest overtopping of the confining Davie Ridge in 

this region during the Pleistocene, thus allowing the westward transport of sediment to occur. 

This was sourced from Madagascar and directed toward the Zambezi Channel (Droz and 

Mougenot, 1987).  Given the nature of the confluence between the Zambezi and Tsiribihina 

channels, the latter must have been very energetic for a considerable period of time in order 

for it to have incised to the approximate level of the Zambezi Channel at the confluence, 

despite the time delay (Oligocene to Pleistocene) in the initiation of the Tsiribihina Channel 

as a tributary.   

The 1.05 confluence width to tributary width ratio of the Zambezi/Tsiribihina 

confluence is above the average ratio of 0.9 calculated from various margins globally, and 

ideal value of 1 (Fig. 7.12), and similar to channel C1 of the Espirinto Santos Basin, channels 

of the Niger Delta, and examples from the US Atlantic margin.  A value of 1 indicates that 

the combined pre-confluence channel width is equal to the width of the confluence junction.  

This in turn suggests synchronous activity (equal development) of the pre-confluence 
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channels.  Deviation from this ideal value of 1 reflects variation in channel activity through 

the lifespan of the channels in question.  With respect to the Zambezi/Tsiribihina channel 

confluence this deviation from the ideal value is reflected in the tributary/confluence width 

ratio of 1.05, the unequal morphology of the channel floor depth at the confluence, and the 

asymmetrical nature of the confluence junction.  The locations of submarine channel 

confluences are often associated with regions of lateral confinement (Gamboa et al., 2012).  

In this study, the antecedent geology of the Mozambique Basin acts to confine the available 

transport pathways influencing the location of the confluence. 

Thus, throughout the development of the Zambezi Channel the setting and conditions 

in which the system exists have been in constant flux.  Sediment input volumes to the margin, 

changes in sediment source, a complex circulation system and accommodation space under 

significant structural control by antecedent geology (in association with regional tectonics) 

creates a setting comparable to the dynamic settings of the high latitudes.  It is this dynamic 

source and flux of sediment that accounts, in part, for the straight channels in these high 

latitude regions, along with Coriolis force (Peakall et al., 2012).  In this instance, the dynamic 

source and flux of sediment, along with accommodation space, that promote the straight 

morphology of the Zambezi Channel. While the channel anatomy likely results from the 

formative processes directly, and are comparable to experimental results. 

 



Microtopography and Bottom Water Circulation of the Southwest Indian Ocean 

107 
 

Fig. 7. 11. The proposed evolution of the Zambezi Channel from the Oligocene to present. 
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Fig. 7.12. Global confluence width to tributary width ratios vary greatly. The Zambezi/Tsiribihina confluence 

lies slightly above the global average.  
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Chapter 8 

Microtopography and Bottom Water circulation of the northern Mozambique Basin. 

8.1 Introduction 

The purpose of this chapter is to provide an overview of the sedimentary dynamics 

and geomorphology of the northern Mozambique Basin. The basin occurs between southeast 

Africa and western Madagascar (Fig. 1.2) and is unique with regards the complex interactions 

between basin floor sediment, bottom water circulation, antecedent geology and hinterland 

tectonism. Despite several promising investigations of the southwest Indian Ocean and 

Mozambique Basins in the 1960s – 1970s (Damuth, 1980; Kolla et al., 1980; Martin 1981a; 

Dingle et al., 1987; Droz and Mougenot, 1987), little further research has been undertaken.  

However, over the past several years renewed interest has been shown in the area (Saria et 

al., 2014; Chapter 3 and 4) thus prompting a call to re-examine and interpret the complex 

seafloor morphology and shallow geomorphology.  

8.2 Results 

8.2.1 Distribution of seafloor types 

Seafloor Type BI, smooth seafloor, dominates the northern Mozambique Basin (Fig. 

8.1 for all seafloor type distributions, Table 8.1 for summary).  Approximately east-west 

orientated, 3D (bifurcating) sediment waves, with a wavelength of ca. 2.3 km, comprise 

seafloor Type BII.  Type BIII is characterised by a rough seafloor, comprising discontinuous, 

well-defined, narrow 3D sediment waves (λ= ca. 4.5 km).  The fourth type, BIV, consists of 

southeast-northwest orientated 3D sediment waves (λ = ca. 1.85 km).  Type BV shows 

randomly distributed 3D sediment waves, with two dominant orientations, east-west and 

southwest-northeast, throughout the zone (λ = ca. 1.4 km).  Southwest-northeast orientated, 

2D sediment waves comprise Type BVI (λ = ca. 1.23 km).  Type BVII seafloor is 

characterised by an irregular distribution of mixed scale bedforms and features. The final 

type, BVIII, comprises contour parallel 2D sediment waves. 
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Fig. 8.1: Eight (BI – BVIII) types of seafloor were recognised in the multibeam bathymetry data.  The zones (II 

smooth, III sediment waves, and IV regular hyperbolae) delineated by Kolla et al. (1980) are shown for 

comparison (dotted white lines).   

8.2.2 Description of seafloor types 

Type BI, figure 8.3, seafloor occurs predominantly along the eastern, southeastern and 

northwestern boundary of the study zone, with isolated diagonal patches across the middle of 

the area (Fig. 8.1, Table 8.1).  The eastern boundary of this seafloor type contains the lower 

reaches of the Zambezi Channel and its associated channel-levee complex.  The southeastern 

portion, although smooth, is cut by a number of relatively small canyons/channels which 

trend northeast-southwest.  Levees and lobes of sediment associated with these features are 

evident in some instances (Chapter 7).      

In the northwest, the Type BI seafloor is essentially featureless with only minor 

channels crossing the shallower margins (2900 – 3150 m) of a wide and flat seafloor basin 

(roughly 240 km north-south by 180 km east-west, approaching 3400 m at its centre).  

Smaller, isolated patches of Type BI seafloor are found at depths of 3200 – 3700 m, 
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comprising either depressions or wide “valleys” between the adjacent seafloor types.  The 

“valleys” show defined channels orientated along the valley floor toward the deeper regions. 

Type BII seafloor is orientated southwest-northeast across the southern portion of the 

study area (Figs. 8.1 and 8.3, Table 8.1).  The 3D sediment waves with crests (aligned 

southwest-northeast) roughly parallel to local isobaths diminish in size toward the north and 

in aerial extent toward the south, where Type BI seafloor is mostly prevalent.  This type of 

seafloor is not evident elsewhere in the basin. 

Fig. 8.2. Type BI seafloor, characterised by smooth seafloor (Sm) and occasional channels (Ch). 

 

Fig. 8.3. Type BII seafloor associated with northeast-southwest sediment waves (Sw). 
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Type BIII is found in the southwest of the study area, covering a region of ca. 230 x 

120 km within the northern Mozambique Basin (Figs. 8.1 and 8.4, Table 8.1).  Sediment 

waves observed within these zones are orientated (crests aligned southwest-northeast) 

roughly parallel to local isobaths.  Rugged seafloor occupies the area between sediment wave 

fields. 

Fig. 8.4. Sediment waves (Sw) and rugged (Ro) seafloor typifies Type BIII seafloor zones. 

Type BIV seafloor occurs from the western boundary eastwards, diminishing in extent 

towards the eastern boundary of the basin where it terminates ca. 50 km west of the Zambezi 

Channel (Figs. 8.1 and 8.5, Table 8.1).  This is the only example of this seafloor in the study 

area, covering a region of seafloor 360 x 220 km in extent.  Sediment wave crests are aligned 

oblique to the local isobaths. 

 

Type BV seafloor is found at a depth of ca. 3100 – 3300 m and extends north-south in the 

central study area, covering an area 310 x 150 km in dimension (Figs. 8.1 and 8.6, Table 8.1).  

This seafloor type is dominated by sediment waves of two primary orientations, west-east and 

northeast-southwest (Table 8.1).  



Microtopography and Bottom Water Circulation of the Southwest Indian Ocean 

113 
 

Fig. 8.5. Southeast-northwest orientated sediment waves (Sw) characterise Type BIV seafloor. 

Fig. 8.6. East-west and southwest-northeast orientated sediment waves (Sw) of Type BV seafloor. 

Seafloor Type BVI is one of the least aerially extensive of the seafloor zones 

recognised, covering 146 x 72 km, (Figs. 8.1 and 8.7, Table 8.1) and is wholly confined by 

five other types of seafloor (Types BI, BII, BIV, BV and BVIII).  Bound by levees of the 

distal Zambezi Canyon to the east, it extends west toward the centre of the study area where it 

terminates against Type BV and BVI seafloor zones.  Sediment wave crests, associated with 

this seafloor type, are orientated oblique to local isobaths (Table 8.1). 
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Fig. 8.7. Southwest-northeast orientated sediment waves (Sw) associated with the isolated Type BVI seafloor 

zone. 

The Type BVII seafloor occupies four main zones, two in the central region, and two 

in the northeast portion of the study area (Figs. 8.1 and 8.8, Table 8.1).  This seafloor zone is 

typified by rugged, irregular seafloor features with no particular orientation.  Each of these 

areas are approximately 100 – 120 km long and 80 – 100 km wide, at depths 3000 – 3300 m.  

Bordering the western portion of the larger Type BV seafloor zone, seafloor Type 

BVIII is encountered (Figs. 8.1 and 8.9, Table 8.1).  This seafloor type is confined to the 

gentle slopes of the central basin dropping westward away from the 3200 m isobaths in a 

crescent-shaped form. It occupies and area 115 x 22 km in size.  The crests of the sediment 

waves associated with Type BV seafloor are orientated parallel to the local isobaths (Table 

8.1). 
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Fig. 8.8. Rugged seafloor (Ro) typifies Type BVII seafloor. Smooth seafloor (Sm) and Sediment waves (Sw) 

occupy the intervening areas. Ch denotes a seafloor channel. 

 

Fig. 8.9. Sediment waves (Sw) parallel to isobaths on the western slopes of a bathymetric high characterise Type 

BVIII seafloor.  

 

 

 

 
Table 8.1. Summary of seafloor types, distribution and prominent features. 
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Seafloor 

Type 

Locality Features Wavelength Amplitude 

Type BI Eastern, southeastern, 

northwestern regions. 

Smooth seafloor, cross-cut by 

channels. Recognised on 

levees. 

n/a n/a 

Type BII Southern region. 3D bifurcating sediment 

waves, crests parallel to 

isobaths. 

ca. 2.3 km ca. 60 m 

Type BIII Southwest regions. Sediment waves, crests 

parallel to isobaths. 

ca. 4.5 km ca. 50 m 

Type BIV Western and central 

regions. 

3D sediment waves, crests 

oblique to isobaths. 

ca. 1.85 km 20 – 90 m 

Type BV Central region, 

extending northwards. 

Sediment waves, west-east 

and northeast-southwest sets, 

with crests oblique to isobaths. 

ca. 1.4 km ca.40 m 

Type BVI Central regions, 

confined by Types BI, 

BII, BIV, BV and BVIII. 

Sediment waves, crests 

oblique to isobaths. 

ca. 1.23 km ca. 45 m 

Type BVII Central and 

northeastern regions. 

Rugged, irregular seafloor. n/a  n/a 

Type BVIII Central regions. Sediment waves with crest 

parallel to isobaths. 

ca. 1.5 km ca. 35 m 
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8.2.3 Echo character classification 

A total of ten echo types were identified within the study area, these types are listed in 

Table 8.2., and described below. 

Table 8.2: Summary of Broad and Localised echo character types. 

Echo category Echo type Echo character 

Distinct echoes Type (IB) Sharp, continuous echoes with several sharp continuous parallel 

sub-bottom reflectors. 

Indistinct 

echoes: 

 Prolonged 

Type (IIA) Very prolonged echoes with no sub-bottom reflectors. 

 Type (IIB) Semi-prolonged echoes with intermittent sub-bottoms. 

 Type (IIC) Irregular, semi-prolonged echoes with several discontinuous sub-

bottom reflectors. 

Indistinct 

echoes: 

Hyperbolic 

Type (IIIA) Distinct, undulating bottom echoes with semi-prolonged to 

discontinuous parallel sub-bottoms. 

 Type (IIIB) Large, single hyperbola with varying vertex elevations. 

Localised 

echoes 

Type (IVA) Regular, intense overlapping hyperbola with little to no vertex 

elevation. 

 Type (IVB) Oblate to elongate bodies with no defined internal structure and a 

low amplitude irregular/hummocky upper surface. 

 Type (IVC) Lumpy to botryoidal bodies with prolonged echo to transparent 

internal structure. 

 Type (IVD) Blocky bodies associated with scarps/slip planes. 

8.2.3.1 Echo character types 

Type IB echoes exhibit distinct, sharp and continuous bottom echoes with several 

parallel sub-bottom reflectors (Fig. 8.10).  The number of sub-bottom reflectors may vary. 

There are generally at least four but can reach up to seventeen.  

Type II echoes are indistinct, though three sub-types are recognised: IIA are very 

prolonged with no sub-bottom reflectors (Fig. 8.11a), while IIB are semi-prolonged with 

intermittent sub-bottom reflectors (Fig. 8.4b).  Irregular, semi-prolonged bottom echoes (20m 

penetration), with several discontinuous sub-bottom echoes characterise Type IIC (Fig. 

8.11c). 
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Fig. 8.10. Type IB echo character. Several parallel sub-bottom reflectors underlie a distinct seafloor return. 

Fig. 8.11. a) Type IIA echoes are very prolonged with no sub-bottom reflectors. b) Semi prolonged with 

intermittent sub-bottoms characterise Type IIB echoes. c) Irregular, semi-prolonged bottom echoes (20m), with 

several discontinuous sub-bottom echoes characterise Type IIC. 

Distinct, undulating bottom echoes (individual hyperbola) with semi-prolonged to 

discontinuous parallel sub-bottoms are classified as Type IIIA echo character, a modification 

of Type IIIC of Damuth (1980) (Fig. 8.12a).  Large, regular, single hyperbolic echoes (at 

times indistinct), with slightly varied vertex elevations above the seafloor are classified as 

Type IIIB echoes (Fig. 8.12b).     
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Fig. 8.12. a) Distinct, undulating bottom echoes (individual hyperbolic echoes) with semi-prolonged to 

discontinuous parallel sub-bottoms represent the Type IIIA echo character class. b) Large, single hyperbola (at 

times indistinct, with marginal overlapping of forms), displaying varied vertex elevations above the seafloor 

were classified as Type IIIB echoes. 

Three localised echo character types are also described.  These echo types are found 

in laterally confined areas and are uncommon throughout the study area.  They occur as 

isolated surface and sub-bottom returns within the areas dominated by the broad echo types 

mentioned above.  Small (ca. 10 m), regular, intense overlapping hyperbolae, with little to no 

vertex variation about the seafloor, were classed as Type IVA echoes (Fig. 8.13a), whereas 

oblate to elongate bodies with no defined internal structure and a low amplitude 

irregular/hummocky upper surface characterise Type IVB echoes.  Typically the base of 

these Type IVB packages, in contact with the underlying seafloor, is clearly visible (Fig. 

8.13b).  Type IVC echoes manifest as lumpy, or botryoidal bodies, that showing a prolonged 

echo and at times may have a transparent internal structure (Fig. 8.13c).  Type IVD echoes 

represent the final class, and comprise blocky bodies of various scale which have scarps or 

potential slip planes above them (Fig. 8.13d). 
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Fig. 8.13. a) Type IVA echoes show regular, intense overlapping hyperbola, with little to no vertex variation. b) 

Oblate to elongate bodies with no defined internal structure (chaotic) and a low amplitude irregular/hummocky 

upper surface characterise Type IVB echoes. c) Type IVC echoes are denoted by lumpy, or botryoidal bodies 

showing a prolonged echo to transparent/indistinct internal structure. d) Blocky bodies, of varied scale, represent 

Type IVD echoes. Note the Type IB echoes returned from the channel fill in this case.  

8.3 Discussion 

8.3.1 Relating microtopography to basin processes 

The previous seafloor boundaries described by Kolla et al.(1980) are overlaid on the 

final seafloor character map of this study for ease of comparison (Fig. 8.14).  It is clear that 

the northern Mozambique Basin can be divided into eight seafloor types based on the 

character of bedforms, as distinguished from bathymetric and PARASOUND data.  This is a 

major advance on the four broad microtopographical zones delineated by Kolla et al. (1980).  
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Overall, the findings of this study are similar to those of Kolla et al. (1980) (Fig. 8.14).  

Zones II and III ((BI) and (BII) this study) defined by Kolla et al. (1980) were recognised and 

appeared to occupy the same position as identified in 1980.  The formative processes 

associated with these two zones, turbidity currents and bottom water currents (Kolla et al., 

1980), also appear to be the same.  The existence of smooth seafloor to the east of the 

Zambezi Channel, as suggested by Kolla et al. (1980), is similarly confirmed in this study.  

Zone IV, the regular hyperbolae of Kolla et al. (1980), was actually found to comprise a 

number of distinct seafloor types, a notable deviation from the single zone described 

previously.  This study found that areas were instead dominated by sediment waves of 

various orientations and origins, in addition to smooth and irregular seafloor.  The increased 

resolution of the multi-beam bathymetry data was key to the differentiation of seafloor types 

in this instance. 

8.3.1.1 Microtopography 

The most prevalent bedforms within the study area are sediment waves. These 

features showed a range of spacing from ca. 1 km to several kilometres.  The orientation 

(long axis parallel to the crest of bedforms) of the sediment waves also varies within the 

study area, in addition to the bedform shape.  Some orientations appear to be parallel to the 

local isobaths, while others are offset from these isobaths with sediment wave crests aligned 

oblique to local isobaths.  Portions of the seafloor not covered by sediment waves are either 

relatively smooth or irregular in character.  The Zambezi Channel and levee complex 

dominates the eastern portion of the study area.  This feature is discussed in detail in Chapter 

7. 

The area under investigation was initially delineated into zones on the basis of 

spacing and orientation of bedforms identified using multibeam bathymetry data.  There is 

good agreement between the type of microtopography delineated, with reference to the 

multibeam bathymetry data, and the echo character of the shallow seismic data from the same 

areas (Table 8.3).  The location and attitude (orientation in relation to bathymetry) of 

sediment waves suggest two different formative processes for these features in the northern 

Mozambique Basin. 

Wynn and Stow (2002) maintain that currents, either as downslope-flowing turbidity 

currents or along slope-flowing bottom currents may interact with the seafloor to produce 
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sediment waves.  This appears to be the case in the northern Mozambique Basin as discussed 

below.   

Fig. 8.14. Microtopographic zones with in the northern Mozambique Basin. Comparison with Zones II, III, and 

IV of Kolla et al. (1980) illustrated by the white dotted lines. Silica and carbonate content of sediment (after 

Kolla et al., 1980) is also shown.  The delineated Zones II and III of Kolla et al. (1980) are roughly comparable 

to those of this study, allowances being made for a lack of multibeam bathymetry data and positioning 

inaccuracies in the case of the earlier interpretation. See Table 8.1 for seafloor type details. (MtB = Mount 

Bourcart, Smt = Unnamed seamount, JS = Jaguar Seamount, BaI = Bassas da India, Eu = Europa Island, ZC = 

Zambezi Channel) 
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Table 8.3: A summary of multibeam and 3.5 kHz PARASOUND classification of the seafloor of the northern 

Mozambique Basin.  

Multibeam Echo character Microtopographic 

description 

Interpretation 

Type (BI)  Type (IIA); (IIB) and 

(IB) 

Flat  Deposition by turbidity 

currents. 

Type (BII) – 

(BVI) 

Type (IIIA) Sediment waves Sediment wave dominated 

sheeted drifts influenced by 

bottom water circulation. 

Type (BVII) Type (IIC); (IIIB). 

Lesser (IB); (IIA). 

Irregular seafloor 

morphology. 

Scoured/sediment starved regions. 

Type (BVIII) (IIIA) Sediment waves Deposition by turbidity currents. 

8.3.1.2 Current circulation, turbidity currents and relationship to bathymetric character  

The passage of THC within the Mozambique Basin is known from hydrographic 

research and THC pathways have been postulated previously by many authors (cf. 

Ridderinkhof and de Ruijter, 2003; van Aken et al., 2004; Schott et al., 2009), however, this 

is the first time the resultant bedforms have been discussed, and found to support these 

previous studies (Breitzke et al., subm.) (Fig. 8.15). 

As both deep seated THC and turbidity currents may form sediment waves, careful 

attention must be paid to the setting and character (i.e., crest orientation) of these sediment 

waves (Table 5.2).  As both AABW and NADW are in contact with the seafloor of the 

northern Mozambique Basin as it shoals from south to north (van Aken, 2004), these currents 

are thus viable options as formative controls on sediment waves in certain areas of the 

Mozambique Basin.  The regions of seafloor influenced by the AABW and NADW currents 

are characterised by low gradients and are unlikely to generate turbidity currents of regional 

extent.  First to come into contact with the seafloor, as it shoals northward, at ca. 4500 m is 

the deeper AABW current (van Aken 2004; Breitzke et al., subm.).  Within the depth range of 

AABW, three dimensional southwest/northeast orientated sediment waves on a sheeted drift 

dominate the seafloor (Type BII seafloor, Figs. 8.2 and 8.4).  As regionally extensive 

turbidity currents are unlikely, these sediment waves may represent the interaction of AABW 

with sediments of the seafloor.   

The basin continues to shoal northwards into depths of 2000 – 3500 m, occupied by 

NADW flowing northeastwards (van Aken, 2004).  Sediment waves in this region are 

orientated southeast/northwest (Type BIII and BIV seafloor), their crests oblique to local 
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isobaths and perpendicular to NADW flow.  It is likely that these sediment waves have 

developed in response to the passage of NADW over the seafloor surface.  These sediment 

wave fields are interrupted by areas of irregular bathymetry (Type BVII seafloor) which 

suggests the reorganisation of sediments into sediment waves in some areas, with 

nondeposition or scour in others reflecting more basement control in the irregular seafloor 

surface that is essentially sediment-starved.  As turbidity currents are not typically associated 

with irregular seafloor deposits of this scale, such currents are unlikely to be responsible for 

creating this seafloor type.  Given that this seafloor type occurs amongst various seamounts 

past which the NADW flows, turbulence associated with the proximal passage of NADW to 

these seamounts is proposed to account for seafloor scour and development of irregular 

seafloor character, thereby removing and redistributing the sediments downcurrent.   

Zones BV and BVI represent areas that host two sets of sediment waves in close 

proximity.  Southwest/northeast orientated (crests) sediment waves characterise Type BV and 

BVI seafloor, additionally west-east sediment waves are associated with Type BV seafloor.  

These areas may be under the influence of eddies and bifurcation within the NADW current 

(van Aken et al., 2004), Mozambique Current Eddies (Ridderinkhof and de Ruijter, 2003; 

Schott et al., 2009; Breitzke et al., subm.), or East Madagascar Current Eddies spilling over 

the Madagascar ridge (Chapman et al., 2003; de Ruijter et al., 2003; Quartly and Srokosz, 

2004; Quartly et al., 2006).  Occupying the western flanks of the Zambezi Channel, levee 

breaching turbidity currents may also be responsible for the southwest/northeast orientated 

sediment waves.  In reality it is likely a combination of all these formative processes.  With 

the available data it is difficult to separate them.  Type BVIII seafloor, dominated by slope 

parallel sediment waves (crests aligned parallel to isobaths) is typically confined to slopes 

surrounding Type BVII seafloor describing a crescent shaped area within the region.  Given 

the parallel orientation of these sediment wave’s crests to the local isobaths downslope rather 

than downcurrent processes are likely the controls on formation.   
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Fig. 8.15. A schematic illustration of the interaction between deep ocean circulation (a-NADW; b-AABW) and 

the surficial sediments of the northern Mozambique Basin. Field of sediment waves are associated with THC. At 

deeper levels, AABW is responsible for large three dimensional sediment waves, while at shallower levels 

NADW circulation have developed southeast/northwest orientated bedforms. Irregular seafloor around the 

Jaguar seamounts is associated with turbulent scouring reorganisation of sediments as the NADW navigates 

between the seamounts. 
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Chapter 9 

9.1. Concluding remarks 

The southwest Indian Ocean has had a protracted and complex evolution beginning 

with the break-up of Gondwana 146 million years ago.  Since the initiation of the first beak-

up event, several other significant events (including the formation of the Mozambique Ridge, 

several phases of hinterland uplift, and southward propagation of the EARS) have sculpted 

two major southwest Indian Ocean basins, the Natal Valley, and the Mozambique Basin.  

Despite these basins being located adjacent to each other, they have each responded 

differently to these regional events.   

9.1.1. Tectonic history Natal Valley 

Anomalous seafloor mounds in the Natal Valley represent a morphological class that 

is distinct from other seamounts, sharing more similarities with terrestrial alkaline complexes 

on the adjacent African continent than other submarine features.  They mark a line of 

continuation of several alkaline complexes likely related to development of the East African 

Rift System and associated igneous activity.  The mounds, compared to their terrestrial 

counterparts, show evidence of recent sediment draping and smoothing of their topographic 

profiles.  These features may represent an offshore extension of the East African Rift igneous 

activity, implying a southward propagation of the East African Rift into a mature ocean basin, 

a phenomenon previously unrecognised from continental rift systems.  As proximal to the 

western and southeastern plate boundaries of the Rovuma plate, these mounds have 

implications for the movement of the Rovuma plate, better defining the southern plate 

boundaries and allowing for better constrained models of plate dynamics in this region to be 

produced.   

9.1.2. Sediment delivery Natal Valley 

The Tugela Canyon, responsible for the delivery of sediment to the Natal Valley, has 

evolved via downslope erosion, primarily driven by sediment gravity flows or dilute turbidity 

currents. These initiated from periods of upper slope progradation whereby the oversteepened 

upper slope acted as a source for these flows.  These periods can be linked to uplift of the 

hinterland and are interposed with periods of pelagic canyon infilling. 
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Two minor periods of hinterland uplift in the mid Oligocene and mid Miocene caused 

the canyon to incise into the same palaeo-canyon surface.  A major period of uplift in the late 

Pliocene caused protracted incision and the development of the main lower slope canyon. 

Upslope, this created a compound feature of nested palaeo-canyons, the most recent (late 

Pliocene) incision is now filled by pelagic deposition during a long period of quiescence.   

The contemporary Tugela Canyon rests within this infilled palaeo-canyon and appears to be 

moribund with respect to canyon forming processes. 

The contemporary canyon morphology is controlled to some extent by basement 

outcrop, though bed geometry also plays a role in the evolution of the canyon through 

preferential erosion of the western flank and levee development on the eastern flank. The 

associated contemporary Tugela Canyon fan appears to represent a mixed turbidity and 

bottom current smoothed pelagic system.  The lack of sediment input from the shelf is a 

result of sweeping by the Agulhas Current.  Along the abyssal rise, the fan’s limited extent 

and the lack of features such as lobes and channel levee complexes define it as an atypical 

sediment starved and bottom current winnowed system.  Winnowed sediment is driven 

northward into the northern Natal Valley, controlled largely by NADW. 

9.1.3. Seafloor characteristics of the Natal Valley 

The Ariel Graben creates a deep west to east saddle across the Mozambique Ridge at 

ca. 28°S.  This deep saddle in the Mozambique Ridge provides the potential for deep water 

exchange between the northern Natal Valley and Mozambique Basin.  A west to east change 

in character in the Ariel Graben is recorded in the sub-surface and expressed in the 

morphology of the seafloor and linked to deep water sediment transport.  Evidence of this 

transport is manifest as crudely developed plastered drifts in the west and a field soft 

sediment deformation, of limited extent, in the east of the study area.  Here current flow 

stripping due to increased curvature of the graben axis, results in preferential deposition of 

suspended load in accordance with reduced current velocity in an area of limited 

accommodation space.  This results in an over-steepened plastered drift.  Deposited 

sediments overcome the necessary shear stresses, resulting in soft sediment deformation in 

the form of downslope growth faulting (creep) and generation of undulating seafloor 

morphology. The observed seafloor and subseafloor characteristics are considered to be 

associated with a newly postulated NADW passage through the Ariel Graben, as opposed to 

influence by deep-reaching Agulhas Current activity. 
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9.1.4. Tectonics within the Mozambique Basin 

The data presented in Chapter 9 show an unusual west-east depression within the 

Mozambique Channel, in an area of relatively high seismic activity on the southeastern 

boundary of the Rovuma microplate.  Many attributes of the surrounding area, excluding the 

depression, are explained by typical deep sea processes, including erosion/deposition by deep 

reaching currents.  The depression marks a west-east orientated elongate zone bordered by 

steepened flanks.  The basin floor is devoid of significant sedimentary deposits, and reflects a 

character associated with rugged basement outcrop.  This depression is likely the surficial 

expression of the southeasterly extension related to the present-day kinematics of the East 

African Rift System.  To the east of this zone of extension, the Zambezi Channel funnels 

sediment from the African continent into the Mozambique Basin, loading the Rovuma and 

Lwandle microplates. 

9.1.5 The Zambezi Channel 

The lower submarine Zambezi Channel is not comparable to other systems from 

similar equatorial latitudes, and varies in character from the Tanzania channel, which shares a 

similar setting.  Some characteristics are similar to high latitude systems (e.g., low sinuosity, 

relatively wide channel in the distal reaches), including the NAMOC system.  Thus the 

Zambezi Channel does not fit into the general classification scheme for deep ocean channels, 

and represents a modified character with characteristics of both high and low latitude 

submarine channels. 

The development of the Zambezi Channel is linked to major periods of sediment 

influx associated with hinterland uplift.  The periodic nature of sediment flux, lack of direct 

connection to a significant fluvial source, and vigorous current regime resulted in a dynamic 

setting not conducive to the formation of a sinuous system comparable to other equatorial 

channels.  Episodes of progradational/erosional waves passing downstream through the 

system, associated with periods of increased sediment supply had a significant effect on the 

anatomy of the channel within the limited accommodation space provided by the structurally 

controlled northern Mozambique Basin.  At present, the Zambezi Channel exists within a 

sedimentary basin dominated by sediment waves, controlled by antecedent geology and a 

dynamic hydrographic regime. 
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9.1.6. Seafloor characteristics of the northern Mozambique Basin 

The northern Mozambique Basin is divided into eight microtopographic seafloor 

types based on the morphology and echo character of the seafloor.  Sediment wave fields 

with crest orientations oblique to local isobaths, and within the depth range of deep and 

bottom water currents, are attributed to deep THC.  Whereas sediment wave fields where 

crests are orientated parallel the local isobaths, and in proximal to the Zambezi Channel, are 

attributed to down-slope sediment transport by turbidity currents.  Areas of rugged, mixed 

scale, seafloor morphology represent current swept and sediment starved regions proximal to 

seamounts in the central region of the study area.  The microtopography of the northern 

Mozambique Basin is influenced by both bottom water circulation and turbidity currents.  

The circulation of bottom water has developed sediment wave-dominated sheeted drifts 

within the study area, while turbidity currents are responsible for the development of large 

areas of relatively smooth seafloor, as well as some sediment wave zones proximal to the 

Zambezi Channel.   
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The Natal Valley (southwest Indian Ocean) has a complicated and protracted opening history, as has the
surrounding southwest Indian Ocean. Recently collected multibeam swath bathymetry and 3.5 kHz seismic
data from the Natal Valley reveal anomalous seafloor mounds in the northern Natal Valley. The significance, of
these domes, as recorders of the geological history of the Natal Valley and SE AfricanMargin has been overlooked
with little attempt made to identify their origin, evolution or tectonic significance. This paper aims to describe
these features from a morphological perspective and to use their occurrence as a means to better understand
the geological and oceanographic evolution of this basin. The seafloor mounds are distinct in both shallow
seismic and morphological character from the surrounding seafloor of the Natal Valley. Between 25 km and
31 km long, and 16 km and 18 km wide, these features rise some 400 m above the sedimentary deposits that
have filled in the Natal Valley. Such macro-scale features have not previously been described from the Natal
Valley or from other passive margins globally. They are not the result of bottomwater circulation, salt tectonics;
rather, igneous activity is favoured as the origin for these anomalous seafloor features. We propose a hypothesis
that the anomalous seafloor mounds observed in the Natal Valley are related to igneous activity associated with
the EARS. The complicated opening history and antecedent geology, coupledwith the southward propagation of
the East African Rift System creates a unique setting where continental rift associated features have been
developed in a marine setting.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The geological evolution of the ocean basins is reflected in the shape
and form of the deep seafloor (Cochran, 1981; Dietz, 1963; Goff and
Jordan, 1988; Norton and Sclater, 1979). This typically comprises a
variety of features that range in horizontal scales from the micro
(10−3 km) to basin-scale (104 km) level. At the macro scale (10 km
and above), seafloor features are usually determined by the nature of
the basin margins (passive vs. active), the location of oceanic ridges
(including past spreading centres and abyssal hills) (cf. Goff et al.,
1997; Leinweber and Jokat, 2011a,b), fracture zones (Cochran, 1981;
Courtillot et al., 1999), and sediment input to the basin over time.

With respect to the shape and formof the deep seafloor,morphological
characteristics may vary with the type of feature encountered. Parameters
such as the height to width ratio, length to width ratio, slope angle
and flatness are useful measures for the morphological comparison
of different features. Furthermore, these parameters are suggestive
of general formative processes related to the origin of seafloor features
(Das et al., 2007; Kodagali, 1989; Mukhopadhyay and Batiza, 1994;
Mukhopadhyay and Khadge, 1990; Smith, 1988).

This paper describes a series of macro scale (ca. 30 km) seafloor
mounds in the Natal Valley, southwest Indian Ocean (SWIO). The
Natal Valley has a complicated and protracted opening history, during
the Jurassic and Cretaceous, which is reflected in the mixture of rifting,
shearing and drifting of the margin, coupled with episodic submarine
volcanism. The adjacent African continent, too, has a long tectonic and
seismic history. Following the break-up of Gondwana (Watkeys,
2006), the East African Rift System (hereafter EARS) is by far the most
dominant active feature on the continent (Chorowicz, 2005). The
EARS represents a 3000 km long discrete intracontinental rift zone
initiated some 30 Ma ago between the Nubian and Somalian plates
(Calais et al., 2006). EARS rift kinematics have resulted in thedevelopment
of two micro-plates, the northern Victoria plate, and southern Rovuma
Plate, with a possible third micro-plate, Lwandle, developing further
south (Calais et al., 2006; Stamps et al., 2008) through the interaction of
several rift segments comprising the EARS (Koehn et al., 2008). The East
African Rift is comparable in size to the West Antarctic Rift, and far more
accessible as it lacks the ice cover of the West Antarctic Rift (Fig. 1, insets,
lower right). Since the initiation of the EARS in the Afar region (NE
Africa), rift propagation has been southward (Burke, 1996), developing
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http://dx.doi.org/10.1016/j.tecto.2014.05.030
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Fig. 1. The south-west Indian Ocean (The GEBCO_08 Grid, version 20091120), showing no-
table basin features. The black arrow shows passage of the Agulhas Current, the dark-grey
arrow shows the NADW pathways, while the light grey arrows describe the route of the
AABW. The study area (white box), offshore of Durban (red circle), is enlarged showing
the location of the mounds. The mounds are identified as follows: 1 — northernmost, 2 —

southwestern and 3— southeastern. N–S transects (a, b and c) through the northern Natal
Valley are depicted by white lines.
West Antarctic Rift System (WARS) inset modified after Schmidt and Rowley (1986).
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two distinct southern extensions, the older eastern branch and younger
western branch (Ebinger, 1989; Ruppel, 1995; Wolfeden et al., 2004).
Both of these branches avoid the Archean cratons, taking advantage of
Proterozoic orogenic belts which represent preferential avenues for rift
propagation (Morley, 1999). The possible seaward extension of the eastern
branch of the EARS was discussed by Mougenot et al. (1986). These
workers suggested that the eastern branch joins up with the submerged
Cretaceous age grabens (located on the Tanzanian continental shelf)
associatedwith the drift ofMadagascar away fromAfrica. There is renewed
interest in this area, particularly in the vicinity of the Kerimbas Graben in
the northern Mozambique Channel. Similarly, we discuss the possible
southward extension of the western branch (southern Malawi Rift) into
the Natal Valley.

The Natal Valley Mounds were partly documented previously (cf.
Goodlad, 1986; Martin, 1984); however the significance of the mounds
was not recognised at that time and were considered non-descript
basement outcrop within the Natal Valley. Their significance as
recorders of the geological history of the Natal Valley and SE African
margin has been over-looked with little attempt made to identify
their origin, evolution and tectonic significance. This paper aims to
describe these features from a morphological and shallow seismic
perspective and to use their occurrence as ameans to better understand
the geological and/or oceanographic evolution of this basin.

1.1. Previous bathymetric work

As in all other basins, early work in the Natal Valley relied heavily on
high frequency seismic echo-character to describe the bathymetry and
shallow sub-bottom characteristics of the seafloor (cf. Dingle and
Camden-Smith, 1979; Dingle et al., 1978; Kolla et al., 1980). The primary
focus of this was to establish the acoustic stratigraphy and magnetic
character of the Natal Valley. The bathymetric and seismic data sets
were of sufficiently high resolution to resolve basin-scale features but
insufficient to resolve the scale and complexity of complicated seafloor
features that are easily revealed with modern multibeam and high
resolution seismic tools. With the introduction of multibeam swath
bathymetry systems to scientific research (in conjunction with high
frequency seismic systems); our capacity to document and describe
the deep-sea floor at far higher resolutions has been greatly increased.
Compared to Dingle et al. (1978), Goodlad (1986) and Martin (1984)
were able to resolve significantly more of the Natal Valley, providing
20 m interval bathymetry charts, and seismic reflection profiles (with
10, 40, 300 cubic inch air-guns). Seismic coverage was such that the
majority of the seafloor mounds were inadvertently missed, while the
20m interval bathymetric charts could not resolve the complex seafloor
in sufficient detail. Present technologies and techniques allow data to be
acquired at far higher resolutions. The recent acquisition of multibeam
swath bathymetry and high frequency seismic data in the Natal Valley
is testament to this (cf. Wiles et al., 2013). It is from the perspective
of increased resolution in both bathymetry and seismic data that we
re-investigate aspects of the Natal Valley seafloor and shallow subsur-
face geomorphology.

2. Regional setting

2.1. Geology and physiography

The Natal Valley is a N–S orientated basin located in the SWIO
(Fig. 1). Bound to the west by the south-eastern margin of southern
Africa and to the east by theMozambique Ridge, the Natal Valley shoals
north from the deep Transkei Basin toward the extensive coastal plains
of southernMozambique (Dingle et al., 1978; Goodlad, 1986). Although
both floored by an oceanic crust, the northern and the southern Natal
Valley (Fig. 1) are the product of two distinct spreading centres. The
former was created ca. 183–158 Ma (Leinweber and Jokat, 2011a)
while the latter opened ca. 138.9–130.3 Ma (Leinweber and Jokat,
2011b). By 90 Ma spreading within the Natal Valley had ceased (Ben
Avraham et al., 1993; Martin and Hartnady, 1986).

The western continental margin boundary of the Natal Valley
exhibits a narrow, 4–15 km wide, coast-parallel shelf (Dingle and
Robson, 1985; Green, 2011a,b). Departure from the narrow shelf is
observed offshore of the Zambezi, Limpopo and Tugela rivers where
sedimentary cones prograde into the Natal Valley (Dingle et al., 1978).
Over the past 65 Ma, sediment input into the Natal Valley has been
estimated at ca. 23m3/km2/year; the Limpopo andTugela rivers deliver-
ing the bulk of sediment to the basin which amounts to the deposition
of approximately 800 m of sediment in the basin (Flemming, 1980;
Partridge and Maud, 2000).

2.2. Oceanography

Bottomwater (a deep current in contact with the seafloor) circulation
within the Natal Valley is dominated by the equatorward flowing North
Atlantic Deep Water (NADW). The passage of NADW (ca. 1.2 × 106 m3

s−1) into the Natal Valley is controlled by two, likely contemporaneous,
systems (Fig. 1). The South Atlantic Current (SAC) facilitates the first
(southern) pathway, transporting NADW around the southern tip of
Africa. The NADW core then bifurcates; one branch (depth of 2000–
3500 m, salinity of 34.83%) continuing northeastward into the Natal
Valley via the Agulhas and Transkei basins respectively. The second
branch continues east beneath the meandering Agulhas Return Current
(Toole and Warren, 1993).

The second (northern) NADW pathway flows along the continental
slope, at depths between 2000 and 2500 m as it rounds the African
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continent passing via the Agulhas Passage into the Transkei Basin on its
approach to the Natal Valley (Schlüter and Uenzelmann-Neben, 2008;
Toole and Warren, 1993). A component of NADW returns southward
along the eastern boundary of the Natal Valley (constrained by the
western slopes of the Mozambique Ridge), while a portion of it crosses
a saddle (2500–3000 m depth) in the Mozambique Ridge at approxi-
mately 31°S latitude.

Antarctic Bottom Water does not enter the Natal Valley. Rather, it
passes through the Transkei Basin and around the southern edge of
the Mozambique Ridge entering the southern Mozambique Basin
beneath the northward flowing NADW core (Toole andWarren, 1993).

3. Material and methods

Data from two recent research cruises are used in this study; AISTEK
II aboard the R/V Sonne (Jokat, 2006) and AISTEK III aboard the R/V
Pelagia (Jokat, 2009). The Mozambique Basin was the focus of AISTEK
II, where bathymetric data were collected using a Kongsberg SIMRAD
EM120 (12 kHz) system. AISTEK III focused on the Mozambique Ridge
and Natal Valley, data were collected using a Kongsberg SIMRAD
EM300 (30 kHz) system. Both data sets were processed using CARIS
HIPS and exported as xyz ASCII files. The data were gridded using
Interactive Visualization Systems' DMagic (version 7.3.1a) and
displayed in Fledermaus (version 7.3.1a) for interpretation. The final
bathymetric chart has an output matrix of ~35 m capable of resolving
seafloor features at that approximate scale.

Very high frequency seismic data (vertical resolution ca. 1 m) were
simultaneously collected using both a 3.5 kHz (AISTEK III) and a
parametric ATLAS PARASOUND echosounder (AISTEKII). Complete
seismic coverage along the track was in some instances not achievable
due to technical difficulties. Data were processed using in-house
designed software, in addition to SEISEE (version 2.17.1.). These data
were incorporated into SEISEE for visualization and interpretation of the
echo character. Band pass filter was adjusted and colour gains were
applied to the data.

Morphological parameters for slope (average change in elevation
over distance), flatness, height to width ratios (H/W), and length to
width ratios (L/W) were measured (Fig. 2). The use of such parameters
is common practice when investigating the morphology of sea-floor
features (cf. Das et al., 2007; Kodagali, 1989; Mukhopadhyay and
Batiza, 1994; Mukhopadhyay and Khadge, 1990; Smith, 1988). The
slope angle is calculated as an average value describing the change in
elevation over horizontal distance. The flatness parameter reflects the
ratio of summit width to basal width. Changes in flatness are typically
Fig. 2. The schematic above shows the various parameters that were used in the morpho-
logical analysis of sea-floor features. Flatness represents the ratio of summitwidth (SW) to
basal width (BW), as measured from the summit and basal surfaces respectively. The
height to width ratios is determined by the feature elevation in relation to its basal
width. Basal length (BL) versus basal width (BW) gives the length to width ratio. While
the slope angle is given by the average change in elevation (EL) over horizontal distance
(HD) recorded from the feature.
manifest in changes in slope angle, basal width and summit width, but
not necessarily height. The H/W ratio is symptomatic of the flatness
and slope parameters, thus changes in this ratio are associated with
changes in flatness and slope angle (Das et al., 2007). The H/W ratio
allows comparisons of submarine igneous features to be made and is
suggestive of formative processes, varying from point to fissure type
igneous sources (Kodagali, 1989; Mukhopadhyay and Batiza, 1994;
Mukhopadhyay and Khadge, 1990; Smith, 1988). Das et al. (2007)
describe four types of relationships between flatness and slope, with
varying H/W ratio. Type one, for low H/W (b0.08) typically indicates
low slope angles (b10°) and low flatness (b0.12). Varied slope angles
(6–15°) and flatness (0.08–0.3) are associated with H/W ratios of
0.081 to 0.16 (Type 2). Type 3 intermediate H/W ratios (0.161–0.23)
suggest high slope angles (N10°) and high flatness (N0.2). Height to
width ratios of N0.23 are associated with high slope angles (N10°) and
low to moderate flatness (b0.2) are typical of Type 4.

4. Results

4.1. Bathymetry

The collectedmultibeam swath bathymetry data reveal three laterally
extensive, macro scale, seafloormounds (Figs. 3–5) in the northern Natal
Valley. One is located in the northern portion of the northern Natal Valley
(Fig. 3), while the two occur in the southern portion (Figs. 3 and 4). The
bathymetric character of these mounds varies greatly from the character
of the adjacent bathymetry. In general, the Natal Valley is typified by
smooth seafloor with gradual changes in gradient, punctuated by rugged
basement outcrop (mostly confined to the north). The Tugela cone (mid
Natal Valley) provides a notable departure from the gentle gradient of the
Natal Valley as it progrades into the basin from the South African east
coastline.

Partial coverage of the northernmost mound (Fig. 3) shows a N–S
orientated feature, 25.4 km in length and at least 3000mwide, standing
472 m proud of the surrounding seafloor sediments. The crown occurs
at a depth of 502 m. The flanks (crown to base) average a gradient of
7.3° with localised steepening of up to 30° on the northern flank. A
moat, 25 m deep in the south, and 240 m deep in the north, is observed
at the base of themound. Themoatmergeswith the shoaling bathymetry
to the north.

Fig. 4 shows bathymetry data associated with the second mound,
situated in the southwestern portion of the northern Natal Valley.
Orientated E–W, this mound is 33 km in length and 17.5 km wide. The
shallowest mapped portion of the mound is 420 m above the adjacent
seafloor, at 1959 m deep. A discontinuous moat, 34 m deep, fronts the
northern flanks of the mound. The moat is less prevalent in the east,
where it merges with the smooth low gradient seafloor typical of the
greater Natal Valley. The average gradient of the mound (crown to
base) is 8.5° with a maximum of 44° on the steepened flanks.

The thirdmound (Fig. 5) is located in the southeastern portion of the
Natal Valley, the crown lying at a depth of 1845 m. Like the previous
mound, this is similarly E–W orientated. Overall it is 29.7 km long,
with a width of 16.2 km and height of 422 m above the surrounding
seafloor sediments. A discontinuous moat, 255 m deep, is observed
along the northern flanks of the mound. More prevalent in the west,
the moat narrows toward the east, terminating at the eastern extent
of the mound with a relief of 50 m. The flanks of the mound have an
average gradient of 11.3°, steepening to 31° in places.

Fig. 6 shows a perspective and plan view of rugged aswell as smooth
seafloor of the Natal Valley. The rugged seafloor is dominated by elon-
gated conical features 100–350 m in height, reaching local maximums
of 65° in gradient. The adjacent smooth seafloor shows gentle changes
in gradient.

Fig. 7 depicts three profiles (a, b, and c) from transects through the
bathymetry data, as well as a slope angle map for better discrimination
of the seafloor types found in the area. The profiles are N–S transects

image of Fig.�2


Fig. 3.Thenorthernmostmound inplanview(north to the right). Theconvexcrown,withoff centre (to the south)apex is evident, asare the steepenedflanks. There is very littledistinctionbetween
the bathymetric character of the mound crown and adjacent smooth seafloor. The S–N profile (P–P′) below the bathymetry image clearly shows the mounded morphology of the feature.
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through areas of smooth, rugged and mounded bathymetry (see Fig. 1
for profile locations). The overall smooth seafloor with gradual changes
in gradient of the northern Natal Valley is clearly evident, as are the
anomalousmounds. Rugged basement outcrop is shown in the enlarge-
ment of box ii, on profile a. This type of bathymetry is largely confined to
the northern extent of the basin. The slope map showing a northern
portion of profile a (box i) illustrates the distinct character of the
mound, compared to smooth and rugged seafloor. Bands of steepened
gradient are found on the mound flanks, while cones of steepened
gradient (including the steepest gradients, ca. 65°) are associated with
the flanks of rugged seafloor. The intervening smooth seafloor is fairly
uniform in slope showing gentle changes in an overall low gradient,
similar in character to the mound crown area. Areas of gentle slope
are confined to the smooth seafloor and mound crowns. These are not
typically associated with the crowns of the rugged seafloor, although
smooth seafloor is noted in the valley floors between peaks of rugged
bathymetry (Fig. 7).
Fig. 4. The southwesternmound (perspective view above, plan view below), and locations of 3.
mound.
4.2. High frequency seismic character

Figs. 8–10 showhigh frequency seismic records collected across two of
the mounds. The echo character from the southwestern mound (Fig. 8,
profiles a–a′ and b–b′) show limited penetration, semi-prolonged echoes
as well as broad hyperbolic reflections with little variance in vertex depth
below the seafloor and low angle sub-parallel reflectors (see Fig. 4 for
profile locations).

The seismic profiles in Fig. 9 are associated with the southeastern
mound (see Fig. 5 for profile locations). Three profiles (c–d, d–e, and
e–f) show the varied reflector characteristics between different areas
of themound. Semi-prolonged echoes are noted oncemore, in conjunc-
tion with continuous isolated reflectors, discontinuous sub-parallel,
continuous sub-parallel reflectors and chaotic reflectors. Continuous
isolated reflectors are confined to the main body of the mound, while
discontinuous and chaotic reflections are observed toward the rim of
the mound.
5 kHz profiles (a–a′ and b–b′). Ridges are evident on the eastern and southernflanks of the
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Fig. 5. Bathymetry of the south-easternmound. Themound flanks, and convex crown are clearly evident in the perspective view (top), while in plan (bottom) the ovalW–E orientation of
the mound is clear. The location of 3.5 kHz profiles (c–d, d–e and e–f) is shown.
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Vastly different echo character is observed elsewhere in the northern
Natal Valley. Rugged seafloor shows distinct hyperbolic reflectors
(Fig. 10), while smooth seafloor exhibits continuous to discontinuous
sub-parallel reflectors (Fig. 9, southern portion of profile e–f). The hyper-
bolic echoes associated with rugged bathymetry display varied vertex
elevations above the seafloor as well as varied amounts of overlap.
Continuous to discontinuous sub-parallel reflectors are noted either side
Fig. 6. Typical morphology of rugged seafloor, confined to the northern portion of the Natal Va
plan view on bottom. The 3.5 kHz seismic record associatedwith profile f–g is shown in Fig. 9. T
of the rugged terrain, and are prevalent throughout areas of smooth
seafloor within the Natal Valley.

4.3. Morphological character

The morphological characteristics of the Natal Valley mounds are
listed in Table 1, along with the morphological characteristics of similar
lley. The basement outcrop is conical in appearance. Note the perspective view on top and
his outcrop is located 38 km south of the northernmost mound, along the same ship track.
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Fig. 7. (a) Three N–S transects through the northern Natal Valley are shown (see Fig. 1. for location). Note the contrast in morphology between the mounds, smooth and rugged seafloor
over each transect. Typical rugged seafloor (see Fig. 5) is shown by the enlarged portion of profile “a”. (b) Box i is enlarged to better illustrate the contrastingmorphology of themounded
and rugged bathymetry. The accompanying slope map highlights the change in slope, and so morphological character, across smooth, mounded and rugged seafloor.
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mound-like features, and seamounts located along the eastern African
margin. Selected characteristics are plotted in Fig. 11. Slope angle is
plotted as an average against flatness (flatness = summit width /
basal width) for all the features (Fig. 11a). Although there is no clearly
defined trend, the Natal Valley mounds have higher flatness values
with lower slope angles than the seamount TB and seamounts IOB
(Fig. 11), for which the inverse is true. Terrestrial alkaline complexes
display varied slope and flatness characteristics, scattered between
those of the seamounts and Natal Valley mounds. Plotted height–width
and length–width ratios (Fig. 11b) reveal that the Natal Valley mounds
and alkaline complexes are comparable in terms of these parameters,
while other features are more varied in character.
Fig. 8. A 3.5 kHz seismic record crossing the south western mound. Semi-prolonged echoes, a
5. Discussion

5.1. Bathymetry

These mound features create oval-like (plan view), positive dome-
shaped (cross-section) features on the seafloor of the Natal Valley.
These features are distinct from the typical bathymetry of the Natal
Valley, which includes irregular rugged and smooth seafloor (Fig. 7).
The mounds rise over 400 m above the surrounding seafloor sediments
and similar features are not evident elsewhere in the Natal Valley. The
three mounds have off-centre high points; the gradient from these high
points is gentle (2.3° average), until an abrupt change is noted at the
s well as high, low and hyperbolic reflections are evident. See Fig. 3 for profile locations.
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Fig. 9.3.5 kHz seismic record crossings of the southeasternmound.Note thedifference in character between themounds and adjacent smooth seafloor (profile e–f). Fig. 4 shows the profile
locations.
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mound flanks (9° average for the three mounds). The rugged seafloor,
typically associated with oceanic crust outcrop (Fig. 5), exhibits an
average gradient of 13.15° (mounds average 7.2°, from crown to base),
steeper on the upper portion of the feature with the gradient lessening
toward the base, in contrast to the mounds for which the inverse is
true. By comparison, the smooth seafloor, a product of depositional/ero-
sional processes on the basin floor (Damuth, 1980), generally deepens
toward the south with an average gradient of 0.2° (Fig. 6). It is clear
Fig. 10.A 3.5 kHz seismic record crossing of the rough terrain south of thenorthernmound. This
Note the conical expression of the rugged basement outcrop typical of the northern Natal Valle
that these mounds represent anomalous bathymetric features, dissimilar
in character from adjacent bathymetry.

This dissimilarity is highlighted by the distribution of areas of
seafloor affected by significant changes in slope (Fig. 6). In plan-view,
rugged seafloor displays grouped circular patterns of steepening slope
amidst low gradient seafloor of fairly uniform slope. While little distinc-
tion can bemade between the smooth seafloor and crownof themounds,
the mound flanks are notably different. The flanks are seen as bands of
3.5 kHz record shows the echo character associatedwith both rugged and smooth seafloor.
y. See Fig. 5 for location.
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Table 1
Morphological characteristics for the variousmounded features discussed in this study. Thenorthernmound has an estimatedwidth due to a lack of data coverage. Overall, the similarity in
geomorphology between the terrestrial features, and those of the Natal Valley is noteworthy. Ns, nepheline syenites; Gs, granite/syenite; Ns/S/Qs, nepheline syenite, syenite and quartz
syenite; Seamount TB: lone seamount from the Transkei Basin; Seamount IOB: large seamounts of Das et al., 2007.

Name Length (km) Width (km) Height (km) (H/W) (L/W) Volume (km3) Flatness Slope (°) Lithology Location

Gorongosa 30 19 1.046 0.06 1.58 1891.02 0.52 12.12 N s/S/Q s Mozambique
Salambidwe 10.08 7.31 0.318 0.04 1.38 97.91 0.46 10.11 G/S Mozambique
Morrumbala 16.5 9.2 0.795 0.09 1.79 504.24 0.46 10.63 G/S Mozambique
Mulanje 30 16.5 1.258 0.08 1.82 2601.88 0.56 12.31 G/S Malawi
Zomba 22 13 0.859 0.07 1.69 1026.5 0.55 12.05 G/S Malawi
Junguni 4.6 4.4 0.12 0.03 1.05 10.15 0.78 14.73 N s Malawi
Mongolowe 13.39 8.47 0.429 0.05 1.58 203.29 0.63 10.55 N s Malawi
Chaone 11.63 9.62 0.448 0.05 1.21 209.43 0.62 11.9 N s Malawi
Chikala 9.17 5.55 0.523 0.09 1.65 111.22 0.38 15.78 N s Malawi
Nuanetsi 52.96 38.1 0.158 0.01 1.39 1328.94 0.29 3.25 G/S Zimbabwe
Mamngudzi 12.47 8.33 0.1 0.01 1.50 31.25 0.39 11.4 G/S Zimbabwe
SE mound (3) 29.7 17 1.12 0.07 1.75 2362.79 0.86 11.3 ? Natal Valley
Mid mound (1) 25.4 16 1.272 0.08 1.59 1079.97 0.79 7.3 ? Natal Valley
SWmound (2) 31 18 1.22 0.07 1.72 2844.43 0.62 8.5 ? Natal Valley
Sedom 11 1.25 5 4.00 8.80 68 0.15 7.02 Salt Dead Sea
Lisan diapir 13 10 6 0.60 1.30 780 ? ? Salt Dead Sea
Seamount TB 15 13 2.24 0.17 1.15 145.6 0.06 16.75 ? Transkei Basin
Seamounts IOB 16.21 12.59 1.33 0.24 1.29 54.3 0.16 13.25 ? Indian Ocean
Giant contourite 200 45 0.9 0.02 4.44 3870 0.08 1.3 Sediment Argintine Basin
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steepened bathymetry between the smooth seafloor andmound crowns.
Similarities between the smooth seafloor and mound crowns can be
described by sediment draping during deposition, and reworking by
currents (e.g., NADW), whereas the flanks (which provide a significant
change in gradient and substrate) are prone to current scouring and
moat development.
5.2. High frequency seismic character

With respect to echo character, there is amarked difference between
typical rugged seafloor of the Natal Valley and the mounds (Figs. 6–8).
The rugged features exhibit large, individual to overlapping, irregular
hyperbolae with varied vertex elevations about the seafloor. Such a
strongly reflective echo character is characteristic of basement highs
or outcrop (Damuth, 1980; Lee et al., 2002). On either side of the rugged
basement outcrop, like the mounds, smooth seafloor occurs (Figs. 9,
profile e–f, and 10). Semi-prolonged echoes, with continuous to discon-
tinuous sub-parallel sub-bottom reflectors characterise this smooth
seafloor. Such echo character is common to deep seafloor globally; the
product of depositional/erosional processes on the basin floor (cf.
Damuth, 1980).

In contrast to the smooth and rugged seafloor, the mounds show
prolonged, semi-prolonged and continuous isolated echoes, with lesser
discontinuous, sub-parallel and chaotic echoes. Broad hyperbolic (Fig. 8,
profile b–b′) and high angle (Fig. 8, profile a–a′) echoes are associated
with hard ridges (Fig. 4), rather than irregular rugged bathymetry
(Fig. 6). The regularly overlapping hyperbolae lie below the seafloor,
with little variation in depth. As such; these echoes are distinct from
those associated with the rugged basement outcrop discussed above.

Of particular interest are the continuous isolated echoes, the lower-
most of which drape the pre-existing bathymetry of the mound while
the upper (shallower) reflectors encompass packages of homogenous
sediment. This type of echo character is not observed in areas of rugged
seafloor associated with typical basement highs (small seamounts) in
the Natal Valley. Furthermore it is atypical of seafloor-penetrating salt
diapirs as described by Kelling et al. (1979); rather salt diapirs return
isolated transparent hyperbolic echoes amidst continuous seafloor
reflectors with multiple parallel sub-bottom reflectors. In addition,
continuous isolated echoes are not associated with areas of smooth
seafloor.
With respect to morphological and seismic character, these mounds
are distinct from the surrounding seafloor. It is highly unlikely, then,
that they were produced by the same processes responsible for the
development of either smooth or rugged seafloor types.

5.3. Mound origins

There are three plausible options that could account for the presence
of thesemoundswithin the Natal Valley. These formative processes and
factors are discussed below, while the corresponding morphological
characteristics are shown in Table 1.

5.3.1. Salt
Salt, as described by Hudec and Jackson (2007), is often associated

with deformation when it is present in significant volumes within the
stratigraphy. Salt is a common stratigraphic constituent of passive
margins, deposited both during and following continental rifting
(Brun and Fort, 2011). Inherentlyweak, salt is relatively easilymobilised
in accordance with regional tectonic and/or gravity driven regimes
(Brun and Fort, 2011; Hudec and Jackson, 2007).

Along the passivewest coast of Africa, salt tectonics has played a role
in the development of the contemporary bathymetry (Davison, 2005;
Davison and Dailly, 2010; Gee and Gawthorpe, 2006; Hudec and
Jackson, 2007; Liu and Li, 2011). Diapiric features ranging from round
to elongate in plan are well documented (cf. Hudec and Jackson,
2007). The geometry of salt diapirs can, most simply, be described by
three end-member forms; upward-narrowing, columnar, and upward-
widening (Koyi, 1997). Each end-member is associated with particular
sedimentary and tectonic settings (cf. Koyi, 1997). Most favourable in
this instance would be the columnar end-member, as this is most likely
to produce circular mounds or oval mounds on the seafloor. The short-
comings of this hypothesis are several-fold. Firstly, the morphological
character of the Natal Valley mounds is at odds with that expected of
salt diapirs. Surface penetrating salt diapirs are not known to reach
the size of the mounds described in the Natal Valley from multibeam
bathymetry data. Additionally, the echo character of the mounds is
distinct from the echo character associated with salt diaper related
structures (cf. Kelling et al., 1979). Furthermore, there is insufficient
salt to produce significant diapirs. The basin, as inspected from the
onshore portions where boreholes intersect both the rift and drift
phase of margin development, is devoid of evaporite deposits (cf.



Fig. 11. Plots of selected morphological parameters associated with mounded features.
a) The mounds (solid black circles), generally plot away from traditional seamounts
(open and crossed circles), while terrestrial alkaline complexes of varied lithologies
(nepheline syenites, open square; granite/syenite, open diamond, and nepheline syenite,
syenite and quartz syenite, crossed square) show a scattered distribution between the
seamount morphologies. b) Nepheline syenites (open square), granite/syenite (open
diamond) and nepheline syenite, syenite and quartz syenite (crossed square) show strong
morphological similarities with the Natal Valley mounds (solid black circles). Salt related
features (cross), as well as giant mounded drifts (solid black square) do not exhibit
comparable morphological characteristics.
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Shone, 2006). As such these features appear unrelated related to salt
tectonics by virtue of an absence of salt and will thus not be discussed
further. It is however incorporated within the morphological plots
provided in Fig. 11 for simple comparison.

5.3.2. Bottom water circulation
The second option is that these anomalous mounds are the result of

current activity. Bottom current activity in the basins off south east coast
of South Africa has been shown to have a significant effect on
sedimentation in both the Natal Valley (Wiles et al., 2013), and
neighbouring Transkei Basin (Schlüter and Uenzelmann-Neben, 2007,
2008). Bedforms produced by bottom water currents may cover exten-
sive (N1000 km2) tracts of seafloor. However, despite the impressive
wave-lengths associated with these features (N10 km), the amplitude is
typically on a scale of tens of metres (Wynn and Masson, 2008) and
clearly does not approach the scale of the mounds discussed here. Giant
contourite drifts, as described by Hernández-Molina et al. (2010) (ca.
40–50 km wide and 250–300 km long), by far exceed the horizontal
scale of the Natal Valley mounds, in addition to other contrasting
morphological characteristics (Table 1). Additionally, such bedforms are
not typified by abrupt scarps or moats, features characteristic of the
anomalous mounds. Consequently, they are not comparable to these
mounds found in the Natal Valley and current activity may be regarded
as an unlikely origin for the Natal Valley mounds.

5.3.3. Submarine igneous activity
Submarine igneous activity is the third option. Dingle et al. (1978)

tentatively alluded to this as a possible cause for themounds (described
by these authors as basement highs) in the Natal Valley, but without
more detailed bathymetric imagery this has not been possible to
confirm nor refute. On the basis of the size and position of thesemounds,
igneous activity appears to be a plausible factor in their genesis.

Leinweber and Jokat (2011a) identified an extinct spreading centre
at 30°S, extending eastward from ~34°E to ~35° 30′ E. The southeastern
mound coincides exactly with this extinct spreading centre (Fig. 1). The
northern mound (Fig. 1) is located in the vicinity of the northernmost
magnetic lineaments associatedwith an early spreading centre identified
by Leinweber and Jokat (2011a). Furthermore, themounds lie in the N–S
(30° E–40° E) corridor of igneous activity associated with the southern
portion of the EARS's western branch, as well as Karoo age alkaline
igneous activity (Fig. 12).

5.4. Seamount geomorphology

In terms of their size and shape (bearing in mind sediment accumu-
lation in the Natal Valley), the Natal Valley mounds bear a striking
resemblance to several igneous complexes of south-east Africa (Fig. 13).
These terrestrial features relate to three distinct periods; those of Jurassic
age are associated with Karoo igneous activity, the late Jurassic to early
Cretaceous are associated with the breakup of Gondwana, while the
Tertiary features are related to the southward propagation of the EARS.
The H/W ratio of features has been used as a means of morphological
classification that is suggestive of formative processes (Das et al., 2007;
Kodagali, 1989; Mukhopadhyay and Batiza, 1994; Mukhopadhyay and
Khadge, 1990; Smith, 1988). In comparison, the L/W ratio is useful in
relating the plan-view shape of features (from circular to oblate). Both
theH/Wand L/W ratios, alongwithflatness and slope are usefulmorpho-
logical measures when comparing various features of differing origins.
When compared in terms of slope angle vs. flatness, and height to
width (H/W) vs length to width (L/W), the mounds of the Natal Valley
are well placed within the spread of possible morphological character
associated with other similar features from the African continent
(Fig. 11). Included in Fig. 11 are examples of salt diapirs, giant contourite
mounds, and other seamounts for comparison. Seamounts from the
central Indian Ocean Basin (seamounts IOB hereafter), described by Das
et al. (2007) and plotted as an average (in terms ofmeasuredmorpholog-
ical parameters) for all large single peaked seamounts, plot away from the
Natal Valleymounds illustrating differences in themorphological charac-
ter between these features. A lone (the only one for which the bathyme-
try is known), single peaked, seamount (seamount TB hereafter) from the
Transkei Basin also plots away from the Natal Valley mounds, with
morphological character more akin to the seamounts of Das et al.
(2007). These plots illustrate the similarities in morphological character
between these types of seamounts, and differences when compared to
the Natal Valley mounds.

TheNatal Valleymounds have H/W ratios of b0.08, a class defined as
lowbyDas et al. (2007). Thismorphological class is said to be associated
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Fig. 12. Circles (please refer to the key) represent significant cases of alkaline igneous
activity of south-east Arica, black circles show the relative position of mounds in the
Natal Valley. The present accepted extent of the EARS (black dot–dash lines) lies to the
north of the southern coastal plains of Mozambique, an area that shows evidence of E–
W extension (see location of normal faults). Black lines (main figure and inset) show
the location of themajor rift features of the EARS. The Natal Valleymounds are located di-
rectly south of this area, within the northern Natal Valley. The city of Durban is shown, for
reference, by the black square.
This map is modified after Chorowicz, 2005, and the Geological Map of Mozambique
(Ministerio dos Recursos Minerais, 1987).
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with low flatness ratios (b0.12) and low slope angles (b10°), suggestive
of a point source of magma, that flows along the slope of the seamount.
In contrast to these findings, the Natal Valley mounds exhibit high
averaged flatness ratios (0.74), and average slopes of 9.03° (local
maximum slopes reach up to 44°). It is clear that the Natal Valley
mounds are morphologically distinct from those observed by Das et al.
(2007), based on these morphologic parameters. The lone seamount
TB from the Transkei Basin has a flatness of 0.06, slope angle of 16.75°,
and intermediate H/W ratio (0.17). As the H/W ratio is indicative of
the mode of origin of seamounts (Das et al., 2007; Kodagali, 1989;
Mukhopadhyay and Batiza, 1994; Mukhopadhyay and Khadge, 1990;
Smith, 1988), it appears that the origins of the Natal Valley mounds
differ from those of the Central Indian Ocean Basin seamounts, as well
as the lone seamount from the Transkei Basin.

Comparison of volume to L/W reveals a similar trend (Table 1);
seamounts in general differ from the Natal Valley mounds, whereas
terrestrial alkaline features are more comparable to the Natal Valley
mounds. Differences in morphological character between conventional
seamounts and the Natal Valley mounds are most evident when
comparing flatness and slope angle, with alkaline complexes grouped
toward the Natal Valley mounds, while the seamounts occupy a zone
of inverse slope/flatness character (Fig. 11a). This trend is more evident
in the second plot where the total morphology (X, Y, and Z axes) of the
features is compared (Fig. 11b). Here the Natal Valley mounds and
alkaline complexes are tightly grouped, whereas the traditional
seamounts occupy a slightly different zone in theplot. Again, this illustrates
the variation in morphological character between the Natal Valley
mounds and other seamounts.

5.4.1. Alkaline igneous activity
A great deal of the igneous activity in this area is associated with the

southern portion of the western branch of the EARS (southern Malawi
Rift), which lies directly north of the Natal Valley. Alkaline igneous
activity is common to the EARS, and there are many documented
cases with volcanic features ranging from metres to tens of kilometres
in scale (Chorowicz, 2005; Mollel and Swisher, 2012). The area around
and south of Lake Malawi hosts numerous igneous features on a scale
directly comparable to the mounds of the Natal Valley. In particular,
alkaline complexes bear the greatest resemblance in terms of geomor-
phology to the Natal Valley mounds (Fig. 13) with the long axis profiles
of the features displaying a similar morphological character. The
greatest geomorphological departure is the seafloor mounds lack of
erosional features that are evident in the subaerial setting (e.g. streams
and gullies). Of interest too is the possibility that a few smaller features
could be combined to create one large feature. The alkaline complexes
Mongolowe, Chaone and Chikala (Fig. 13), if draped with sediment
and not eroded (to the extent that terrestrial features are naturally)
would provide another possible analogue to the mounds of the Natal
Valley. The average H/W ratio for these terrestrial mounds is 0.05,
with a flatness of 0.51, and slope of 11.35°. The Natal Valley mounds
plot in similar morphological zones to these terrestrial features,
suggesting similar formative processes and origins. Such alkaline
igneous activity in a marine setting is not uncommon and is usually
associated with rift systems. The Cameroon line, a series of Tertiary to
Recent (generally alkaline volcanoes), is a good example of this (cf.
Barfod and Fitton, 2013; Fitton and Dunlop, 1985).

5.5. Timing and tectonic significance

It may be hypothesised that these mounds may be related to the
southward propagation of the East African Rift System during the
Neogene period. The EARS is typified by, among other characteristics,
elongate zones of thinned continental crust. Weaknesses in the crustal
structure are further exploited by rift propagation and associated volca-
nism (Chorowicz, 2005). Corti (2009) and Stamps et al. (2008) outline
the location of plate boundaries associated with the Victoria, Rovuma
and Lwandle micro-plates which developed in response to regional
extensional regimes; the Victoria and Rovuma microplates being
continental expressions of deformation related to the EARS. In contrast,
the Lwandlemicro-plate occurs in amarine setting between the Nubian
and Somalian plates, thus representing rift associated deformation in
that environment. It is therefore apparent that the region south of the
EARS is active, and that the activity is associatedwith zones of predefined
weakness (Morley, 1999).

In addition, the lowlands of southernMozambiquemark the southern
extension of the Pan-African Mozambique Belt, another zone of
weakness. This area lies to the east of the Kaapvaal craton, through
which a rift is unlikely to propagate. Additionally, along the eastern
boundary of the Kaapvaal craton lies the Lebombo monocline of the
Mesozoic Karoo Igneous Province, a further zone of weakness (Klausen,
2009). The transitional crust along the western Natal Valley is located
east and south of these zones of weakness, representing another zone
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Fig. 13.Google Earth images of alkaline complexes compared to bathymetry data showing themounds of theNatal Valley (left). The overallmorphological similarity is striking, particularly
if one removes the effects of weathering and erosion by fluvial and similar processes, from the subaerial alkaline complexes. Profiles across the long axis of the alkaline complexes, and
Natal Valleymounds are shown on the left. The effect of subaerial weathering and erosion on the alkaline complexes is evident. Themounds have not been affected by subaerial processes,
however, theNatal Valley basinhas accumulated ca. 800mof sediment since deposition commenced (a, Zomba; b,Mongolowe–Chaone–Chikala; c, Gorongosa; d, SWmound; e, Nmound;
f, SE mound).
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marked by a weak crust with continental affinities (cf. Leinweber and
Jokat, 2011a). These factors combined present a considerable N–S zone
of crust predisposed to rifting with a long history of activity.

Igneous activity in the southern EARS began at ca. 10 Ma, sometime
after the initiation of the EARS (30Ma) and shows a definitive southward
younging of the rift kinematics as the rift propagated in that direction
(Albaric et al., 2009; Chorowicz, 2005). Recent seismic activity in the
south confirms this (Albaric et al., 2009; Fairhead and Stuart, 1982).
Although it has low overall seismicity, the Natal Valley does show some
recent activity in the northern portion of the basin (Fig. 14). To the
north of the study area, seismic activity is focused along two main N–S
orientated regions. These regions mark the eastern, western and south-
eastern boundaries of the Rovuma Plate (Stamps et al., 2008), defined
by the western and southeastern branches of the EARS (Chorowicz,
2005). The intersection of these plate boundaries is proximal to the
study area (Fig. 14). The northern and southwestern mounds are located
close (within 50 km) to epicentres ranging inmagnitude from3 to 4.6ML,
while elsewhere in the basin Earthquakes of 6.8 ML have been recorded
(International Seismological Centre, On-line Bulletin, 2011).

This argument suggests that these mounds may mark a southerly
extension of the EARS into the Natal Valley and show the progression
of rifting into a deep (~2400 m) ocean system. This appears to be
contrary to the typical propagation of continental rift systems that
open seawards and spread into the continental interior (Cratchley
et al., 1983). No other such examples have been documented for rift
systems elsewhere. Beyond this unique point, there are also implica-
tions for the oil and gas industry. Exploration for petroleum could be
affected by elevated thermal gradients in this region, raising temperatures
through the oil/gas window.
6. Conclusion

Anomalous seafloor mounds in the Natal Valley represent a morpho-
logical class that is distinct fromother seamounts, sharingmore similarities
with terrestrial alkaline complexes on the adjacent African continent than
other submarine features. As such, they are believed to mark a line of
continuation of several alkaline complexes likely related to development
of the East African Rift System and associated igneous activity. The
mounds, compared to their terrestrial counterparts, show evidence of
recent sediment draping and smoothing of their topographic profiles.
We hypothesise that these features may represent an offshore extension
of the East African Rift igneous activity. This implies a southward propa-
gation of the East African Rift into a mature ocean basin, a phenomenon
previously unrecognised from continental rift systems. These mounds
are proximal to the western and southeastern plate boundaries of the
Rovuma plate. This has implications for the movement of the Rovuma
plate, better defining the southern plate boundaries thus allowing for
better constrained models of plate dynamics in this region to be pro-
duced. Furthermore, igneous and tectonic activity in this region associated
with the formation of the mounds could have significant implications for
petroleum exploration as the local thermal gradient may have increased
beyond the oil and/or gas windows rendering the region barren in this
respect.
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Fig. 14. Earthquake epicentre data from the vicinity of the study area for the period 1904–
present are plotted, along with the locations of the mounds (black circles). Interestingly,
activity is focused along the boundaries of the Rovuma Plate. The study area is located at
the southern edge of this plate, proximal to the intersection of the western and southeast-
ern plate boundaries.
Epicentre data were sourced from the International Seismological Centre, On-line Bulletin
(2011), and the Rovuma Plate boundaries after Stamps et al., 2008.
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a b s t r a c t

The transfer of sediment from the upper continental slope to rise is poorly documented along the
southeast African passive margin. New swath bathymetric and sub-bottom data collected in the Natal
Valley, southwest Indian Ocean, provide insight into the evolution of the Tugela canyon and fan system.
Several distinct downslope changes in canyon morphology are noted. The canyon increases in relief and
widens with depth. Basement outcrop is restricted to the head of the canyon becoming less prominent
with depth. Step-like terracing of the canyon walls and floor becomes prominent in the mid-slope
portions of the canyon and is related to a marked increase in the cross sectional asymmetry of the
canyon profile. The contemporary Tugela canyon rests within a depression of the last phase of infilling.
The canyon is the product of downslope erosion, and incision, caused by several phases of hinterland
uplift in the mid Oligocene, mid Miocene and late Pliocene. Each phase was followed by pelagic infilling
of the palaeo-canyon form. Downslope, the uplift phases are preserved in the cut-terraces and axial
incisions within the main canyon thalweg. The contemporary canyon is a moribund feature, sediment
starvation of the shelf area by current sweeping of the Agulhas current has decreased the material
available for canyon incision and fan development. Additional current sweeping by the North Atlantic
Deep Water current has stunted the development of the associated fan complex.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Submarine canyons are known the world over as significant
morphological features that have modified continental margins
over significant periods of time via erosion and ultimately the
deposition of fan complexes. Typically, submarine canyons are
classified as either “shelf-breaching”, “shelf-indenting” or “slope-
confined” based on their relationship with the continental shelf
(Farre et al., 1983). The mechanism responsible for the former is
believed to be a combination of eustatic sea level change and
submarine erosion, often associated with subaerial exposure of the
shelf to fluvial processes. Slope-confined and shelf-indenting cat-
egories are likely the result of retrogressive failure, fluid venting
and tide-driven bottom currents (Ridente et al., 2007). Submarine
canyons, particularly the shelf-breaching class, represent

preferential sediment transport pathways (via tectono-
sedimentary processes) to the World’s major sedimentary basins,
albeit episodic in nature (Dingle and Robson, 1985; Ridente et al.,
2007; Lastras et al., 2011).

Very few examples of across slope transport pathways in deep
water have been documented from the passive eastern margin of
South Africa. This is in comparison to the notable examples from
North America (Farre et al., 1983; Pratson et al., 1994; Vachtman
et al., 2012) and Europe (Lastras et al., 2011). Deep water studies
of the South African continental slope and rise have tended to focus
on bottom water flows and sedimentation rather than the role
submarine canyons play in the delivery of sediment to the deep
oceans (cf. Dingle et al., 1978, 1987; Martin et al., 1982; Schlüter and
Uenzelmann-Neben, 2007, 2008). In the Natal Valley, offshore the
east coast of South Africa, only a single very large submarine canyon
(120 km long, 50 km offshore of the Tugela, river) has been iden-
tified (Dingle et al., 1978; Goodlad, 1986). This is an example of a
large submarine canyon restricted to the midelower slope and
attributed with the delivery of detrital material from the Tugela
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river (South Africa’s second largest river) to the deep ocean basin.
Despite having no contemporary connection to the upper slope and
shelf, the canyon is deeply incised and the exact structure and
origin of this canyon is unknown. Similarly, the associated fan is
poorly understood; previous sampling efforts having been frus-
trated by the lack of geophysical data required to accurately
delineate this feature (Türkay and, Pätzold, 2009).

This study incorporates new swath bathymetric and sub-bottom
data collected in the Natal Valley, located in the southwest Indian
Ocean (SWIO) (Fig. 1) in an attempt to understand the evolution of
the Tugela canyon and fan system. By examining the geo-
morphology of these features, insights into the sedimentary pro-
cesses responsible for sculpting the southeast African margin can
be made. As such, this paper aims to present a model for a sub-
marine canyon-fan systemwith a sediment starved upper limit and
a bottom current swept lower region.

2. Regional setting

2.1. Geological setting

The Natal Valley is located off the southeastern seaboard of
southern Africa. This sedimentary basin can be subdivided, at 30�

south, into a northern and southern area (Fig. 1). The basement of
the northern Natal Valley is oceanic in origin, the result of a SWeNE
spreading centre (now the present day southern Mozambique
coastline) that produced the initial basin during early Gondwana
break-up w 183e159 Ma (Leinweber and Jokat, 2011a). The

southern Natal Valley, also floored by an oceanic basement, opened
ca. 138.9e130.3 Ma via a SWeNE spreading centre to the east of the
present day basin (Leinweber and Jokat, 2011b). Spreading in the
Natal Valley was complete by 90 Ma (Martin and Hartnady, 1986;
Ben Avraham et al., 1993).

The sedimentary fill comprises sedimentary rocks of the Zulu-
land Group’s Makhatini Formation; fossiliferous shallow marine
clays of mid Barremian to lower Aptian age that represent the rift
succession. Uncomformably overlying this is the mid Aptian to
lower Cenomanian Mzinene Formation that comprises fossiliferous
shallow marine silts, sands and interbedded hardgrounds (Shone,
2006). Basin deposition was interrupted by a hiatus spanning the
mid Cenomanian to upper Turonian times. This is defined by a
regional seismic reflection somewhat whimsically termed
“McDuff” by Dingle et al. (1978). Deposition of fossiliferous shallow
marine silts, sands and conglomerates of the St. Lucia Formation
resumed from this point to upper Maastrichtian times. Another
regional reflection, “Angus” marks the top of the St. Lucia Forma-
tion and defines another hiatus (Dingle et al., 1978; Shone, 2006).

Post-Angus deposits are associated with the construction of the
Tugela Cone, a large subaqueous delta of the Tugela river that
displays a complex onlap/offlap configuration in the offshore stra-
tigraphy (Goodlad, 1986). A Lower Pliocene unconformity, marked
by regional reflection “Jimmy” truncates the underlying units. Post-
Jimmy, sediments continue to exhibit an onlap/offlap configuration,
with bottom current interaction noted in seismic records (cf.
Goodlad, 1986). Pleistocene aged deposits are rare. Lower Pleisto-
cene unconsolidated sediments occur on the outer shelf (Green
et al., 2008) and mideupper Pleistocene aeolianite cordons span
the inner to outer shelf. These cordons are mantled by thin un-
consolidated Holocene sediments that are reworked and redis-
tributed by energetic gyres and eddies associated with the
poleward flowing Agulhas current (Flemming, 1980; Green, 2009).

2.2. Physiography and oceanography

The Natal Valley is bound to the east by the Mozambique Ridge
and to the west by the south east coast of southern Africa. The
adjacent continental shelf is straight and narrow (4e15 km)
compared to global standards (Dingle and Robson, 1985; Green,
2011a, b) but widens substantially to 45 km offshore the Tugela
river. On average the continental shelf in this region dips at 0.2�

toward a poorly defined shelf-break at �100 m (Goodlad, 1986;
Martin and Flemming, 1988).

The Natal Valley deepens toward the south where it merges
with the deep Transkei Basin at 4000 m depth (Fig. 1). Sediment
input to the basin occurred at w23 m3/km2/yr over the past 65 Ma
(Dingle et al., 1978) andwas attributed to rivers along the KwaZulu-
Natal coast. These rivers, the most prominent being the Tugela river
(Fig. 1), have been in existence since mid Cretaceous times
(Partridge andMaud, 2000), and deliver vast quantities of sediment
(4.405 � 106 m3) to the coast on a seasonal time scale (Flemming,
1980).

Circulation within the Natal Valley is complex, particularly
when considering the smaller scale shallow currents of the adja-
cent narrow continental shelf. Upper ocean flow in the basin is
dominated by the polewards flowing Agulhas Current (with con-
tributions from Red Sea Water), a fast moving (4 knots), wide (ca.
100 km) poleward flowing western boundary current (Fig. 2). This
is considered to extend to depths as much as 2500 m along South
Africa’s south east coast (Bang and Pearce, 1976; Dingle et al., 1987).

Bottom currents (those in contact with the sea-floor) in the
Natal Valley are dominated by the equatorward flowing North
Atlantic Deep Water (NADW). Passage of the NADW into the Natal
Valley (ca. 1.2 � 106 m3 s�1) is considered to be controlled by two

Figure 1. GEBCO (30 s grid) DTM showing the study area (white box and inset) and
adjacent southwest Indian Ocean bathymetry. Note the location of the Natal Valley,
Mozambique Ridge and the Transkei Basin. The black arrow illustrates Agulhas Current
flow, mid-gray arrows illustrate North Atlantic Deep Water flow, light grey arrows
shows the passage of Antarctic Bottom Water (Flow paths compiled after: Toole and
Warren, 1993; Schlüter and Uenzelmann-Neben, 2008; Bang and Pearce, 1976;
Dingle et al., 1987). Ship tracks (Dashed lines) are overlain with white rectangles
delineating portions of the Tugela canyon discussed in this study, see main text for
further detail.
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likely contemporaneous systems. The first is facilitated by the South
Atlantic Current (SAC) where flow comes from south of the Agulhas
Plateau (Fig. 1). The SAC transports NADW around the southern tip
of Africa, thereafter the NADW core bifurcates; one branch (depth
of �2000 to �3500 m, salinity of 34.83%) continuing northeast-
ward, with the Agulhas Under Current deep flow, into the Natal
Valley and Mozambique Basin via the Agulhas and Transkei basins
respectively. The other branch continues east with the meandering
Agulhas Return Current (Toole and Warren, 1993).

The second NADW pathway is by a continental-margin inflow.
This system rounds the African continent at depths of between
2000 and 2500 m along the continental slope into the Transkei
Basin on its approach to the Natal Valley (Toole and Warren, 1993;
Schlüter and Uenzelmann-Neben, 2008). Some of the NADW

returns along the eastern boundary of the Natal Valley (constrained
by thewestern slopes of theMozambique Ridge), while a portion of
it crosses a saddle (2500e3000 m) in the Mozambique Ridge at
approximately 31�S latitude.

Antarctic BottomWater (AABW) does not enter the Natal Valley.
Instead it rounds the southern edge of the Mozambique Ridge as it
leaves the Transkei Basin, entering the Mozambique Basin beneath
the northward flowing NADW core (Toole and Warren, 1993).

3. Material and methods

The data used in this study were collected during two research
cruises; AISTEK II aboard the R/V Sonne (Jokat, 2006) and AISTEK III
aboard the R/V Pelagia (Jokat, 2009).

Figure 2. Swath TC1 from the innermost portion of the Tugela canyon. Note apparent basement outcrop (Bs), and rill (Ri) development, associated with the eastern canyon wall.
Slide/slump scarps (Sl) are evident either side of the canyon axis. The thalweg (Th) is well defined below the knickpoint (Kp) and confluence of the main canyon and canyon
tributary (Cr). Profiles kek0 and T1eT1 illustrate the change in gradient across the knickpoint and 3.5 kHz echo trace across the Tugela canyon respectively.
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AISTEK II focused on the Mozambique Basin where bathymetric
data were collected using a SIMRAD EM120 system. Data acquired
during AISTEK III (Mozambique Ridge and Natal Valley) were
collected using a Kongsberg EM300 system. Both data sets were
processed using CARIS HIPS and exported as xyz ASCII files. The
data were gridded using Interactive Visualization Systems’ DMagic
(version 7.3.1a) and displayed in Fledermaus (version 7.3.1a) for
interpretation. The final bathymetric chart has an output matrix of
w35 m capable of resolving seafloor features at that approximate
scale.

Very high resolution seismic data (vertical resolution ca. 1 m)
were simultaneously collected using both a 3.5 kHz (AISTEK III) and
a parametric ATLAS PARASOUND echosounder (AISTEK II). Com-
plete ship coverage along track was in some instances not achiev-
able due to technical difficulties. Data were processed using in-
house designed software, in addition to SEISEE (version 2.17.1).
Higher penetration (4400 s TWTT), lower vertical resolution
multichannel seismic data were sourced from the Petroleum
Agency of South Africa. These data were incorporated into SEISEE
for visualization and interpretation of the upslope canyon exten-
sions. Band pass filter was adjusted and colour/wiggle gains were
applied to the data.

4. Results

The Tugela canyon is intersected by five lines of swath ba-
thymetry. Partial coverage spanning depths of 644m (at the canyon
head) to 2828 m (where the canyon ends in the Natal Valley) was
achieved.

Swath TC1 (TC being an identifier of the swath in question)
displays an area of the canyon between 842 m and 990 m depth
(Figs. 1, box b and 2). In this section, the canyon incises 240 m
into the adjacent slope and exhibits an average axial gradient of
3.7�. Closer to the canyon axis, wall gradients of 20� are apparent.
Slump scarps (five) and rills (six) occur and are interspersed with
sporadic, high relief basement outcrop. Slump scarps are more
prevalent on the western margin, with rills and basement
exposure confined to the eastern canyon margin. A gradient
knickpoint, associated with a 1.81� change in gradient, is noted
above the confluence of the Tugela canyon and a canyon
tributary.

Very high resolution 3.5 kHz records show a distinct contrast
between the eastern and western margins of the canyon (Fig. 2,
profile TeT1). The latter is dominated by parallel reflections,
truncated by a well-defined scarp. At the foot of the scarp parallel
reflections are once again visible within a cohesive landslide block.
The eastern margin is defined by extensive hyperbolic returns
draped with isolated thin packages of parallel reflections. These
reconcile with the rugged portions of seafloor identified as base-
ment outcrop.

Approximately 15 km southeast of TC1 the Tugela canyon
(Figs. 1, box c and 3) now possesses a “U”-shaped cross-sectional
profile. The canyon has incised 492 m into the surrounding slope
(gradient w 1�) and steepens to a maximum slope of 28�. Mass
wasting is evident on both sides of the canyon. On either side of the
canyon the sea-floor is relatively smooth, although basement does
crop out to the west. Notably, axial incision is evident from a depth
of 1490 m, a feature not observed inshore of this point.

Southeast of TC2 (w10.5 km), the overall morphology of the
Tugela canyon changes drastically although the bottom of the
canyon remains “U”-shaped (TC3). Terraces, separated by sub-
stantial escarpments, dominate the western margin (Figs. 1, box
d and 4). The upper terrace is littered with blocky debris while the
lower terraces appear free from debris. The eastern margin is
dominated by slide/slump scarps. A canyon axis gradient of 0.6� is
observed here. While the canyonwalls reach a gradient of up to 30�

locally, the escarpments within the terraces attain gradients of up
to 39�. Beyond the canyon walls, the sea-floor is smooth with no
signs of basement cropping out.

Directly south of swath TC3 (w4 km), swath TC4 (Fig. 1, box e)
reveals a vastly different morphology from the upper reaches of
the Tugela canyon. Despite still possessing a “U” shape with
terraces (Fig. 5a), the lowest terrace now supports an inner
branch of the canyon which enters the main canyon floor at
32�40E/29�550S (Fig. 5b). Four smaller channels feed into the in-
ner branch near the base of the lowest escarpment. Interestingly,
two channels are evident in the main canyon floor, one on the
eastern side directly related to the upper reaches of the canyon
and one on the western side associated with the inner branch
(Fig. 5, eee0). The two are initially separated by a longitudinally
orientated mound of material that elevates the central portion of
the canyon 40 m above the canyon floor and extends for at least

Figure 3. A distinct change in canyon morphology is illustrated by Swath TC2. The profile is now decidedly “U”-shaped and shows evidence of minor axial incision (Ai) at �1490 m
(profile aea0). This is not apparent upslope at �1450 m (beb0). Slump/slide scarps (Sl) are common to both canyon flanks. Note the difference in the character of the seafloor either
side of the canyon. Smooth (Sm) seafloor on the west is markedly different from rough seafloor in the east, suggesting some basement (Bs) outcrop or subcrop.
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4 km, narrowing from 750 m to 350 m wide downstream (at the
limit of data coverage).

3.5 kHz echosounder traces over the blocky deposits adjacent to
the inner gorge area reveal significant hyperbolic echoes. The
central portion of the line exhibits a package characterised by
chaotic reflections, while further east discontinuous parallel re-
flections are evident (Fig. 5, profile ded0).

Terraces are no longer evident in swath TC5 (21 km southeast of
TC4) (Figs. 1, box f and 6). Here the Tugela canyon reaches its
maximum degree of incision (1000 m) into the surrounding slope.
Two minor hanging branches (cf. Lastras et al., 2011) enter the
canyon. Cut-terraces are a feature of themain canyon floor showing
at least five periods of axial incision (Fig. 6, profile geg0).

The Tugela canyon widens into the abyssal Natal Valley, where
a crude sub-horizontal (0.12�) terrace extends 100 km to the south
west (Fig. 1, box g and 7). The echo character of the 3.5 kHz record
is dominated by regular overlapping hyperbolae with varied ver-
tex elevations extending w40 km to the south west (Fig. 7b). This
irregular sea-floor extends distally into smooth sea-floor. Another
package of reflections is apparent underlying the smooth sea-
floor. These high amplitude parallel reflections appear to inter-
finger with the adjacent hyperbolae-dominated seismic unit
(Fig. 7a). No distributary channels, lobes or levees are evident in
either the bathymetry or 3.5 kHz record.

The deep penetration multichannel seismics from the mid slope
reveal several phases of canyon incision and fill that underlie the
head of the Tugela canyon (Figs. 1, box a and 8). These occur as a
series of high amplitude reflections that incise into the underlying
stratigraphy and are truncated by successively younger reflections,
the overall incision pattern of which is nested within the deepest
incised reflection. On the basis of these discordant relationships,
three phases of canyon incision and fill can be recognised: the
youngest canyon fill, is characterised by an onlapping drape rela-
tionship with the palaeo-canyon walls. The contemporary Tugela

canyon head is located in the topographic low preserved within
these series of drapes.

Table 1 shows down-canyon characteristics associated with
canyon width, relief, margin and gradient for the areas covered by
multibeam bathymetry. Canyon relief and width were noted at the
up-canyon and down-canyon limits of data coverage in order to
best describe the canyon long-profile. Overall, the Tugela canyon
shows an increase inwidth and relief with increasing distance from
the continental shelf, and increasing water depth. The gradient of
the canyon floor varies but, generally decreases with increasing
distance from the continental shelf, and increasing water depth.

5. Discussion

5.1. Erosion styles

The canyon morphologies of the northern KwaZulu-Natal con-
tinental margin, (Green et al., 2007; Green and Uken, 2008; Green,
2011a), differ significantly from the expression of the Tugela
canyon. Notably absent from the slope confined Tugela canyon is
the amphitheatre-shaped canyon head morphology, associated
with upslope eroding retrogressive failure (cf. Farre et al., 1983).
Furthermore, the Tugela canyon displays amarked increase in relief
and width with increased distance from the continental shelf and
water depth (Table 1). Gradient, although variable, shows a
decreasing trend in angle with increasing distance from the shelf
(concave upward profile) and water depth (Table 1). This suggests
that down-slope erosive processes dominated the formation of this
canyon (cf. Goff, 2001; Mitchell, 2004). When compared to other
slope canyon systems such as the submarine canyons of the
American Atlantic (Vachtman et al., 2012) or Argentinian margins
(Lastras et al., 2011), the Tugela canyon is particularly isolated from
other erosive features. These other canyons show a significant
number of tributary branches whereas no significant tributaries

Figure 4. Swath TC3 from the mid-slope. Note the development of terraces (Tr) along the western canyon wall (profile tet0), Escarpments (Es), blocky debris (Bl) and slide/slump
scarps (Sl) are also evident. Smooth sea-floor (Sm) occurs on either side of the Tugela canyon. A minor cut terrace denotes flow bias toward the western side of the main canyon
floor, associated erosion and incision (profile cec0). The 3D inset illustrates the terraced nature of this portion of the canyon.
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exist for the Tugela canyon. This character approaches the “Type Ia”
(straight slope systems) morphological class of Vachtman et al.
(2012) and linear canyon class of Mitchell (2005). Such systems
are associated with fluvial-like erosion dominated by bypassing of

sedimentary flows, particularly during lowstand intervals. The
absence of mass wasting debris along the thalweg of the Tugela
canyon further reinforces the notion of downslope excavation as
the principal factor in canyon formation (Vachtman et al., 2012).

Figure 5. 3.5 kHz seismic profile and bathymetry of Swath TC4 (a). The canyon’s inner branch (dashed box in (a)) is shown from a 3D perspective in the inset (b). Echo character,
associated with mass-wasting debris (D) is illustrated in profile ded0 . Profile fef0 is orientated northesouth across the inner branch. The location of the main canyon floor relative to
the inner branch canyon can be seen in profile eee0 .

E. Wiles et al. / Marine and Petroleum Geology 44 (2013) 60e70 65
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Figure 6. Bathymetry of Swath TC5. Cut-terraces are illustrated by profile geg0 . The 3D perspectives illustrate hanging branches (Hb) and blocky debris (Bl) along the canyon flanks.

Figure 7. Swath bathymetry and 3.5 kHz profile from the Tugela canyon fan region. Inset (a) shows the distal transition from type IIIC echoes (cf. Damuth and Hayes, 1977) to IB
echoes further south. Inset (b) illustrates the overlapping hyperbolae of IIIC echoes. A crude terrace is dominated by IIIC echoes. The character of the sea-floor noted in the 3.5 kHz
record is confirmed in the bathymetry, rough sea-floor (Ro) changes abruptly to smooth sea-floor (Sm) as it extends southwest in to the deep Natal Valley.

E. Wiles et al. / Marine and Petroleum Geology 44 (2013) 60e7066
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Axial incision (Fig. 3) noted at �1490 m further illustrates the
significance of down-slope erosion as a contributor to canyon for-
mation. Baztan et al. (2005) found axial incision in canyons of the
Gulf of Lion to be associated with river connection during low-
stands. Hyperpycnal plumes generated by flooding rivers provide
the necessary energy to develop axial incisions of considerable
downslope length (>50 km) (Baztan et al., 2005), an attribute not
associated with axial incision within the Tugela canyon. In this
instance dilute turbidity currents (cf. Laberg et al., 2007; Jobe et al.,
2011), rather than hyperpycnal plumes, are believed to be respon-
sible for limited axial incision present in the Tugela canyon. Such
turbidity currents can ignite from an over steepened muddy/silty
upper slope (Pratson et al., 1994; Mitchell, 2005). It is highly un-
likely that a river connection existed, certainly not at �1490 m,
furthermore incision is limited to less than 10 km alluding to short
lived erosive events. Axial incision was, however, sufficient to
induce further instability resulting in mass wasting of the canyon
flanks down slope. Cut-terraces evident in the lower course (Fig. 6,
profile geg0) illustrate five lesser periods of vertical erosion, while
two significant periods of incision are envisioned for the canyon
system as a whole (discussed in Section 5.2). Escarpments (Figs. 4
and 5), formed by the erosion of sedimentary strata as opposed
to displacement via faulting, are confined to the western flank of
the Tugela canyon. This is likely controlled by bed geometry, a topic
discussed by McGregor (1981). In this instance, SE dipping strata of
the western flank are inherently unstable. These strata dip in to-
wards the void excavated by the Tugela canyon, resulting in pref-
erential erosion of these strata. Conversely, strata of the eastern
flank are less susceptible to erosion and more stable, given that
these strata dip into the eastern flank. This accounts for the canyon
wall asymmetry depicted in Figures 4 and 5. Basement outcrop
becomes less evident down canyon; certainly by swath TC3 no

basement outcrop is apparent. The prominent outcrop up canyon
from this point suggests an increase in basement control, over
canyon development, toward the continental shelf.

5.2. Timing and mechanisms of canyon development

The cross-cutting relationship between the Tugela canyon and
Cretaceous units (Fig. 8) clearly shows that the formation of the
Tugela canyon post-dates the deposition of the upper Maas-
trichtian age basin fill (Goodlad, 1986). The multi-channel seismic
sections upslope of the modern canyon head show several phases
of incision. Here it is proposed that the earliest of these corre-
sponds to a mid Oligocene stage of hinterland uplift, the first to
occur during the Neogene (Walford et al., 2005). Uplift, combined
with regressive conditions (Fig. 9a), resulted in considerable
sediment shedding in the hinterland, and transport across the
shelf. Sediment was thus provided directly to the slope where
downslope-eroding mass wasting processes associated with
sediment loading and over-steepening initiated the proto-Tugela
canyon (Figs. 9a and 10). Subsequent transgression would subse-
quently reduce downslope eroding sediment flows to the canyon,
resulting in a period of dormancy corresponding to the first stage
of infilling (Fig. 9b).

The Tugela canyon was later reactivated during the subsequent
early Miocene uplift (Fig. 9c), as evidenced in the second canyon
incision in the upslope seismic sections (Fig. 8) and an associated
second phase of terracing in the lower canyon portions. This is
reconciled to the early hiatus documented in the shallow shelfal
portions of the Tugela Cone and suggests a significant period of
regression, sediment bypass and associated incision in the shelf
(Green and Garlick, 2011). This is likely to have translated down-
slope and thus substantially rejuvenated the Tugela canyon. This is

Figure 8. Along strike multi-channel seismic record and interpretation from the mid-slope portion of the Tugela Canyon. Note the three stacked paleo-canyons, the youngest of
which is dominated by an onlapping drape fill. Note the stacked nature of the canyons and the position of the contemporary Tugela canyon within the low point of the drape
succession.

Table 1
Down-canyon comparison of relief, width and gradient.

Swath TC1 TC2 TC3 TC4 TC5

Width U 3.1 km 6.4 km 11.5 km 12.2 km 18.3 km
Relief U 72 m 435 m 572 m 579 m 874 m
Width L 6 km 6.8 km 13 km 13.8 km 19.6 km
Relief L 260 m 458 m 599 m 615 m 1028 m
Margins Straight, converging Straight, diverging Meandering, diverging Meandering, diverging Meandering, diverging
Gradient 3.7� 0.3� 0.6� 0.6� 0.6�
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linked to the generation of a modified “U” profile (Figs. 4 and 5) and
the hanging branches depicted in Figure 6.

Another period of quiescence followed this and was associated
with infilling (Fig. 9d) prior to a third stage of late Pliocene uplift
occurred on a scale greater than that of the Miocene phase (Fig. 9e)
(Walford et al., 2005; Moore and Blenkinsop, 2006). This resulted in
canyon incision into both the previous palaeo-canyons, pro-
nounced axial incision and additional terracing in the walls (Figs. 4
and 6).

Comparable studies from the western South African margin
indicate similar erosional periods. A protracted early to mid
Oligocene hiatus is recognised by Wigley and Compton (2006) and
is contemporaneous with a recognised global sea level lowstand of
the mid Oligocene (Miller et al., 1998). It is likely that off-shelf
shedding of sediment during regression to this lowstand (cf.
Compton and Wiltshire, 2009) would have resulted in downslope
erosion. Overall, the most protracted amount of uplift occurred
during the Pliocene (Partridge and Maud, 2000). This is considered
to have caused several slumps on the southern African margin
(Dingle, 1980), initiated the head of the Cape Canyon on the
western South African margin (Wigley and Compton, 2006) and
caused several submarine canyons to form on the northern
KwaZulu-Natal margin (Green, 2011a).

5.3. Modern canyon and fan activity

Given the age and the amount of sediment that was likely to
have passed through the Tugela canyon since its inception; the
absence of a well-developed submarine fan prograding into the
Natal Valley is surprising. A situation similar to the Congo deep-sea
fan would be expected (cf. Anka et al., 2009), however fan deposits
directly offshore the Tugela river are completely absent (Türkay and
Pätzold, 2009). Instead a poorly developed fan extending from the
sudden opening of the Tugela canyon is present (Fig. 7).

Figure 9. An evolutionary model for the Tugela canyon and fan evolution. Note periods of uplift (a, c, e) set-apart by infilling (b, d, f) of the upper canyon, stagnation of the mid to
lower reaches during quiet phases, and interfingered fan/pelagic sediments in the deep Natal Valley.

Figure 10. Mid Cretaceous to Pliocene sea-level curve (a, modified after Dingle et al.,
1983) compared to the global eustatic sea-level curve (b, modified after Miller et al.,
2005). Grey arrows denote uplift episodes. Note the poorly constrained Tertiary sea-
level curve.
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Echosounder records show the fan as a crude terrace dominated by
regular overlapping hyperbolae with varied vertex elevations
extendingw40 km to the south west (Fig. 7b). These correspond to
the Type IIIC echo facies of Damuth and Hayes (1977). Such echo
character is associatedwith erosional/depositional bedforms, either
the result of erosion in the bottom boundary layer (Flood,1980) and
syndeposition (Tucholke, 1979) related to bottomwater circulation
or gravity driven processes (Damuth, 1975) depending on the
setting. This irregular sea-floor extends distally into smooth sea-
floor as the Natal Valley deepens toward the south (Fig. 7).

Another package of reflections is apparent underlying the
smooth sea-floor (Fig. 7a). These comprise distinct high amplitude
parallel reflections (echo facies IB of Damuth, 1975) that appear to
interfinger with the adjacent hyperbolae-dominated seismic unit.
Such seismic facies have been recognised by Damuth (1975) and
interpreted to be the proximal variant of turbidites on the abyssal
rise, or the result of pelagic sedimentation. Such flat lying deposits
(in this area the slope is sub-horizontal, averaging 0.12�) have been
recognised by others as pelagic deposits and their flat parallel na-
ture is indicative of bottom current winnowing and episodic sea-
floor smoothing in association with drift development (Schlüter
and Uenzelmann-Neben, 2008). Contrary to what one might
expect, there are no surface expressions of distributary channels or
levees etc. The interfingering of hyperbolae-dominated IIIC facies
with parallel, flat-lying facies (IB) is likely the result of intermittent
unconfined turbidite introduction to the area (Fig. 7a).

This suggests that there is significant interaction between the
two systems whereby sporadic and energetic turbidites overprint
NADW deposition before being winnowed and redistributed into
an echo facies 1B configuration. No other features associated with
deep-sea fans, lobes, or distributaries are recognised in the Tugela
canyon fan region. It should therefore be described as an atypical,
sediment starved deep-sea fan that is strongly modified by the
NADW. Other examples of such fans are poorly described. Eschard
(2001) maintains that such interactions between deep-sea fans
and bottom water circulation (erosion and redistribution of sedi-
ment) are underrated.

In the proximal staging grounds for downslope eroding flows,
the overspilling of sediment from the shelf to the slope is limited by
the Agulhas Current. In these areas, the current re-organises sedi-
ment in a coast parallel manner and it only overspills the shelf
break where major inflection points in the coast occur (Flemming,
1980). Despite these being a possible source for turbidity currents
(Boyd et al., 2008) the wholesale starvation of the shelf has
occurred to the extent that the submarine canyons along the
northern KZN coast have been quiescent since the late Pliocene
(Green, 2011b). Since then an overall period of starvation has pre-
vailed and has limited the primary canyon driving mechanism,
namely upper slope sediment loading and resultant mass wasting.
During these times, pelagic sedimentation on the upper and mid-
slope has been dominant (Fig. 9f). This is responsible for the
development of the most recent onlapping drape fill in the upper
canyon which has not fully filled the palaeo-canyon form (Fig. 8).
Further down canyon, erosion may still be occurring (as evidenced
by some smaller cut terraces developed in the canyon walls) but is
limited in comparison to that of the Neogene.

During the current highstand where sediment delivery is
commonly not as prominent as lowstand periods, even less sedi-
ment is released to the shelf. This is further held up in the pole-
wards moving sediment conveyor of the Agulhas Current thereby
starving the upper slope region. The fan deposits that are preserved
from periods of canyon activity are currently in the process of being
reworked by the NADW, a scenario similarly encountered in the
adjacent Transkei Basin (Schlüter and Uenzelmann-Neben, 2007,
2008).

6. Conclusions

The Tugela canyon has evolved via downslope erosion, primarily
driven by sediment gravity flows or dilute turbidity currents. These
initiated from periods of upper slope progradation whereby the
oversteepened upper slope acted as a source for these flows. These
periods can be linked to uplift of the hinterland and are interposed
with periods of pelagic canyon infilling.

Twominor periods of hinterland uplift in the mid Oligocene and
mid Miocene caused the canyon to incise into the same palaeo-
canyon surface. A major period of uplift in the late Pliocene
caused protracted incision and the development of the main lower
slope canyon. Upslope, this created a compound feature of nested
palaeo-canyons, the most recent (late Pliocene) incision now filled
by pelagic deposition during a long period of quiescence.

The contemporary Tugela canyon now rests within this infilled
palaeo-canyon and appears to be moribund with respect to canyon
forming processes. The contemporary canyon morphology is
controlled to some extent by basement outcrop, though bed ge-
ometry also plays a role in the evolution of the canyon through
preferential erosion of the western flank and levee development on
the eastern flank.

The associated Tugela canyon fan appears to represent a mixed
turbidite and bottom smoothed pelagic system. The lack of sedi-
ment input from the shelf is a result of sweeping by the Agulhas
current. Along the abyssal rise, the fan’s limited extent and the lack
of features such as lobes and channelelevee complexes defines it as
an atypical sediment starved and bottom current winnowed
system.
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Abstract Although global thermohaline circulation pathways
are fairly well known, the same cannot be said for local
circulation pathways. Within the southwest Indian Ocean
specifically there is little consensus regarding the finer point
of thermohaline circulation. We present recently collected
multibeam bathymetry and PARASOUND data from the
northern Natal Valley and Mozambique Ridge, southwest
Indian Ocean. These data show the Ariel Graben, a prominent
feature in this region, creates a deep saddle across the Mo-
zambique Ridge at ca. 28°S connecting the northern Natal
Valley with the Mozambique Basin. Results show a west to
east change in bathymetric and echo character across the
northern flank of the Ariel Graben. Whereby eroded plastered
sediment drifts in the west give way to aggrading plastered
sediment drift in the midgraben, terminating in a field of
seafloor undulations in the east. In contrast, the southern flank
of the Ariel Graben exhibits an overall rugged character with
sediments ponding in bathymetric depressions in between
rugged sub/outcrop. It is postulated that this change in sea-
floor character is the manifestation of deep water flow through
the Ariel Graben. Current flow stripping, due to increased
curvature of the graben axis, results in preferential deposition
of suspended load in an area of limited accommodation space
consequently developing an over-steepened plastered drift.
These deposited sediments overcome the necessary shear
stresses, resulting in soft sediment deformation in the form
of down-slope growth faulting (creep) and generation of

undulating sea-floor morphology. Contrary to previous views,
our works suggests that water flows from west to east across
the Mozambique Ridge via the Ariel Graben.

Introduction

The global transfer of heat and nutrients is driven by thermoha-
line circulation (THC) within the ocean basins. The THC system
comprises a network of bottom, deep and surface currents that
conserve mass and energy in the World’s oceans by the creation
of a complex system of circulation cells. The southwest Indian
Ocean (SWIO) is a dynamic region of ocean exchange between
the Indian, Atlantic and Southern Oceans representing a pivotal
component of the THC system. In general, both bottom and deep
water circulation pathways around the globe and within the
SWIO are well known and constrained. The residence times of
these deep and bottom waters have significant implications for
long-term climate state as well as CO2 sequestration (Martin
1981a; Martin 1981b; Ben-Avraham et al. 1994; Srinivasan
et al. 2009). As a result, the greater THC system has garnered
increased attention over the past two decades, particularly in light
of their potential roles driving both palaeo and future climate
change (Martin 1981a;Martin 1981b; Raymo et al. 1990;Winter
and Martin 1990; Raymo et al. 1997; Schmieder et al. 2000;
Srinivasan et al. 2009; Gutjahr et al. 2010). However, at a more
localised scale, THC pathways are often poorly constrained.
Many factors, including the Earth’s rotation (Coriolis Effect),
ocean basin macrotopography, ocean gateways, prevailing
winds, and glacial/ inter-glacial cycles have a direct impact on
THC circulation and transport volumes. This research examines
deep water bottom currents in the context of seafloor
macrotopography and interprets these in light of several possible
deep water circulation systems in the Natal Valley, SWIO.

Since the initial research thrust in the Natal Valley (cf. Martin
1981a; Martin 1981b; Dingle et al. 1978; Dingle et al. 1987,
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Winter and Martin 1990), little additional research associated
with the Natal Valley has been undertaken; this is especially true
for the deep, northern portions of the Natal Valley. Notable
exceptions include studies on the interactions between bottom
water currents (those deep currents in contact with the seafloor)
and sediments from the Natal Valley (Niemi et al. 2000; Wiles
et al. 2013), and submarine canyons of the upper slope (Green
et al. 2007; Green and Uken 2008; Green 2011a).

This paper presents a new, higher resolution dataset of the area,
highlighting several key seafloor and subsurface features that
reveal a potential new deep water pathway across the Mozam-
bique Ridge (via the Ariel Graben) to the Mozambique Basin, as
described by new multibeam bathymetry and high frequency
seismic data from the Natal Valley, SWIO. The aim of this paper
is to reconcile this with the major THC systems in the area.

Physical setting

Geology and physiography

Bound to the west by the south-east African continental mar-
gin and to the east by theMozambique Ridge, the Natal Valley
is a north–south orientated basin located in the SWIO (Fig. 1).
To the south the Natal Valley merges (below 4000 m) with the
Transkei Basin. Shoaling northward, the Natal Valley extends
toward the extensive low-lying coastal plains of southern
Mozambique (Dingle et al. 1978; Goodlad 1986). The Natal
Valley, divided in to a northern and southern portion at 30°S,
is the product of two distinct spreading centres. The northern
portion of the basin opened ca. 183–158 Ma (Leinweber and
Jokat 2011), while the southern portion was the result of
spreading from 138.9–130.3 Ma (Leinweber and Jokat
2012). The basin was fully developed by 90 Ma (Martin and
Hartnady 1986; Ben-Avraham et al. 1994).

The western margin of the Natal Valley exhibits an anoma-
lously narrow, 4–15 km wide, coast-parallel shelf (Dingle and
Robson 1985; Green 2011a; Green 2011b; Cawthra et al. 2012).
Departure from the narrow shelf is observed offshore of the
Limpopo and Thukela rivers where sediment cones prograde
into the Natal Valley (Dingle et al. 1978; Martin 1981a; Martin
1981b; Martin 1987). Over the past 65 Ma, sediment input into
the Natal Valley has been estimated at ca. 23 m3/km2/yr; the
Limpopo and Thukela rivers delivering the bulk of sediment to
the basin, amounting to the deposition of an 800 m thick layer of
sediment within the basin (Flemming 1980). Oligocene to pres-
ent day sedimentation is characterised by erosion and redistribu-
tion throughout the Natal Valley and Transkei Basin (Martin
1981a; Martin 1981b; Niemi et al. 2000).

Bathymetric features pertinent to this study are the Central
Terrace, Naudé Ridge, Mozambique Ridge (Dana Plateau in
particular), Ariel Graben, Tugela cone and Limpopo cone
(Fig. 1). The Central Terrace is a north–south orientated

basement high that provides the northern bathymetric depth
constraint within the northern Natal Valley (Figs. 1 and 2).
The Central Terrace has a smooth convex surface flanked to
the east and west by prominent valleys, whereas the southern
flank comprises a steep, smooth slope that extends down to
the deep central northern Natal Valley (Dingle et al. 1978).
The steep southern slope is the topographic expression of the
Naudé Ridge, a prominent basement high now overlain by
sediment (thickness of 1 s TTWT) (Dingle et al. 1978). The
Tugela and Limpopo cones represent fan shaped features
prograding into the Natal Valley from offshore of the Thukela
and Limpopo rivers respectively (Fig. 1). The Tugela cone
exhibits a steep, west to east southern flank, while the eastern
flank has a more moderate gradient and hummocky surface.
Numerous terraces create complex bathymetry over the sur-
face of the cone, which is crosscut by the Tugela canyon

Fig. 1 The general bathymetry (The GEBCO_08 Grid, version
20091120) of the southwest Indian Ocean (modified after Wiles et al.
2013). Presently known THC pathways are shown; black arrow illustrates
the Agulhas Current, red—the North Atlantic DeepWater, and grey—the
Antarctic Bottom Water (after Bang and Pearce 1976; Casal et al. 2006;
Dingle et al. 1987; Toole and Warren 1993; Schlüter and Uenzelmann-
Neben 2008; van Aken et al. 2004). Eddies associated with the Mozam-
bique and EastMadagascar Currents are shown by dashed circular arrows
(Quartly and Srokosz 2004). The Tugela Cone (TC), Limpopo Cone (LC)
and Central Terrace (CT) are located west of the study area (white box),
which is enlarged to show the ship tracks. The Dana (DP) and Galathea
Plateaus (GP) of the northernMozambique Ridge are indicated by dashed
circles. North of the Dana Plateau lies the Ariel Graben (AG), a west/east
saddle across the Mozambique Ridge The most prominent rivers flowing
in to this Natal Valley region are the Thukela River (TR) in South Africa,
and the Limpopo River (LR) inMozambique. The Naudé Ridge (NR) is a
buried basement high. A more detailed overview of the study area is
provided in Fig. 2
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(Dingle et al. 1978). The Pleistocene age Tugela canyon
delivers what little sediment crosses the sediment starved shelf
to the Tugela fan which has been winnowed and modified by
sweeping of the NADW (Wiles et al. 2013). The Limpopo
cone lies north of the Tugela cone, and northwest of the
Central Terrace, extending 300 km south of the Limpopo
River (Martin 1981a). This sedimentary cone is separated
from the continental shelf of southern Mozambique by a
narrow valley, similar to that of the Central Terrace to the
southeast (Dingle et al. 1978). To the east of the Natal Valley
the north/south orientated Mozambique Ridge provides fur-
ther bathymetric constraint in the form of numerous subma-
rine plateaus. Of importance in this study are the northern
Dana and Galathea plateaus (Fig. 1). The northern Dana
Plateau is the larger or the two, measuring 120×130 km in
dimension, and rising to a depth of 1795 m below the sea
surface. The northern flanks of the Dana Plateau deepen into
the Ariel Graben (comprising the southern flank of the Ariel
Graben), a west/east orientated 12 kmwide saddle that crosses
the Mozambique Ridge at 28°30’S (Figs. 1 and 2). South of
the Dana Plateau the Galathea Plateau rises to shallower
depths (1600m) extending 150 km in an east/west orientation,
and 80 km north/south.

Current state of knowledge regarding circulation in the Natal
Valley

Circulation within the Natal Valley, and surrounding SWIO, is
complex owing to the macrotopography of the basins and the

adjacent narrow continental shelf (Fig. 1). Two main circula-
tion systems are recognised, The Agulhas Current and the
North Atlantic Deep Water (NADW).

The Agulhas Current is a fast (4 knots), poleward flowing,
wide (ca. 100 km) geostrophic current that dominates the
upper ocean flow along the western boundary of the Natal
Valley (Bang and Pearce 1976; Dingle et al. 1987, Martin
1981a; Martin 1981b; Donohue and Toole 2003; Lutjeharms
2007, McDonagh et al. 2008) (Fig. 1). The precise source area
for the Agulhas Current is unknown; however sedimentolog-
ical studies suggest this source area lies between 26°S and
30°S offshore the east African coast (Flemming 1980; Martin
1981a; Martin 1981b; Lutjeharms 2006a, 2006b). This is a
dynamic region influenced by several water masses. South-
ward flowing eddies from the Mozambique Channel meet
with eddies of the East Madagascar Current, with additional
input from the Agulhas Return Current (Stramma and
Lutjeharms 1997; de Ruijter et al. 2003; Quartly and Srokosz
2004; Quartly and Srokosz 2004; Lutjeharms 2007). A deep-
reaching current, the Agulhas Current is considered by some
to progressively extend to depths of as much as 2500 m by
32°S along South Africa’s southeast coast (Bang and Pearce
1976; Pearce 1977; Dingle et al. 1987; Beal and Bryden 1999;
Donohue and Toole 2003). However, in some instances it has
only been the upper 500 m of the Agulhas Current that was
intensely studied (Pearce 1977), whereas the structure below
1000 m was estimated or shown to be shallower than the sea
bottom (Donohue et al. 2000). As such a complete under-
standing of the variability of depth changes and the

Fig. 2 An overview of the northern Natal Valley and northernMozambique Ridge. Note the 2000 m isobaths to the NW (Central Terrace) and SE (Dana
Plateau), as well as the saddle created by the Ariel Graben. Boxes a, b, and c show areas enlarged in Figs. 3, 4, 5 and 6, and are referred to in text
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influencing factors of the Agulhas Current remains elusive
(Lutjeharms 2006a).

The northern section of the current system is remark-
ably stable, owing to the steep, linear continental shelf
of northern South African margin that steers the current
flow (de Ruijter et al. 1999; Lutjeharms 2006a;
Lutjeharms 2007). A consequence of this stable linear
flow path is that the southward flow associated with the
Agulhas Current terminates ca. 200 km offshore
(Lutjeharms 2006b). Inshore of this northern Agulhas
Current, Beal and Bryden (1997) describe an undercur-
rent at ca. 31°S flowing northward along the continental
slope at 1200 m depth, and directly beneath the surface
core of the Agulhas Current. Numerical models have
produced comparable flows at ca. 34°S, with the depth
of the undercurrent varying from 300–2500 m (see
Lutjeharms 2006a).

Other authors consider the bottom water circulation within
the Natal Valley to be governed by the northeasterly
flowing NADW, a deep western boundary current. Two
possibly contemporaneous pathways have been proposed
to describe the passage of NADW (ca. 1.2x106 ms-1)

into the Natal Valley (Fig. 1). The first (southern) path-
way is facilitated by the South Atlantic Current. This
pathway is envisaged as transporting NADW around the
southern tip of Africa. The NADW core then bifurcates;
the northern branch (confined to a depth of 2000–
3500 m, and salinity of 34.83 %) continuing northeast-
ward, via the Agulhas and Transkei basins, into the
Natal Valley. In contrast, the southern branch of NADW
continues eastward beneath the meandering Agulhas Re-
turn Current and does not enter the Natal Valley (Toole
and Warren 1993; van Aken et al. 2004).

The second (northern) NADW pathway is considered
to flow along the African continental slope at depths
between 2000 and 2500 m. This NADW core passes,
via the Agulhas Passage, into the Transkei Basin on its
pathway into the Natal Valley (Toole and Warren 1993;
van Aken et al. 2004; Schlüter and Uenzelmann-Neben
2008). Confined by shoaling bathymetry within the Na-
tal Valley, the NADW is believed to return southward
along the eastern boundary of the Natal Valley
(constrained by the western slopes of the Mozambique
Ridge) (Dingle et al. 1987; McDonagh et al. 2008). Van
Aken et al. (2004) considered some leakage across a
saddle in the Mozambique Ridge at ca. 31°S and at
depths of 2500–3000 m.

Within the southern Natal Valley a net northeastward flow
of NADW, west of 32°E was confirmed (Beal and Bryden
1999; Donohue et al. 2000; Donohue and Toole 2003,
McDonagh et al. 2008). It is this deep northward flow of the
NADW which is likely responsible for winnowing of the
Tugela fan in the mid-western Natal Valley (Wiles et al. 2013).

Further north, hydrographic observations from theMozam-
bique Channel showed a variable northward flowing under-
current along the western channel at 1500–2400 m depth,
inshore of the southward migrating Mozambique Current
eddies (de Ruijter et al. 2002; DiMarco et al. 2002; Ullgren
et al. 2012). The deep core of this undercurrent comprises
NADW (flowing at 4x106m3 s−1) which, at 2000 m, is able to
cross the shallowing sill of the Mozambique Channel
(2500 m) and continue into the Somali Basin (Donohue and
Toole 2003; van Aken et al. 2004). The NADW that does not
cross this sill is considered to return southward along the
eastern side of the Mozambique Channel and Basin (Donohue
and Toole 2003).

Seafloor/current interactions

In the northernmost and shallowest portions of the Natal
Valley, seafloor/current interactions were recorded as areas
of non-deposition on the Limpopo Cone and Central Terrace
(Martin 1981a, 1981b; Preu et al. 2011). This interaction
between the Agulhas Current and the northernmost Natal
Valley has a minimum age of Early/Middle Miocene (Martin
1981a; Preu et al. 2011). Although initially variable, the
Agulhas Current pathways were thus fairly stable following
the Early Miocene. Erosion and redistribution of sediment on
the Limpopo cone and Central Terrace, between depths of
400–1500 m, can therefore be attributed to the net southward
flow of the Agulhas Current.

Deeper into the Natal Valley (ca. 2500–3000 m) and
further south (ca. 33°S), Dingle et al. (1987) recognise
recirculation of NADW within the Natal Valley based
on the location, orientation, depth and character of
sediment drifts in the basin. Through interactions with
the seafloor sediments, the NADW has developed two
elongate, north/south orientated, sediment drifts. The
western drift and eastern drift associated with northward
and southward flow respectively since the Late Eocene
(Dingle et al. 1987).

Material and methods

A portion of data from two recent research cruises, AISTEK II
(20th of May-7th of July, 2005) aboard the R/V Sonne (Jokat
2006) and AISTEK III (9th of April-1st June, 2009) aboard
the R/V Pelagia (Jokat 2009), are used in this study. AISTEK
II investigated the Mozambique Basin and Ridge using a
SIMRAD EM120 multibeam echosounder. A Kongsberg
EM300 multibeam echosounder was used to acquire bathym-
etry data over the Mozambique Ridge and Natal Valley during
the AISTEK III survey. Both multibeam data sets were proc-
essed onboard using CARIS HIPS and exported as xyz ASCII
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files. Interactive Visualization Systems’ DMagic (version
7.3.1a) was used to grid the data, which were then displayed
in Fledermaus (version 7.3.1a) for interpretation. The final
bathymetry data have an output matrix of ~35 m, providing
a relatively high resolution dataset. Specific portions of these
data are presented in this study to illustrate the results and
discussion graphically.

A 3.5 kHz (AISTEK III) and a parametric ATLAS
PARASOUND echosounder (AISTEK II) were used to collect
seafloor and sub-bottom data during the respective cruises.
These data sets provide very high frequency seismic data with
a vertical resolution ca. 1 m. Due to technical difficulties,
complete seismic coverage along track was in some instances
not achievable. In-house designed software, in addition to
SEISEE (version 2.17.1.), were used to process the data.
These data were incorporated into SEISEE for visualization
and interpretation of the echo character. Band pass filter
adjustments and colour gains were applied to the data.

Results

A wide, channel-like feature is evident in the multibeam
bathymetric data, leading from the mid-Natal Valley across
the Mozambique Ridge toward the Mozambique Basin
(Fig. 2). Confined to the north–west by the Central Terrace,
and the south–east by the Dana Plateau (Mozambique Ridge),
the channel is located in the bathymetric depression associated
with the Ariel Graben (Fig. 2). Rugged bathymetry is more
common on the northern flanks of the Dana Plateau (i.e.,
southern flank of the Ariel Graben) than on the Central Ter-
race, where seafloor is smooth (Fig. 2). This rugged bathym-
etry is confined to depths of 2000–3000 m on the northern
flank of the Dana Plateau where there is a significant amount

of basement control on topography. Evidence of this is man-
ifest in the highly irregular, rugged bathymetry, and seismic
character presented in Figs. 3 and 4. Although the Ariel
Graben has created an overall west to east orientated saddle,
the actual depression follows a curved path (Fig. 2). The
degree of change in channel axis orientation increases more
rapidly in the west in the vicinity of box c (Fig. 2).

Boxes a and b (Fig. 2.) are enlarged in Figs. 3 and 4
respectively. These figures illustrate in detail the bathymetry
and shallow seismic character of this portion of the Mozam-
bique Ridge. The northern flanks of the channel return distinct
bottom echoes, with several discontinuous sub-bottom echoes
(profile A—A’ in Fig. 3, and profile B—B’ in Fig. 4). The
seafloor is smooth, with no apparent basement outcrop or
subcrop visible within the limit of penetration (20 m) and
coverage. The gradient of the northern flank is variable,
(0.3°–2.1°, total slope average is 1°), typically increasing with
depth (north to south toward the channel) to a maximum of
5.7° nearest the channel. Steepest gradients (5°–6°) are noted
in the central region of the saddle across the Mozambique
Ridge (Figs. 3 and 4).

The channel floor ranges in width from 4385 m to 5100 m
with a variable echo character. In the western portions of the
channel, hyperbolic reflectors are evident in the 3.5 kHz pro-
file (profile A—A’ in Fig. 3). The hyperbolae are of a similar
height above the seafloor, and vary from individual to over-
lapping in organisation. Bathymetric data show this area to be
rough / undulating. Smooth seafloor in the bathymetry is
associated with distinct seafloor returns and continuous and
sub-parallel sub-bottom reflector packages (profile B—B’ in
Fig. 4). An elongate terrace, orientated parallel to the base of
the southern flank, is evident in both the bathymetry and
shallow seismic data suggesting some degree of lateral and
vertical erosion (profile B—B’ in Fig. 4).

Fig. 3 Enlarged bathymetry of box a in Fig. 2. The contrast between the
smooth seafloor (Sm) of the northern flank and the rugged seafloor (Bs),
reflecting some basement control, of the southern flank is evident in the

multibeam bathymetry (bottom) and high frequency seismic record (pro-
file A—A’, top). Note the apparent scouring (Sc) around basement
outcrop in the saddle floor
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The southern flanks of the channel are distinct from the
northern flanks in both bathymetric and seismic character.
Large, irregular, hyperbolae, ranging in size, amplitude and
spacing (over-lapping to 1 km) dominate the seismic profiles
(Figs. 3 and 4). Intense overlapping is focused on the more
rugged areas, while individual hyperbolae are observed where
the bathymetry is less complex. Rugged bathymetry associat-
ed with such echoes, exhibit highly variable gradients (0.3°–
19.6°). Overall, the channel floor is relatively flat, while the
profile of the channel is “U”-shaped. Scouring has modified
this “U” shape in certain areas of the lower channel flanks
suggesting sustained reworking and removal of sediment
(Fig. 3).

There is a notable eastward change in character of the
seafloor on the northern flanks of the channel (Fig. 5). At
depths between 2100 m and 3000 m, the seafloor displays an
undulating morphology (Fig. 5 and profile C—C’ in Fig. 6).
These undulations are straight crested and parallel/sub-parallel
to the local isobaths, with crest long axes orientated west to
east. Spacing between the crests is variable. The middle zone
(2330–2677 m) is typified by undulations with 600–900 m
wavelengths, whereas the upper and lower zones have dis-
tances of 1000–1200 m between crests. Cross- sectional sym-
metry of these features varies from symmetrical to asymmet-
rical, with broad crests and narrow troughs (Fig. 5). When
asymmetrical, the down-slope (south-facing) limb is longer
(511.76 m average) than the up-slope (north-facing) limb
(323.53 m average) (Table 1). The lower limbs are also steeper
than the upper limbs; calculated averages being 3.80° and
1.55°, respectively (Table 1). Overall the total slope on which
the undulations are found is south-facing with a gradient of

1.54°, however, the area affected by undulations is slightly
steeper with an average slope of 1.75°. Beyond 3000 m (the
lower limit of the undulations), the gradient increases to 4.71°
at the flank/channel floor transition. North of the undulations
(above 2100 m) the seafloor becomes smooth once more,
reflecting similar characteristics to that of the western portion
of the study area (Fig. 5 and profile D—D’ in Fig. 6). The total
slope average in this eastern region is 0.54°, thus steeper than
to the west. The channel floor, no longer flat, is ca. 440mwide
at 3160 m depth. The profile now has a more “V”-shaped
section.

The southern flank of the channel is more rugged than the
northern flank (Fig. 5). Hyperbolic echoes (from the 3.5 kHz
echo trace) are associated with rugged bathymetry (profile
E—E’ in Fig. 6). Distinct bottom echoes, with several sub-
parallel sub-bottom reflector packages are noted in areas of
flat lying bathymetry (profile E—E’ in Fig. 6). These pack-
ages onlap the rugged subcrop, showing varied package thick-
ness and amplitude. The lowermost packages comprise low
amplitude, transparent packages that thicken from south to
north, while toward the seafloor surface, high amplitude pack-
ages of uniform thickness are evident. The gradient of the
southern flank is highly variable, reaching a maximum of
10.5° in the rugged areas, whereas areas of subdued bathym-
etry exhibit low gradients (0.18°). The total gradient is 1.34°
but is a poor indicator of the seafloor character due to marked
variability in the gradient of the area (Fig. 7). The variation of
the rugged southern flank is far greater and widespread than
that of the north (Fig. 7). Only in the eastern portions of the
study area, on the northern flank, does the gradient begin to
vary as the undulation field is encountered (Fig. 7).

Fig. 4 Enlarged bathymetry of box b in Fig. 2. The contrast between the
smooth seafloor (Sm) of the northern flank and the rugged seafloor (Bs)
of the southern flank of the Ariel Graben is clear in the multibeam

bathymetry (bottom) and high frequency seismic record (profile B—B’,
top). Note the change in character of the floor of the saddle. A terrace (Tr)
is apparent at the base of the southern flank
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Discussion

Echo character contrasts

There is distinct contrast in the echo character of the Ariel
Graben’s northern and southern flanks. The northern flank
(western area) shows distinct, high amplitude, bottom echoes
with several discontinuous parallel/sub-parallel sub-bottom
reflectors. This echo character is synonymous with the devel-
opment of crude plastered drifts, as described from other
regions (cf. Damuth 1975; Damuth 1980; Jacobi 1982;
Faugères et al. 1999; Stow and Mayall 2000; Masson et al.
2002; Maldonado et al. 2003; Stow et al. 1996), and the same
deposit is envisioned in this study (Figs. 3, 4 and 6). This is
further demonstrated by the areas of smooth seafloor (Sm in

Figs. 3, 4 and 5) where current-plastering has created a uni-
form surface relief. This seafloor character has similar associ-
ations to plastered drifts, discussed from other regions by
multiple authors (Damuth 1975; Damuth 1980; Jacobi 1982;
Faugères et al. 1999; Stow and Mayall 2000; Masson et al.
2002; Maldonado et al. 2003; Stow et al. 1996). Along the
northern flanks of the eastern Ariel Graben, seafloor undula-
tions (Fig. 5) are associated with large, individual hyperbolic
echoes (Fig. 6) that approach the IIB-2 character of Damuth
(1975) scheme. The origin of this echo character is said to be
varied; bottom current and gravity-driven processes are pos-
tulated as possible formative processes, with setting being an
important consideration. In the case presented by Damuth
(1975) IIB-2 echoes are located adjacent to levees and distrib-
utary channels of the Amazon cone. However; more consol-
idated gravity controlled flows and mass movements may also
result in type IIB-2 echoes being recorded from the respective
deposits.

The floor of the Ariel Graben (Ch in Figs. 3, 4, and 5) has a
varied echo character. In the west it is rough, with small
overlapping hyperbolae (IIIC of Damuth 1975) showing evi-
dence of erosional/depositional bedforms. Such bedforms
from other basins have been ascribed to erosion in the bottom
boundary layer (Flood 1980) and syndeposition (Tucholke
1979) related to bottom water circulation or gravity driven
processes (Damuth 1975) depending on the setting.

The southern flank of the Ariel Graben is rugged, domi-
nated by large hyperbolae. Such a strongly reflective, hyper-
bolic echo character typifies basement highs or outcrop
(Damuth and Hayes 1977; Damuth 1980; Lee et al. 2002).
In this case, the lower northern flank of the Dana Plateau is
cropping out due to an overall lack of sediment deposition on
the southern flank. As shown in Fig. 6 (profile E—E’), ponds
of sediment (discontinuous sub-parallel reflectors) are present
in troughs and depressions of the southern flank. This suggests
a sediment starved environment on the southern flank of the
Ariel Graben, and implies differential deposition within the
study area.

Interpretation of bathymetric and 3.5 kHz data

The development of a crude plastered sediment drift in the
west (on the northern flank) gives way to soft sediment
deformation fields in the east of the northern flank of the Ariel
Graben. This demonstrates changes in the depositional/
erosional setting from west to east through the Ariel Graben
along the northern flank. The plastered drifts are typical of
depositional features associated with bottom water current
circulation (Stow et al. 1996), yet the transition to the field
of undulations is atypical and requires that others factors be
involved in their formation.

The presence of these undulations could be explained by
several processes including contour current/seafloor

Fig. 5 The eastern region of the Ariel Graben revealed in the multibeam
data (See Fig. 2, Box c for location). Note elements of basement control
(Bs), smooth seafloor (Sm), and undulation field (Sw). The channel floor
(Ch) is now narrower than in the west toward the Natal Valley. Profiles
C—C’, D—D’, and E—E’ shown in Fig. 6
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interactions, turbidity current activity and mass-wasting/soft
sediment deformation. Although the undulation dimensions

are similar to features created by turbidity currents (see Table 2
for a comparison). In the setting presented here, the formative
process associated with IIB-2 echoes is potentially related to
deposition by turbidity currents. However, the undulation field
is not associated with any deep sea canyon/channel/fan sys-
tem. The nearest continental shelf that could shed sediment
directly to the Ariel Graben is 380 km to the west. Apart from
being sediment starved (Green 2009; Flemming 1980), this
margin is separated from the Ariel Graben by the Central
Terrace, disrupting the pathway of sediment by turbidity cur-
rent. The Mozambique Ridge is obviously a feature which
could play host to turbidity currents, however, in the setting of
the Ariel Graben this is unlikely. There is no suitable staging
area/source, directly to the north of the Ariel Graben, for the
generation of turbidity driven flows. Hence, given the location
of the undulation field of this study, deposits associated with
turbidity currents are highly improbable.

Furthermore, from a morphological perspective, the char-
acter of the undulations is atypical of the surface expression of
turbidites (Faugères et al. 2002; Wynn and Stow 2002). The
wave-form (i.e., the general morphology of the undulations)
dimensions of the undulations are larger in the upslope and
downslope areas, decreasing in dimension toward the middle
of the flank as opposed to the general decrease in wave
dimension downslope (i.e., with distance from the source)
expected of turbidity current-fed bedforms.

Fig. 6 Seismic character of
profiles C—C’, D—D’, and E—
E’ (see Fig. 2, Box c, and Fig. 5
for location). Undulating sea floor
is associated with hyperbolic
echoes with indistinct sub-bottom
returns. This is in contrast to the
discontinuous sub-parallel
reflectors of profile D—D’, which
is associated with smooth sea
floor. On the southern flank of the
Ariel Graben, hyperbolic echoes
are similarly associated with
rugged seafloor (Bs in Fig. 5),
while horizontal, discontinuous
sub-parallel echoes are evident in
troughs adjacent to the rugged sea
floor

Table 1 Length and gradient characteristics of undulations

ID Upslope
limb (m)

Downslope
limb (m)

Upslope
limb (°)

Downslope
limb (°)

1 550 650 1.66 −3.88
2 500 550 0.86 −5.64
3 400 600 2.81 −3.17
4 500 700 0.54 −3.15
5 400 600 2.11 −4.66
6 400 600 1.71 −2.80
7 400 450 0.65 −4.25
8 200 450 0.86 −5.09
9 200 400 1.18 −4.62
10 300 300 1.79 −3.28
11 300 400 0.41 −3.98
12 150 350 4.21 −5.59
13 200 350 0.26 −2.87
14 200 350 0.16 −3.15
15 200 800 3.04 −3.48
16 200 400 2.26 −5.46
17 200 750 1.78 −5.84
Average 323.53 511.76 1.55 −3.80
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With regards the genesis of sediment waves by bottom
current interaction, the dimensions of the wave-forms ob-
served in this study are similar to those of fine-grained bottom
sediment waves (cf.Wynn and Stow 2002; Table 2 this study).
Such fine-grained bottom sediment waves are found in sedi-
ment drift environments on the basin floor, lower slope and
rise. At odds with this interpretation are the general orienta-
tions of the wave-form crests themselves. Typically, the crests
of fine-grained bottom current sediment wave systems are
oblique to the slope, or perpendicular to the flow direction
of the current, with evidence of upslope and up-current mi-
gration of bedforms. In this study, the crests are parallel/sub-
parallel to the maximum slope, orientated west–east; ~90° to
the expected orientation (north–south) had they been directly
developed by a current flowing west to east through the
graben. As with a turbidity current-induced setting, the de-
crease then increase of the wave-form dimensions is in con-
trast to that of a bottom current sediment wave setting that
generally produces decreasing wave-form dimensions with
increased transport distance (Faugères et al. 2002; Wynn and
Stow 2002).

The final alternative of downslope creep appears to be a
viable option for the genesis of these features. There has been
much discussion concerning the distinction between current
generated sediment waves and undulations generated by
creep/soft sediment deformation (Dillon et al. 1993; Gardner
et al. 1999; Holbrook 2001; Lee and Chough 2001; Holbrook
et al. 2002; Lee et al. 2002; Trincardi et al. 2004; Schwehr
et al. 2007; Shillington et al. 2012). The debate stems from the
similarities in bathymetry and seismic characteristics of these
features. However, having excluded generation by bottom or

turbidity current, soft sediment deformation is a likely forma-
tive process. In addition, the dimensions and characteristics of
the seafloor undulations in this study (Table 2) are comparable
to those associated with creep as described byWynn and Stow
(2002).

In keeping with the discussion in section Echo character
contrasts and in the context of the bathymetry signatures
discussed above, it is clear that the northern flank of the Ariel
Graben is dominated by sediment cover, whereas the southern
flank of the Ariel Graben exhibits basement control on sedi-
mentation in a sediment starved setting with ponds of sedi-
ment filling low lying areas amidst the rugged bathymetry of
the Dana Plateau’s northern flank. The local outcrop of base-
ment is likely to increase turbulence and promote the resus-
pension and redistribution of sediment rather than deposition.
The net result is preferential deposition on the northern, rather
than southern flank of the Ariel Graben. The resultant uneven
depositional regime is at odds with the uniform distribution of
sediment thicknesses attributed to pelagic deposition. Prefer-
ential drift deposition on the northern flank of the Ariel
Graben is thus the likely driver of downslope creep here.

Significance of creep

Seafloor undulations generated by soft sediment deformation
are often related to seismic activity. Examples from the
Adriatic and Californian continental slopes describe such
occurrences of seismically induced soft sediment deformation.
However, such settings are far removed from the deep Ariel
Graben of the Mozambique Ridge. The former two regions
have recent and sustained seismic histories accounting for

Fig. 7 3D perspective view slopemap for the Ariel Graben looking south
to north from the Dana plateau across the Ariel Graben. The strips of data
reflect the slope of the seafloor as calculated from the bathymetry data
from the same area. Note the difference in slope and relief between the
northern and southern flanks of the Ariel Graben. The northern flank is

relatively uniform, the exception being the undulations to the east which
exhibit regular variance in gradient over short distances. In contrast, the
southern flank exhibits varied gradients throughout the study area
reflecting an irregular seafloor relief. The change in the orientation of
the Ariel Graben (from west to east) is shown by the black arrow
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extensive soft sediment deformation fields (cf. Dengler et al.
1993; Tinti et al. 1995), whereas the Mozambique Ridge is
comparatively stable (Leinweber and Jokat 2012). Recent
findings suggest that there may be some tectonic activity
associated with the southward propagation of the East African
Rift System (Saria et al. 2014; Wiles et al. 2014). However,
seismically induced deformation seems unlikely at this loca-
tion as the soft sediment deformation is restricted to a specific
area within the region rather than a wide-spread occurrence in
line with seismically-induced deformation fields. High sedi-
mentation rates, storm waves, and biological processes may
also induce downslope movements through the increase of
applied shear stress or reduction of the critical shear strength
of sediments (Stow et al. 1996). At the depth of the undula-
tions, storm waves are not considered, while biological activ-
ity is an unknown variable. A high sedimentation rate is
therefore suggested as the most prominent factor in this in-
stance, likely delivered by deep water bottom-interacting cur-
rents in the area.

Sediment redistribution via the Agulhas current or NADW?

In the northernmost Natal Valley, sediment redistribution at
depths of between 400 and 1500 m on the Central Terrace,
Limpopo Cone and adjacent continental shelf has been attrib-
uted to action of the Agulhas Current (Flemming and Hay
1988; Martin 1981a, 1981b; Preu et al. 2011). However, it is
unlikely that the Agulhas Current at 27°S is as deep seated as
it is to the south (32°S), where it reaches depths of 2500 m
(Bang and Pearce 1976; Dingle et al. 1987, Beal and Bryden
1997; Donohue and Toole 2003). We attribute this to three
reasons. Firstly, in this source region the Agulhas Current is
still forming from the amalgamation of eddies from the north
and east (Preu et al. 2011). Secondly, the Central Terrace lies
in ca. 1500 m of water, so a deeper extension of the current to
2500 m is not possible. Thirdly, the observation by previous
authors of a northerly flowing NADW in the west and a
southerly flowing NADW in the east of the Natal Valley
implies recirculation of this current system whereby NADW
passes beneath the Agulhas Current at a deeper level. On this
basis we consider the alternative hypothesis, bottom current
activity and sediment re-organisation by the NADW.

Oceanographic constraints to potential NADW flow
and a revised pathway

As a deep western boundary current plastered up against the
east coast of South Africa by the Coriolis Effect, it is unlikely
that its northward passage would be impeded until obstacles to
that flow are encountered (Dingle et al. 1987; van Aken et al.
2004; Martínez-Méndez et al. 2008; McDonagh et al. 2008).
The shoaling of the northern Natal Valley provides the neces-
sary bathymetric restriction to change the pathway of the

NADW. However this restriction within the known depth
range of NADW is gradual and asymmetrical. The northern
Natal Valley does not terminate in a horseshoe between 2000–
3500 m (Fig. 8), but rather the Tugela cone and Central
Terrace (fronted by the Naude’ Ridge) provide initial restric-
tions from the west and northwest respectively (Fig. 8). These
restrictions would force the NADW to shift from its original
north northeast flow direction towards the northeast. The
2000 m isobath marks the shallow edge of the central terrace,
and consequently the northward limit of NADW flow in the
northern Natal Valley. Continuing to the northeast, the 2000m
isobaths of the Central Terracemerges with the top of the Ariel
Graben’s northern flank (Figs. 2 and 8). The Dana Plateau,
located south east of the Central Terrace, rises to a minimum
depth of 1795m and consequently restricts the direct eastward
flow of NADW into the Mozambique Basin (Fig. 8). The
Dana Plateau thus offers a potential point divergence for
NADW flow whereby a portion of the water mass can con-
tinue northeast into the Ariel Graben, while the remainder
recirculates southward along the eastern margin of the Natal
Valley.

Once the NADW enters the Ariel Graben its passage is
likely defined by the graben long-axis; the orientation of
which is not constant. From west to east the axis migrates in
a clockwise manner, not confined to the orientation of the
saddle axis. The average gradient of the graben flanks, partic-
ularly the northern flank, typically increases from west to east
with the steepest gradient found where the saddle axis changes
direction to the east (Fig. 7). It is in the east that the maximum
axis curvature takes place and it is here that the upper portion
of the NADW is likely to over-spill on to the northern flank,
effectively over-shooting the bend in the graben axis. This
over-spilling results in reduced velocity, and deposition of
suspended load on the northern flank. Coriolis Effect is likely
to also play a role. Deflection to the left (north in this case)
further promotes preferential deposition of the northern flank
of the Ariel Graben thereby compounding the result of over-
spilling in the region of undulations. Such rapid sedimentation
is said elevate pore pressure, and create weak planes within
the deposited sediments (Shillington et al. 2012). Subsequent
slow gravity-driven downslope motion and deformation gen-
erates the region of seafloor undulations on the northern flank
of the Ariel Graben. Hence, this area represents an over-
steepened plastered drift, developed in response to over-
spilling of NADW in the Ariel Graben, the failure of which
is manifest as seafloor undulations generated by down slope
creep (Fig. 8).

The relevance of a revised deep water pathway

The complexmacrotopography of the southwest IndianOcean
(SWIO), as demonstrated by Dingle et al. (1987), van Aken
et al. (2004) and Casal et al. (2006), represents a significant
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factor in the control of deep THC flow (Donohue and Toole
2003). In this study, a previously unrecognised northern-most
pathway for deep water exchange between the Natal Valley
and the Mozambique Basin at 28°S is proposed (Fig. 9). The
recognition of this pathway means the Natal Valley system
and its effect on the SWIO region should be re-evaluated as
the THC system and global climate are strongly linked
(Martin 1981b;Martin 1987; Flemming andHay 1988;Winter
and Martin 1990; Martínez-méndez et al. 2008; Blome et al.
2012; Li et al. 2013; Menary and Scaife 2014).

With respect to NADW circulation interglacial periods
typically see increased flow of NADW, while glacial periods
are associated with reduced flow (Ben-Avraham et al. 1994;
Alley et al. 1999; Rutberg et al. 2000). Increased flow, espe-
cially the proposed northern incursion of NADW, has impli-
cations for the ocean basins in which this water body is found,
affecting deep water exchange between sub-basins within the
SWIO (Fig. 9). The forcing of this deep water mass into
rugged regions of shoaling bathymetry of the northern Natal
Valley and Mozambique Ridge has the potential to increase
upwelling in these regions, resulting in increased diapycnal
mixing between water masses (Polzin et al. 1997).

As long-lived CO2 sinks, such diapycnal mixing could be
of ecological and climatological significance. It is suggested
that CO2 flushing from deep water masses is a step-wise
process that includes elevated nutrient supply to the mid-
depths, subsequently resulting rapid rage expansion of spe-
cies, increased productivity and CO2 sequestration within the
mid-Ocean (Galbraith et al. 2007; Henry et al. 2014). These

have important ramifications for the east coast of Africa’s
future fishery potentials.

Fig. 8 Schematic of the study area (refer to Figs. 1 and 2) illustrating the
proposed NADW pathway through the Ariel Graben. Once the water
mass has entered the Ariel Graben its passage is determined by the axis of

the graben. Proximally northeast orientated, the graben axis changes to
east–southeast towards the distal areas in the east

Fig. 9 The postulated passage of deep water (2000–3000 m), in this case
NADW, through the SWIO is shown by black arrows, after van Aken
et al. (2004). The 2000 m isobaths are shown for reference by the solid
black line. The inset shows the study area, where the Ariel Graben creates
a saddle across the Mozambique Ridge. The suggested NADW pathway
across this saddle, through the Ariel Graben, is illustrated by the black
dot-dash line. Abbreviations in insert: CT Central Terrace, AG Ariel
Graben, DP Dana Plateau, NV Natal Valley
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Conclusion

The Ariel Graben creates a deep west to east saddle across the
Mozambique Ridge at ca. 28°S. This deep saddle in the
Mozambique Ridge provides the potential for deep water
exchange between the northern Natal Valley, and Mozam-
bique Basin. A west to east change in character in the Ariel
Graben is recorded in the sub-surface and expressed in the
morphology of the seafloor and linked to deep water sediment
trasnport. Evidence of this transport is manifest as crudely
developed plastered drifts in the west and a field soft sediment
deformation, of limited extent, in the east of the study area.
Here current flow stripping due to increased curvature of the
graben axis, results in preferential deposition of suspended
load in accordance of reduced current velocity in an area of
limited accommodation space. This results in an over-
steepened plastered drift. Deposited sediments overcome the
necessary shear stresses, resulting in soft sediment deforma-
tion in the form of down-slope growth faulting (creep) and
generation of undulating seafloor morphology. The observed
seafloor and subseafloor characteristics are considered to be
associated with a newly postulated NADW passage through
the Ariel Graben, as opposed to influence by deep-reaching
Agulhas Current activity.
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Abstract  22 

New high-resolution bathymetric and sub-bottom profiler data of the Mozambique Channel 23 

show a large variety of bedforms which were formed by strong bottom currents. The most 24 

spectacular bedforms are giant erosional scours in the southwestern study area. Here, 25 

northward flowing Antarctic Bottom Water (AABW) is topographically blocked to the north 26 

and deflected eastward due to the shallowing bathymetry of the Mozambique Channel. SW-27 

NE trending undulating bedforms aligned parallel to the deflected AABW allow to trace the 28 

AABW flow path eastward. A W-E trending channel indicates the northernmost extension of 29 

the AABW. NW-SE oriented undulating bedforms in the west, hummocky bedforms in the 30 

east and arcuate, cross-cutting features in-between reflect a different current regime in the 31 

central study area. LADCP based current velocity sections show that the western part lies in 32 

the range of deep-reaching anticyclonic eddies, so that the undulating bedforms are aligned 33 

parallel to a part of the swirl. The cross-cutting features mark the eastern boundary of the 34 

eddy, where a northward flow direction prevails. The origin of sediment ridges and 35 

depressions in the northeastern study area is not clear. Bottom currents which interact with the 36 

topography of the Bassas da India complex and the Zambezi Channel may contribute to their 37 

formation. All bedforms are draped with sediments indicating that the present-day current 38 

velocities are not strong enough to erode sediments. Hence, the microtopography must 39 

originate from geologic times when bottom-current velocities were stronger. Assuming a 40 

published sedimentation rate of 20 m/Myrs and a drape of at least 50 m thickness the 41 

microtopography may have developed during Pliocene and earlier.  42 

 43 

Keywords: seafloor morphology; bedforms; bottom currents; deep-reaching mesoscale 44 

eddies; Mozambique Channel; SW Indian Ocean 45 

46 
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1.  Introduction 47 

Since the early publication of seabed photographs showing distinct current-induced 48 

sedimentary features such as ripples, scours or current lineations on the deep-seafloor 49 

(Heezen and Hollister, 1964, 1971; Heezen et al., 1966; Hollister and Heezen, 1972) 50 

numerous studies have been conducted to investigate the influence of bottom currents on the 51 

architecture and morphology of continental margins and abyssal planes in detail (Niemi et al., 52 

2000; Bulat and Long, 2001; Kuijpers et al., 2002; Wynn and Stow, 2002; Masson et al., 53 

2004; Hernández-Molina et al., 2006; 2009; 2010; Hanquiez et al., 2007; Schlüter and 54 

Uenzelmann-Neben, 2007, 2008). These studies reveal a wide variety of bedforms and 55 

architectural elements created by the mobilization, erosion, transportation and deposition of 56 

sediments. The types of bedforms that are created mainly depend on the bottom-current 57 

velocity and grain size of the sediment (Stow et al., 2009). The locations where they develop 58 

result from the interplay between the regional oceanography, the bottom-current velocity, the 59 

sediment supply and the large-scale morphology of the seafloor (Bulat and Long, 2001; 60 

Kuijpers et al., 2002; Wynn and Stow, 2002; Masson et al., 2004). Seismic reflection 61 

techniques are commonly applied to investigate the vertical architecture of large-scale 62 

sedimentary features to decipher the bottom-water history over millions of years. In contrast, 63 

hydro-acoustic imaging tools such as multibeam and sidescan sonars map the lateral extent of 64 

medium- and large-scale bedforms on the seafloor in detail, thus providing information on the 65 

most recent bottom-current activity that shaped the seafloor persistently.  66 

The Mozambique Channel plays an important role in the exchange of water masses between 67 

the Indian and Atlantic Oceans via Agulhas leakage, which is a crucial component in the 68 

global ocean circulation and climate system (Lutjeharms, 2006; Beal et al., 2011). Whereas 69 

much oceanographic research has been done to understand the composition, flow path and 70 

velocities of the ocean currents in this region (Sætre and Jorge da Silva, 1984; Sætre, 1985; de 71 
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Ruijter et al., 2002; Di Marco et al., 2002; Chapman et al., 2003; Ridderinkhof and de Ruijter, 72 

2003; Schouten et al., 2003; Lutjeharms, 2006; Harlander et al., 2009; Ridderinkhof et al., 73 

2010; Swart et al., 2010) their influence on the morphology of the seafloor has only rarely 74 

been studied. Only Kolla et al. (1980a; 1980b) mapped several microtopographic zones in the 75 

Mozambique Basin and Channel, which differ in their echocharacter type. A broad zone with 76 

smooth, flat seafloor and lack of acoustic penetration in the northeastern Mozambique Basin 77 

was associated with coarse-grained turbidite deposits transported by the submarine Zambezi 78 

Channel. Fine-grained sediment waves along the western and eastern margins of the 79 

Mozambique Basin were attributed to the flow of Antarctic Bottom Water (AABW). 80 

Hyperbolic echoes with almost no acoustic penetration in the central southern Mozambique 81 

Channel were supposed to indicate wavy bedforms, too but with scales, composition and 82 

formation mechanism different from the fine-grained sediment waves.  83 

These descriptions of the seafloor morphology are only based on a coarse grid of analogue 3.5 84 

kHz recordings. Detailed bathymetric maps and high-resolution digital seismic images of the 85 

shallow subsurface are not available up to now. This paper presents new high-resolution 86 

multibeam bathymetry and narrow-beam sub-bottom profiler data collected in the 87 

Mozambique Channel during RV Sonne cruise SO-183 (Jokat, 2006). The data show a wealth 88 

of current-controlled and mass-wasting features, which are analysed with the objectives  89 

(1) to describe the shape, size, orientation and sedimentation pattern of the bedforms and 90 

interpret them in terms of sedimentation processes,  91 

(2) to classify the bedforms into morphological types, map their spatial distribution and thus 92 

refine the microtopographic classification of Kolla et al. (1980a),  93 

(3) to relate the spatial distribution of the bedform types to the present-day ocean current 94 

regime,  95 

(4) to discuss stratigraphic constraints for the formation of the bedforms taking additional 96 
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information on the sedimentology, paleoceanography and formation of other sedimentary 97 

features off SE-Africa into account.  98 

 99 

 100 

2. Regional setting 101 

2.1 Physiography 102 

The Mozambique Channel is located between the landmasses of Southeast Africa and 103 

Madagascar (Figures 1, 2). It reaches its narrowest width at ~17°S, broadens southward and 104 

merges into the Mozambique Basin, which is bordered by the Mozambique Ridge in the West 105 

and the Madagascar Ridge in the East. The water depths shallow northward from ~5000 m in 106 

the northern Mozambique Basin to ~2500 m at the narrows of the Mozambique Channel with 107 

a significant increase in the slope angle from ~0.05° to ~0.3° at ~27°S (Figure 3). Most parts 108 

of the Mozambique Channel are covered with sediments of the upper Mozambique Fan (Droz 109 

and Mougenot, 1987; Kolla et al., 1980b). In the study area the large-scale morphology is 110 

dominated by the Zambezi Channel, which is structurally confined by the N-S trending Davie 111 

Ridge in the East and the volcanic islands and seamounts Bassas da India, Europa Island, 112 

Jaguar Seamount and Hall Tablemount in the West (Figure 2). South of ~25°30'S the Zambezi 113 

Channel branches into several distributary channels. Two prominent valleys join the Zambezi 114 

Channel (Droz and Mougenot, 1987): (1) The Serpa Pinto Valley, which originates from the 115 

northern Mozambique margin, runs parallel to the Davie Ridge and is almost completely 116 

filled with sediments today. (2) The Tsiribihina Valley, which is the most prominent tributary 117 

from the Madagascan margin. The Zambezi Channel has a U-shaped cross-section and a flat 118 

channel floor, which appears to be erosional south of ~20°S (Droz and Mougenot, 1987). The 119 

channel is flanked by asymmetric convex-shaped levees. Due to the Coriolis force the eastern 120 

levee is higher, has a smooth seafloor and contains more terrigenous sediments than the 121 
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western levee, which returns hyperbolic echoes in 3.5 kHz recordings (Droz and Mougenot, 122 

1987; Kolla et al., 1980a; 1980b).   123 

 124 

2.2 Geology 125 

The Mozambique Channel developed in Late Jurassic to Early Cretaceous times (~155 - 125 126 

Ma) when the Somali Basin north of Madagascar and the Mozambique Basin south of Bassas 127 

da India opened during the break-up of Gondwanaland, and Madagascar drifted southward 128 

along the Davie Fracture Zone from a position off Tanzania, Kenya and Southern Somalia to 129 

its present position (Heirtzler and Burroughs, 1971; Bunce and Molnar, 1977; Scrutton et al., 130 

1981; Rabinowitz et al., 1983; Coffin and Rabinowitz, 1987; König and Jokat, 2010). Open 131 

marine sedimentation started in the Early Cretaceous (Droz and Mougenot, 1987). The 132 

modern Mozambique Fan began to evolve with the deposition of the first channel-levee 133 

system (Serpa Pinto series) during a sea level lowstand at the beginning of the Oligocene (~34 134 

Ma) with the Serpa Pinto Valley acting as main feeding path (Droz and Mougenot, 1987). 135 

During the middle Miocene (15 - 11 Ma) an uplift of the Davie Ridge with concomitant 136 

graben formation led to an abandonment of the Serpa Pinto Valley (Droz and Mougenot, 137 

1987). Simultaneously, tectonic activity on the East African continent and formation of the 138 

East African Rift system caused the migration of the main feeding path to the Zambezi Valley 139 

and the deposition of the second channel-levee system (Zambezi series) in the southern upper 140 

Mozambique Fan (Droz and Mougenot, 1987). Today it is not clear, if the Zambezi Valley is 141 

still active as feeding path, if its activity has decreased, or if it has completely been abandoned 142 

in Pleistocene times (<2 Ma), when another now filled paleovalley under the present shelf 143 

prevented the sediments from reaching the Zambezi Canyon 100 km northward (Beiersdorf et 144 

al., 1980; Walford et al., 2005). The evolution of the Zambezi Delta on the shelf is 145 

characterized by periods of elevated sediment flux (1) in the Late Cretaceous (~90 - 65 Ma) 146 
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caused by a period of high denudation in Southern Africa, (2) in the Oligocene (~34 - 24 Ma) 147 

due to a potential rapid regional uplift of Southern Africa, and (3) since the Late Miocene 148 

(~10 Ma) associated with a doubling of the Zambezi catchment size from Pliocene (~5 - 2 149 

Ma) to Pleistocene times (≲2 Ma) (Walford et al., 2005). The shape of the sediment 150 

deposition in the Zambezi Delta changed from a lobate pattern in Cretaceous to Oligocene 151 

times (~121 - 24 Ma) to a linear belt since the Early Miocene (≲24 Ma) probably due to the 152 

onset of the Mozambique Current (Walford et al., 2005). 153 

Knowledge about the lithology, sedimentology and age of the sediments covering the 154 

Mozambique Fan is only available from sediment cores of maximum ~10 m length (Kolla et 155 

al., 1980a; 1980b). Most of the sediments are derived from the landmasses of Africa and 156 

Madagascar and discharged by rivers like the Zambezi or the Tsiribihina River (Kolla et al., 157 

1980a; 1980b; Droz and Mougenot, 1987). Generally, the uppermost surface sediments are 158 

more calcareous than the underlying sediments indicating that they are of Holocene age 159 

(Kolla et al., 1980b). West of the Zambezi Channel the sediments are typically composed of 160 

interbedded hemipelagic silty clays, calcareous sediments and fine-grained turbidites, whereas 161 

east of the channel fine- to coarse-grained turbidites become more and pelagic calcareous 162 

components less important (Kolla et al., 1980b). The overall carbonate content ranges from 163 

<10% in the northern Mozambique Basin to ~50 - 75% in the Mozambique Channel west of 164 

the Zambezi Channel and decreases to ~10 - 50% east of the Zambezi Channel due to dilution 165 

by terrigenous components from the Madagascan margin (Kolla et al., 1980a). The carbonate 166 

compensation depth (CCD) shallows from >5000 m water depth in the southern Mozambique 167 

Basin to <4500 m in the Mozambique Channel due to a northward increasing dilution by 168 

terrigenous components (Kolla et al., 1980a). The amount of quartz components in the total 169 

non-carbonate fraction is high (12 - >20%) along the Zambezi Channel and decreases west- 170 

and eastward from the channel (6 - 10%). Similarly, coarse-grained, poorly sorted sands 171 
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dominate on the channel floor, whereas grain sizes decrease west- and eastward of the 172 

channel, too (Kolla et al., 1980a; 1980b). A dating of several sediment cores indicates that 173 

most of the turbidite deposition in the Mozambique Fan occurred in Pleistocene times prior to 174 

18000 yrs, though some turbidites were obviously also deposited after 18000 yrs, but 175 

definitely not after 11000 yrs during Holocene times (Kolla et al., 1980a; 1980b). Holocene-176 

Pleistocene sedimentation rates (<80000 yrs) amount to ≥20 m/Myrs in the upper fan where 177 

hyperbolic echoes occur (Kolla et al., 1980a), to 15 - 20 m/Myrs in the area where fine-178 

grained sediment waves were found (Kolla et al., 1980a), and to 10 - 20 m/Myrs in the area 179 

with a smooth seafloor south of the Zambezi Channel mouth (Kolla et al., 1980a).  180 

 181 

2.3 Oceanography 182 

The present-day circulation pattern in the Mozambique Channel is dominated by southward 183 

moving anticyclonic eddies (Sætre and Jorge da Silva, 1984; Sætre, 1985; de Ruijter et al., 184 

2002; Schouten et al., 2003; Swart et al., 2010) and northward flowing deep western-185 

boundary currents which are topographically blocked by the shallowing bathymetry (Kolla et 186 

al., 1976; 1980a; Boswell and Smythe-Wright, 2002; Donohue and Toole, 2003; van Aken et 187 

al., 2004). 188 

The formation of the anticyclonic Mozambique Channel eddies (MCE) north of ~17°S is 189 

strongly coupled with the circulation in the Indian Ocean (Schott et al., 2009) (Figure 1). 190 

Here, the South Equatorial Current (SEC), fed by the Indonesian throughflow (ITF), impinges 191 

on the eastern coast of Madagascar and bifurcates into the Northeast Madagascar Current 192 

(NEMC) and the Southeast Madagascar Current (SEMC) (Schott et al., 2009). The NEMC 193 

surrounds the northern tip of Madagascar and bifurcates off the East African coast into the 194 

East African Coastal Current (EACC) and a flow through the Mozambique Channel (Schott et 195 

al., 2009). This flow was formerly considered to be a persistent Mozambique Current (MC) 196 
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(Sætre and Jorge da Silva, 1984; Sætre, 1985; Di Marco et al., 2002), but based on recent 197 

hydrographic measurements and satellite altimetry observations it actually appears as a train 198 

of large (~300 km diameter) anticyclonic eddies, which cause a discontinuous, temporarily 199 

variable southward flow along the Mozambican margin and a weaker northward flow in the 200 

middle of the Channel (de Ruijter et al., 2002; Ridderinkhof and de Ruijter, 2003; Schouten et 201 

al., 2003; Ridderinkhof et al., 2010; Swart et al., 2010). The SEMC follows the East 202 

Madagascan coastline southward, where a part is retroflected back to the Indian Ocean as 203 

South Indian Ocean Counter Current (SICC) (Nauw et al., 2008). The other part is assumed to 204 

shed temporarily variable cyclonic eddies (Chapman et al., 2003; de Ruijter et al., 2004; 205 

Quartly and Srokosz, 2004; Quartly et al., 2006) which cross the Southern Mozambique 206 

Channel via two potential paths. The first path follows a straight WSW-directed line 207 

(Chapman et al., 2003; de Ruijter et al., 2004; Quartly et al., 2006). The other path hugs the 208 

southern tip of Madagascar, heads northwestward into the Channel and at ~23° - 24°S turns 209 

west- and then southward (Chapman et al., 2003). Both paths join the MCEs off the Inharrime 210 

Terrace off Maputo and form the southward-directed Agulhas Current (AC) (Lutjeharms, 211 

2006; Beal et al., 2011). 212 

The deep western-boundary currents are fed by Antarctic Bottom Water (AABW) and North 213 

Atlantic Deep Water (NADW). Intensified by the Coriolis force both water masses spread 214 

northward along the western margin of the Mozambique Basin (Read and Pollard, 1999; 215 

Boswell and Smythe-Wright, 2002; Donohue and Toole, 2003; van Aken et al., 2004) (Figure 216 

1). After entering the Mozambique Channel the AABW is topographically blocked to the 217 

north at ~25°S due to the decreasing water depth (Figure 3), so that it is forced to upwell and 218 

mix with overlying water masses and/or to turn east- and then southward forming a weak 219 

return current along the eastern margin of the Mozambique Basin (Kolla et al., 1976; 1980a; 220 

Donohue and Toole, 2003). The NADW continues flowing northward along the Southeast 221 
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African margin up to ~20°S, where decreasing water depths again form a topographic bound 222 

(Figure 3). Here, one portion of the NADW is also deflected east- and southward resulting in 223 

another weak return current along the western Madagascan margin. The other portion travels 224 

farther northward and flows through the deep gap west of the Davie Ridge into the Somali 225 

Basin (Kolla et al., 1980a; Donohue and Toole, 2003; van Aken et al., 2004). 226 

The lateral distribution of the water masses in the Mozambique Channel is rather uniform 227 

along WOCE section I4 at 24°40'S (Donohue and Toole, 2003) and along a meridional 228 

section at 40°E (Boyer et al., 2009) (Figure 3). The AABW with potential temperatures Θ < 229 

0.8°C and salinities S between 34.69 - 34.74 psu (Kolla et al., 1980a) is restricted to water 230 

depths below ~4000 m and extends to maximum ~26 - 25°S. The overlying NADW with its 231 

high salinity core (S = 34.78 - 34.84 psu) and potential temperatures of 1.2 - 2.2°C (Kolla et 232 

al., 1980a) covers water depths between ~2200 - 3500 m. South of ~24°S warmer, low-233 

salinity Antarctic Intermediate Water (AAIW; Θ ≃ 3 - 8°C, S ≃ 34.4 - 34.6 psu) is 234 

encountered between ~800 - 1500 m water depth. Farther north the AAIW is mixed with more 235 

saline (>34.6 psu) Red Sea Water (RSW), which - entrained by MCEs - moves southward 236 

through the Channel (de Ruijter et al., 2002; Swart et al., 2010). Warm, high-salinity tropical 237 

surface waters (TSW; Θ ≃ 10 - 25°C, S ≃ 34.7 - 35.6 psu) form the uppermost layer and are 238 

brought southward by MCEs, too (Donohue and Toole, 2003).  239 

A rough overview on the current velocity structure across the Mozambique Channel provide 240 

LADCP measurements along WOCE section I4 (Donohue and Toole, 2003) (Figure 4a). The 241 

main cores of the NADW and AAIW are banked against the Mozambican continental slope in 242 

~2000 - 2500 m and ~700 - 1200 m depth. They flow northward with maximum cross-track 243 

velocities of ~0.2 m/s and form the Mozambique Undercurrent west of ~37°30'E (de Ruijter 244 

et al., 2002; Donohue and Toole, 2003; van Aken et al., 2004). A region with weak (<0.1 m/s) 245 

southward flow east of the Mozambique Undercurrent is interpreted as deep-reaching 246 
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continuation of an anticyclonic MCE visible in the upper western part of the section with 247 

near-surface speeds of ~0.3 - 0.4 m/s. A deep-reaching cyclonic eddy in the eastern part of the 248 

section (at ~42°E) with cross-track velocities of ~0.4 m/s close to the sea surface and ~0.1 m/s 249 

close to the seafloor might be associated with the (S)EMC. Southward cross-track velocities 250 

of ~0.1 m/s along the western Madagascan margin are considered to indicate the return 251 

current of the NADW. 252 

Detailed information on the current velocity structure of deep-reaching MCEs comes from the 253 

ACSEX-1 cruise (Ridderinkhof, 2000; de Ruijter et al., 2002). Then, the exact positions of 254 

three MCEs were derived from satellite altimetric observations of the sea level anomalies in 255 

the Mozambique Channel before LADCP based velocity sections were measured at ~17°S, 256 

~20°S and ~24°S (Figure 4b-d). All three sections show high surface speeds of up to 1.0 m/s, 257 

downward decreasing velocities, a strong southward flow along the Mozambican margin and 258 

a northward flow in the middle of the Mozambique Channel resulting from the western and 259 

eastern halves of the anticyclonic eddies. Additionally, the velocity section at ~24°S indicates 260 

that the eddy with its centre at ~38°20'S reaches down to the seafloor in >3000 m water depth, 261 

where current velocities still amount to ~0.1 m/s. The narrow band of the northward 262 

Mozambique Undercurrent is obvious west of ~37°15'E with its NADW and AAIW cores and 263 

current velocities >0.1 m/s. As this section nearly coincides with the western part of WOCE 264 

section I4 but was measured 5 years later, the differences between both sections may 265 

roughly reflect the temporal variability of the current velocity regime. 266 

 267 

 268 

3.  Data acquisition  269 

The data presented in this paper were acquired during the R/V Sonne cruise SO-183 (Jokat, 270 

2006). The cruise was primarily dedicated to collect marine magnetic and gravity data on the 271 
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Mozambique Ridge and in the Mozambique Channel to unravel the break-up of 272 

Gondwanaland in this region in detail. High-resolution bathymetry and sub-bottom profiler 273 

data were collected simultaneously with non-optimized line spacing and orientation. Rather, 274 

the N-S line orientation was chosen to run perpendicular to the expected magnetic anomalies, 275 

and the line spacing was optimized such that the magnetic anomalies could be correlated from 276 

one line to the next. This led to a grid of 16 parallel, non-overlapping bathymetric stripes 277 

which cover an area of 500 km × 700 km side lengths intermittently with a line spacing of 278 

30 km and a total length of 11800 km (Figure 2). The ship speed was 10 - 11 kn. 279 

The high-resolution bathymetry data were collected using the hull-mounted Kongsberg-280 

Simrad EM120 multibeam sonar. Two CTD casts were run, one in the northern and one in the 281 

southern part of the study area, to determine sound velocity profiles for the post-processing of 282 

the multibeam data (Jokat, 2006). This post-processing comprises an editing, cleaning and 283 

outlier rejection of the bathymetric and the navigation data and was done using the CARIS-284 

HIPS software (Jokat, 2006). Subsequently, the data were gridded with 0.05' (93 m) cell 285 

size, and the gaps between the bathymetric stripes were masked using the GMT software 286 

(Wessel and Smith, 1991).  287 

The sub-bottom profiler data were acquired using the hull-mounted narrow-beam parametric 288 

ATLAS PARASOUND system. It was operated with a (parametric) frequency of 4 kHz, and 289 

the emitted sinusoidal signals had a duration of 2 periods (0.5 ms) (Jokat, 2006). The water 290 

and sub-bottom depths in the seismogram sections were computed from the two-way travel 291 

times of the reflected signals assuming a constant sound velocity of 1500 m/s. A Butterworth 292 

filter of 2 - 6 kHz passband (72 dB/octave) and a routine, which removes the average noise 293 

level from the data were applied as post-processing routines to optimize the display of the 294 

data. To enhance reflections from deeper layers the seismogram sections were normalized to 295 

individually selected maximum amplitudes. That is, amplitudes higher than this maximum 296 
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value are clipped while reflections from deeper layers appear enhanced in the grey-shaded 297 

images. 298 

 299 

 300 

4.  Bathymetric maps and microtopographic classification 301 

The hill-shaded coloured map (Figure 5) provides an overview on the acquired bathymetric 302 

data. From a visual inspection of this map and of the PARASOUND recordings a 303 

microtopographic classification has been established (Figure 6). Four main microtopographic 304 

zones and several sub-zones have been identified (Figure 6, Table A1). The main zones 305 

consider the overall morphology and divide the study area into regions with smooth (type S), 306 

undulating (type B) and rough seafloor (type R) and the Zambezi & Tsiribihina Channels 307 

(type Z). The sub-zones take the PARASOUND reflection pattern and the shape, size and 308 

orientation of the bedforms into account. In the following chapters the most prominent 309 

morphological features are discussed and displayed as enlarged hill-shaded maps combined 310 

with the PARASOUND sections and depth profiles running along the central line of each 311 

bathymetric stripe.  312 

 313 

4.1 Undulating seafloor 314 

Most of the study area is covered with undulating bedforms (Figure 6). Based on their overall 315 

appearance this area is sub-divided into a southern (type BS), a central (type BC) and a 316 

northern bedform area (type BN) and the southeastern Zambezi Channel levee (type BE).  317 

 318 

Southern bedform area (BS1 - BS7) 319 

Generally, the most prominent characteristics of the southern bedform area are deep, steep-320 

walled channels, furrows or scours, which incise the undulating bedforms intermittently. The 321 
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most spectacular of these features occur in the southwest (type BS1). Here, numerous closely 322 

spaced, large erosional scours of up to ~450 m depth, up to ~20 km length and ~3 - 7 km 323 

width corrugate the seafloor repeatedly (Figure 7). They show asymmetric cross-sections with 324 

steep (>10°) southern and shallower northern flanks. They are filled with layered sediments of 325 

~25 - 35 m thickness, which are intermittently intercalated with transparent lenses. Farther 326 

southward (type BS2) small sediment drifts with erosional southern flanks and diffuse or 327 

small internal hyperbolic echoes and distinctly layered upslope migrating sediment waves of 328 

~45 m height and ~3 - 4 km wavelength are found (Figure 8). 329 

NE-SW to ENE-WSW trending wavy bedforms occur in the southeast (types BS3, BS4). 330 

Their average wavelength and height decrease eastward from ~2.5 - 3 km and ~60 - 80 m 331 

(Figure 9a) to 1.5 - 2 km and ~20 - 30 m (Figure 9b). The larger bedforms (type BS3) show 332 

very steep flanks (>10°). The smaller bedforms (type BS4) are intermittenly incised by 60 m 333 

deep, 2 - 3 km wide and 8 - 15 km long furrows oriented W-E or NW-SE. The 334 

PARASOUND reflection pattern is diffuse. The reflection strength is very weak and the 335 

signal penetration very low in the larger bedforms, but increase eastward towards the Zambezi 336 

Channel to 20 - 40 m penetration in the smaller bedforms.  337 

A W-E trending ~100 m deep, 5 km wide and ~100 km long channel (type BS7) marks the 338 

northernmost limit of the southern bedform area (Figure 10). In the north the channel is 339 

bordered by an almost flat 20 km broad terrace covered with small wavy bedforms of ~300 340 

m wavelength and <5 m height. They show prolonged subbottom reflections down to ~10 - 15 341 

m depth. Weakly reflecting layered sediments with ~20 - 25 m signal penetration cover the 342 

channel floor, the ridge south of the channel and the scours south of the ridge.  343 

Microtopographic zones BS5 and BS6 (without Figures) indicate transition zones between 344 

other morphological types. Zone BS5 comprises small irregular, highly variable bedforms, 345 

which do not show any distinct orientation. In contrast to the adjacent zone BS3 these 346 
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bedforms are composed of sediments which cause moderate/strong prolonged or parallel 347 

subbottom reflections down to ~20 - 30 m depth. Zone BS6 is characterized by small 348 

undulating bedforms with diffuse prolonged subbottom reflections similar to the adjacent 349 

zone BS4. But in contrast to zone BS4 they are mainly oriented NW-SE.  350 

 351 

Central bedform area (BC1 - BC8) 352 

The sedimentary structures in the central bedform area have a completely different orientation 353 

than in the southern bedform area. Pronounced NW-SE trending undulating bedforms (type 354 

BC1) of ~2 km wavelength, ~55 - 60 m height and up to >10 km long wave crests occur in the 355 

west (Figure 11a). Steep flanks (>10°) are again typical for these very regular undulating 356 

bedforms, as well as intermittently bifurcating wave crests. The PARASOUND seismogram 357 

sections show a prolonged diffuse reflection pattern with successive hyperbolic echoes and ~5 358 

- 15 m signal penetration. In north- and northeastward direction between Mount Bourcart and 359 

an unnamed seamount the regularity of the bedforms diminishes and their undulations and 360 

flanks become smoother (types BC2, BC3) (without Figures). Weakly reflecting parallel-361 

bedded sediments are typical for the western part of zone BC2 (cf. zone R2), whereas diffuse 362 

prolonged reflections are typical for the northeastern part of zone BC3. 363 

 In the east hummocky bedforms (type BC4) of ~1.0 - 1.5 km wavelength, ~35 - 55 m height, 364 

steep flanks (>10°) and with either no or two (W-E and NE-SW) preferential orientations 365 

cover two gently sloping hills (Figure 11b). Their PARASOUND reflection pattern is similar 366 

to that of type BC1 in the west. The northern local hill is surrounded by small undulating 367 

bedforms (type BC5) (without Figure) with rather long (>20 km) wave crests, which follow 368 

the local topographic contour lines. The hummocky bedforms of the southern hill become 369 

more linear towards the Zambezi Channel (type BC6) (without Figure), where they are mainly 370 

oriented NE-SW. Both local hills are separated by a ~15 km wide depression with an almost 371 
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flat seafloor (type BC7) (without Figure) and a diffuse prolonged reflection pattern with ~5 - 372 

15 m signal penetration.  373 

The western NW-SE oriented undulating bedforms are separated from the eastern hummocky 374 

bedforms by an area with arcuate cross-cutting features (type BC8), which form up ~140 m 375 

deep, steep-walled (>10°) convex-bended "channels" and "ridges" and surround a local 376 

topographic high of ~35 - 40 km diameter (Figure 12). Smaller NW-SE oriented grooves 377 

cross these "channels" and "ridges", particularly in the eastern part. All structures are draped 378 

with an at least ~40 m thick sequence of layered sediments which reflect moderately in the 379 

upper ~15 m and weakly in greater subbottom depths. 380 

A moat which surrounds an unnamed seamount and has a diameter of ~50 - 60 km occurs 381 

north of these arcuate bedforms (Figure 13). Diffuse reflecting slumps are found at the foot of 382 

the seamount, while flat parallel-bedded distinctly reflecting sediments fill the moat and 383 

change to sediment waves of ~1.5 km wavelength and ~10 - 60 m height (cf. zone BC3) 384 

farther away from the seamount. However, in contrast to the undulating bedforms in the 385 

central (Figures 11a, b) and southern bedform area (Figures 9a, b) they show distinct parallel 386 

subbottom reflections with a signal penetration of ~20 m, similar to the moat (Figure 13). 387 

 388 

Northern bedform area (BN1 - BN2) 389 

In the northern bedform area highly variable structures ranging from arcuate sedimentary 390 

features (type BN1) over an amalgamation of holes and elongate depressions to undulating 391 

bedforms (type BN2) are found (Figure 14). The arcuate features form either large convex-392 

bended sediment blocks or "ridges" of ~30 - 35 km length which rise up from a flat seafloor 393 

to ~40 - 85 m height. They occur northeast of the Bassas da India complex. Slumps initiated 394 

on the northern flanks of Europa Island are deposited at its foot and are visible at the southern 395 

end of the PARASOUND section of line A. At the northern end of this line two normal faults 396 
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occur which displace the parallel-bedded sediments by few metres. The amalgamation of 397 

holes and elongate depressions is located farther eastward near the confluence of the Zambezi 398 

and Tsiribihina Channels and is accompanied northward by small sedimentary "ridges" (line 399 

B) and northeastward by irregular hummocky or almost circular structures close to the 400 

western Zambezi Channel bank. The holes, elongate depressions and irregular features reach 401 

depths of ~25 - 75 m and diameters/widths of ~1 - 10 km. All bedforms of zone BN1 and of 402 

the northern part of zone BN2 are again draped with a sediment sequence showing distinct 403 

parallel subbottom reflections down to ~40 - 50 m depth. Farther southward the penetration 404 

decreases to ~20 m and steep bedform flanks (>10°) occur more frequently.  405 

 406 

Southeastern levee of the Zambezi Channel (BE1)  407 

Undulating bedforms (type BE1) of ~10 - 25 m height and ~5 - 6 km wavelength are found on 408 

the southeastern levee of the Zambezi Channel (Figure 15). They are oriented W-E, NE-SW 409 

or NW-SE depending on their position relative to the loop(s) of the Zambezi Channel and 410 

either do not migrate (in the northern part) or migrate upslope (in the southern part). They 411 

show distinct parallel subbottom reflections down to ~30 - 50 m depth.  412 

 413 

4.2 Smooth seafloor 414 

A smooth seafloor occurs on the Mozambican continental slope (type S1), north and south of 415 

the Bassas da India complex (types S2, S3), on the eastern levee of the Zambezi Channel 416 

(type S4) and in the Zambezi cone (type S5). As the bathymetry of these microtopographic 417 

zones does not show pronounced variations only selected PARASOUND sections, which 418 

illustrate the dominant sedimentation processes, are shown. An exception is a prominent slide, 419 

which is displayed as both enlarged hill-shaded map and PARASOUND section. 420 

 421 
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Mozambican continental slope (S1) 422 

The northwestern Mozambican continental slope is characterized by downslope mass-wasting 423 

processes which occur mainly in water depth between ~2900 - 3300 m. The debris flow and 424 

slump deposits form transparent lenses and diffuse reflecting sediment bodies, which are 425 

intercalated in the undisturbed layered sediment sequence (Figure 16a). Southeastward the 426 

number of mass-wasting deposits decreases, and the sedimentation pattern changes to an 427 

undisturbed parallel-bedded strongly reflecting succession, which fills a small bowl-shaped 428 

basin and onlaps a bathymetric high (Figure 16b).  429 

Few small channels and a slide scar of ~7 km length and on average ~4 km width incise the 430 

northwesternmost part of the study area (Figure 17). A closer inspection of the bathymetry 431 

and the PARASOUND section exhibits, that this scar reflects a multiphase slope failure with 432 

at least two, possibly up to four events. Event 1 occurred farthest upslope and left a narrow, 433 

slightly bended scar with a prominent steep headwall along its northern and eastern side. The 434 

PARASOUND section, which crosses the scar ~10 km downslope from the northern 435 

headwall, shows a ~30 m high step and a prominent change in the reflection pattern from a 436 

transparent ~15 - 20 m thick sediment package to a parallel-bedded distinctly reflecting 437 

sequence. Farther downslope one, possibly two other events characterized by headwalls with 438 

three (event 2) and two (event 3) "fingers" are mapped within the scar of the first event. 439 

Again, the PARASOUND section exhibits ~30 and ~15 m high steps, but only minor changes 440 

in the reflection pattern and strength. A potential fourth event with a broad triangular scar 441 

might have been occurred farther eastward. In the PARASOUND section the subbottom of 442 

this slope failure is associated with the transparent sediment package north(-east) of slope 443 

failure 1. The transition to the undisturbed seafloor farther northward is marked by a slight 444 

change in the slope inclination and in the reflection pattern to a strongly reflecting sequence.  445 

 446 



   - 18 - 

North and south of the Bassas da India complex (S2 - S3) 447 

The seafloor north (type S2) and south (type S3) of the Bassas da India complex is covered 448 

with a thick slightly undulating succession, which shows fine-scale distinct parallel subbottom 449 

reflectors (Figure 18). At the northern and southern foot of the seamount complex it covers 450 

large slump deposits which form ~15 km long and ~75 - 100 m thick transparent sediment 451 

bodies. The signal penetration depth reaches ~40 - 60 m in the northern (line Hall 452 

Tablemount) and ~20 - 40 m in the southern area (line Jaguar Seamount).  453 

 454 

Eastern levee of the Zambezi Channel (S4)  455 

A flat seafloor with a small sediment wave field and fine-scale distinct parallel subbottom 456 

reflectors is typical for the upper ~20 - 50 m of the eastern levee of the Zambezi Channel 457 

(Figure 19). The number of the subbottom reflectors, their reflection strength and the signal 458 

penetration are high close to the Zambezi and Tsiribihina Channels, but decrease southward. 459 

 460 

Zambezi cone (S5)  461 

The Zambezi cone encloses the triangular area south of the Zambezi Channel mouth, where 462 

the main channel branches into several distributary channels. The cone is covered with flat 463 

strongly reflecting sediments (Figure 20). The reflection pattern clearly changes laterally. 464 

South of the Zambezi Channel mouth (line Zambezi 1) a thick sequence with distinctly 465 

reflecting parallel-bedded sediments and a signal penetration depth of 40 - 60 m is found 466 

(Figure 20a). Southward transparent lenses of mass-wasting deposits lie on top of this 467 

sequence and cause significantly reduced reflection amplitudes. ~60 km westward the 468 

reflection pattern along the entire line Zambezi 2 resembles the pattern found at the southern 469 

end of line Zambezi 1 (Figure 20b). Reflections are diffuse and only penetrate ~20 m. 470 

Transparent mass-wasting deposits occur in the middle and (buried) undulating bedforms at 471 
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the southern end of the line. Another ~90 km westward (line Zambezi 3) the signal 472 

penetration decreases to ~10 m (Figure 20c). The reflection pattern is diffuse, and a thin 473 

transparent veneer of ~2 - 4 m thickness lies on the top.  474 

 475 

4.3 Zambezi and Tsiribihina Channels 476 

The Zambezi and the Tsiribihina Channel follow a gently meandering course (Figures 5, 6). 477 

Near their confluence both channels are narrowest and deepest (type Z1) (without Figure) and 478 

have a width and depth of ~4 km and ~630 - 750 m (Zambezi Channel) and ~2 km and ~570 - 479 

650 m (Tsiribihina Channel). Close to its mouth the width of the Zambezi Channel doubled to 480 

~8 km, while its depth diminished to ~150 - 300 m. Reflections from the channel floors are 481 

strong, diffuse and prolonged and penetrate down to ~5 - 10 m depth.  482 

Both channels show U-shaped cross-sections in agreement with Droz and Mougenot's (1987) 483 

findings. In the north the channel walls are steep (>10°) and return either no reflections or 484 

weak hyperbolic echoes with no signal penetration (type Z2) (without Figure). Southward the 485 

cross-sections become smoother and small terraces occur within the channel. Here, the 486 

reflections are strong and prolonged or hyperbolic depending on the course of the 487 

PARASOUND line relative to the channel and reach a penetration depth of ~20 - 30 m. The 488 

areas within the meander loops are covered with flat or slightly undulating sediments 489 

depending on the distance to the channel and show distinct parallel subbottom reflections 490 

down to ~40 - 45 m depth or small/moderate hyperbolic echoes. 491 

 492 

4.4 Rough seafloor 493 

The seamounts and islands have a steep (>10°) rough topography, which returns weak, 494 

evanescent reflections or large diffraction hyperbolae (type R1) (without Figure). The signal 495 

penetration is usually <5 m.  496 
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An unusually strong anomalous reflection pattern occurs north of a ~70 - 75 km long 497 

depression south of the bowl-shaped basin at the foot of the Mozambican continental slope 498 

(Figure 21a-b). The parallel subbottom reflections of this basin and their onlap on the 499 

ascending slope are discernible in the northern part of lines D1 - D3 (Figure 21b). Along line 500 

D1 this reflection pattern changes abruptly into an anomalous pattern with strong prolonged 501 

stacked hyperbolic echoes, which extend southward to an 11 km wide, 110 m deep semi-502 

circular depression. In this depression and farther southward the reflections become abruptly 503 

weaker. Another depression of 8 - 10 km width and 110 m depth occurs at the 504 

southernmost end of line D1, but is not associated with a change in the reflection pattern. 505 

Along line D2 undulating asymmetrical bedforms with prolonged echoes are found instead of 506 

the anomolous prolonged stacked hyperbolic echoes. Their reflection strength changes 507 

abruptly to weaker amplitudes already more than 10 km north of the depression. The 508 

depression itself reveals a rugged topography here and is covered with weakly reflecting, 509 

parallel-bedded sediments, which also extend farther southward. Along line D3 a strong, 510 

prolonged reflector appears from greater subbottom depth approximately parallel to that part 511 

of lines D1 and D2 where the undulating asymmetrical bedforms and the strong prolonged 512 

stacked hyperbolic echoes occur. The seafloor above this emerging reflector returns diffuse 513 

echoes which change to small undulating W-E oriented bedforms farther southward. The 514 

depression at the southern end of line D3 is not as pronounced as in the other two lines, but 515 

appears as a slightly undulating seafloor covered with parallel-bedded, weakly reflecting 516 

sediments. The signal penetration amounts to ~20 - 35 m in the strongly reflecting northern 517 

parts and to ~10 - 25 m in the weaker reflecting southern parts.  518 

 519 

4.5 Comparison with the microtopographic classification of Kolla et al. (1980a) 520 

A comparison of the microtopographic classification established in this paper with the zones 521 
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II - IV described by Kolla et al. (1980a) illustrates that zone II almost coincides with zone S5 522 

representing the Zambezi cone (Figure 6). Zone III encompasses zones BS2, BS3 and BS4 523 

and thus partially contradicts the interpretation in this paper. Here, fine-grained sediment 524 

waves associated with a weak northward AABW flow were found only in zone BS2, whereas 525 

the undulating bedforms in zones BS3 and BS4 are interpreted as elongate contourite mounds 526 

or a series of grooves and ridges aligned parallel to the deflected AABW. Zone IV comprises 527 

the western and northern parts of the southern bedform area and nearly the whole central and 528 

northern bedform areas. Thus, the microtopographic classification here identifies much more 529 

different types of hyperbolic echoes and relates them to the present-day AABW flow and the 530 

deep-reaching eddies of the MC and (S) EMC.  531 

 532 

 533 

5.  Interpretation and discussion 534 

Most of the bedforms obviously developed under the influence of bottom currents. In the 535 

following chapters we try 536 

(1) to relate the different bedform types to the present-day ocean current regime,  537 

(2) to discuss whether the bedforms are still active today, 538 

(3) to discuss stratigraphic constraints for the formation of the bedforms. 539 

 540 

5.1 Distribution of bedforms vs ocean current regime  541 

Southern bedform area (~4700 - 3500 m water depth) 542 

The southern part of the southern bedform area lies in the water depth range of the AABW 543 

(<4000 m) which according to the meridional distribution of the water masses (Figure 3) 544 

extends northward to ~26 - 25°S. The northern part already lies in the transition zone between 545 

AABW and NADW (~4000 - 3500 m). Current velocity measurements are not available for 546 
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this part of the study area, but a rough southward extrapolation of the LADCP based current 547 

velocity sections at 24°40'S and 24°S (Figure 4) indicates that today none of the survey lines 548 

is affected by strong western boundary currents. Rather all lines experience weak bottom 549 

currents of <0.1 m/s. 550 

Hence, the small sediment drifts and sediment waves in zone BS2 (Figure 8) located in ~4700 551 

- 4500 m water depth on a gently ascending slope (~0.05°) developed under the influence of a 552 

weak northward AABW flow. They are considered to indicate the northernmost extension of 553 

the sediment wave field mapped by Kolla et al. (1980a) along the western margin of the 554 

Mozambique Basin (Figure 6). The weak bottom currents of <0.1 m/s today agree with the 555 

bottom-current velocities of ~0.08 - 0.1 m/s derived by Kolla et al. (1980a) via a modelling 556 

approach for the formation of the sediment waves. Especially, the erosional southern flanks of 557 

the sediment drifts and the upslope migration of the sediment waves indicate a persistent 558 

northward flow in this part of the study area (Figure 22).  559 

The internal hyperbolic echoes in the sediment drifts and the limited spatial extent of 560 

sediment waves in zone BS2 point to some turbulences in the water column preventing a 561 

widespread smooth, distinctly layered deposition of fine-grained sediments. The reason for 562 

such turbulences might be, that north of ~27°S the ascending slope of the Mozambique 563 

Channel steepens from ~0.05° to ~0.3° (Figure 3), so that the water depth decreases rapidly 564 

from ~4500 to ~4000 m within a distance of ~100 km. This bathymetric ramp forms a 565 

topographic barrier for the northward flowing AABW, so that it must upwell and mix with the 566 

overlying water masses and/or flow aside (Figure 22). This upwelling and mixing is probably 567 

strongest in the western part of zone BS1, where numerous closely spaced giant erosional 568 

scours corrugate the seafloor (Figure 7). Here, probably two forces interact: (1) The 569 

northward flowing AABW is decelerated and reflected by the bathymetric ramp leading to a 570 

south- and upward-directed force. (2) Simultaneously, the Coriolis force pushes the AABW 571 
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westward against the eastern flank of the Mozambique Ridge. The superposition of both 572 

forces might produce clockwise rotating vortices, which erode the giant scour hollows. 573 

Furthermore, the south- and upward-directed force might promote retrogressive erosion 574 

leading to the asymmetrical cross-sections of the scour hollows.  575 

However, it is rather unlikely that the present-day current velocities of <0.1 m/s are strong 576 

enough to erode scour hollows of several hundred metres depth, tens of kilometres length and 577 

several kilometres width. According to Hjulström's curve current velocities of at least 0.2 m/s 578 

are necessary to erode unconsolidated clay, silt and fine sand up to 0.5 mm grain size, and 579 

even higher velocities for coarser grain sizes (Tucker, 2004). Therefore, the scours must have 580 

been eroded during geologic times when the bottom-current velocities were stronger than 581 

today, whereas the present-day current velocities allow only transportation and deposition of 582 

particles from suspended load, thus keeping the hollows open. This agrees with weakly 583 

reflecting sediments on the ridges between the hollows and an at least ~25 - 35 m thick 584 

sediment infill in the hollows. Transparent lenses intercalated in these infills also point to 585 

mass-wasting deposits, which might have been swept into the hollows by bottom currents in 586 

addition to the undisturbed hemipelagic deposition. 587 

Similar giant erosional scours with pronounced scarps, asymmetric cross-sections and partial 588 

infill with Pliocene-Holocene sediments were found at the southwestern end of the Faroe-589 

Shetland Channel (Bulat and Long, 2001; Stoker et al., 2003; Long et al., 2004; Masson et al., 590 

2004). These "Judd Deeps" occur at the narrowest part of the deep-water passage, where the 591 

throughflow is accelerated to maintain the cross-sectional volume transport. Additionally, 592 

deeper penetrating reflection seismogram sections show similar buried features above a Late 593 

Oligocene-Early Miocene unconformity leading to the interpretation that the erosion of the 594 

scours is related to the onset of a high-energy bottom-current flow through the Faroe-Shetland 595 

Channel (Bulat and Long, 2001; Stoker et al., 2003). Due to the similarity of these scours one 596 
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can speculate that (1) regions where (strong) bottom currents are topographically forced to 597 

change their flow direction are prone to the formation of giant erosional scours and (2) the 598 

formation of the giant erosional scours in the Mozambique Channel might also be related to a 599 

prominent change in the AABW flow intensity. If deeper lying tectonic structures or 600 

unconformities additionally foster the erosion is neither clear for the Faroe-Shetland nor for 601 

the Mozambique Channel. 602 

Farther south- and eastward the undulating bedforms of zones BS3 and BS4 (Figure 9a, b) are 603 

aligned parallel to the local topographic contour lines pointing to a generation by a contour 604 

current. This is probably that portion of the AABW that does not upwell, but is deflected 605 

eastward against the Coriolis force and flows along the slope of the shallowing Mozambique 606 

Channel (Figure 22).  607 

The alignment of these bedforms, their steep flanks and the almost evanescent diffuse internal 608 

reflection pattern arise questions, which mechanism might have formed them. An 609 

interpretation as fine-grained sediment waves seems to be rather unlikely, because these 610 

usually show a distinct internal stratification, shallower flanks and an orientation oblique or 611 

parallel to the topographic contour lines depending on whether they are generated by bottom 612 

or by turbidity currents (not evident here) and wave crests oblique or perpendicular to the 613 

flow direction (Wynn and Stow, 2002). The alignment of the bedforms here parallel to the 614 

topographic contour lines and parallel the bottom-current flow direction rather points to small 615 

elongate contourite mounds as have also been described for the northern Rockall Trough 616 

(Howe, 1996; Stoker et al., 1998; Masson et al., 2002) and the northeastern Faroe-Shetland 617 

Channel (Bulat and Long, 2001). Another potential mechanism might be turbulences or 618 

marginal eddies (Stow et al., 2008) associated with the topographic deceleration and 619 

deflection of the AABW. They might promote the formation of longitudinal vortices forming 620 

grooves and sedimentary "ridges" parallel to the contour lines (Allen, 1997). Such turbulences 621 
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might also explain the diffuse reflection pattern and the intermittently incised furrows as a 622 

product of short-term, locally increased current velocities (Hollister and McCave, 1984). In 623 

any case the eastward decreasing height of the bedforms may be attributed to a successively 624 

decreasing current velocity of the deflected AABW caused by its flow against the Coriolis 625 

force. The very low signal penetration in zone BS3 might either be explained geometrically 626 

by the steep bedforms flanks (>10°), which mainly diffract the narrow-beam PARASOUND 627 

signal. Or it might be due to missing fine grain sizes, which have been winnowed here and 628 

deposited farther eastward in zone BS4 due to the slower AABW current velocity, thus 629 

causing the greater signal penetration in the smaller bedforms. Whether these bedforms are 630 

still active, i.e. migrate or change their shape and position, can hardly be identified due to the 631 

lack of internal stratification.  632 

The channel in the northwesternmost part of the southern bedform area (zone BS7, Figure 10) 633 

lies in the transition zone between AABW and NADW and is interpreted as a contourite 634 

channel which indicates the northernmost extension and a flow path of the eastward deflected 635 

AABW (Figure 22) during the time when the channel was eroded. Layered sediments 636 

covering the "ridge(s)" and filling the channel and the giant erosional scours south of the 637 

channel prove that today only weak bottom currents are active which do not erode sediments 638 

but keep the channel open. The locally confined terrace with very small sediment waves north 639 

of the channel illustrates that the flow was/is not only restricted to the deep channel.  640 

 641 

Central bedform area (~3500 - 3000 m water depth) 642 

The central bedform area lies completely in the water depth range of the NADW. The current 643 

velocity sections across the whole Mozambique Channel at 24°40'S and across its western 644 

half at 24°S (Figure 4) show that this area is mainly affected by deep-reaching eddies, which 645 

have bottom-current velocities of <0.1 m/s and produce a southward flow in the western and 646 
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eastern parts of the study area and a northward flow in the middle of the Mozambique 647 

Channel. The Mozambique Undercurrent and the NADW return current influence this area, if 648 

at all, only along its western and eastern margins west of ~37°E and east of ~42°E.  649 

The very regular undulating bedforms (zone BC1) (Figure 11a) in the west are aligned 650 

oblique to the topographic contour lines and lie in the range of the southward flow of the 651 

anticyclonic MCEs. Due to their steep flanks, diffuse hyperbolic echoes, low signal 652 

penetration and lack of internal stratification it is difficult to discern, whether these bedforms 653 

are active. Their bathymetric image and their scales resemble a network of elongate contourite 654 

mounds mapped on the slope of the Faroe-Shetland Channel (Bulat and Long, 2001) rather 655 

than actual sediment waves. Therefore, we again prefer the term elongate contourite mounds 656 

for the undulating bedforms here. Their crests are aligned oblique to the southward flow, but 657 

parallel to a part of the swirl of an anticyclonic MCE (Figure 22).  658 

The formation of the hummocky bedforms (zone BC4) (Figure 11b) in the east is more 659 

difficult to explain. In the planform these bedforms resemble (subaerial) star dunes, which are 660 

typically generated by two different wind directions (Anderson and Anderson, 2011). For 661 

subaqueous bedforms this implies that two different (W-E and NE-SW) flow directions must 662 

be active simultaneously or alternately. Comparisons with modelling computations reveal that 663 

the ocean circulation in the Eastern Mozambique Channel is subject to a strong seasonal 664 

variability (Chapman et al., 2003), which might cause different flow directions and thus form 665 

the hummocky bedforms (Figure 22). Furthermore, the small undulating bedforms, which 666 

surround the northern hill seem to reflect the footprint of an eddy, which might be related to 667 

the northern path of the (S)EMC (Chapman et al., 2003) (Figure 1). Additionally, one can 668 

speculate, if the two gently sloping hills covered with the hummocky bedforms are actually 669 

large drift bodies, which accumulated in the centre and along the margin of an eddy.  670 

The arcuate cross-cutting features (zone BC8) (Figure 12) in the middle of the central 671 
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bedform area approximately mark the eastern boundary of an anticyclonic MCE, where a 672 

northward flow direction prevails (Figure 22). The course of these sedimentary features seems 673 

to be topographically controlled by the almost circular bathymetric high. In contrast, the 674 

origin of the smaller grooves crossing the arcuate "channels" and "ridges" is not as obvious, 675 

but might again be attributed to a seasonally variable (S)EMC eddy in the eastern part. The 676 

~40 m thick sediment drape indicates again that the formation of these >100 m deep 677 

structures must have happened during geologic times, when bottom currents were stronger 678 

than today and capable to erode sediments, whereas today sediment transportation and 679 

deposition prevails and keeps the structures open.  680 

Similarly, the moat surrounding an unnamed seamount north of the arcuate "channels" and 681 

"ridges" (Figure 13) is also considered to be generated by a topographically controlled weak 682 

northward flow (Figure 22), as well as the small sediment wave field south of the moat and 683 

the small W-E oriented undulating bedforms of zone BC3 (without Figure) north of the moat 684 

and south of the Bassas da India complex. 685 

 686 

Northern bedform area (~3200 - 2900 m water depth) 687 

The northern bedform area lies in the water depth range of the NADW, too. Knowledge of 688 

current velocities in this area is rare. A rough northward extrapolation of the current velocity 689 

section at 24°40'S (Figure 4) implies that northward bottom currents of <0.1 m/s velocity 690 

must be anticipated. If the eddy between ~40°30'E and ~42°30'E can also be extrapolated or if 691 

it is only a temporarily variable phenomenon is unclear. However, it is worth to mention that 692 

the region east of the Bassas da India complex lies outside the main travel corridor of the 693 

MCEs (Schouten et al., 2003). 694 

The formation mechanism of the highly variable bedforms in this area is not really evident. 695 

The arcuate, convex-bended features in zone BN1 (Figure 14) may point to deep-reaching 696 
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eddies or bottom currents, which locally interact with the topography of the Bassas da India 697 

complex. Similarly, the close vicinity and sometimes sudden change of different topographic 698 

features such as the amalgamation of holes, elongate depressions, small "ridges" and 699 

hummocky or circular structures in zone BN2 (Figure 14) may suggest an interaction of 700 

bottom currents with the topographic incisions of the Zambezi and Tsiribihina Channels 701 

(Figure 22). If deeper lying structures or unconformities (additionally) affect or cause these 702 

features remains unclear due to the limited penetration of the PARASOUND data. But again, 703 

the ~40 - 50 m thick drape on all sedimentary features exhibiting vertical heights and depths 704 

of nearly 100 m indicates, that these features must have been formed during geologic times, 705 

when bottom currents were stronger, while today sediment deposition and transportation 706 

dominates and keeps the structures open.  707 

 708 

Southeastern levee of the Zambezi Channel (~3500 - 3200 m water depth)  709 

The southeastern levee of the Zambezi Channel also lies in the water depth range of the 710 

NADW. According to the current velocity section at 24°40'S (Figure 4) a southward flow 711 

with bottom-current velocities <0.1 m/s prevails. However, the wave crests of the sediment 712 

waves (Figure 15) are aligned parallel to the local topographic contour lines suggesting that 713 

turbidity currents associated with the sediment transport in the Zambezi Channel formed the 714 

waves (Figure 22) rather than bottom currents (Wynn and Stow, 2002). 715 

 716 

5.2 Sedimentary processes in regions with smooth and rough seafloor 717 

Mozambican continental slope (~3300 - 2900 m water depth)  718 

The Mozambican continental slope lies in the water depth range of the NADW as well. A 719 

rough interpolation between the current velocity sections at 20°S and 24°S (Figure 4) yields 720 

that most of the continental slope is influenced by the southward flow of the anticyclonic 721 
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MCEs with bottom-current velocities <0.1 m/s. Only the part east of ~38°30'E might rather 722 

experience a weak northward flow associated with the eastern part of the MCEs. The 723 

Mozambique Undercurrent with its main NADW core in ~2500 m depth and bottom-current 724 

velocities >0.1 m/s passes the study area along its northwesternmost corner north of 21°S. 725 

The most prominent morphological feature is the slide scar on the northwestern continental 726 

slope (Figure 17). Its morphology and dimension resemble bottleneck slides, as have also 727 

been found on the NE Faroe continental margin (van Weering et al., 1998) and on the NW 728 

slope of the Hatton Bank (MacLachlan et al., 2008) in current-controlled environments. 729 

Though it is the only slide scar detected here this region seems to be rather prone to slope 730 

instabilities, as the scar itself exhibits up to four failure events, and several mass-wasting 731 

deposits occur near the scar, too (Figure 16). A timing of the failure events is impossible 732 

because no sediment cores are available for ground-truthing. However, as at least ~30 thick 733 

layered sediments are covering the gliding planes, all failure events seem to be rather "old". 734 

As well, no definite failure mechanism can be derived from the bathymetric and 735 

PARASOUND data. But a comparison with the similar multiphase slope failure on the NW 736 

slope of the Hatton Bank (MacLachlan et al., 2008) suggests that bottom currents might have 737 

promoted the failure(s). According to Sultan et al. (2004) an oversteepening of the slope or a 738 

removal of the (stabilizing) foot support can cause slope failures. Here, a northwestward 739 

increasing slope gradient and the influence of the Mozambique Undercurrent passing the head 740 

of the slope failure in the northwest (Figure 22) might have lead to an accumulation of 741 

(oversteepened) contouritic successions, which occasionally fail leaving either slide scars on 742 

the slope or are deposited as transparent lenses or diffuse reflecting debris flows. 743 

Additionally, the displaced mass is missing, at least in the available bathymetric stripes, 744 

which might also point to a destabilizing effect of the southward flowing MCEs at the foot of 745 

the scar and their capability to remove the displaced sediments.  746 
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The undisturbed parallel-bedded strongly reflecting layers filling the bowl-shaped basin in the 747 

southeast are interpreted as coarse-grained turbidites (Damuth and Hayes, 1977; Damuth, 748 

1980) transported down the Mozambican continental slope (Figure 16). 749 

 750 

North and south of the Bassas da India complex (~3200 - 2900 m water depth) 751 

The more fine-scale distinct reflection pattern of the parallel-bedded sequences north and 752 

south of the Bassas da India complex (Figure 18) indicates that more fine-grained sediments, 753 

probably distal turbidites, are deposited here than in the bowl-shaped basin (Damuth, 1980; 754 

Damuth and Hayes, 1977). Additionally, the larger signal penetration north of the Bassas da 755 

India complex point to a shadowing effect of the seamounts. They form a topographic barrier 756 

for the turbidite suspension clouds from the Mozambican continental slope, so that less 757 

terrigenous particles reach the area in the south resulting in lower sedimentation rates and 758 

higher carbonate contents than in the north, thus causing higher signal attenuation (Damuth 759 

and Hayes, 1977; Damuth, 1980). The weakly undulating bedforms in the north are 760 

considered to be soft sediment deformations caused by slow downslope creeping of soft fine-761 

grained sediments (Wynn and Stow, 2002), whereas the undulating bedforms in the south 762 

might be formed by weak bottom currents, possibly at the northern/northwestern margin of a 763 

(S)EMC eddy. The thick transparent bodies of slides and debris flow are assumed to originate 764 

from the flanks of the seamount complex.  765 

 766 

Eastern levee of the Zambezi Channel (~3200 - 2800 m water depth) 767 

The reflection pattern of the eastern levee of the Zambezi Channel can be interpreted 768 

accordingly. Here, fine-grained terrigenous overspill sediments are considered to generate the 769 

fine-scale distinct parallel subbottom reflectors. Their thickness decreases with greater 770 

distance from the channel leading to a weaker reflection pattern. The formation of the small 771 
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sediment wave field can probably be attributed to currents resulting from the overspill of 772 

sediments from both the Zambezi and the Tsiribihina Channel rather than to bottom currents. 773 

 774 

Zambezi Channel and cone (~4400 - 4000 m water depth) 775 

The Zambezi cone lies in the water depth range of the AABW. According to the southern 776 

bedform area weak bottom currents of <0.1 m/s can be expected due to the eastward deflected 777 

AABW. 778 

The strong prolonged or hyperbolic reflections from the channel floor indicate that no 779 

sediments are deposited today. If the channel floor is even eroded is difficult to discern 780 

because the steep channel walls cause large hyperbolic echoes, which mask potentially 781 

outcropping layers in the PARASOUND data.  782 

The suspension clouds transported through the channel are deposited as parallel-bedded 783 

turbidite sequence within a narrow band southeast of the channel mouth (Figure 20). Very 784 

strong reflection amplitudes suggest that it consists of coarse-grained sediments. The diffuse 785 

reflection pattern south and west of the parallel-bedded turbidite sequence points to a chaotic 786 

or turbulent deposition of coarse-grained sediments in this part of the cone or indicates the top 787 

of a huge debris flow or sandy lobe. If this kind of deposition is characteristic for the marginal 788 

cone and/or if bottom currents have an influence is not clear. Today, the AABW flow is too 789 

weak to mobilize and transport coarse-grained sediments. If the thin transparent veneer on top 790 

of the diffuse reflection pattern in line Zambezi 3 indicates a thin pelagic cover cannot 791 

unambiguously be answered, too. If it is a pelagic cover this implies that today the suspension 792 

clouds do not reach the marginal cone, but are restricted to an area closer to the channel 793 

mouth. This again implies that today less sediment is transported through the channel than in 794 

times when the cone developed. However, the channel still seems to be active, as obviously 795 

no sediments are deposited on the channel floor. Furthermore, the boundary between the 796 
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northwestern Zambezi cone and the southern bedform area (zones BS2, BS3, BS4) seems to 797 

mark (1) the boundary between the regions, where sediments are too coarse to be moved and 798 

are fine enough to develop undulating bedforms under the influence of a bottom current or (2) 799 

the southern boundary of the flow path of the deflected AABW at all. 800 

 801 

Rough topography (~3300 - 2900 m) 802 

The origin and formation of the unusually strong anomalous reflection pattern and the 803 

elongate depression(s) in zone R2 is not evident. The vicinity of Mount Bourcart and an 804 

unnamed seamount suggests that tectonic or submarine volcanic activity might play an 805 

important role. However, one can only speculate (1) if the elongate depression(s) are collapse 806 

structures caused by volcanic eruptions and/or gas outbursts or if they are (in-)active faults, 807 

which connect both seamounts and are draped with sediments today, (2) if the unusually 808 

strong anomalous reflection pattern north of the depression(s) indicate sediment compositions 809 

including volcanic particles, ashes and/or glasses or even lava flows, or if it is associated with 810 

deeper structures, and (3) if the strongly reflecting emerging structure in line D3 points to 811 

another buried seamount or lava flow, or if it is just an older sedimentary structure. 812 

 813 

5.3 Discussion of stratigraphic constraints for the formation of the bedforms  814 

Most of the morphological features described above reach up to ~100 m height, extend over 815 

several kilometres lengths and widths and are draped with at least ~20 - 50 m thick sediments. 816 

This leads to the conclusion that the bottom-current velocities today are weak enough to allow 817 

sediment deposition, but must have been stronger during the geologic times when the 818 

morphological features were formed. Kolla et al. (1980a) determined Holocene-Early 819 

Pleistocene (<80000 yrs) sedimentation rates of 15 - 20 m/Myrs and >20 m/Myrs for their 820 

microtopographic zones III and IV (Figure 6) and concluded that the sediment waves in the 821 
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Mozambique Basin developed in Pleistocene times and earlier. If these sedimentation rates 822 

can be extrapolated to times >80000 yrs and an average rate of 20 m/Myrs is assumed, the 823 

sediment drape visible in the PARASOUND data has an age of ~1 - 2.5 Ma and the large 824 

morphological features developed before Middle Pleistocene/Late Pliocene times.  825 

Studies on sediment drifts in the Transkei Basin and Natal Valley indicate an onset of the 826 

proto-AABW at the Eocene/Oligocene boundary (~36 Ma) and of the proto-NADW since the 827 

Middle Miocene (~15 Ma) (Niemi et al., 2000; Schlüter and Uenzelmann-Neben, 2007, 828 

2008). Their current-velocities increased during the Middle Miocene associated with changes 829 

in the extent and built-up of the polar ice sheets (Schlüter and Uenzelmann-Neben, 2008, 830 

2007). Thus, the giant erosional scours and the other morphological features in the southern 831 

bedform area, which lie in the water depth range of the AABW today, must be younger than 832 

Eocene/Oligocene age. Probably, they originate from Middle Miocene times. 833 

Studies on sediment drifts in the Limpopo cone and on the Inharrime Terrace (Preu et al., 834 

2011) and an analysis of the sediment depocentres in the Zambezi Delta (Walford et al., 2005) 835 

point to an onset of the MC (and the associated eddies) in the Early/Middle Miocene (~24 - 15 836 

Ma), possibly due the closure of the eastern Mediterranean connection and the narrowing of 837 

the Indonesian gateway and the associated establishment of a strong westerly equatorial 838 

surface current in the Indian Ocean at ~14 Ma (Gourlan et al., 2008). Also termed Miocene 839 

Indian Ocean Equatorial Jet (MIOJet) this strong surface current might have triggered the 840 

onset and controlled the strength of the MC, similar to the present-day ITF and SEC. Based 841 

on the morphology of a depositional unit on the Inharrime Terrace highest MC velocities 842 

obviously occurred in Middle Miocene-Late Pliocene times (Preu et al., 2011), in agreement 843 

with an increase in the MIOJet strength between ~14 - 9 Ma and relative stable conditions 844 

until ~4 Ma (Gourlan et al., 2008). Thus, the large morphological features in the central and 845 

northern bedform areas, which were linked to the present-day deep-reaching eddies of the MC 846 
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and (S)EMC, possibly formed during Middle Miocene-(Late) Pliocene times in agreement 847 

with the time spans estimated above for the deposition of the sediment drape and for the 848 

evolution of the bedforms from Kolla et al.'s (1980a) sedimentation rates. 849 

The weak bottom-current velocities, which allowed the deposition of the sediment drape, can 850 

possibly be explained with the progressive shallowing and final closure of the Indonesian 851 

gateway during Pliocene times (~4 - 2.5 Ma). This gradually reduced the MIOJet to the 852 

present-day ITF and thus reduced the SEC and the flow through the Mozambique Channel 853 

and around the southern tip of Madagascar, too (Gourlan et al., 2008; Karas et al., 2009).  854 

 855 

 856 

6.  Summary and conclusions 857 

High-resolution bathymetric and narrow-beam subbottom profiler data collected in the 858 

Mozambique Channel between 21°S - 27°S show a large variety of current-controlled 859 

bedforms. Their shape, size, orientation and reflection pattern have been analysed and linked 860 

to the recent and to paleoceanographic current regimes.  861 

(1) The region south of 25°S lies in the depth range of the northward flowing AABW. Its 862 

interaction with the seafloor is strongest in the southwest, where giant erosional scours 863 

indicate that the ascending slope of the Mozambique Channel acts as a topographic barrier, 864 

which forces one portion of the AABW to upwell possibly in clockwise rotating vortices. The 865 

other portion, forced by the topography of the Mozambique Ridge, is deflected eastward 866 

against the Coriolos force and leaves furrows and small elongate contourite mounds along its 867 

flow path. A W-E trending contourite channel at 25° marks the northernmost extension of 868 

the AABW in the present-day transition zone between AABW and NADW. 869 

(2) The region north of 25°S lies in the depth range of the NADW. Its main core is included in 870 

the northward flowing Mozambique Undercurrent, which affects the study area only 871 
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marginally. 872 

(3) Between 25°S - 22°20'S and east of 37°30' E the seafloor is strongly shaped by deep-873 

reaching eddies, in the west by the southward and swirling flow and in the middle by the 874 

northward flow of the MCEs and in the east by seasonally variable EMC eddies. Typical 875 

bedforms are small elongate contourite mounds in the west, arcuate bedforms and a moat in 876 

the middle and hummocky bedforms in the east. 877 

(4) North of 22°20'S and east of 40°E numerous abruptly changing morphological features 878 

point to a potential interaction of bottom currents with the Bassas da India complex and the 879 

Zambezi/Tsiribihina Channels in a region which lies outside the main corridor of the 880 

southward travelling MCEs. 881 

(5) The northwestern Mozambican continental slope seems to be prone to slope failures and 882 

mass wasting possibly caused by the destabilizing influence of the Mozambique Undercurrent 883 

and the MCEs.  884 

(6) The regions north and south of the Bassas da India complex exhibit an undisturbed 885 

deposition of fine-grained distal turbidites within a hemipelagic sequence and a shadowing 886 

effect of the seamounts against the terrigenous input from the Mozambican continental slope. 887 

(7) The Zambezi Channel seems to be active because no fine-grained sediments are visible on 888 

the channel floor. In the Zambezi cone coarse-grained turbidites are deposited only southeast 889 

of the channel mouth. Westwards, chaotic or turbulent deposited sediments lie on the top. 890 

(8) Two huge elongate depressions between Mount Bourcart and an unnamed seamount and 891 

unusually strong anomalous reflection patterns point to tectonic or submarine volcanic 892 

activity in this region.  893 

(9) Bedforms scales of ~100 m height and several kilometres length and width on the one 894 

hand side and an at least ~20 - 50 m thick sediment drape on the other hand side leads to the 895 

conclusion that the bedforms developed during geologic times, when the bottom currents 896 
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were stronger than today. From comparisons with previous studies on sediment deposits in the 897 

Transkei Basin, Limpopo cone and Zambezi Delta and rough Holocene-Pleistocene 898 

sedimentation rates a time interval from approximately Middle Miocene to (Late) Pliocene 899 

was estimated for the formation of the bedforms and from (Late) Pliocene to today for the 900 

sediment drape. Increased AABW current velocities during the Miocene cooling trend 901 

associated with the extent and built-up of the polar ice sheets and the onset of the MC 902 

triggered by the establishment of a strong MIOJet due to the narrowing of the Indonesian 903 

gateway are discussed as potential paleoceanographic scenarios that forced the formation of 904 

the bedforms. A subsequent decrease in the MIOJet and MC strength caused by the final 905 

closure of the Indonesian gateway is considered as scenario that forced the deposition of the 906 

sediment drape.  907 

(10) Deeper penetrating seismic data, ideally combined with information about the turbidity, 908 

vorticity and current velocity structure in the water column, sediment cores and a more 909 

complete bathymetric coverage are necessary to answer the questions: When did the bedforms 910 

develop? How is the development of the bedforms related to processes in the water column? 911 

Did deeper lying structures promote the evolution of bedforms? What is the origin of the huge 912 

depression and anomalous reflection pattern in the vicinity of Mount Bourcart? 913 

914 
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Figure Captions 1119 

Figure 1. Map of the western Indian Ocean showing the study area (white box), the surface 1120 

(yellow) and the bottom/deep water current flow (red) around Madagascar and off SE-Africa, 1121 

and the positions of LADCP based current velocity sections measured during the WOCE 1122 

program (dashed purple line) (Donohue and Toole, 2003) and the ACSEX-1 cruise (solid 1123 

purple lines) (Ridderinkhof, 2000). The bathymetry is based on the ETOPO1 grid (Amante 1124 

and Eakins, 2009). SEC, South Equatorial Currrent; NEMC, Northeast Madagascar Current; 1125 

SEMC, Southeast Madagascar Current; SICC, South Indian Ocean Counter Current; EACC, 1126 

East African Coastal Current; MC, Mozambique Current; MCE, Mozambique Channel eddy; 1127 

AC, Agulhas Current; AABW, Antarctic Bottom Water; NADW, North Atlantic Deep Water.  1128 

Figure 2. Detailed map of the study area including the survey lines. Bathymetry based on 1129 

ETOPO1 (Amante and Eakins, 2009). 1130 

Figure 3. Salinity fields (colour-coded grid) and potential temperatures (white contour lines) 1131 

(a) across the Mozambique Channel at 24°40'S and (b) along 40°E. The data are extracted 1132 

from the high-resolution CTD (W-E section at 24°40'S) and from the low-resolution OSD 1133 

data set (N-S section at 40°E) of the World Ocean Database (Boyer et al., 2009) and are 1134 

compiled with Ocean Data View (Schlitzer, 2011). AABW, Antarctic Bottom Water; NADW, 1135 

North Atlantic Deep Water; AAIW, Antarctic Intermediate Water; RSW, Red Sea Water; 1136 

TSW, Tropical Surface Water. 1137 

Figure 4. LADCP based meridional velocities (a) across the Mozambique Channel at 24°40'S 1138 

(redrawn after Donohue and Toole (2003)) and (b) - (d) across 3 Mozambique Channel eddies 1139 

at 24°S, 20°S, 17°S (redrawn after Ridderinkhof (2000) and de Ruijter et al. (2002)). Red 1140 

colours indicate northward, blue colours southward flow directions. WOCE section I4 was 1141 

collected betwen 14 - 18 June 1995, the ACSEX-1 sections between 26 March - 08 April 1142 

2000. For the location of the sections refer to Figure 1. 1143 
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Figure 5. Hill-shaded coloured map of the acquired bathymetric data. The sections and 1144 

PARASOUND profiles displayed in Figures 7 - 21 are marked and labeled with their figure 1145 

numbers.  1146 

Figure 6. Microtopographic classification of the study area. Overlain are (i) line drawings of 1147 

the seafloor morphology along the acquired bathymetric stripes, (ii) smoothed bathymetric 1148 

contour lines (every 500 m) based on the ETOPO1 grid (cf. Figures 1, 2) and (iii) the 1149 

boundaries of microtopographic zones II (smooth, flat seafloor), III (sediment waves) and IV 1150 

(hyperbolic echoes) defined by Kolla et al. (1980a) (dashed yellow lines). 1151 

Figure 7. (a) Hill-shaded bathymetry section typical for microtopographic zone BS1. (b) 1152 

PARASOUND section and (c) depth profile along the central line of the bathymetric stripe 1153 

shown in (a). The white lines indicate the positions of the PARASOUND blow-ups marked 1154 

by red boxes and illustrating the sedimentary infill of the scour hollows. VE, vertical 1155 

exaggeration.  1156 

 Figure 8. (a) Hill-shaded bathymetry section typical for microtopographic zone BS2. (b) 1157 

PARASOUND section (parts 1, 2) and (c) depth profile along the central line of the 1158 

bathymetric stripe shown in (a).  1159 

Figure 9. Hill-shaded bathymetry sections typical for microtopographic zones (a) BS3 and (b) 1160 

BS4, and PARASOUND sections and depth profiles along the central lines of the bathymetric 1161 

stripes. The PARASOUND sections display the reflection pattern along those parts marked by 1162 

red boxed in the depth profiles and by white lines in the bathymetric stripes. 1163 

Figure 10. (a) Hill-shaded bathymetry section typical for microtopographic zone BS7. (b) 1164 

PARASOUND section along the black line in bathymetric stripe C. To illustrate the reflection 1165 

pattern of the terrace north of the channel the section marked by the red box is blown-up in 1166 

the inset. (c) Depth profiles along the central lines of the bathymetric stripes A - E shown in 1167 

(a). The dashed black and red arrows indicate the AABW flow path in the bathymetry section 1168 
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and along the depth profiles.  1169 

Figure 11. Hill-shaded bathymetry sections typical for microtopographic zones (a) BC1 and 1170 

(b) BC4, and PARASOUND sections and depth profiles along the central lines of the 1171 

bathymetric stripes. The PARASOUND sections display the reflection pattern along those 1172 

parts marked by red boxes in the depth profiles and by black lines in the bathymetric stripes.  1173 

Figure 12. (a) Hill-shaded bathymetry section typical for microtopographic zone BC8. (b) 1174 

PARASOUND section along the black line in bathymetric stripe C. (b) Depth profiles along 1175 

the central lines of the bathymetric stripes A - C shown in (a).  1176 

Figure 13. (a) Hill-shaded bathymetry section of a moat surrounding an unnamed seamount 1177 

north of microtopographic zone BC8. (b) PARASOUND sections recorded north and south of 1178 

the seamount along the black lines in the eastern bathymetric stripe. (c) Depth profile along 1179 

the central line of the eastern bathymetric stripe shown in (a).  1180 

Figure 14. (a) Hill-shaded bathymetry section typical for the adjacent microtopographic 1181 

zones BN1 and BN2. (b) PARASOUND sections along the black lines in the bathymetric 1182 

stripes A and B.  1183 

Figure 15. (a) Hill-shaded bathymetry section typical for microtopographic zone BE1. (b) 1184 

PARASOUND section and (c) depth profile along the central line of the bathymetric stripe 1185 

shown in (a). The PARASOUND section confines to the black line shown in the bathymetric 1186 

stripe and the red box marked in the depth profile.  1187 

Figure 16. PARASOUND sections recorded along the (a) northwestern and (b) southeastern 1188 

part of microtopographic zone S1 on the Mozambican continental slope.  1189 

Figure 17. (a) Hill-shaded bathymetry section of a slide in the northwestern part of 1190 

microtopographic zone S1 and (b) PARASOUND section along the central black (left) or 1191 

white (right) line of the bathymetric stripes. The left and right stripes display the seafloor 1192 

morphology of the slide area with different colour scales, the middle stripe the same data with 1193 
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an interpretation of four potential failure events (dashed lines). The colour scale used for the 1194 

display of the left and middle stripes is the same as for the whole map (Figure 5) and as used 1195 

for Figures 7 - 21. For the display of the right bathymetric stripe the water depth range of the 1196 

slide area is spread over the full colour scale to further enhance small-scale depth variations.  1197 

Figure 18. PARASOUND sections recorded (a) north and (b) south of the Bassas da India 1198 

complex in microtopographic zones S2 and S3.  1199 

Figure 19. PARASOUND section recorded on the eastern levee of the Zambezi Channel in 1200 

microtopographic zone S4.  1201 

Figure 20. PARASOUND sections recorded in the Zambezi cone in microtopographic zone 1202 

S5. The three lines run parallel to each other from 26°20'S to 26°50'S and show the changing 1203 

sedimentation pattern from East to West, i.e. from a position southeast of the Zambezi 1204 

Channel mouth to a position 150 km farther westward.  1205 

Figure 21. (a) Hill-shaded bathymetry and (b) PARASOUND sections typical for 1206 

microtopographic zone R2. The left bathymetry section in (a) displays the seafloor 1207 

morphology and the positions of the PARASOUND sections (black lines), the right 1208 

bathymetry section the interpretation of the elongate depression (dashed line). The red dashed 1209 

lines in (b) mark the elongate depression and the transition from the turbidite-filled bowl- 1210 

shaped basin to a bathymetric high. 1211 

Figure 22. Interpretative map displaying the flow directions of the currents that shaped the 1212 

seafloor, as derived from the bedforms. The black and red columns at the left-hand side 1213 

approximately indicate the latitudinal spread of the AABW and NADW. Black solid arrows 1214 

indicate the floww directions of the AABW, red solid arrows the flow directions of an MCE, 1215 

red open arrows the potential flow directions of an EMC eddy and the blue open arrows the 1216 

flow directions of overspill sediments from the Zmabezi and Tsiribihina Channels. Underlain 1217 

is the microtopographic classification as defined in Figure 6. 1218 

1219 
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Appendix 1220 

Table A1 provides an overview on the morphological characteristics, the bedform scales, the 1221 

PARASOUND signal penetration depth and the location of the microtopographic zones 1222 

identified in the study area (Figure 6). 1223 

 1224 
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Table A1. Morphology and PARASOUND reflection pattern of the microtopographic zones mapped in the study area (Figure 6). 

Type Description Bedform scales PARASOUND  
penetration depth 

Location 
(Figure in this paper) 

Undulating seafloor - southern bedform area 

BS1 Large steep, asymmetric erosional scours, mainly 
oriented NW-SE. The southern flanks are steeper than 
the northern flanks. The seafloor in and between the 
scour hollows is covered with parallel-bedded 
sediments.  

Erosional scours:  
up to ∼20 km 
length, 
∼3 - 7 km width, 
up to ∼450 m depth 

~25 - 35 m  
for the sediments in and 
between the scour holllows.  

Southwestern 
Mozambique Channel 
(Figure 7) 

BS2 Large undulating bedforms, sediment waves and small 
sediment drifts, mainly oriented NE-SW, with distinct 
parallel subbottom reflectors or diffuse small internal 
wavy or hyperbolic echoes. Sediment waves are 
migrating upslope. Sediment drifts show erosional 
southern flanks.  

Sediment waves:  
λ* ≈ 3 - 4 km 
h ≈ 25 - 45 m  
Sediment drifts:  
height up to  
∼100 m  

~40 - 60 m Southwestern 
Mozambique Channel 
(Figure 8) 

BS3 Undulating bedforms with steep flanks and weak, 
diffuse reflection pattern, mainly aligned NE-SW.  

Bedforms:  
λ* ≈ 2.5 - 3 km 
h ≈ 60 - 80 m 

~0 - < 5 m  Southern Mozambique 
Channel  
(Figure 9a) 

BS4 Undulating bedforms with diffuse reflection pattern, 
mainly aligned NE-SW to ENE-WSW, intermittently 
incised by W-E to NW-SE oriented furrows. Similar 
to BS3, but with lower bedform height and higher 
acoustic penetration.  

Bedforms: 
λ* ≈ 1.5 - 2 km 
h ≈ 20 - 30 m 
Furrows:  
~8 - 15 km length, 
~2 - 3 km width, 
~60 m depth. 

~20 - 40 m Southeastern 
Mozambique Channel, 
west of Zambezi 
Channel mouth  
(Figure 9b) 

BS5 Small irregular, highly variable bedforms without 
distinct orientation. Prolonged to parallel subbottom 
reflectors.  

Bedforms: 
λ* ≈ 1 - 1.5 km 
h ≈ 5 - 30 m 

 

~20 - 30 m  Southwestern 
Mozambique Channel 
(without figure) 
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BS6 Small undulating bedforms with diffuse, prolonged 
reflection pattern, mainly oriented WNW-ESE, NW-
SE or W-E. 

Bedforms:  
λ* ≈ 1 - 2 km 
h ≈ 5 - 20 m 

 

~10 - 20 m Southeastern 
Mozambique Channel, 
west of the Zambezi 
Channel  
(without figure) 

BS7 Almost flat terrace with very fine-scale W-E trending 
undulating bedforms, located north of a slightly 
sinuous, deep contourite channel. 

Bedforms: 
λ* ≈ 0.3 km 
h ≲ 5 m 
Contourite channel: 
~5 km wide, 
~100 m deep, 

~10 - 15 m  Southwestern 
Mozambique Channel 
(Figure 10) 

Undulating seafloor - central bedform area 

BC1 Regularly undulating bedforms, mainly aligned NW-
SE, intermittently bifurcating. Diffuse, prolonged 
reflection pattern with hyperbolic echoes. 

Bedforms: 
λ* ≈ 2 km 
h ≈ 55 - 60 m 

~5 - 15 m Central western 
Mozambique Channel 
(Figure 11a) 

BC2 Small, slightly undulating bedforms with weak, 
parallel subbottom reflectors, mainly oriented NW-
SE. Similar to type BC3 but smaller in height.  

Bedforms: 
λ* ≈ 1.5 - 2 km 
h ≈ 10 - 40 m 

~15 - 20 m Central western 
Mozambique Channel 
(without figure) 

BC3 Small undulating bedforms, mainly oriented W-E. 
Occuring in the transition zone between S3 and BC2. 
Weak, prolonged reflection pattern or hyperbolic 
echoes. 

Bedforms: 
λ* ≈ 0.5 - 1.5 km 
h ≈ 10 - 60 m 

~5 - 10 m Central Mozambique 
Channel, south of Bassas 
da India, west of an 
unnamed seamount  
(without figure) 

BC4 Undulating, hummocky bedforms showing two 
preferential orientations - NE-SW and W-E. They 
cover two gently sloping local topographic highs, 
possibly drift bodies. Diffuse, prolonged reflection 
pattern with hyperbolic echoes.  

Bedforms: 
λ* ≈ 1 - 1.5 km 
h ≈ 35 - 55 m 

~5 - 15 m Central eastern 
Mozambique Channel, 
west of the Zambezi 
Channel  
(Figure 11b) 

BC5 Small undulating bedforms following the topographic 
contour lines at the foot of the northern local 
topographic high covered with sediments of type BC4. 

Bedforms: 
λ* ≈ 1 - 2 km 

~5 - 15 m Central eastern 
Mozambique Channel, 
west of the Zambezi 



Oriented NW-SE, W-E or NE-SW depending on the 
contour lines. Diffuse, prolonged reflection pattern, 
sometimes with hyperbolic echoes. 

h ≈ 20 - 30 m Channel  
(without figure) 

BC6 Small undulating bedforms, mainly oriented NE-SW. 
Occurring in a meander loop of the Zambezi Channel, 
on the western levee. Parallel or prolonged subbottom 
reflections. 

Bedforms: 
λ* ≈ 1 - 2 km 
h ≈ 5 - 40 m 

~15 - 20 m Central eastern 
Mozambique Channel, 
west of the Zambezi 
Channel  
(without figure) 

BC7 Almost flat seafloor in a W-E oriented elongate 
depression between the two local topographic highs 
covered with sediments of type BC4. Diffuse, 
prolonged reflection pattern. 

Depression:  
~15 km wide (N-S) 

~5 - 15 m Central eastern 
Mozambique Channel, 
west of the Zambezi 
Channel  
(without figure) 

BC8 Arcuate cross-cutting bedforms forming convex-
bended "channels" and "ridges" and surrounding a 
local topographic high. Channel floors and ridge crests 
are covered with sediments showing weak, distinct 
parallel subbottom reflectors. 
 

For comparison:  
North of zone BC8 occurs a moat which surrounds the 
unnamed seamount south of Bassas da India. Filled 
with distinctly reflecting, parallel-bedded sediments. 

Height from channel 
floors to ridge 
crests:  
up to ~140 m 
Diameter of the 
arcuate bedforms:  
~35 - 40 km 

Moat diameter:  
~55 - 60 km 

 

~15 - 40 m 
 
 
 
 
 
 

~30 - 40 m 

Central Mozambique 
Channel  
(Figure 12) 
 
 
 
 

 
Central Mozambique 
Channel  
(Figure 13) 

Undulating seafloor - northern bedform area 

BN1 Flat seafloor intermittently interrupted by arcuate 
bedforms forming large "sediment blocks" or convex-
bended "ridges". The bedforms are covered with 
distinctly reflecting, parallel-bedded sediments, 
similar to type S2.  

Height of the ridge 
crests:  
~ 40 - 85 m; 
Diameter of the 
arcuate bedforms:  
~30 - 35 km 

~40 - 50 m Central Mozambique 
Channel, east of the 
Bassas da India complex  
(Figure 14) 



BN2 Highly variable morphological features such as 
irregular or elongate depressions, holes and 
hummocky bedforms or slightly undulating NE-SW 
oriented bedforms close to the western Zambezi 
Channel bank. The structures are covered with 
distinctly reflecting, parallel-bedded sediments, 
similar to types BN1 and S2.  

Bedform height: 
~20 - 75 m;  
Bedform length:  
~1 - 10 km 

~10 - 50 m,  
depending on the steepness of 
the bedform flanks and the 
position relative to the Bassas 
da India complex and the 
Zambezi Channel 
 

Central Mozambique 
Channel, west of the 
Zambezi and Tsiribihina 
Channel confluence  
(Figure 14) 

Undulating seafloor - southeastern Zambezi Channel levee 

BE1 Undulating bedforms and sediment waves with 
distinct parallel subbottom reflectors, oriented either 
W-E, NE-SW or NW-SE depending on their position 
relative to the Zambezi Channel (loops). Sediment 
waves either migrate upslope or do not migrate. 

λ* ≈ 5 - 6 km 
h ≈ 10 - 25 m 

 

~30 - 50 m Southeastern Zambezi 
Channel levee  
(Figure 15) 

Smooth seafloor 

S1 Flat or slightly undulating seafloor with distinct, 
parallel subbottom reflectors, with intermittently 
intercalated transparent lenses of mass wasting 
deposits and incised by few small channels and slide 
scars, especially in the northwestern part.  

- ~20 - 50 m,  
increasing from NW - SE 

Mozambican continental 
margin  
(Figures 16, 17) 

S2 Flat or slightly undulating seafloor with distinct, 
parallel subbottom reflectors covering thick 
transparent slump deposits at the northern foot of the 
Bassas da India complex. 

- ~40 - 60 m North of Bassas da India 
complex  
(Figure 18a) 

S3 Flat or slightly undulating seafloor with distinct, 
parallel subbottom reflectors covering thick 
transparent slump deposits at the southern foot of the 
Bassas da India complex.  

- ~20 - 40 m South of Bassas da India 
complex  
(Figure 18b) 

S4 Flat seafloor with distinct parallel subbottom 
reflectors in the north close to the Zambezi and 
Tsiribihina Channels and weak subbottom reflectors at 

- ~20 - 50 m,  
decreasing southward 

Eastern Zambezi 
Channel levee  
(Figure 19) 



greater distance to the submarine channels. 

S5 Flat or slightly undulating seafloor with (i) strong, 
distinct, parallel subbottom reflectors southeast of the 
Zambezi Channel mouth or (ii) diffuse reflection 
pattern covered with a transparent veneer and 
intermittently incised by small distributary channels in 
the southwestern part of the Zambezi cone. 

- ~40 - 60 m  
in areas with parallel 
subbottom reflectors; 
~10 - 20 m  
in areas with diffuse 
reflection pattern  

Zambezi cone, 
southeastern 
Mozambique Channel 
(Figure 20) 

Zambezi & Tsiribihina Channels 

Z1 Strong prolonged, diffuse echoes from the channel 
floors.  

Zambezi Channel: 
i) northern part: 
~630 - 750 m deep, 
~4 km wide; 
ii) southern part: 
~150 - 300 m deep, 
~8 km wide 
Tsiribihina Channel: 
~570 - 650 m deep, 
~2 km wide 

~5 - 10 m Zambezi & Tsiribihina 
Channel 
(without figure) 

Z2 Strong prolonged, diffuse echoes from the channel 
walls and terraces, small to moderate hyperbolic 
echoes from the terraces within the meander loops, 
and layered sediments on a terrace in the southernmost 
meander loop on the western levee of the Zambezi 
Channel.  

- ~15 - 20 m in case of 
hyperbolic echoes, 
~20 - 30 m in case of 
prolonged, diffuse echoes 
from the channel walls,  
~40 - 45 m in case of the 
layered sediments in the 
meander loop 

Zambezi & Tsiribihina 
Channel  
(without figure) 

Rough seafloor 

R1 Large diffraction hyperbolae or almost evanescent 
echoes due to rough topography and steep slopes.  

 

- 0 - < 5 m Bassas da India, Jaguar 
Seamount, Hall 
Tablemount, Europa 
Island, unnamed 



seamount, Mount 
Bourcart  
(without figure) 

R2 Large elongate depression oriented W-E. Bordered by 
seafloor with slightly undulating bedforms oriented 
W-E or NW-SE, similar to types BC2, BC3. North of 
the depression the seafloor is covered by sediments 
showing an unsually strong, anomalous reflection 
pattern. South of the depression the seafloor is 
covered with sediments shwoing weak parallel 
subbottom reflectors.  

Depression: 
~110 - 190 m height, 
~11 km width (N-S), 
~70 - 75 km length 
(W-E) 

~20 - 35 m in case of the 
unusually strong, anomalous 
reflection pattern, 
~10 - 25 m in case of the 
weak parallel subbottom 
reflectors 

 

Central western 
Mozambique Channel, 
northeast of Mount 
Bourcart  
(Figure 21) 

λ* = apparent wavelength of the bedform measured along the ship's track  
h  = height of the bedform 
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INTRODUCTION 
    Cliff-top storm deposits (CTSDs) range from shelly material to 
boulders located on marine cliff-tops. CTSDs at heights of up to 
50m have been described from Shetland, Orkney, Caithness and 
the Outer Hebrides in Scotland and from the Aran Islands in 
Galway Bay, Ireland (Hall et al., 2006). In this paper we describe 
CTSDs from marine cliff-tops up to 60m high from the Eastern 
Cape coastline, South Africa. 
 

ENVIRONMENTAL SETTING 
    Morgan Bay, on the Eastern Cape Coast of South Africa, faces 
the Indian Ocean (Fig. 1). The location climate is warm temperate 
(Cooper et al., 2013) and the sea temperatures vary from 22°C in 
summer to 14°C in winter. Average daily air temperatures vary 
from 14°C to 23°C. The driest months are June, July and August 
and are followed by the spring rains. Coastal winds are bimodal: 
southwesterly and northeasterly in roughly equal proportions 
(Cooper et al., 2013). Marine storms are common in September, 
although less common, tropical cyclone swells are also 
experienced (South African Weather Service).  
   The regional geology comprises gently dipping Beaufort 
sandstones that have been intruded by thick dolerite sills (Fig. 
3A). A well-developed shore platform coated by boulders is 
present on the adjacent coast, but not at the foot of the sea cliffs 
where the CTDS are found.  Morgan Bay is a small tourist village 
within a headland-bound bay. It is fronted by a narrow rocky 
beach, which grades from a boulder beach in the south to a sandy 
beach in the north. The southern headland is flanked to the south 
by plunging cliffs up to 65 m high, whereas the northern headland 
is subdued and capped by a high coastal dune (Smith et al., 2011). 
CTSDs (Hall et al., 2006) were found on the tops of exposed 
bluffs which collectively form the southern headland. These 
headlands are aligned south-south easterly and project into the 
Indian Ocean. They have elevations varying from ~16 to ~63m 
amsl (Fig. 2).  In some instances a well-defined step is present on 

these cliffs where the dolerite-sandstone contact coincides with 
sea level (Fig. 2B). The immediate cliff top area is relatively flat 
but slopes gradually landward. The cliffs are relatively 
undisturbed by human activity and contemporary cliff-top land use 
is restricted to cattle grazing and hunter gathering. 
 

OCEANIC ENVIRONMENT 
 
Bathymetry  
    The shelf is very narrow ( ±10km wide) and consequently swell 
attenuation due to bottom friction is minimal. The coast is 
microtidal, with a mean high tide of 1.25 m and a high 
astronomical tide (HAT) of 2.08 m (http://www.satides.co.za/).  
 
Meteorology 
    Swells and seas are generally produced by cold fronts and cut-
off-low pressure systems, although tropical storms and cyclones 
can also contribute. The wave record extends from 1992 (for the 
port of East London 40km south) to the present (van der Borch 
and van Werolde, 2004; CSIR wave rider buoy). The prevailing 
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Figure 1A: Location of field area (32°42′14″S 28°20′10″E28 ºE; 
34 ºS); B: The sample sites.  
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swell systems move in association with the west-to-east synoptic 
weather patterns and produce a net south-to-north littoral drift 
although this can reverse through topographic forcing and during 
easterly swells.  
 
Wave climate 
    Wave heights of 8 m and periods of 11–17 s are common during 
winter storms (Smith et al., 2011). The average significant wave 
height is 4.45 m, with a period of 14 s. The mean peak period is 
13.7 secs (vdbvW, 2004). The longest period measured was 18.3s, 
associated with a comparatively low 5.24 Hmo swell in 1993 (the 
swell propagation direction is not available)(Rousouw and 
Rousouw, 1999). Most swells approach from 170 to 190º with a 
measured range varying from 62 to 224º (vdBvW, 2004). Extreme 
events (>4m Hmo) occur between March and September, (van der 
Borch and van Werolde, 2004). 
    Between 31st August and the 1st September 2008, 9 to 10.7 m 
waves were generated by an extremely deep cold front that passed 
south-west of the country during equinox tides (Table 1) 
(Guastella and Rossouw (2013). This high swell caused 
considerable coastal flooding at Morgan Bay and elsewhere in the 
Eastern Cape. A high swell which struck on the March (2007) 
equinox  had higher swells (Table 1) but passed without much 
notice, whereas the 2008 September equinox event had an 
unusually high (7-8m) runup and caused significant flooding and 
damage to coastal infrastructure. This was probably due to the fact 
that the 2008 September equinox swell came from an unusually 
eastely direction (Table 1). It is also possible that the nearshore 
and inner shelf had not fully recovered from the high swells of 
2007, as was the case during the austral winter (2007) erosion in 
KwaZulu-Natal to the north (Smith et al., 2010). It appears that 10 
m (Hmax) swells are not uncommon on a decadal scale (Table 1). 
However, storm damage was extreme during the 09/2008 event 
which had a comparatively low swell height. The 1997 event 
appeasr anomalous, however it is likely that its propagation 
direction (Table 1) was too far west and that most of the energy 
would have been lost to friction as the swells wrapped in across 
the shelf. 

METHODS 
    The cliffs below the CTSDs show several important 
morphological characteristics. There is a small 1 m-wide step at 

the upper sill-sandstone junction (Fig. 2A). In addition there are 
rock projections reminiscent of marine stacks at this boundary. 
Table 1. The largest swells on record for East London, 40km 
south of Morgan Bay. 

Date Hs (m) Hmax  (m)  T (s)  Bearing Source 
06/1997 9.3 13.79 15.5  ?SW CSIR 
02/2007 4.59 7.98 12.5 173 CSIR 
03/2007 6.25 10.13 13.3 155 CSIR 
05/2007 4.97 10.3 10.3 148 CSIR 
09/2008 4.73 8.76 11.1 145 CSIR 

 

 
The cliff-top edge can also show a distinct step (Fig.2B). No 
marine platform is present below the highest cliffs. Both Bluffs 2 
and 3 (Fig. 1) are capped by a flat cliff-top platform, whereas 
Bluff 1 slopes steeply northeast. The cliff-top platform is a 
grassland, with occasional stunted bushes, although the inter-Bluff 
areas can be more densely vegetated. Rock outcrop is present. The 
soil is sandy and very thin, varying from zero to about 15cm.  
Field mapping was employed to describe the extent of the CTSDs 
on the cliff-top platform. Four sites were investigated of which 
three were sampled.  

RESULTS 
    The cliff top sampled deposit locations were recorded and 
samples were taken for microscopy (both optical and SEM) 
anyalysis (Table 2). These samples were compared with 
unequivocal wave deposits from the storm swash terrace (e.g. 
McKenna et al., 2012) at the cliff base. The results of this are 
described below. 
 
Shell Breccia 
    Scattered marine shell breccia debris was noted within the thin 
soil horizon (zero to 20 cm thick) on the flat surface above the 
cliff edge, at elevations of up to  ~63 amsl (Fig.2). No bedding is 
preserved, most likely having been destroyed by terrestrial 
bioturbation. The sample characteristics are described in Table 2.  
 
3rd Bluff-South  
    Samples were taken from the highest (±63m) locality 
investigated. Two samples were collected (Fig.4) (Table 2). At 
this locality the shell breccia occurs within the soil,  commonly 
exposed in mole hills and as a lag deposit concentrated in the base 
of sandstone tarn pools. Material has been washed in from the 

 
Figure  2: An oblique view (from the south) of the lower sampled 
site (#3) showing stack (A)  development two thirds of the way up 
the cliff. B) A closer oblique view of the Morgan Bay cliff 
showing the stepped edge (arrowed) due to rock removal.  

 

Figure 3: Shell debris in situ on cliff-top platform at an elevation 
of 60 m. 
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surrounding soil to concentrate in the tarn pools. Shell breccia 
deposition is patchy, but only found within 10m of the cliff edge. 
Occasional rounded shale and quartzite pebbles (0.5 to 1 cm 
diameter) are present in the CTSDs. Careful inspection of this 
locality showed that the shell fragments become more numerous 
and larger towards the cliff edge (Table 2). The CTSDs form a 
10m-wide shell breccia fringe adjacent to the cliff edge, the clasts 
of which fine rapidly inland. No shell breccia was seen more than 
10m inland from the cliff edge.     
 
2nd Bluff-South  
   On the cliff-top platform (±49m), shell fragments are exposed in 
mole hills within 10m of the cliff edge (Table 2). The cliff top soil 
is composed of very fine sand. A single sample (3) was taken. 
 
1st Bluff-South and Inter- Bluff areas  
    This site is steeply inclined (±16m highest point) and no shell 
breccia was found here, or in the intervening area, consequently it 
was not sampled (Fig.1).  
 
General observations 

Comparison with unequivocal wave deposits show a strong 
similarity with wave shell breccia. They too comprise granules, 
very coarse sand and shell hash of variegated composition (Fig. 
4A and B).The CTSDs are only found on cliff-top platforms 
where they form a 10m-wide detrital shell breccia fringe adjacent 
to the cliff edge, the clasts of which fine rapidly inland showing 
that the shell breccia is related to the marine environment. shell 
breccia was only found on horizontal surfaces. The absence of 
CTSDs on Bluff 1 may be related to the geomorphology, as there 
is no cliff-top platform. Instead it slopes steeply to the northeast 
and would make it less likely that material would settle, but rather 
flow back down the back slope. 
 
Binocular microscope and SEM analysis 
    No detailed statistics was attempted as the sample is small. A 
detailed textural examination revealed a combination of older and 
younger shell clasts (Fig. 5A and B). SEM analysis of surface 
weathering features on the shell fragments showed variable 
degrees of weathering,  implying that the breccia clasts are of 
variable age. The breccia in sample 3 was less weathered and 
younger than that of sample 1 (Table 2). The shell fragments from 
sample 2 were more etched than those of sample 3, suggesting 
them to be older. Further, sample 2 fragments showed evidence of 
a patchy biological layer, such as might be expected to cover a 
younger shell fragment (Fig. 5A and B). 
     
 

DISCUSSION 
    There is no evidence that the Morgan Bay cliffs have been 
overtopped by “green water” but the presence of shell breccia in 
the soil indicates relatively recent introduction of marine debris to 
the cliff top. The cliff edge often shows a prominent step, 
associated with stacks at the top of the dolerite. The cliff top is 
also associated with a prominent step, reminiscent of marine 
quarrying, however, no loose boulders were noted landward of the 
cliff edge. In contrast the cliff step is littered with fallen boulders. 
The cliff-top socket may be the result of extreme wave quarrying 
but the lack of a boulder fringe argues against this. Optical and 
SEM inspection of the CTSD breccia shows various degrees of 
weathering and indicates that the breccia is of variable ages, but 
absolute dating is beyond the scope of this study, however the 
more weathered fragments were found at higher levels. 

    This coastline faces the Indian Ocean and is very exposed to 
high swell and storm waves. The cliff-top shell breccia is clearly 
ocean-derived as proved by their similarity to unequivocal wave 
deposits and the proximity to the cliff edge. Waves are known to 
spray sand (Cooper et al., 1999) and further CTSDs have been 
described from cliff tops in Scotland and Ireland (Hanson and 
Hall, 2006). In Shetland, at the Villians of Hamnavoe and 
Eshaness Lighthouse, CTSDs are present at an elevation of 50 m 
(Hall et al, 2006). They interpreted this as air throw debris 
produced by very large waves striking the cliff and the ensuing 
debris being transported onshore by strong winds.within the spray. 
In the Morgan Bay case wave scour is recognized at an elevation 
of 40 m, well below the CTDS. In the Morgan Bay case, the 
position of the CTDs on Bluff 2 and Bluff 3 would suggest that 
the source is a giant southeasterly swell and associated onshore 
wind (Fig. 2). Hanson et al. (2008) state that 10m high waves can 
form vertical jets capable of transporting large blocks. In the 
Morgan Bay case no unequivocal large blocks were observed on 
the cliff tops but the runoff from such might be capable of eroding 
the cliff edge. In Morgan Bay the cliffs have clearly been eroded 
at the dolerite sandstone contact and this must be due to wave 
action. This is at a level of ~40m. If the wave spray height in 
figure 6 is used, then simply scaling up the 2008 September 
Equinoctial event statistics indicates that air throw deposits could 
easily have been flung 60m upward. For the observed CTSDs to 
exist on the Morgan Bay cliffs, we theorise that waves in the 40m 
(Hmax) category must have ocurred from time to time. We propose 
that these CTSDs are the result of spray thrown up by bores from 
very large broken waves striking the cliff (Fig. 6).   
     
The relationship between Hs and Hmax is probably dependent on 
wave period and swell order (Table1). Long-range swells are 
better ordered than storm seas. For this research the proxy used in 

Table 2. Summary of sample properties and locations. 
Sample Dimensions From 

cliff 
edge 

Elevation 
(amsl) 

Location 

1 1<5 mm 
most 1-2  mm 

5 m ±63 m Bluff 3 

2 <20mm 
most 4-5 mm 

10 m ±62 m Bluff 3 

3 <30m 
most 5-10 mm 

5 m  ±49 m Bluff 2 

No 
sample 
taken 

Not present Not 
present 

±16 m Bluff 1 

Cliff 
Base 

variable n/a 8 m Storm 
surge 
terrace 

 
Figure 4. Comparison between (A) CTSD shell hash and pebble 
deposit of sample 1 and (B) storm wave-deposited sheet of 
variegated shell hash and pebble material. Note the similarity. 
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this study is wave height, as period and direction are unknown for 
ancient swells and we can only surmise direction (a probable 
southeasterly or coast-normal wave propagation direction).  
On a global scale, satellite altimetry has indicated that 100 foot 
waves (33 m) occur several times per year, one such wave was 
recently surfed at Nazare, Portugal.  
     
The Agulhas Current flows southwestward, off Morgan Bay, and 
is famous for ‘rogue waves’, with a 30 m example having been 
recorded in 1977 (Faulkner, 2006). Rogue waves are defined 

variously as Hmax/Hs>2 (Wolfram et al., 2000) or 2 x Hs (O’Brien 
et al. 2013) or >2.4 x Hs (Faulkner, 2006). Using the maximum 
Hmo (9.m ), waves > 20m are quite possible at Morgan Bay. The 
largest wave surfed in SA (2008) was in Cape Town (1000km 
south) and estimated to be 22 m. The open ocean tug Wolraad 
Woltemade sailed over a 21 m swell in 2001 off Cape Town 
(Candy, pers. com.). On breaking, this swell could conceivably 
have had a +30 m face. Clearly 20 m waves are not uncommon on 
the South African coast. The age of the proposed Morgan Bay 
CTSDs is not known, consequently we have no idea what the 
prevailing climatic regime was, but the preservation does point to  
a Holocene age of deposition.  
 
Alternate Formative mechanisms 
    Probable wave deposits at a high elevation automatically attract 
a tsunamiite hypthesis for their genesis. No tsunamiite deposits are 
on record for the South African coastline and although such an 
origin cannot be ruled out, it seems unlikely as the CTSDs are 
clearly the product of multiple events. 

An alternative hypothesis is that the shelly debris were 
deposited at a raised shoreline during a period of higher sea level. 
A Tertiary age boulder horizon (‘Boulder Bed’), dated at 4 Ma 
(Erlanger et al., 2012) is well known at about 70m amsl from the 
South African coast (Davies, 1970; Erlinger, 2012). The “Boulder 
Bed”is located 10m above and several hundred metres landward 
of the highest proposed CSTDs (site 1). No shell material has ever 
been found to be associated with the ‘Boulder Bed’. The “Boulder 
Bed” is a very distinctive unit (0.5-1 m thick) comprising very-
well rounded cobbles and small boulders. These boulders can be 
recognized within colluvium below the outcrop. No such clasts  
have been found to be associated with the CTSDs. Finally the 
shell debris is from extisting marine species that occur around the 
base of the cliffs, thus precluding an ancient raised shoreline 
origin.   

CONCLUSIONS 
    CTSDs are found at levels of  up to ±63m amsl at Morgan Bay. 
This deposit comprises a shelly breccia fringe adjacent to the 
marine cliff top. Comparisons with wave breccia from the lower 
supratidal (6m amsl) show them to be similar but older based on 
micro-textural characteristics of the shell debris. The CTSD 
fragments are variable in age. We suggest that this breccia was 
emplaced as air throw from wave and wind-borne plumes 
produced by the bores of broken waves struck the base of the 
cliffs. These bores would likely have been produced by waves ~40 
m in height. Both a tsunamiite and perched beach origin were 
considered as alternative means of emplacement, however these 
origins seem unlikely. 
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INTRODUCTION 
Beachrocks are common features of tropical and subtropical 

coastlines. They exhibit diverse sedimentological and 
morphological characteristics (Vasdoukas et al., 2007).  
Beachrocks form at or near mean sea level, due to cementation of 
clasts by calcium carbonate (High-Magnesian Calcite or 
Aragonite) in the vadose/phreatic zone of the intertidal zone (e.g. 
Vasdoukas et al., 2007). They have important implications for 
coastal evolution by preferentially preserving shorelines (Cawthra, 
2012; Green et al., 2014) and modifying shoreline dynamics 
(Cooper, 1991).  In microtidal settings beachrocks have been 
particularly useful in constraining former sea level positions 
(Ramsay, 1995; Ramsay and Cooper, 2002; Desruelles et al. 2009; 
Cooper, 2011, Vacchi et al. 2012).  Some concerns, however, 
have been expressed regarding the reliability of these features as 
sea-level indicators due to the often diachronous nature of their 
cementation, the range in thicknesses in relation to the known tidal 
range and the argument that they may also be supratidal in origin 
(Kelletat, 2006).  Most authors implicitly dismiss or under-
describe the facies variations that may occur within beachrocks 
and superimpose this term broadly on all rocks formed at or near 
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In spite of the worldwide abundance of beachrocks and their acknowledged utility as an indicator of former sea level 
position, some studies have expressed doubt as to their position of cementation on paleo shorelines.  These criticisms 
are not, however, coupled with nuanced sedimentological studies of beachrocks. Instead, few beachrock studies 
acknowledge any facies and therefore disregard important signatures of the depositional environment and, 
consequently, utility as paleo sea level indicators.  This study presents detailed sedimentological descriptions and 
interpretations from two beachrock localities along the subtropical, microtidal, wave-dominated eastern coastline near 
Durban, South Africa.  The outcrops record the migration of a paleo inlet and deposition in sub, inter, and supra tidal 
environments.  Understanding the inferred depositional environment, and observed stratigraphic relationships between 
various beachrock facies is critical to teasing out the local evolution of shoreline and relative sea level. The outcrops 
studied here record multiple episodes of Holocene sea level rise and fall. 

ADDITIONAL INDEX WORDS: beachrock, facies, sea level, South Africa 

 
Figure 1.  The two study sites from the east coast of South Africa.  
Umbogintwini North (30.0089° S, 30.9368° E) and South 
(30.0118° S, 30.9329° E) are denoted by the yellow stars. The 
study area is approximately 19.5 km south of Durban. 
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mean sea level by carbonate diagenesis. This may be the result of 
the variability within beachrocks worldwide (Vousdoukas et al., 
2007) and the seemingly less diverse sedimentary structures 
preserved in more temperate occurrences of beachrock (Vacchi et 

al., 2012; Kelletat, 2006; Knight, 2007) Despite the potential for 
detailed sedimentological description and interpretation from 
beachrocks in subtropical settings (Caron, 2011), relatively little 
attention has been given to the nature of the sedimentary facies 
preserved and their original environment of deposition. This paper 
investigates a series of beachrocks on the east coast of South 
Africa that exhibit major facies variability.   

REGIONAL SETTING 
The east coast of KwaZulu-Natal South Africa is predominantly 

a microtidal, wave dominated coastline (Davis and Hayes, 1984; 
Davis, 1964; Schumann and Orren, 1980).  The Quaternary coastal 
geology surrounding Durban is mainly comprised of Pleistocene-
Holocene aged calcareous arenites (Krige, 1932; McCarthy, 
1967).  These abut a series of rubified palaeo-dune sands that 
comprise an ancient dune complex of suspected Mio-Pliocene age, 
termed the Berea Ridge (Krige, 1932; McCarthy, 1967).  The 
Berea Ridge forms a ~ 100 km long coast-parallel ridge that in 
many instances extends all the way to the shoreline where it is 
exposed amidst younger Holocene dune sands.  The calcareous 
arenites around Durban have been described by several authors 
(Cooper and Flores, 1991; Cooper and Liu, 2004; Cawthra, 2012) 
and are considered to represent the intertidal and supratidal 
cementation of beachrock and aeolianite respectively.   

This paper examines two such outcrops from the East coast of 
South Africa at Umbogintwini, approximately 19.5 km south of 
Durban (Figure 1) (Juckes, 1976).  The sites are spaced 
approximately 500 m from each other, situated on either side of 

the modern Mbokodweni Estuary, a small, temporarily-open 
closed estuary (Figure 1).  
 

OBSERVATIONS 
The sedimentary facies for both Umbogintwini North (Figure 2) 

and South (Figure 3) are described in terms of their sedimentary 
features and stratigraphic relationships.   Facies of each site are 
described below. 

 
Umbogintwini North 
The exposed portion of outcrop at Umbogintwini North is 

approximately 30m long and 10 m wide, preserved under the sand 
of a contemporary barrier beach.  Presently, the Mbokodweni inlet 
abuts the outcrop.  Historical literature (Juckes, 1976) from 
Umbogintwini South and recent aerial photography (Google 
Earth), however, show that beach cover and inlet position are in 
perpetual flux.  The position of the modern inlet, and even the 
degree of exposed beachrock, is ephemeral.  

 
Facies N1 
This facies is a flat lying to very shallowly dipping planar cross-

bedded medium sandstone (Figure 2a). Cross beds dip to the 
northeast and southwest, the laminae of which are marked by 
heavy mineral lags.  These are truncated by isolated J-shaped 
sandy burrows (Psilonichnus ichnofacies) (Figure 2b).  The upper 
surface of the unit is marked by a strongly erosional boundary that 
truncates the foresets of Facies 1N (Figure 2a).  This surface dips 
landwards at 30° forming a broad coast-perpendicular scour 
depression.  
 
 

 
Figure 2. Beachrock units at Umbogintwini North (A-F). A. Dip section of Umbogintwini North. Note the erosional surface marking 
the contact between planar cross bedded sandstone of Facies N1 and overlying steeply dipping Facies N2. B. The erosional contact 
between Facies N2 and N4 with overlying heavy mineral layer and sandy infills of crab burrows (Facies N4). Note the intraformational 
beachrock and pebbles included as larger clasts. C.  The contacts between Facies N1, N2, and Facies N4. Note the steeply dipping 
trough cross bedding of Facies N2 as an inlet migration indicator. D. Seaward imbricated pebbles at the base of Facies N4 and 
overlying antidunes. E. Landward oriented antidunes truncating seaward- dipping heavy mineral laminae of Facies N4  F. Upper 
surface of Facies N4 potholed to seaward 
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Facies N2  
Sandstone with high-angle (25°) trough cross beds infills the 

lower scoured surface.  The trough cross-beds are marked by 
abundant heavy mineral laminae that dip to the south-southwest 
(Figure 2c).  The unit is 50 cm thick and has a notable absence of 
gravel or shell debris. Facies N2 is truncated laterally to the north 
by Facies 3.  

 
Facies N3 
This facies comprises high angle, planar cross bedded medium 

sandstone. Bedding planes are marked by heavy mineral laminae 
that dip to the east at 20° (Figure 2c).  Isolated burrows are 
present.  The unit is <40 cm thick and pinches to the north 
forming a lens like structure.  Facies N3 is in turn truncated by a 
well-defined erosional surface, undulating along strike to form a 
series of runnels, each approximately 15-20 cm wide and 10 cm 
deep.  This surface itself dips seaward at approximately 15-20 
degrees.  

 
Facies N4 
This Facies rests on an erosional surface, and its base comprises 

a 10-20 cm-thick heavy mineral horizon of almost pure heavy 
minerals interspersed with cobbles to small boulders of 
intraformational beachrock (Figure 2b, c, and d).  This unit is 
heavily bioturbated, burrows occurring as sandy, quartz-rich infills 
of material derived from the upper unit (Skolithos ichnofacies).  
The basal surface is marked by smaller cobbles and pebbles in a 
heavy mineral matrix.  On the basal erosion surface, pebbles are 
seaward imbricated with long axis in the direction of current flow 
and grade into a crudely planar bedded pebble horizon (Figure 
2d).  Gravel clasts decrease in frequency with stratigraphic height, 
with occasional isolated shell debris evident in this horizon.  The 
upper portions of Facies 4 are marked by seaward dipping heavy 
minerals laminae, some of which are truncated by a series of 
antidunes that overlie the pebble clasts (Figure 2e).  Antidunes 
grade into smaller scale, rippled trough cross-sets.  The upper 
surface of the outcrop is potholed to seaward (Figure 2f).  

 
Umbogintwini South 

Beachrock at Umbogintwini South is exposed in a 30 m  
outcrop, thinning to the south to just 5-10 meters, and stretching 
100 m  south. There is undoubtedly more beachrock buried 
underneath several meters of sand to both the north and south of 
the ouctrop.  Juckes (1976) described a bone-bearing beachrock 
just seaward of this study site temporarily exposed in the wake of 
an intense storm in 1966.  He also discovered intact fossilized 
crabs in some of the burrows preserved in now-buried beachrock 
at the same locality.  

 
Facies S1 
This basal facies is a >2m thick, planar laminated fine to 

medium sandstone with occasional large sigmoidal trough cross-
beds (Figure 3a).  The planar laminations dip seawards at 4° and 
are marked by laminae scale heavy mineral partings.  Several 
heavy mineral-rich foresets converge tangentially to seaward 
forming a thick seaward-pinching horizon (Figure 3b).  Some 
small antidunes are preserved in dip section.  This layer is 
truncated by several sand-filled sub-horizontal burrow structures 
(Thallasinoides ichnofacies).  The upper surface of this unit is 
truncated by a landward dipping 9° erosional surface with a well-
developed heavy mineral lag (Figure 3c).  This erosional surface is 
most prominent moving seaward in downdip section. 

 
 

Facies S2 
This comprises a series of steeply both landward and seaward 

dipping trough cross beds with 20 cm thick cosets, dipping at 
approximately 20° (Figure 3c).  Each set is marked by gritty to 
very coarse sand horizons in an overall medium sand dominated 
succession.  In strike section, Facies S2 forms a lens-like unit 
within Facies S1. 

 
Facies S3 
Overlying Facies S2, with an erosional contact is Facies S3, a 

<20 cm thick flat-lying, finely planar laminated medium to fine 
sandstone (Figure 3d).  Occasional heavy mineral layers are 
evident.  

 
Facies S4 
This is a thin, <50 cm thick, veneer of trough cross-bedded, 

pebbly medium sandstone (Figure 3d).  The pebbles comprise 
bioclasts including bivalves and oysters (Crassostrea sp.), 
occasional intraformational calcareous arenite clasts, and well-
rounded dolerite (Figure 3e).  The trough cross-bed sets vary in 
thickness (between 5-20 cm) and dip both seaward and landward. 

 
Facies S5 
This consists of re-cemented blocks of Facies S1 and 3S.  

Blocks are slabby (0.3 m x 1 m x 1 m) and appear to have 
collapsed and have been subsequently re-cemented onto the 
outcrop (Figure 3e).  The contact itself forms a stylolite core 
where the blocks have sutured to the underlying platform, in 
addition to a thin coating of mixed bioclastic and pebble rich 
gully-fill (Figure 3d). This takes the form of a loosely 
consolidated and crudely bedded conglomeritic veneer, onlapping 
the sutured contact (Figure 3e). 

 
Facies S6 
Facies S6 includes an alongshore-oriented gully fill that extends 

for over 100 m (Figure 3f). The fill is a polymict conglomerate of 
pre-existing cobbles and small boulders of serpulid bioherms, 
mixed whole shells of non-life position oysters (Saccostrea sp.), 
cobbles of beachrock, arkosic sandstone, dolerite and sparse shale 
pebbles.  These components rest in a very poorly sorted fine sand 
to grit matrix. 

 
Facies S7 
This occurs as a thin drape of rhizolithic, poorly consolidated, 

fine sandstone (Figure 3g).  Facies S7 is mixed with red sands of 
the Berea Ridge, against which the succession onlaps, that have 
cascaded via the processes of slope creep and wash.  The surface 
of the outcrop of Facies S6 and Facies S7 is marked by a series of 
small (20 cm diameter, 10 cm depth) potholes that have not been 
infilled (Figure 3h).   

 
DISCUSSION 

 
Northern study site interpretations 

Given the planar cross-bedded sand together with the heavy 
mineral laminae and Psilonichnus ichnofacies, we interpret Facies 
1 as being deposited in the swash zone.  The bidirectional upper 
flow regime planar sets are in keeping with swash runup and 
backwash, marked by thin lags of heavy minerals in the intertidal 
zone (Reineck and Singh, 1986). Facies N2 and Facies N3 are 
interpreted as inlet facies that record both northward and 
southward migration of the inlet.   
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The large scale scour geometry and steeply dipping cross-sets 
of the scour fill are akin to records described by Reddering (1983) 
for the migration of microtidal inlets.    

In describing the mesoscale migration of inlets, Seminack and 
Buynevich (2013) show steeply dipping sigmoidal-oblique 
foresets overlying channel lag facies in a broad "cut-and-fill" 
structure.  The abrupt basal contacts observed also resemble those 
previously described in the inlet facies models of Fitzgerald et al. 
(2012).   

The prominent erosional surface that truncates the inlet 
migration sequence represents an increasing energy regime 
associated with the deposition of Facies N4; this interpretation is 
supported by the overlying thick heavy mineral accumulations, 
seaward imbricated pebbles, upper flow regime planar bedding 
and antidunes.  The most commonly observed occurrences of 
modern antidunes on the foreshore are in the swash zone (Hayes et 

al., 1972; Hayes, 1976).  Broome and Komar (1979) found that 
the formation of "backwash ripples" in the swash zone, instead of 
mirroring stream antidunes, is initiated by supercritical backwash 
flow colliding with the subcritical wave bore and undergoing an 
hydraulic jump.  In gravelly microtidal settings, gravel imbrication 
in the swash zone is attributed to the forces of entrainment of 
blade-shaped gravel clasts via swash and winnowing of spherical 
gravel via backwash (Postma and Nemec, 1990).  When 
extrapolated to pebble-sized clasts on a sandy beach, energy 
requirements increase, although the process itself is similar, and 

consequently the only likely zone of deposition is the swash zone.  
Thus, the facies assemblages of this unit are characteristic of 
storm-deposited antidune sequences in the swash zone as neither 
the process of massive scale winnowing nor pebble imbrication 
are typical of a normal fair-weather swash regime.  As such, these 
provide a reliable indicator of the palaeo-swash zone in a 
microtidal setting. 

 
Southern study site interpretations 

  The predominant planar cross-bedding structures, 
Thallasinoides ichnofacies and isolated antidunes suggest 
deposition of Facies S1 in a swash-dominated intertidal 
environment.  The antidunes similarly represent occasions of 
storminess when flows reached supercritical levels (See Facies N4 
Discussion); the heavy mineral layers are associated with current 
winnowing during the build-up, development, and decay of, these 
bedforms. 

The trough cross-bedded and coarser components of the 
overlying Facies S2 are representative of a longshore trough 
associated with a low tide terrace at a shallow subtidal shoreline 
position.  This unit is well-established in sedimentary literature 
and steeply dipping, coarse sand deposits, and trough cross-
bedding, are classic markers of the longshore trough facies 
(Hunter et al., 1979 and Greenwood and Mittler, 1985). 

  Facies S3 is interpreted as a backbeach unit.   

 
Figure 3.  Outcrop photographs from Umbogintwini South (A-H).  A. Facies 1 truncated by an erosional surface on which Facies S2 
occurs. B. Seaward-pinching heavy mineral-rich laminae in Facies S1.  C. Erosional contact between Facies S1 and trough cross 
bedded Facies S2. D. Facies S3 flat-lying planar laminated sandstone and overlying bioclastic gully-fill of Facies S5.  E.  Re-cemented 
Facies S5 collapsed blocks with stylolite-core cement of bioclastic and pebble composition attached to Facies S4, a bioclast-rich, trough 
cross bedded medium sandstone. F.  Polymict conglomeratic gully fill (Facies S6) comprised of serpulid bioherms, Saccostrea sp. 
oysters, beachrock cobbles and pebbles. G. Loosely consolidated rizolithic fine sandstone of Facies S7. H. Between Facies S6 and S7 
potholes occur that have not been infilled. 
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The flat-lying, planar bedded sand and the reduced presence of 

heavy minerals suggests a higher position up the shore profile 
with fewer high energy events.  This unit is similar to the 
backbeach facies reported by Ramsay and Mason (1990) at 
Sodwana Bay l, ~300 km north of Durban.  

We interpret the trough cross-bedding of Facies S4 to represent 
conditions produced by 3-D barform migration in a subtidal 
longshore tough depositional environment.  Bioclastic debris were 
likely derived from the reworking of bioherm features to seaward, 
together with the incorporation of dolerite pebble ejecta from the 
palaeo-inlet  and reworking of intraformational beachrock.   

Facies S5 (re-cemented blocks of older facies), seems to 
represent a previously unrecognised beachrock facies.  
Additionally, the cementation style is unique to sea level position 
(an intertidal gully fill), and, as such, has remarkable potential in 
identifying palaeo-shoreline position.  

Facies S6 is comparable with the longshore runnel complex of 
Cooper and Flores (1991).  The inclusion of coarse material as rip 
up clasts of whole serpulid reef, pebbles of reworked Facies S1-
S4S and the inclusion of non-life-position oyster clasts suggest 
storm deposition and subsequent winnowing by longshore currents 
in the shallow intertidal zone to leave a lag.  The scoured runnel 
morphology lends further credence to this interpretation. The 
rizolithic nature of Facies S7 points to deposition by an aeolian 
dune.  Similar facies were documented by Cooper and Flores 
(1991) in the area and signify a regional phase of dune building. 

 
Local sea level history 

  Our interpretations of depositional environments in light of the 
microtidal setting of the coastline permits an interpretation of 
relative sea level fluctuations during the Holocene period. These 

are described in figure 4, a schematic of the two outcrops in 
section and the relative fluctuations in sea level for each facies. 
    
Umbogintwini North 

  During the deposition of Facies N1 in the swash zone, sea 
level was approximately level with the modern position of the 
unit.  The two migrating inlet facies, Facies N2 and N3, 
potentially record a shifting base level and consequent change in 
sea level. The contact between the intertidal Facies N1 and inlet 
Facies N2 marks the base of the inlet channel which incised to 
base level.  Sea level thus rose from the time of deposition of 
Facies N1 to Facies N2.  The transition from Facies N2 to Facies 
N3 marked the southward and seaward migration of the inlet, 
evidenced by its overall orientation. This configuration can be 
explained by changing longshore sediment supply that caused the 
reconfiguration of the inlet (e.g. Cooper, 1989; Green et al., 2013).  
The later transition to the swash zone of Facies N4 implies a rise 
in sea level and translation of the shoreline over the inlet 
sequence. 
 
Umbogintwini South 

  Sea level would have been at approximately the elevation of 
the basal foreshore Facies S1 at the time of its deposition.  From 
the time of cementation of Facies S1 to S2, sea level had risen, as 
evidenced by the imposition of a subtidal longshore trough with 
an erosion surface truncating the lower unit.  The along-strike 
depression formed in this erosional surface is interpreted as a rip 
channel, and the coarser material as the infill deposit.  This is also 
consistent with rising sea levels.  This phase of deposition was 
followed by a fall in sea level marked by the deposition of Facies 
S3 in the backbeach.  Sea levels then rose again, causing an 
additional longshore trough to be superimposed over Facies S3 

 

Unit Dep Env. ~SL Δ SL 
N1 Swash zone level  
N2 Migrating inlet level rise 
N3 Migrating inlet level  
N4 Swash zone level rise 
S1 Basal foreshore level  
S2 Longshore trough higher rise 
S3 Backbeach lower fall 
S4 Longshore trough higher rise 

 Subaerial exposure lower fall 
S5* Supra/intertidal re-

cementation 
lower 
/level 

rise 

S6* Longshore trough higher 
(<S4) 

fall 

S7* Aeolian dune lower fall 

 

Figure 4.  Schematic figure depicting the stratigraphic relationships, sedimentary structures, and basic geometry of the beachrock 
facies, and table summarizing depositional interpretations for each facies along with inferred relative sea level position. Chronology for 
the starred facies is not constrained. Abbreviations:  Depositional Environment (Dep Env.), SL (sea level), and change in (Δ) 
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and infilled by the bioclastic-rich Facies S4.  The inclusion of 
reworked beachrock, inlet pebbles, and bioclasts implies a lengthy 
period of shoreline stability during the deposition of Facies S4. 

A sea level low was likely to have followed this period, 
exposing the previously cemented facies and causing the collapse 
of the blocks of Facies S2.  The stylolitic contacts between these 
clasts would have initially developed in the supratidal 
environment where the blocks had collapsed and been shifted into 
position by possible wave activity (e.g Reddering, 1988) with a 
later cementation phase as intertidal gully fill once sea level had 
risen to that elevation. At the point of deposition of Facies S6, sea 
level would have been at a relatively higher position, but lower 
than that experienced during the time of deposition of Facies S4, 
due to Facies 4's similar depositional environment but higher 
vertical elevation.  A key indicator constraining the age disparity 
between Facies S6 and the stratigraphically higher complex of 
Facies S4 and S5, is an unfilled pothole surface between the two.  
The unfilled nature of the potholes also suggests that sea level 
never subsequently reached this point.  Finally, the aeolian Facies 
S7 was deposited at a time of lower relative sea level than Facies 
S4, and probably also Facies S6.  This inference is consistent with 
the distance from mean sea level to modern dune cordons.   

CONCLUSION 
Our detailed sedimentological analysis of beachrock from two 

sites along the microtidal east coast of South Africa reveals the 
migration of a paleo inlet, and formation of beachrock in sub, 
inter, and supratidal settings.  Particularly from the latter, we infer 
at least three cycles of Holocene sea level rise/fall. Although we 
cannot yet assess this history chronologically , three full cycles of 
transgression and regression are broadly consistent with previous 
regional sea level studies conducted by Ramsay and Cooper 
(2002), Compton (2006), and Norström et al. (2012).  By more 
completely understanding the sedimentological characteristics of 
beachrock at a given locality, geoscientists can more accurately 
assess the coastal environment in which it formed.  This study 
demonstrates the utility of such an analysis to the position of 
formation of beachrock, and thus relative sea level history.   

Future efforts to age-date the cement of key sea level datums 
from these sites will help to further resolve the poorly-constrained 
Holocene sea level history of southeast Africa.  
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Soft sediment deformation associated with the passage of North Atlantic
Deep water through the deep Ariel Graben, Mozambique Ridge southwest
Indian Ocean.
Errol Wiles (1), Andrew Green (1), Mike Watkeys (1), Wilfried Jokat (2), and Ralph Krocker (2)
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D-27568 Bremerhaven, Germany

Interactions between bottom water currents and seafloor sediments are well known. Bottom current generated
bedforms are varied both morphologicaly and sedimentologicaly. Sediment transport and deposition, associated
with bottom water circulation, plays a significant role is sculpting seafloor morphology in all ocean basins. Indeed,
bedforms have been used to great effect to define the presence, direction and strength of bottom water circulation
globally. Here we present new multibeam swath bathymetry and high frequency seismic data from the Natal Valley
and Mozambique Ridge, southwest Indian Ocean. These data show a deep (-3200 m) channel-like feature (Ariel
Graben, situated at 28◦ 30”S on the Mozambique Ridge) connecting the northern Natal Valley to the Mozambique
Basin. A distinct W – E change in seafloor morphology and seismic character is noted moving from the Natal
Valley through the Ariel Graben. The northern flank of the graben exhibits smooth plastered drifts which give way
to undulating seafloor in the east. The plastered drifts are characterised by distinct bottom echoes, with several
discontinuous sub-bottom reflections. In contrast, the undulating seafloor is characterised by distinct hyperbolic
echoes, with occasional indistinct sub-bottom reflectors. The W – E orientated undulations are straight crested,
parallel / sub-parallel to the local isobaths. Wavelength is variable, ranging from 600 m to 1200 m. Cross-sectional
symmetry of these features varies from symmetrical to asymmetrical, with board crests and narrow troughs. When
asymmetrical, the lower (south-facing) limb is the longer (511.76 m average) than the upper (north-facing) limb
(323.53 m average). The lower limbs are also steeper than the upper limbs; calculated averages being 3.80◦ and
1.55◦, respectively. Overall, the slope on which the undulations are found, is south-facing with a gradient of 1.54◦,
however, the area affected by undulations is slightly steeper (average slope of 1.75◦). Beyond -3000 m, the lower
limit of the undulations, the gradient increases to 4.71◦. The total slope average in this eastern region is 0.54◦

steeper than in the west area. The channel floor, no longer flat, is ca. 440 m wide at -3160 m depth. The Ariel Graben
represents a deep saddle across the Mozambique Ridge at 28◦30”S. This saddle provides a northern-most passage
for the transport of NADW from the northern Natal Valley to the Mozambique Ridge. Evidence of this transport
is manifest as crudely developed plastered drifts in the west and a soft sediment deformation field in the east of
the study area. Here, current flow stripping, due to increased curvature of the saddle axis, results in deposition
of suspended load in accordance with reduced current velocity. The steepened northern graben flank in this area
provides limited accommodation space which promotes high sedimentation. Deposited sediments overcome the
necessary shear stresses, resulting in soft sediment deformation in the form of down-slope growth faulting and
generation of undulating sea-floor morphology.
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Deep-sea channels represent preferential sediment transport conduits to the deep ocean floor, 

funnelling gravity flows from canyons towards deep-sea fans. Deposits associated with these deep-sea 

channels may accumulate over millions of years, providing longstanding records of changing climate, 

hinterland tectonics, and ocean circulation. In the southwest Indian Ocean (SWIO), where tectonic 

activity has a complex and protracted history, such systems are especially important. To this end we 

investigate the anatomy and shallow seismic character of the lower Zambezi channel in order to better 

understand this system. New swath bathymetric and sub-bottom data collected in the northern 

Mozambique Basin reveal an unprecedented view of the lower 530 kilometres of the Zambezi 

channel. Due to apparent morphological differences between the Zambezi channel and other deep-sea 

channels, a number of questions are raised regarding the evolution of this system as well as how it 

should be classified. Findings show a straight (1.08 sinuosity) deep-sea channel which exhibits a 

down slope change in seismic character and channel morphology. Initially 4.2 km wide in the north, 

the channel floor widens to 10 km wide before opening in to a frontal splay in the south. This 

downstream widening is accompanied by a reduction in channel relief with depth. Several levees and 

terraces suggest a history of vertical erosion, with little horizontal movement of the channel axis over 

time. A knick point (1.1 ° change in gradient) in the main channel is associated with the confluence of 

the Zambezi and Tsiribihina Channels. This confluence is classified as a pure, unequal, asymmetrical 

type, with a confluence width to tributary width ratio of 1.05, comparable to channels of the Niger 

Delta, and examples form the US Atlantic margin. 
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