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Abstract 

The research was directed toward the viability of an O(n) algorithm which could decompose 

an arbitrary signal (sound, vibration etc.) into its time-frequency space. The well known 

Fourier Transform uses sine and cosine functions (having infinite support on t) as 

orthonormal basis functions to decompose a signal i(t) in the time domain to F(w) in the 

frequency . domain, where the Fourier coefficients F(w) are the contributions of each 

frequency in the original signal. Due to the non-local support of these basis functions, a 

signal containing a sharp localised transient does not have localised coefficients, but rather 

coefficients that decay slowly. Another problem is that the coefficients F(w) do not convey 

any time information. The windowed Fourier Transform, or short-time Fourier Transform, 

does attempt to resolve the latter, but has had limited success. 

Wavelets are basis functions, usually mutually orthonormal, having finite support in t and 

are therefore spatially local. Using non-orthogonal wavelets, the Dominant Scale 

Transform (DST) designed by the author, decomposes a signal into its approximate time­

frequency space. The associated Dominant Scale Algorithm (DSA) has O(n) complexity 

and is integer-based. These two characteristics make the DSA extremely efficient. The 

thesis also investigates the problem of converting a music signal into it's equivalent music 

score. The old problem of speech recognition is also examined. The results obtained from 

the DST are shown to be consistent with those of other authors who have utilised other 

methods. The resulting DST coefficients are shown to render the DST particularly useful in 

speech segmentation (silence regions, voiced speech regions, and frication). Moreover, the 

Spectrogram Dominant Scale Transform (SDST), formulated from the DST, was shown to 

approximate the Fourier coefficients over fixed time intervals within vowel regions of 
human speech. 

ii 



Acknowledgements 

I would like to thank my friends and colleagues who have made significant contributions, 

both on the academic and personal side (in no particular order): 

• Professor A.G. Sartori-Angus for being my supervisor. 

• Hugh C. Murrell for introducing me to some of the theory and applications of wavelets 

and for being available to answer questions. 

• Vivienne Smithdorf for the superb effort she put into proof-reading my final manuscript. 

Towards the end of my write-up, when I was under the most pressure, it really was 

gratifying to have someone so willing and capable as Vivienne to take a huge load off 

my shoulders. I also find it very comforting that I have someone to blame for any 

spelling or grammatical errors! Thanks Viv! 

• David Ian Carson and Angela Kay Cooper for volunteering their time to digitally record 

practically hundreds of speech samples. 

• Professor MJ. Alport in the Department of Physics at the University of Natal (Durban) 

for encouraging me to examine some tough physics problems. I feel that inter­

disciplinary research is probably the most satisfying of all. 

• Dave Fraser in the Department of Electronic Engineering at the University Of Natal 

(Durban) for the valuable information pertaining to signal phase content. 

• My mother and father without whose support, in all forms from age zero to the present, 

I certainly could not have achieved what I have. Appreciation of any nature would 

simply pale into insignificance next to the contribution you have made to my life and 

education, but I offer it, nevertheless. 

• My brother Colin in San Jose, CA (United States of America) for all the help with file 

formats, the endless chats on InterNet, and steady encouragement throughout the 

research and write-up. Thanks Col! 

iii 



Acknowledgements 

(continued) 

• Steven Adrian West for generating the data sets for several wavelet basis functions and 

their associated scaling functions. Also, for the tireless effort put into producing some 

of the illustrations appearing in the thesis. I really appreciated your encouragement 

throughout my write-up. 

• To the boys and girls from Altyr Ego. Mike and Tania, Dave and Jackie, Gav and 

Trace, and Wayne and Vicki - the hours we spent together and the 'start/stop' pressure I 

was put under every Thursday night, made the last year of my research particularly 

enjoyable. Thanks guys ... 

• Last, but certainly not least, to my friends. Just your being my friend is very important 

to me - thank you ... 

iv 



Preface 

All research described in this thesis was carried out in the Department of Computer Science, 

University of Natal, Durban from April 1991 to December 1993 under the supervision of 

Professor A. G. Sartori-Angus. 

These studies represent original work by the author and have not been submitted in part or 

in whole to this or any other University. 

v 



Table Of Contents 

Chapter 1 - Introduction ............................................................................ 1 

1.1 The Concept Of Frequency Analysis .................................. ...................... ................. 1 

1.2 Some Definitions .............................................................. .......... ........ ...... ......... ....... 2 

1.3 The Fourier Transform ............................... .... .......................................................... 2 

1.4 Shortcomings of the Fourier Transform ....................................... ........ ... ........ ......... . 5 

1.4.1 The Impulse ......... .... .. ........... ............. ........................... .... ........... ................. 5 

1.4.2 Frequency time-dependence .......... ........................................... .......... .. ... ....... 6 

1.4.3 Length of power of 2 ...................... .. ...................... ...... ... ......... ..... ....... ... ...... 6 

1.4.4 Phase changes .... ..................................................... ....... . .-........... .... .............. 7 

1.5 Direction of the following text.. .......... ....... ............................................................... 8 

1.5.1 Thesis Structure and Contribution of the Research ......................................... 8 

Chapter 2 - Time-Frequency Decomposition and 

The Dominant Scale Transform .......................................... 10 

2.1 Introduction ................... .. ....... .... ............. ..... ........... .. .... ..... ........ ........ .. ................. 10 

2.2 The Short-Time Fourier Transform ... .... .................... ... ........................... .. ...... ....... 11 

2.3 Established Time-Frequency Localisation Techniques ................... ..... ..... ..... ... ........ 12 

2.3.1 The Gabor Transform ................. .. ..... ..... ............................. .. .......... ............ 12 

2.3.2 The Wavelet Transform ...................... ... ... ........ ...... ... .. ................ ... .. .. ......... 13 

2.3.2.1 The Scaling Function .. .... ....................... .. ................. .. .... ...... .... ... .. 15 

2.3.2.2 Construction of the Mother Wavelet .... ... ..... ..... ........... ..... .. .... ....... 16 

2.3.2.3 Generating the Wavelet Family .............. .. .. .... ... .. .. ... ....... .... ........... 16 

2.3.2.4 A comparison with the Windowed Fourier Transform ...... ... .. ......... 17 

2.3 .2.5 Orthogonal Wavelet Bases.. ...................... ................. .. .... ....... ... ... . 20 

2.3.2.6 The Fast Wavelet Transform ................................ .... ..... ...... ... ...... .. 20 

2.3.2.7 Why the FWT is unsuitable for Frequency Analysis ........................ 24 

vi 



2.4 The Dominant Scale Transform .......... ... ...... ....................... .... ................................ 26 

2.4.1 The Dominant Scale Algorithm ... ............................. .... ..... ..... ........ .. .... ........ 26 

2.4.1.1 DSA Order of Complexity .............................................. ............... 29 

2.4.1.2 DST Frequency Range ..... .. .. .. ........................................................ 29 

2.4.2 DST Properties ........... ........ ........... ............................................................. 30 

2.4.2.1 Spike .................... .... ............................................................ ......... 30 

2.4.2.2 Non-stationary signals ..... .................... .......................................... 31 

2.4.2.3 Phase Changes ...... .. ............ .. .......... .. ... ... ............... ........................ 32 

2.4.2.4 Signal Clipping ..... .... ......................................... .... .. .. .. .................. 35 

2.4.2.5 DST Frequency Scale ...... .... .......................................................... 37 

2.4.2.6 DST Underscaling ...... ...... ............................................................. 38 

2.5 DSA Implementation Specifics ................................. .... .......................................... 40 

2.5.1 Hardware implementation of DSA .............. ....... ..................... ..................... 40 

2.5.2 Using a more suitable language to optimise bottleneck code ........................ 41 

2.5.3 Optimising bottleneck code .................... .................. .... .. ................ ........ ..... 41 

2.5.3.1 Justification for elimination of .J;; ............ ..... ....... .... ..................... 42 

2.6 Chapter Summary ....................... .. .. ... ........... ................. .......................... .. ............ 43 

Chapter 3 - Speech Processing and Recognition using An 
Approximate O(n) Speech Spectral Analyser: The DST ... 44 

3.1 Introduction ....... ................. .... .. ... .... ...... ..... ................ .. ......... ....... ... ............. .. ....... 44 

3.1.1 Hidden Markov Models ... ... ... ... ............ .. ..... ........................................... ..... 45 

3.1.2 Cepstrum Analysis .. ..... ... ..... .... ..... .... ...... ..... .. .... .............. ... ............. .. ...... .. .. 45 

3.1.3 Dominant Scale Transform ......... ...... .......... .. ....... ... .... .... ........... .................. 46 

3.2 Human Speech Production Mechanism .. ................ ...... ... ..................... ................... 47 

3.2.1 Breathing ........... ...... ... ...... .. ... ..... .................. .......... ....... ............. ............. .. . 48 

3.2.2 The Larynx .................... ... ........ ... .. ... .................... ... ...... ..... .. ................. ...... 49 

3.2.3 The vocal tract .. ...... .. ..... ...... ..... ............. ...... .. ............ ... ......... .... ........... ...... 50 

3.2.4 Acoustics of Speech Production ..... .... .......................... .... ........... ........... .. ... 50 

3.2.4.1 Formant frequencies ............ .... .. ... ........... ...... .. ......... .. .............. .. ... 51 

vii 



3.2.5 Phoneme Production ... ........... ......... .... .. ..... .... .... .......................... ............ ... 51 

3.2.5.1 Stops ........................................... .......... .. .................. .... ...... .. ........ 51 

3.2.5.2 Vowels ............... ......... ...... .. ... ... ......................... ........ .............. ..... 52 

3.2.5.3 Nasals ................................................................... ... ...................... 52 

3.2.5.4 Fricatives ................... ........... .. ........................................ ...... ......... 53 

3.3 The Physiology of the Ear ... ......... ...... .............. ............. ........... .. .... ....... ................. 53 

3.3.1 The outer ear. ............. ................................ ..... .......... .... ............. ............ ..... 54 

3.3.2 The middle ear ...... ..... .... ............. .................... ........................................ .... 55 

3.3.3 The inner ear .......................... ... ... ...... ............................... ........................ .. 55 

3.3.4 Does the ear perform a Wavelet Transform? ..................... ........................... 56 

3.4 A close look at Speech Waves ..................................................... ..... ...................... 57 

3.5 Speech Recognition using the Dominant Scale Transform .......... ............................. 67 

3.5.1 The Fast Wavelet Transform and Speech Recognition ... ......................... ..... 67 

3.5.2 The Dominant Scale Transform and Speech Recognition ................ ... ... ... .... 68 

3.5.2.1 The Detection of Stops ...... .... ......................... ...................... .. ....... 69 

3.5.2.2 The Detection of Fricatives ....... ................. .................. ... ............... 71 

3.5.2.3 Scale Limited Signals .......... ..... .... .................. ... ...................... .. .. ... 74 

3.5.3 Time-Frequency Decompositions and Approximate Fourier 
Transforms of the Vowels ............... .. ..... ..................... .. ............ ... ............... 84 

3.5.3.1 Vowels and Formants ......... .... ......... .............................................. 84 

3.6 Speech Recognition Results ... .......... ....... ...................... .... .... .......... .. ........... .. ........ 95 

3.7 Future Research PotentiaL ......................................................... .. .................. ........ 99 

3.8 Chapter Summary ........................... ...... ......... .. .............. ... ......... .. ....................... . 100 

Chapter 4 - Using the DST for the Time-Frequency 
decomposition of various Real-World Applications ......... 101 

4.1 Introduction .. .... .................. .... ................ ..... ............ ... ........ ....... ... ............ ......... .. 101 

4.2 The Creation of a Music Score from a Music Signal ....................... ............... ....... 101 

4.3 Projectile Spin Behaviour ............................. .. .................... ..... ................. .. ..... .... . 104 

4.3.1 The Short-Time Fourier Transform approach ... .. ....... .. ..... ....... ........ .......... 104 

4.3.2 The Dominant Scale Transform approach ........ ... ............. .................. .. ...... 106 

4.4 Periodic Pulling ............... .......... ...... ....... ... ... ... .......... ... ... ... .... ........... ....... ............ 107 

viii 



Chapter 5 - Conclusion .......................................................................... 109 

5.1 Achievements of the DST .......................................... ......... ............................ ...... 109 

5.2 Future Research Opportunities Using the DST .............. ....... .... ............................ 110 

Bibliography ........................................................................................... 112 

Appendix A - Hardware and Software, and Sampling Processes ......... 119 

Al Computer Hardware used for Sampling and Processing ........................................ 119 

Al.l The Analogue-To-Digital Converter .......... ...................................... ... ..... .. 120 

Al.l.l Digital Representation .................... .... ........ .... ......... .................... 121 

A2 Computer Hardware used for Sampling and Processing, and Writing of the ...... .... .... . 
Manuscript .. ................... .................................... ......... ...... ................ ..... ... ......... .. 121 

A.2.1 The Sampling Process ................................. .. ....... ..... ..................... ...... ..... 121 

A.2.2 Graphing Tool Details .............................. .................... ..... ........... ............. 122 

A.2.3 Miscellaneous Software ......................................... ........ .. .......... ........... ... .. 123 

Appendix B - Music Tables .................................................................... 124 

Appendix C - Glossary ........................................................................... 125 

ix 



Chapter 1 

Introduction 

1.1 THE CONCEPT OF FREQUENCY ANALYSIS 

The frequency domain is the domain in which a signal's amplitude is examined as a function 

of frequency. Fourier analysis or frequency analysis is, in the simplest sense, the study of 

the effects of adding together sine and cosine functions. This type of analysis has become 

an essential tool in the study of a remarkably large number of engineering and scientific 

problems. Daniel Bernoulli, while studying vibrations of a string in the 1750s, first 

suggested that a continuous function over the interval (0, 1t) could be represented by an 

infinite series consisting only of sine functions. Bernoulli's suggestion was based on his 

physical intuition and was not readily accepted by mathematicians. Roughly 70 years later 

J.B. Fourier re-opened the controversy while studying heat transfer. He argued, more 

formally, that a function continuous on an interval (-1t, 1t) could be represented as a linear 

combination of both sine and cosine functions. However his conjecture was not readily 

accepted, and the question went unresolved for many years [Wea83]. 

Nowadays, Fourier Transforms play an important part in many scientific disciplines. With 

the advent of the Fast Fourier Transform (FFT) in the mid-1960s [Coo65], as well as the 

birth of powerful low-cost personal computers, the spectral analysis of large data sets 

became practical. The FFT eliminates redundant calculations which occur in the Fourier 

Transform, thereby reducing the computational complexity from O(n2) to O(nlog2 n). 

Image and signal processing, Computed Tomography (CT) scans, vibrational systems, 

electronic circuitry, speech recognition, and optics are just a few fields where the Fourier 

Transform has become an essential tool. An oscilloscope enables us to see the shape of an 

electrical waveform, and a spectroscope or spectrum analyser enables us to see optical or 

electrical spectra. Our acoustical appreciation is even more direct, since the human ear 

hears spectra; see Chapter 3. Waveforms and spectra are Fourier transforms of each other 

[Bra65] . 



1.2 SOME DEFINITIONS 

We start with some definitions that are used throughout this text. 

Definition: A sequence f (t) is said to have finite support if it is zero outside some 

region of the domain of f (t ) , called its region of support. The length of a 

sequence is defined to be the size of its region of support. 

Definition: A sequence f(t) is periodic, with period N, if f(t + kN) = f(t) V k E Z. 

Definition: 8mn = 1 iff m= n, 0 otherwise; 8mn is known as the Kronecker delta. 

Definition: Two functions are orthogonal iff f f * g dt = k8mn where f * is the complex 

conjugate of f and k E 9t. Orthonormality holds iff k = 1. 

Definition: For l2(Z), the set of all square summable sequences of complex numbers 

indexed by integers, we have: 

and for non-complex f and g, simply: 

Definition: The sampling frequency of f will be denoted by fs' 

1.3 THE FOURIER TRANSFORM 

The Fourier Transform, introduced by J.B . Fourier (1768-1830), is the mathematical basis 

of frequency analysis. Given a function f (t) , we define the Fourier Transform and the 

Inverse Fourier Transform pair as: 

F(ro) = (1-1) 

and 
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= (1-2) 

The Fourier Transform uses sine and cosine functions as orthonormal basis functions to 

decompose a signal f(t) in the time domain to F(ro) in the frequency domain, where the 

Fourier coefficients F( ill) are the contributions of each frequency in the original signal. The 

sine and cosine basis functions are orthogonal and local in frequency, but global in t. This 

accounts for two major disadvantages of the Fourier Transform. Due to the non-local 

support of these basis functions, a signal containing a sharp localised transient does not have 

localised coefficients, but rather coefficients that decay slowly. Another problem is that the 

coefficients F( ill) do not convey any time information. The windowed Fourier Transform, 

or Short-Time Fourier Transform (STFT), does attempt to resolve the latter problem, but 

has had limited success [Ran87]. The Fourier Transform is an O(n2) transform. Equations 

1-1 and 1-2 can be computed considerably faster using the Fast Fourier Transform (FFT) 

algorithm originally designed by Cooley and Tukey [Co065]. The Fast Fourier Transform is 

an o( n log 2 n) transform. A huge array of literature, both theoretical and applied, has been 

published on the Fourier Transform. The Fast Hartley Transform (FHT) , which is also an 

O( n log 2 n) transform, proves to be slightly more efficient than the FFT, while still 

preserving the FFT's properties [Bra83, Mur90]. 

In practice, computers interpret functions as a sequence of numbers rather than a 

continuous function. Therefore, given any bounded Nth order sequence f(t), the Discrete 

Fourier Transform and the Discrete Inverse Fourier Transform pair is defined as: 

N-l 
F(ro) = ~ I,f(t) e-21twtIN 

N t=O 
(1-3) 

and 

N-l 
f(t) = I,F(j) e21ttjlN (1-4) 

j=O 

The Fourier Transform is a linear transform which takes, as its input, a signal f(t) of length 

n in the time domain (assumed to be periodic) and produces, as its output, a signal F(ro) of 

length n in the frequency domain consisting of Fourier coefficients. Each of these Fourier 
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coefficients represents a specific frequency in the original signal. For signals in the discrete 

time domain, the Discrete Fourier Transform (DFT), or the more computationally efficient 

Fast Fourier Transform, is used. 

In many applications, the components of the resulting vector are complex numbers in which 

we are interested only in the magnitude, given as usual by ~Re2(x) + Im2(x). The real and 

imaginary components of each spectral coefficient can be used to determine the phase of its 

corresponding frequency component. However, in most cases, the phase localisation is 

unimportant. More importantly, the factor eiffi is equivalent to sin(ro)+icos(ro) which has 

the consequence that the FFT attempts to construct the original signal from sinusoidal 

components, just as Bernoulli had previously speculated. Its decomposition of non­

sinusoidal signals often leads to the summing over many terms of rapidly varying phase. 

The forward transform discards direct reference to time and the resulting coefficients are 

representative of the entire signal. This has two consequences; namely, the transform is not 

time-localised, and short-time transients may significantly affect many coefficients not 

corresponding to that of the transient. Another characteristic of the FFT is that the original 

signal is assumed to be periodic; furthermore, the frequency scale is linear. Figures 1-1 and 

1-2 show a synthesised periodic signal from an organ and its corresponding Fourier 

coefficients. 

80 

60 

40 

" 20 
"C 

E 
"c 0 

'" .. 
::Ii -20 

-40 

-60 

-80 

0 7 14 21 28 35 42 49 56 63 
Time (milliseconds) 

Figure 1-1: Organ Signal. 

800~------------------------~ 

640 

-8480 
E 
"c 
'" ~ 320 

160 

o A 

o 500 1000 1500 2000 2500 
Frequency (Hz) 

Figure 1-2: Fourier Transform of organ signal. 

As another example, consider vibrations of a motor engine being measured at a 

predetermined speed in RPM where the fundamental frequency as well as the harmonics 

would remain relatively constant for long periods of time. This scenario suits the Fourier 

Transform which assumes the signal has a periodic nature. 
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1.4 SHORTCOMINGS OF THE FOURIER TRANSFORM 

The assumption of a periodic signal cannot always be made, and when periodicity is not 

present, the Fourier Transform's performance is often less than expected. We now examine 

the following examples: 

• 

• 

• 

An impulse, by which we mean an extremely brief, very intense pulse. 

A sine wave which has increasing frequency , and is therefore time-dependent. 

A zero-padded signal allowing the O(nlog2 n) Fast Fourier Transform to be used 

instead of the slower O(n2) Fourier Transform. 

• A pure sine wave which undergoes a 1t radian phase change. 

1.4.1 The Impulse 

Noise is the contribution to a signal which causes a deviation from the expected signal. The 

infinite-support basis functions cannot elegantly be used to decompose a signal affected by 

noise. Consider the following example. A pure sine wave was generated and its Fourier 

coefficients generated. Thereafter, a single spike, characteristic of "salt-and-pepper noise", 

was superimposed onto the sine wave and the Fourier coefficients re-calculated. The 

degree to which a spike or "salt-and-pepper noise" is classed as high-energy is relative to 

the signal upon which it is superimposed. As we use almost the full amplitude range later in 

the thesis to record the speech samples, such a high-energy spike would not be 

characteristic. Since the recording was performed under controlled conditions, the ampli­

tude range could be chosen with much flexibility, thereby maximising the recording range. 

We used a spike having very high energy (lOOx signal amplitude) to illustrate the dramatic 

effect a single element can have on every coefficient in F( (J)); see Figures 1-3 and 1-4. 

800....--------------, 

640 

~ 480 
~ 
'c 
'" ;; 320 

160 

0.0 0.2 0.4 0.6 0.8 1.0 
Frequency 

Figure 1-3: FFT of sine wave. 
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Figure 1-4: FFT of sine wave plus spike. 
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1.4.2 Frequency time-dependence 

The infinite-support basis functions of the Fourier Transform do not lend themselves to the 

localisation of the signal j(t). Many signals do not exhibit a periodic nature, but rather 

have many frequency transients. Moreover, the spatial information of these frequencies 

often becomes important. The sine and cosine basis functions are orthogonal and local in 

frequency, but global in t. Therefore, the Fourier coefficients F( 0)) do not, in their native 

state, convey any time information. The forward Fourier Transform in equation 1-3 gives 

us a representation of the frequency content of j(t), but information concerning time-

localisation cannot easily be determined from F( 0)). 

1 000 -:JrTTTTl'TT'n'TTTTITTTTTlTlTTTT1TTTT1T1T 

750 

500 

i 250 ~I II IIIIIIIIIIIIII 
C 0 

I -250 

-500 

-750 

0.0 02 0.4 0.6 0.8 
Time 

Figure 1-5: Sine wave with linearly 
increasing frequency. 

1.4.3 Length of power of 2 

1.0 

3000 

2400 

]1800 

~ 
:11200 

600 

0 

0.0 02 0.4 0.6 0.8 
Frequency 

Figure 1-6: Its corresponding Fourier 
Transform. 

1.0 

There exist Fourier Transforms for data sets of length N not a power of 2. They subdivide 

the initial data set into successively smaller data sets, not by a factor of 2, but by whatever 

small prime factors divide N. For some specially favourable values of N, the Winograd 

algorithms can be significantly faster than the simpler FFT algorithms. This advantage in 

speed, however, must be weighed against the considerably more complicated data indexing 

involved in these transforms [Pre88]. For the simpler FFT algorithm to be used on a data 

set not of length of power of 2, the signal must be padded, usually with zeros, to obtain a 

length of 2n. As an example, a sinusoidal signal of length 600 was generated and its 

Fourier coefficients calculated. The signal was then padded with zeros and its Fourier 

coefficients re-calculated. The Fourier coefficients for both are shown below. Notice that 

only slight changes in the coefficient set were observed. This could be viewed as a 

windowed Fourier Transform where the window in this case is rectangular. The difference 

between the two plots can be examined in more detail by examining the Fourier coefficients 

of the rectangular window (Convolution Theorem). 
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Figure 1-7: Fourier coefficients. 

1.4.4 Phase changes 

1.0 
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-/l750 
;! 
·c 
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:; 500 
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~\. 
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Figure 1-8: Fast Fourier coefficients. 

Signals can undergo phase changes due to a variety of phenomena. How these phase 

changes affect their spectra can be important. Phase information can also be extremely 

valuable in many applications. For example, phase-shift keying is of prime importance in 

communications systems. We now examine the interesting effect that a phase change has 

on the Fourier coefficients. The introduction of a nl2 radian phase change in a pure cosine 

wave results in the spectrum shown in Figure 1-10. Note that we are concentrating on only 

one-eighth of the frequency spectrum. The spectrum is slightly distorted from its 

anticipated single sharp peak. 

! 
" '" ~ 

1200.----------------, 

1\ ~ ~ ~ A 
800 

1\ A A A 

400 

0 

-400 

-800 
V V V V v v v v v 

-1200 
0.40 0.45 0.50 0.55 

Time 

Figure 1-9: Sine wave undergoing a 
rc/2 radian phase change. 

V 

0.60 

7~.-------------~ 

6000 

0.000 0.025 0.050 0.075 0.100 0.125 
Frequency 

Figure 1-10: Fourier coefficients. 

The introduction of a n radian phase change at an extremum can dramatically affect the 

Fourier coefficients. The time-domain and frequency-domain plots are shown in Figures 

1-11 and 1-12. Note that there are now two spectral peaks present. 
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Figure 1-11: Sine wave undergoing a 
1t radian phase change_ 

Figure 1-12: Fourier coefficients_ 

A Hamming window [Cun92] was applied to the time-domain signal before the Fourier 

Transform was effected. The Hamming window is given by: 

= {
an +(1- a)cos ~ Inl ~ N 

otherwise 
where a = 0.54 

1.5 DIRECTION OF THE FOLLOWING TEXT 

(1-5) 

This first chapter has briefly introduced the notion of frequency analysis and also acquainted 

the reader with some of the shortcomings of the well-established Fourier Transform. The 

research carried out and documented herein was not an attempt to further the mathematical 

base of knowledge on wavelets. Rather, the focus of the research was to attempt to furnish 

an efficient algorithm with characteristics similar to the Fourier Transform, but one which 

does not suffer its shortcomings, some of which we have just seen. Due to the practical 

nature of the research, most of the results appearing in the following pages are in the form 

of graphs. 

1.5.1 Thesis Structure and Contribution of the Research 

The research carried out by the author has resulted in an integer-based O(n) algorithm for 

the decomposing of arbitrary signals into their time-frequency space. The algorithm has 

been called the Dominant Scale Algorithm (DSA) and the resulting time-frequency 

coefficients are called the Dominant Scale Transform (DST) for reasons which shall 

become apparent later. The examples presented in this chapter will be used again later to 

illustrate how the DST overcomes the problems described earlier. Chapter 2 introduces 

families of finite-support basis functions which are dilations and translations of each other. 
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This type of basis function is known as a wavelet. Orthogonal wavelets allow for the rapid 

decomposition of signals and the Fast Wavelet Transform (FWT) from Mallat [MaI89b] is 

described with a view to spectral analysis. The DST and associated DSA are also 

described. The algorithm forms the foundation of the research presented in the thesis. We 

document various properties of the DST. Chapter 3 tackles the complex problem of speech 

recognition, and as this field poses a long standing problem in both the computer science 

and mathematics fields, it is well studied. This allows us to verify the consistency of our 

results with other authors in the field. We show that by simple manipulation of the DST, 

the Spectrogram Dominant Scale Transform (SDST) yields coefficients which are 

remarkably similar to those of the Fourier Transform. For this, we chose 270 human speech 

signals generated by three individuals (two males, one female) upon which to base our 

research. The chapter examines how the SDST can be used as an approximation to the 

Fourier coefficients for vowel selection in human speech recognition. Chapter 4 examines 

various other time-dependent real-time problems and the DST's applicability to solving 

them. The problems examined are: music decomposition, rotational velocity of a projectile 

under extreme acceleration, and periodic pulling [Las69, Koe93]. Chapter 5 concludes this 

thesis by reviewing the contribution of the research as well as providing the reader with a 

view to envisaged future research. 

Please note: Before considering Chapter 2, the reader is encouraged to read Appendix A 

which details the hardware, software, and sampling processes used during the research 

throughout the thesis. 

Page 9 



Chapter 2 

Time-Frequency Decomposition 

and The Dominant Scale Transform 

2.1 INTRODUCTION 

For many different types of signals, much of the important information carried by the signals 

is conveyed by singularities and transients. Examples of situations concerned with such 

signals are: detection of anomalies in heart beats, the analysis of vibrations in vehicles, the 

study/recognition of human speech, measuring rotational velocities of projectiles, and the 

creation of a music score from a music signal wave. We shall investigate some of these 

applications in Chapters 3 and 4. In two-dimensional signals, we note that the sharp 

variation points provide the locations of contours in images. These contours are often the 

most important image features and the location of these contours is a well-known problem 

in image-processing known as edge detection. Edge detection occurring in the eye 

enhances our ability to recognise objects from a drawing that only outlines edges. Although 

our entire discussion in this text is based on one-dimensional signals, we propose that many 

of the techniques described herein could be applied to two-dimensional signals, such as 2D 

images, by treating each row or column of the image as a separate entity. 

This chapter briefly examines the established Short-Time Fourier Transform and the 

relatively new Wavelet Transform which is used when dealing with non-stationary signals. 

Non-stationary signals are those signals in which there exist frequency transients, or short­

lived oscillations. Thereafter, the new Dominant Scale Transform (DST), which 

approximates a signal in the time-frequency space, is introduced. Properties of the DST are 

discussed. First, however, we briefly examine established local spectral decomposition 
methods. 



2.2 THE SHORT-TIME FOURIER TRANSFORM 

In signal analysis, one often encounters the so-called Short-Time Fourier Transform 

(STFT), or windowed Fourier Transform. This consists of multiplying the signal f(t) with 

a usually compactly supported window function g(t) centred around zero, and then 

computing the coefficients of the product gf. These coefficients give an indication of the 

frequency content of the signal f( t) in the neighbourhood of t = o. This procedure is then 

repeated with translated versions of the window function, i.e., g(t±to), g(t±2to), 

g(t ± 3to) ... where to is a suitably chosen time translation step. This results in the 

collection of Fourier coefficients: 

= (2-1) 

Time-localisation is achieved by first applying a windowing mask g(t) to the signal f(t), 

thereby isolating a relatively well-localised portion of f(t), and then taking its Fourier 

Transform: 

(2-2) 

It is even more familiar to signal analysts in its discrete version, where t and 00 are assigned 

regularly spaced values: t = nto , 00 = mooo where m, n range over Z, and ooo,to > o. Then 

Eq. 2-2 becomes: 

= (2-3) 

The Windowed Fourier Transform, given in Eq. 2-3, is a standard technique for time­

frequency localisation [Ran87, Dau92]. A characteristic of the STFf is that, for time­

frequency localisations, the time-frequency window has constant size at all frequencies. 

This inflexibility of the STFf restricts its range of applications in the study of non-stationary 

signals having wide frequency ranges. Choosing the length of the windowing function g(t) 

involves calculated trade-offs: 

• Long STFT windows provide good frequency resolution, but poor time resolution . 

Spectral bleeding increases proportionally to the length of the window. High frequency 

signals require narrow time-windows for spatial accuracy. 
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• Short STFT windows provide poor frequency resolution, but good time resolution . 

Short windows enable the optimal localisation of features, but may not have sufficient 

length to encompass the lower frequencies. Low-frequency signals require wide time­

windows for studying complete cycles. 

This results in a compromise in the length of the window used in short-time analysis. For 

example, in speech processing, the window length is dependent on the pitch ranges between 

a male and a female or child. The choice of the shape of g( t) relies primarily on its Fourier 

Transform (Convolution Theorem). Some popular choices for g(t) are the Rectangular, 

Hamming, Hanning, Kaiser, and Lanczos windowing functions. The use of windowing 

functions, as well as problems introduced by the Windowed Fourier Transform is 

documented in [Wea83, Fa185]. 

2.3 ESTABLISHED TIME-FREQUENCY 

LOCALISATION TECHNIQUES 

2.3.1 The Gabor Transform 

The concept of the Wavelet Transform was initially devised by a French geophysicist, Jean 

Morlet [Gou84] to use in high-resolution seismic methods in oil and gas field development. 

The tests involved the use of back-scattered energy rather than that of reflected signals. 

Representations of seismic traces in the time-frequency domain were of interest. The 

deficiencies of the Fourier Transform were observed by D. Gabor, and in his 1946 paper he 

introduced a time-localisation window function g( t - b) where the parameter b translates 

the window to cover the entire time-domain, thereby extracting spatially localised frequency 

content. Gabor's representation [Gab46] was based on a family of two-parameter basis 

functions in which all basis functions are shifts in time and frequency of the others. The 

original proposal used a Gaussian function g and parameters COo and to such that 

moto = 21t. One property of the function is that it is optimally concentrated in both time 

and frequency, and therefore well suited for an analysis in which both time and frequency 

localisation are important. Unfortunately, the original proposal of moto = 21t leads to 

unstable reconstruction. A short, high frequency transient in a signal results in the summing 

of many sinusoidals having varied phase, and therefore depends heavily on cancellation. 

This leads to instability in the numerical calculations [Kr087]. The function 

Page 12 



g (t) = e -iffiot g(t - to) can be viewed as translated envelopes g, "filled in" with higher 
ffio ,to 

frequencies. 

?> 
c 
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Gabor Expansions 

Time 

Figure 2-1: Gabor expansions in time-frequency domains. 

2.3.2 The Wavelet Transform 

The name wavelet was coined approximately a decade ago [Mor82, Mor83, Gr084] and, in 

the last ten years, interest has grown at an explosive rate predominantly in applied 

mathematics and signal processing. There are several reasons for the present success of 

wavelets. On the one hand, the idea of wavelets can be viewed as a synthesis of ideas which 

originated during the last twenty or thirty years in engineering, physics, and pure 

mathematics. As a consequence of these inter-disciplinary origins, wavelets appeal to 

scientists and engineers of many different backgrounds. On the other hand, wavelets are a 

fairly simple mathematical tool with a great variety of possible applications. 

There has recently been a significant amount of research into wavelet transforms by various 

mathematicians: Yves Meyer [Mey86], Ingrid Daubechies [Dau88a, Dau88b, Dau90, 

Dau92], and Stephane MaHat [MaI89a, Ma189b, Ma189c], among others. Already wavelets 

have led to applications in signal analysis [Kr087] and numerical analysis [Bey91]; many 

other applications are being studied. Wavelet theory is related to Quadrature Mirror Filters 

that are used in image compression, progressive transmission, orientation analysis, motion 

analysis, and computer vision [Wo086, Ade87, Ma189a, Ma189c, Sim90]. Real-time 

wavelet-based video compression techniques are achieving promising compression ratios 

[Lew89] . Wavelet theory has even been applied to the study of the galaxy distribution 

[Sle90] . Active sonar applications have been developed [Fla90]. Integrated circuit 
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manufacturers have started building chips which implement the wavelet transform entirely in 

silicon [Kno90] . 

The term "wavelets" refers to families of functions of the form: 

= (2-4) 

which describes a two-parameter family of basis functions formed by translations and 

dilations of a single function ",(t) which is called the analysing wavelet, basic wavelet, or 

mother wavelet; we shall use the latter term throughout the text. Dilations replace the 

frequency translations of the Gabor expansions. Wavelets are the building blocks of 

wavelet analysis just as the sinusoidal functions are the building blocks of Fourier analysis. I 

Wavelet basis functions, in contrast to the Gabor expansions, are translations and dilations 

of the other basis functions. Obviously, the translation does not affect the shape of the 

wavelet in any manner. However, it is interesting to note that the dilation process does not 

alter the number of cycles as in the Gabor process; rather, the extent of the window varies. 

Wavelet Expansions 

Time 

Figure 2-2: Wavelet expansions in time-dilation domain. 

Note that in Figure 2-2, we have taken the liberty of representing dilations as changes in 

frequency. Since the frequency of a signal is proportional to the length of its cycle, it 

follows that for high-frequency spectral information, the time-interval should be smaller 

than that for low-frequency spectral information. In other words, it is important to have a 

window which is flexible, and narrows at high-frequencies and widens at low-frequencies. 

This characteristic is referred to as zooming. It is this zooming characteristic that allows 

wavelets to detect, and clearly represent, transients within a signal. The Fourier Transform 

has an inverse (see Eq. 1-2); therefore, the Fourier coefficients will contain inherent 

information about any transients. This information is, however, not easily extractable. 
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2.3.2.1 The Scaling Function 

Devising basis functions which have local support in t, but which still maintain mutual 

orthogonality, is examined in [Dau88a, Mal89a, Str89]. Wavelets have fixed shape and are 

based on translations (shift in t) and dilations (expansion in t) of a mother wavelet. More 

specifically, wavelets constitute a family of functions, each a translation and dilation of the 

others, derived from one function. Construction of a mother wavelet begins with a scaling 

function <1>. To generate this scaling function, we start with a box function <1>0 : 

= {
1 for O~ t < 1 
o otherwise 

To create the scaling function, we choose coefficients {Ck} and iterate: 

= 

The result tends to the required scaling function, defined as: 

= lim m 
j~ oo 't'j 

(2-5) 

(2-6) 

(2-7) 

To normalise the scaling function, we require that f <1> dt = 1. So using Eq. 2-6, we have: 

f <1> dt = (2-8) 

It follows therefore, that a constraint on the choice of the coefficients is L ck = 2. Both 

recursive and iterative methods of constructing wavelets are documented in [Str89]. 

Examples of scaling functions are shown in Figure 2-3 . These are the box function and hat 

function with coefficients {1 1} and {~ 1 ~} respectively. 

o 

Box Function: Co = 1.0 

c1 = l.0 

o 2 

Hat Function: Co = 0.5 

c1 = 1.0 

c2 = 0.5 

Figure 2-3: Examples of scaling functions. 
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2.3.2.2 Construction of the Mother Wavelet 

From the scaling function, we construct the mother wavelet using the same coefficients 

{Ck} according to: 

"'( t) = I(-l)k Ck+l<1>(2t+k) 
k 

(2-9) 

We have great latitude in our choice of the mother wavelet. However, certain well-defined 

conditions apply [Gro84] and we therefore cannot choose it arbitrarily. Let ",(t) be a 

mother wavelet. The following conditions must hold: 

1. "'( t) is absolutely integrable and square integrable. The latter condition means that it 

must have finite energy. 

(2-10) 

2. If \jI( co) represents the Fourier Transform of ",(t) , then: 

(2-11 ) 

In practice, Condition 2, is a requirement that ",(t) has a zero mean value, i.e., no DC bias, 

or equivalently that \jI( 0) = 0 or f "'( t) dt = o. 

2.3.2.3 Generating the Wavelet Family 

We generate a doubly-indexed family of wavelets from", using dilation and translation: 

where a,b E 9t, a> 0 (2-12) 

The factor lal-l/2 
provides the energy scaling factor and ensures that II", a,bll = 11",11 for all a. 

For the following discussion, we shall assume that 11",11 = 1. We can represent each wavelet 

in the family by allowing only discrete values for the dilation and translation parameters: 

-mj2 ( -m ) 
ao '" aO t - nbO (2-13) 
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The change of parameters corresponds to the choices: 

a = and 

b = 

indicating that the translation parameter b depends on the chosen dilation. 

2.3.2.4 A comparison with the Windowed Fourier Transform 

(2-14) 

(2-15) 

The Wavelet Transform provides a similar time-frequency description as the windowed 

Fourier Transform, with some important differences. The wavelet transform formulae 

analogous to Eqs. 2-2 and 2-3 are: 

= (2-16) 

and 

T.wav (f) m,n = (2-17) 

In both cases, we assume that \jI satisfies: 

= o (2-18) 

Eq. 2-17 is obtained from 2-16 by restricting a, b to only discrete values: a = aO' 

b = nboa~ in this case, with m, n ranging over Z, and ao > 1, bo > 0 fixed. One similarity 

between the wavelet and Windowed Fourier Transforms is clear: both Eqs. 2-2 and 2-16 

take the inner products of f with a family of functions indexed by two parameters: 

(Fourier) (2-19) 

(Wavelet) (2-20) 

A typical choice for \jI is \jI(t) = (1- t
2

). exp( _t2 /2), the second derivative of the Gaussian, 

sometimes called the Mexican hat function because it resembles a cross section of a 

Mexican hat. The Mexican hat function is well localised in both time and frequency, and 
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satisfies Eq. 2-18. As a changes, the wavelets 'l'a ,0(t)=lal-l/2'1'(t/a) cover different 

frequency ranges (large values of the scaling parameter lal correspond to low frequency, or 

large scale 'I' a,O; small values of lal correspond to high frequencies or very fine scale 'I' a,O)' 

Changing the parameter to allows us to move the time localisation centre: each 'I' a t (t) is 
, 0 

localised around t = to. It follows that Eq. 2-2 and Eq. 2-16 provide a time-frequency 

description of f . The difference between the Wavelet and Windowed Fourier Transforms 

lies in the shape of the mother wavelets g co t and 'I' at. The functions g co t all consist of 
, 0 ' 0 ' 0 

the same envelope function g, translated to the proper time location, and "filled-in" with the 

higher frequency oscillations. All the gco t ' regardless of the value of (0, have the same 
, 0 

width. In contrast, the 'I' a ,t
o 

have time-widths adapted to their frequency: high frequency 

'I' a t are very narrow, while low frequency 'I' a t are much broader. As a result, the 
, 0 , 0 

wavelet transform is better able than the windowed Fourier transform to "zoom in" on very 

short-lived high frequency phenomena, such as transients in signals. 

The Wavelet Transform: 'l'm,n is localised around a;;Znbo in time. The Windowed Fourier 

Transform: gm,n is localised around nto in time, and around mooo in frequency. For a more 

detailed comparison between the Fourier and Wavelet transforms, see [Dau90, Dau92]. 
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Figure 2-4: The lattice of time-frequency localisation 
for the Windowed Fourier Transform [Oau92]. 
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Figure 2-5: The lattice of time-frequency localisation 
for the Wavelet Transform [Oau92]. 
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2.3.2.5 Orthogonal Wavelet Bases 

For some very special choices of 'I' and aO' bo E Z, the 'l'm,n constitute an orthonormal 

basis for L2(9\). In particular, if we choose ao = 2 and bo = 1, then there exists a 'I' with 

good time-frequency localisation properties, such that the functions: 

(2-21) 

constitute an orthonormal basis for L2(9\). The question of when one can obtain 

orthonormal bases of wavelets using dilation factors other than 2 is also of interest. 

Auscher studied the case of rational dilation factors a in the region 1 < a < 2 [Aus92]. 

Meyer [Mey90] has considered orthonormal bases obtained using integer dilation factors 

a > 2; such bases require two or more sets of wavelets. 

2.3.2.6 The Fast Wavelet Transform 

The localisation properties of wavelets make them extremely useful for numerical analysis of 

systems with singular behaviour. In many cases, not only are fewer basis functions required 

with wavelets than with such traditional bases as Fourier series, but such annoying 

anomalies as the "Gibb's phenomenon" are minimised. As wavelet theory has advanced, 

numerical algorithms have simultaneously been developed which exploit these advantages. 

In particular, Daubechies's compactly supported orthonormal wavelets can be used to 

develop a Fast Wavelet Transform which appears to be superior to the Fast Fourier 

Transform for many purposes. The Fast Wavelet Transform (FWT) was first proposed by 

Mallat in his original paper on multi-resolution analysis [MaI89b] using truncated versions 

of infInitely supported wavelets. A numerical algorithm using the compactly supported 

wavelets of [Dau88], thereby avoiding the error due to truncation, was subsequently 

implemented by Beylkin, Coifman and Rokhlin [Bey91]. 

The FWT is starting to be widely adopted in various applications and is being accepted as a 

viable alternative to the popular Fast Fourier Transform; see Chapter 1 for references. The 

FWT is fast, very efficient, produces non-redundant coeffIcients, and allows users to choose 

from a large variety of basis functions. 

Relative to a mother wavelet '1', the Wavelet Transform (WT) on L2(9\) is defined by: 

(W",f) = 
m,n (2-22) 
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for m, n E Z. If 'II m n represents a family of orthogonal wavelets, the wavelet coefficients , 

are non-redundant and complete [Chu92] . The Inverse Wavelet Transform can therefore 

reconstruct the signal from the coefficients: 

= (2-23) 

m n 

The two properties which are the hallmarks of the Wavelet expansions are localisation in 

time, and scaling. The Fast Wavelet Transform [Str89, Chu92] exhibits many favourable 

characteristics: 

• Orthogonal basis functions are the foundation of the FWT and these make for elegant 

and non-redundant decomposition. 

• Spatial localisation is a by-product as the fundamental building block of the transform is 

a family of basis functions having finite-support. 

• The FWT is an extremely efficient algorithm having an order of complexity equal to the 

number of samples in the signal f(t), that is, O(n). The Fourier Transform has 

complexity of O(n2) and the optimised Fast Fourier Transform has complexity 

O(nlogz n). 

I 1 1 1 I I I I I I I I I I I I 10000 Hz 

5000 Hz 

2500 Hz 

1250 Hz 

625 Hz 

312 Hz 

Figure 2-6: Spatial dependence of orthogonal wavelets. 

(assuming f s = 20 kHz) 

Mallat's elegant O(n) tree algorithm or pyramid algorithm performs fast decomposition and 

reconstruction of signals. It can be thought of as being to the Wavelet Transform what the 

Fast Fourier Transform is to the Fourier Transform. The algorithm is documented in 

[Str89] . From the frequency scale, we observe that the wavelet transform is in fact an 

octave-band filter. 
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The Haar wavelet has been known since 1910. It is orthogonal to its own dilations and 

translations, but is not continuous. Daubechies [Dau88a] showed that, apart from the Haar 

wavelet, there exist no other compactly supported wavelet bases in which <l> is either 

symmetric or anti-symmetric around any axis. Note that the scaling function for the Haar 

wavelet is invariant under the coefficients ck = {I I}. Two other well-studied examples are 

the cubic B-spline and D 4 [Dau88a, the name D 4 being proposed in Str89] which have the 

coefficients Ys {I 4 6 4 I} and ~ {( 1 +.J3) (3 +.J3) ( 3 -.J3) ( 1-.J3) } respec-

tively. The Haar wavelet is obviously not continuous, whereas the cubic B-spline and D4 

wavelets are. The wavelet D4 is not as smooth as it looks, in fact; out of the three, the only 

one differentiable is the cubic B-spline. Clearly, being continuous or differentiable is not a 

pre-condition for admissibility. Each has a different support on t. 

1.5,--------------, 1.5 ~------------~ 

1.0 -
1.0 ,--------, 

0.5 

0.5 0.0 

-0.5 

0.0+-----' 

-1.0 

-1.5 
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 

Figure 2-7: Haar scaling function. Figure 2-8: Haar wavelet. 
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0.25 

0.5 

0.00 

0.0 

-0.25 

-0.50 
o 3 4 -1 .5 -0.5 0.5 1.5 2.5 

Figure 2-9: Spline scaling function. Figure 2-10: Spline wavelet. 
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1.5 

1.0 1.0 

0.5 

0.5 
0.0 

-0.5 
0.0 

-1.0 

-1 .5 

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 

Figure 2-11: Oaubechies scaling function_ Figure 2-12: Oaubechies wavelet 04-

The Haar wavelet is the simplest and therefore probably the most well-known and 

understood of all. Starting with a box scaling function <\>, and the coefficients ck = {II} , 

we iterate Eq. 2-9 to render the orthonormal Haar mother wavelet: 

"'( t) = 

= 

<\>(2t)- <\>(2t-l) 

ifO::;t<~ 
if ~::;t<l 
otherwise 

(2-24) 

Figure 2-13 shows translations and dilations of the Haar wavelet. The pattern is obvious. 

An important characteristic of these wavelets is their mutual orthogonality. This set can be 

expanded to an arbitrarily large mutually orthogonal basis set. To retain their mutual 

orthogonality, each wavelet must be fixed spatially. 

Decreasing 
Scale 

Figure 2-13: Haar wavelet family subset. 
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2.3.2.7 Why the FWT is unsuitable for Frequency Analysis 

Recall Figure 2-6. This diagram expresses the hierarchical tree structure of the Wavelet 

Transform. Each block in the diagram identifies a wavelet in time-frequency space. These 

wavelets' spatial localisation must be strictly adhered to in order to maintain mutual 

orthogonality. In addition, at each level in the pyramid, the scale of the wavelets decreases 

by a factor of 2. 

We propose that the FWT is unsuitable for accurate frequency analysis for the following 

two reasons: 

Spatial Localisation: By definition, the coefficients of the FWT are spatially fixed; i.e. any 

spatial translation would destroy their mutual orthogonality. As a result, the dot product 

\ f, 'I' a,t
o 

) is dependent on the phase of f. 

1.5 

1.0 

0.5 

0.0 

-0.5 

-1.0 

-1.5 

0.0 2.5 5.0 7.5 10.0 12.5 

Figure 2-14: Spatial dependence of orthogonal wavelets. 

Consider two sinusoidals having a signal length of 16 and magnitude 100 and a phase 

difference of nl2 radians, i.e. two signals equivalent to sine and cosine waves. Both have 

the same frequency and constitute exactly 2 cycles. Consider the following tables: 
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-70 1 
-70 

29 I 
170 

29 70 1 -29 -70 I 29 70 I 
70 -70 70 

241 241 

0 

Table 2-1: Haar wavelet coefficients of sine wave. 
(Note: All decimal places truncated.) 

70 -29 I -70 29 I 70 -29 I 
-170 170 -170 

100 100 

0 

-29 

-70 

Table 2-2: Haar wavelet coefficients of cosine wave. 
(Note: All decimal places truncated.) 

a=1 

a=2 

a=4 

a=1 

a=2 

a=4 

a=8 

Table 2-1 shows the wavelet coefficients of the sine wave and by examination of the rows, it 

appears obvious that the frequency of the wave has scale a = 4. However, a translation of 

the wave by Tt/2 radians (a quarter cycle) results in the most significant coefficients now 

indicating that the wave has scale a = 2. Evidently, the frequency of the wave has changed, 

but clearly it has not. This simple example shows the 'translation dilemma' of the WT. 

However, we must stress that there is nothing 'wrong' with the coefficients, but they 

unfortunately are not immediately representative of the signal as far as spectra analysis is 

concerned. It is this discrepancy, due to the spatial localisation, which prohibits us from 

interpreting the coefficients at different scales of the WT for spectral analysis. Therefore, as 

orthogonal wavelets do not provide consistent coefficients for any given wave, irrespective 

of phase, the elegant tree algorithm of Mallat unfortunately cannot be applied with any 

notable degree of consistency. 

Sparse Frequency Space: Consider 11 s worth of sampling with fs = 22 kHz. Because the 

frequency scale of the FWT increases like 2a , the frequency space consists of the 

frequencies 11 kHz, 5.5 kHz, 2.75 kHz, 1.37 kHz, 687 Hz, 343 Hz, 171 Hz, 86 Hz, and so 

on. We refer to this small number of frequency bands as a sparse frequency space. 

Compare this with the Fourier Transform whose frequency space would consist of all 

frequencies from 0 kHz to 11 kHz in linear increments of only 10Hz. This dense frequency 

space would render a more accurate representation of the signal in the frequency domain, 
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and its linearity would not exhibit the severe decay of the higher frequencies which the WT 

possesses. 

2.4 THE DOMINANT SCALE TRANSFORM 

The problems associated with Fourier Analysis and the spectra inconsistencies introduced 

by the Wavelet Transform prompted the author into researching an algorithmic approach to 

time-frequency decomposition. The result was the O(n) integer-based Dominant Scale 

Algorithm (DSA) which decomposes a signal f(t) into its approximate time-frequency 

space F'V(t,ro) or, perhaps more accurately, its time-scale space F'V(t,a). The coefficients 

in this space form the Dominant Scale Transform (DST). This time-frequency space allows 

us to look at the spectral contribution of a specific portion of the signal without concern 

about any samples outside the small interval in question. In addition, the 'frequency-varying 

windowing' or zooming, allows us to spatially localise transients without concern about 

spectral bleeding. 

2.4.1 The Dominant Scale Algorithm 

The two obstacles concerning the Wavelet Transform are nullified by making two changes 

to the basis functions, each solving one of the two problems associated with time-frequency 

decomposition. 

• The simplest way to remove the spatial dependency is to consider all the integral shifts 

of"" namely: ",(t-k), k E Z. By relaxing the strict imposition of spatial positioning of 

the orthogonal wavelets, we obtain better spatial localisation. 

• Secondly, we change the wavelength of the wavelet at scale a to 2a from the 

conventional 2a
. This increases the number of coefficients which in tum increases our 

frequency resolution. 

Both of these changes increase the number of basis functions and destroy their mutual 

orthogonality, but in return we obtain extremely well localised time-frequency coefficients 

as well as a dense frequency space. Although the Haar wavelet is considered to exhibit bad 

time-frequency localisation [Dau92], we adopt the simple basis function as a matter of 

efficiency. For all t, the Haar wavelet ",(t)E{-l, 0, +l}. As a consequence, the 
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calculation of (f, 'I' a,b) involves mainly additions and subtractions. If the function f{t) is 

integer-based, which is most common for ADC output, the dot product too will be entirely 

integer-based. Note that should f{t) E 9t, the arithmetic simply becomes real-valued and 

no complications are introduced. There are several more factors affecting our choice of 'I' , 

most of which are described later in the chapter. 

Whether or not changing the mother wavelet shape would notably alter the decomposition 

characteristics was not examined in much detail, although preliminary tests show that such 

an alteration is, in fact, unlikely to occur. Moreover, the computation time was increased 

significantly by the introduction of floating-point calculations. We therefore intentionally 

restrict ourselves to the Haar wavelet. We can now define the concept of a dominant scale: 

Definition: Given a set of samples f, a wavelet basis '1', and a scale range 

{MinA..MaxA} then if: 

a(tJ = {a I \f, 'l'a, t;) = b E {Mirr;:.MaxA}\f, 'l'b, t;)} 

then the dominant scale of f is: 

x(tJ = {a~J if \f' 'I' a(t;), t; ) '? \ f, 'I' a(t;), t;f I ) 

otherwise 

In other words, to obtain the Dominant Scale Function x( ti), any entry in the Maximum 

Scale Function a( ti) is ignored if it does not correspond to a local maximum in the 

Maximum Energy Function (f' 'I' a{tJ, t; ). The value a(tJ is the scale containing the 

most energy at ti and thereby being the most probable scale at that time instant. In short, 

the first pass can almost be described as a best-fit process, where the signal is superimposed 

with a single-cycle wavelet, and the energy of their dot-product calculated. The wavelet 

with the greatest energy at that time ti is declared the 'winner'. The calculations are 

performed for to, tl, t2, ... · This defines two functions, namely the Maximum Scale 

Function and the Maximum Energy Function. The locating of maxima in the Maximum 

Energy Function can be thought of as the localising of that frequency coefficient's zero­

crossing; in other words, the dot product will reach a maximum at that component's zero­

crossing. Admittedly, this is somewhat of an ad hoc approach. The idea of retaining only 
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the dominant scale was previously documented in [MaI92] which describes the detection of 

singularities in one-dimensional and two-dimensional signals. 

Although the DST involves a significant amount of over-sampling, most of the resulting 

coefficients are eliminated by the max function, with only those coefficients associated with 

local maxima in the energy function being retained. Unfortunately, the above definition 

relies partly on the fact that each frequency component in the signal is of roughly equal 

magnitude. In practice, however, the absence of this constraint is not necessarily a 

predictor of failure. For example, the algorithm was applied to speech signals in which 

harmonics having much lower magnitudes than the fundamental were present and, as we 

shall see in the following chapter, the DST performed very well indeed. The definition of 

the dominant scales can be implemented very simply by the algorithm below to generate the 

Dominant Scale Transform time-frequency space. 

Dominant Scale Algorithm: 
For each time t of a signal f 

Calc the scale a having max energy and set: 
MaxScale [ t] = a 
MaxEnergy [t ] = <f, \jI a t> 

I 

For each entry t of MaxScale 
If LocalMaximum (MaxEnergy [ t]) 

DomScale [ t] = MaxScale [ t] 
Else 

DomScale [ t] = 0 
End. 

From now, we shall refer to the MaxScale function as the "Scale Function", the 

MaxEnergy function as the "Energy Function", and DomScale function as the "Time-Freq 

Function". In practice, the second pass is easily incorporated into the first. As an example, 

consider a sine wave, and its associated energy function. 
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Figure 2-15: Sine wave_ 
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Figure 2-16: The energy function of the sine 
wave in Figure 2-15. 

Note that both the original signal f(t) and the energy function I(f, 'I' a,t)1 have been 

normalised for display purposes. The maxima in the energy function correspond to zero­

crossings in Figure 2-15. The 1.1 operator ensures that both positive and negative maxima 

are isolated. The sign of the dot product describes the gradient at the crossing point. If the 

sign of the dot product is retained, we could choose to localise only crossing points having 

a positive gradient, or vice versa. 

2.4.1.1 DSA Order of Complexity 

Assume the signal f(t) has length N. It is easy to verify that the process has OeN) 

complexity. 

Proof: For every ti where i E {1.. N} , the dot product for each scale a E {MinA .. MaxA} 

is calculated. This has complexity O(MaxA-MinA+l), and as MaxA and MinA are pre­

defined constants, we simply write it as O(k) where k is a constant independent of N. This 

process is repeated at each ti and the entire process therefore has O(kN) complexity. I:J 

2.4.1.2 DST Frequency Range 

Determining the scale range [MinA .. MaxA] and hence the frequency range is quite 

straightforward. Let the scale MinA indicate the finest scale of interest and the scale MaxA 

the coarsest scale of interest; then we are interested in all scales in the range MinA, 

MinA+1,oo., MaxA or [MinA .. MaxA]. Since MinA represents the most compact wavelet, 

or frequency ceiling, we set MinA = 1. This sets the frequency ceiling at the Nyquist 

frequency limit fs /2. The actual upper frequency limit is restricted by anti-aliasing filters, 
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and is typically about SO% of the Nyquist frequency [RanS7, LanSS]. Ideally, is is 

increased accordingly. To fix MaxA, we choose a frequency floor, and set MaxA according 

to this maximum wavelength. 

2.4.2 DST Properties 

We now turn our attention to some properties of the DST and in doing so, we re-visit the 

examples which proved troublesome for the Fourier Transform in Chapter 1. 

2.4.2.1 Spike 

A pure sine wave was generated and a spike having positive magnitude introduced at a local 

minimum. The three plots in Figure 2-17 show the DST of the following functions: 

1. A pure sine wave. 

2. A pure sine wave with a positive spike introduced at a local minimum with magnitude of 

the sine wave. 

3. A pure sine wave with a positive spike introduced at a local minimum with 10 times the 

magnitude of the sine wave. 
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Figure 2-17: The DST of spike affected sine wave. 

Both spikes have been excellently localised. If the length of the signal were to increase, the 

shape of the graph would remain constant and the lines of the low frequency portions would 
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simply extend as the signal lengthened. This is in contrast to the Fourier Transform which 

would adjust the Fourier coefficients if either the length of the signal changed or the 

magnitude of the spike was altered. Neither of these two seem to significantly affect the 

DST coefficients. Moreover, irrespective of the magnitude of the spike (or noise) 

introduced at, say, to due to the localisation properties, it is impossible for the irregularity 

to affect any coefficients outside the small interval [to - MaxA .. to + MaxA]. 

2.4.2.2 Non-stationary signals 

Non-stationary signals, in which frequency changes occur with time, were shown to be 

troublesome for the Fourier Transform. Moreover, applications where frequency varying 

signals are used are probably the most common problems for the Fourier Transform; hence 

the enormous amount of research into the Windowed Fourier Transform. As we shall 

discuss later in the text, complex wave patterns effect some form of trade-off when 

choosing the window length. Some examples are: speech, music, and bird whistle 

recognition. The DST of the signal appearing in Figure 1-5 in Chapter 1, is shown below in 

Figure 2-18. Note the increasing step size as the frequency increases. This is characteristic 

of the 2~ scaling factor. 
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Figure 2-18: Frequency response of a sine wave with increasing frequency. 
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2.4.2.3 Phase Changes 

For each frequency component, the wavelet dot product contains more energy at the zero­

crossing point than at any other time. Therefore, each time a dominant scale is isolated 

during the second pass, the phase of the component is automatically a by-product. 

Explanation of the time-frequency graphs: The first in a whole series of time-frequency 

graphs appears in Figure 2-19. You shall see several 'small black dots' in the time-frequency 

space. These represent the non-zero coefficients of the DST. These coefficient marks do 

not convey any information about their magnitude, or alternatively, the energy 

corresponding to that particular scale at that particular time. The author tried several 'nicer' 

display types. One of these, and probably the most obvious, was a surface plot of the time­

frequency space. For example, plotting the time-frequency space of a signal having 

constant frequency, we would expect to see a ridge running along the entire t. However, as 

the DST consists essentially of sparsely located coefficients, the surface plot showed 

isolated spikes which did not prove to be aesthetically pleasing and although the eye is 

excellent at recognising trends, the surface plot was simply not an acceptable form of 

output. Therefore, we have resorted to the 'dots' approach. This technique actually 

performs well when dealing with speech (Chapter 3), as one can clearly see the various 

frequencies present as well as the trends they follow. 

Returning to the example in Figure 1-5 and the corresponding FT frequency response in 

Figure 1-6, we illustrate its DST coefficients in Figure 2-19. Note the accurate spatial 

localisation of the frequency transients, and the decrease in I1t between non-zero 

coefficients as the frequency increases, or alternatively, as the wavelength decreases. 
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Figure 2-19: Time-frequency space of a sine wave 
having increasing frequency. 

1.0 

Our next set of examples consists of sinusoidal signals which undergo a phase change. Our 

first example shows a sine wave which undergoes a 1t12 radian phase change, while in the 

second example a sine wave undergoes a phase change of 1t radians. 
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Figure 2-20: Sinusoidal wave undergoing a 
rtl2 radian phase change. 

1200 

A A A f\ A f\ f\ n n f\ 
800 

400 

• -g ., 
c .. . 

::E 

·400 

·800 
V V V V V v V V V 

·1200 

0.40 0.45 0.50 0.55 0.60 
Time 

Figure 2-21: Sinusoidal wave undergoing a 
1t radian phase change. 
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Figure 2-22: Fourier Transform of sinusoidal 
wave having a rc/2 radian phase change. 
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Figure 2-23: Fourier Transform of sinusoidal 
wave having a rc radian phase change. 

The Fourier Transform behaves well when subjected to a 1t/2 radian phase change. 

However, a phase change of 1t radians causes two spikes on the Fourier Transform to 

appear. The phase of either signal is practically impossible to extract from the Fourier 

coefficients (barring using the Inverse Fourier Transform!). 
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Figure 2-24: DST coefficients of sinusoidal 
wave having a rc/2 radian phase change. 
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Figure 2-25: DST coefficients of sinusoidal 
wave having a rc radian phase change. 

Figures 2-24 and 2-25 show clearly the advantages of the time-frequency space 

decomposition provided by the DST. Close examination of Figure 2-24 will indeed show 

that the signal has undergone phase change at t = 0.5. The reader is encouraged to make 

physical measurements of the graph with a pen and paper to verify the phase change. A rtl2 

radian phase change induces a rapid change in magnitude at the Nyquist frequency. This 

appears in Figure 2-25 as a single coefficient at the Nyquist frequency. 

Phase information is extremely valuable in many applications and is of prime importance in 

communications systems for several reasons: 

• In digital communications, the phase of the transmitted signal may be used to encode the 

binary data sent using techniques such as phase-shift keying in which the data stream 
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toggles the phase of a constant amplitude sinusoid between two values say 0 and 180 

degrees to indicate a 0 or a 1. This is called binary phase-shift keying. If 4 phases are 

used, say ±45 and ±135 degrees, the binary combinations 00,01, 10, and 11 could be 

allocated, thus increasing the data throughput with the same signalling rate (quadra­

phase shift keying QPSK) [Lee88]. 

• Phase knowledge is useful in modelling and measuring high frequency devices such as 

antennas, microwave transistors, transmission lines etc. in which the amplitude and 

phase of a known signal is compared to that reflected from the device, in order to 

determine its input and output impedance (AC resistance). This method is known as the 

S-parameter measurement method. 

• In control of electric motors, phase knowledge is critical. The phase of the currents 

applied to the field windings of an AC motor can alter its speed and torque 

characteristics. In addition, measurements of the phases of the currents induced by the 

machine onto its windings can indicate the 'health' of the machine, its load, and its 

operational stability. 

• In many communication channels, the phase characteristics of the channel itself are 

important to data integrity. For example, one could not expect low error rates if one 

was using phase-shift modulation of 90 degree spacing and the channel regularly 

showed rapid changes in phase of, say, 100 degrees. The phase response of a channel is 

intimately linked with the group delay of a signal sent over it, and as such, group delay 

equalisers are required to ensure consistent phase response over the operational 

bandwidth. 

2.4.2.4 Signal Clipping 

Clipping occurs when the range of the recorded signal exceeds the capabilities of the 

equipment. The fault may lie in either the hardware or software components of the system. 

For example, the gain on the pre-amplifier may be set too high, thereby possibly exceeding 

the allowable input voltage of the ADC. Alternatively, the analogue-to-digital mapping may 

produce a legal hardware signal beyond the range of the software. For example, the 

mapping attempts to assign a value of 300 to an 8-bit entity. Clipping can be defined as 

follows : 
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= 
{ 

T 

-T 
f(tJ 

iff(tJ> T 
iff(tJ<-T 
otherwise 

(2-25) 

We simulated clipping by generating a pure sine wave and limiting the signal to 90%, 80%, 

70%, ... , 10% respectively of its original magnitude. An example of a signal clipped at 70% 

of its maximum magnitude, together with its corresponding Fourier Transform, is shown 

below. 

1000 

750 

500 

$ 250 
-g 
'" Eo 
;; 

·250 

·500 

·750 

·1000 

0.0 0.2 0.4 0.6 0.8 
nme 

Figure 2-26: A sine wave clipped at 70% 
of peak amplitude. 
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Figure 2-27: The Fourier Transform of 
the wave in Figure 2-26. 

1.0 

The Fourier Transform correctly detected the fundamental frequency and introduced low 

magnitude harmonics. Overall, the transform's behaviour was very good. To test the 

behaviour of the DST when subjected to extreme amounts of clipping, a number of pure 

sine waves were generated and clipped at various magnitudes. The sine wave frequencies 

were: 5000 Hz, 4000 Hz, 3000 Hz, 2000 Hz, 1000 Hz, 500 Hz, 200 Hz, 100 Hz, and 50 

Hz, and the levels of clipping ranged from 0% to 90% in 10% steps. The results appear in 

Figure 2-28. The Fourier Transform performed better in this regard when compared with 

the DST. Although the DST's accuracy was quite satisfactory, clipping should be avoided if 

at all possible. 
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Figure 2-28: Degrading affect on decomposition of clipping. 
(Note: Logarithmic scale of Y-axis) 

2.4.2.5 DST Frequency Scale 

90 

The wavelet dilation factor 2~ results in the DST's coefficients representing a logarithmic 

frequency scale. This is in contrast to the Fourier Transform which has a linear frequency 

response. The logarithmic response is remarkably similar to humans' hearing perception; 

this phenomenon is investigated further in Chapter 3. The octave filtering, with 1/2a 

dilation factor, of the Wavelet Transform causes a very steep fall-off in the frequency scale. 

The 2~ wavelet scaling factor of the DST results in a less drastic frequency decay (see 

Figure 2-29). 
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Figure 2-29: Frequency decay rates of the FWT and DST. 

2.4.2.6 DST Underscaling 

The DST exhibits a certain characteristic, which we call DST underscaling, that causes a 

slight underestimating of the scale, which in tum translates into a slightly higher frequency 

estimate. Underscaling is a result of the diminishing energy towards the ends of sinusoidal 

cycles. Fortunately, the error can be measured and corrected. Figure 2-30 shows energy 

versus scale plots. 
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-

200 

The larger (rightmost) curve represents the energy of a sine wave with wavelength 400 with 

wavelets of varying scale. Ideally, the scale having maximum energy should equal 200; 

however, it is slightly underestimated. The other curves show similar examples, where the 

sine waves' wavelength has decreased each time. The amounts by which the DST 

underestimates the scales are shown in Figure 2-31. 
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Figure 2-31: DST scale correction. 
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Figure 2-32: DST frequency correction. 

0.5 

Fortunately the scale correction curve approximates a straight line, thereby making the scale 

correction straightforward. Whereas Figure 2-31 shows the scale correction curve, Figure 

2-32 shows the frequency correction curve. The ideal X = Y line is also drawn. Figure 2-

32 can be interpreted as follows. The smallest scales are reported correctly and since these 

contribute to a significant portion of the high frequencies, the DST estimates the ideal above 

i s /8. We next tum our attention to the lower frequencies. Although the difference 
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between the actual scale and reported scale increases as we enter the larger scales, the 

difference between adjacent coefficients' frequencies tends to zero (note the asymptotic 

trend in Figure 2-29). Therefore, although the difference in scale increases towards the 

larger scales, the · difference in frequency decreases, causing the error to decrease in 

sympathy. Consequently, there exists only a small portion of the frequency range that needs 

to undergo any meaningful frequency correction. 

The largest error occurs at 10% of Is where the frequency is overestimated by exactly 25%. 

We re-iterate that DST underscaling can be corrected using either Figure 2-31 or 2-32. 

2.5 DSA IMPLEMENTATION SPECIFICS 

We showed earlier that the generating of the DST coefficients has O(n) complexity. We 

now wish to briefly discuss some of the implementation specifics of the DSA as the coding 

can often make a substantial difference to the efficiency of the algorithm. There are three 

factors which we feel contribute greatly towards the efficiency of the algorithm. Many of 

these factors were taken into account during the development of the algorithm. We briefly 

discuss these below. 

2.S.1 Hardware implementation of DSA 

The algorithm is perfectly suited for hardware implementation for several reasons: 

• Practically all operations are simple operations; additions and subtractions are used in 

preference to multiplications and divisions. Additions and subtractions are more 

efficient to execute in software and are easier to implement in silicon. 

• The algorithm is entirely integer-based. This totally eliminates computationally 

expensive floating-point operations. If the sampled signal is represented in floating­

point, the transform can work in this domain if so desired. Hardware implementation of 

integer-based arithmetic is fairly effortless. 

• The algorithm is highly parallel in design which can significantly reduce run-time. By 

cascading the adder units, a significant amount of parallelism can be achieved. Each of 

the (I, '" a,b) calculations is entirely independent of the other dot products for different 

a, b. In the extreme case (assuming an unlimited chip size), we could achieve an order 

of complexity O(k) where k = MaxA-MinA+ 1, which is independent of N (the number of 
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samples in the signal). The only inter-dependency would be the computing of the max 

energy function. The operations required for this computation can be executed in 

parallel to a very large degree. 

2.5.2 Using a more suitable language to optimise bottleneck code 

The code generated by modem-day compilers is very well optimised, however, its efficiency 

still cannot compete with hand-coded routines. During the implementation of the algorithm, 

the original Pascal source code was converted to Intel 80x86 assembler code. Obviously, 

the speed-up obtained depends on the redundancy in the compiler-generated code as well as 

the skills of the programmer. With the minimal amount of effort, the author was able to 

obtain a huge increase in speed by coding the entire bottleneck in assembler in only 32 lines! 

2.5.3 Optimising bottleneck code 

During the optimisation of the bottleneck, we discovered the following two improvements: 

• During the calculation of Maximum Scale Function, we can store the dot product of the 

previous iteration for scale a and then simply add or subtract the next sample outwards 

from to to obtain the dot product for scale a+ 1. This technique avoids an enormous 

amount of redundant arithmetic. 

• A slightly less influential inefficiency is the calculation of the energy scaling factor .J(i. 

We are faced with three possible solutions, namely: 1) calculate .J(i on each iteration, 2) 

store .J(i values in a table indexed by a, 3) square the numerator and then simply divide 

by a. Option 1 is clearly the most inefficient, with preference for options 2 and 3 

determined by which of two operations is more efficient, namely a memory access or the 

squaring of an integer respectively. By using .J(i in option 2, we introduce floating­

point arithmetic which we have strived to eliminate altogether. Note that, if we square 

both numerator and denominator, the ordering of the values would not change, 

therefore no square root is required to correct the squaring. 
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2.5.3.1 Justification for elimination of -JQ 

The wavelet family is defined by the dilation, translation, and energy scaling parameters 

a, band lal-l/2
, respectively, by: 

= (2-26) 

Although we could store all possible -JQ in a table, thereby substituting a more efficient 

memory access instead-of a sqrt calculation, we try to avoid the calculation of ~ because 

this introduces computationally expensive floating-point arithmetic. We take the standard 

wavelet coefficient calculation (we assume a> 0): 

Ca,b = (2-27) 

and square: 

2 [(t'1:b

)) r (2-28) ca,b = 

= 
\ f , \JI( t~b ))

2 

a 
(2-29) 

Since the second pass of the DST concerns itself solely with maxima present in the energy 

function I( f , \JI a ,b )1, squaring of the coefficients will not change the location of these 

maxima. We can now calculate the coefficients using only integer arithmetic assuming the 

domain of f(t) to be integer. 
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2.6 CHAPTER SUMMARY 

The chapter began by briefly introducing the reader to wavelets. Disadvantages of the 

traditional Fast Wavelet Transform were illustrated. We then described the new Dominant 

Scale Transform and the associated Dominant Scale Algorithm which decomposes a time­

domain signal f into its time-frequency space. The algorithm was designed with both 

accuracy and efficiency in mind. The latter part of the chapter closely examined several 

properties of the DST as a spectral analysis tool as well as some of the implementation 

concerns. The following chapter applies the DST to a real-world problem that has been in 

existence for decades and which, despite being very-well researched, remains problematic: 

Speech Recognition. 
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Chapter 3 

Speech Processing and Recognition using 

An Approximate O(n) Speech Spectral Analyser: The DST 

3.1 INTRODUCTION 

In this chapter, we begin by briefly introducing two existing methods which have been used 

very successfully in speech recognition, namely Hidden Markov Models and Cepstrum 

Analysis, techniques which have proved to be extremely effective and useful in speech 

processing and other applications. We then investigate the use of the Dominant Scale 

Transform (DST) as a tool in speech recognition. The research was conducted on a small 

vocabulary and using three speakers, two male and one female. A model, based on various 

characteristics, of each word was defined which we used to classify any future incoming 

signal. Our model attempts to stress the characteristics which are not speaker-dependent. 

We investigate the viability of using the DST as an efficient replacement for the Fast Fourier 

Transform in the field of Speech Recognition. We have already seen in Chapter 2 how 

effective the DST is in the isolation of time-frequency coefficients. By performing a 

summation over a time interval [a, b] of the DST coefficients, thereby creating a histogram 

of the frequency content of the interval, we find that this histogram resembles the Fourier 

coefficients of that interval with remarkable accuracy. We shall call this histogram the 

Spectrogram Dominant Scale Transform (SDST). We tested this theory on several speech 

signals from the female speaker AKC, and the results are presented here. 

For the accurate identification of any vowel sounds in speech, the identification of one or 

more of the formants used in the construction of the vowel is critical. In fact, three is often 

accepted as the minimum number of formants required. We investigate the possibility of 

using the DST and associated SDST as a formant detector of human vowel sounds. 



Two techniques used successfully in the field of speech recognition are: 

• Hidden Markov Models 

• Cepstrum Analysis 

3.1.1 Hidden Markov Models 

Hidden Markov Models [HoI88] represent each word as a sequence of states, with 

transition probabilities between each state and its permitted successors, and probability 

distributions defining the expected observed features for each state. The model with the 

highest probability is assumed to represent the correct word. 

3.1.2 Cepstrum Analysis 

Cepstrum Analysis [Fla72, Sch75, Opp89] has been used to characterise speech. To com­

pute the cepstrum, the Fourier Transform of the windowed speech time series is first 

computed. Windowing of the signal is accomplished by applying the Hamming window to 

the speech segment; this data window, 'D-window' in Figure 3-1, is given in Eq. 1-5. The 

logarithm is taken of the resulting magnitude spectrum. The inverse DFf of this signal is 

called the cepstrum. In speech applications, the cepstrum comprises two peaks for voiced 

signals; the pitch period being determined by the higher of the two. Cepstral smoothing, 

which is often used in speech analysis systems and for the measurement of formants, is 

accomplished by applying a low-time window, 'C-window' in Figure 3-1, to the spectrum. 

The smoothed spectrum retains peaks at the vocal tract resonances or formant frequencies . 

Speech 
signal 

Figure 3-1: System for cepstrum analysis. 
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3.1.3 Dominant Scale Transform 

The spatial and frequency localisation characteristics of the Dominant Scale Transform 

make it ideal for the decomposition of non-stationary signals. The human speech 

production mechanism consists of many co-ordinated parts and the resulting sound is 

dependent on a large number of variables. Speech sound waves are rapidly changing signals 

which are inherently complex. It was therefore somewhat of a challenge, using the DST, to 

venture into Speech Recognition. The author was greatly encouraged by the consistency of 

the results obtained using the DST with much of previous research from other authors in the 

field. The research was primarily concerned with obtaining a consistent model which 

allowed maximum speaker independence for word classification. Most of the work is 

concerned with the processing of the speech signal and extracting useful features. Speech 

recognition generally involves the following two processes: the selection and extraction of 

features of the selected speech signals, and decision making based on pre-defined class 

boundaries and the feature vector. 

The initial conditions accomplishing this are very generalised in terms of speaker 

independence. We can divide the features into two distinct classes: 

• Speaker-independent features such as silent passages, fricatives, and amplitude 

envelopes. While these characteristics do vary from person to person, there does 

remain a distinct consistency between speakers. Silent passages may vary in their time 

span, fricatives may differ where the emphasis is placed, and the amplitude envelope 

can, and probably will, differ from person to person; however, select generalities 

remain remarkably constant. A speaker-independent sub-language proposed by 

Dreyfus-graf [Dre72] was based on only three vowel categories and three consonant 

categories; namely 101, Iii, la!, and lsi, It!, Inl respectively. The SOTINA code for the 

digits "one" through "nine" is shown below. For example, 1993 would be pronounced 

"inanati". The SONITA coding system was found to be quite insensitive to foreign 
languages. 

• 

1 2 3 4 5 6 7 8 9 

1 to ti ta so si sa ni na 

Table 3-1: The SONITA sub-language proposed by Dreyfus-grat. 

Speaker-dependent features are features such as formant frequencies, and other 

characteristics which are particular to a certain individual, or group of individuals. We 
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try to preserve as many of the speaker-independent features as possible, since this would 

obviously allow for more reliable recognition across different races, sexes, nationalities, 

etc. We examine the speaker-dependent formant frequencies only after the word has 

been associated with a given class by the speaker-independent features. 

3.2 HUMAN SPEECH PRODUCTION MECHANISM 

Although the purpose of this chapter certainly does not, and should not, entail a lesson of 

the Human Speech Production Mechanism, the author feels that the understanding of the 

processes involved in producing the complex speech signals, as well as their reception, is 

important in the construction of a speech recognition system. Moreover, knowing why a 

particular sound was made and under exactly what circumstances it will be repeated, lends 

insight into building a consistent recogniser. We therefore give a brief overview of the 

Human Speech Production Mechanism [Gre78]. 

Figure 3-2: Human Speech Production Mechanism 
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Spoken language, or speech, is used as a natural means of communication between two 

people. Speech is transmitted through the air in the form of sound waves after being 

emitted primarily through the mouth and somewhat through the nose. The entire speech 

mechanism is a very well-co-ordinated instrument. The human apparatus concerned with 

speech production is complex and uses many important organs, namely, the lungs, mouth, 

nose, ears, and their controlling muscles. A good deal is known about the anatomy and 

physiology of speech production and perception, but less is known about the interaction of 

the brain with the vocal and auditory apparatus, although there are theories that attempt to 

explain the complexity of these interactions. 

Speech sounds are produced when breath is exhaled from the lungs and causes either a 

vibration of the vocal chords (for vowels) or turbulence at some point of constriction in the 

vocal tract (for consonants). The sounds are affected by the shape of the vocal tract which 

influences the harmonics produced. The way in which the vocal cords are vibrated, the 

shape of the vocal tract or the site of constriction can all be varied in order to produce the 

wide range of speech sounds with which we are familiar. 

3.2.1 Breathing 

The use of exhaled breath is essential to the production of speech. In quiet breathing, of 

which we are not normally aware, inhalation is achieved by increasing the volume of the rib­

cage. This reduces the air pressure in the lungs causing air from outside at higher pressure 

to enter the lungs. Expiration is achieved by relaxing the muscles used in inspiration so that 

the volume of the lungs is reduced due to the elasticity recoil of the muscles. The resulting 

increased air pressure in the lungs forces air out. 

The form of expiration achieved by relaxing the inspiratory muscles cannot be controlled 

sufficiently to achieve speech or singing. For these activities, the inspiration muscles are 

used during exhalation to control lung pressure and prevent the lungs from collapsing 

suddenly. When the volume is reduced below that obtained by elastic recoil, expiratory 

muscles are used. Variations in speech intensity needed, for example, to stress certain 

words, are achieved by varying the pressure in the lungs. In this respect, speech differs 

from the production of a note sung at constant intensity. 
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3.2.2 The Larynx 

There are two main methods by which speech sounds are produced. The first is called 

voicing, whereby the vocal cords, located in the larynx, are vibrated at a constant frequency 

by the air pressure from the lungs. The second gives rise to unvoiced sounds produced by 

turbulent flow of air at a constriction at one of a number of possible sites in the vocal tract. 

A schematic view of the larynx is shown in Figure 3-2. 

Back 

Vocal-':-i-t-.\>: -::l~f-f-++Glottls 
cords-' 

Front 

Figure 3-3: The larynx from above. 

The vocal cords are at rest when open. Their tension and elasticity can be varied; they can 

be made thicker or thinner, shorter or longer and then can be either closed, open wide, or 

held in some position between. The accepted theory of phonation, or the production of 

voiced sounds, is called the myoelastic aerodynamic theory of phonation where "myo" 

refers to muscles. When the vocal cords are held together for voicing, they are pushed open 

for each glottal pulse by the air pressure from the lungs. Closing is due to the cords' natural 

elasticity and to a sudden drop in pressure between the cords, a result of the Bernoulli 

principle. 

Just as the frequency of a plucked guitar string depends on the tautness and mass of the 

string, so too is the vibration frequency of the cords determined by the tension exerted by 

the muscles, and their mass and length. Men have cords between 17 mm and 24 mm in 

length, and those of women are between 13 mm and 17 mm. The average fundamental or 

voicing frequency, which is essentially the frequency of the glottal pulses, for men is about 

125 Hz and for women about 200 Hz. For children it is usually more than 300 Hz. Figure 

3-3 shows the range of fundamental frequencies produced by various singing voices and the 

frequency range of speech sounds. When the vocal cords vibrate, harmonics are produced 

at multiples of the fundamental frequency. The amplitude of the harmonics decreases with 

increasing frequency. 
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Figure 3·4: Frequency range of the human vOice [Row92]. 

3.2.3 The vocal tract 

For both voiced and unvoiced speech, sound that is emitted through the speaker's mouth 

and nose is a modification of the original vibration caused by the resonances of the vocal 

tract. The oral tract is highly mobile and the position of the tongue, pharynx, palate, lips, 

and jaw will all affect the speech sounds. The nasal tract is immobile, and is often coupled 

in to form part of the vocal tract depending on the position of the velum. 

The tongue can move both up and down and forward and back, thus altering the shape of 

the vocal tract. It can also be used to constrict the tract for the production of consonants. 

By moving the lips outward, the length of the vocal tract can be increased. The nasal cavity 

is coupled in when the velum is opened for sounds such as 1m! in "hum". Here the vocal 

tract is closed at the lips and acts as a side branch resonator. 

3.2.4 Acoustics of Speech Production 

The vibration of the vocal cords in voicing produces sound at a sequence of frequencies, the 

natural harmonics, each of which is a multiple of the fundamental frequency. Our ears, 

however, judge the pitch of the sound from the fundamental frequency. The harmonics 

have reduced amplitude. 
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3.2.4.1 Formant frequencies 

The tract responds to some of the basic and harmonic frequencies produced by the vocal 

cords better than others. For a particular position of the speech articulators, the lowest 

resonance is called the first formant frequency f1 , the next is the second formant frequency 

h and so on. The formant frequencies for each of the vowel sounds are quite distinct, but 

each vowel sound generally has similar values regardless of who is speaking. For example, 

for a fundamental frequency of 100 Hz, harmonics will be produced at 200 Hz, 300 Hz, 400 

Hz, 500 Hz etc. For the vowel leel as in "he", typical values for f1 and hare 300 Hz and 

2100 Hz respectively. The tongue is near the front of the mouth when making this sound 

and the high second formant results from the small size of the vocal tract cavity. For the 

vowel lar! as in "hard", typical values of the corresponding formant frequencies are about 

700 and 900 Hz. The tongue is kept much flatter, and a much rounder sound is produced. 

The fundamental frequency will vary depending on who is speaking, and on the speaker's 

mood and emphasis, but it is the magnitude and relationship of the formant frequencies 

which make each voiced sound easily recognisable. 

3.2.5 Phoneme Production 

The various categories of phonemes consist of vowels, diphthongs, semi-vowels, stop 

consonants, fricatives and affricates. We now examine a subset of these which we shall be 

dealing with later in the chapter. 

3.2.5.1 Stops 

Stop consonants or plosives are produced by forming a complete closure in the vocal tract, 

building up pressure from the lungs, and then suddenly releasing the pressure which is 

characterised by an explosion and aspiration of air. The point of constriction gives the 

specific speech sound. For Ipl the lips are held together, for It! the tongue is held against 

the alveolar ridge, and for IkJ the back of the tongue is raised towards the palate. The 

production of plosives may be modified by context; for example, the Ipl in "pot" emits much 

more air at the lips than in the modified version in "spot". Sounds of this kind occur at the 

beginning of the word "nine". If, in addition to the articulatory closure in the mouth, the 

soft palate is raised so that the nasal tract is blocked off, then the airstream will be 

completely obstructed, the pressure in the mouth built up, and an oral stop will be formed. 

When the articulators come apart, the air-stream will be released with a plosive quality. 

This kind of sound occurs in the word "two". 
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3.2.5.2 Vowels 

We have already discussed the production of vowels in general as voiced speech sounds. 

Table 3-2 shows the formant frequencies of English vowels for typical male speakers. 

Vowel 

leel 

Iii 

leI 

lerl 

larl 

Ia! 

luI 

luul 

Example Formant 1 Formant 2 Formant 3 

beat 280 2620 

bit 360 2220 

bet 600 2060 

bird 560 1480 

father 740 1110 

hut 760 1370 

hood 480 740 

loot 320 920 

Table 3-2: Formant frequencies of some English vowels 
for typical male speakers [Row92]. 

3380 

2960 

2840 

2520 

2640 

2500 

2620 

2200 

A simplified schematic picture for the leel vowel is shown in Figure 3-4. The vowel quality 

comes mainly from the position of the tongue in the mouth. When producing the leel 

sound, the tongue is moved forward and up to the roof of the mouth thus decreasing the 

size of the oral cavity. This produces high second and third formant frequencies which give 

the sound its characteristic tightness and can become squeaky when the speaker is stressed. 

3.2.5.3 Nasals 

The nasals 1m!, Inl, and Ingl are closely related to the stop consonants. However, there are 

some major differences. The distinctive sounds are produced by lowering the velum and 

making a closure in the vocal tract, thus introducing resonances in the nasal cavity with the 

oral cavity acting as a side branch resonator, while sound radiation is produced from the 

nostrils. Because the nasal passage is open, no pressure build-up occurs. The intensity of 

nasal sounds is lower than that of other speech sounds partly because the nasal cavity has 

very soft walls which absorb the sound. 
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3.2.5.4 Fricatives 

Sustainable consonant sounds excited primarily by air turbulence are known as fricatives, 

and the turbulence referred to as frication. For example, regions of frication occur at the 

start of the word "three" and at the end of the "eight". In order to produce many of the 

familiar consonants, a constriction is formed at a point in the vocal tract and air is forced 

past creating friction and a very turbulent airflow, which causes a noisy random vibration. 

Fricatives may be unvoiced as for If I, Ithl, lsI and Ishl, or can be combined with voicing 

which in combination with the same constrictions produces the four sounds lvI, Idhl, Iz/, 

IXhl respectively. 

The constriction for If I and Ivl is formed by the lips, and for Ithl it is formed by the tongue 

pressing against the top teeth. For lsI, the tongue is pressed against the alveolar ridge and 

for Ishl the tongue is held against the palate a bit further back than for lsI in combination 

with a rounding of the lips. Thus the shape of the vocal tract for If I is similar to that for Ipl, 

and the shape of the tract for It hi is similar to that shown for It! in Figure 3-5. 

Figures 3-5, 3-6, and 3-7: Typical vocal tract shape for leel, It/, and Inl vowel production. 

3.3 THE PHYSIOLOGY OF THE EAR 

As we have seen, a speech signal is a complex combination of a variety of airborne pressure 

waveforms. This complex pattern must be detected by the human auditory system and 

decoded by the brain. The following section briefly looks at the construction of the human 
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ear, and concludes by examining the close relationship between the human ear and the 

Wavelet Transform. We can consider the human ear to be divided into three parts: 

• 

• 

• 

The outer ear, with its protective visible covering. 

The middle ear, which adjusts pressure levels between the outer and inner ear. 

The inner ear or cochlea, which contains the sensitive apparatus used to convert the 

sound energy into neural messages for the brain. 

Outer 
ear 

I 

I Middle I 

I ear 
I 

I 

Ossicles : 
Malleus 

Eustachian 
lube 

Inner 
ear 

Vestibular 

Vestibular 
nerve 

I 

\ 
Cochlear 

nerve 

Figure 3-8: Schematic view of human ear (not to scale). 

Sounds can be detected by both air conduction through the outer and middle ears and by 

bone conduction when vibrations travel through the bones of the head to the inner ear. 

Bone conduction is particularly important when a person is listening to his or her own 

VOIce. 

3.3.1 The outer ear 

The large visible outer part of the ear, called the pinna, offers protection. It also helps to 

focus the sound energy slightly, and because it is a little more receptive to sounds from the 

front of the head than from those behind, the pinna can help with the localisation of sound. 

It should, however, be noted that the primary means of localisation is by the timing and 

intensity differences between pressure waves arriving at the two ears. 
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The external auditory canal progresses from the pinna to the ear-drum (tympanic 

membrane) which separates the outer and middle ears. The canal is about 2.7 cm in length 

and causes a broad resonance effect which gives rise to an increase of sound pressure which 

is most effective between 2000 Hz and 5500 Hz, rising to a peak of about 12 dB at around 

4000 Hz. 

3.3.2 The middle ear 

The middle ear overcomes air-to-liquid impedance to ensure that a detectable signal reaches 

the liquid-filled cochlea, to which it interfaces by two membranes called the oval window 

and the round window. Amplification is provided by a combination of two mechanisms. 

The first is by the action of the three small bones, or ossicies, which together act as a level 

to amplify pressure from the tympanic membrane to the oval window. These three bones, 

the malleus, incus, and stapes are named because of their shape (hammer, anvil, and stirrups 

respectively) and are the smallest bones in the human body! The stapes has a footplate of 

about 0.012 cm2 which covers the oval window. The second amplification mechanism is 

provided by concentrating the pressure onto a smaller area, the tympanic membrane having 

an area about 18 times greater than the oval window. The overall effect is approximately a 

30 dB pressure increase at the oval window over the pressure incident on the tympanic 

membrane. 

3.3.3 The inner ear 

The inner ear contains the cochlea which is of a coiled snail-like construction. When shown 

as though 'unrolled', the cochlea has a gradually tapering appearance from the base at the 

oval window to the apex. 

Oval window 

Round 
window 

Scala Relssner's 

membrane 

Figure 3-9: The 'unrolled' cochlea. 
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The cochlea consists of three principal fluid-containing enclosures which are separated by 

membranes. Pressure waves entering the cochlea at the oval window travel through the 

scala vestibuli along Reissner's membrane and through the narrow gap at the apex called the 

helicotrema to continue through the scala tympani along the basilar membrane to the round 

window where the pressure is released. The basilar membrane has a large number of tiny 

hair cells to which nerve endings are attached. The mechanical energy involved in the 

shearing of these hair cells by the pressure wave is transduced into the form of energy 

interpreted by the brain. 

The pressure wave travels through the cochlea duct almost instantaneously so that the 

pressure difference occurs almost simultaneously at all places on the basilar membrane. The 

basilar membrane response is in the form of a travelling wave moving from base to apex 

whose amplitude increases gradually and then decreases rapidly. The peak of the pattern of 

vibration occurs at different places along the basilar membrane for different frequencies, 

being nearer the base where the membrane is narrow and stiff for higher frequencies and 

nearer the apex for lower frequencies. Thus the basilar membrane performs a kind of 

Fourier analysis on the incoming signal. For a pure tone, all parts of the membrane will 

vibrate with the same frequency, but some vibrate with a greater amplitude. 

3.3.4 Does the ear perform a Wavelet Transform? 

Our ear uses a wavelet transform when analysing sound, at least in the very first stage. The 

pressure amplitude oscillations are transmitted from the eardrum to the basilar membrane, 

which extends over the whole length of the cochlea. The cochlea is rolled up as a spiral 

inside our inner ear; imagine it unrolled to a straight segment, so that the basilar membrane 

is also stretched out. We can then introduce a co-ordinate Y along this segment. 

Experimental and numerical simulation show that a pressure wave which is a pure tone, 

f w (t ) = eiwt , leads to a response excitation along the basilar membrane which has the same 

frequency in time, but with an envelope in y, Fw(t,y)=eiwt<l>w(Y). In a first 

approximation, which turns out to be pretty good for frequencies co above 500 Hz, the 

dependence on ffi of <l>w (y) corresponds to a shift by log co; there exists one function <I> so 

that <l>w (y) is very close to <I>(Y -log co). The proof is given in [Dau92]. 

The occurrence of the wavelet transform in the first stage of our own biological acoustical 

analysis suggests that wavelet-based methods for acoustical analysis promise to perform 

more suitably than other frequency analysis systems. 
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3.4 A CLOSE LOOK AT SPEECH WAVES 

Now that we are aware of how spoken words are generated, we can proceed in earnest with 

the main purpose of this chapter, speech recognition. The chapter has the following 

structure: 

1. Graphic plots of the digits (by speaker AKC) are presented and are discussed with 

reference to the human speech production mechanism. Distinctive characteristics of 

each of the signals are outlined. 

2. We then investigate the Scale and Energy Functions of speech signals after the first pass 

of the Dominant Scale Algorithm. This provides very useful information in the 

segmentation of vowels and fricatives . Moreover, we show that the results from the 

Scale Function are totally consistent with research by other authors in the field. 

3. Thirdly, we present what we feel is a significant result in terms of frequency analysis. 

For the vowel regions of speech, we show that the DST yields coefficients which match 

those of the Fourier Transform very closely. We use this fact to propose the use of the 

DST to generate spectra in vowel regions of human speech. 

4. We conclude the chapter by presenting a speech recognition system which gives an 

excellent recognition rate for a very crude system which uses no 'intelligent' 

identification of the resulting spectra. 

"One of the main difficulties of studying speech is that sounds 

are so fleeting and transient." [Lad73] 

Our attempt at Speech Recognition of a limited vocabulary involved the English digits 

"one", "two", ... , "nine" using three speakers; two males and one female (DIC, HG, and 

AKC respectively). Each speaker was recorded saying each word ten times. The result was 

a database of 270 speech samples which were used throughout the research. 
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Time-domain signal of 
AKC·s spoken word IIOnell 

The word "one" begins with the Iwl semi-vowel in which the movement of the tongue is 

back, but more importantly, the lips are protruded and slightly closed. The latter attribute 

accounts for a slightly lower amplitude seen for t = [0 .. 0.04]. The lips change position to 

generate the vowel luhf resulting in a sudden increase in amplitude which decays until the 

nasal In! is sounded by raising the tongue to the palate. Figure 3-10 illustrates a close up of 

the luhf vowel. The waveform is complex, but repeating. 
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Figure 3-10: AKC saying "one". 
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Figure 3-11: Magnified view of the vowel luhl from AKC's "one". 
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Time-domain signal of 
AKC's spoken word "Two" 

The word "two" begins with the plosive It! which has the tongue pressed against the palate 

and then releasing an amount of air pronouncing the vowel luI. For this vowel, the 

lengthening of the oral tract formed by the protruding of the lips and elevating of the tongue 

towards the back of the mouth lowers both the first and second formants. Figure 3-12 

shows a close up of the It! fricative. 
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Figure 3-12: AKC saying "two". 
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Figure 3-13: Magnified view of the fricative It! from AKC's "two". 
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Time-domain signal of 
AKC's spoken word "Three" 

The word "three" begins with the fricative Ithl which has the tongue pressed against the 

teeth and causes low amplitude noise resulting from friction from the air. Note the brief 

pulse in amplitude around t=[0.24 .. 0.32] , due to the sudden rush of air as the tongue is 

lowered from the palate. The semi-vowel Irl follows and is produced principally from 

resonances in the vocal tract. The word ends with the decaying leel vowel. This vowel is 

produced while the tongue is moved forward and up to the roof of the mouth, thereby 

decreasing the size of the oral cavity. Figure 3-14 shows a magnified view of the vowel 

lee/. 
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Figure 3-14: AKC saying "three". 
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Figure 3-15: Magnified view of the vowel leel is AKC's "three". 
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Time-domain signal of 
AKC's spoken word IIFourll 

The word "four" begins with the low amplitude unvoiced fricative If I created by a 

constriction caused by the lips. The vowel lawl succeeds the fricative and decays till the 

end of the word. The vowel lawl is magnified in Figure 3-16. 
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Figure 3-16: AKC saying "four". 

1.0-r--------------------. 

0.5 -

CIJ 
1:1 
.E! 
'2 0.0-
C) 

'" ::e 

-0.5-

-1.0 +-r-r-r-r-rl-r-r-r-r-.--rl--.-...--r--rl-'-T""'T-'-IT""'T~~---J 

0.60 0.62 0.64 0.66 0.68 0.70 
Time 

Figure 3-17: Magnified view of the vowel lawl from AKC's "four". 
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Time-domain signal of 
AKC's spoken word IIFivell 

The word "five" begins with the unvoiced fricative If I created by a constriction caused by 

the lips. The vowel liel follows the fricative. The word concludes with the fricative Ivl 

caused by a constriction of the lips. Figure 3-18 shows a close up of the liel vowel. Note 

the complexity of the waveform consisting of the fundamental as well as higher harmonics. 
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Figure 3-18: AKC saying "five". 
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Figure 3-19: Magnified view of the vowel liel from AKC's "five". 
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Time-domain signal of 
AKC's spoken word "Six" 

The word "six" begins with the unvoiced fricative lsI and the vowel !Jj follows that. A 

characteristic silent time lasts approximately 80 milliseconds between t = [0.44 .. 0.6] ill 

Figure 3-19. The fricative /ksl ends the word. Figure 3-20 shows a close up of the !Jj 

vowel. Note the complexity of the waveform consisting of the fundamental as well as 

higher harmonics. Also careful examination of the stop reveals the coarseness of an 8-bit 

sampling system. Using a 16-bit sampling data size would double the resolution, double the 

amount of data to be processed, but not increase the processing time as the same number of 

samples would still need to be processed. 
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Figure 3-20: AKC saying "six". 
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Figure 3-21: Magnified view of the vowel /1/ from AKC's "six". 

Page 63 



Time-domain signal of 
AKC's spoken word "Seven" 

The word "seven" begins with the unvoiced fricative lsI and the vowel lEI follows. Then 

another fricative occurs; in this case, the voiced fricative Iv/. Thereafter, the word ends 

with /1/ and the nasal In/. Figure 3-22 shows a close up of the /1/ vowel. The word "seven" 

provides an excellent example of the different amplitudes with which the unvoiced 

fricatives, voiced fricatives, vowels, and nasals are spoken. Fricatives generally have lower 

amplitude and this is confirmed below with the unvoiced fricative lsI on t = [0 .. 0.2], and the 

voiced fricative Ivl on t = [0.44 .. 0.56]. The vowels are loudest appearing at 

t = [0.24 .. 0.44] and t = [0.6 .. 0.72]. 
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Figure 3-22: AKC saying "seven". 
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Figure 3-23: Magnified view of the vowel /EI from AKC's "seven". 
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Time-domain signal of 
AKC's spoken word "Eight" 

The word "eight" begins with the vowel leI!. This is terminated with a silent region of 

about 60 milliseconds. The word ends with the plosive It!. The word "eight" is the only 

one in our data set having the format vowel-stop-fricative structure making detection 

relatively straight-forward. Figure 3-24 shows a close up of the leI! vowel. Again, note the 

complexity of the waveform and, in particular, the high frequency component. 
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Figure 3-24: AKC saying "eight". 
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Figure 3-25: Magnified view of the vowel lell is AKC's "eight". 
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Time-domain signal of 
AKC's spoken word "Nine" 

The word "nine" begins and ends with the nasal /nJ created by lowering the velum and 

making a closure in the vocal tract, thus introducing resonances in the nasal cavity with the 

oral cavity acting as a side branch resonator. The sound is produced from the nostrils and 

the vowel lie/ occurs between these two nasals. Figure 3-26 shows a magnified view of 

the lie/ vowel. High frequencies are also present in this vowel. 
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Figure 3-26: AKC saying "nine". 
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Figure 3-27: Magnified view of the vowel fief from AKC's "nine". 
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3.5 SPEECH RECOGNITION USING THE 

DOMINANT SCALE TRANSFORM 

The extraction of characteristics from each sample was to be used to provide us with a most 

probable favourite which we would report as the 'winner'. Speech signals represented in the 

time-domain appear extremely complex and reveal few readily identifiable characteristics. 

Vocal acoustic signals tend to have fairly characteristic properties which are better 

described in the frequency domain than the time domain. Practically all speech recognition 

systems, including this research, employ various strategies of extracting spectral information 

from speech signals. Spectral processing has several advantages. For example, consider a 

signal consisting of a fundamental and a higher harmonic. Now let us allow the phase of the 

harmonic to be set arbitrarily. The spectra would remain constant throughout even though 

the shape of the signal can change dramatically. What is interesting to note here is that a 

human's ear perceives a signal the same way irrespective of the phase of the components in 

a signal. Another reason for the processing of spectral information is the significant 

reduction of data to be processed. It goes without saying that the Windowed Fourier 

Transform is a powerful tool for feature abstraction. Its simple time domain to frequency 

domain mapping lets the system construct a time-frequency spectrogram. A newcomer on 

the scene is the Fast Wavelet Transform. It introduces an advantage in its octave-based 

time-frequency decomposition in that the same degree of spatial localisation is preserved. 

Unfortunately, as revealed in Chapter 2, we cannot trust the resulting coefficients with a 

significant level of confidence for spectral analysis. 

3.S.1 The Fast Wavelet Transform and Speech Recognition 

The Fast Wavelet Transform [Ma189b] is an obvious choice in the decomposing of speech 

signals for it generates both spatially and frequency localised coefficients which contain no 

redundancy due to the (assumed) use of orthogonal basis functions . 

The author is of the opinion that, due to the coarse spatial localisation of the lower 

frequency basis functions, as well as the sparse frequency space, it would be unrealistic to 

expect consistent decomposition coefficients. This scepticism is in agreement with research 

carried out by a colleague [Mey93]. His results are summarised in Table 3-3. 
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Word Accuracy 

One 75% 

Two 40% 

Three 60% 

Four 50% 

Five 100% 

Six 100% 

Seven 50% 

Eight 100% 

Nine 50% 

Table 3-3: Mey93 results using 
the FWT for speech recognition. 

The recognition accuracy of the numbers "five", "six", and "eight" was 100%, but the 

accuracy of the numbers "one", "two", "three", "four", and "seven" averaged just above 

50%. As anticipated, the Fast Wavelet Transform proved reliable when high frequencies 

were used in the identification of the number. For example, the number "eight" has lower 

frequencies at the start of the word, a silent region approximately half way through the 

pronunciation, and high frequencies at the end of the word. The determination process 

therefore primarily concerns itself with the silence, and occurrence or non-occurrence of 

high frequencies more than the interpreting of the entire time-frequency decomposition. It 

was therefore no surprise, and consistent with the author's hypothesis, that the Fast Wavelet 

Transform performed poorly overall. The failure of the FWT to perform successfully, 

encouraged us to evaluate the performance of the DST on speech samples. 

3.5.2 The Dominant Scale Transform and Speech Recognition 

The remainder of the chapter examines how both the Scale and Energy Functions calculated 

by the DST are used to achieve a high accuracy of isolated word recognition. We show the 

consistency with which the Scale Function allows accurate three-way segmentation 

[GoI93a] of the spoken word into: silence regions, regions of voiced speech, and regions of 

frication. These are the three most basic phonetic categories in human speech [Wai88]. 

This classification method allows us to make initial decisions of specific groupings of words. 
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We now begin to examine the characteristic features for which we shall be searching. These 

features are quite distinctive and have particular patterns occurring in the Scale and Energy 

Functions. The specific features are: stops, fricatives, and vowels. 

3.5.2.1 The Detection of Stops 

Stops occur in our word set m only two words; namely "six" and "eight" in the 

pronunciation of the Iksl and It I fricative respectively. The fricative /ksl is sustained 

whereas the It! is not sustained, being entirely a transient caused by a changing vocal tract 

condition. There is a short period of silence before the It!, corresponding to the closed 

vocal tract, and then the transient, corresponding to a short burst of filtered noise as the 

vocal tract opens. 

The identification of stops is a fairly trivial task which can be simplified even further. From 

Figure 3-27, it should be obvious that stop detection can be easily performed in the spatial 

domain. If the stop identification is to be performed in the spatial domain, it is important to 

be aware of two possible sources of problems: 

• In Appendix A, we detail the sampling and storage strategies. For our research, 8-bit 

samples were used. Zero amplitude in this case was defined at 128 which is 

approximately the midpoint in the 8-bit range [0 .. 255]. However, if a 16-bit resolution 

is used, then zero amplitude would be O. Therefore the algorithm would be required to 

first determine which number system was in use to know exactly what represented zero 

amplitude. 

• For the male speaker HG and DIC, the silence regions, or stops, were centred around 

128 in our 8-bit signal. The signal exhibited very slight deviations from zero amplitude 

and always lay in the range [127 . .129]. The slight deviation from 128 could have 

occurred as a result of ambient noise, microphone noise, slight instability of the 

analogue-to-digital converter or many other reasons. It is nevertheless very constant 

and therefore easily detectable in the spatial domain. However, with the female speaker 

AKC, the magnitude of the signal during the stop deviated quite substantially from zero 

amplitude; see Figure 3-28. We are not quite sure what caused this phenomenon, but it 

occurred frequently throughout AKC's sampled words. Since f "'( t ) = 0, the wavelet 

convolution considers differences within the wave, and any DC component is essentially 

ignored. It therefore makes sense to consider the energy function of the DSA rather 

than examining the signal in the spatial domain. The implicit ignoring of the DC offset 

is analogous to ignoring the zeroeth coefficient, or DC component, of a Windowed 
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Fourier Transform. Note that since the DST energy function would need to be 

calculated for future stages in the recognition process, no computation penalties are 

incurred. 
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Figure 3-28: Speaker HG saying "six". Figure 3-29: Speaker AKC saying "six". 

Stop detection proved 100% accurate and this first stage of the recognition process allows 

us to divide the words into the following two classes: 

Word Contains a stop 

1 No 

2 No 

3 No 

4 No 

5 No 

6 Yes 

7 No 

8 Yes 

9 No 

Table 3-4: USing stops in the first 
class segmentation process. 
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3.5.2.2 The Detection of Fricatives 

A major source of vocal acoustics is the air turbulence resulting from air being forced 

through a constriction in the vocal tract [Bad91, Scu92]; see Figure 3-5. These frication 

regions generally have lower energy than those regions containing vowels. When this 

constriction occurs between various parts of the tongue and the roof of the mouth, between 

the teeth, or between the lips, the air turbulence has a broad continuous spectrum [HoI88], 

or alternatively, it could be stated that the source has a flat spectrum [Ste72, SoI81]. It is 

this important fact which we shall exploit with the DST. When using cepstrum analysis, 

voiced speech is indicated by a distinct peak in the cepstrum at approximately 8 ms. Since 

unvoiced speech does not contain a periodic component, no strong peak appears in the 

cepstrum [Opp89]. 

We have already seen words ending in a stop followed by a region of frication; Figures 3-29 

and 3-30 illustrate the words "three" and "eight", from the speaker AKC, which start with 

regions of frication. 
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Figure 3-30: The Ithl at the start of the word 
"three" from the speaker AKC. 
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Figure 3-31: The It! at the end of the word 
"eight" from the speaker AKC. 

The plosive sound of the fricative Ithl occurs in Figure 3-29 at around t = 0.3 . This results 

from the constriction between the teeth and tongue being abruptly released. We found that 

this plosive occurred consistently with all three test speakers. In the following figures, 

examples of the Scale Functions for each digit are shown. The consistency with which the 

fricative regions induce an almost chaotic changing of the Scale Function corresponds 

exactly with the "broad continuous spectrum" findings of Holmes [HoI88]. Below each of 

the scale function plots, a measure of the volatility of the Scale Function is also shown. 

This function could be calculated in various ways. We examined two of the possibly many 

techniques. Each of the functions use a form of windowing. Although the function is 

calculated for each ti for i E { 1.. N} , in practice the calculations would be performed at 
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large /::"t intervals. Our first attempt used the standard deviation (STD) over the interval 

[a .. b] given by: 

cr(t) = 

-
where t = 

b-a+l 

Ia(tJ 
iE{a .. b} 

b-a+l 

(3-1) 

(3-2) 

and a is the Scale Function. The results proved reliable, but computationally expensive. A 

more efficient technique was used which, for want of a better name, we shall refer to as the 

Window Range (WR). The WR is the difference between the largest scale and the smallest 

scale in the scaling function in the interval [a .. b] whilst ignoring the highest and lowest 5% 

to eliminate the possibility of one or two spurious values corrupting our calculation. The 

WR was often found to have slightly steeper gradients when entering or leaving vowel 

regions, or alternatively: 

IMAF I > IAS'TD I (3-3) 

For the sake of brevity, we abbreviate the window length for both the WR and STD 

functions as simply the WRlSTD Window Length. 

The broad frequency spectrum in the frication regions causes an almost chaotic changing of 

the DST coefficients, and consequently, a larger WR and STD. Additionally, some of these 

frieation regions have high frequency components which reveal themselves as small scale 

wavelet coefficients. Interestingly, these small scale coefficients tend to appear consistently 

only in a subset of fricatives. The Scale and Energy Functions together with DST 

coefficients may therefore provide enough infonnation to assist in the classification of 

fricatives. We leave this as an open problem. For our discussion on the choice of a suitable 

window length, we return to the ideas expressed in Chapter 2 and the problems associated 

with the Short-Time Fourier Transform. This time, however, the issues are slightly 

different: 
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Choosing the length of the WRfSTD involves a calculated sacrifice of resolution, efficiency, 

and most importantly, accuracy. The decision can be summarised as follows: 

• Longer WRfSTD window lengths give rise to smoother WRfSTD functions. This may 

be desired if absolute consistency is required, especially if J3.t between WRlSTD 

calculations is large. However, as the window length increases, so \J3.WR\ and \MTD\ 

decrease, in general, throughout the signal, which in turn tends to blur the transitions 

between the various regions. 

• Shorter WRfSTD window lengths tend to produce more erratic WRfSTD functions, 

with the benefits of improved spatial localisation as well as improved efficiency. 

The window length was found to be optimal (for our purposes) at approximately 60 ms. 

However, we must stress that this selection was based primarily on the choosing of the 

smallest window such that the WRfSTD functions were relatively smooth. In a real-time 

application, we feel that this window length could be slightly reduced. 

Fricative detection proved 100% accurate and this second stage of the recognition process 

allows us to further divide the words into classes. 

Word 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Contains a Starts with 
stop fricative 

No No 

No Yes 

No Yes 

No Yes 

No Yes 

Yes Yes 

No Yes 

Yes No 

No No 

Table 3-5: USing stops and fricatives In the 
second class segmentation process. 

Ends with 
fricative 

No 

No 

No 

No 

Yes 

Yes 

No 

Yes 

No 
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We now show the WR and STD plots for each of the digits we shall be examining. For all 

the following examples in the text, the speaker was AKC (except where otherwise noted). 

All the plots have been normalised relative to the largest value present in all the plots, 

thereby allowing a comparison of the magnitudes. We encourage the reader to compare 

these figures with earlier figures which show the time-domain signals of the digits. 

3.5.2.3 Scale Limited Signals 

Often, we wish to classify the range of the frequency components in a signal f (t ). This has 

importance in fields such as data sampling and data transmission. 

Definition: A function f (t) is band-limited with bandwidth 20 if its Fourier transform 

is equal to zero outside the interval [-0, 0]; i.e. 

F(ro)=O if 

This well-known concept is based on the Fourier Transform. We modify it slightly to 

follow the course of our discussion regarding the DST. 

Definition: The Scale Function a is said to be scale-limited over an interval [a .. b] if 

there exists a lower scale a L and an upper scale au such that, for all 

iE{a .. b}: 

Clearly, any scale-limited signal is also band-limited. Throughout this chapter, we tend to 

use the term "scale-limited" rather loosely ignoring singularities exceeding either a L or au . 

This is simply a matter of convenience. 
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Scale Function and WRlSTD plots of "one" 

Figure 3-31 shows the Scale Function of AKC's spoken word "one". The Scale Function is 

very well scale-limited throughout the signal. This accounts for the low WRlSTD values 

seen in Figure 3-32. The lack of fricatives in the signal confine both the WR and STD to 

low values. Therefore, segmenting the words "one" and "nine" from the others involves 

searching for consistently low WRlSTD values. The identification of vowel sounds, as we 

shall see later in the chapter, relies on the contributing frequencies, or formants, within the 

vowel regions. In Figure 3-32, notice that, in the nasal periods, between t=[0 .. 0.2] and 

t = [ 0.6 .. 1. 0] , the Scale Function does not venture into the smaller scale wavelets. 

However, for the vowel /uh/, the scale function does consist of these smaller support 

wavelets, thereby indicating a higher frequency content during that region. Note the sharp 

drop in (only) the WR function, at approximately t = 0.55, where the vowel /uh/ is 

terminated. 
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Figure 3-32: The Scale Function of AKC's spoken word: "one". 
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Figure 3·33: WR and STD plots for AKC's spoken word: "one". 

Page 75 



Scale Function and WRlSTD plots of "two" 

Figure 3-33 shows the Scale Function of AKC's spoken word "two". The fricative It I at the 

start of the word causes the almost chaotic behaviour of the Scale Function for 

t = [ o. 0 .. 0.3]. As we shall see for many of the other digits, this response is entirely 

consistent. After approximately t = 0.3, the vowel lui is encountered and the Scale 

Function is very much scale limited. Note, however, that there do exist several spikes, and 

this is the reason that the definition for the Window Range excludes the top 5% and bottom 

5 % of values. The rapid fluctuations during the period t = [0. 0 .. 0.3] translates into higher 

WR and STD values; see Figure 3-34. The WR has a sharper gradient during the transition 

from the fricative to the vowel region. Obviously, the sharper this gradient, the more 

confident we can be of the transition. 
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Figure 3-34: The Scale Function of AKC's spoken word: "two". 
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Figure 3-35: WR and STD plots for AKC's spoken word: "two". 
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Scale Function and WRlSTD plots of "three" 

Figure 3-35 shows the Scale Function of AKC's spoken word "three". The words "two", 

"three", and "four" are all quite distinctive in that they start with a fricative and the rest of 

the utterance is a vowel. A very encouraging characteristic of the Scale Function is its 

consistency regarding the chaotic nature of scales in the fricative regions, and then rapidly 

becoming scale-limited into the formant scales. We see clearly from Figure 3-35 that the 

fricative lies in t = [0.0 .. 0.4]' The WR/STD values in the fricative regions also tend to be 

significantly higher than for the It! in "two". This is encouraging for future work regarding 

the identification and classification of fricatives. 
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Figure 3-36: The Scale Function of AKC's spoken word: "three". 
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Figure 3-37: WR and STO plots for AKC's spoken word: "three". 
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Scale Function and WRlSTD plots of "four" 

Figure 3-37 shows the Scale Function of AKC's spoken word "four". Once again, the word 

begins with a fricative, this time If I, and ends with a vowel. The fricative lies 

(approximately) in the region t = [0.0 .. 0.4]. Research has shown that the fricative If I is also 

characterised by fairly high WRlSTD values. As we have seen on the previous two pages, 

the basic fricative-vowel structure is common to the digits "two", "three", and "four". The 

classification can only be made once the vowel region has been examined more closely. 

This is dealt with later. 
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Figure 3-38: The Scale Function of AKC's spoken word: "four". 
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Figure 3-39: WR and STD plots for AKC's spoken word: "four". 

Page 78 



Scale Function and WRlSTD plots of "five" 

Figure 3-39 shows the Scale Function of AKC's spoken word "five". The word "five" has 

the voiceless fricative If I and voiced fricative Ivl at the start and end of the word 

respectively. This causes the usual volatility of the Scale Function associated with 

fricatives. Figure 3-40 shows the V-shape we would expect. Therefore, our decision­

making process searches for just two attributes; namely the V-shaped Scale Function, and 

no stops appearing during the utterance of the word. The word "six" has a very similar 

structure, but does include a stop. The two words are therefore distinguishable. 

0.0 0.2 0.4 0.6 0.8 1.0 
Time 

Figure 3-40: The Scale Function of AKC's spoken word: "five". 
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Figure 3-41: WR and STD plots for AKC's spoken word: "five". 
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Scale Function and WRlSTD plots of "six" 

Figure 3-41 shows the Scale Function of AKC's spoken word "six". The spoken word "six" 

exhibits the same U-shaped as the word "five". Although this may not seem obvious at first, 

it is worth noting the following characteristic about the DST: During stops, the Scale 

Function tends to fluctuate between the two extremes in the scale range. This is reflected in 

the WRlSTD functions by very large values. Once a stop has been detected, we could 

simply ignore the WRlSTD values in that region. Therefore, if we were to ignore the 

WRfSTD values during the stop before the /ks/, the approximate U-shape is retained. 

Another fact worth noticing, is the very short time the vowel fII is uttered. In the example 

below, it lies on the small interval t = [ 0.28 .. 0.44]. Low WRlSTD values occur on this 

small time interval. The stop and U-shaped Scale Function are the two characteristics 

making the word identifiable. 
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Figure 3-42: The Scale Function of AKC's spoken word: "six". 
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Figure 3-43: WR and STD plots for AKC's spoken word: "six". 
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Scale Function and WRlSTD plots of "seven" 

Figure 3-43 shows the Scale Function of AKC's spoken word "seven". The fricative at the 

start of the word "seven" is obvious and is clearly reflected in the WRlSTD values. 

However, we made a very interesting observation with respect to all three speakers AKC, 

DIC, and HG. The voiced fricative Ivl occurring on the interval t = [0.44 .. 0.6] in Figure 3-

44 does not exhibit the high WRlSTD values it does at the end of the word "five". This 

finding is re-enforced later when we examine the DST of the word "seven". This result is 

totally consistent with [Lad85]. 
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Figure 3-44: The Scale Function of AKC's spoken word: "seven". 
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Figure 3-45: WR and STD plots for AKC's spoken word: "seven". 
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Scale Function and WRlSTD plots of "ei2ht" 

Figure 3-45 shows the Scale Function of AKC's spoken word "eight". The spoken word 

"eight" exhibits characteristics similar to several of the other words, but is unique. Just like 

the word "six" in our data set, it has a stop, in this case on t =[0.44 .. 0.8]. This stop, as in 

the case of "six", causes extremely high WRlSTD values. As described earlier, these 

regions can be filtered out without much problem. The word starts with a vowel, which 

distinguishes it from the word "six". From close examination of Figure 3-23, we observe 

that the harmonics decay in magnitude and appear to have vanished for t = [0.32 .. 0.44]. 

This event is reflected in Figure 3-45 by the lack of small scales in the Scale Function 

consistent with the lack of higher frequency harmonics. 
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Figure 3-46: The Scale Function of AKC's spoken word: "eight". 
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Figure 3-47: WR and STD plots for AKC's spoken word: "eight". 
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Scale Function and WRlSTD plots of "nine" 

Figure 3-47 shows the Scale Function of AKC's spoken word "nine". Similar to the word 

"one", the Scale Function is quite well scale-limited throughout the signal resulting in 

relatively low WRJSTD values. The transitions between the nasal and vowel regions are 

clear from the WR plot. Although the fundamental appears relatively constant, some 

smaller scales are certainly present during the vowel sound on the interval t = [0.16 .. O. 7 J. 
The identification of vowel sounds, as we shall see later in the chapter, relies on the 

contributing frequencies, or formants, within the vowel regions. The nasal/vowel/nasal 

transition in the WR is even more pronounced in· "nine" than in "one". This is barely 

noticeable in the STD plot. In contrast to the WR plot of the word "one" , there exists a 

sharp rise of WR values upon entering the vowel from the nasal at approximately t = 0.16. 
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Figure 3-48: The Scale Function of AKC's spoken word: "nine". 
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Figure 3-49: WR and STD plots for AKC's spoken word: "nine". 
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3.5.3 Time-Frequency Decompositions and 
Approximate Fourier Transforms of the Vowels 

In this section, we present what we consider to be the most significant results of the text. 

The last few pages have been an examination of some of the properties ' of the Scale 

Function. We now turn our attention to the Time-Freq Function which is, in fact, a far 

more powerful function, and one that can be compared with established methods, such as 

the Fourier Transform. The Time-Freq Function decomposes a signal into its approximate 

time-frequency decomposition and we present the results of the words "one" to "nine". We 

shall show that in speech, the DST time-frequency space accurately delineates the changing 

formants throughout a spoken word. Speech compression using the time-frequency 

decomposition is currently being investigated by the author. Recall that the DST time­

frequency coefficients are essentially localised at that component's zero-crossing point. 

Using this phenomenon, we can not only localise that particular component in frequency, 

but also in phase. This additional information can be utilised in many applications, some of 

which were mentioned earlier in the text. 

3.5.3.1 Vowels and Formants 

Nearly all vowel sounds are voiced, i.e. , they are produced with vibrating vocal cords. Each 

time the vocal cords open and close, there is a pulse of air from the lungs. These pulses act 

like sharp taps on the air in the vocal tract, which is accordingly set into vibration in a way 

that is determined by its size and shape. In a vowel sound, the air in the vocal tract vibrates 

at three or four frequencies simultaneously. These frequencies are the resonant frequencies 

of that particular vocal tract shape. Irrespective of the fundamental frequency, which is 

determined by the rate of vibration of the vocal cords, the air in the vocal tract will resonate 

at three or four overtone frequencies as long as the position of the vocal organs remains the 

same. These resonances of the vocal tract are called formants. Individual differences are a 

result of different head sizes. A speaker with large vocal cavities will produce vowels with 

formant frequencies that are all lower than those of someone with a smaller head. Female 

speakers have formant frequencies that are, on average, 17% higher than those of males, 

some vowels being affected more than others because the formant frequencies are more 

affected by the comparatively large difference in pharynx size between males and females. 

In general, the formant frequencies of vowels spoken by speakers of the same dialect will 

retain the same relationship to one another, although they may by shifted up or down the 

frequency scale quite considerably relative to other speakers. Because of this, the formant 

frequencies at a single moment in time are not a good indication of vowel quality. 
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We have already shown how, using the Energy Function of the DST, we can segment 

signals into the three primary regions. We now focus on using the DST to identify the 

formants of the vowel region after the region has been located using the Scale Function. 

We have discovered what we feel is a fairly significant fact. By performing a summation of 

the DST coefficients over the interval [a,b] and thereby creating a histogram of the 

frequency content of that interval, we find that this histogram closely resembles the Fourier 

coefficients of that intervaL We shall call the histogram of the DST coefficients the 

Spectrogram Dominant Scale Transform (SDST). The following time-frequency 

decompositions are accompanied by SDST plots superimposed on the Fourier coefficients 

of that intervaL The coefficients were scaled and normalised appropriately and relative 

values are therefore comparable. 

We now examine the Time-Freq Functions and SDSTs generated from the words "one" to 

"nine" from the speaker AKC. The reader is strongly encouraged to continually refer back 

to the original time-domain plots. 
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DST and SDST function plots of "one" 

Figure 3-49 shows the DST of AKC's spoken word "one". Careful examination of the DST 

shows that it is possible to segment the word "one" into the vowels Iwl and luh/ and the 

nasal In/. As the lips are retracted from the Iwl vowel to the luh/ vowel, the coefficients in 

the transition have diminishing scale correlating to the increasing frequency. The vowel luh/ 

is centred around t = 0.4 with the nasal starting at approximately t = 0.6. 

150-r---------------------, 

100-

50-

.................. :::!::: .. : ~::: :::: ....... '.':: :::::::: ,.:::::::::::::: ........ .,,, . .. 25- .•. , .......... . 
•• o ••• ::·····: •• , •••••• ,\<! •••. ••••. . 

.... • .... ,::::!;(/~Uf .. h:I ••• 
04-rT~r"l~rT~I~~"lrr~-.~-r~ 

0.0 0.2 0.4 0.6 0.8 1.0 
Time 

Figure 3-50: The time-frequency decomposition (OST) 
of AKC's spoken word: "one". 

Figure 3-50 shows the Fourier coefficients superimposed on the SDST coefficients for the 

vowel/uh/. Most importantly, the fundamental is accurately represented. As a result of the 

rectangular windowing employed to perform the Fourier Transform, side lobes off the main 

lobe containing the fundamental frequency are clearly visible in the Fourier coefficients. 
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Figure 3-51: Fourier coefficients versus SOST coefficients 
for the vowel luhl of AKC's spoken word: "one". 
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DST and SDST function plots of "two" 

Figure 3-51 shows the DST of AKC's spoken word "two". The fricative It I occurs during 

t = [ 0 .. O. 28] and has the associated rapidly changing DST coefficients. The vowel lui 

consists predominantly of a single sinusoidal and this is reflected in Figure 3-51 by a region 

of very constant DST coefficients ranging from t = [0.28 .. 1] . 
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Figure 3-52: The time-frequency decomposition (DST) 
of AKC's spoken word: "two". 

Both the Fourier and SDST coefficients represent a signal with a predominant sinusoidal. 

The peaks of the two transforms, in this case, are not equal and differ by approximately 80 

Hz. The undersampling of the DSA accounts for approximately 30 Hz; therefore, we have 

a small discrepancy of only 50 Hz. 
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Figure 3-53: Fourier coefficients versus SDST coefficients 
for the vowel lui of AKC's spoken word: "two". 
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DST and SDST function plots of "three" 

Figure 3-53 shows the DST of AKC's spoken word "three". The fricative Ithl occurs during 

t = [ 0 .. 0.4] and has the associated rapidly changing DST coefficients. The vowel leel can 

be seen to have two distinct components. Interestingly, there exist higher frequency 

harmonics between t = [ 0.52 .. O. 64]' The author is unsure exactly what in the Human 

Speech Production Mechanism produces these smaller scale coefficients. The FT probably 

would not have detected these short-time perturbations. 

150 

125 

100 
" 

.9! '. rl 75 
CIl 

.,. •. : -. :·0- ,.:':- : 
50 .. •.••• • 

.0. ~.~ -:- .\~., 'f 

. . . . 
25 . . .. .. 

0 

0.0 0.2 0.4 0.6 0.8 1.0 
Time 

Figure 3-54: The time-frequency decomposition (DST) 
of AKC's spoken word: "three". 

Figure 3-54 shows the Fourier coefficients superimposed on the SDST coefficients for the 

vowel lee/. Both transforms produce two coefficients with two distinct spikes, albeit with 

slightly differing frequencies. 
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Figure 3-55: Fourier coefficients versus SDST coefficients 
for the vowel feel of AKC's spoken word: "three". 
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DST and SDST function plots of "four" 

Figure 3-55 shows the DST of AKC's spoken word "four". The start of the word, the 

fricative If I, is associated with the usual randomness of the DST coefficients. Thereafter, 

the time-frequency plot of Figure 3-56 leaves no doubt that three distinct formants are used 

in the construction of the lawl vowel. Although the frequencies of these formants stay 

relatively constant, slight frequency changes occur. These changes exhibit interesting 

trends, with each formant's frequency seemingly independent of the others. Note the fall 

and rise in frequency of the fundamental, and slow decay of the higher frequency formants. 
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Figure 3-56: The time-frequency decomposition (DST) 
of AKC's spoken word: "four". 

Results obtained with the FT and the SDST are very similar. The fundamental frequency 

from both transforms is equal. The high formants frequencies are slightly over-estimated. 

Note the transform's corresponding shape of the 'double-formant' around 800 Hz. 
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Figure 3-57: Fourier coefficients versus SDST coefficients 
for the vowel lawl of AKC's spoken word: "four". 
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DST and SDST function plots of "five" 

Figure 3-57 shows the DST of AKC's spoken word "five". The voiceless fricative If I and 

voiced fricative Ivl at the start and end of the word are distinguishable. The formants in the 

vowel seem fairly constant except for a sudden change at around t = 0.64, where the 

number of formants appears to drop to three. 
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Figure 3·58: The time-frequency decomposition of 
AKC's spoken word: "five". 

The SDST plot clearly shows the four apparent formants, whereas the FT has many aliasing 

spikes and no obvious formants. Once again, both transforms have accurately detected the 

fundamental. 
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Figure 3·59: Fourier coefficients versus SDST coefficients 
for the vowel Iii of AKC's spoken word: "five". 
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DST and SDST function plots of "six" 

Figure 3-59 shows the DST of AKC's spoken word "six", The DST of the word "six" 

consists primarily of relatively random coefficients, due to the fricatives lsI and /ksl, The fIj 

fricative lasts only for a short time, and its formants are quite obvious from the DST, 
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Figure 3-60: The time-frequency decomposition (DST) 
of AKC's spoken word: "six", 

The three lower frequency formants are shown below corresponding to the FT and SDST, 

The general shapes of the graphs are exceptionally similar, Note the detection of the high 

frequency formant around 1800 Hz, 
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Figure 3-61: Fourier coefficients versus SDST coefficients 
for the vowel Iii of AKC's spoken word: "six", 

Page 91 



DST and SDST function plots of "seven" 

Figure 3-61 shows the DST of AKC's spoken word "seven". The fricative lsi begins the 

word with a very high frequency component represented here by small scale coefficients. 

This is followed by the vowel If I The voiced fricative Ivl does not generate high WRlSTD 

values usually associated with fricatives, as it is pronounced differently. The nasal In!, for 

t = [0.76 .. 1], has a very characteristic DST shape. This is identical to its shape in the words 

"one" and "nine". 
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Figure 3-62: The time-frequency decomposition (DST) 
of AKC's spoken word: "seven". 

The FT and SDST coefficients are shown below. These transforms represent the vowel lEI. 

The three formants detected by both transforms have equal frequency. 
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Figure 3-63: Fourier coefficients versus SDST coefficients 
for the vowel lel of AKC's spoken word: "seven". 
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DST and SDST function plots of "ei~ht" 

Figure 3-63 shows the DST of AKC's spoken word "eight". The word "eight" is quite 

distinctive from the rest of the words in our set for it is the only one to begin with a vowel 

and end with a fricative. A stop separates the vowel and fricative. The DST and FT 

coefficients below isolate the formant frequencies as well as indicating the presence of a 

high frequency component. Note the very high frequency component associated with the 

fricative. 
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Figure 3-64: The time-frequency decomposition (DST) 
of AKC's spoken word: "eight". 

Aliasing is again present in the FT plot. The high frequency component is represented by 

only a single non-zero coefficient at 3675 Hz. The fricative It! follows the stop from about 

t=0.8. 
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Figure 3-65: Fourier coefficients versus SDST coefficients 
for the vowel lail of AKC's spoken word: "eight". 
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DST and SDST function plots of "nine" 

Figure 3-65 shows the DST of AKC's spoken word "nine". The word begins and ends with 

a nasal In! with the vowel liel occurring in-between. Two characteristic features to note 

are: firstly, the high frequency content occurring during the vowel and, secondly, the by 

now familiar shape of the terminating nasal In!. 

150-r---------------__ 

100-

II) 

~ 75-
m 

.•. , ....................................... ,oJ ..... ,. 
O~ .. ~rrTl~FT~rr~~IFr~-.~I~~ 

0.0 0.2 0.4 0.6 0.8 1.0 
Time 

Figure 3-66: The time-frequency decomposition (DST) 
of AKC's spoken word: "nine". 

Although the fundamental of both transforms concur, the coefficients of the formants do not 

match exactly. The aliasing is again clearly apparent in the FT. The detection of the high 

frequency component by the SDST is depicted by the two adjacent coefficients at the 

frequencies 3675 Hz and 5512 Hz. 
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Figure 3-67: Fourier coefficients versus SDST coefficients 
for the vowel liel of AKC's spoken word: "nine". 
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3.6 SPEECH RECOGNITION RESULTS 

Digitally-recorded spoken words from each of the three speakers constitute our training and 

testing data sets. Stop, vowel, and fricative segmentation were responsible for the majority 

of the classification process. The separation into classes of the words comprises of the 

following binary decision structure. 

Use frequency 

in SDSTwith 

largest magnitude 

Fricative(s) 

present? 

Figure 3-68: Classification decision tree using the presence of 
stops, vowels, and fricatives. 
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At each conditional stage in the binary tree, a decision is made based on the existence or 

non-existence of certain characteristics in the signal. The decision process relies on the 

following characteristics: 

• Fricatives: As well as being speaker-independent, fricatives proved to be very easy to 

locate by the simple process of setting a suitable threshold level above which the WR 

values indicate a frication. The process obviously relies heavily on the existence of high 

frequencies in the frication regions. The low-cost microphone that we used attenuated 

these frequencies slightly. This resulted in two fricatives 'being missed'. 

• Stops: Stops proved quite simple to detect. Clearly, this feature is the 'ultimate' in 

speaker-independence for there is no sound during a stop. 

• Vowels: The detection of vowels is achieved by the SDST coefficients. In fact, only the 

coefficient having greatest magnitude was considered. The SDST coefficients were 

only examined once we knew, with a good deal of confidence, that the word was either 

a "two", "three", or "four". The word "four" has significantly larger dominant scales in 

the vowel region than do the other two words, and we achieved a 100% reliability in 

detecting the word "four". The author felt that the accuracy in correctly choosing 

between the words "two" and "three" , although already quite high, could have been 

increased using, for example, Artificial Neural Networks with the SDST coefficients as 

the inputs. 

Using a small training set of a few digits from each speaker, we estimated thresholds which 

would segment the words into satisfactory classes. A total of 90 words were processed for 

each speaker and the results appear in Tables 3-6, 3-7, and 3-8. Each of the digits, from 

each speaker, was tested 10 times and the reported prediction appears in the tables. The 

accuracy with which each digit was predicted is shown on the right of the table. 

One male speaker CRG) and the one female speaker CAKC) achieved accurate recognition 

rates of just over 91 %, whereas the speaker DIC achieved a success rate of just under 96%. 
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Speaker AKC 

A B C D E F G H I J Accuracy 

1 1 1 1 1 1 1 1 1 1 1 100% 

2 3 2 3 2 2 2 2 2 2 3 70% 

3 3 3 2 3 3 2 2 2 2 3 50% 

4 4 4 4 4 4 4 4 4 4 4 100% 

5 5 5 5 5 5 5 5 5 5 5 100% 

6 6 6 6 6 6 6 6 6 6 6 100% 

7 7 7 7 7 7 7 7 7 7 7 100% 

8 8 8 8 8 8 8 8 8 8 8 100% 

9 9 9 9 9 9 9 9 9 9 9 100% 

Total accuracy over the entire set 91% 

Table 3-6: Speech recognition accuracy for the speaker AKC. 

The digits containing stops and fricatives were all reported with 100% accuracy. Our crude 

and simplistic coefficient analyser, which simply examines the fundamental, often does not 

have sufficient information to decide between the digit "two" and the digit "three". We 

therefore propose that a more advanced pattern recognition system be used, i.e., one which 

takes all the formants into consideration. We suggest Artificial Neural Networks as a 

possible solution. 
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Speaker DIC 

A B C D E F G H I J Accuracy 

1 1 1 1 1 1 1 1 1 1 1 100% 

2 2 2 2 3 2 2 2 2 2 2 90% 

3 2 3 3 2 3 3 3 3 3 2 70% 

4 4 4 4 4 4 4 4 4 4 4 100% 

5 5 5 5 5 5 5 5 5 5 5 100% 

6 6 6 6 6 6 6 6 6 6 6 100% 

7 7 7 7 7 7 7 7 7 7 7 100% 

8 8 8 8 8 8 8 8 8 8 8 100% 

9 9 9 9 9 9 9 9 9 9 9 100% 

Total accuracy over the entire set 96% 

Table 3-7: Speech recognition accuracy for the speaker DIG. 

SpeakerHG 

A B C D E F G H I J Accuracy 

1 1 1 1 1 1 1 1 1 1 1 100% 

2 2 2 2 2 2 9 2 2 2 1 80% 

3 3 3 3 3 3 3 3 6 3 2 80% 

4 4 4 4 4 4 4 4 4 4' 4 100% 

5 5 5 5 5 5 5 5 5 5 5 100% 

6 6 6 6 6 6 6 6 6 6 6 100% 

7 7 7 7 7 7 7 7 7 7 7 100% 

8 8 9 9 8 8 8 8 8 8 8 80% 

9 9 9 9 9 9 9 9 9 9 9 100% 

Total accuracy over the entire set 91% 
. . 

Table 3-8: Speech recognition accuracy for the speaker HG . 
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3.7 FUTURE RESEARCH POTENTIAL 

• Speaker independence is a characteristic supported by a speech recognition system 

that operates without regard for which particular individual uses the system. The more 

speaker-independent the system is made, the smaller the difference in performance 

between various speakers will be. There are many variables in this scenario, including 

speaker sex, nationality, age, and even whether the speaker is a smoker or a non­

smoker. Trying to achieve speaker-independence is a difficult task, but one made 

easier by the maximum utilisation of speaker-independent features, as we have tried 

with the location of fricatives . Clearly, however, there is no easy way of 

circumventing the problems associated with formant frequency identification. 

• Artificial Neural Networks (ANN) have emerged as a powerful non-linear classifier 

and has performed well on speech classification [Low89]. Our crude vowel 

recognition module bases its answer entirely on the fundamental. Intuition tells us that 

any word recognition system which does base its vowel determination entirely on the 

fundamental whilst ignoring the remaining formants should not expect very good 

results. A preferred method would be to interpret each of the reported formants. The 

SDST provides a set of coefficients which are directly usable for the inputs to the input 

layer neurons of an ANN since the pre-processing of the signal has been accomplished 

and each of the coefficients relate to a specific characteristic of the signal. In this 

regard, the author has no doubt that the use of ANN would have led to slightly better 

results. 

• Larger vocabularies tend to require more computation, storage, and time-consuming 

training sessions. The response time and error rates of the system also tend to increase 

linearly with an increase in vocabulary size. 

• Continuous speech recognition systems are much more difficult to design than isolated 

speech recognition systems. Throughout our research, each signal was manually 

broken up into separate signals containing only the samples pertaining to that word. 

These signals were each dealt with individually. If a continuous speech recognition 

system is required, the system has to segment particular characteristics which are then 

built up throughout the signal. Word boundaries must then be decided upon using this 

information. The removal of information (word boundaries) obviously tends to 

increase the error rate. 
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• Time-warping techniques [Vai85] eliminate most of the problems associated with 

speaking rate. This attribute is partly related to speaker-independence although not 

entirely. Different speakers will, in general, speak at different rates. We can, in some 

circumstances, use time-warping to our benefit. For example, words like "bid" and 

"bit" differ mainly in the duration of the vowel. 

• Speaker recognition is currently an extremely important topic in the commercial arena. 

For example, Automatic Teller Machines (ATMs) currently 'know' which card they are 

issuing money to, but not which person, hence the tremendous fraud rate concerning 

ATMs [Cas91]. Clearly, it is in the best interests of the organisation to know to which 

individual they are dealing with. Speaker recognition over telephone lines runs into 

the usual bandlimitedness of the currently installed lines. This makes the task 

significantly more difficult. Experimentation has been conducted by other researchers 

into 'cough recognition', whereby a signature of the vocal tract is registered and stored 

as a template for future matching. The time-frequency space of the DST could 

provide sufficient information upon which to base a decision. 

3.8 CHAPTER SUMMARY 

This chapter has shown that the Dominant Scale Transform performs exceptionally well in 

the decomposing of signals in the time domain into a time-frequency space. When applied 

to speech, not only is the fundamental represented, but so too are several of the formants, 

making vowel recognition a simple pattern recognition problem. The DST was also used 

for the classification of silence regions, regions of voiced speech, and regions of frication. 

The broad frequency spectrum exhibited in a region of frication translates into rapidly 

changing DST coefficients which would be roughly equivalent to a Fourier Transform of the 

fricative. This output proved very reliable and perfectly consistent with other authors in the 

field who used completely different methods. Further work is required to define a model 

whereby the several different fricatives can be identified. 

An extremely powerful result was illustrated, namely, the summation of an interval of DST 

coefficients, and hence the SDST coefficients, approximate the FT of that interval 

remarkably closely. This opens the door to possible replacement of the FT by the SDST in 

some select applications. 

We concluded the chapter by presenting results obtained from our DST/SDST based speech 

recognition system. Although a very simplistic formant recogniser was used, our speech 

recognition system obtained very high recognition rates. 
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Chapter 4 

Using the DST for the Time-Frequency 

decomposition of various Real-World Applications 

4.1 INTRODUCTION 

It is unrealistic to assume the signals occurring in real-life are periodic and have no 

frequency transients. In fact, the opposite is probably more accurate. Imagine listening to a 

pure sine wave for the whole day! The melody, or a sequence of notes, communicates 

much of the beauty in music. We now focus our attention to three real-world applications 

which benefit from the spatially localised coefficients of the Dominant Scale Transform in 

the time-frequency space. 

4.2 THE CREATION OF A MUSIC SCORE FROM A MUSIC SIGNAL 

Music signals are rich in both harmonics and frequency transients. The efficiency of the 

DST makes it very suitable for the economical incorporation into a range of hardware 

apparatus. For example, a hand-held music score generator is well within the realms of 

implementation. A musical score indicates which notes have to be played at consecutive 

time steps. It is, therefore, a time-frequency analysis which is much closer to a Short-Time 

Fourier Transform than to the Fourier Transform, where all association of time is lost, or at 

least not explicitly recognisable. The pitch of a note played on any instrument is determined 

by the fundamental frequency. Additional harmonics and overtones alter the shape of the 

wave to give each instrument its characteristic sound. 



The keyboard (see Appendix A) was set to mimic a flute and an organ. The A note above 

middle C was played and the waveforms appear in Figure 4-1. Surprisingly, the 

fundamental frequency of the organ was exactly one octave below that of the flute, which 

gives the organ its distinctive deep sound. The DST coefficients obtained from these signals 

are shown in Figures 4-2 and 4-3. Note the detection of harmonics in Figure 4-3. 
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Figure 4-1: The flute and organ signals of an A note. 
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Figure 4-2: Flute time-frequency space. 
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Figure 4-3: Organ time-frequency space. 

The fundamental frequency of an A note is exactly 440 Hz. The undersampling of the DST 

is once again evident by the overrating of the frequency. The recorded fundamental 

frequency for the flute and organ is 230 Hz and 459 Hz respectively. The last example 

consists of the first nine notes of the well-know Beethoven piece Fur Elise played (albeit a 

bit fast!) by the author using the flute setting. The time-frequency space has localised each 

note accurately. Note that for the sake of display purposes only, a suitable threshold was 

set, below which no coefficients were displayed. 
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Figure 4-4: Fur Elise time-frequency space. 
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4.3 PROJECTILE SPIN BEHAVIOUR 

Telemetry data from a rotating object was received as a data series consisting of 

approximately 20,000 points sampled with the time interval I1t = 3 ms. This problem was 

initially tackled by Prof. M.J. Alport and part of his work appears here. The object's 

rotation accelerates from about 0 Hz to about 20 Hz and then slowly decays. 
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Figure 4-5: The start of the sample data set. 

4.3.1 The Short-Time Fourier Transform approach 

The following STFT work was performed by Prof. M.J. Alport and his method and 

description appears below. Usually, FFT techniques can only be applied to a time series of 

data points that has a stationary spectrum. Clearly, the present time series does not satisfy 

this criterion. Although sophisticated techniques such as the Gabor Transform may be 

employed to analyse such non-stationary data, in the present case, since the sampling 

frequency is a good factor of 10 higher than the average spin frequency, a simpler technique 

is used. This simpler technique involves decimating the time series into a number of 512 

byte sub-samples and then performing an FFT analysis on these sequential sets. To improve 

the temporal response of the analysis, the 512 byte samples are overlapped by 256 bytes 

with their neighbours. Within each 512 byte sample, the magnitude of the strongest 

frequency component is determined using a simple peak search method. Fortunately, once 

the DC has been suppressed, the spin frequency is the dominant component. This technique 
gives a temporal resolution of: 
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17000 x 0.003 

70 
= 0.7 seconds (4-1) 

The data covers a total time period of approximately 50 seconds. To reduce the 

quantisation effects in the frequency analysis, the signal frequency is obtained by a parabolic 

interpolation about the central maximum. In addition, the data is tapered using a Hanning 

window. The peak spin frequency is also obtained by curve-fitting a second-order 

polynomial. 

Figures 4-6 show the time versus frequency plot using Short-Time Fourier Transforms. The 

plot shows a very rapid increase in rotational velocity reaching a peak at around 10 seconds 

and then slowly decaying till around 40 seconds and then (for reasons unknown to the 

author) appearing to speed up! At about 4 seconds, there is a small 'kink' in the graph. It 

appears that the acceleration tapers off, and then suddenly increases again. The resolution 

of the windowing procedure applied to analyse the data using the STFT is not sufficiently 

small to gather much knowledge about the behaviour in that critical region. 
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Figure 4-6: Frequency versus time for sample data set using STFT. 
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4.3.2 The Dominant Scale Transform approach 

Using the same data series, we now present the results from the Dominant Scale Transform. 

Please note that we have normalised both the time and frequency axes. Also, all coefficients 

have been plotted. If a more defined plot was required, some threshold could be included 

whereby only coefficients having magnitude greater than the threshold would be plotted. 

The trend is almost exactly the same as that determined by the series of STFf calculations. 
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Figure 4-7: Time-frequency space of the sample data set. 

There exists a short-lived phenomenon, occurring at t = [0.06 .. 0.07], which does in fact go 

undetected by the Fourier analysis method. The spectral bleeding between windows tends 

to blur this region, making it appear that the rotational acceleration decreases and then 

increases again all the time staying largely positive. The spatial localisation properties of the 

DST show that this is not, in fact, the case. 

Careful examination of the time-frequency space of the DST, reveals that, during 

t = [0.06 .. O. 07], the rotational acceleration appears to stop, i.e. cO = 0 where (0 is the 

rotational velocity in this case. The detection of this very short-lived phenomenon 

emphasises the importance of the accurate spatialisation provided by the DST. 
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Figure 4-8: Portion of the time-frequency space of the sample data set. 

4.4 PERIODIC PULLING 

Very late into the author's research, Prof. M. J. Alport suggested that I use the DST to 

verify some results pertaining to periodic pulling [Las69] which were documented m 

[Koe93] . We refer the reader to [Koe93] for all the details pertaining to the experiment. 

Very careful examination shows that there certainly appears to be a correlation between the 

frequency and magnitude of the signal. The reader should look at the trend along the 

bottom of the 'dots' in Figure 4-10. The scales can be seen to increase slightly in sympathy 

with the increased magnitude of the plasma density oscillations. Although this is very 

preliminary data, the author is encouraged by the output. This result appears to be in 

agreement with the result obtained in [Koe93]. 

Note: A 16: 1 interpolation was effected on the original signal to improve the frequency 

resolution in the Scale Function. This interpolation shifts the scale of the fundamental 

frequency into the frequency range in which the DST scales are more dense - thereby 

increasing the scale (and hence frequency) resolution. 
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Figure 4-9: Plasma density oscillations. 
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Figure 4-10: Modulation of the instantaneous frequency. 
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ChapterS 

Conclusion 

The thesis began by examining several situations in which the well-established Fourier 

Transform's performance was less than desired. These examples contained frequency 

transients and singularities which have the potential to change the Fourier coefficients quite 

unexpectedly. 

5.1 ACHIEVEMENTS OF THE DST 

Chapter 2 introduced the concept of the wavelet and went on to describe the new Dominant 

Scale Algorithm and its associated Dominant Scale Transform. The algorithm is an entirely 

integer-based O(n) algorithm which approximates a time-domain signal in its time-frequency 

space. We feel the Dominant Scale Transform makes a significant contribution to signal 

processing for the following reasons: 

• Frequency tracking as a function of time is possible. The formant tracking shown in 

Chapter 3 provided excellent time-frequency space plots in which formant frequency can 

be seen to change with time. 

• Phase tracking as a function of time can be very useful in many real-time applications. 

Any phase changes occurring in the signal, or even in a particular component, will be 

localised accurately in time. This attribute was discussed in Chapter 2. 

• Singularities which last for small t can be spatially localised very accurately in time and 

effectively isolated from the remainder of the signal attributable to the local support of 
wavelets. 

• Zooming is a property of wavelets which describes the altering of the region of support 

of the basis functions, enabling the detection and localisation of small perturbations. 

The use of wavelets as the basis functions in the DST means that the DST also exhibits 
this desired property. 



• The Dominant Scale Algorithm is an extremely efficient O(n) algorithm which, due to 

its large parallelism nature, is ideal for implementation in hardware. 

We have shown in Chapter 3 that, using the DST coefficients, a limited vocabulary speech 

recognition system can be implemented which exhibits extremely high recognition 

percentages. Moreover, the DST coefficients were shown to be entirely consistent with 

results obtained from other researchers in the field using entirely different methods. 

Formant frequencies closely matched those of the Fourier Transform and the author 

envisages this property allowing the DST to replace the Fourier Transform in selected 

applications. Three such applications were described in Chapter 4 and the advantages 

offered were described. These are just three applications in which the DST imparted more 

information than the equivalent Fourier could have, but there are obviously thousands which 

may benefit from the excellent time-frequency decomposition characteristics of the DST. 

5.2 FUTURE RESEARCH OPPORTUNITIES USING THE DST 

The time-frequency space conveys spatial information which could be used in many more 

applications than described in this text. The possibilities are almost endless. We now 

describe some cases where the employment of the DST may provide the vital spatial 

information required to successfully achieve a given task. Some areas for future research 

are: 

• The frequency difference between adjacent coefficients in the frequency scale of the 

DST tends asymptotically to zero. Most of the scales therefore represent the lower 

frequencies. Reducing the number of coefficients below a certain frequency would 

speed up the algorithm, however, the author is concerned that the removal of some of 

the scales may cause introduce inconsistencies and loss of stability. 

• The author strongly suspects that the alteration of the mother wavelet shape, may 

change the characteristics and perhaps the accuracy of the time-frequency 

decomposition. Preliminary tests showed that no significant changes in the 

decomposition properties occurred. However, future research by the author is required 

to determine the extent to which the DST is affected by the wavelet shape. 
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• The research described in the thesis has concentrated entirely on the decomposition of 

the signal from the time domain into the time-frequency space. The author feels it is 

possible that approximate signal reconstruction could be achieved using the time­

frequency space. Also, due to the sparseness, tremendous compression ratios should be 

achievable. These compression schemes may be very useful in the digital transmission 

of speech. By sending only the formant frequencies and some form of amplitude 

envelope, complex vowel sounds could be reconstructed at the receiver. 

• The human speech production mechanism is unique to every individual. By producing 

sound which requires the use of all or most of the production system, we could, by 

using the DST time-frequency space, create a 'fingerprint' for any individual. A speaker 

verification system would use this fingerprint as a means of matching the spoken word 

with the individual speaking. 
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Appendix A 

Hardware and Software, and Sampling Processes 

This chapter is dedicated to clarifying the conditions under which the research was 

accomplished and what hardware and software issues were considered. The purpose of 

Appendix A is to discuss briefly the hardware and software used in all stages of the research 

as well as mentioning the sampling strategies. Everything from the speech sampling 

hardware and software right through to the preparation of this document is detailed. 

A.1 COMPUTER HARDWARE USED FOR 

SAMPLING AND PROCESSING 

Most of the hardware used was provided by the Computer Science Department of Natal 

(Durban) and proved sufficient for most of the work. Some active filtering hardware was 

constructed by the author towards the beginning of the research. Some sampling hardware 

was never seen by the author as only the samples were obtained. This 'blind sampling' 

occurred while exploring inter-disciplinary uses of the Dominant Scale Transform, with the 

Physics Department. 

Acoustic signals were recorded using an off-the-shelf IBM compatible 386 with a 16-bit 

SoundBlaster analogue-to-digital card, and a cheap 6000 microphone with maximum 

frequency response of 9 kHz. The high-frequency cut-off could be viewed as a low-pass 

filter and therefore no active or passive anti-aliasing filters were included [Ham83, Lan88]. 

All signals were sampled at exactly 22.050 kHz. No attempt was made to filter or eliminate 

back-ground noise, although the room was kept quiet apart from ambient computer noises. 

For research into the generating of music scores from an acoustic piece of music, the author 

used a music keyboard which stored pre-recorded musical instruments. We should 

emphasise that the sounds were not synthesised, but rather consisted of actual pre-recorded 

sounds of each instrument that had been digitally recorded. These sounds were played back 

at different amplitudes, pitch, and sustain to obtain the desired effect. 



Sampling Hardware Specifications 

386DX-40 CPU, 8 Meg of 
Computer Hardware RAM, VGA monitor, and 170 

Meg hard-drive 

ADC Hardware SoundBlaster 

ADC precision 8 bits 

Sampling Rate 22.050 kHz 

Microphone Cheap Ammp 600n dynamic 
microphone 

Microphone cut-off frequency Approx. 9 kHz 

Music Keyboard Yamaha PSR-31 Pulse Code 
Modulation Keyboard 

Table A-1: The hardware used dunng the sampling. 

Our first attempt at sampling used an off-the-shelf IBM compatible PC-30 AID card in an 

Intel 286 computer. The author built a front-end high quality pre-amplifier, attenuated by a 

low-pass active filter. This comprised of an active sixth-order slight-dips low-pass filter 

with approximately a 3.4 kHz cut-off frequency. A sixth-order active filter was used to 

improve the roll-off characteristics; -36dB/octave roll-off [Ham83]. The signals were 

sampled at 10 kHz. Unfortunately, the higher frequencies were found to be significantly 

reduced in amplitude. We therefore concluded that the low-pass cut-off frequency was too 

low and therefore the sampling rate was increased. All the samples appearing throughout 

this text have been sampled at 22.050 kHz using a microphone which has a significant roll­

off around 9 kHz. We found it unnecessary to include either an active or passive low-pass 
anti-aliasing filter. 

A.I.1 The Analogue-To-Digital Converter 

The Analogue-to-Digital Converter (ADC) is the pIece of hardware which links the 

analogue world outside the computer to the digital world inside. If we sample the digital 

output fast enough, and then use a Digital-to-Analogue Converter (DAC) , we could 

accurately recreate the sound. It is this process which is used in compact disc (CD) players. 

The appropriate sampling rate for any given signal is discussed later in the appendix. We 

shall always assume linearity between the analogue and digital representations. 
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A.I.I.I Digital Representation 

The norm for the modem desktop computer has become a 32-bit system. Representing 

analogue values in 32-bits has the advantage that the resolution is extremely fine, in fact, 

steps would be practically undetectable. However, we commonly use 16-bit sampling as 

sufficient resolution exists and we achieve a halving of the amount of data to store and 

process. We have chosen to use 8-bit sampling. Throughout the research, we tried to work 

with a minimal system, for example, cheap microphones etc. Therefore our 8-bit (byte) 

digital representation has a range of [0 .. 255] with 128 representing zero amplitude. A 16-

bit (integer) has range [-32768 . .32767] with 0 representing zero amplitude. Although the 

16-bit system effective doubles the amount of data to be processed, no speed penalty is 

incurred as the total number of samples is not dependent on the sampling resolution. The 

current implementation uses 8-bit sampling and 16-bit internal processing. 

A.2 COMPUTER HARDWARE USED FOR SAMPLING AND 

PROCESSING, AND WRITING OF THE MANUSCRIPT 

A.2.1 The Sampling Process 

The recording of sound waves relies on pressure changes on a diaphragm, which induces an 

electrical current. It is essentially this current which is detected and recorded. These 

waveforms can be represented mathematically by functions of the form f(t) where the 

variable t relates to time. The interpretation and storage of signals involves a discretisation 

of the original analogue signal. This is achieved through sampling and the conversion 

process is known as analogue-to-digital conversion, or simply AID conversion. 

The discretisation process obviously results in a (slight) degradation of the original signal. 

A far more serious potential for loss of information of the incoming signal is that of 

aliasing. Assuming a constant sampling period I1t between each sample taken, the 

sampling frequency fs would be given as fs = 1/ I1t . The minimum sampling frequency of a 

signal before aliasing occurs is known as the Nyquist Frequency and is exactly fs /2. The 

'highest significant frequency component' in the sampled signal f(t) should therefore not 

exceed the Nyquist frequency. A component of the incoming signal having higher 

frequency than the Nyquist frequency will result in an under-sampling of the incoming 
signal; the outcome being aliasing. 
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We now state the Dirichlet conditions which, if satisfied, guarantee that a function f will 

have a Fourier series frequency content [Wea83]. The Dirichlet conditions are: 

1. f is periodic with period T; that is, f (t + T) = f (t). 

2. f is bounded. 

3. In anyone period, the function may have at most a finite number of discontinuities and a 

finite number of maxima and minima. 

For the duration of the research presented in this thesis, only regularly sampled signals were 

used, that is, signals in which the !1t between adjacent samples stays constant throughout 

the entire signal and which satisfy the Dirichlet conditions. It was not necessary to 

normalise the input signals, although this may be required if the system is to be implemented 

commercially. 

The entire sampling process was performed on an MS-DOS Version 5.00 operating system, 

with the Microsoft Windows 3.1 Graphical User Interface running the MS-WaveEdit 

Version 1.0c sampling software. The platform performed surprisingly well at a sampling 

rate of 22.050 kHz. 

A.2.2 Graphing Tool Details 

All plots were created with a ShareWare program called FastGraph. Unfortunately, it was 

only in the latter stages of the write-up that it became apparent that very large data series 

could not be handled by FastGraph. This is a direct result of segments used in MS-DOS 

implemented on Intel CPUs. The difficulty was solved in two ways, albeit neither of them 

optimal: 

• All the speech signals have had every other sample removed to halve the size of the data 

series. The axes labelling has not changed as a result; however, some of the definition 

of the high frequency regions may be lost. This was not found to be of any significance. 

• A few speech signals, although already reduced in size by the action above, were still 

too large to handle and therefore a small amount of truncation at their endpoints was 
effected. 
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Many of the graphs in the text have their axes normalised. For example, in the processing 

of speech signals, the rate at which the word was spoken should not affect the recognition 

system adversely. We therefore normalise the axes on the graphs. 

A.2.3 Miscellaneous Software 

The research (except for the sampling) was performed on an IBM OS/2 2.1 operating 

system platform having a 386DX-40 CPU, 8 Meg of RAM, VGA monitor, and a 170 Meg 

hard-drive. The OS/2 operating system allowed for pre-emptive multi-tasking which 

permitted the editing of documents while results were being generated in a background 

process. The entire Ph.D. was written in Microsoft's Word for Windows 2.0a. The 

Microsoft Word's English (UK) spelling checker was used throughout the document and, to 

the best of our knowledge, the document is free from spelling errors. 

All Fourier Transforms and interpolations were calculated using Mathematica 2.0 for MS­

DOS 386/7 which is Copyright 1988-91 Wolfram Research Inc. 

Sampling Software Specifications 

Sampling Operating System MS-DOS Version 5.00 and 
MS-Windows 3.1 

Sampling Software MS-WaveEdit Version 1.0c 

Table A-2: The software used during the sampling phase. 
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Note Hz 

G 392.00 

G# 415.30 

A 440.00 

A# 466.16 

B 493.88 

C 523.25 

Note 

c# 

D 

D# 

E 

F 

p# 

Hz 

554.37 

587.33 

622.25 

659.26 

698.46 

739.99 

Appendix B 

Music Tables 

Table 8-1: One octave of an equal tempered chromatic scale. 
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AC: 

ADC: 

AKC: 

CD: 

DAC: 

DC: 

DFT: 

DIC: 

DSA: 

DST: 

FFT: 

FHT: 

FT: 

FWT: 

HG: 

IDFT: 

OS/2: 

PC: 

SDST: 

STD: 

STFT: 

WT: 

Alternating Current 

Analogue-to-Digital Converter 

Angela Kay Cooper 

Compact Disc 

Digital-to-Analogue Converter 

Direct Current 

Discrete Fourier Transform 

David Ian Carson 

Dominant Scale Algorithm 

Dominant Scale Transform 

Fast Fourier Transform 

Fast Hartley Transform 

Fourier Transform 

Fast Wavelet Transform 

Hilton Goldstein 

Inverse Discrete Fourier Transform 

Operating Systeml2 

Personal Computer 

Spectrogram Dominant Scale Transform 

Standard Deviation 

Short-Time Fourier Transform 

Wavelet Transform 

Appendix C 

Glossary 

Page 125 



Theorem: Given any real, non-italic Times New Roman x and any non-zero, non-italic Times 

New Roman n, we have: 

sin x =6 
n 

Proof: [Hil&Viv et al 93] 

si~ x = 6 
VI 

o 

"Man achieves by accomplishing that which is challenging, not that which is simple." - Hilly '94 
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