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The macrobenthos of the Little Lagoon, Durban Bay

Abstract

The Little Lagoon is a shallow sandflat habitat situated in Durban Bay, which has been

earmarked for removal, as part of the port expansion. In order to prevent the possible loss of

such a significant habitat, it was proposed that this habitat be re-created elsewhere in the Bay.

The aims of this project were therefore to provide a detailed assessment ofthe macrobenthic

habitat of the Little Lagoon, and to identify the major determinants of the community structure.

The ultimate goal was to provide essential background information to assess the success of the

recreation of the Little Lagoon. Apart from seasonal changes in water temperature, no

ecologically significant temporal fluctuations in the physical environment of the Little Lagoon

were detected. This was directly translated into an extremely stable macrobenthic community, in

which negligible seasonal changes to its composition were recorded. The polychaetes

Prionospio sexoculata, Glycera sp, the isopod Leptanthura laevigata and cumaceans dominated

. the community during every sampling season. From a spatial perspective, particle sizes and

organic contents ofsurficial sediments were the major determinants of macrobenthic

community structure. Densities of macrofauna were three to five times higher in organically rich

sediments, and were dominated by surface and sub-surface deposit feeders such as the tanaid

Apseudes digitalis and cirratulid polychaetes. In organically poor sediments, burrowing infauna

such as Prionospio sexoculata and Glycera sp. dominated. Significantly though, biological

interactions, specifically bioturbation by the sandprawn Callianassa kraussi, was an important

determinant of community structure in the Little Lagoon. Two zones ofhigh and low abundance

of C. kraussi were recorded in the Little Lagoon. Abundance, species richness and diversity of

macrofauna were significantly lower in the zone of high C. kraussi abundance. These

parameters were significantly and negatively influenced by the abundance of C. kraussi,

indicating that C. kraussi may act as a disturbance organism. Surface dwelling macrofauna were

recorded in the zone oflow C. kraussi abundance, but not in the zone of high C. kraussi

abundance. It appeared that the bioturbative activity of C. kraussi of expelling sediment from

burrows to the sediment surface resulted in the exclusion surface dwelling fauna, and played a

major role in structuring the Little Lagoon macrobenthic community.
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1.1 Introduction

Durban Bay is situated on the east coast of Kwa-Zulu Natal between 29° 51' south and 31° 03'

east, and is classified as an estuarine embayment (Begg 1978, Hay et al. 1993a, Whitfield

2000). The total area of the bay was estimated in 1978 to be 8 km2
, with a length of roughly 8

km and a width of approximately 3.3 km (Begg 1978). These dimensions and area are in

agreement with estimates from current overhead photographs (Hay et al. 1993a). Two canalised

rivers viz. the Umbilo and Mhlatuzana discharge into the southwest side ofthe bay, supplying a

minimal amount of freshwater into the system (Forbes et al. 1994).

Throughout its history (from approximately 1892), there has been a strong theme of habitat

destruction and deterioration associated with Durban Bay, as it has undergone numerous large­

scale changes to the natural environment (Hay et al. 1993a). Prior to development, the bay

probably functioned as typic.al estuarine habitat (Harris and Cyrus 1999), characterised by

longitudinal salinity gradients. Currently, it operates as an embayment dominated by marine

salinities (Begg 1978, Hay et al. 1993a) with little evidence of pronounced variations in salinity.

This effect probably occurred due to the deepening and the removal of the sandbar at the

entrance of the bay (Hay et al. 1993a), which had the effect of allowing seawater intrusion

further into the bay, and thereby reducing the effects of the freshwater inputs.

The most obvious and perhaps the most ecologically significant of changes in the bay, were the

reductions in the total areas of mangrove and shallow tidal sandflat habitats (Figs 1-3), (Hay et

al. 1993a). The first record of mangrove swamp removals was made in 1888, when the

mangrove swamps in the region between Albert Park and Congella (Fig 1) were cleared (Berjak

et al. 1977). Such removal and clearance of mangrove areas continued periodically as harbour

developments proceded, and it is currently estimated from historical records that less than 10%

of the original mangrove habitat survives (Fig 3). Similarly, much of the development of the

harbour involved the deepening and dredging of channels, and the consequent removal of

sandbanks, in order to facilitate entry and movement of ships into the bay. This has occurred at

such a rate, that only 25% of the original shallow sandflat habitats currently exist in the harbour

(Fig 3, Hay et al. 1993a). The destruction of these habitats had undoubtedly lead to the

reduction in the overall diversity and species richness ofthe Bay, and was cited even as early as

1956, as being one of the major causes of "deterioration" and faunal "poverty" in the bay (Day

and Morgans 1956).
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The theme of habitat destruction associated with harbour developments in Durban Bay, is still

currently prevalent. As one of the busiest shipping ports in Africa, and in order to maximise

economic growth, there has been an urgent need to deal with the problem of increasing

container traffic in Durban Bay. This function (Le. container traffic) is presently the major cargo

handling activity in the harbour. In recent years, traffic has steadily grown to approach the

capacity of existing container terminal facilities. In order to maintain the economic

competitiveness of the port, the harbour authorities have seen it necessary to increase the

capacity of current container handling facilities by a westerly expansion of pier number two

(Figs 5 & 6).

While this extension might prove to be essential in the overall economic and structural

development ofthe harbour, there have been several concerns that this development might

directly lead to the destruction and loss of ecologically significant sandbank habitats, and more

particularly, the area commonly known as the Little Lagoon (Figs 5 & 6).

The Little Lagoon is located opposite pier number 2 (Figs 5 & 6), and is composed of a

shallow subtidal habitat flanked on either side by intertidal sandbanks. At low spring tides, it is

estimated that this habitat occupies an area of roughly 42 000m2.A vestigial mangrove sanctuary

is located approximately 300m south of pier number 2, which remains connected with the Little

Lagoon during high tides. Much of the intertidal sandflats, and the shallow submerged habitats

to a lesser degree, are inhabited by the burrowing sandprawn Callianassa kraussi. This

organism is a major component of this habitat, both in terms of its numerical and gravimetric

(biomass) dominance. Moreover, its burrowing activities have the potential to greatly alter

sediment properties, as well as the structure ofbenthic communities (Cadee 2000, Flach and

Tamaki 2000). The eastward shore of the Little Lagoon is utilised by burrowing soldier crabs,

Dotillafenestrata, which forage in sediments at low tides. The significance of the Little Lagoon

habitat is that it is possibly one of the few remaining habitats along with Richards Bay that still

support large populations of these organisms.

The ecological value of intertidal sandflat habitats is highlighted by the fact that at present, only

three shallow sandbanks remain in Durban Harbour; one to the south of Pier 2, one centrally in

the Bay, and one to the North of the central sandbank (Fig 3). These sandbanks constitute only

25% of the original sandflat habitat (Hay et al. 1993a), and are considered to be of extreme

significance as habitats in the harbour, and also in the context of Kwazulu-Natal, because of

their rarity in this province (Hay et al. 1993a).
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On the basis of the possible loss of the above mentioned sandbank, it was proposed that the

Little Lagoon habitat be re-created elsewhere in the harbour. For this to be successfully

undertaken, there existed a need for a thorough investigation into the ecology of the Little

Lagoon, since the last major ecological survey was undertaken in 1956 by Day and Morgans

(1956). Based on this rationale, it was therefore the aim ofthe present study to carry out a

detailed study of the macrobenthos of the Little Lagoon, and to characterise the benthic habitat

and associated macrofaunal invertebrates of the Little Lagoon. A further aim was to identify the

factors that influenced or regulated these macrofauna communities, with the ultimate goal being

to provide the background ecological information and a benchmark to assess the success ofthe

recreation of the Little Lagoon habitat elsewhere.

Apart from the management motivation for the study highlighted above, the fundamental

scientific rationale was that the study offered the unique opportunity to investigate ecological

processes in a tidal sandflat habitat, ofwhich no knowledge exists in Kwa-Zulu Natal. On a

similar note, the study also offered a broader opportunity to add to current knowledge of

macrobenthic communities of estuarine habitats in Kwa-Zulu Natal, which in many cases are

either extremely limited or outdated.

3
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Fig 3: Areas ofmangrove and shallow sandflat habitats in Durban Bay in 1991.
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1.2 The Study Site

Fig 4: Geographical position of Durban Bay on the South African coastline.

~

lOOm

Fig 5: The location of Little Lagoon (LL) in Durban Bay.
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Fig 6: Position of transects and sampling sites in the Little Lagoon.
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1.3 Materials and Methods

Three transects were positioned across the Little Lagoon in a North-South direction, aligned

parallel to each other, and positioned roughly 100 m apart. Each transect comprised four

sampling stations, each being roughly 100 m apart (Fig 6). Sampling sites were positioned such

that sites 1 and 4 of all transects were located on intertidal sandflats, and exposed at spring and

neap low tides, whereas sites 2 and 3 were always sub-tidal. At high tides (both spring and

neap), all sampling stations were submerged. The co-ordinates of sampling sites were

determined using a Garmin 12 channel GPS (global positioning system) and were recorded for

subsequent relocation. Sampling was undertaken in March, June, September and December

2001, and March and June 2002. In March and June 2001, grab samples were collected from a

boat, but were collected on foot for the remaining four sampling seasons. The latter method

allowed for a more precise relocation of sampling sites, whereas the former method was

impractical due to drifting of the boat away from sampling sites.

1.3.1 Physico-chemical Measurements

Water temperature, salinity and dissolved oxygen were measured at each site, using a portable

Horiba V-I 0 water sampler. These measurements were taken approximately 10 cm above the

sediment surface, Le. close to the sediment-water interface. Single sediment samples were

collected from the upper 5 to 10 cm sediment layer (surface sediment) and from Im deep (deep

sediment), from which median particle sizes were determined according to methods described

by Morgans (1956). For organic content determination, the sample was dried at 1000C and

weighed, then heating to 600 °c overnight, and weighed again. Organic content was expressed

as the percentage loss ofweight of the sample after incineration (Morgans 1956). Shell content

of deep sediment was defined as fragments retained by 1 mm and 2 mm mesh size sieves

(Morgans 1956). Deep sediment samples were collected using a prawn pump (Length=90 cm,

diameter=S cm Fig 7). Water depths were measured using a graduated shot-line at high and low

tide during from which the on site tidal range was estimated.

1.3.2 Macrofauna samples

Two macrobenthic habitats were investigated in the Little Lagoon (Fig 7). In the first instance,

the upper 20 cm sediment layer was sampled using a Zabalocki - type Eckman grab (area =

0.0236 m
2
), to target macrofauna that utilise the benthic habitat close to the sediment water

8
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interface. The other habitat type investigated was the sediment layer up to a meter below the

sediment surface, which was specifically intended to sample the endobenthic organism, viz.

Callianassa. kraussi, which burrows up 1 meter deep into sediments. Sediment cores from the

endobenthos were collected using a stainless steel prawn pump (Length=90 cm,

diameter=5 cm). Macrofauna from the upper 20 cm were retained in endobenthic sediment

cores, together with Callianassa. kraussi samples (Fig 7). From these cores, relationships

between abundance of Callianassa. kraussi and macrofaunal community structure were

determined. Grab samples were collected at all sites, and endobenthic samples were collected

from intertidal sites only (Sites 1 and 4), due to practical difficulties of sampling in deep,

permanently sub-tidal regions. At each sampling site, three replicate samples (for both grab and

endobenthic samples) were collected. Each grab sample replicate comprised three grabs, and

endobenthic replicates consisted of five sediment cores. In total, nine grab and fifteen

endobenthic samples were collected per sampling site.

Grab samples and endobenthic sediment cores were emptied into buckets to which water was

added, and then stirred, thereby suspending benthic organisms. The supematant was passed

through a 0.50mm sieve to retain macrofauna. This procedure of stirring and sieving was

repeated five times, and the contents of the sieve emptied into a plastic jar. The remaining

sediments in the bucket were washed through a 2mm-mesh sieve, and the retained organisms

emptied into the sample jar. Samples were preserved in a 4% formaldehyde solution and stained

with Phloxine-B. In the laboratory, samples were sorted and organisms identified to species

level where possible using a binocular microscope, and enumerated. The following references

were used to identify macrobenthic organisms: (Branch and Branch 1981, Day 1967a, Day

1967b" 1969, Griffiths 1976, Kilbum and Rippey 1982). Individual specimens of C. kraussi

from endobenthic cores, were sexed, and carapace lengths were measured, allowing for a spatial

and temporal assessment of the population dynamics of this species in the Little Lagoon.

1.3.3 Statistical Analyses

All multivariate analyses were performed using the PRIMER (Plymouth Routines in

Multivariate Ecological Research) statistical software package. Cluster analysis and non-metric

multidimensional scaling (MDS) were used to visually assess spatial and temporal differences

macrobenthic communities in the study site. The ANOSIM procedure was utilised to

statistically test for significant differences between communities. MDS ordination and cluster

plots were constructed from similarity matrices generated from Bray-Curtis similarities, after

fourth root transformations (-Y-Y) and row standardising of abundance data. The DIVERSE

9
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procedure was used to calculate the following community parameters at sampling sites: Total

Abundance (N), Species Richness, which was expressed as total number of species (S), and

Shannon-Weiner diversity (H') to the base e. The SIMPER program was used to identify

macrofaunal species that dominated and characterised specific sampling sites. Testing for spatial

differences in macrofauna community parameters was performed using a Mann Whitney-U test

in the case of two treatments. Where treatments exceded two cases, a Kruskal-Wallis test was

applied.

20cm

Grab

90cm

PrawnPumo

Fig 7: Schematic representation of a hypothetical 2-dimensional benthic habitat,

indicating the two macrobenthic sampling techniques utilised.

The grab sampled the upper 20cm sediment layer. The prawn pump sampled

Callianassa kraussi from sediments 90cm deep, as well as macrofauna in the

upper 20cm sediment layer.

10
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2. Results

2.1 The Physical Environment

2.1.1 Water Depth

Tidal range in the Little Lagoon was between 1 and 1.2m. Sites I and 4 of all transects were

exposed at spring and neap low tides, but sites 2 and 3 on all transects were permanently submerged

(Fig 8). Water depths at LWS were greatest at sites C2, A2 and C3, with depths of 1.25m, O.9m and

O.85m, measured respectively (Appendix A).

Transect C

4

Transect B
Transect A

~,---,-O

-0.2

-0.4 I
-0.6 .s::.

Q.
-0.8 ~

-1 ;-III-1.2 ~

-1.4

~-r-I -1.6

Fig 8: Cross-section ofthe Little Lagoon showing water depth at low water spring

(LWS, n=2).
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2.1.2 Water Temperature

There were pronounced seasonal differences in water temperatures in the Little Lagoon (Fig 9).

Peak temperatures were recorded at the end of summer (March) ofboth years and ranged from

26.4 °c to 28.8 °c. Lowest temperatures were measured in June (range: 17.9 0C to 22.8 0c) and

September (range: 20.5 °c to 22.8 0c). There was no evidence of spatial variations in water

temperature in the Little Lagoon during the study (Appendix A).

32

2001 2002
30

---
~

U 28 B0---Q)....

~
::J 26-~
Q)
a. 24E
Q)

~~
-.... 22Q)-~.

20

1:::2 118

16
N= 12 12 12 12 12 12

March June Septeniler Decerrber March June

Sampling Season

Fig 9: Temporal variations in water temperatures in the Little Lagoon

(Boxes represent standard error, horizontal line across boxes indicates

median values, vertical lines indicate maximum and minimum values,
n = 12).
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2.1.3 Salinity

Salinity of 20.4%0 was recorded on two occasions in March 2001 (Appendix A). Except for these

outliers, salinities ranged from 27.1 %0 to 37.6%0 during the six sampling periods (Fig 10), indicating

a dominant influence of marine salinities. No evidence of spatial variations in salinity was detected.
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Fig 10: Seasonal variations in salinities in the Little Lagoon.

(Boxes represent standard error, horizontal line across boxes indicates

median values, vertical lines indicate maximum and minimum values,
n = 12. X=Outliers and extremes).
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2.1.4 Dissolved Oxygen

There were no indications of ecologically significant spatial or temporal variations in concentrations

of dissolved oxygen (DO) in the Little Lagoon during the study (Fig 11, Appendix A). Mean DO

levels in the study area were never less than 6.09 mg/L, with the highest mean of7.81 mg/L

recorded in June 2002. The consistent DO levels recorded over the sampling period indicate that the

Little Lagoon is well flushed.
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Fig 11: Temporal variations in concentration of dissolved oxygen in the Little

Lagoon. (Boxes represent standard error, horizontal line across boxes

indicates median values, vertical lines indicate maximum and minimum

values, n == 12).
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2.1.5 Sediment Properties

2.1.5.1 Surface Sediments

2.1.5.1.1 Particle Sizes

There were no significant seasonal differences in median sediment phi values (p=O.9) in the Little

Lagoon during the study (Fig 13), which is indicative of a high degree of sediment stability in the

study area. Consistent, spatial differences in particle sizes were however recorded (Figs 12 & 13).

The majority of sediments in the Little Lagoon, were classified as fine sand (Morgans 1956), with

median phi values ranging from 1.8 to 2.4 (Fig 13). Highest sediment median phi values were

recorded at the two deepest sites viz. A2 and C2, and ranged from 3 to 3.2 and 2.7 to 3.1, and were

classified as very fine sand. Lowest sediment phi values of 1.7 - 1.8 (medium sand) were recorded

at site B2 (Figs 12 &13).

l,:

iYI....very Fine.
~Sand

EIFineSand

QI'Medium
IUISaoo

Site 4

,SitilZ.
Site 1

Transect El

Fig 12: Sediment distribution in the Little Lagoon. Terms follow the Wentworth

classification, Morgans (1956). The classification is based on mean sediment phi values

determined per site, from 6 seasonal replicates.

15



The macrobenthos of the Little Lagoon, Durban Bay

AA

TransectB

A1

Transect A

5

0

.5 ~ 11

3.0

2.5

2.0

1.5L...J....-:~B1dLU.L....J.---l'B2..........L....J....-:B~3..........L....J.--.;B4~J..U.....J

3.0

3.5

2.

2.

-.
~ 3.5.,.----------------,

~.....
CZl
(I)

U
.~

~

~
.§
as
r/J

§.....
"'C

~
3.5

3.0

2.5

2.0

1.5

Transect C

~ l'

~
C1 C2 C3 C4

Site

Fig 13: Temporal and spatial variations in sediment median phi values in the Little

Lagoon on Transects A, B and C. Bars (from left to right of each transect)

represent values obtained in March, June, September, December 2001, and

March, June 2002.

16



The macrobenthos of the Little Lagoon, Durban Bay

2.1.5.1.2 Organic Contents

There were no significant seasonal changes in sediment organic contents in the Little Lagoon during

the study (p=O.I, Appendix B), but obvious spatial differences were detected (Figs 14 & 15).

Highest mean organic contents of 6.8% and 6.5% were recorded at sites A2 and C2 respectively,

which were the deepest regions of the Little Lagoon, and in which very fine sand was present. In the

remaining more shallow regions, organic contents were lower, and ranged from 1.8% to 3.3% (Fig

15). Increased organic content, and finer sediment types in the deeper regions of the Little Lagoon

indicated that these areas act as deposition zones for organic material and submerged debris.

Reduced organic contents and coarser sediment types in shallow zones imply that these regions act

as erosional environments, characterised by relatively stronger wave action.
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2.1.5.2 Deep Sediments

2.1.5.2.1 Sediment Particle Sizes

Deep sediments at sites AI, Bl, Cl, C4 were classed as fine sand, with phi values ranging from 2 to

2.5 (Fig 16). At sites A4 and B4, deep sediments were medium sand, with phi values ranging from

1.5 to 1.56.
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Fig 16: Particle sizes of deep sediment samples (n=1).

Greatest shell contents of 6% to 16% were recorded at sites A4 and B4 respectively. At the

remaining sites, shell contents were lower, ranging from less than 1% to 3% (Figs 17 & 18).

C4B4A4C181A1

E
0>
'iIl
;t 15
~
C

~
c:
~ 10

8

20,------------------,

Qi
.c:
'"
~ 5
E

~

Site

Fig 17: Shell contents in deep sediment samples (n=I).
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Organic contents were up to three times lower in deep sediment samples than in surface sediment

samples, and ranged from 1.4% at Cl to 2.7% at Al (Fig 19).
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Fig 19: Organic contents in deep sediment samples (n = 1).
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2.2 Macrofauna

A total of38 macrobenthic species were recorded in the Little Lagoon during the study, with the

Polychaeta, Crustacea and Mollusca being the major constituents. These taxa contributed 50%, 43%

and 7% to the composition of the macrofauna community in the Little Lagoon (Table I).

Table 1: Mean density (individuals/m2
) of macrofauna at sampling sites in the Little Lagoon. Values

are means of three site and six seasonal replicates (n=18). See Appendix C for seasonal

specific species lists.

Al A2 A3 A4 Bl B2 B3 B4 Cl C2 C3 C4

Polychaeta
Cirratulidae

Unidentified Cirratulid 1280 173 53 17 85 145 199 0 112 474 28
polychaetes

Phyllodicidae

Phyllodoee castanea 0 7 2 0 0 4 0 5 0
Cossuridae

Cossura eoasta 0 228 2 0 2 73 5 0 0 406 39 0
Orbiniidae

Seoloplos johnstonei 2 0 2 2 0 2 0 0 12 3 4 2
Spionidae

Prionospio sexoculata 343 578 356 374 272 304 487 613 229 409 411 330
Polydorasp 0 0 0 0 0 2 I 0 1 0 0 0
Scololepis squamata 2 7 0 0 0 4 0 0 0 0 0 0

Nereidae

Ceratonereis erythroensis 0 0 0 3 0 5 0 3 0 0 0 0
Dendronereis arborifera 6 5 7 42 3 0 22 64 0 1 0 10

Glyceridae

Glyeerasp 66 44 63 41 70 41 56 82 53 42 61 104

Capitellidae
Unidentified capitellid 73 17 2 5 3 0 2 16 28 10 0
polychaetes

Sabellidae

Megalomma sp 0 2 0 0 0 0 0 0 0 0 0 0
Desdemona ornate 44 10 169 505 4 6 137 52 2 25 24 22

Maldanidae

Unidentified Maldanid 0 0 2 0 0 0 0 0 0 0 0polychaetes
Eunicidae

Marphysa depressa 0 0 0 0 0 0 0 0 0 0 0
Crustacea

Anomura

Upogebia afrieana 0 0 0 0 0 0 0 0 0 0
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Al A2 A3 A4 BI B2 B3 B4 Cl C2 C3 C4

Callianassa kraussi 36 0 0 5 31 46 0 8 16 5 61 22

Macrura

Betaeusjucundus 0 0 0 0 0 0 0 0 0 0 0

Isopoda

Cyathura estuaria 2 1 0 0 0 0 0 0 0 0 0 0

Cirolana luciae 10 0 0 0 6 5 0 0 0 36 2 I

Leptanthura laevigata 74 92 81 375 96 137 140 304 1I8 60 114 150
Amphipoda

Melita zeylanica 2 0 0 2 0 0 0 1 0 0 0 0
Corophium triaenonyx 0 19 10 0 0 0 1 0 0 0 1 1
Grandidierella bonnieroides 5 2 20 13 3 2 0 7 5 0 5 20

Cumacea

Cumacea 152 28 100 264 126 35 87 170 155 9 106 151
Brachyura

Thaumastoplax spiralis 2 1 0 0 1 3 0 0 2 2 0 2
Paratylodiplax 0 24 0 0 0 38 0 0 0 14 0 1
blephariskios
Hymenosoma orbiculare 0 0 0 0 0 0 0 0 0 0 0

Tanaidacea

Apseudes digitalis 0 3226 510 301 40 1037 13 0 5 124 3
Mollusca

Gastropoda

Nassarius kraussianus 2 58 103 25 2 49 84 57 2 53 24 32
Acteocinafusiformis 0 10 6 5 0 38 10 25 0 3 0 9

Bivalvia

Eumarcia paupercula 12 20 55 13 10 14 54 53 6 10 9 24
Solen cylindraceus 0 4 I 2 1 2 5 2 0 1 0 0
Dosinia hepatica 13 26 77 33 22 46 67 37 10 15 22 23
Brachidontes virgiliae 0 35 24 0 0 0 22 1I 1 0 0 2
Fulvia papyracea 0 0 2 0 0 I 0 0 0 0 2 0
Tellina prismatica 0 22 9 1 1 14 3 2 0 25 4 0

Sipunculida 2 0 0 0 0 0 0 0 0 0 0 0
Number of Species 22 26 23 22 20 25 18 21 15 22 21 21
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2.2.1 The Macrobenthic community of the Little Lagoon

Four species dominated the macrofaunal community of the Little Lagoon (Table 2), and accounted

for 75% of its community composition. These were the polychaete Prionospio sexoculata, which

was the most numerically dominant (43%), followed by the isopod Leptanthura laevigata (13.4%),

Cumacea (11.5%) and Glycera sp (Polychaeta, 7.1%). The high contributions of these species, is a

reflection of their occurrence at all sites in the Little Lagoon (Table 1). Cirratulid polychaetes

(5.8%), the tanaidApseudes digitalis (4.3%), the bivalve Dosinia hepatica (2.7%) and the

polychaete Desdemona ornata (2.5%) were less dominant in the Little Lagoon.

Table 2: The dominant macrofauna of the Little Lagoon, which accounted for 90% of the

overall community composition. Values indicate percent contribution determined

by the SIMPER routine.

Species Contribution Cumulative %

(%)

P.sexoculata 43.4 43.4

L.laevigata 13.4 56.9

Cumacea 11.5 68.3

Glycerasp. 7.1 75.4

Cirratulid polychaetes 5.8 81.3

A. digitalis 4.3 85.6

D. hepatica 2.7 88.3

D.ornata 2.5 90
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2.2.2 Temporal variations in the macrobenthic community of the Little Lagoon

There were no detectable seasonal changes in species composition of the macrobenthic community

in the Little Lagoon during the study. The major species which accounted for 65% of the

community composition such as Prionospio sexoculata (Polychaeta), Leptanthura laevigata

(Isopoda) and Glycera sp (Polychaeta) and Cumacea to a lesser extent dominated communities

during every season (Table 3).

Table 3: Seasonal changes in macrofauna of the Little Lagoon.

Species that accounted for 90% of the community composition are listed. Values

represent percent contributions determined by the SIMPER routine.

Species March June September December March June

2001 2001 2001 2001 2002 2002

Glycerasp 25 18 11 13 7 7

Prionospio sexoculata 24 26 26 31 25 25

Leptanthura laevigata 18 18 20 7 12 16

Cirratulid polychaetes 8 5 3 6 6 6

Nassarius kraussianus 5 4 2 8 7 5

Cumacea 4 12 21 19 5 9

Capitellids 3

Eumarcia paupercula 3 8 3 7

Dosinia hepatica 5 5 13 10

Callianassa kraussi 3 5

Apseudes digitalis 6

Desdemona ornata 5 8
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2.2.3 Spatial organisation of assemblages in the Little Lagoon.

Within the macrobenthic community of the Little Lagoon as a whole, four specific spatially distinct

macrobenthic assemblages were identified. (p=0.001, Figs 20 & 21). The spatial separation ofthese

assemblages was associated with sediment type, and with the presence of the burrowing sandprawn

Callianassa kraussi. Sediments in Zone D were classed as very fine, organically rich sand (Figs 13

& 14). Zone A was composed entirely of intertidal regions in which C. kraussi was abundant. Zone

B comprised the intertidal sandflat region in which C. kraussi was rare (Ref. to Fig 30 for the

distribution of C. kraussi), in combination with the subtidal region immediately adjacent to it (Fig

20). Sediments in Zone C were a combination of medium to very fine sand.

Stress: 0.08
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C4
C1

A4

84
A3

83 ZoneB

ZoneD

Intertidal Callianassa sandtlat

A1 81

C3

82 C2

ZoneC

Very fine sand,
organically rich

Fig 20: MDS ordination plot indicating spatially distinct macrobenthic assemblages in the Little

Lagoon (n=18). Three replicates per site, and six replicates per season were averaged.
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2.2.4 Species composition of macrofaunal assemblages.

The polychaetes Prionospio sexoculata and the isopod Leptanthura laevigata characterised all four

zones (Table 4). The very fine, organically rich sediment of Zone D, was characterised by cirratulid

polychaetes and the tanaid Apseudes digitals. Mean densities ofthese organisms were 1280/m
2

and

3226/m2 in this zone, which were six and three times higher than those recorded in other zones. The

sandprawn Callianassa kraussi contributed only in zone A. Communities in Zone B, were

characterised by the presence of the burrowing bivalves Eumarcia paupercula, and Dosinia

hepatica, as well as the gastropod Nassarius kraussianus. The assemblage in Zone C was similar to

that of zone B, except for the rarity of bivalves in Zone C.

Table 4: The numerically dominant macrofauna of four macrobenthic assemblages that

accounted for 75% of the community composition. Values indicate percent

contributions determined by the SIMPER routine.

Assemblage

Species A B C D

P. sexoculata 24 20 26 17

L. laevigata 17 12 14 8

Cumacea 14 11 12

Glycerasp 13 12 9

C. kraussi 8

Cirratulid polychaetes 8 11 20

A. digitalis 12

N kraussianus 9 11 9

D. hepatica 8

E. paupercula 5
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2.2.5 Species composition of intertidal and subtidal communities.

The polychaetes P. sexoculata and Glycera sp., as well as the bivalve E. paupercula were recorded

in subtidal and intertidal regions. Cirratulid polychaetes, the gastropod N kraussianus and the

tanaid A. digitalis were recorded in greater abundances in subtidal regions. The isopod Leptanthura

laevigata and Cumacea were present in greater densities in intertidal zones (Table 5).

Table 5: The numerically dominant macrofauna of intertidal and subtidal regions that

cumulatively accounted for 80% of the community composition. Values indicate percent

contributions.

Species Intertidal Subtidal

P. sexoculata 24 21

L. laevigata 17 11

Cumacea 16

Glycerasp 14 12

E. paupercula 6 7

Cirratulid polychaetes 13

A. digitalis 5

N kraussianus 11
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2.2.6 Spatial and temporal variations in macrofaunal density.

2.2.6.1 Temporal variations.

No consistent pattern of seasonal peaks and declines in macrofaunal densities were detected. (Fig

22). Lowest macrofaunal densities were recorded in March and June 2001, when grab samples were

collected from a boat. Densities were higher during the remaining sampling season.
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Fig 22: Temporal variations in macrofaunal densities in the Little Lagoon.

Squares indicate means, vertical bars represent standard error. Data from

12 sampling sites, and three replicates per site were pooled and averaged

per season.

2.2.6.1 Spatial variations.

Densities of macrofauna were highest at site A2 (mean = 5743/m2) and ranged from 11291 m2 to

117791 m
2

(Fig 23). The increased density recorded in this site is related to the very fine organically

rich sediment of this region (Figs 13 & 14). At the remaining sites, mean densities were roughly

three times lower than at A2, and ranged from 672/m2 at site Bl to 23631 m2 at site B3. Densities of

macrofauna were significantly higher in subtidal regions than in intertidal regions (p<0.05), and

ranged from 1120 ± 821m
2

in intertidal regions, to 2268 ± 242/m2 in subtidal regions.
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Fig 23: Mean density of macrofauna at sampling sites in the Little Lagoon. Squares indicate means,

vertical lines represent standard error. Three site and six seasonal replicates were pooled

and averaged per site.
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2.2.7 Spatial and temporal variations in macrobenthic species richness.

2.2.7.1 Temporal variations.

Species richness of macrofauna ranged between seven and 10 species per three grabs in the Little

Lagoon. No indications of temporal peaks and declines in species richness were detected (Fig 24).
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Fig 24: Seasonal variations in species richness (S) of macrofauna in the Little Lagoon.

(S = Total number of species collected in three grab samples). Squares indicate means,

vertical bars represent standard error. Data from 12 sampling sites, and three replicates

per site were pooled and averaged per season.

2.2.7.1 Spatial variations.

The highest mean species richness of 10.3 ± 0.5 per three grabs was recorded in the fine organically

rich sediments of site A2 (Fig 25). At the remaining sites, richness varied from 5.6 ± 0.4 at site Cl

to 9.7 ± 0.8 at site B4. Species richness was significantly higher in subtidal regions (p<0.05; mean =

8.8 ± 0.2) than in intertidal regions (mean = 7.5 ± 0.2).
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Fig 25: Species richness (S) of macrofauna at sampling sites in the Little Lagoon. S=Number of

species collected in three grab samples. Squares indicate means, vertical lines represent

standard error. Three site and six seasonal replicates were pooled and averaged per site.
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2.2.8 Spatial and temporal variations in macrobenthic species diversity.

Species diversity (Shannon-Weiner) was low at site A2 (mean = 1.1 ± 0.08; Fig 26) although the

highest species richness was also recorded at this site (Fig 25). The latter result reflects a strong

numerical dominance by cirratulid polychaetes, P. sexoculata, andA. digitalis. At the remaining

sites, diversity ranged from 1.2 ± 0.07 at Cl to 1.7 ± 0.06.
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2.2.9 Feeding Modes of macrofauna in the Little Lagoon.

Suspension feeders such as the polychaete Desdemona ornata were poorly represented in the Little

Lagoon (Table 6), and contributed a maximum of 3%. Surface deposit feeders such as Cumacea and

the isopod Leptanthura laevigata, together with infaunal deposit feeders such as Prionospio

sexoculata, contributed most to the feeding modes of macrofauna in the Little Lagoon.

These feeding guilds were represented at all sites in the sampling area. Subsurface deposit feeders

predominantly cirratulid polychaetes, contributed most in organically rich sediments ofsite A2 and

C2 (33% and 25%). This group was scarce in organically poor sediments. Infaunal predators such as

Glycera sp. contributed at all sampling sites, with contributions ranging from 8% to 25%.

Table 6: The feeding modes of the dominant macrofauna in the Little Lagoon.

Values represent percentage contributions determined by the SIMPER routine.

Contributions of dominant species contributing to 90% of the community composition are

indicated.

Feeding Mode Al A2 A3 A4 BI B2 B3 B4 Cl C2 C3 C4

SuspensionIFilter 3 0 0 3 0 0 0 0 0 0 0 0

(Desdemona ornata)

Surface deposit 43 34 42 57 41 44 51 40 54 27 19 44

(L. laevigata, Cumacea)

Subsurface deposit 0 33 18 0 0 13 14 10 0 25 15 0

(Cirratulid polychaetes)

Infaunal deposit 36 22 26 26 33 32 25 36 32 33 47 36

(P. sexoculata)

Predatory infauna 17 9 14 12 25 10 8 14 13 15 19 20

(Glycera sp.)
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2.3 The Endobenthos.

Results presented in the following subsection (from 2.3 till the end of results) are based on

macrobenthic data obtained from sediment cores (depth 90cm), not grab samples.

2.3.1 Variations in size and abundance of Callianassa kraussi.

Mean abundance of C. kraussi peaked in September 2001 and June 2002 (Fig 27). Highest

frequencies of individuals in the 0-2mm size class were recorded in June of both seasons (Fig 28).

Both results indicate that recruitment ofjuveniles occurred over the winter and early spring period.

During the periods prior to spawning (March), modal size classes peaked between the 4mm-8mm

carapace lengths, indicating that the population consisted of larger adults.
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Fig 27: Temporal variations in abundance of C. kraussi in the Little Lagoon.
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2.3.2 Spatial variations in abundance of Callianassa kraussi

There were two distinct zones of high and low C. kraussi abundance in the Little Lagoon (Fig 30),

Abundance at sites B4 and A4, averaged less than 1 to 3 individuals per five cores respectively.

Abundance was higher at the remaining sites, averaging between 5 and 13 individuals per five cores

(Fig 29).
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Fig 29: Spatial variations in abundance of C. kraussi in the Little Lagoon.
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Surface sediment particle sizes (p=0.076, Fig 32) and organic contents (p=0.67, Fig 33) did not

differ significantly between the zones of high and low C. kraussi abundance, but the shell content of

deep sediments were up to five times higher in the zone of low C. kraussi abundance.
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2.4 The role of C. kraussi in structuring macrobenthic communities.

MDS ordination indicated distinct spatial differences between macrobenthic communities

associated with the zones ofhigh and low C. kraussi abundance (Fig 34). The ANOSIM procedure

indicated that the communities were significantly different from each other (p=O.OOl).
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Fig 34: MDS ordination of macrofauna communities associated with the two zones of high (circles)

and low (triangles) C. kraussi abundance. Each data point represents an individual site

replicate (three replicates were collected per site), collected over six sampling seasons.

Abundance data from sediment cores were utilised for the analysis.
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2.4.1 Macrobenthic abundance, species richness and diversity in the zones of C. krauss;

abundance.

Abundance, species richness and diversity of macrofauna differed significantly between the zones

of high and low C. kraussi abundance. Macrofaunal abundance and species richness were at least

two times greater in the zone of low C. kraussi abundance (Fig 35).
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Fig 35: Abundance (A), species richness (B) and diversity (C) of macrofauna in the zones of

high and low C. kraussi abundance. Squares represent means, vertical lines indicate

standard error. Means were calculated from three site and six seasonal replicates.
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2.4.2 The relationship between macrobenthic abundance, species richness, diversity and

abundance of C. kraussi.
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Fig 36: Relationship between abundance of e. kraussi and macrofauna abundance

determined from core samples. Squares represent means, vertical lines indicate

standard error.
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represent means, vertical lines indicate standard error. Density classes on X-axes are:

0-5: low density, 5-10: intermediate density, >10: high density.

The abundance of C. kraussi had a significant effect on the abundance (p<0.001), species richness

(p<O.OOl) and diversity (p<0.001) of macrofauna (Figs 36-38). The negative association observed

between macrobenthic community parameters and abundance of C. kraussi (Figs 36-38), implies

that C. kraussi adversely impacts on these community parameters. Macrofaunal abundance, species

richness and diversity did not differ significantly between intermediate and high C. kraussi

densities. At low C. kraussi densities, abundance and species richness of macrofauna were

significantly higher than at intermediate and high C. kraussi densities. Macrofaunal diversity

differed significantly between low and high C. kraussi densities.
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2.4.3. Macrobenthic community structure between zones of high and low C. kraussi

abundance.

The zone of high C. kraussi abundance was dominated by the polychaetes Prionospio sexoculata,

Scoloplos johnstonei, Glycera sp and an unidentified amphipod species (Table 7). These species

were also recorded in the zone of low C. kraussi abundance, but the community was dominated by

Cumacea, the isopod Leptanthura laevigata and cirratulid polychaetes (Table 8). Densities of

burrowing bivalves, mainly Dosinia hepatica and Eumarcia paupercula were significantly higher in

the zone oflow C. kraussi abundance (p<O.OOOI, Fig 39), and averaged roughly 2 individuals per

five cores. In the zone of high C. kraussi abundance, densities were lower and averaged less than

0.5 individuals per five cores. Community differences are summarised in Fig 40.

Table 7: Macrobenthic species that cumulatively accounted for 90% of the community composition

in the zone of high C. kraussi abundance determined by the SIMPER routine. Abundance =

numbers/five sediment cores, n=18. Percentage contribution is indicated.

Average Contribution (%) Cumulative

abundance contribution (%)

Seoloplos johnstonei 3 32 32

Unidentified amphipod sp. 2.8 29 61

Prionospio sexoculata 2 16 77

Glycerasp 1,4 14 91
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Table 8: Macrobenthic species that cumulatively accounted for 90% of the community composition

in the zone of low C. kraussi abundance determined by the SIMPER routine. Abundance =

numbers/five sediment cores, n=l8. Percentage contribution is indicated.

Average Contribution (%) Cumulative

abundance contribution (%)

Prionospio sexoculata 7.5 32 32

Cumacea 1.6 12 44

Leptanthura laevigata 1.6 11 55

Cirratulid polychaetes 2.5 9 64

Scoloplos johnstonei 1.5 6 70

Unidentified amphipod sp. 1.8 6 76

Glycerasp 0.9 6 82

Dendronereis arborifera 2.4 5 87

Eumarcia paupercula 0.6 3 90
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Fig 39: Abundance of burrowing bivalves (numbers/5 cores) between the zones of high and

low C. kraussi abundance. Squares represent means, vertical lines indicate standard

error.
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2.4.4 Differences in feeding modes between zones of high and low C. kraussi abundance.

Table 9: Comparisons of feeding modes of the dominant macrofauna between the zones of high

and low C. kraussi abundance. Values indicate percent contributions (Dominant

macrofauna from Tables 7 & 8 were utlised in the analysis).

Feeding Mode High Low

Surface deposit 0 23

Subsurface deposit 0 10

Infaunal deposit 77 49

Predatoryinfauna 14 6

Burrowing infaunal deposit feeders such the polychaete Prionospio sexoculata, and predatory

infauna such as Glycera sp. were recorded in the zones of high and low C. kraussi abundance.

Surface deposit feeders such as Cumacea and L. laevigata, and subsurface deposit feeders

predominantly cirratulid polychaetes, were recorded almost exclusively in the zone of low C.

kraussi abundance, and not in the zone of low C. kraussi abundance (Table 9). Lifestyles and

feeding modes are summarised in Fig 40.
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Surface deposit
Subsurface deposit
Surface deposit
Burrowing infauna
Predatory infauna
Burrowing Bivalve
Burrowing Bivalve
Burrowing endobenthic

4

A8

1 =Cumacea
2 = Cirratulid polychaete
3 = Leptanthura laevigata
4 = Prionospio sexoxulata
5 = Glycera sp.
6 = Dosinia hepatica
7 = Eumarcia paupercula
8 = Cal/ianassa kraussi

- .-

7

6B

Fig 40: Schematic representation summarising differences in macrobenthic communities and

lifestyles of organisms between zones of high (A) and low (B) C. kraussi abundance. Note

the absence of surface and subsurface fauna in the zone of high C. kraussi abundance, and

the irregular sediment surface.
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3. Discussion

There were strong indications that the physical environment of the Little Lagoon was a

relatively stable one, as negligible temporal variations in physico-chemical variables were

recorded. This stability was detected in both the water column and in the sedimentary habitat.

Seasonal temperature fluctuations were the only pronounced source of temporal variations in the

physical habitat of the Little Lagoon. Peak temperatures were recorded at the end of summer of

both years, while lowest temperatures were measured at the end ofwinter (Fig 9). The

remaining parameters such as salinity and concentrations of dissolved oxygen (DO) were

generally uniform from a temporal perspective. Although salinities as low as 20.4%0 were

recorded on two occasions (Appendix A), salinity in the Little Lagoon was essentially marine,

and varied between 27.1 %0 to 37.6%0 during the study, while concentrations of dissolved

oxygen at all sampling sites were consistently between 6 mgIL and 7.8 mg/L. In both instances,

no seasonal peaks and declines in either parameter were detected, and in instances where

variations were detected, these were of little ecological significance. For example, the increase

in concentrations of DO from 6 mgIL to 7.8 mg/L recorded between March and June 2002 (Fig

11), is statistically different, but appeared to be of little consequence to the macrobenthic

community.

From a spatial perspective, differences in water temperature, salinity and DO were not detected

in the Little Lagoon (Appendix A), indicating that the water column is a fairly homogenous

environment. Pronounced spatial variations in sediment type and organic content of surficial

sediments were however, a prominent feature of the benthic habitat in the Little Lagoon. (Figs

12-15). The two deepest regions ofthe Little Lagoon were sites A2 and C2 respectively (Fig 8).

Surficial sediments in these regions were classed as very fine, organically rich sand, while those

in the shallower regions of the Little Lagoon were classed as medium to fine organically poor

sediments. Based on the relationship between water depth and sediment types, it can be deduced

that deeper regions are sheltered, calm-water habitats, which act as deposition zones for

submerged organic debris. The shallower regions on the other hand, are subjected to higher

intensity wave action, and could be classed as erosional environments (Kennish 1990).

The macrofaunal community of the Little Lagoon as a whole, was composed of38 species, with

the Polychaeta, Crustacea and Mollusca being the major constituents of this assemblage

(Table 1).
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The macrobenthic community of the Little Lagoon could be visualised as being three tiered, or

composed ofthree components, based on the relative abundance of organisms. The primary

component of the assemblage is defined as comprising the dominant organisms, or those that

cumulatively contribute to 75% of the overall community structure. The secondary component

refers to organisms contributing between 75% and 90% to the community composition,

followed by the third component comprising the remaining rare species.

The primary component of the macrobenthic community in the Little Lagoon was composed of

four organisms viz. the polychaete Prionospio sexoculata, the isopod Leptanthura laevigata,

Cumacea, and polychaetes of the genus Glycera (Table 2). These taxa were recorded at all sites

in the Little Lagoon, indicating no spatial habitat preferences. In contrast the secondary

component of the macrofaunal assemblage in the Little Lagoon, was composed of cirratulid

polychaetes, the tanaid Apseudes digitalis, the bivalve Dosinia hepatica and the polychaete

Desdemona ornata (Table 2). Species comprising the secondary component showed marked

spatial habitat preferences (Table 1). The third component of rare species comprised 30 taxa,

and of these, the polychaete Cossura coasta, and the crab Paratylodiplax blephariskios were

recorded almost exclusively in the organically rich sites A2 and C2.

The macrobenthos of the Little Lagoon was not a spatially homogenous sandflat community, as

significant differences in community structure were recorded (Fig 20). These spatial differences

in communities occurred in response to spatial heterogeneity in sediment particle sizes and

organics contents of surficial sediments (Figs 12-15). In other words, sediment type and organic

contents of surface sediments, in conjunction with water depths, were the most dominant

physical determinants of macrobenthic community structure in the Little Lagoon.

In the fine, organically rich sediments of site A2, mean densities of macrobenthic organisms

were roughly three to five time higher than in other regions of the Little Lagoon (Fig 23).

Moreover, highest species richness was also recorded in this region (Fig 25). It therefore

appeared that this site had a much higher carrying capacity than other sites in the Little Lagoon,

due mainly to the relatively abundant food supply in the form of sediment organic contents in

this site. This feature therefore favoured the development of communities in which organism

were highly abundant and rich in species.
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The community composition also differed substantially between very fine organically rich

sediments and fine organically poor sediments. The organically rich sediments of site A2 for

example was dominated by cirratulid polychaetes and the tanaidApseudes digitalis. The

abundance of both organisms were up to three times higher in site A2 than in any other site,

with mean densities of 1280/m2 and 3226/m2 recorded respectively (Table 1). Cirratulid

polychaetes are subsurface deposit feeders, which partially bury themselves in sediments and

utilise tentacular filaments to feed on the sediment surface (Day 1969), while tanaids feed on

detritus on the sediment surface (pers obs). Both species are specifically adapted to feeding in

muddy, organically rich sediments, and are distributed preferentially in such sediments. In

addition, the polychaete Cossura coasta, and the crab Paratylodiplax blephariskios were also

recorded almost exclusively in the organically rich, muddy sediments of sites A2 and C2, with

the latter species known to prefer such sediments (Day 1969, Owen 1999).

High organic contents and very fine textures of surficial sediments seemed to "favour" the

presence of subsurface deposit feeders (Table 6). Members of this feeding guild, predominantly

cirratulid polychaetes, were recorded in highest abundances at the most organically rich sites of

A2 and C2. At both sites, roughly 30% and 20% of feeding modes comprised sub-surface

deposit feeders. In organically poor sediments, this feeding guild was poorly represented.

Much of the discussion presented above, in terms of stressing the roles of sediment organic

contents and particle sizes as determinants of macrobenthic community structure, was

highlighted by the pioneering study ofDurban Bay by Day and Morgans in 1956. The

distinct,ion made between the "biota" of the Bay, was based on sediment types, which were

either classed as "clean sand" or "muddy sand". The author pointed out that the lack of organic

material and fine silt in clean sands, supported little animal life, and did not facilitate the

construction of burrows. Muddy sands on the other hand fulfilled both criteria, and supported

richer faunal assemblages (Day and Morgans 1956).

Macrobenthic community structure also differed substantially between subtidal and intertidal

regions in the Little Lagoon. Intertidal regions were characterised by the isopod Leptanthura

laevigata and Cumacea. These organisms are highly mobile surface fauna and could probably

avoid desiccation and temperature stress during periods of low tides, i.e. when the sandflat was

exposed, by migrating into subtidal regions. Subtidal regions were characterised by sedentary

surface fauna such as the tanaid Apseudes digitalis and the gastropod snail Nassarius

kraussianus. It appeared that the limited mobility of these organisms restricted them to subtidal
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regions only. Cirratulid polychaetes were recorded in higher abundances in subtidal regions, but

were also recorded in intertidal regions (Table 1). These organisms are sessile tube building

subsurface feeders (Day 1967b), and it is suspected that during low tides, much of the body and

tentacular filaments are withdrawn into its burrows, which protects the organism from

temperature and desiccation stress.

From a temporal perspective, changes in macrobenthic community composition were negligible

in the Little Lagoon (Table 3), implying that the community is quite a static or stable one, with

no dramatic seasonal or temporal alterations to its composition. This is expected since drastic

temporal variations in the physical habitat were not recorded. During every sampling season, the

macrobenthic community of the Little Lagoon was dominated by four organisms viz. the

polychaetes Prionospio sexoculata, Glycera sp, the isopod Leptanthura laevigata and

cumaceans (Table 2). In March and June 2001, densities of cirratulids and the tanaid Apseudes

digitalis in site A2 were up to 3000 and 8000 times lower respectively than in remaining

sampling seasons. If one considers that the organically rich sediments of site A2 occupy a patch

of 3 - 5 m2, and the practical difficulty in relocating sampling sites precisely by boat due to

drifting, it is suspected that temporal differences in abundance of these organisms are due to

inaccurate relocation of this site, and do not reflect seasonally induced changes to the

community. Variations in abundance and sizes of Callianassa kraussi were the only source of

temporally induced changes to the macrobenthic community in the Little Lagoon. Peaks in

abundance ofjuveniles of C. kraussi were recorded in June of both seasons, indicating winter

and early spring recruitment into the population (Figs 27 & 28).

In a highly dynamic system like the Mkomazi estuary for example, seasonal changes in

estuarine flow rates, along with variation in salinity, sediment type and organic contents, acted

as sources of natural disturbances, which in turn resulted in cascading modifications to the

composition ofmacrobenthic communities (Waller 1998). During the summer periods,

characterised by high rainfall and high flow rates, the macrofaunal assemblage of the Mkomazi

estuary was essentially composed of a few capitellid polychaetes and chironomids. Under

winter, low flow conditions, the community shifted to a Desdemona ornata (Polychaeta)­

Grandidierella lignorum (Amphipoda) assemblage (Waller 1998). A similar pattern was

recorded in the Mdloti estuary, which is a dynamic system, characterised by periodic opening

and closure of the mouth (Jairam 2002). The macrobenthic assemblage during mouth open

periods was dominated by the polychaete Ceratonereis keiskama, but shifted to one dominated
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by the polychaetes Desdemona ornata and Prionospio steenstrupi during periods of mouth

closure (Jairam 2002).

Significant temporal differences in densities and species richness of macrofauna were also

recorded in the Mkomazi estuary in response to seasonal changes in the physical environment

highlighted above. During winter periods of low flow rates, densities of macrofauna were up to

15 times higher than during summer periods of high flow rates, but was also accompanied by a

doubling of species richness (Waller 1998). Similarly, significant differences in abundance and

species richness were recorded in the Mdloti and Mhlanga estuaries, associated with the

opening and closing of the mouth (Jairam 2002).

In contrast to the systems highlighted above, there was no evidence of seasonally induced

changes in the abundance and species richness of macrofauna in the Little Lagoon, as no

obvious peaks and declines in these parameters were recorded (Figs 22 & 24).

In March and June 2001, abundance of macrofauna was two to three times lower than in

remaining sampling seasons. If one takes into account that abundance of macrofauna were three

to five time higher in site A2, and if one considers the problems previously mentioned

associated with accurately relocating sites by boat, it is likely that reduced densities recorded in

these seasons were because site A2 was inaccurately relocated, and was not a seasonally

induced response.

The macrobenthic assemblage of the Little Lagoon was characterised by high densities and a

diverse assemblage of large, long-lived organisms such as gastropod and bivalve molluscs

(Table 1). From a benthic ecology perspective, these species are commonly referred to as K­

selected organisms (Clarke and Warwick 1994, Chapman and Reiss 1997), and are generally not

numerically dominant, but dominate the benthic biomass (Clarke and Warwick 1994). These K­

selected organisms usually characterise stable environments, with little natural perturbations

(C1arke and Warwick 1994). At the opposite end ofthe spectrum, i.e. where disturbances are

common, communities are dominated by smaller, fast growing opportunistic species, which

dominate numerically (Clarke and Warwick 1994). Six species ofbivalve, and two species of

gastropod molluscs were recorded in the Little Lagoon (Table 1), but in the dynamic systems of

the Mkomazi (Waller 1998), Mdloti and Mhlanga (Jairam 2002), no such K-selected mollusc

species were recorded.
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Species richness ofthe macrobenthic community in the Little Lagoon was high, relative to other

estuarine habitats in Kwa-Zulu Natal, and is directly related to the lack of fluctuations in the

physical habitat. To put this into perspective, a total of38 macrofaunal species were collected in

the Little Lagoon during this study, while a macrobenthic survey of the St Lucia system in the

early to middle 1990s yielded approximately 33 species (Weerts 1993), and 36 species from

surveys of Richards Bay (Hay 1993b), both of which are generally considered to be relatively

stable habitats. The area covered in the Little Lagoon was roughly 42 000Jri! (0.042km2),

whereas those covered in the surveys of St Lucia and Richards Bay were roughly 325km2

(Weerts 1993) and 425km2 (Hay 1993) respectively. In other words, all three systems generally

had similar species richness, but the Little Lagoon was 7000 to 10 000 times smaller than the St

Lucia and Richards Bay systems, implying that the system is relatively rich in the context of

Kwa-Zulu Natal.

While it is generally accepted that Durban Bay is a sheltered, stable estuarine habitat (Hay et al.

1993, Forbes et al. 1994) it is nevertheless worth highlighting for the following reason. In the

absence of significant physical factors influencing and regulating macrobenthic communities, it

is increasingly likely for such systems to be biologically regulated. In many estuarine habitats, it

is likely that the variable nature ofthe physical habitat precludes the development of

macrobenthic communities to climax states, as these communities are often in a state of

transition (as shown by WaIler 1998). In these transitional states, communities are generally not

composed of large-bodied organisms (Clarke and Warwick 1994) that are able to exert influence

on and structure communities. In such instances, the physical environment dictates structure and

patterns of distribution of macrobenthic assemblages. In contrast, the sheltered nature of

sandflat habitats such as in the Little Lagoon, encourages the development of macrobenthic

communities. In such cases, large organisms such as bivalves and crustaceans will dominate the

benthic biomass, with increased potential for these large organisms to influence communities

(Kennish 1990). At this stage of development, biological processes such as competition,

disturbance and predation can significantly structure macrobenthic communities (Flach and

Tamaki 2001, Ditmann and Vargas 2001),

In the context of the Little Lagoon, the benthic biomass is dominated by the burrowing prawn

Callianassa kraussi, and present in densities of up to 300 individuals/Jri! (from crude estimates

of hole counts). A characteristic feature of the burrowing behaviour of this organism is its

expulsion of sediment and deposition of mounds on the sediment surface. Underwater visual

assessments of the habitats in which C. kraussi occurs, revealed an irregular bottom, dominated
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by these sediment mounds. This process of biological reworking of sediments is referred to as

bioturbation (Flach and Tamaki 2001) and the term encompasses sediment expulsion through

burrow digging, egestion of faecal end-products, the mobilisation of sediment contaminants and

organic particles, as well as ventilation activities i.e. water pumping activities (Flach and

Tamaki 2001, Francois et al. 2001).

The distribution of C. kraussi in intertidal sediments of the Little Lagoon was uneven, as two

distinct zones of high and low abundance were recorded (Fig 30). Sediment particle sizes and

organic contents of surficial sediments, did not differ between these zones (Figs 32 & 33), but

densities of shell fragments in deep sediments i.e. sediments between 0.8 m to 1 m deep, was up

to three times higher than in the zone of high C. kraussi (Fig 31). It therefore appeared that shell

fragments in deep sediments, which in many cases were large, whole bivalve shells, prevented

the establishment of this organism, as these shells hindered burrowing activities.

Ordination plots indicated that there were two spatially distinct macrobenthic communities

associated with the zones ofhigh and low C. kraussi abundance (Fig 34), which were

significantly different from each other (p=O.OOl). Total abundance ofmacrobenthic organisms

also differed significantly between the two C. kraussi abundance zones. In sediments where C.

kraussi was rare, the abundance ofbenthic macrofauna was up to three times higher than in

sediments in which C. kraussiwas abundant (Fig 35). These trends were also mirrored by

species richness and diversity values, which also differed significantly between the zones of

high and low C. kraussi abundance (Figs 35), with twice as many species recorded in sediments

where C. kraussi was rare. In view of the absence of significant variations in sediment

properties between the zones ofhigh and low C. kraussi abundance, the interpretation of the

latter results is that C. kraussi might directly be involved in structuring of macrobenthic

communities in these intertidal regions.

Proving a causal relationship between C. kraussi and the structure of macrobenthic

macrobenthic communities is difficult in the absence of experimental data, but several lines of

indirect evidence point to this potential causality. Macrobenthic abundance, species richness and

diversity were significantly and negatively influenced by the abundance of C. kraussi (Figs 36­

38), implying that differences in community measures (abundance, species richness and

diversity) observed between the zones highlighted above, are directly attributable to C. kraussi

The negative association between these macrobenthic community parameters and the abundance

of C. kraussi, indicates that C. kraussi exerts some form of adverse impact on macrobenthic
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communities, and is an indication that C. kraussi may be a "disturbance" organism. The only

other possible interpretation of the negative association highlighted above, is that it may be a

predatory response. This possibility is ruled out since thalassinid crustaceans such as C. kraussi

are known to be deposit or filter feeders, or a combination of both (Coelho et al2000), but not

predators.

There were also indications that the composition of macrobenthic communities differed

substantially between zones in which C. kraussiwas highly abundant and where it was rare.

90% of the composition of communities in sediments in which C. kraussiwas highly abundant,

was made up of four organisms viz. the polychaetes Scoloplosjohnstone~ Prionospio

sexoculata, Glycera sp, and an unidentified amphipod.

In contrast, 90% of the community composition in the zone oflow C. kraussiabundance, was

made up by nine species (Table 8). In this zone, the macrobenthic assemblage that characterised

the zone of high C. kraussi abundance was also present, but Cumaceans, the isopod Leptanthura

laevigata, cirratulid polychaetes, Dendronereis arborifera and the bivalve Eumarcia paupercula

were also recorded in high densities (Fig 40, Table 9). In addition, the abundance of burrowing

bivalves, mainly Eumarcia paupercula and Dosinia hepatica, differed significantly between the

zones of high and low C. kraussi abundance (Fig 39). In sediments where C. kraussi was rare,

the abundance of these bivalves was up to four times higher than in sediments in which C.

kraussi was highly abundant. Following on from the previous discussion concerning the

requirement of environmental stability for communities to comprise abundant, large, K-selected

species, the rarity of bivalves in regions of high C. kraussi abundance, can be interpreted as an

indication of a stressful or highly disturbed habitat, which is induced by C. kraussi

The macrofauna in the zone of high C. kraussi abundance was dominated by burrowing infaunal

deposit feeders such as Scoloplos johnstonei, Prionospio sexoculata, Glycera sp, with no

surface feeders recorded (Table 9). In sediments in which C. kraussi was rare, these deposit

feeders were still present, but surface deposit feeders such as Cumaceans, and the isopod

Leptanthura laevigata together with sub-surface deposit feeding cirratulid polychaetes, were

also present in high numbers (Table 9). Surface and sub-surface feeders were recorded only in

the zone where C. kraussi was rare. The interpretation is that C. kraussi is somehow able to

"exclude" surface and sub-surface feeding fauna (Fig 42). Ifone considers the range of

biological activities associated with C. krauss~ then its bioturbative activity of expelling

sediments from burrows to the sediment surface would be the only likely explanation for the
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exclusion of surface fauna. It is hypothesised that the continual deposition of sediment through

bioturbation by C. kraussi, and subsequent re-dispersion by wave action, creates a highly

mobile sedimentary environment and an unstable benthic habitat on the sediment surface. The

biological effect is that surface feeding fauna are "excluded" because the continual expulsion of

sediment and resuspension by wave action, acts as a source of disturbance. General responses of

macrofauna to increased levels of suspended sediments include a reduction in growth rates

(Aller and Dodge 1974) and an increase in larval mortality (Loosanoff 196210c cif.). Bivalves

are possibly "excluded" (Fig 39) because their siphons are clogged by sediments expelled from

burrows of C. kraussi. Suspension feeders such as bivalves are known to be particularly

susceptible to sediment disturbance induced by bioturbation, because increased levels of

suspended sediments result in reduced filtration rates by these suspension feeders (Gerodette

and Flechsig 1979, Rhoads and Young 1970). It is also possible that sediment expulsion can

directly bury both adult and juvenile stages of benthic macrofauna (Rhoads and Young, 1970).

The first attempt to explain how bioturbators influence benthic communities was made by

Rhoads and Young (1970), in order to explain the general trend of consistent spatial separation

between suspension and deposit feeders. Suspension feeders in the study site were restricted to

firm mud bottoms, whereas deposit feeders occurred in soft muddy bottoms. Much of this

segregation was explained by the fact that extensive bioturbation by deposit feeders resulted in a

"fluid" sediment surface, which upon re-suspension by wave action (even at low velocities),

either clogged filtering apparatus, buried larvae, or prevented settlement of these suspension

feeders. This mechanism or hypothesis was referred to as the trophic group amensalism

hypothesis (Rhoads and Young 1970).

The next significant contribution to understanding the mechanism behind bioturbation and its

role in structuring benthic communities was made by Brenchley (1981). From a combination of

field and laboratory manipulations, it was proposed that bioturbators do not target a specific

trophic group such as suspension feeders. Instead, the mobility of the organism and whether it

lives on the sediment surface or burrows in sediments, are key to understanding the effects of

bioturbators. In these experiments, tubiculous surface feeding amphipods were "excluded" at

high bioturbation rates, but mobile suspension feeding gastropods and crustaceans, capable of

burrowing, were not affected. Surface dwelling fauna with limited mobility, which were unable

to "escape" the disturbance induced by increased suspended sediment loads, were excluded.

Fauna that were mobile, could escape by burrowing (Brenchley, 1981).
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Although both hypotheses differ slightly, they agree in that they recognise that the effect of

bioturbation occurs principally at the sediment surface, thereby leading to the exclusion of

surface fauna. These findings by Brenchley (1981) and Rhoads and Young (1970), concur with

those recorded in the Little Lagoon, in which surface fauna were recorded in regions where C.

kraussi was rare, but not where C. kraussi was abundant.

Much of the early research on bioturbation had focused on biogenic modifications to sediment

properties (eg. Aller and Yingst 1985), but current research has tended to focus specifically on

its effects on specific communities such as macrofauna (Widdicombe and Austen 1998,

Widdicombe and Austen 1999, Widdicombe et al. 2000, Berkenbusch et al. 2000), meiofauna

(Olafsson et al. 1993), seagrasses (Townsend and Fonseca 1998) and nematode communities

(Schratzberger and Warwick 1999). Much of the interest shown for the above, is related to the

realisation that bioturbation is a key process in structuring communities and setting and

maintaining levels of diversity especially in stable physical habitats (Widdicombe et alI998).

A variety of organisms have been recognised as bioturbators, ranging from polychaetes and

crabs to manatees and birds (Cadee 2001), but the burrowing callianassid crustaceans are

considered to be the most influential of them in terms of sediment turnover rates i.e. the amount

of sediment reworked over time, and because they can burrow up to 5m deep (Cadee 2001,

Flach and Tamaki 2001). In addition, callianassids have the potential to expel a substantial

amount of sediment from burrows. In some cases, sediment layers between 0.5 and Im thick

have reportedly been expelled annually, after subsequent leveling by wave action (Cadee 2001).

The most significant and well-known long-term study of changes in benthic invertebrate

communities in relation to bioturbating callianassid shrimps, was made by Tamaki and co­

workers, in the Ariake Sound Estuarine System in Japan. The benthic community in the study

site underwent dramatic changes over the period between 1979 and 1998, the most significant of

which was a ten-fold increase in densities ofNihonotrypaea harmandi, a callianassid sandprawn

(Flach and Tamaki 2001). This increase in densities of N harmandi was accompanied by the

local extinction of the gastropod Umbonium moniliferum, from densities of2000/m2 in 1979 to

oin 1986. The mechanism likely to account for such biologically induced extinction was that of

larval burial and smothering arising from sediment reworking activities by N harmandi

Following a decline in densities of N harmandiin 1995, there was evidence of a recovery of the

U. moniliferum population (Flach and Tamaki 2001).
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Another modification of the benthic community in the Ariake Sound System, was that densities

of the tube building polychaete Pseudopolydora paucibranchiata, which was up to the 1979

period the most dominant macrobenthic organism, had been reduced substantially following the

expansion ofN. harmandi. Similarly, densities of the surface deposit feeding opheliid

polychaete Armandia amakusaensis decreased rapidly during 1979 and 1980, again in response

to increased abundance ofN. harmandi. In both cases, the sediment de-stabilising effect of

bioturbation by N. harmandi has been identified as the mechanism driving such community

changes (Flach and Tamaki 2001).

At the other end of the world, bioturbation by a New-Zealand sand prawn, Callianassafilhol~

has also been recognized as a key process involved in structuring macrobenthic communities

and influencing species richness of communities (Berkenbusch et al. 2000). The methods

utilised by the author was that of a "natural experiment", by observing differences in

macrobenthic communities and patches of high and low densities of the sand-prawn, and is

similiar to the approach utilised in the present study in the Little Lagoon. Significant differences

in species composition were recorded between sites of high and low C.filholidensity. Densities

of a corophiid amphipod Paracorophium excavatum and a bivalve Perrierina turneriwere

significantly reduced in regions were C. filholiwas highly abundant (Berkenbusch et al. 2000).

The majority of corophiid amphipods are regarded as tubiculous surface fauna (Griffiths, 1976),

and could therefore explain their absence in regions where C. filholiwere abundant, based on

the sediment disturbance created by the sandprawn. In addition, species richness and total

numbers of macrobenthic organisms were significantly reduced in these regions (Berkenbusch

et al. 2000). In the light of its impacts on macrobenthic community structure, and more

importantly, its regulation of communities on a temporal level, the author considered C. filholi

to be a keystone species (Berkenbusch et al. 2000), which implies that its removal leads to the

"collapse" of such a community, and a drastic reduction in species richness (Chapman and Reiss

1997).

There are a few consistent patterns that emerge between the three case studies ofN. harmandi

(Japan), C.filholi (New Zealand), and C. kraussi (South Africa), and their respective impacts on

macrobenthic communities. In the cases of C. filholi and C. krauss~ densities of bioturbators

lead to low abundances of macrobenthic organisms, and communities with comparatively fewer

species. In all three cases, surface fauna were excluded, as well as large K-selected organisms

such as bivalves and gastropods. All of these impacts were a result of sediment deposition and

de-stabilisation at the sediment surface.
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The fact that these results have been replicated in three studies, and because it was done on a

global scale, emphasises the previous point that bioturbation is a key process in sedimentary

habitats, and no less so in the Little Lagoon. In the Little Lagoon, these results have been

demonstrated for intertidal regions only, but there is no reason why bioturbation should not

occur in sub-tidal regions, provided that C. kraussi is present. Crude underwater visual

assessments indicated that C. kraussi was indeed present, as indicated by mounds of expelled

sediment. Moreover, if one considers that bioturbation rates have been shown to be dependant

on abundance and size of sandprawns (Berkenbusch and Rowden 1999), it is more than likely

that C. kraussi may significantly influence the Little Lagoon macrobenthic community at a

temporal level as well, in view of seasonal changes in sizes and abundance of this organism

documented in this study (Figs 27 & 28). It therefore appears that bioturbation by C. kraussiis

potentially by far the most influential process in the Little Lagoon, and over-rides any physical

process as far as structuring macrobenthic communities at a spatio-temporallevel is concerned.
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4. Concluding Remarks

The study has demonstrated that the Little Lagoon habitat is essentially a sheltered, marine

dominated system, in which fluctuations in the physical environment at a temporal level were

negligible. These features had the effect of encouraging the development of highly stable

macrobenthic communities which were rich in species, and in which the biomass was

dominated by large K-selected species such as burrowing bivalves and sandprawns. More

significantly though, the study has conftrmed that a significant shift in thinking is required in

understanding and predicting determinants of community structure in sandflat habitats such as

the Little Lagoon. A large proportion of conventional research has focused on relating

community structure of macrobenthic assemblages to physical and chemical parameters (Flach

and Tamaki 2001), but the results of this study adds to the growing body of evidence indicating

that biological interactions, specifically bioturbation in this case, are significant factors involved

in structuring sandflat communities (Reise 1985).
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6. Appendix A

Table 1: Water depths (m) in the Little Lagoon recorded in March and December 2001. SE = Standard

Error.

March December Mean SE
Al 0 0 0.0 0.0

A2 0.8 1 0.9 0.1

A3 1 0.4 0.7 0.3

A4 0 0 0.0 0.0

BI 0 0 0.0 0.0

B2 0.55 0.7 0.6 0.1

B3 0.1 0.4 0.3 0.2

B4 0 0 0.0 0.0

Cl 0 0 0.0 0.0

C2 1.3 1.2 1.3 0.0

C3 0.7 1 0.9 0.2

C4 0 0 0.0 0.0

Table 2: Spatial and temporal temperature (oC) variations in the Little Lagoon. SE = Standard Error.

2001 2002
Season March June September December March June Mean SE

Al 28.0 22.5 21.0 25.7 26.6 17.9 23.6 1.6
A2 27.7 20.8 20.5 24.6 27.4 18.2 23.2 1.6
A3 27.6 22.4 20.6 25.2 27.4 18.2 23.6 1.6
A4 28.4 23.0 21.1 25.2 28.6 18.1 24.1 1.7
BI 27.1 22.5 22.1 26.7 26.6 17.9 23.8 1.5
B2 26.7 20.9 21.3 24.9 27.9 18.0 23.3 1.6
B3 28.8 22.8 20.7 25.1 26.9 18.3 23.8 1.6
B4 29.3 23.0 21.8 25.5 28.2 18.1 24.3 1.7
Cl 26.4 22.7 22.8 25.9 27.9 18.8 24.1 1.4
C2 27.5 21.8 21.0 25.0 26.8 19.0 23.5 1.4
C3 27.3 22.1 21.1 25.1 26.5 18.9 23.5 1.4
C4 27.0 22.0 21.1 26.6 26.4 19.1 23.7 1.4
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Table 3: Spatial and temporal salinity (ppt) variations in the Little Lagoon. Values in bold indicate

outHers or extreme values. SE = Standard Error.

2001 2002
March June September December March June Mean SE

At 29.3 34.6 37.2 27.1 35.2 30.0 32.2 1.6
A2 29.3 35.2 37.0 36.1 35.5 29.4 33.8 1.4
A3 30.0 34.7 36.7 35.3 35.4 30.4 33.8 1.2
A4 20.4 35.3 37.1 32.1 36.1 27.9 31.5 2.6
Bt 29.8 35.2 37.3 27.2 35.2 30.0 32.5 1.6
B2 29.6 35.2 27.4 35.8 35.5 30.5 32.3 1.5
B3 29.8 33.2 36.6 35.5 35.4 30.8 33.6 1.1
B4 20.4 35.0 34.2 33.5 36.0 30.6 31.6 2.4
Cl 29.6 35.3 36.9 28.9 29.2 30.8 31.8 1.4
C2 29.6 35.1 37.6 35.8 35.2 27.6 33.5 1.6
C3 29.5 35.7 37.6 35.8 35.3 31.3 34.2 1.3
C4 29.2 34.0 37.1 30.0 35.6 31.5 32.9 1.3

Table 4: Spatial and temporal variations in concentrations of dissolved oxygen (mg/L) in the Little

Lagoon. SE = Standard Error.

200t 2002
March June September December March June Mean SE

Al 6.38 6.34 6.75 6.79 4.87 7.6 6.46 0.37
A2 5.95 6.79 5.66 7 6.21 8.1 6.62 0.36
A3 6.96 5.46 6.09 7.71 6.26 7.2 6.61 0.34
A4 6.74 8.4 7.26 6.91 7.11 8.08 7.42 0.27
Bl 5.89 5.63 6.9 7.04 5.9 7.45 6.47 0.31
B2 6.58 6.4 5.75 6.57 6.48 7.98 6.63 0.30
B3 7.03 5.49 6.56 6.86 6.2 7.98 6.69 0.34
B4 8.76 8.7 6.48 7.11 6.74 7.13 7.49 0.41
Cl 5.38 5.51 7.27 6.28 5.35 8.45 6.37 0.51
C2 5.16 6.75 6.38 6.62 5.9 7.95 6.46 0.38
C3 6.29 5.28 6.85 6.94 6.23 7.94 6.59 0.36
C4 7.24 6 6.91 7.57 5.86 7.9 6.91 0.34
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AppendixB

Table 1: Spatial and temporal variations in median phi values of surface sediments in the Little Lagoon.

SE = Standard Error.

2001 2002
March June September December March June Mean SE

Al 2.1 2 2 2 1.8 1.9 1.97 0.04
A2 3.2 3.1 3 3 3 3 3.05 0.03
A3 2.1 2.1 2 2.2 2.1 2.2 2.12 0.03
A4 1.9 1.9 1.9 1.9 2.1 2.2 1.98 0.05
Bl 2.1 2 2 1.9 2 2.2 2.03 0.04
B2 1.8 1.7 1.8 1.8 1.8 1.8 1.78 0.02
B3 2 2 2 1.9 2.4 2.2 2.08 0.07
B4 2.1 2 2 1.9 2.2 2.2 2.07 0.05
Cl 2.4 2.4 2.4 2.4 1.8 1.8 2.20 0.13
C2 2.8 2.7 3 3 3 3.1 2.93 0.06
C3 2.2 2.3 2.3 2.2 2.2 2.2 2.23 0.02

C4 2.2 2.2 2.2 2.2 2.2 2.2 2.20 0.00

Table 2: Spatial and temporal variations in organic contents of surface sediments in the Little Lagoon.

SE = Standard Error.

2001 2002
March June September December March June Mean SE

Al 3.9 3.0 3.0 3.0 3.7 2.4 3.1 0.2
A2 7.5 6.2 5.7 7.0 8.3 6.3 6.8 0.4
A3 2.5 2.4 2.7 3.7 5.7 6.1 3.8 0.7
A4 3.4 3.7 3.6 3.2 4.0 2.1 3.3 0.3
Bl 1.8 1.7 1.7 1.7 2.0 2.4 1.8 0.1
B2 1.9 1.7 1.7 2.0 3.3 3.1 2.3 0.3
B3 1.8 . 1.6 1.9 2.9 3.6 4.0 2.6 0.4
B4 1.6 1.7 1.9 2.7 2.1 2.6 2.1 0.2
Cl 2.5 2.6 2.6 2.2 3.1 3.7 2.8 0.2
C2 5.1 6.2 7.5 6.2 6.6 7.6 6.5 0.4
C3 2.2 3.7 3.2 3.6 5.1 5.7 3.9 0.5
C4 3.0 3.0 2.7 3.7 4.0 3.9 3.4 0.2
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Appendix C

Table 1: Mean density (individuals/m2) of macrofauna in the Little Lagoon recorded in March 2001.

Values are means ofthree site replicates.

Al A2 A3 A4 Bl B2 B3 B4 Cl C2 C3 C4

Polychaeta
Cirratulidae
Unidentified Cirratulid 0 250
polychaetes
Phyllodocidae
Phyllodoce castanea 0 9
Cossuridae
Cossuracoasta 0 518
Orbiniidae
Scoloplosjohnstonei 0 0
Spionidae
Prionospio sexoculata 193 730
Polydora sp. 0 0
Scololepis squamata 9 0
Nereidae
Ceratonereis erythroensis 0 0
Dendronereis arborifera 5 0
Glyceridae
Glycera sp 188 33
Capitellidae
Unidentified Capitellid 113 104
po1ychaetes
Sabellidae
Megalomma sp 0 0
Desdemona ornata 42 0
Maldanidae
Unidentified Maldanid 0 0
polychaetes
Eunicidae
Marphysa depressa 0 0
Crustacea
Anomura
Upogebia africana 5 0
Callianassa kraussi 5 0
Macrura
Betaeusjucundus 0 0
Isopoda
Cyathura estuaria 0 5
Cirolana luciae 33 0
Leptanthura laevigata 160 56
Amphipoda
Melita zeylanica 0 0
Corophium triaenorryx 0 0
Grandidierella bonnieroides 0 0
Cumacea
Cumacea 108 0
Brachyura
Thaumastoplax spiralis 5 5
Paratylodiplax 0 127
blephariskios
Hymenosoma orbiculare 0 0
Tanaidacea
Apseudes digitalis 0 71
Mollusca
Gastropoda
Nassarius krausianus 5 61
Actoecinafusiformis 0 0
Bivalvia
Eumarcia paupercula 14 5
Solen cylindraceus 0 0
Dosinia hepatica 0 0
Brachidontes virgiliae 0 0
Fulvia papyracea 0 0
Tellina prismatica 0 0
Sipunculida 5 0

155 89

5 0

o 0

14 5

334 702
o 0
o 0

o 0
24 66

108 99

14 5

o 0
o 0

5 0

o 0

o 0
o 0

o 0

o 0
o 0
o 612

o 0
o 0
o 0

o 66

o 0
o 0

o 0

o 570

169 19
o 0

94 24
o 5
o 0
o 0
o 0
o 0
o 0

o

o

o

o

325
o
o

o
o

122
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o
o

o
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o

o
9
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o
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o
o
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o
o
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14

o

o
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o
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o
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o
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o
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o
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o

o

o
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o
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Table 2:Mean density (individuals/rn2) of macrofauna in the Little Lagoon recorded in June 2001. Values

are means of three site replicates.

Al A2 A3 A4 BI B2 B3 B4 Cl C2 C3 C4
Polychaeta
Cirratulidae
Unidentified Cirratulid 0 268 217
polychaetes
Phyllodocidae
Phyllodoce castanea 0 0 0
Cossuridae
Cossura coasta 0 523 0
Orbiniidae
Sc%p/osjohnstonei 9 0 0
Spionidae
Prionospio sexocu/ata 188 424 297
Polydora sp. 0 0 0
Scololepis squamata 0 42 0
Nereidae
Ceratonereis erythroensis 0 0 0
Dendronereis arborifera 9 5 9
Glyceridae
Glycera sp 52 66 85
Capitellidae
Inidentified Capitellid 0 0 0
po1ychaetes
Sabellidae
Megalomma sp 0 0 0
~~m~o~w 0 5 0
Maldanidae
Unidentified Maldanid 0 0 0
po1ychaetes
Eunicidae
Marphysa depressa 0 0 0
Crustacea
Anomura
Upogebia africana 0 0 0
Callianassa kraussi 71 0 0
Macrura
Betaeusjucundus 0 0 0
Isopoda
Cyathura estuaria 0 0 0
Cirolana luciae 0 0 0
Leptanthura laevigata 61 42 127
Amphipoda
Melita zeylanica 0 0 0
Corophium triaenonyx 0 19 0
Grandidierella bonnieroides 5 5 28
Cumacea
Cumacea 179 9 99
Brachyura
Thaumastoplax spiralis 0 0 0
Paratylodiplax 0 9 0
blephariskios
Hymenosoma orbiculare 5 0 0
Tanaidacea
Apseudes digitalis 0 0 19
Mollusca
Gastropoda
Nassarius krausianus 0 5 94
Actoecinafusiformis 0 0 0
Bivalvia
Eumarcia paupercu/a 9 61 113
Solen cylindraceus 0 0 5
Dosinia hepatica 0 0 0
Brachidontes virgiliae 0 0 0
Fulvia papyracea 0 0 0
Tellina prismatica 0 0 0
Sipunculida 0 0 0

o
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5

99
o
o

o
o
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Table 3:Mean density (individuals/m2) of macrofauna in the Little Lagoon recorded in September 2001.

Values are means ofthree site replicates.

Al A2 A3 A4 BI B2 B3 B4 Cl C2 C3 C4

Polychaeta
Cirratulidae
Unidentified Cirratulid
polychaetes
Phyllodocidae
Phyllodoce castanea
Cossuridae
Cossura coasta
Orbiniidae
Scoloplos johnstonei
Spionidae
Prionospio sexoculata
Polydora sp.
Scololepis squamata
Nereidae
Ceratonereis erythroensis
Dendronereis arborifera
Glyceridae
GlyceraSP
Capitellidae
Unidentified Capitellid
polychaetes
Sabellidae
Megalomma sp
Desdemona ornata
Maldanidae
Unidentified Maldanid
polychaetes
Eunicidae
Marphysa depressa
Crustacea
Anomura
Upogebia africana
Callianassa kraussi
Macrura
Betaeusjucundus
Isopoda
Cyathura estuaria
Cirolana luciae
Leptanthura laevigata
Amphipoda
Melita zeylanica
Corophium triaenonyx
Grandidierella
bonnieroides
Cumacea
Cumacea
Brachyura
Thaumastoplax spiralis
Paratylodiplax
blephariskios
Hymenosoma orbiculare
Tanaidacea
Apseudes digitalis
Mollusca
Gastropoda
Nassarius krausianus
Actoecinafusiformis
Bivalvia
Eumarcia paupercula
Solen cylindraceus
Dosinia hepatica
Brachidontes virgiliae
Fulvia papyracea
Tellina prismatica
Sipunculida

o 895 169

o 0 0

o 245 9

5 0 0

325 584 282
o 0 0
o 0 0

o 0 0
o 5 5

28 9 24

325 0 0

o 0 0
5 5 9

o 0 0

o 0 0

o 0 0
42 0 0

o 0 0

9 0 0
o 0 0

146 259 122

5 0 0
o 33 19
5 0 9

348 99 372

o 0 0
o 9 0

o 0 0

o 5315 66

5 66 33
o 0 0

9 19 24
o 0 0
33 24 52
o 0 0
o 0 0
o 33 33
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o 0

o 0
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5 5
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Table 4: Mean density (individuals/m2) of macrofauna in the Little Lagoon recorded in December 2001.

Values are means of three site replicates.

Al A2 AJ A4 BI B2 DJ B4 Cl C2 C3 C4

Polychaeta
Cirratulidae
Unidentified Cirratulid
polychaetes
Phyllodocidae
Phyllodoce castanea
Cossuridae
Cossura coasla
Orbiniidae
Scoloplos johnstonei
Spionidae
Prionospio sexoculata
Po/ydora sp.
Scololepis squamata
Nereidae
Ceratonereis erythroensis
Dendronereis arborifera
Glyceridae
Glycera sp
Capitellidae
Unidentified Capitellid
polychaetes
Sabellidae
Mega/omma sp
Desdemona ornata
Maldanidae
Unidentified Maldanid
polychaetes
Eunicidae
Marphysa depressa
Crustacea
Anomura
Upogebia africana
Cal/ianassa kraussi
Macrura
Betaeusjucundus
Isopoda
Cyathura estuaria
Ciro/ana /uciae
Leptanthura laevigata
Amphipoda
Melita zey/anica
Corophium triaenonyx
Grandidierella
bonnieroides
Cumacea
Cumacea
Brachyura
Thaumastoplax spiralis
Paraty/odiplax
blephariskios
Hymenosoma orbicu/are
Tanaidacea
Apseudes digitalis
Mollusca
Gastropoda
Nassarius krausianus
Actoecinafusiformis
Bivalvia
Eumarcia paupercu/a
Solen cylindraceus
Dosinia hepalica
Brachidonles virgiliae
Fulvia papyracea
Tellina prismatica
Sipunculida

o 1022 132

o 5 0

o 80 0

o 0 0

146 1158 443
o 0 0
o 0 0

o 0 0
o 5 5

89 85 75

o 0 0

o 0 0
o 0 28

o 0 0

o 0 0

o 0 0
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Table 5: Mean density (individuals/m2) of macrofauna in the Little Lagoon recorded in March 2002.

Values are means of three site replicates.

Al A2 A3 A4 81 82 83 B4 Cl C2 C3 C4
Polychaeta
Cirratulidae
Unidentified Cirratulid 5 1436 287
polychaetes
Phyllodocidae
Phy/lodoce castanea 0 28 0
Cossuridae
Cossura coasta 0 0 0
Orbiniidae
Scoloplosjohnstonei 0 0 0
Spionidae
Prionospio sexoculata 603 245 405
Polydora sp. 0 0 0
Scololepis squamata 0 0 0
Nereidae
Ceratonereis erythroensis 0 0 0
Dendronereis arborifera 9 0 0
Glyceridae
Glycera sp 28 38 47
Capitellidae
Inidentified Capitellid 0 0 0
polychaetes
Sabellidae
Megalomma sp 0 5 0
Desdemona ornata 14 38 452
Maldanidae
Unidentified Maldanid 0 0 0
polychaetes
Eunicidae
Marphysa depressa 0 5 0
Crustacea
Anomura
Upogebia africana 0 0 0
Ca/lianassa kraussi 9 0 0
Macrura
Betaeusjucundus 0 0 0
Isopoda
Cyathura estuaria 0 0 0
Cirolana luciae 0 0 0
Leptanthura laevigata 14 52 24
Amphipoda
Melita zeylanica 0 0 0
Corophium triaenonyx 0 61 9
Grandidiere/la bonnieroides 5 0 66
Cumacea
Cumacea 66 0 9
8rachyura
Thaumastoplax spiralis 0 0 0
Paratylodiplax 0 0 0
blephariskios
Hymenosoma orbicu/are 0 0 0
Tanaidacea
Apseudes digitalis 0 8639 466
Mollusca
Gastropoda
Nassarius krausianus 0 85 104
Actoecinafusiformis 0 0 9
8ivalvia
Eumarcia paupercula 9 28 56
So/en cy/indraceus 0 5 0
Dosinia hepatica 42 75 80
Brachidontes virgiliae 0 207 89
Fulvia papyracea 0 0 9
Tellina prismatica 0 9 0
Sipunculida 5 0 0

o 0

o 0

o 9

o 0

546 504
o 0
o 0

19 0
52 5

28 33

o 0

o 0
2806 19

14 0

o 0

o 0
o 5

o 0

o 0
o 9

47 14

o 0
o 0
9 0

85 42

o 0
o 0

o 0

o 0

52 5
19 0

28 19
5 5

61 99
o 0
o 0
5 0
o 0

47 28

o 0

5 0

o 0

546 419
o 0
o 0

o 0
o 0

66 0

o 0

o 0
5 504

o 0

o 0

o 0
o 0

o 0

o 0
o 0

122 268

o 0
o 5
o 0

9 24

o 0
o 0

o 0

240 4774

71 113
71 28

28 52
5 5

137 127
o 132
5 0

24 5
o 0

325

24

o

o

155
o
o

14
75

42

o

o
28

o

o

o
o

o

o
o
56

5
o
5

9

o
o

o

28

127
108

85
o

75
61
o
o
o

o

o

o

5

391
o
o

o
o

14

o

o
o

o

o

o
o

o

o
o

38

o
o
o

71

o
o

o

o

o
o

19
o

24
o
o
o
o

61 2580 28

050

050

000

282 692 287
000
000

o 0 0
o 0 28

28 5 38

000

000
9 38 122

o 0 0

000

000
5 0 0

000

000
61 0 0
137 61 395

000
000
o 0 14

o 0 38

000
000

000

o 683 0

71 66 146
9 0 56

14 19 66
000
38 28 85
o 0 14
090
o 14 0
000
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Table 6: Mean density (individuals/m2) of macrofauna in the Little Lagoon recorded in June 2002.

Values are means of three site replicates.

AI
Polychaeta
Cirratulidae
Unidentified Cirratulid 0
polychaetes
Phyllodocidae
P~lloooac~wMa 0
Cossuridae
Cossura coasta 0
Orbiniidae
Scoloplosjohnstonei 0
Spionidae
Prionospio sexoculata 603
Polydora sp. 0
Scololepis squamata 0
Nereidae
Ceratonereis erythroensis 0
DendroMreis arborifera 14
Glyceridae
GlyceraSP 9
Capitellidae
Inidentified Capitellid 0
polychaetes
Sabellidae
Megalomma sp 0
Desdemona ornata 202
Maldanidae
Unidentified Maldanid 0
polychaetes
Eunicidae
Marphysa depressa 0
Crustacea
Anomura
Upogebia africana 0
Callianassa kraussi 89
Macrura
Betaeusjucundus 0
Isopoda
Cyathura estuaria 0
Ciralana luciae 14
Leptanthura laevigata 61
Amphipoda
Melita zeylanica 0
Corophium triaenonyx 0
Grandidierella bonnieroides 14
Cumacea
Cumacea 75
Brachyura
Thaumastoplax spiralis 5
Paratylodiplax 0
blephariskios
Hymenosoma orbiculare 0
Tanaidacea
Apseudes digitalis 0
Mollusca
Gastropoda
Nassarius krausianus 5
Actoecinafusiformis 0
Bivalvia
Eumarcia paupercula 24
Solen cylindraceus 0
Dosinia hepatica 0
Brachidontes virgiliae 0
Fulvia papyracea 0
Tellina prismatica 0
Sipunculida 0

A2 A3

3809 75

o 0

o 0

o 0

325 377
o 0
o 0

o 0
14 0

33 38

o 0

5 0
14 523

o 0

o 0

o 0
o 0

o 0

o 0
o 0

137 202

o 0
o 33
5 14

o 14

o 0
o 0

o 0

75 2076

56 137
42 9

5 28
19 0
47 231
o 52
o 0
o 9
o 0

A4

226

9

o

o

659
o
o

o
137

14

o

o
221

o

o

o
5

o

o
o

353

o
o

24

127

o
o

o

1234

71
9

9
o

127
o
o
o
o

BI

104

o

o

o

198
o
o

o
o

38

o

o
o

o

o

o
122

o

o
o

47

o
o
5

o

o
o

o

5

o
o

o
o
19
o
o
5
o

B2

o

o

o

o

188
o
o

o
o

19

o

o
33

o

o

o
264

o

o
24
433

o
o
9

151

o
o

o

o

19
o

o
5

89
o
o
o
o

B3

273

o

o

o

791
o
o

o
75

47

o

o
301

o

o

o
o

o

o
o

358

o
o
o

80

o
o

o

1398

75
o

24
o

113
o
o
o
o

B4

94

o

o

o

1507
o
o

5
99

33

o

o
108

o

o

o
o

o

o
o

169

o
o
5

141

o
o

o

28

52
o

19
14
42
5
o
9
o

Cl

o

o

o

9

410
o
o

o
o

14

o

o
14

o

o

o
66

o

o
o

122

o
o
9

61

o
o

o

o

o
o

5
o

38
5
o
o
o

C2

400

o

461

o

890
o
o

o
5

56

169

o
122

o

o

o
o

o

o
o

28

o
o
o

24

5
38

o

28

66
o

o
5

33
o
o
o
o

C3

5

o

o

9

749
o
o

o
o

66

o

o
94

o

o

o
104

o

o
o

377

o
o
19

363

o
o

o

5

14
o

5
o
80
o
o
o
o

C4

o

o

o

5

264
o
o

o
o

19

o

o
9

o

o

o
42

o

o
o

179

o
o
19

311

o
o

o

o

9
o

o
o

33
o
o
o
o
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