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ABSTRACT 

 

Increase in the costs associated with agricultural production and the limited availability of 

resources have amplified the need for optimized solutions to the problem of crop planning. 

The increased costs have imparted negatively on both the cost of production as well as the 

sale prices of finished products to consumers, with the resultant effects on the socio-economic 

livelihoods of people around the world. This has increased the burden of poverty, 

malnutrition, diseases and other types of social problems. The limited availability of land, 

irrigated water and other resources in crop planning therefore demand optimal solutions to 

the problem of crop planning, in order to maintain the desired level of profitable outputs that 

do not strain available resources while still meeting the demands of consumers. Incidentally, 

the current situation is such that crop producers are required to generate more output per 

area of crops cultivated within the ambit of the available resources for crop production. This 

creates a great challenge both for farmers and researchers.  Interesting, the problem is 

essentially an optimization problem hence a challenge to researchers in mathematical and 

computing science. 

 

Notably within the agricultural sector, achieving efficient use of irrigated water demands that 

optimized solutions be found for its usage during crop planning and production.  Incidentally, 

increase in population growth and limited availability of fresh water has increased the 

demand of fresh water supply from all sectors of the economy. This has increased the 

pressure on the agricultural sector as being one of the primary users of fresh water supply to 

use irrigated water more efficiently. This is to minimize excessive water wastage. It has 

therefore become very important that optimized solutions be found to the allocation and use 

of the irrigated water, for water conservational purposes. This is also a very essential key to 

crop planning decisions.   

 

Therefore, in order to determine good solutions to crop planning decisions, this study dwells 

on a fairly new but important area of agricultural planning, namely the Annual Crop Planning 

(ACP) problem which essentially focuses at the level of an irrigation scheme.  The study 

presents a model of the ACP problem that helps to determine solutions to resource allocations 
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amongst the various competing crops that are required to be grown at an irrigation scheme 

within a year. Both new and existing irrigation schemes are considered.   

 

Determining solutions for an ACP problem requires that the requirements and constraints 

presented by crop characteristics, climatic conditions, market demand conditions and the 

variable costs associated with agricultural production are observed. The objective is to 

maximize the total gross profits that can be earned in producing the various crops within a 

production year.  

 

Due to the complexity involved in determining solutions for an ACP problem, exact methods 

are not researched in this study. Rather, to determine near-optimal solutions for this   -Hard 

optimization problem, this research introduces three new Local Search (LS) metaheuristic 

algorithms. These algorithms are called the Best Performance Algorithm (BPA), the Iterative 

Best Performance Algorithm (IBPA) and the Largest Absolute Difference Algorithm (LADA). 

The motivation for implementing these algorithms is to investigate techniques that can be 

used to determine effective solutions to difficult optimization problems at low computational 

costs.  

 

This study also investigates the performances of three recently introduced swarm intelligence 

(SI) metaheuristic algorithms in determining solutions to the ACP problems studies. These 

algorithms have shown great strength in providing competitive solutions to similar 

optimization problems in literature, hence their use in this work. To the best of the 

researchers’ knowledge, this is the first work that reports comparative study of the 

performances of these particular SI algorithms in determining solutions to a crop planning 

problem. Interesting results obtained and reported herein show the viability, effectiveness 

and efficiency of incorporation proven metaheuristic techniques into any decision support 

system that will help determine solutions to the ACP problem. 
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CHAPTER ONE 
INTRODUCTION AND SCOPE 

 
 

1.1 Background and Motivation 

Recently, increased costs associated with agricultural production coupled with a limited 

availability of production resources have amplified the need for optimized solutions to the 

problem of crop planning.  Expectedly, the increased costs associated with crop production 

have resulted in increases in the price of food products which have had negative effects on the 

standards of living of people especially in sub-Saharan Africa.  Thus, the increased prices of 

food coupled with the shortages of food supply have contributed to various forms of social 

and economic problems including poverty, disease and malnutrition.  This puts more pressure 

on farmers especially crop producers.  At present, crop producers are required to make more 

efficient decisions in managing their limited resources for crop production.  In spite of the 

limited agricultural resources, it is also becoming increasingly very important for crop 

producers to simultaneously raise the returns achieved per area of crops cultivated.  

 

According to the Food and Agriculture Organization of the United Nations, it is now estimated 

that more than a billion people suffer from under-nourishment (FAO, 2010) which is a 

reflection of the state of things in the agricultural sector as the primary supplier of food 

(Schmitz et al., 2007).  Therefore efforts to combat the problems of increased production 

costs, increased food prices, shortages in food supply, poverty and starvation must also focus 

on developing optimal production of food crops within the agricultural sector.  

 

Determining optimized solutions in crop planning is a complex and difficult problem.  Aside 

the fact that crop production involves multi-stage processes, there are several competitive 

and conflicting factors that must be taken into consideration. Some of these factors are 

predictable while others are stochastic.  However, all factors are important and will eventually 

have impact on the different stages of the crop production process.  The multiple stages of the 

crop production process include crop selection, land allocations, planting, the growth stages, 
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harvesting, crop storage and the marketing stage (Acquaah, 2004).  Each stage of the crop 

production process will therefore require careful planning. Planning is important as the 

decisions made at each stage will influence the outcome determined at the end of the cropping 

season for each crop and at the end of a production year for all crops.  

 

During the crop selection process, the factors associated with the geographical location of the 

farm, crop characteristics, production costs and the uncertainty of operating within a 

deregulated marketing environment have major influence on the decisions made in selecting 

the crops to be cultivated. At a specific geographical location, the climatic and soil factors are 

important. This will determine the types of crops that will most suitably adapt to the given 

geographical location (Mustafa et al., 2011). In terms of crop characteristics, the crops’ water 

requirements and the crops’ yield are important. The market demand and supply conditions 

and the production costs will also influence the selling prices of the harvests.  

 

Once the crop selection has been finalized, solutions will need to be determined in allocating a 

limited area of agricultural land amongst the various competing crops to be planted or 

cultivated. In allocating land, the crop yields, forecasted market prices, market demand 

conditions and the various costs associated with crop production need to be considered.  The 

main objective for determining optimal land allocation is to maximize the total gross profits 

that can be earned in the production and sale of the harvests.  Similarly, during the planting 

process, crop growth and the harvesting stages the limited resources available for crop 

production will need to be efficiently allocated. The limited resources include labor, 

equipment, fertilizers, pesticides and irrigated water, among others.  During the crop growth 

stage, the limited resources will need to be allocated to the different crops according to their 

daily needs. It is important that close attention be paid during the crop growth stage of the 

crop production process (Dukes et al., 2012). Meanwhile, several factors can hinder plant 

growth which will then ultimately affect the yield. Another challenge that comes up after 

crops have been harvested is to determine solutions that minimize storage costs and also to 

determine the best marketing strategy that maximizes the total gross profits earned in the 

sale of harvests.  

http://www.google.co.za/search?tbo=p&tbm=bks&q=inauthor:%22George+Acquaah%22
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There are several uncertain factors that need to be considered in making crop planning 

decisions (Astera, 2012). These uncertain factors that influence crop production are the 

climatic conditions, the soil characteristics, the forecasted market prices and the cultivation 

practices, amongst others. The climatic conditions include factors such as rainfall, 

temperature and drought. The soil conditions include the nutritional quality of the soil, the 

soil texture, the soil moisture balance and its drainage systems, among others (Astera, 2012). 

Since the exact selling prices of the crops are not known in advance, forecasted selling prices 

are used to determine the area of land under which the crops should be cultivated 

(Kantanantha, 2007). Furthermore, cultivation practices have a major influence on the crop’s 

growth stages, and the yields produced. In cultivation, weeds, pests and bacteria must be 

catered for. If crop producers knew these uncertain factors in advance, it would allow for 

better preparation for the production year ahead (Kantanantha, 2007). 

 

Determining optimized solutions for the different stages of the crop production process has 

attracted considerable research in different academic disciplines. Due to the complexity of 

these problems and the uncertainty of several factors, there are no methods that exist that 

guarantee optimal solutions in crop planning.  The main aim is therefore to find the best 

possible solutions within reasonable computational time, given the probable rainfall patterns, 

the costs of crop production, the crop yields, the market demand and supply conditions and 

the forecasted producer prices. The solutions found then serves to advise crop planners on 

the best way to go about resource allocations amongst the various competing crops that are 

required to be produced within a production year.  

 

This research focuses on determining solutions to the land allocation problem of the crop 

production process, specifically at the level of an irrigation scheme. At this level, suggestions 

can be made concerning resource allocations amongst various competing crops that are 

required to be grown within a production year. The objective of determining the best 

resource allocations will be to optimize the total gross profits that can be earned from all 

crops produced within a year.  Therefore, to help in determining optimal solutions in 

allocating land, irrigated water supply and the variable costs associated with crop production, 
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a new model for the Annual Crop Planning (ACP) problem has been introduced as part of the 

agricultural planning problem in this study.  To the best of the researchers’ knowledge, this is 

the first attempt to define and model ACP as an optimization problem as presented in this 

research study. Two mathematical models for the ACP problems for both new and existing 

irrigation schemes were developed.  The study uses the Vaalharts and Taung Irrigation 

Schemes, which are neighboring irrigation schemes located at the borders of the Northern 

Cape and North West Province of South Africa (Grove, 2008), as case studies.  

 

Like many similar real-world optimization problems, the ACP problem is NP-Hard in nature. 

Generally, various types of optimization problems in literature have been solved using exact 

or heuristic (approximate) methods (Adewumi and Ali, 2010).  Exact methods guarantee that 

the optimal solution will be found. However, for NP-Hard problems, exact methods do not 

guarantee that the optimal solution will be found within reasonable computational time 

(Trevisan, 2011). Exact methods are preferred for optimization problems where the optimal 

solution can be determined within polynomial time ( ). However, if the computational time 

involved with determining the optimal solution increases exponentially then exact methods 

are not preferred.  The complexities of many real-world optimization problems, like the ACP 

problem, have therefore made the use of exact methods in providing solutions a rare 

occurrence.  Rather, researchers have settled for near-optimal solutions that compromise 

accuracy for speed with the use of heuristic approaches.  Efforts are currently geared towards 

providing ‘intelligent’ heuristic solutions to complex optimization problems.  The majority of 

these intelligent algorithms are developed and modeled after some natural processes or 

behaviors of animals in nature. Examples include the modeling of the annealing process that 

occurs when heated metal begins to cool, modeling the social behavior of swarms of biological 

agents and using memory ability, amongst others. Heuristic algorithms that use more 

advanced techniques in determining solutions are referred to as metaheuristic algorithms.  

 

To determine solutions to the ACP problems for new and existing irrigation schemes, this 

research has investigated the usefulness of employing both Local Search (LS) and Swarm 

Intelligence (SI) metaheuristic algorithms.  LS metaheuristic algorithms make slight changes 
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to the solutions being worked with in trying to determine improved solutions in an iterative 

way. SI algorithms are population-based algorithms that model the way biological agents 

interact with each other and their environments in accomplishing an overall task (Blum and 

Merkle, 2008).  This research introduces three new LS metaheuristic algorithms, and 

investigates three relatively new SI metaheuristic algorithms in an effort to determine 

solutions to the ACP problems studied in this research. Generally, both LS and SI 

metaheuristics have been successfully used to determine solutions to many real-world   -

Hard optimization problems. 

 

In terms of land allocation, the ACP problem was considered and modeled as an instance of 

the Space Allocation Problem (SAP) (Adewumi, 2010; Adewumi and Ali, 2010; Silva, 2003). 

SAP’s are amongst the hardest optimization problems found in literature (Silva, 2003).  Space 

allocation involves allocating a limited area of available space amongst a finite number of 

demanding entities that require space utilization, under given constraints and requirements 

(Silva, 2003).  The objective is to determine a solution that allocates the limited area of 

available space in such a way that provides the best level of satisfaction amongst all 

demanding entities. Instances of SAP’s in literature include shelf space allocation (Tsai and 

Wu, 2010; Bai, 2005), office space allocation at tertiary institutions (Silva, 2003) and the 

hostel space allocation (Adewumi and Ali, 2010), amongst others.  Some of these instances of 

SAP’s have been modeled mathematically as variants of known benchmark discrete 

optimization models such as bin-packing, assignment modeling, and knapsack modeling 

(Silva, 2003). The ACP problems introduced in this work have been modeled using a modified 

form of the knapsack model. Specifically, a bounded-fractional-multiple knapsack model with 

an added constraint has been used.  

 

1.2 Contributions of this Thesis 

This research work makes the following contributions: 
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1. The description of the Annual Crop Planning (ACP) problem at the level of an 

irrigation scheme is presented. The ACP problems presented are those at new and 

existing irrigation schemes. 

2. Two practical mathematical models are introduced for determining solutions to these 

ACP problems. 

3. An investigation into the suitability of employing both Local Search (LS) and Swarm 

Intelligence (SI) metaheuristic algorithms, in determining solutions to these ACP’s has 

been done. Comparisons of the performances of both the LS and SI algorithms are 

done. This research shows that the LS and SI metaheuristic algorithms can 

successfully be applied in providing competitive solutions to crop planning problems. 

4. Three new LS metaheuristic algorithms have been introduced. The performances of 

the new LS metaheuristic algorithms are shown to be very competitive in determining 

solutions.  

5. For the first time, a comparative study in the performances of the Firefly Algorithm, 

Cuckoo Search and Glowworm Swarm have been made in determining solutions to a 

crop planning problem. 

6. In addition to the available data used, twelve new test datasets have been compiled 

and are made available to further encourage research to the problem of ACP. 

 

1.3 Overview of this Thesis 

The remainder of this dissertation is as follows:  

Chapter two discusses the field of optimization. Classifications of the different types of 

optimization problems are presented. Techniques used in determining solutions to 

optimization problems are also discussed.   

 

Chapter three discusses the multi-stage process of crop production. Attention is paid to the 

various costs associated with the production process. The several factors that affect the plant 

growth and its yield are discussed. A description of the conditions associated with the 
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geographical location of the case studies in this research is given. The problem definition is 

also formalized. 

 

Chapter four presents the formulation of the ACP problem as a Space Allocation Problem. The 

formulation of the ACP mathematical model is also described.   

 

Chapter five presents and describes the three new LS metaheuristic algorithms. Descriptions 

of two other popular LS metaheuristic algorithms are also given. These algorithms will be 

used to compare the performances of the new LS algorithms in their abilities to determine 

solutions. 

 

Chapter six presents and describes three recently developed SI metaheuristic algorithms. The 

description of a well-known population based metaheuristic algorithm is also given. This 

algorithm is used to compare the performances of the SI algorithms in their abilities to 

determine solutions.  

 

Chapter seven presents the ACP mathematical model used for determining solutions to the 

ACP problem at an existing irrigation scheme. The solutions determined by the LS and 

population based metaheuristic algorithms are also presented and discussed. Conclusions are 

drawn concerning the possible strengths and weaknesses in determining solutions to the ACP 

problem at an existing irrigation scheme. 

 

Chapter eight presents the ACP mathematical model used for determining solutions to the 

ACP problem at a new irrigation scheme. Similar to chapter seven, the solutions determined 

by the LS and population based algorithms are presented and discussed. Conclusions are also 

drawn concerning the possible strengths and weaknesses of the algorithms in determining 

solutions to the ACP problem at a new irrigation scheme.   
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Finally, chapter nine draws conclusions and discusses possible future research work. 
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CHAPTER TWO 

AN OVERVIEW OF GLOBAL OPTIMIZATION 
 

 
2.1. Introduction 

Optimization problems exist all around us. There is always a desire to determine the optimal 

solution in accomplishing a task. Simple examples of optimization problems range from 

finding the shortest walking distance between any two points, to minimizing the distance 

travelled by hundreds of vehicles in trying to optimize fuel consumption, amongst others. 

Optimization is therefore a very relevant field of study which has attracted enormous interest 

academically. It is largely studied in the fields of Computer Science, Mathematics and 

Economics, amongst others (Boyd and Vandenberghe, 2004).  The goal in determining 

solutions to optimization problems is to determine a solution that will optimize the problems’ 

objective. The solution found must exist within the domain of the solution space. For the 

solution found to be feasible, it must satisfy the multiple constraints and objectives that are 

associated with the objective function.  

 

This chapter briefly describes the field of optimization. Attention is paid to the different 

categories of optimization problems and the techniques used to determine solutions.  

 

2.2. Mathematical Optimization 

A formal definition of optimization is as follows (Snyman, 2005): 

Definition 2.1: Let          represents an objective function.      is a set of feasible 

solutions that exist within the solution space of real numbers  . Let     . The objective is to 

determine        such that  (  ) either minimizes or maximizes the objective function  , 

i.e. 

 (  )   ( ),       (minima)     (   ) 
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 (  )   ( ),       (maxima)    (   ) 

 

In equations     and    ,  (  ) are optimal solutions. Optimal solutions are found within the 

local neighborhood structures of a solution space.  

 

A neighborhood structure is defined as follows (Blum and Roli, 2003): 

Definition 2.2: Let        be a function that assigns to every feasible solution     a 

subset of feasible solutions    ( )   .  ( ) is called the neighborhood of solution   if each 

neighbor    ( ) is in some way close to   within the domains of the solution space  .   

 

Optimal solutions that are found within the local neighborhood structures of a solution space 

are called the local optima. The local optima can either be the local minimum or maximum 

solutions. Several local optimum solutions may exist within the local neighborhood structures 

of a solution space. The best local minima or maximum that exists within the solution space is 

the global optimal solution. Global optimal solutions are local optimal solutions, but not 

necessarily vice versa. 

 

The definition of local minimum, local maximum, global minimum and global maximum 

solutions are given by definitions 2.3, 2.4, 2.5 and 2.6 below. For these definitions let   

represent an objective function and let   represent a solution space of real numbers 

(Hancock, 2005). 

Definition 2.3: A local minimum exists at a point      if there exists some value     such 

that 

 (  )   ( ), subject to   –      ,          (   ) 

In equation 2.3,   –     is the absolute value of the difference between   and   . 
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Definition 2.4: A local maximum exists at a point      if there exists some value     such 

that 

 (  )   ( ), subject to   –      ,          (   ) 

 

Definition1.5: A global minimum exists at a point         , 

     (  )   ( ),             (   ) 

 

Definition 1.6: A global maximum exists at a point         , 

 (  )   ( ),             (   ) 

 

Figure 2.2.1 illustrates local optimum solutions. The global optimal solutions are the extreme 

local optimum solutions. Local optimum solutions are the optimal solutions found within the 

local neighborhood structures of the solution space.  

 

 

 

 

 

 

 

 

 

LOCAL OPTIMA 

LOCAL OPTIMA GLOBAL OPTIMA 

GLOBAL OPTIMA 

Figure 2.2.1: Local optimum solutions of a one-dimensional objective function 
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Determining the global optimal solution requires performing an exhaustive search of the 

solution space. If the global optimal solution can be found within polynomial time ( ) then the 

solution is considered deterministic and is traceable. Deterministic solutions have a clear 

relationship between the optimal solution and the decision variables used to determine the 

optimal solution.  

 

The computational time involved with determining the global optimal solution is not a major 

factor if the solution can be determined within  . However, if the computational time 

increases exponentially in determining the global optimal solution then computational time 

does become important. If only exponential time algorithms exist in determining the global 

optimal solution then the problem is considered intractable and is non-deterministic 

polynomial (  ) (Silva, 2003). For    type optimization problems, performing an exhaustive 

search of the solution space may be infeasible. For these types of problems, accepting 

approximate solutions is more widely acknowledged. Approximate or near-optimal solutions 

are not the global optimal solutions but are considered acceptable if the solutions can be 

found within  , for    type optimization problems.  

 

There are two types of methods used to determine solutions to optimization problems. These 

include exact and heuristic algorithms. Exact algorithms exhaustively search the solution 

space in order to determine the global optimal solution. These algorithms don’t consider the 

computational time involved with determining the global optimal solution (Trevisan, 2011). 

Since many real-world optimization problems are    in nature, exact algorithms are not 

preferred in determining solutions if the computational time is expected to be exponential. 

Examples of exact algorithms include Linear Programming, Dynamic Programming and 

Branch and Bound. 

 

Heuristic algorithms provide near-optimal solutions to optimization problems. Near-optimal 

solutions are accepted when no polynomial-bound algorithm exists to determine the global 

optima. These solutions are slightly inferior solutions but are accepted in trading accuracy for 
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a reduction in computational time complexity (Syam and Al-Harkan, 2010). Heuristic 

algorithms are decision algorithms which use trial and error techniques in performing a 

search of the solution space. It is successfully applied in providing solutions to both 

continuous and combinatorial optimization problems.  

 

2.3. Classifications of Optimization Problems 

Optimization problems are classified in many ways. The classifications are based on the 

problem constraints, the nature of the equations involved, the number of objective functions, 

the deterministic nature of the problem and the type of decision variables used, amongst 

others (Raju and Kumar, 2010). No single optimization algorithm exists that can provide 

optimized solutions to all types of optimization problems. Certain types of optimization 

techniques will therefore be more adaptable to some types of optimization problems rather 

than others. Brief descriptions of the primary classifications of optimization problems are 

given below.  

 

2.3.1. Classification Based on Constraints 

Constraints are the restrictions associated with the objective function  .  They define the 

bounds within which feasible solutions are found. Constraints can be classified as being either 

hard or soft (Domshlak et al., 2006). Hard constraints are those constraints that must not be 

broken. Soft constraints are those constraints that can be compromised. Feasible solutions 

that are found within the solution space are those that satisfy all hard constraints and satisfy 

as many soft constraints as possible.  

 

The categorization of optimization problems, based on constraints, depend on the number of 

constraints that are associated with the problems’ objective  . There are two types of 

categories. These include unconstrained and constraint optimization problems. 

Unconstrained Optimization Problems: If no constraint governs the evaluation of   then 

the problem is an unconstrained optimization problem.  
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Constrained Optimization Problems: If constraints govern the evaluation of   then the 

problem is a constrained optimization problem.  

Most real-world optimization problems are multi-constrained, however, several 

unconstrained optimization problems do exist.  

 

2.3.2. Nature of the Equations Involved 

The nature of the equations of the objective function  , and its constraints, can be linear, non-

linear, geometric or quadratic, amongst others (Raju and Kumar, 2010). Optimization 

problems are therefore also classified based on the nature of the equations involved.  

Linear Programming Problems (LPP): If the formulation of the optimization problem is 

governed by linear equations of non-negative decision variables then the problem is a LPP. 

Mathematically, LPP’s are formulated as follows (Raju and Kumar, 2010): 

Optimize:   ( )  ∑      
 
         (   ) 

  Subject to: ∑          
 
   ,               (   ) 

                          (   ) 

  Where:     ,     and    are constants 

Non-Linear Programming Problems (NLPP): If one or more constraints governing the 

formulation of the optimization problem are non-linear, or if   is non-linear, then the problem 

is a NLPP. NLPP’s are the most common programming problems encountered and are 

mathematically represented as follows (Jain and Singh, 2003). 

Optimize:  ( )       (    ) 

Subject to:    ( )                    (    ) 

    ( )        (   )         (    ) 

  Where:    ( ) = equality constraints 
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      ( ) = inequality constraints 

                   = design variables 

Geometric Programming Problems (GMPP): If the constraints governing the formulation of 

the optimization problem are polynomials of the variables   then the problem is a GMPP. 

Quadratic Programming Problems (QPP): These are maximization type NLPP’s. They have 

‘concave’ objective functions and linear constraints. 

 

2.3.3. Number of Objective Functions 

There may be single or multiple objective functions associated with the formulation of the 

optimization problem.  

Single-objective Programming Problems: This type of optimization problem only requires 

one objective function   that would need to be evaluated. 

Multi-objective Programming Problems (MPP): This type of optimization problem 

requires that more than one objective function be simultaneously evaluated. Most real-world 

problems are MPP in nature. MPP is mathematically represented as follows. 

Optimize:    ( )               (    ) 

Subject to:     ( )                     (    ) 

 

2.3.4. Deterministic Nature of the Problem 

The deterministic nature of an optimization problem relates to the computational time 

involved with determining the optimal solution. If the optimal solution can be found within   

then the optimization problem is considered deterministic. If the optimal solution cannot be 

determined within   then the problem is considered non-deterministic. Exact methods are 

used to provide solutions to deterministic optimization problems. Examples of exact methods 

include the Divide and Conquer and the Branch and Bound algorithms.  For non-deterministic 

type optimization problems, heuristic algorithms are preferred. Examples of metaheuristic 
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algorithms include the Genetic Algorithm (GA), Simulated Annealing (SA) and Tabu Search 

(TS). 

 

2.3.5. Type of Decision Variables Used 

Decision variables can either be values taken from a real numbered system  , or from a set of 

discrete values. Discrete values are the unique inputs that are allowed to be used as the 

decision variables to the objective function. Based on the decision variables used, 

optimization problems can be classified as being either continuous or combinatorial in nature. 

 

Based on the categories mentioned above, in subsections 2.3.1 to 2.3.5, an example of an 

optimization problem can be that of a multi-constrained, multi-objective, linear and non-

deterministic optimization problem, which may use continuous values as the decision 

variables to the objective function  . As also mentioned previously, the types of techniques 

used to provide solutions to these optimization problems include exact and heuristic methods. 

The explanation of exact methods is out of the scope of this research. However, heuristic 

algorithms are explained in subsection 2.4 below. 

 

2.4. Heuristics Algorithms 

Heuristic algorithms are suitably used to provide near-optimal solutions to    type 

optimization problems, within  . They are decision algorithms which use trial and error 

techniques in deciding on the next solution to exploit within the local neighborhood 

structures of a solution space. Heuristic algorithms are iterative algorithms which usually stop 

after a specified number of iterations have completed or when a stopping criteria has been 

satisfied.  

 

One problem of applying heuristic algorithms is premature convergence (Rocha and Neves, 

1999). Premature convergence occurs when the heuristic algorithm converges to a local 
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optimum solution, which is not close enough to the global optimal solution. To minimize the 

probability of premature convergence, heuristic algorithms employ more ‘intelligent’ 

techniques in determining solutions. These intelligent techniques allow for a more effective 

exploration and exploitation of the solution space.  

 

Exploration involves exploring the neighborhood structures of the solution space to try and 

determine more promising areas. These promising areas may possibly contain the global 

optimum solution. Exploitation involves exploiting the local neighborhood structures of these 

promising areas in order to try and find the local optimum solution. Finding a good balance 

between exploration and exploitation means that an algorithm should quickly determine 

promising areas within the solution space but should not spend too much of time searching 

for the local optimum solution (Syam and Al-Harkan, 2010). 

 

Intelligent techniques which allow for more effective exploration and exploitation of the 

solution space reduce the risk of premature convergence. Some intelligent techniques 

employed include the use of memory abilities, learning from other ‘agents’ and randomly 

jumping to other neighborhood structures within the solution space. Heuristic algorithms that 

use more intelligent techniques are called metaheuristic algorithms. Metaheuristic algorithms 

are not problem specific algorithms. Metaheuristic algorithms which use randomization in 

determining solutions fall under a category of algorithms known as the Monte Carlo 

algorithms (Krauth, 1998). 

 

Popular Monte Carlo metaheuristic algorithms that provide near-optimal solutions to    type 

optimization problems include Evolutionary Algorithms (EAs), Swarm Intelligence (SI), 

Simulated Annealing (SA) and Tabu Search (TS), amongst others. EAs include algorithms such 

as the GA and Differential Evolution (DE) (Storn and Price, 1997; Price et al., 2005). SI 

includes algorithms such as the Ant Colony Optimization (ACO) (Dorigo, 1992; Dorigo and 

Gambardella, 1997), Cuckoo Search (CS), Firefly Algorithm (FA) and Glowworm Swarm 

Optimization (GSO). GA, SA, TS, CS, FA and GSO are the algorithms investigated in this 
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dissertation and are therefore referenced and explained in more detail in chapters five and 

six.   

 

2.5. Conclusion 

This chapter describes the field of optimization and shows its relevance in research. There are 

several types of optimization problems that exist in nature. Brief descriptions have been given 

on some of the more important categories of optimization problems that exist. The techniques 

used to determine solutions to optimization problems have also been mentioned. These 

techniques include exact and heuristic methods. The description of exact methods is out of the 

scope of this research. However, heuristic and metaheuristic algorithms have been explained.  

 

This research investigates the abilities of employing both LS and SI metaheuristic algorithms 

in determining solutions to the ACP problems presented in chapters seven and eight. These 

ACP problems are single-objective NP-Hard optimization problems which are multi-

constrained, linear and non-deterministic. They use continuous values as the decision 

variables to their objective functions.  
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CHAPTER THREE 
CROP PRODUCTION AND PLANNING 

 
 
3.1 Introduction 

In order to present and formulate the problem of ACP, it is important to understand the crop 

production process. There are several stages involved in the crop production process. The 

decisions made at each stage will have an effect on the other stages, in sequence. Therefore, it 

is important that effective decisions be made at each stage of the crop production process. All 

decisions made will ultimately affect the overall returns gained at the end of a cropping 

season, and production year. 

 

At each stage there are several factors that need to be considered. These factors (described 

below) are important in that they will influence the plants growth and its yield. Similarly, at 

each stage, there are various costs associated with the production of each crop. These 

accumulated costs, coupled with the potential yield and the forecasted producer prices will 

influence the total area of land that should be allocated for the production of each crop. 

Another important factor that must be considered in allocating resources is the market 

demand conditions of each crop. The production of each crop should not be less than what the 

minimum market demand is expected to be. The production should also not be more than 

what the maximum demand is expected to be. All these factors play important roles in making 

resource allocation decisions for the various competing crops that are required to be grown 

within a production year.  

 

The primary factors that influence the plants growth and its yield include the climatic and soil 

conditions, the Crop Water Requirement (CWR) and the cultivation practices. The climatic 

conditions at specific geographical locations will influence the rate of evaporation from the 

soil surface, and the transpiration rate through the crops. The soil texture will influence the 

soil moisture capacity of the soil. The soils’ nutritional value also plays an important role in 

the growth of the plant. Cultivation practices are also important throughout the plant growth 
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stages. It involves looking after the daily needs of the plants. The factors that hinder the plants 

growth and affect its yield include weeds, pests, and bacteria, amongst others. These factors 

must be dealt with to protect the plants during their life cycles. Irrigated water applications 

are also important. Irrigation is important in maintaining the soils’ moisture content level 

(Brouwer and Heibloem, 1986). The soil moisture content level should be enough to prevent 

the plants from wilting, and should be sufficient enough to prevent root damages. The 

scheduling of irrigated water is called irrigation scheduling. Irrigation scheduling is out of the 

scope of this dissertation.  

 

Due to the resource limitations and the increased costs associated with crop production, it is 

important that effective decisions be made in managing the limited resources amongst the 

various competing crops that are required to be grown.  The limitations of fresh water supply, 

and the increase in population, have resulted in an increased demand for fresh water from all 

sectors of industry (Schmitz et al., 2007). The agricultural sector has now been placed under 

increased pressure to used irrigated water more efficiently. This is due to the fact that the 

agricultural sector is mostly accused of excessive water wastage compared to other sectors of 

industry (Schmitz et al., 2007). Therefore, it is important that optimized solutions be found 

concerning irrigated water allocations in crop production. 

 

3.2 Crop Production Cycle  

The crop production process is a multi-staged process. It includes crop selection, land 

allocations, planting, the plant growth stages, harvesting, storage and marketing (Acquaah, 

2004). For each crop grown, several resources will need to be allocated for the different 

stages of the crop production process. The allocation of resources, at each stage, will 

contribute to the overall costs involved in the production of the crops. To reduce this cost, 

effective decisions will need to be made in resource allocation.  

 

Majority of the costs associated with crop production include the preparation of the soil, 

planting, pest management, irrigated water supply and harvesting. At the level of an irrigation 
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scheme, many tasks are done using machinery. However, there are several tasks that are 

required to be done by hand. Examples include the harvesting of fresh produce such as fruits 

and vegetables. To better understand the costs associated with agricultural production, brief 

descriptions are given on some of the very important stages of the crop production process. 

 

3.2.1 Soil Preparation 

The preparation of the soil takes place at the beginning of the planting season for each crop. It 

involves tilling the soil and using chemicals to destroy weeds, etc. Weeds need to be removed 

because they will compete with the crops for soil nutrition and water. The more nutrition and 

water used up by the weeds, the less will be available for crop development. This will 

influence the plants’ growth and the yield obtained. 

 

To prepare the soil, tractors are used to pull equipment for tilling the soil. An example of a 

piece of equipment that can be used is a plow. There are several types of plows, they include; 

the moldboard plow, disk plow and chisel plow. Examples of a tractor pulling a moldboard 

plow, disk plow and chisel plow are shown in Figures 3.2.1, 3.2.2 and 3.2.3 below.  

  

 

 

 

 

 

Other types of machinery include disk harrows and field cultivators. Disk harrows use steel 

blades to make incisions in the soil. Field cultivators are used for tillage and seedbed 

preparation. Examples of a disk harrow and a field cultivator are shown in Figures 3.2.4 and 

3.2.5 below. 

Figure 3.2.1:  Moldboard plow 
(www.britannica.com) 

Figure 3.2.2: Disk plow 
(www.britannica.com) 

Figure 3.2.3: Chisel plow 
(www.tinyfarmblog.com) 
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3.2.2 Planting of Seeds 

Once the soil is prepared, seeds can be sown. Seeds are sown into the soil and represent the 

beginning of the cropping season for each crop. The sowing of seeds can be done manually 

and by the use of machinery. The types of machinery used for sowing include tractors, drills 

and planters. Drills are used to sow seeds of crops with close spacing, such as wheat and 

barley. Planters create a trench, drop the seeds into it and lightly cover it with soil as they are 

driven through the farm plot. Examples of an agricultural drill and a planter are shown in 

Figures 3.2.6 and 3.2.7 below. 

 

 

 

 

 

  
 
 

3.2.3 Soil Nutrition and Pest Control 

For healthy crop development, it is important to maintain a good balance of nutrients in the 

soil. Some of the more important nutrients that are required by the crops include nitrogen, 

Figure 3.2.6: Agricultural 
drill (www.tradeindia.com) 

Figure 3.2.7: Agricultural planter 
(www.agripak.com.pk) 

Figure 3.2.4: Disk harrow 
(www.farmersguide.com) 

Figure 3.2.5: Field cultivator 
(www.kuhn.com) 

http://www.google.co.za/imgres?q=planters+in+agriculture&hl=en&tbo=d&biw=1214&bih=798&tbm=isch&tbnid=w5zIE1Kb7G20eM:&imgrefurl=http://www.agripak.com.pk/planters.php&docid=2Cx9-aM1Ka4uTM&imgurl=http://www.agripak.com.pk/images/planters/Agricultural-Planter.gif&w=373&h=210&ei=Slm7UPqKOsTDhAe3yIGYAw&zoom=1&iact=hc&vpx=869&vpy=69&dur=6921&hovh=168&hovw=298&tx=153&ty=66&sig=109579445059391015350&page=2&tbnh=131&tbnw=232&start=25&ndsp=31&ved=1t:429,r:30,s:0,i:173
http://www.google.co.za/imgres?q=disk+harrows&hl=en&tbo=d&biw=588&bih=788&tbm=isch&tbnid=HOq87TRDZdzwmM:&imgrefurl=http://www.farmersguardian.com/home/machinery/machinery-news/amazone-launches-new-catros-+-disc-harrow/31053.article&docid=3JG8LyxWRrULXM&imgurl=http://www.farmersguardian.com/pictures/610xAny/1/4/3/36143_Catros_plus.jpg&w=610&h=434&ei=G0i7UPi2McXKhAe5o4CQAw&zoom=1&iact=hc&vpx=901&vpy=261&dur=14178&hovh=189&hovw=266&tx=163&ty=100&sig=113596301194419154921&page=3&tbnh=146&tbnw=205&start=54&ndsp=27&ved=1t:429,r:58,s:0,i:257
http://www.google.co.za/imgres?q=field+cultivator&start=229&hl=en&tbo=d&biw=1214&bih=798&tbm=isch&tbnid=fHeZ2WE2BYiAEM:&imgrefurl=http://www.kuhn.com/kuhnkrause/5635_yield.htm&docid=X9kPeQWFduMixM&imgurl=http://www.kuhn.com/kuhnkrause/g/5635_rear.jpg&w=350&h=278&ei=h1a7UPeoCpSIhQe1tYHAAw&zoom=1&iact=hc&vpx=2&vpy=151&dur=5082&hovh=200&hovw=252&tx=125&ty=130&sig=109579445059391015350&page=9&tbnh=142&tbnw=179&ndsp=30&ved=1t:429,r:35,s:200,i:109
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phosphorus and potassium (Astera, 2010). If the soil lacks nutritional value then this can be 

improved upon by adding fertilizers such as chemical fertilizers, manure and sewage sludge. 

When using fertilizers it is important that the soil gets tested first. Inappropriate applications 

of fertilizers can cause environmental damage. The crop’s development will also be affected.  

 

The types of machinery used to apply fertilizers include tractors, planters, sprayers and 

spreaders, amongst others. Sprayers are used to apply chemical fertilizers to the soil and 

spreaders are used to apply dry fertilizers. Examples of an agricultural sprayer and spreader 

are shown in Figures 3.2.8 and 3.2.9 below. 

 

 

 

 

 

 

To kill pests, pesticides are used. Pests are those organisms that feed of the plants and its 

yield. These include insects, bacteria and mice, etc. To protect the plants from pests it is 

important that pesticides be used. Pesticides can also be applied using sprayers.  

 

3.2.4 Irrigation 

The difference between the CWR and the volume of rainfall that is expected to fall during the 

lifespan of each crop is the volume of irrigated water that is required by each crop. Irrigated 

water is applied at different stages during the life cycle of each crop. The application of 

irrigated water depends on the soil moisture content level. Irrigated water is essential for 

optimal plant growth. Due to irrigation, crop production is possible in areas of low rainfall.  

 

Figure 3.2.8: An agricultural sprayer 
(www.cropcareequipment.com) 

Figure 3.2.9: An agricultural spreader 
(www.gkn-walterscheild.de) 

http://www.google.co.za/imgres?q=spreaders+for+agriculture&hl=en&tbo=d&biw=1214&bih=798&tbm=isch&tbnid=Gsd0_XGS3lTA_M:&imgrefurl=http://www.gkn-walterscheid.de/en/news/article/gkn-walterscheid-macht-scheibenduengerstreuer-effizienter/&docid=LD4csqpjwKlbRM&imgurl=http://www.gkn-walterscheid.de/uploads/pics/20110411AXIS-H30EMC-W_2123neu.JPG&w=1024&h=683&ei=qVy7UJ3YL5SxhAe62YHwAw&zoom=1&iact=hc&vpx=627&vpy=230&dur=1239&hovh=183&hovw=275&tx=152&ty=102&sig=109579445059391015350&page=2&tbnh=146&tbnw=231&start=24&ndsp=30&ved=1t:429,r:27,s:0,i:164
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Apart from meeting the CWR needs, irrigated water also keeps the crops cool and is used to 

apply liquid chemicals and safeguard against drought. Irrigated water is primarily sourced 

from ground water supplies, such as rivers and lakes. The transportation of irrigated water to 

the farm plots is done via infrastructures such as pipelines and canals. To use irrigated water, 

water charges need to be paid. 

 

The primary methods used to apply irrigated water are surface (flood) irrigation, sprinkler 

irrigation and drip (trickle) irrigation (Brouwer et al., 1990). 

 

Surface Irrigation: With surface irrigation, the water flows over the surface of the earth in 

furrows which are between the rows of crops. Surface irrigation is cheaper in that it does not 

require a lot of financial investment. However, the use of irrigated water is inefficient 

compared to the sprinkler and drip irrigation systems. An example of surface irrigation is 

shown in Figure 3.2.10 below. 

 

 

 

  

 

 

Sprinkler Irrigation: With sprinkler irrigation, water is sprayed through the air from 

pressurized nozzles and fall like rain drops on the crops. An example of a sprinkler irrigation 

system is shown in Figure 3.2.11 below. 

 

 

Figure 3.2.10: Surface irrigation 
(www.civilthought.com) 



25 
 

 

 

 

 
 

Drip Irrigation: Drip irrigation supplies water directly onto or below the soil surface. This is 

done through emitters that control the water flow. An example of a drip irrigation system is 

shown in Figure 3.2.12 below. 

 

 

 

 

 

 
 

Excessive applications of irrigated water can cause damage to the root system of the plant. 

This will directly hinder the growth of the plant and affect its yield. Excessive irrigated water 

applications also cause environmental damage. These include a depletion of the source of the 

irrigated water, soil erosion and the washing away of fertilizers (Gajjar and Joshi, 2011). 

These reasons, coupled with the fact that the agricultural sector is required to use irrigated 

water more efficiently, make it very important that solutions be found in making efficient 

irrigated water allocation decisions.  

 

 

 

Figure 3.2.11: Sprinkler irrigation 
(www.climatetechwiki.org) 

Figure 3.2.12: Drip irrigation 
(www.turning-pro.com) 

http://www.google.co.za/imgres?q=drip+irrigation+system&start=233&hl=en&tbo=d&biw=1214&bih=798&tbm=isch&tbnid=j44TslkE4tsm4M:&imgrefurl=http://turning-pro.com/2010/09/27/design-drip-irrigation-system/&docid=MwuPa2e6lX9PpM&imgurl=http://turning-pro.com/wp-content/uploads/2010/09/Dripline-Veggies.jpg&w=640&h=426&ei=MWi7UKH9Js6ZhQfJwYCoAw&zoom=1&iact=hc&vpx=106&vpy=306&dur=2449&hovh=183&hovw=275&tx=184&ty=83&sig=109579445059391015350&page=9&tbnh=143&tbnw=220&ndsp=30&ved=1t:429,r:40,s:200,i:124
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3.2.5 Harvest 

Depending on the type of crop, harvesting is done either by hand or machinery. Vegetables 

and fruits are usually harvested by hand. Examples of vegetables include tomatoes and 

cabbages. Examples of fruits include grapes and apples. Examples of types of crops that are 

harvested using machinery include maize, wheat and barley. 

 

The types of machinery that are used for harvesting include tractors, forage harvesters and 

combines, etc. Forage harvesters gather, chop, and discharge forage crops as they are driven 

through the farm plot. Combines are used to harvest grain and seed crops. Examples of forage 

harvesters and combines are shown in Figures 3.2.13 and 3.2.14. 

 

 

 

 

 

 
 

To determine optimized solutions in managing the limited resources amongst the various 

crops that are required to be grown within a production year, it is important to consider the 

various costs associated with the crop production process.  

 

3.3 Crop’s Water Need  

In making crop selection decisions it must be considered that, due to the diverse nature of 

plants, each plant’s requirements will differ. Due to these differences, and the differences in 

the soil and climatic conditions at different geographical locations, the adaptability of crops at 

different geographical locations will differ. Therefore, in making crop selection decisions, the 

Figure 3.2.13: A forage harvester 
(www.getfarming.com.au) 

Figure 3.2.14: A combine 
(www. deere.com) 
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adaptability of the crops given the soil and climatic conditions must be considered at different 

geographical locations. 

 

The soil conditions relate to the water holding capacity of the soil, its nutritional value and the 

transitivity of water within the soil. The transitivity factor is important for the plant’s root 

system to absorb water. When the water is absorbed by the root system, it can then be 

transmitted throughout the plant (Chandy, 1993). The water will be released back into the 

atmosphere through the process of transpiration.  

 

The climatic conditions relate to temperature, rainfall, humidity and wind speed, amongst 

others (Brouwer and Heibloem, 1986). The climatic conditions play an important role in 

determining the CWR of the crop’s at a specific geographical location. Due to the differences in 

the climatic conditions, the CWR of the same crop grown at different geographical locations 

may differ (Brouwer and Heibloem, 1986).  

 

Water is a major component in the physical structure of a plant. Water makes up majority of a 

plants’ body weight (Ashraf and Majeed, 2006). For optimal physiological processes to take 

place within a plant, it is important that the water balance within the plant remains relatively 

consistent. Water that is lost through the process of transpiration must be replaced by the 

water absorbed through the root system of the plant. Therefore, for healthy plants and 

optimal yields, it is important that sufficient volumes of water be made available to the root 

system of a plant throughout its lifespan.  

 

The absorption of water by the root system of the plant depends on the volume of water that 

has been supplied to the root surface of the plant (Chandy, 1993). Water is supplied through 

rainfall and irrigation. If there are inconsistencies in the application of water to the soil 

surface, then the soil may start to dry up. As the soil dries, the transitivity of water within the 

soil will decrease. This will make it more difficult for the plant’s root system to absorb water. 
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If the water lost through transpiration is not replaced by the water absorbed through the root 

system of a plant, the water balance within the plant will be affected. If the plant suffers from 

water stress, whether mild, moderate, or severe, it will affect the process of photosynthesis, 

respiration, growth and reproduction within the plant (Chandy, 1993). Any water stress, 

particularly during the critical stages of the plant’s growth, will negatively affect the plant’s 

growth and its yield. However, some plant types are more drought resistant than others. 

 

The main factors that influence the crop water needs of a plant include the soil factors, the 

climatic conditions, the crop types and the different growth stages of the plant. 

 

3.3.1 Soil Factors 

Some of the important features of the soil that are important in crop development include the 

soil texture, the soil moisture levels, the soil water potential and its natural or artificial 

drainage system.  

 

Soil texture: The texture of the soil is its composition of sand, silt and clay (Astera, 2010). 

These are the particles that are found in the soil which have different sizes and feel. The 

percentages of sand, silt and clay in the soil will determine its field capacity. A soil type with a 

higher level of clay content will be able to retain more water than a soil type with a higher 

composition of sand. The higher the clay content in the soil, the higher will be its field 

capacity. Soils with higher levels of sand will have lower levels of field capacity. The field 

capacity refers to the maximum volume of water that the soil will be able to hold. This is the 

volume of water that remains after the excess volume of water has been drained from the soil 

(Allen et al., 1998). If more water is added to the soil, when it is at field capacity, the soil will 

not be able to retain it. The amount of time that it will take for the excess water within the soil 

to drain is also related to the soils’ texture. The higher the field capacity of the soil, the longer 

it will take for excess water to be removed, and vice versa. Similar to the field capacity, the 

wilting point of the soil is the minimum volume of water that the soil can hold before the plant 

starts to wilt (Brouwer and Heibloem, 1986). 
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Soil Moisture: Soil moisture is the water content of the soil. If the soil moisture is below the 

wilting point then the plant will no longer be able to absorb water to survive. The ideal soil 

moisture level is when the soil moisture lies between wilting point and field capacity.  

 

Water potential: Water potential describes the transitivity of water within the soil. This is 

the ability of the water to flow from one area of the soil to another. The water potential of the 

soil is important for the plant’s root system to be able to absorb water. Water is absorbed 

through tiny hairs that exist on the roots of the plant (Chandy, 1993). 

 

Natural or Artificial Drainage: Drainage is the natural or artificial removal of excess water 

from the soil. The removal of excess water is important in crop production. If water is left to 

stagnate it will cause damage to the plant’s root system. This will ultimately injure the plant’s 

development and affect its yield. The natural drainage system of some types of soil is 

sufficient to remove excess water. For other soil types it is important that artificial drainage 

systems be used (Maslov, 2009). Natural drainage occurs when there are concaved areas in 

the field. Any excess water will flow downwards into the concaved areas, creating ponds. One 

way to remove water artificially is to insert tubes into the soil. The tubes should be above the 

water table of the soil (Maslov, 2009). If excess water exists in the soil then it will flow into the 

tubes through tiny holes. The excess water can then be artificially removed. It is important not 

to have excess drainage. Excess drainage will remove important nutrient from the soil 

(Maslov, 2009).  

 

3.3.2 Climatic Factors 

The primary climatic elements that affect the crop’s water need are sunshine, temperature, 

humidity and wind speed (Brouwer and Heibloem, 1986). Due to the climatic conditions, the 

evaporation and transpiration rates at one geographical location may be different from that of 

another. Evaporation is the removal of water vapor from the surface of the earth back into the 

atmosphere. Transpiration is the removal of water vapor from the stomata of the plant’s back 

into the atmosphere. The combined removal of water through evaporation and transpiration 

http://en.wikipedia.org/wiki/Water_potential
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is called evapotranspiration (Allen et al., 1998). The evapotranspiration rate will be higher in 

geographical locations that are hot and dry compared to geographical locations that are 

humid and cool. The wind speed also influences the crop’s water need. The windier it is at a 

specific geographical location, the more water vapor will be released back into the 

atmosphere. This will increase the evapotranspiration rate. The highest crop water needs are 

therefore in locations that have hot, dry, windy and sunny conditions (Brouwer and Heibloem, 

1986). The lowest crop water needs will be in locations that have cool, humid, cloudy and low 

wind speed (Brouwer and Heibloem, 1986). It is therefore observed that the crop water need 

of the same plant may be different from one geographical location to the next, depending on 

the climatic conditions. Crop’s that also grow in the cooler months of the year will have lower 

crop water needs than those that grow in the warmer months (Brouwer and Heibloem, 1986).  

 

3.3.3 Crop Types 

Differences in the physical structure of the crop’s mean that they will have different water 

needs. The water need of a crop such as a fully developed cotton tree will be different from the 

water need of a fully developed cabbage, for example. The number of days in the lifespan of 

each crop will also influence the water needs of the crop’s. For example, the seasonal water 

need of a crop that grows for 90 – 100 days will be different from the water need of a crop 

that has a lifespan of 150 – 180 days, although their daily water needs may be the same 

(Brouwer and Heibloem, 1986). 

 

3.3.4 Plant growth stages 

The different growth stages in crop development relate to the volume of water that is 

absorbed by the crop. For example, a fully developed maize plant will absorb more water than 

that of a newly cultivated maize plant. This is due to the difference in their transpiration rates.  

 

During the initial stages of crop growth, the evapotranspiration rate is mainly influenced by 

evaporation. This is due to the fact that the soil is more exposed to the climatic conditions 
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because the crop, at this stage, is small. As the crop develops, it will provide more plant cover 

for the soil and this will reduce its evaporation rate. For fully developed crop’s, the 

evapotranspiration rate is therefore mainly influenced by transpiration. The influence of 

transpiration will increase as the crop develops from its initial growth stage to the fully 

developed stage (Brouwer and Heibloem, 1986). Figure 3.3.1 illustrates the different growth 

stages of a maize plant (Brouwer and Heibloem, 1986). 

 

 

 

 

 

 

 

 

 

Figure 3.3.1: The different growth stages of a maize plant 

 

The transpiration rate at the initial development stage of the maize plant is estimated to be 

around 50% of the transpiration rate of a fully developed maize plant. The fully developed 

maize plant is found in the mid-season stage. This is when the transpiration rate is 100%. 

During the crop’s development stage, the crop’s water need will gradually increase from 50% 

to the 100% level in the mid-season stage. The crop’s water need in the late season stage will 

differ depending on the crop type. For freshly harvested produce, such as lettuce, the crop’s 

water need in the late season stage will remain the same as in the mid-season stage. This is 

because the crops would need to be harvested fresh. Therefore, the crop’s water need must 

remain the same until the day of harvest. For dry harvested crops such as cotton, maize and 
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sunflower the crops are allowed to dry out in the late season stage. This is where their water 

needs will be the least (Brouwer and Heibloem, 1986). 

 

3.4 Demand and Supply Conditions 

The resulting market prices of produce are dependent on the demand and supply conditions 

within the deregulated market environment. The price of a harvest is settled when the 

producer and purchaser agree upon a selling price. The producer will want to maximize the 

profits earned while the purchaser will want to purchase the produce at the lowest possible 

price. The price that is agreed upon by both parties is called the equilibrium price (Whelan 

and Msefer, 1996). The derivation of the equilibrium price is illustrated in Figure 3.4.1.  

 

 

 

 

 

 

 

 
 

In Figure 3.4.1,   represents the price of the produce, while   represents the quantity 

demanded. The point at which both the producer and purchaser agree upon a selling price is 

the point at which quantity   will be traded at a price  . At this point the demand and supply 

will be in equilibrium. At any price below  , the quantity of produce demanded will increase. 

This is due to the desire of the purchaser to buy at a lower price. At any price above P, the 

demand will decrease due to the reluctance of the purchaser to pay a higher price.  

Supply 

Demand 

𝑸 

𝑷 Price 

Quantity 

Figure 3.4.1: The derivation of the equilibrium market price. 
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If there is a shortage of produce in the market, the producers will sell at higher prices. If the 

purchasers need the produce then they will be forced to pay these higher prices. If there is 

surplus produce in the market then the producers will have to sell at lower prices. This is due 

to the existence of competition among producers trying to sell their produce. They would 

need to sell their produce so that they don’t incure any losses. 

 

Another factor that influences the market demand and supply conditions is the consumer 

preferences (Lovewell, 2012). If there is an increase in comsumer preference, then the 

demand for a produce will increase. Similarly, if there is a decrease in consumer preference, 

then the demand for a produce will decrease. Other factors that influence the market demand 

and supply conditions include the weather, technology and the cost of transportation, 

amongst others (Lovewell, 2012). 

 

3.5 Case Studies 

The case studies used in this research are the Vaalharts and Taung Irrigation Schemes. These 

are neighboring irrigation schemes. Their location is situated on the area bordering the 

Northern Cape and North West Province in South Africa (Grove, 2008).   

 

The Vaalharts Irrigation Scheme (VIS) is the largest irrigation scheme in South Africa and one 

of the largest irrigation schemes in the world. The VIS covers an area of around 36,950 

hectares of prime agricultural land (Grove, 2008). Situated near the VIS is the Vaal River. The 

irrigated water that is currently supplied to the VIS is extracted from the Vaal River and is 

supplied to the farm plots via the Vaalharts Canal System (Grove, 2008). Artificial drainage 

systems are also in place. It extracts the excess water into the Harts River, which is west of the 

scheme.  

 



34 
 

The Taung Irrigation Scheme (TIS) is situated north of the VIS. TIS consists of a total of 3,764 

hectares of agricultural land (Smook et al., 2008). The irrigated water that is supplied to the 

TIS is also currently supplied via the Vaalharts Canal System, although the Taung Dam is 

situated nearby.  

Figure 3.5.1 shows a satellite image of the neighboring irrigation schemes. The figure specifies 

the location of each irrigation scheme. It also specifies the location of the Taung Dam and the 

Vaal River.  

 

Figure 3.5.1: Location of the Vaalharts Irrigation Scheme, Taung Irrigation Scheme, Vaal River and 
Taung Dam 

 

To better understand crop production at both the VIS and TIS, brief descriptions are given 

concerning the climatic and soil conditions, the irrigated water supply and the crop 

preferences in the area. 

Taung Dam 

Taung Irrigation Scheme 

Vaalharts Irrigation 
Scheme 

Vaal River 
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3.5.1 Climatic Conditions 

This area is known for its very warm summers and very cold winters. Due to the very cold 

winters, frost occurs. The average rainfall in the area averages at around 440 millimeters 

(mm) per annum. Apart from the volume of rainfall being low, it is also very irregular 

(Maisela, 2010).  Rain primarily falls between the months of November through to April. It is 

at its lowest between the months of March and October. Due to the low volume of rainfall and 

the irregular rainfall patterns, it is necessary that irrigated water be supplied to the area to 

facilitate crop production.   

 

The highest temperatures occur between the months of November and February. The 

maximum temperatures for these months average over 30°C. The minimum temperatures for 

these months average at around 15°C. The temperature is at its lowest in the months of June 

and July. The maximum temperatures in these months average around 19°C and the minimum 

temperatures average at around 2°C (Maisela, 2010).   

 

Table 3.5.1 below shows the statistics for the average temperature and rainfall patterns that 

have been determined over a period of 36 years (Maisela, 2010).   

Table 3.5.1: Mean temperature and rainfall statistics as determined over a 36 year period. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Mean Temp 24.8 23.8 21.7 17.9 13.7 10.5 10.5 12.8 16.9 19.8 22.0 23.9 

Mean Rainfall 75.9 63.5 71.8 51.6 19.9 9.5 4.3 8.6 11.3 24.6 45.7 58.0 

 

 

Figures 3.5.2 and 3.5.3 give graphical representations of the mean temperatures and rainfall 

statistics as given in Table 3.5.1. 



36 
 

 

Figure 3.5.2: Mean temperature statistics as determined over a period of 36 years 

 

Figure 3.5.3: Mean rainfall statistics as determined over a period of 36 years 

 

 
3.5.2 Soil Characteristics 

The two main types of soils found in this region are Hutton (Mangano) and Clovelly (Cunbury) 

(Grove, 2008; Maisela, 2010). The soil texture consists of around “8% clay, 2% silt, 68% fine 

sand and 22% medium and course sand” (Maisela, 2010). The high percentage of sand in the 
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soil means that it has a relatively low field capacity, low water holding capacity and low level 

of fertility. With rainfall and irrigation, the soil will get compacted and this strains the plant’s 

root system in terms of its development. The depth of the soil ranges from around 0.9 meters 

to 1.8 meters (Grove, 2008).  

 

3.5.3 Irrigated Water Supply 

Irrigated water is supplied to the irrigation schemes via the Vaalharts Canal System. The two 

primary canals that transport the water to the schemes are the North and the West canals. 

These canals supply irrigated water to a system of feeder canals, which in turn supply 

irrigated water to the community canals. The community canals supply the irrigated water to 

the farm plots (Grove, 2008).  Irrigated water is supplied at a quota of 9,140 m3 ha-1 annum-1 

to the farm plots at the VIS. It is supplied at a quota of 8,140 m3 ha-1 annum-1 to the farm plots 

at the TIS. A water charge of 8.77 cents m-3 needs to be paid to the Water User Association 

(WUA).  

 

It is estimated that around 62% of all fresh water supply in South Africa is used by the 

agricultural sector (Oelofse and Strydom, 2010). To reduce irrigated water wastage within the 

agricultural sector itself water charges are employed. To reduce the cost of irrigated water, 

farmers are therefore required to use irrigated water more efficiently. The aim of 

implementing water charges is to conserve water.  

 

3.5.4 Crop Preferences 

A list of some of the most adaptable crops at the VIS and TIS is presented in Table 3.5.2 below 

(Maisela, 2010).  
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Table 3.5.2: Some of the adaptable crops in the area. 

Crop Types Crops Well Adapted/Adaptable 

Summer Crops 

Cotton Well Adapted 
Maize Well Adapted 

Groundnuts Well Adapted 
Tomatoes Well Adapted 
Pumpkins Well Adapted 
Dry Beans Adaptable 
Soya Beans Adaptable 

Winter Crops 

Wheat Well Adapted 
Barley Well Adapted 
Canola Adaptable 

Cabbage Well Adapted 
Onions Well Adapted 

Perennial Crops 

Lucerne Adaptable 
Pecan Nuts Well Adapted 

Olives Well Adapted 
Citrus Adaptable 

Wine Grapes Adaptable 

 

 

The cash crops that are the most important in this area include maize, wheat, barley, lucerne 

and ground nuts (Grove, 2008).  Maize and ground nuts are summer crops. They are usually 

grown in sequence with wheat and barley, which are winter crops. Lucerne is a perennial crop 

which grows all year around. The forecasted producer prices and the crop yields play 

important roles in determining the area of land that should be allocated for the production of 

each crop.  

 

3.6 Previous Research  

Previous studies in crop and irrigation planning have used both single and multi-objective 

mathematical models. Many optimization techniques have been used to provide solutions to 

these models. These include; Linear Programming (LP), Dynamic Programming (DP), 

Simulated Annealing (SA), Evolutionary Algorithms (EAs) and Particle Swarm Optimization 

(PSO), amongst others.     

Mohamad and Said (2011) proposed a crop-mix planning model. The model takes into 

consideration limited resources such as finances and acreage. The research used LP to 
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determine the optimal solution which maximized the returns gained. Sunantara and Rimirez 

(1997), used DP to solve a problem of irrigated water allocation and scheduling using a two-

stage decomposition approach. The first stage solved the problem of seasonal water and 

acreage allocation. The second stage solved the problem of daily water scheduling as a 

function of the root-zone soil moisture content levels. Wardlaw and Bhaktikul (2004) used the 

GA to solve a problem of irrigated water scheduling, using a 0-1 approach. They found that the 

GA performed well, by being able to distribute irrigated water to several farm plots in 

satisfying the soil moisture content levels under water stress conditions. The water 

allocations were done on a rotational basis. Georgiou and Papamichail (2008) used SA in 

combination with the Stochastic Gradient Descent Algorithm to determine solutions 

concerning the optimized water release policies of a reservoir. The released water needed to 

be allocated efficiently amongst the various crops being grown. To maximize profits, an 

optimized cropping pattern needed to be determined.  

 

Sarker and Ray (2009) proposed an improved EA known as the Multi-objective Constrained 

Algorithm (MCA). MCA was used to provide solutions to a multi-objective crop planning 

problem. The research found that MCA performed relatively better compared to the other two 

optimization techniques used. These techniques included the  -constrained method and the 

Non-dominated Sorting Genetic Algorithm (NSGAII). Adeyemo and Otieno (2010a) compared 

two different versions of their Multi-objective Differential Evolution Algorithm (MDEA) in 

determining solutions that tried to maximize the potential irrigation benefits that could be 

achieved at the Vanderkloof dam, in South Africa. The two different versions were called 

MDEA1 and MDEA3. These versions differed in the crossover techniques used. Adeyemo et al 

(2010b) used DE to determine improved solutions in using single objective crop planning 

models, compared to the solutions determined in using MDEA to provide solutions to the 

same problem formulated as a multi-objective crop planning model. Pant et al (2008) 

employed the DE algorithm to provide solutions to a crop planning problem under adequate, 

normal and limited irrigated water supply. The objective was to maximize the net benefits 

gained, under these conditions. It was found that the DE performed better than the 

programming tool LINGO. Pant et al (2009) investigated the performances of four EAs in 

providing solutions to a crop planning problem. These algorithms included the GA, PSO, DE 
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and Evolutionary Programming (EP). Solutions were also determined using LINGO. The 

solutions found showed that, from all heuristic algorithms, GA performed poorly and that DE, 

PSO and EP were all comparable. Raju and Kumar (2004) compared the performances of GA 

and LP in providing solutions to a crop planning problem. The objective was to maximize the 

net benefits gained. The performances of GA and LP were relatively close. It was concluded 

that GA is an effective metaheuristic algorithm that can be used in irrigation planning. Reddy 

and Kumar (2007) studied the effectiveness of using Elitism-Mutation Particle Swarm 

Optimization (EMPSO) in determining the short-term release policies of irrigated water from 

a reservoir in water scarce conditions. The study concluded that the heuristic algorithm is 

effective in providing short-term solutions for multi-crop irrigation. 

 

3.7 Conclusion 

This chapter reviews the several stages involved in crop production. The different stages 

include crop selection, land allocation, planting, plant growth stages, harvesting, storage and 

marketing. At each stage, the decisions made are important and will directly influence the 

success of crop production at an irrigation scheme.   

 

In making resource allocation decisions during the crop production process, the costs 

associated with crop production must be taken into account. There are several costs that must 

be considered. These include the costs associated with the preparation of the soil, planting, 

pest management, irrigated water supply and harvesting, amongst others. To determine 

optimized solutions in crop planning, the various costs associated with crop production must 

be taken into account.  

 

Another factor that must be taken into account in making crop planning decisions is the 

geographical location of the irrigation scheme. Due to differences in the nature of the crops, 

and their suitability to different soil and climatic conditions, the adaptability of crops will 

differ from one geographical location to the other. The crops selected to be produced must be 
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adaptable to the given environmental conditions at a specific geographical location. In making 

land allocation decisions, the expected yield, forecasted producer prices and the demand 

conditions of each crop will influence the area of land that should be allocated for the 

production of each crop.  

 

The limited supply of fresh water, and the increase in population, has also resulted in an 

increase in the demand for fresh water supply from all other sectors of industry. Due to this 

increased demand, the agricultural sector has been placed under increased pressure to use 

irrigated water more efficiently, making it essential that optimized solutions be found 

concerning irrigated water allocations amongst the various competing crops that are required 

to be grown. 

 

This chapter also presents the case studies addressed in this research. This research 

addresses the ACP problems at the Vaalharts and Taung Irrigation Schemes. These irrigation 

schemes are neighboring irrigation schemes, which are situated on the border separating the 

Northern Cape and the North West Province in South Africa. Descriptions of the 

environmental conditions and a list of some of the adaptable crops in the area have also been 

given.  

 

Finally, previous researches in crop and irrigation planning have been discussed. 
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CHAPTER FOUR 
SPACE ALLOCATION IN ANNUAL CROP PLANNING 

 
 

4.1 Introduction 

Space allocation is a very important managerial responsibility. It involves allocating a limited 

area of available space amongst the various demanding entities that require space utilization 

(Adewumi and Ali, 2010; Silva, 2003). The objective in making space allocation decisions is to 

maximize the amount of satisfaction that is given to each demanding entity, in optimizing the 

problems’ objective. In ACP, this involves allocating a limited area of agricultural land 

amongst the various competing crops that are required to be grown within a production year. 

The objective is to optimize the returns received. Any mismanagement in the way space 

allocation decisions are made will negatively affect overall operational costs (Silva, 2003). 

 

Determining optimized space allocation decisions in crop planning is very difficult. There are 

several uncertain factors that must be taken into consideration in making decisions. Some 

uncertain factors include the climatic conditions, the crop yields, the fluctuating market prices 

and the demand and supply conditions. Other factors that will influence space allocation 

decisions include production costs, cropping patterns, planting schedules, harvesting 

schedules and the farm plots sizes, amongst others. All these factors will influence the land 

allocation decisions made.  

 

Despite the difficulty in determining optimized hectare allocations, many producers still rely 

on manual methods to make space and resource allocation decisions. The inefficient use of 

limited resources will affect the production costs and the returns gained. For optimized 

solutions to be found in making space and resource allocation decisions, it is important that 

information and technology be combined to determine solutions. 
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This chapter describes the ACP problem as a Space Allocation Problem (SAP). Descriptions of 

the several complexities involved with determining feasible solutions are given. Many of the 

hard and soft constraints that need to be satisfied, in determining feasible solutions are listed. 

The method used to mathematically formulate the ACP problem as a SAP is also given. 

 

4.2 Space Allocation in Crop Planning 

SAP’s are very difficult optimization problems in literature. Examples of SAP’s include the 

space allocation at tertiary institutions (Silva, 2003; Adewumi and Ali, 2010) and the shelve 

space allocation problem at the level of supermarkets (Bai, 2005). Space allocation is a 

complex problem that involves allocating a limited area of available space amongst a set of 

demanding entities that require space utilization (Silva, 2003). The objective in allocating the 

space is to grant as much satisfaction as possible to all demanding entities involved in 

optimizing the problems’ objective. In determining feasible solutions to multi-constrained 

SAP’s, several hard and soft constraints will need to be satisfied. The mathematical 

formulation of the problem and the types of constraints that will need to be satisfied are 

problem specific.  

 

In this research, the allocation of a limited area of agricultural land amongst the various 

competing crops that are required to be grown within a production year is viewed as a SAP. In 

allocating land amongst the various crops, this research considers the irrigated water 

requirements and the variable costs associated with the crop production process. The 

optimized solutions found must allocate the limited area of agricultural land amongst the 

various competing crops in a way that will optimize the irrigated water requirements and the 

variable costs associated with the production of each crop. The objective will be to maximize 

the total gross profits earned. Feasible solutions must satisfy the minimum and maximum 

market demand constraints. To determine feasible solutions, the farm plot sizes and multi-

cropping practices must be considered.  
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A farm plot is an area of agricultural land that is allocated for crop production.  Farm plots are 

categorized by the number of different crops that are grown in sequence on it within the year. 

Single-crop farm plots are areas of land that have been allocated for the production of 

perennial crops. Perennial crops grow all year around on the single-crop farm plots. Perennial 

crops are harvested once or several times within a year, depending on the crop. Examples of 

perennial crops include fruit trees and lucerne. Fruit trees are usually harvested once a year. 

Lucerne is harvested several times within the year.  

 

Multi-cropping is a cultivation practice that involves growing different crops on the same farm 

plot within a year (Charles, 1986). The types of multi-cropping techniques used include 

sequential cropping and inter-cropping. Sequential cropping is when selected crops are 

allowed to be grown in sequence of one another on the same farm plot within a year. Inter-

cropping is when different types of crops grow together on the same farm plot within a year. 

The multi-cropping practice investigated in this research is sequential cropping. All references 

made to multi-cropping in this research work relate to sequential cropping. 

 

The farm plots allocated for multi-cropping include the double-crop, triple-crop and 

quadruple-crop plots, etc. (Grove, 2008). Double-crop farm plots are used to cultivate two 

different crops which are grown in sequence within a year. These may include certain 

seasonal crops such as the summer and winter crops. An example of double-cropping is the 

cultivation of maize and wheat. In South Africa, maize is a summer crop and wheat is a winter 

crop. These crops are usually grown in sequence on a double-crop farm plot within the year. 

Triple-crop plots are used to cultivate three different types of crops which are grown in 

sequence on a triple-crop farm plot within a year, and so on.  

 

For multi-cropping to be successful, the crops selected to be grown in sequence need to be 

selected carefully. The planting and harvesting schedules of the crops grown in sequence must 

not conflict and should be beneficial to each other. There are several benefits to multi-

cropping, if done correctly. Some of the advantages of multi-cropping include (Charles, 1986):  
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 It produces higher returns from a farm plot as multiple crops can be grown on the 

same plot of land within a year.  

 It helps protect against drought, pests, diseases and weed developments. This will 

reduce the costs of fertilizers and pesticides, etc. 

 Nutritional value gets added back to the soil. 

 

With the existing irrigation schemes, the total area of land allocated for the different farm plot 

types generally remain the same. 

 

Formulating a crop planning problem as a SAP involves taking into consideration the limited 

area of agricultural land available for crop production on each type of farm plot. Once it has 

been decided which crops will be grown in sequence on a farm plot, solutions will need to be 

determined concerning land allocation amongst the various competing crops that are 

required to be grown. The objective in making land allocation decisions will be to maximize 

the outputs obtained from it. For solutions to be feasible, there are several constraints which 

are associated with multi-cropping that would need to be satisfied. Space allocation in crop 

planning is an   -Hard type optimization problem in agricultural planning. 

 

Despite the difficulties associated with determining optimized solutions in crop planning, 

many crop producers still employ traditional methods in making resource allocation 

decisions. Inefficiencies in making resource allocation decisions will affect the overall 

outcomes determined at the end of the cropping season, and production year. To determine 

optimized solutions in crop planning, it is important that information and technology be 

combined in determining solutions. The information that is needed includes having 

knowledge of the potential crop yields, the forecasted producer prices, the demand and 

supply conditions, the climatic conditions, the CWR’s and the variable costs associated with 

crop production, amongst others. The information required should preferably be location 

specific. This information can be determined from local farmers in them observing the crop 

yields, production costs, market prices and market demand and supply conditions from 
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previous years. Information can also be determined from agricultural advisory services 

(Kantanantha, 2007). Information concerning the climatic conditions can be determined from 

the local weather stations. For the seasonal CWR needs, information can be determined from 

farmers, advisory services or from publications in literature.  

 

The mathematical models commonly used to formulate SAP’s include bin-packing, assignment 

modeling and knapsack modeling (Silva, 2003). This research employs an adapted knapsack 

model in formulating the mathematical models for the ACP problems for new and existing 

irrigation schemes.  

 

4.3 Knapsack Modeling 

Knapsack models are known NP-Hard optimization models (Pisinger, 1995). It involves 

assigning a subset of items, each of which has an associated profit and weight value, into a 

knapsack or knapsacks. The objective in trying to fill the knapsack(s) is to maximize the total 

accumulated profits of all the items selected. The accumulated weight of all the items selected 

must not exceed the maximum capacity of the knapsack(s). Figure 4.3.1 illustrates the 

objective of a knapsack problem with a simple example.  

 

In Figure 4.3.1, a knapsack (bag with shoulder straps) has a maximum capacity of 15 

kilograms (kg). The problem is to determine a solution that will fill the knapsack with a subset 

of the items in a way that will maximize profit, without exceeding the maximum capacity of 

the knapsack.  
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Figure 4.3.1: Illustration of a one-dimensional knapsack problem 
(http://en.wikipedia.org/wiki/Knapsack_problem) 

 

Several knapsack models exist in literature. The differences in the models lie in the way that 

the items are allowed to be selected, and the number of knapsacks involved (Nyonyi, 2010). 

The types of knapsack models that exist include binary, fractional, bounded and multiple 

knapsack models, amongst others. The illustration of the problem given in Figure 4.3.1 can be 

formulated mathematically using a binary knapsack model if each item is allowed to be 

selected at most once. It can be formulated using a fractional knapsack model if fractions of 

the items are allowed to be selected. It can be formulated using a bounded knapsack model if 

there are bounds that exist in selecting the items. If there are multiple knapsacks involved, the 

problem can be formulated using a multiple knapsack model. 

 

Adaptations of knapsack modeling are possible. The way a model is adapted will depend on 

the type of problem addressed. For example, if the problem involves multiple knapsacks with 

each item only allowed to be selected at most once then the adapted model used will be a 

binary-multiple knapsack model. This research uses an adapted knapsack model to formulate 

the ACP problems for new and existing irrigation schemes. The adapted model used is a 

bounded-fractional-multiple knapsack model, with an additional constraint. The additional 

http://upload.wikimedia.org/wikipedia/commons/f/fd/Knapsack.svg
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constraint is that the total capacity of all the items in each of the knapsacks must not exceed 

the total summation of the maximum capacities of all the knapsacks added together. 

 

4.4 Bounded-Fractional-Multiple Knapsack Modeling 

The aim of this bounded-fractional-multiple knapsack model is to fill each knapsack with 

items from allocated subsets. The objective is to maximize the total accumulated profits while 

satisfying the constraints. For each subset of items, fractions of the items are allowed to be 

selected and each item must be selected once. An additional constraint is added such that the 

summation of the total weight values of all the items selected must not exceed the total sum of 

the maximum capacity allowed in each knapsack.  The formulation of the bounded-fractional-

multiple knapsack model, with an added constraint, is as follows: 

 

Suppose there are a total of   knapsacks of capacity   , i.e.    ,          . For each 

knapsack    suppose that     (          ) is used to fill   . Each     has an associated profit 

    and weight     value. Each     is allowed to contribute a fraction     of itself (       ) 

into the knapsack   . The fraction of     must fall within the lower (    ) and upper bound 

(    ) values of each    . The total weight of the maximum capacities of all knapsacks is  . The 

mathematical model is as follows; 

 Maximize:    

 ( )  ∑ ∑       
  

 
 
       (4.1) 

 Subject to: 

   ∑          
  

   
,  for                (   ) 

       {
                                                 

                                                                    

  (   ) 

                 (   ) 
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                         (   ) 

∑ ∑         
  

 
 
         (   ) 

 

In relation to crop planning,     represent the profits earned.     represents the allocation of 

land for each crop    . The ACP mathematical models introduced in this dissertation are based 

on this mathematical formulation.  

 

4.5 Problem Description 

Irrigation schemes commercially produce several types of crops for both the local and 

international markets. The production of crops is subject to resource limitations, and the 

supply of crops to the markets should be within the markets’ demand. The objective in 

producing crops, given the limited resources and the demand and supply conditions, is to 

maximize the total gross profits that can be earned. In the sale of the harvests, the producers 

need to consider the costs that were involved in the crop production process. The costs 

involved with crop production include: 

1. Labour – Depending on the particular crop, and the area of land allocated for 

production, the producer may allocate few to many labourers. 

2. Materials – These include pesticides and fertilizers, amongst others 

3. Transportation costs – Specialized vehicles are used in planting, fertilizing, 

harvesting and transporting of the harvests. 

4. Water costs – This is the cost of irrigated water. Irrigated water needs to be 

applied according to the CWR of each plant. Irrigated water must be scheduled to 

maintain the soil moisture content balance within the soil. 

5. Others – Other types of costs include the cost of seeds, electricity, household 

expenses and storage costs. 
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In determining solutions to the ACP problem, these costs are considered constant values. They 

can be determined by monitoring the crop production costs from previous years. It can also 

be determined from published statistical reports on crop production. These reports may 

include provincial and national government reports. 

 

The purpose of developing mathematical models is to help decision makers make effective 

decisions in crop planning when trying to answer the following questions: 

1. Which crops should be selected for cultivation? 

2. What is the area of land that should be allocated for the production of each crop 

within a production year?  

3. Which crops should be selected to be grown in sequence on the same farm plot? 

4. What is the irrigated water requirement of each crop, given the area of land that 

should be allocated for its production? 

5. What is the cost associated with the production of each crop, given the area of land 

that should be allocated for its production? 

6. What is the total gross profit earned in producing each crop, given the expected 

crop yields, the forecasted producer prices and the area of land allocated for its 

production?  

7. What will be the overall gross profit earned in producing all crops within a 

production year?  

ACP for new and existing irrigation schemes involves allocating a limited area of agricultural 

land amongst the various competing crops that are required to be grown within a production 

year. The objective in allocating land is to optimize the limited resources available for crop 

production. The limited resources include the land itself, irrigated water and the variable 

costs associated with crop production. Solutions in making resource allocation decisions will 

need to be determined for each crop being cultivated.  
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To determine feasible solutions to the ACP problem, several hard and soft constraints will 

need to be satisfied. However, the requirements in determining solutions to the ACP problem 

are as follows: 

1. The crops to be grown and the farm plot requirement for each crop must be known. 

2. The total area of land available for crop production and the total area of land available 

for each farm plot must be known.  

3. Information about the market demand conditions must be available. 

4. For each crop type, the expected crop yield must be known. 

5. The volume of irrigated water that can be supplied to the farm plots must be known, 

as well as the cost of this irrigated water. The rainfall pattern also needs to be known. 

This is used to determine the optimized irrigated water allocations of each crop. 

6. The variable costs associated with the production of each crop also need to be 

determined.  

Crop selection is the first step in the crop production process. It is a separate stage from the 

land allocation stage. Crop selection requires consideration of the market demands, the 

expected yields, the forecasted producer prices of each crop, the adaptability of each crop to 

the environmental conditions and the variable costs associated with the production of each 

crop. Crop selection is out of the scope of this research. In this research, it is assumed that the 

crops selected to be cultivated within a production year has already been selected. Once the 

crop selection is finalized, solutions will need to be determined concerning resource 

allocations amongst the competing crops. 

 

Determining land allocations solutions for an existing irrigation scheme requires knowledge 

of the total area of land available for crop production. The total area of land for each farm plot 

type must also be known. The farm plot types include the single-crop, double-crop and triple-

crop plots, etc. The land allocated to each farm plot type at existing irrigation schemes is 

usually fixed. This is primarily due to multi-cropping practices. The purpose of formulating a 

mathematical model for an existing irrigation scheme is to determine the area of land that 

should be allocated for the production of each crop. The land allocation must be done while 

trying to optimize resource allocations amongst the various competing crops that are 
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required to be grown. In this research, the resources that would need to be optimized include 

the limited area of agricultural land, irrigated water requirements and the variable costs 

associated with the production of each crop.  The feasible solutions found must not break the 

multiple land and irrigated water allocation constraints.  

 

The minimum and maximum market demand for each crop should be determined. The 

minimum supply will ensure that the minimum market requirements are met. A constraint on 

the maximum supply will ensure that an excess amount of crop yield is not produced. The 

feasible solutions determined in making land allocation decisions need to consider these 

constraints. The minimum and maximum market demand conditions are location specific 

factors.  

 

The probable crop yield of each crop to be grown must be determined. The yield and the 

forecasted producer prices are important factors in making resource allocation decisions. 

These factors will directly affect the resource allocation decisions made and the total gross 

profits earned at the end of the cropping season for each crop, and at the end of the 

production year for all crops.  

 

To determine optimized irrigated water allocation for each crop, the rainfall pattern must be 

considered. The difference between the CWR of each crop and the volume of rainfall that is 

expected to fall during its lifespan is the volume of irrigated water that is required by each 

crop. Determining optimized solutions to irrigated water allocation is important. Excessive 

applications of irrigated water can also cause environmental damage. To control the usage of 

irrigated water, crop producers are required to pay water charges meaning that they need to 

produce more output per meter cubed (m-3) of irrigated water used. 

 

The variable costs associated with crop production also need to be optimized in determining 

resource allocation solutions. The variable costs of production are the accumulated costs of 
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the various inputs associated with the production of each crop. These costs include the cost of 

labor, fertilizers, fuel, electricity, storage costs, etc. It is up to the crop planner to determine 

the variable cost of production value of each crop. The production costs will differ for each 

crop produced. It will also be different at different geographical locations.  

 

Once this information is known, solutions can be determined by formulating mathematical 

models. The purpose of formulating the models is to determine optimized resource 

allocations amongst the various competing crops to be grown. The mathematical models 

developed in this research consider the above mentioned factors in determining resource 

allocations. The objective is to determine the land allocations amongst the various competing 

crops in a way that will optimize the irrigated water requirements and the variable costs 

associated with the production of each crop. The feasible solutions found must satisfy the 

market demand conditions for each crop and the multi-cropping practices.  

 

There are also multiple hard and soft constraints, and objectives, that are associated with 

determining feasible solutions to the ACP problem. Some of these objectives and constraints 

include: 

1. Optimize the total gross profits that can be earned within a production year, in 

producing all the crops. 

2. Optimize the resource allocations amongst the various competing crops. The resource 

allocations include the limited area of agricultural land, the irrigated water 

requirements and the variable costs associated with the production of each crop. 

3. Maximize the available space given to each crop being produced.  

4. Satisfy the market demands. 

5. The allocation of land amongst the various competing crops should be done as fairly 

as possible.  

Some of the hard and soft constraints associated with determining feasible solutions are as 

follows: 
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Hard constraints: 

1. Perennial crops must only be allocated on the single-crop farm plots. Only two 

crop groups are allowed to be grown in sequence on the double-crop plots. Only 

three crop groups are allowed to be grown in sequence on the triple-crop plots, 

and so on. 

2. The crops that have been selected to grow in sequence on the same farm plot must 

not have conflicting planting and harvesting schedules. 

3. The total area of land that has been allocated to each crop, which belongs to a 

particular crop group, must be less than or equal to the total area of land that is 

available for crop production for that particular crop group.  

4. The total area of land that has been allocated to each crop group, which has been 

allocated the most area of land on their respective farm plots, must be less than or 

equal to the total area of land that is available for crop production on an irrigation 

scheme. 

5. The total volume of irrigated water that is required to meet the CWR’s of all crops 

must not exceed the total volume of irrigated water that can be supplied to the 

irrigation scheme, within a year. 

6. The area allocations given to each crop should produce yield that would satisfy the 

market demand conditions.  

7. Every crop that is required to be grown must be allocated a portion of land. 

 

Soft constraints:  

1. Allocate as much land as possible to each crop in determining optimized solutions.  

2. Minimize the total irrigated water requirements and the variable costs associated 

with the production of each crop type. 

 

The feasible solutions found must not break any hard constraints and should satisfy as many 

soft constraints and objectives as possible. 
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4.6 Research Assumptions 

This research makes the following assumptions: 

1. The methods introduced in this research will be adopted at the beginning of a crop 

production year, for new and existing irrigation schemes. 

2. The total area of land available for agricultural production is known. 

3. For an existing irrigation scheme, the total area of land that is available for each 

farm plot type remains fixed. 

4. Multiple crops are required to be grown. 

5. The crops that are to be grown should have already been selected. 

6. The forecasted producer prices for each crop should have been determined. This 

information can be determined from published literature (Kantanantha, 2007), by 

observing the market prices from the previous production years or consulting 

advisory services, amongst others. It is important to get the forecasted producer 

prices that are relevant to the markets in which the harvests will be sold.  

7. No restrictions are placed on the availability of the inputs associated with crop 

production. 

8. The variable costs of production of each crop can be calculated. 

9. The CWR of each crop is known. 

10. It is acceptable to use the average rainfall pattern in determining optimized 

irrigated water requirements. 

11. The crop’s yield under optimal cropping practices must be known.  

12. It is assumed that the results are determined under optimal cropping practices 

and favourable conditions. No unforeseen circumstances such as natural disasters 

are considered. This includes drought and flooding. 

13. The crops will be planted and harvested as scheduled. 

 

It is preferable that the information required is determined locally. The market conditions of 

one geographical location will differ from the next. The government also publishes national 

reports on the statistics of the major crops produced annually. For each crop produced, these 

reports may give the yields obtained and the market prices. These reports indicate the 
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conditions of the markets as a whole throughout the country, and are not location specific 

(Kantanantha, 2007). These reports are acceptable and can be used as benchmark data. 

However, it is preferred that location specific data be used. In this research, national 

government reports have been used. 

 

4.7 Conclusion 

This chapter describes ACP as a SAP. SAP’s are amongst the most difficult optimization 

problems in literature. The formulation of the problem requires taking into consideration 

several factors that will affect the ACP decisions made. Amongst these are the climatic 

conditions, crop yields, fluctuating market prices, the demand and supply conditions, the 

production costs, the cropping patterns and the planting and harvesting schedules. There are 

several hard and soft constraints that would need to be satisfied in order to determine 

feasible solutions. The purpose of formulating the ACP mathematical models is to factor in all 

the relevant information associated with determining feasible solutions, while minimizing the 

number of decision variables used. 

 

The formulation of the ACP mathematical models presented in chapters seven and eight are 

based on an adapted knapsack model. This model is a bounded-fractional-multiple knapsack 

model, which has been discussed and presented in this chapter. Knapsack modeled 

optimization problems are known to be NP-Hard. 

 

Finally, the problem description is given and research assumptions are made.  
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CHAPTER FIVE 
NEW STOCHASTIC LOCAL SEARCH ALGORITHMS 

 
 
5.1 Introduction  

Local Search (LS) techniques are algorithms that exploit the local neighborhood structures of 

a solution space in searching for the local optimal solution. These techniques start off with an 

initial random solution, and iteratively make local changes within the local neighborhood 

structures of the solution space in finding improved solutions. LS techniques try to determine 

the best neighbour surrounding the current solution in moving towards the local optima. 

 

This research introduces three new Monte Carlo type LS metaheuristic algorithms. These 

algorithms have been developed by the author of this dissertation. The motivation for 

developing these new algorithms was to investigate search techniques that could be used to 

determine effective solutions to difficult optimization problems at low computational costs. 

 

The three new LS metaheuristic algorithms introduced are called the Best Performance 

Algorithm (BPA), the Iterative Best Performance Algorithm (IBPA) and the Largest Absolute 

Difference Algorithm (LADA). Each of these algorithms employs techniques that maintain 

updated lists’ of their best solutions found, during an iterative process. By performing LS and 

using the best solutions found, improved solutions may possibly be determined. If improved 

solutions are found, then the lists’ of the algorithms will get updated accordingly. It is still too 

soon to categorize the types of optimization problems that these algorithms will be most 

suitably applied to. Further research will need to be done to determine this. BPA, IBPA and 

LADA are developed to determine solutions for both continuous and combinatorial 

optimization problems.    

 



58 
 

Meanwhile, the ability of these algorithms in determining solutions to the ACP problems was 

tested and results obtained are presented in chapters seven and eight. To determine the 

relative merits of the solutions found, comparisons of the solutions obtained with two other 

well-known LS metaheuristic algorithms were undergone. These popular algorithms are Tabu 

Search (TS) and Simulated Annealing (SA). Their solutions are also compared to the solutions 

of four population based metaheuristic algorithms presented in chapter six. The remaining 

part of this chapter gives descriptions of the BPA, IBPA and LADA metaheuristic algorithms. 

The TS and SA techniques are also explained. 

 

5.2 Best Performance Algorithm 

The Best Performance Algorithm is modeled in relation to the competitive nature of 

professional athletes. Professional athletes desire to push the boundaries of their best 

performances within competitive environments. This occurs for several reasons which could 

be personal and/or financial, amongst others. However, to give off their best performances, 

the athletes need to strategize and practice. Strategizing and practice will help athletes 

improve their talents by assisting them in the development of refined skills. These refined 

skills will enable athletes to perform at their best, within competitive environments, 

irrespective of their sporting disciplines.  

 

An effective strategy used in improving performance is through the use of technology. 

Technology can be used to identify the weaknesses and strengths of athletes in them 

delivering a performance. By identifying and strengthening the weaknesses, or even 

developing new techniques in delivering a performance, an athlete could possibly register 

improved performances in being competitive. One way to identify the athletes’ weaknesses 

and strengths is to maintain an archive or a collection of the athletes’ best registered 

performances. This collection will provide a reference for athletes to review the previous best 

performances that they delivered. Once weaknesses are identified, appropriate changes can 

be made to the techniques used in delivering that performance. This will help the athlete 

develop refined skills, improving the chances of delivering better performances. Best 

performances can include those performed within competitive environments and even those 
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during training sessions. The implementation of the BPA is modeled on the idea of an athlete 

maintaining a collection of a limited number of his/her best performances. 

 

BPA is implemented by maintaining a sorted list of the individual athletes’ best performances. 

This list is called the Performance List (PL). PL only maintains a limited number of the best 

registered performances, as the athlete may only be interested in working with a limited 

number of his/her best performances. Performances are arranged according to the quality of 

the performance delivered. The better the quality of a performance, the higher up on the list it 

is. The quality of a performance is a measure of the result obtained in executing that 

performance. 

 

In trying to develop refined skills or possibly determine a new technique, which may possibly 

lead to an improved performance, the athlete will review a performance from the PL and will 

seek to make appropriate changes. By making slight changes (performing LS) to the way a 

reviewed performance was delivered, an improved technique may be determined which may 

lead to a better quality performance. If an improved technique is found, then the PL will be 

updated with this performance, provided that it at least improves on the worst performance 

on the PL. When an improved performance gets inserted into the PL, the worst performance is 

removed. The sorted order of the PL must always be maintained. Any improved technique 

that produces a performance which results in the quality of that performance being identical 

to that of another performance, which is already registered on the PL, will not get considered.  

 

After making slight changes to the techniques used by the athlete in delivering his/her 

previous best performances, the athlete may want to continue making slight changes to those 

updated techniques, and so on and so forth for as long as he/she would like to. If improved 

techniques are found along the way which leads to improved performances, then the PL will 

get updated accordingly. If the athlete wants to work with another performance from the PL 

then the athlete will choose to do so. After a sufficient amount of strategizing and 
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implementation the athlete will determine the best technique to use which will allow him to 

perform at his best. 

 

From a heuristic perspective, the best performances recorded on the PL refer to the best 

solutions found by the metaheuristic algorithm. The performance/solution that the athlete 

will consider working with is called the “working” solution. Local changes are made to this 

working solution, in the hope of trying to determine an improved solution. If this updated 

working solution at least improves on the worst solution found on the PL then the PL will get 

updated. The athlete will continue working with this updated working solution or choose 

another solution from the PL to be its new working solution for the next iteration, given a 

certain probability. This probability symbolizes the athletes’ willingness to continue working 

with an updated working solution or not.  

 

PL will always only get updated with solutions that provide unique performance results. This 

will prevent the algorithm from working with duplicate solutions that produce identical 

results. After a predetermined number of iterations are completed, the best solution found 

will be representative of the best technique determined by the athlete. This best solution will 

be the first solution registered on the PL. The algorithm for BPA is given in Algorithm 5.2.1 

below. The flowchart diagram is given in Figure 5.2.1. 

 

Algorithm 5.2.1: The Best Performance Algorithm 

 

1. Set the index variable,           

2. Set the size of the Performance List ,          

3. Initialize probability,    

4. Populate the Performance List (  ) with random solutions 

5. Calculate the fitness values of the solutions in   , i.e.            

6. Sort    and            according to            

7. Initialize         to         

8. for   to                do  
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    8.1.          = Perform_Local_Search(       ) 

    8.2.           = Evaluate (       ) 

    8.3. if           better then                      then 

           8.3.1. Update    with         

           8.3.2. Update            with           

    8.4. end if 

    8.5. if random[0,1] >   then 

           8.4.1.         Select index, e.g. Random[0,        ] 

           8.4.2.                   

    8.6. end if 

9. end for 

10. return     

 

 

5.3 Iterative Best Performance Algorithm 

With the BPA, an athlete determines improved techniques by making slight changes to the 

techniques used to deliver a limited number of the athletes’ best performances (refer to 

section 5.2). At different iterations of the algorithm, the performance/solution chosen to be 

worked with will either be a new performance selected from the Performance List (PL) or the 

performance obtained from the previous iteration. Working with the performance from the 

previous iteration determines the willingness of the athlete to continue working with the 

previous performance. This willingness is represented by a predetermined probability 

variable in the algorithm. Given this probability, the algorithm either works with a previous 

performance or not. 
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Figure 5.2.1: Flowchart of the Best Performance Algorithm 
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Randomly determine a new index position, i.e. 𝑖𝑛𝑑𝑒𝑥   R  d  [  𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒]  
Set a new working solution, i.e. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔  𝑃𝐿𝑖𝑛𝑑𝑒𝑥 

START 

Set probability 𝑝𝑎  

(e.g. 𝑝𝑎      ) 

Set performance list size 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒  

(e.g.     ) 

Set the number of iterations  𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

(e.g.           ) 

Set the index position 𝑖𝑛𝑑𝑒𝑥     

Set variable 𝑖     

Generate random solutions for the Performance List (𝑃𝐿) of size 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒 

i.e. 𝑃𝐿𝑙   𝑃𝐿  𝑃𝐿     𝑃𝐿𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒    
Calculate Performance List Fitness values  (𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠) of size 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒 

i.e. 𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑙   𝑓(𝑃𝐿 ) 𝑓(𝑃𝐿 )    𝑓(𝑃𝐿𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒  )  
 

Initialize the working solution, i.e. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   𝑃𝐿𝑖𝑛𝑑𝑒𝑥 

𝑖  𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ? 

Perform local search on 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 

Calculate the fitness value of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔, i.e. 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 

Update  𝑃𝐿 with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 (maintain sorted order) 

Update 𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 with 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 (maintain sorted order) 

𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 b           𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒   ? 

𝑝𝑎   R  d  [   ] ? 

Increment 𝑖, i.e. 𝑖   𝑖     STOP 

Sort 𝑃𝐿 and 

𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

According to 

𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 
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The Iterative Best Performance Algorithm (IBPA) is modeled on the same principles as the 

BPA. However, with the IBPA the athlete will continue working with the same performance for 

a specified amount of time. This performance is viewed as a reference performance. Using this 

reference performance, the athlete will make slight changes to the technique used to deliver 

that performance in the hope of trying to determine improved techniques. The athlete will 

continue doing this for a specified amount of time, in order to be satisfied that enough 

attempts were made in working with an individual performance. After the athlete is done 

working with a reference performance, another reference performance will be chosen from 

the PL. In working with these reference performances, improved techniques may be 

determined along the way. These improved techniques may lead to improved performances 

being delivered. If improved performances are delivered then the PL will be updated 

accordingly.  

 

In implementing the IBPA, the reference performance is considered the “current” solution. 

This current solution remains the same for a predetermined number of iterations. This 

iteration count will be referred to as the ‘steps per change’. The steps per change remain 

constant for the current solution worked with, for the number of current solutions that the 

athlete is willing to work with. The number of current solutions that the athlete is willing to 

work with is also specified by a predetermined number of iterations. This iteration count is 

referred to as the ‘number of iterations’. 

 

For each step per change, local search is performed on the current solution. This will generate 

a “working” solution. Similar to BPA, if the working solution is at least better than the worst 

solution on the PL, then the PL will get updated accordingly. After the number of steps per 

change is completed, in working with the current solution, another current solution will be 

chosen for the next set of steps per change. This process will continue until the number of 

iterations is complete. After the number of iterations is completed, the best solution 

determined will be the first solution on the PL. This solution is representative of the best 

technique determined by the athlete. The algorithm for IBPA is given in Algorithm 5.3.1 

below. The flowchart diagram is given in Figure 5.3.1 
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Algorithm 5.3.1: The Iterative Best Performance Algorithm 

 

1. Set the index variable,           

2. Set the size of the Performance List ,          

3. Populate the Performance List (  ) with random solutions 

4. Calculate the fitness values of the solutions in   , i.e.            

5. Sort    and            according to            

6. Initialize         to         

7. for   to                do  

    7.1. for   to                do  

           7.1.1.         = Perform_Local_Search(       ) 

           7.1.2.            Evaluate(       ) 

           7.1.3. if           better then                      then 

                   7.1.3.1. Update    with         

                   7.1.3.2. Update            with           

           7.1.4. end if 

    7.2. end for 

    7.3.         Select      , e.g. Random[0,        ] 

    7.4.                   (                   ) 

8. end for 

9. return     
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Figure 5.3.1: Flowchart of the Iterative Best Performance Algorithm 

Increment 𝑗, i.e. 𝑗   𝑗     

Randomly determine a new index position, i.e. 𝑖𝑛𝑑𝑒𝑥   R  d  [  𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒]  
Set a new current solution, i.e. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡  𝑃𝐿𝑖𝑛𝑑𝑒𝑥 

START 

Set performance list size 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒  

(e.g.     ) 

Set the number of iterations  𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

(e.g.          ) 

Set the steps per change for each 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

(e.g.     ) 

Set the index position 𝑖𝑛𝑑𝑒𝑥     

Set variable 𝑖     and  𝑗     

Generate random solutions for the Performance List (𝑃𝐿) of size 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒 

i.e. 𝑃𝐿𝑙   𝑃𝐿  𝑃𝐿     𝑃𝐿𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒    
Calculate Performance List Fitness values  (𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠) of size 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒 

i.e. 𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑙   𝑓(𝑃𝐿 ) 𝑓(𝑃𝐿 )    𝑓(𝑃𝐿𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒  )  
 

Initialize the current solution, i.e. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡   𝑃𝐿𝑖𝑛𝑑𝑒𝑥 

𝑖  𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ? 

Generate a new 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 solution by performing local search on 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

Calculate the fitness value of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔, i.e. 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 

Update  𝑃𝐿 with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 (maintain sorted order) 

Update 𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 with 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 (maintain sorted order) 

𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 b           𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒   ? 

𝑗   𝑠𝑡𝑒𝑝𝑠𝑃𝑒𝑟𝐶 𝑎𝑛𝑔𝑒 ? 

Increment 𝑖, i.e. 𝑖   𝑖     

STOP 

Sort 𝑃𝐿 and 

𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

According to 

𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 
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5.4 Largest Absolute Difference Algorithm 

Difference, in mathematical terms, is the quantity which remains after one quantity is 

subtracted from another. An example is when the number ‘3’ is subtracted from the number 

‘6’. The remainder is equivalent to -3. The remainder is negative because 3 is less than 6. 

 

The absolute difference between two real numbered values   and   is the absolute value of 

their difference. It is denoted by       and is mathematically defined as follows; 

      {
(   )               (   )   

 (   )           (   )   
       (   ) 

The absolute difference will always be positive or zero (if    ). On a real line it can be seen 

as the magnitude or difference between points   and  . This can be seen in Figure 5.4.1.  

 

  

 

Figure 5.4.1: The absolute difference between the values   and   

 

The Largest Absolute Difference Algorithm (LADA) is modeled on the ability to calculate an 

absolute difference between real numbers.  

 

During an optimization process, a solution vector        (refer to chapter 2) is the input 

vector to the objective function  .   is the  -dimensional vector of design variables of  , i.e. 

            . Design variables can be continuous or discrete depending on the type of 

optimization problem. The values of the design variables will determine the state (or quality) 

of the objective function within the domain of the solution space. Several solutions can exist 

depending on the different values of the design variables. By taking two of these solutions    

and   , a vector of absolute differences ( ) can be determined by calculating the absolute 

differences of the values of the adjacent elements of vectors    and   .   is determined using 

equation     below. 

-1 -6 0 6 1 
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   |         |                    (   ) 

The elements of   is indicative of how far away from each other the adjacent elements of the 

solution vectors    and    are. The indices of  , which are indicative of the smallest absolute 

differences, represent the indices of    and    that are most similar. The indices of   with the 

largest absolute differences represent the indices of    and    that are least similar. By 

performing local search on the adjacent elements of    and   , indexed by the largest absolute 

differences of  , new solution vectors   
  and   

  can be determined. If these new ‘child’ 

solutions improve on their ‘parent’ solutions then these solutions will be drawn closer 

together in moving towards the global optimum. By performing this local search technique on 

a population of solutions, the solutions will begin to converge to the global optimum in an 

iterative way. 

 

LADA is implemented by maintaining a population of solutions in a list called the Solutions 

List (  ).    must at least be greater than or equal to 2. Also, the best solution found in    

must be recorded in a variable called “best”. LADA is executed for a specified number of 

iterations. At each iteration  , two solutions    and    will be randomly selected from    (  

 ).    and    gets copied respectively into their “working” variables          and         . 

Using          and          the vector of absolute differences    can be determined. To 

implement local search, using   , the number of largest absolute differences to be worked 

with must be specified. This is given by the variable  , where      . Having determined 

  , and knowing  , two new child solutions are generated by making permissible changes to 

         and         . If          provides a better quality solution than    , then     will 

be replaced by         . Similarly, if          improves on    ,     will be replaced by 

        . If          or          improves on      then      must be updated accordingly. 

The quality of the solutions of          and          must not be identical to the quality of 

any other solution found in   . Disallowing identical quality solutions ensures the uniqueness 

of the solutions listed in the   . After the specified number of iterations is completed, the best 

solution found will be recorded in best. The algorithm for LADA is given in Algorithm 5.4.1 

below. The flowchart is given in Figure 5.4.2. 
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Algorithm 5.4.1: The Largest Absolute Difference Algorithm 

1. Set the size of the Solutions List,          

2. Populate the Solutions List (  ) with random solutions 

3. Calculate the fitness values of the solutions in   , i.e.            

4. Set the no. of absolute differences to consider,   

5. Set the best solution (    ) and best fitness (      ) using            

6. for   to                do  

    6.1.        = Select       , e.g. Random[0,        ] 

    6.2.        = Select       , e.g. Random[0,        ] (             ) 

    6.3.                      

    6.4.                      

    6.5.                           

    6.6. Perform_LS(                       )  

    6.7.              Evaluate(         ) 

    6.8.              Evaluate(         ) 

    6.9. if             better then                  then 

           6.9.1.                    

           6.9.2.                               

           6.9.3. if             better then        then 

                     6.9.3.1.                

                     6.9.3.2.                     

           6.9.4. end if 

    6.10. end if 

    6.11. if             better then                  then 

           6.11.1.                    

           6.11.2.                               

           6.11.3. if             better then        then 

                      6.11.3.1.                

                      6.11.3.2.                     

          6.11.4. end if 

    6.12. end if 

7. end for 

8. return      

 

 



69 
 

False 

True 

True True 

True True 

False 

False False 

False 

False 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Randomly determine 𝑖𝑛𝑑𝑒𝑥  and 𝑖𝑛𝑑𝑒𝑥  such that 𝑖𝑛𝑑𝑒𝑥  𝑖𝑛𝑑𝑒𝑥 , 

i.e. 𝑖𝑛𝑑𝑒𝑥    Random[  𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒] and 𝑖𝑛𝑑𝑒𝑥    Random[  𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒]  
Set the two working solutions from 𝑆𝐿 using 𝑖𝑛𝑑𝑒𝑥  and 𝑖𝑛𝑑𝑒𝑥 , 

i.e. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   = 𝑆𝐿𝑖𝑛𝑑𝑒𝑥  and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   = 𝑆𝐿𝑖𝑛𝑑𝑒𝑥  

 

𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   better 

then 𝑆𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑛𝑑𝑒𝑥  ? 

Calculate the fitness values of 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔  , i.e. 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   and 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   

START 

Set the Solutions List size  𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒 (e.g. 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒    ) 

Set the number of iterations  𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (e.g. 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠        ) 

Set the number of largest absolute differences to consider, 𝑚 (e.g. 𝑚     (  𝑚   length of design variables)) 

Declare 𝑖𝑛𝑑𝑒𝑥  and 𝑖𝑛𝑑𝑒𝑥  as integers and set variable 𝑖     

Generate random solutions for the Solutions List (𝑆𝐿) of size 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒, i.e. 𝑆𝐿𝑙   𝑆𝐿  𝑆𝐿     𝑆𝐿𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒    
Calculate 𝑆𝐿 Fitness values  𝑆𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 of size 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒, i.e. 𝑆𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑙   𝑓(𝑆𝐿 ) 𝑓(𝑆𝐿 )    𝑓(𝑆𝐿𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒  )  

Set the best solution (𝑏𝑒𝑠𝑡), from 𝑆𝐿, and the best fitness (𝑓 𝑏𝑒𝑠𝑡) according to the best fitness found in 𝑆𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

𝑖  𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ? 

Calculate absolute differences 𝑑𝑖, i.e. 𝑑𝑖    𝑤𝑜𝑟𝑘𝑖𝑛𝑔   𝑤𝑜𝑟𝑘𝑖𝑛𝑔     

Determine the indices of the 𝑚 largest absolute differences from 𝑑𝑖. 
Using these indices generate two new working solutions, 

i.e. perform local search on 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔  . 

Replace 𝑆𝐿𝑖𝑛𝑑𝑒𝑥  with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   

Replace 𝑆𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑛𝑑𝑒𝑥  with 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔    

 

𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   better 

then 𝑆𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑛𝑑𝑒𝑥  ? 

Increment 𝑖, i.e. 𝑖   𝑖     

STOP 

Replace 𝑆𝐿𝑖𝑛𝑑𝑒𝑥  with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   

Replace 𝑆𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑛𝑑𝑒𝑥  with 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔    

 

𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   better 

then 𝑓 𝑏𝑒𝑠𝑡 ? 

 

𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   better 

then 𝑓 𝑏𝑒𝑠𝑡 ? 

Replace 𝑏𝑒𝑠𝑡 with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   
Replace 𝑓 𝑏𝑒𝑠𝑡 with 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔    

Replace 𝑏𝑒𝑠𝑡 with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔   
Replace 𝑓 𝑏𝑒𝑠𝑡 with 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔    

Figure 5.4.2: Flowchart of the Largest Absolute Difference Algorithm 
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5.5 Tabu Search 

TS is based on the idea of something that should not be interfered with (Glover, 1989; Glover, 

1990). TS implements this idea by recording a specific number of unique best solutions found 

in a list called the Tabu List (TL). If a new solution is found that improves on the solutions 

recorded in the TL, the new solution gets added to the TL. Any new solutions found that is 

identical to those already registered in the TL will not be considered. This eliminates the 

possibility of exploiting identical moves. 

 

TS also maintains a record of the “best” overall solution. Using a “current” solution, TS 

generates a list of candidate solutions, which are local to the current solution. The new 

candidate solutions determined must be cross referenced against the TL. This will eliminate 

the possibility of repeating identical moves. Once the candidate list is determined, the best 

candidate solution from the list can be found. This best candidate solution becomes the new 

current solution for the next iteration. If this new current solution improves on the best 

solution found so far, then it also gets recorded as the best solution and gets inserted into the 

TL. The TL is usually updated using the First In First Out technique.  

 

Generating new solutions is done in a deterministic way, using local search. This process 

continues iteratively for a specific number of iterations. The algorithm for TS is given in 

Algorithm 5.5.1 below. 

 

Algorithm 5.5.1: Tabu Search 

 

1. Generate an initial random solution        

2. Set                

3. Evaluate the fitness of               

4. Set the fitness of         (         )           

5. Set the size of the Tabu List,              

6. Set the size of the Candidate List,                   

7. Initiate the Tabu List    and the               
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8. for   to                do  

    8.1.               = Generate_List(       ) 

    8.2.         = Find_Best_Candidate(             ) 

    8.3.           = Evaluate(       ) 

    8.4. if           better then        then 

           8.4.1.                    

           8.4.2.                

           8.4.3. Update    with         

    8.5. end if 

9. end for 

10. return      

 

 
5.6 Simulated Annealing 

SA (Kirkpatrick, 1983; Tan, 2008) models the annealing process when heated metal begins to 

cool. The hotter metal gets when heated, the more volatile its atomic structure will become. 

This will result in a weakened and unstable structure. However, when the heated metal begins 

to cool, the highly energized metallic atoms lose energy and the structure begins to stabilize. 

When the metal is completely cooled, an equilibrium state is reached. The cooling process 

must be slow for the annealing to be successful. Reaching an equilibrium state is symbolic of 

an optimal solution being found for optimization problems. 

 

SA starts off with randomly generated, but equivalent, “best”, “current” and “working” 

solutions. It starts off with an initial temperature   and then decreases by a constant factor  , 

until it reaches its final temperature  . At each reduced temperature    , SA iteratively 

searches for local solutions to the current solution. This constitutes the working solution. If 

the working solution is better than the current solution, the current solution is replaced by 

this working solution. If this current solution is better than the best solution, then the best 

solution becomes the current solution. The worst working solutions can replace the current 

solution, given a certain probability. This strategy reduces the chances of premature 

convergence.  This process continues until   is reached.   symbolizes an equilibrium state 
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being reached where the best solution found will be given. The algorithm for SA is given in 

Algorithm 5.6.1 below. 

 

Algorithm 5.6.1: Simulated Annealing 

 

1. Generate an initial random solution         

2. Set                          

3. Evaluate the fitness of               

4. Set the fitness of         (         ) and the fitness of         (         )           

5. Initiate starting temperature   and final temperature   

6. while       do 

     6.1. for   to                do 

            6.1.1.         = Generate_Solution(       ) 

            6.1.2.            Evaluate(       ) 

            6.1.3. if           better then           then 

                     6.1.3.1.              = true 

           6.1.4. else 

                     6.1.4.1. Calculate acceptance probability   

                     6.1.4.2. if     random[0,1] then 

                                  6.1.4.2.1.              = true 

                     6.1.4.3. end if 

           6.1.5. end else 

           6.1.6. if              then 

                     6.1.6.1.              = false 

       6.1.6.2.           =           

                     6.1.6.3.         =         

                     6.1.6.4. if           better then        then 

                                  6.1.6.4.1.      =         

                      6.1.6.4.2.        =            

                     6.1.6.5. end if 

           6.1.7. end if 

    6.2. end for 

    6.3. Update   according to cooling schedule 

7. end while 

8. return       
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5.7 Conclusion 

This chapter introduces three new Monte Carlo type Local Search (LS) metaheuristic 

algorithms. These algorithms are the Best Performance Algorithm (BPA), the Iterative Best 

Performance Algorithm (IBPA) and the Largest Absolute Difference Algorithm (LADA). BPA 

and IBPA are modeled on the competitive nature of professional athletes in trying to improve 

on their best registered performances. LADA is modeled on the ability to calculate the 

absolute difference between two real numbers.  

 

The techniques used by these algorithms maintain updated lists’ of their best solutions found. 

By maintaining collections of these best solutions, the algorithms are directed towards 

determining more improved solutions in performing LS. 

 

BPA, IBPA and LADA will be used to determine solutions to the ACP problems presented in 

chapters seven and eight. To determine the relative merits of the solutions found, solutions 

will be compared to the solutions of two well-known LS metaheuristic algorithms. These 

algorithms are Tabu Search (TS) and Simulated Annealing (SA). Both TS and SA have been 

briefly described in this chapter. 
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CHAPTER SIX 
POPULATION BASED TECHNIQUES FOR THE ANNUAL 

CROP PLANNING PROBLEM 
 
 
6.1 Introduction 

Swarm Intelligence (SI) is research that is inspired by observing the naturally intelligent 

behaviour of swarms of biological agents, within their environments. The swarms are 

typically made up of simple agents that perform simple tasks while interacting with each 

other and their environment. However, without any central control structure directing their 

movements they seem to interact intelligently, and in an independent way, in achieving their 

overall objectives (Blum and Merkle, 2008). These observations have led to the development 

of many effective SI optimization algorithms.  These algorithms typically represent the 

individual behavior of the biological agents which are represented by a set of simple rules. 

Examples of swarm systems studied in literature include colonies of ants, wasps, termites and 

bees, flocks of birds, school of fish and herds of animals, amongst others (Blum and Merkle, 

2008).   

 

SI algorithms have been effective in providing solutions to many    type optimization 

problems in literature. This research investigates the effectiveness of employing three 

relatively new SI metaheuristic algorithms, in determining solutions to the ACP problems 

presented in chapters seven and eight. The algorithms investigated are Cuckoo Search (CS), 

Firefly Algorithm (FA) and Glowworm Swarm Optimization (GSO). To determine the relative 

merits of their solutions found, their solutions will be compared to that of a well-known 

population based metaheuristic algorithm. This algorithm is the Genetic Algorithm (GA).  

 

GA is a global search metaheuristic algorithm. Global search techniques attempt to determine 

the single best local optimum solution from the set of local optima that exist within the 

solution space. The single best local optimum solution is the global optimum solution. 
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Practically, there are no global search algorithms that exist that guarantee determining 

optimal solutions for all    type optimization problems. The aim of global search algorithms 

is therefore to determine the best local optimum solution that can be found within  .  

 

The subsections below describe CS, FA, GSO and the GA. 

 

6.2 Cuckoo Search 

CS (Yang, 2010) is inspired by the parasitism of some cuckoo bird species. These birds 

aggressively reproduce and then abandon their eggs in the nests of other host bird species. 

Some host bird’s behave aggressively and throw away the alien eggs after discovering an 

intrusion. Others simply leave their nests and build new nests elsewhere.  

 

Each egg in the host bird’s nest represents a possible solution. The goal of the CS algorithm is 

to replace a not-so-good solution in the host bird’s nest with a potentially better solution. This 

is represented by a newly-laid egg. There are three guiding rules governing the CS algorithm. 

These include: 

1. Each bird lays one egg at a time. The egg gets placed randomly amongst the host bird’s 

nests. 

2. The nest with the highest fitness value will get carried over to the next generation. 

3. The number of host bird nests is fixed. The probability of a host bird discovering an 

intrusion is set at a constant value of      [   ].  

In generating a new solution, the random-walk is best performed in using levy flights.  The 

levy flight of cuckoo   is performed using equation (   ). 

  (   )    ( )          (   ) 

Here,   is drawn from a standard normal distribution with mean 0 and standard deviation of 

1.   determines the direction of movement.   is the step size. This determines the distance of 

the random walk. Determining   is tricky. If   is too big then   (   ) will be too far away 
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from   ( ). If   is too small then   (   ) will be too close to   ( ) to be significant enough. 

One of the most efficient algorithms used to calculate   is Mantegna’s algorithm (Yang, 2010). 

Using Mantegna’s algorithm,   can be calculated by using equation (   )  

   
 

      
       (   ) 

Here,   and   are drawn from a normal distribution, and      . 

The algorithm for Cuckoo Search is given in Algorithm 6.2.1 below. 

 

Algorithm 6.2.1: Cuckoo Search 

 

1. Generate an initial random solution of   host bird nests =      (for          ) 

2. Evaluate the fitness of       by summing the values of the solutions of each egg in      , i.e.  (     ).  

3. Find the best fitness (           ) and best nest (        ) from       

4.                    =             

5.                 =           

6. while                    do  

6.1. Generate        , using      and          in performing levy flights  

6.2. Get          by performing these steps  

            6.2.1. if  (        )     (     ) then 

                       6.2.1.1.  (     )    (        ) 

                       6.2.1.2.      =          

            6.2.2. end if 

            6.2.3 Evaluate  (     ) to determine             and             

    6.3.           

    6.4. Generate        , using nest and pa. Here, a fraction of the worst solutions are replaced  

            with new solutions for each       

    6.5. Determine          again using step 6.2. 

    6.6.           

    6.7. if             >                    then 
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           6.7.1.                    =             

           6.7.2.                 =          

    6.8. end if 

7. end while 

8. return                 

 

 

6.3 Firefly Algorithm 

FA (Yang, 2010) is inspired by the ability of fireflies to emit light (bioluminescence) in order 

to attract other fireflies for mating purposes. There are three guiding rules governing this 

algorithm. These include:  

1. Fireflies are attracted towards brighter fireflies, regardless of their sex. 

2. The attractiveness of a firefly is related to its brightness. However, it is assumed that 

this brightness decreases with distance. The brightest firefly moves randomly.  

3. The brightness of the firefly is a function of the problems’ objective.  

Attractiveness: The attractiveness of a firefly is given by equation (   ). 

   ( )       
    

      (   )  

Here,   is the distance between any two fireflies.    represents the initial attractiveness at 

     .   is an absorption coefficient. It controls the decrease in the intensity of light. 

Movement: The movement of a less attractive firefly   towards a more attractive firefly   is 

given by equation (   ). 

                
     

 

(     )   (     
 

 
)                          (   ) 

Here,    is the current position of the firefly within the solution space. The combination of the 

elements in the second term represents the firefly’s attractiveness, as seen by the other 

fireflies. The third term represents a random adjustment in the movement of the firefly.   is a 

scaling parameter,   [   ].      is a uniformly distributed random number,      (   ). 
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    represents the distance between fireflies   and  . It is calculated using the Cartesian 

distance (Yang, 2010) given in equation (   ).  

    √∑ (       )
  

                  (   ) 

The algorithm for FA is given in Algorithm 6.3.1 below. 

 

Algorithm 6.3.1: Firefly Algorithm 

 

1. Initialize        and                

2. Initialize   fireflies                  (for          ) 

3. The light intensity of                                    

4. for   till                do  

    4.1. for   till   do 

            4.1.1                   Evaluate(                 ) 

    4.2. end for 

    4.3. Sort                  and                according to                

    4.4.                    =                 

    4.5.                     =                   

    4.6. Move fireflies to new locations by performing these steps 

            4.6.1. for   till   do 

                      4.6.1.1. for   till   do 

                                4.6.1.1.1. if                                 then  

                4.6.1.1.1.1. Calculate     

                   4.6.1.1.1.2. Calculate  ( ) 

                4.6.1.1.1.3. Update                   

                  4.6.1.1.2. end if 

         4.6.1.2. end for 

            4.6.2. end for 
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5. end for  

6. return                     
 

 

6.4 Glowworm Swarm Optimization 

GSO (Krishnand and Ghose, 2009a; Krishnand and Ghose, 2009b) is inspired by the natural 

behaviour of glow-worms in emitting a luminescent property, called luciferin, in order to 

attract other glow-worms. Glow-worms with larger emissions of luciferin are considered 

more attractive.  Glow-worms move towards a brighter glow-worm, if it lies within its range 

of view.  

 

Initially, glow-worms are distributed randomly throughout the solution space. At any point in 

time  , the state of a glow-worm   is represented by its luciferin level   ( ), its position   ( ) 

and its vision range   ( ). During each iteration, these variables are updated and it describes 

the movement of the glow-worms within the solution space.  

The luciferin update is given by equation (   ) 

  (   )  (   )  ( )    (  ( ))     (   ) 

Here,   is the luciferin decay constant (         ).   is the luciferin enhancement constant. 

 (  ( ))  is the evaluation of the objective function, at time  . 

 

To update the position of each glow-worm  , a set of neighbours   ( ) need to be determined. 

A glow-worm   is considered a neighbour of glow-worm  , if   falls within  ’s vision range   ( ), 

and if   ( )      ( ). A glow-worm   is then selected from   ( ), using roulette wheel selection. 

Glow-worm   then moves in the direction of glow-worm   using equation (   ). 

  (   )     ( )     {
  ( )   ( )

‖  ( )   ( )‖
}                      (   ) 

Here,    is a constant step size.  
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Lastly, the vision range   ( ) needs to be updated. It is updated using equation (   ) 

  (   )            [    ( )   (      ( ) )]   (   ) 

Here,   ,    and    are constant values.    is the maximum vision range and    is the maximum 

number of neighbour’s that glow-worm   is allowed to have.  

 

The algorithm for GSO is given in Algorithm 6.4.1 below. 

 

Algorithm 6.4.1: Glowworm Swarm Optimization 

 

1. Generate a population of   glow-worms            (for          ) 

2. Initialize the best fitness overall =             

3. Initialize the best location overall =              

4. while   till                do  

    4.1. for   till   do 

           4.1.1. Update luciferin of            

    4.2. end for     

    4.3. for   till   do 

            4.3.1. Find   ( )   

            4.3.2. for each               ( ) do  

                      4.3.2.1. Find probability:    ( )  
  ( )   ( )

∑   ( )   ( )    ( )
 

             4.3.3. end for 

             4.3.4. Select           using roulette wheel selection with    ( ) 

             4.3.5. Update           location 

             4.3.6. Update vision range  

     4.4. end for 

     4.5. for   till   do     
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            4.5.1. if                                 then 

                     4.5.1.1.                                 

      4.5.1.2.              =                    

            4.5.2. end if 

    4.6. end for 

    4.7.           

5. end while 

7. return              

 

6.5 Genetic Algorithm 

GA (Holland, 1975) is inspired by the process of natural evolution. By modeling evolutionary 

processes such as selection, crossover and mutation a population of chromosomes (genotypes 

of the phenotypes or individuals) evolve from one generation to the next. Chromosomes are 

binary encoded for discrete optimization problems or real-value encoded for continuous 

optimization problems (Eiben and Smith, 2003). 

 

GA starts off with an initial, randomly generated, population of chromosomes/solutions. Each 

solution has an associated fitness value which is indicative of the individuals’ strength. Using 

these fitness values, pairs of solutions get stochastically selected from the current population, 

at each generation. However, if the fitness values are not used in selecting the pairs then the 

pairs of solutions get selected using randomization techniques. Using techniques such as 

crossover and mutation, these pairs of solutions will produce offspring solutions. The 

offspring solutions form the new population, which represent the next generation. This 

process will continue for a specified number of generations or until a satisfactory fitness value 

is found. 
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Selection is done using techniques such as the roulette wheel selection and random selection, 

amongst others (Eiben and Smith, 2003). Roulette wheel selection considers the fitness value 

of the solutions, while random selection does not. When pair of solutions gets selected, the 

crossover process generates offspring solutions which are a recombination of their parent 

solutions. Recombination is done using techniques such as  -point crossover, uniform 

crossover and arithmetic crossover, amongst others (Eiben and Smith, 2003). The genes of the 

offspring’s get mutated given a certain probability. Mutation reduces the risk of premature 

convergence. Premature convergence occurs when the heuristic algorithm gets stuck within a 

local neighborhood structure of the solution space, in which case, the local optimal solution is 

not close enough to the global optimal solution. 

 

The implementation of GA in this research was done using real-value encoding and uniform 

crossover. The algorithm of GA used in this research is given in Algorithm 6.5.1 below. 

 

Algorithm 6.5.1: Genetic Algorithm 

 

1. Generate an initial random population of   individuals =            (for          ) 

2. Initialize another population of size  , i.e.               

3. Evaluate the fitness of each individual            , i.e.                      

4. Determine the best individual from            using                     =                

5. Set crossover rate =       

6. Set mutation rate =       

7. for   till                    do 

    7.1.           

    7.2. while         do 

           7.2.1. Select parents 

           7.2.2. Perform crossover using       

           7.2.3. Perform mutation using       

           7.2.4. Add offspring’s to               
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           7.2.5.                 

    7.3. end while 

    7.4.            =               

    7.5.           = find_Best_Individual(          ) 

    7.6. if                   better than                        then  

           7.6.1.                =           

    7.7. end if 

8. end for 

9. return                

 

 

6.6 Conclusion 

SI techniques are nature-inspired methods derived by observing the naturally intelligent 

behavior of swarms of biological agents, their interactions with each other and the 

environment in which they perform their tasks. These observations have led to the 

development of several metaheuristic algorithms. These algorithms have been successfully 

applied in determining solutions to several    type optimization problems. 

 

This chapter describes three relatively new SI metaheuristic algorithms. These algorithms are 

the Cuckoo Search (CS), the Firefly Algorithm (FA) and Glowworm Swarm Optimization (GSO).  

Similar to the LS metaheuristic algorithms presented in chapter five, these algorithms will 

also be investigated in determining solutions to the ACP problems presented in chapters 

seven and eight. To determine the relative merits of the solutions found by these algorithms, 

their solutions will be compared against the solutions of a well-known population based 

metaheuristic algorithm. This algorithm is the Genetic Algorithm (GA). GA has been briefly 

described in this chapter. 
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CHAPTER SEVEN 
PERFORMANCE ON AN EXISTING IRRIGATION SCHEME 

 
 
7.1 Introduction 

The increased costs associated with agricultural production have resulted in an increase in 

the cost of food. These increased food prices have made food less affordable for people and 

has contributed to several types of social problems. These include poverty, malnutrition and 

disease, amongst others. The increased production costs have also made it more expensive for 

crop producers to produce crops. Given the limited resources available for crop production, 

and the increased production costs, it has become very important that optimized solutions be 

found to the problem of crop planning. Crop producers now require more returns per area of 

crops cultivated. 

 

The costs associated with crop production (refer to chapter three) include labour costs, the 

cost of irrigated water, fertilizers, pesticides, equipment costs, transportation costs and 

storage costs, amongst others. The limited resources include land, irrigated water, financial 

limitations and other types of resources associated with crop production. In crop planning, 

optimized solutions need to be found in the allocation of the limited resources amongst the 

various competing crops that are to be grown. Due to the concern of excessive volumes of 

irrigated water wastage by the agricultural sector, solutions need to be found in making 

efficient irrigated water allocation decisions. 

 

Determining optimized solutions to crop planning, at the level of an irrigation scheme, is 

referred to as Annual Crop Planning (ACP) in this research. The objective of determining 

solutions to this problem is to maximize the total gross profits earned at an irrigation scheme 

in producing all the crops required to be grown within a production year, in efficiently 

allocating resources.  
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This chapter introduces the problem of ACP for an existing irrigation scheme. To determine 

feasible solutions, the economic demand of the crops, the plant requirements, the climatic 

conditions, the available area of agricultural land and the various costs associated with 

agricultural production need to be considered. The solutions found must seek to optimize the 

resource allocations amongst the various competing crops being grown, in maximizing total 

gross profits while satisfying the conditions associated with the problem.  

 

To determine solutions for the ACP problem at existing irrigation schemes, a new 

mathematical model is formulated and presented in this chapter. The objective is to maximize 

the total gross profits earned in efficiently allocating limited resources amongst the various 

competing crops being produced within a production year.  

 

To determine solutions for this   -Hard optimization problem, this chapter investigates the 

abilities of three new Local Search (LS) and three relatively new Swarm Intelligence (SI) 

metaheuristic algorithms in determining solutions. As presented in chapter five, the LS 

metaheuristic algorithms are the Best Performance Algorithm (BPA), the Iterative Best 

Performance Algorithm (IBPA) and the Largest Absolute Difference Algorithm (LADA). The SI 

algorithms (see chapter six) include Cuckoo Search (CS), the Firefly Algorithm (FA) and 

Glowworm Swarm Optimization (GSO). To determine the relative merits of the solutions 

found by these algorithms, their solutions will be compared with the solutions of Tabu Search 

(TS), Simulated Annealing (SA) and the Genetic Algorithm (GA). The solutions determined and 

comparisons made will indicate the possible strengths and/or weaknesses of the three new LS 

and three relatively new SI algorithms, in determining solutions. The solutions found will be 

valuable in being compared to the statistics of the current agricultural practices at the 

irrigation scheme.  
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7.2 ACP Model for an Existing Irrigation Scheme 

The ACP model in this study is formulated as part of the objectives of this research work. The 

model is designed to maximize the total gross profits that can be earned from a given area of 

land, which has been allocated for crop production. The functions’ objective makes efficient 

use of the limited resources available in determining the seasonal hectare allocations amongst 

the various competing crops that are to be grown within a production year. Feasible solutions 

must satisfy the multiple land and irrigated water allocation constraints that are associated 

with the objective function. To determine optimized solutions to irrigated water supply, 

precipitation must be considered. 

 

In crop production, the crops cultivated are those that are grown throughout the year. These 

are the perennial crops, such as the tree bearing crops. Other crop types include the seasonal 

crops such as the summer, autumn and winter crops. Single-crop plots are allocated to those 

crops that are grown throughout the year. Double-crop plots are allocated to two different 

types of crops that are grown in sequence, within the year. Triple-crop plots are allocated to 

three different types of crops that are grown in sequence within a year, and so on.  

 

The soil and climatic conditions are also important factors in crop planning. The selection of 

the crops to be produced should adapt well to the given environmental conditions of the area. 

This is important in determining optimal yields.   

 

Application of irrigated water is also important. Application of too much or too little water 

will lead to sub-optimal plant growth. This will affect the yield of the crop. The soil is also 

sensitive to leaching due to excessive water application (Blaylock, 2004). Therefore, the 

seasonal irrigated water allocation amongst the various crops should be well planned. 
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The ACP mathematical model for determining solutions to the ACP problem at existing 

irrigation schemes is formulated as follows:  

 

7.2.1. Indices   

   – Plot types. (1 = single-crop plots, 2 = double-crop plots, 3 = triple-crop plots, and so 

on). 

   – Indicative of the groups of crops that are grown in sequence throughout the year, on 

plot type   (      represents the 1st group of sequential crops,       represents the 2nd 

group of sequential crops,       represents the 3rd group of sequential crops, and so on). 

   – Indicative of the individual crops grown at stage  , on plot  . 

 

7.2.2. Input Parameters   

    – Number of different plot types. 

    – Number of groups of sequential crops grown within a year, on plot  . 

     – Number of different crops grown at stage  , on plot  . 

     – Total area of land allocated for crop production at stage  , on plot  . 

      – Average fraction per hectare of crop  , at stage  , on plot  , which needs to be 

irrigated (1 = 100% coverage, 0 = 0% coverage). 

      – Averaged rainfall estimates that fall during the growing months for crop  , at stage  , 

on plot  . 

        – Crop Water Requirements of crop  , at stage  , on plot  . 

   – Total hectares of land allocated for crop production. 

   – Volume of irrigated water that can be supplied per hectare (ha-1). 

   – Price of irrigated water m-3. 

      – Other operational costs ha-1 of crop  , at stage  , on plot  . This cost excludes the 

cost of irrigation. 

       – The amount of yield expected in tons per hectare (t ha-1) of crop  , at stage  , on 

plot  . 

       – Expected producer prices of crop  , at stage  , on plot  . 
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       – Lower bound for crop  , at stage  , on plot  . 

       – Upper bound for crop  , at stage  , on plot  . 

 

7.2.3. Calculated Parameters 

    – Total volume of irrigated water that can be supplied to the given area of land, within 

a year (          ). 

        – Volume of irrigated water estimates that should be applied to crop  , at stage  , on 

plot  . (      
    (        –      )                 ). 

         – The cost of irrigated water ha-1 of crop  , at stage  , on plot  . (                  

  ). 

      – Variable costs ha-1 of crop  , at stage  , on plot  . (                      ). 

      – Gross margin that can be earned ha-1 for crop  , at stage  , on plot  . (      

              –     ). 

 

7.2.4. Variables 

      – Area of land, in hectares, that can be feasibly allocated to crop  , at stage  , on plot  .  

 

7.2.5. Objective Function 

Maximize  

                                                        ∑ ∑∑        

   

   

  

   

                                                          (   )

 

   

 

In Equation    ,   represents the plot types.      indicates the single-crop plots,       

indicates the double-crop plots, and so on. For each plot type  ,   is indicative of the number of 

groups of crops that are grown in sequence throughout the year. For      ,    (or   ) will be 

equivalent to 1. This will represent the group of crops that are grown all year round. For   = 2, 

    . This will represent two groups of crops that are grown in sequence throughout the 

year. These are the summer and winter crops. The explanation is similar for        and so on. 

For each sequential crop group  , grown on plot  ,   will represent the individual crops grown.  
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For     and    ,   will be indicative of all the perennial crops grown. For     and    ,   

will be indicative of all the summer crops grown. For     and    ,   will be indicative of all 

the winter crops grown, and so on. 

Equation     is subject to the land and irrigated water allocation constraints given in sections 

7.2.6 and 7.2.7 below. The gross benefits      that can be earned per crop must also satisfy the 

non-negative constraint given in section 7.2.8 below. 

 

7.2.6. Land Constraints 

The sum of the amount of land allocated for each crop  , at stage  , on plot  , must be less than 

or equal to the total area of land allocated for crop production at stage  , on plot  . This 

constraint is given by equation     below. 

                                                     ∑                                                                             (   )

   

  

 

Feasible solutions must satisfy the lower and upper bound constraints. This will ensure that 

the feasible solutions found will be relative to the market demand in view of the current 

agricultural practices. This constraint is given by equation     below. 

                                                                                                                           (   ) 

 

7.2.7. Irrigation Constraints 

The total volume of irrigated water required for the production of all crops, within a year, 

must be less than or equal to the total volume of irrigated water that can be supplied to the 

given area of land. This constraint considers that some crops may require more irrigated 

water than what is supplied ha-1. It is therefore the responsibility of the farmer to distribute 

his supply of irrigated water efficiently. This constraint is given by equation     below. 

                                             ∑∑∑                                                                           (   )
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7.2.8. Non-negative Constraints 

The gross profits that can be earned per crop must be greater than zero. This constraint is 

given by equation    . 

                                                                                                                                         (   ) 

 

7.3 Case Study of the Vaalharts Irrigation Scheme 

The statistics for the primary crops grown in this area is given in Table 7.3.1 (Maisela, 2010). 

These statistics have been determined over a 5 year period. It includes the hectares allocated 

per crop (ha’s crop-1) and the average tons of returns produced per hectare per crop (t ha-1). 

The crops grown all year round consist of the perennial (p) crops. These crops grow on the 

single-crop plots of land. The seasonal crops consist of the summer and winter crops. These 

are primarily grown on the double-crop plots of land.  

 

With the current agricultural practices, the total area of land allocated for the cultivation of 

perennial crops is calculated to be 8,300 ha. The total area of land allocated for the cultivation 

of the summer crops is 15,500 ha. The land allocated for the cultivation of the winter crops is 

12,200 ha.  

 

The Crop Water Requirement (CWR) for each crop is provided by Brouwer and Heibloem 

(1986). The average rainfall for the growing months of each crop is determined from Maisela 

(2010).  The producer prices of a ton of yield produced from each crop (ZAR1 t-1) is given by 

the Directorate Statistics and Economic Analysis (2012). 

 

 

                                                           
1 ZAR stands for Zuid-Afrikaanse Rand. It is the Dutch translation of saying, “South African Rand.” The 
Rand is the currency in South Africa. 
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Table 7.3.1: Vaalharts Irrigation Scheme crop and average rainfall statistics 

Crops ha’s crop-1 t ha-1 CWR AR ZAR t-1 
Pecan Nuts (p) 100 5.0 1,600 444.7 3,500.00 

Wine Grapes (p) 300 9.5 850 350.8 2,010.00 
Olives (p) 400 6.0 1,200 444.7 2,500.00 

Lucerne (p) 7,500 16.0 1,445 444.7 1,185.52 
Cotton (s) 2,000 3.5 700 386.4 4,500.00 
Maize (s) 6,500 9.0 979 279.0 1,321.25 

Ground Nuts(s) 7,000 3.0 912 339.5 5,076.00 
Barley (w) 200 6.0 530 58.3 2,083.27 
Wheat (w) 12,000 6.0 650 58.3 2,174.64 

 
 
 

7.4 Testing and Evaluation 

The non-heuristic specific parameters, required for the execution of the algorithms, had been 

set according to the values given in Table 7.4.1. The lower and upper bounds ensure that 

feasible solutions are found which relate to the current agricultural practices of the irrigation 

scheme.      [   ].         is the cost of irrigated water (ZAR ha-1).      is set to a third of 

the producer prices per ton of yield (ZAR ha-1). These values are sufficient to evaluate the 

performances of the metaheuristic algorithms, in comparing them to the results of the current 

agricultural practices. 

Table 7.4.1: Non-heuristic specific parameters required for the execution of the algorithms 

Crops                               

Pecan Nuts 50 150 1 1,013.20 5,833.35 
Wine Grapes 150 450 1 437.80 6,365.00 

Olives 200 600 1 662.40 4,999.98 
Lucerne 7,100 7,900 1 877.26 6,322.72 
Cotton 1,000 3,000 1 275.03 5,250.00 
Maize 5,000 8,000 1 613.90 3,963.78 

Ground Nuts 4,500 9,500 1 502.08 5,076.00 
Barley 100 300 1 413.68 4,166.52 
Wheat 11,900 12,100 1 518.92 4,349.28 

 

 

The initial parameter settings for the LS metaheuristic algorithms were set as follow: 

 BPA – The           was set at 20. The                was set at 20,000.    was set at 0.2. 
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 IBPA – The          was set at 20. The                was set at 1,000. The 

               was set at 20. 

 LADA – The           was set at 20.  The                was set at 10,000.   was set at 2. 

 TS – The              was set at 7. The                   was set at 20. The 

               was set at 1,000.  

 SA – The                was set at 50.    was set at 50.   was set at 0.9.   was set at 

0.99. 

The initial parameter settings for the population based metaheuristic algorithms were set as 

follows: 

 CS – The number of host bird nests   was set at 20. The                was set at 20,000. 

   was set at 0.25. 

 FA – The number of fireflies   was set at 20. The                was set at 1,000.   was 

set at 0.25,    at 0.2 and   at 1. 

 GSO – The number of glow-worms   was set at 20. The                was set at 1,000. 

   was set at 1,    at 1.2,    at 1.5,   at 0.4,   at 0.6,   at 0.08,    at 0.3 and    at 10. 

 GA – The number of individuals   was set at 20. The                    was set at 

1,000.       was set at 0.8.       was set at 0.05 (1/ ). 

 

The              of TS was set according to the recommended settings given by Sarmady 

(2012). For SA,   was set high enough to ensure a slow annealing process. For CS,    was set 

according to the setting given in Xin-She Yangs’ implementation of CS (Yang, 2010).  ,    and 

  were set according to the settings given in Xin-She Yangs’ implementation of an  -

dimensional Firefly Algorithm (Yang, 2010). For GSO,  ,  ,   and    were set according to the 

settings given in (Zhao et al., 2012).   ,    and    are problem specific parameters.    was set 

to half of the number of glow-worms  . For GA,       was set at 0.8. This value was used after 

several tests had been performed to determine the best probable crossover rate to 

implement.  

 

http://www.mathworks.com/matlabcentral/fileexchange/authors/119376
http://www.mathworks.com/matlabcentral/fileexchange/authors/119376
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To compare the metaheuristic algorithms fairly, the list sizes of BPA, IBPA and LADA, the 

candidate list size of TS and the ‘population’ sizes for CS, FA, GSO and GA were all set to be the 

same, i.e.       . The                of BPA, IBPA, LADA, TS, CS, FA and GSO, the 

                   of GA and the parameter settings of SA ensured that each algorithm 

executed for 20,000 objective function evaluations. 20,000 objective function evaluations are 

sufficient to compare the performances of the metaheuristic algorithms for this dataset of 9 

crops, given the lower and upper bound settings. For larger datasets the complexity of the 

problem will increase exponentially. For such instances a larger number of objective function 

evaluations will be needed. Each algorithm was run 100 times, using randomly generated 

population sets for each run.  

 

To ensure fairness, the 100 different population sets had been initially randomly generated. 

Each population set contained 20 solutions. Mathematically, the study denotes a population 

set as     , for           . Then, for each run  ,      was used as an input parameter for 

BPA, IBPA, LADA, CS, FA, GSO and GA. For the LS algorithms, this was to set the Performance 

List’s (PL’s) for BPA and IBPA and the Solutions List (SL) for LADA. For the population based 

metaheuristics, this was to set the different populations for each algorithm. This means that 

for run      ; BPA, IBPA, LADA, CS, FA, GSO and GA was run using     , for run      ; BPA, 

IBPA, LADA, CS, FA, GSO and GA was run using     , and so on until        . For each 

population set     , the best solution from each set was also used to initialize “best” for TS 

and SA.  

 

From the 100 best solutions determined by each metaheuristic algorithm, the results of the 

best and average solutions have been documented. Using the population of the 100 best 

solutions determined by each metaheuristic algorithm, the 95% confidence interval2 values 

have been calculated for the execution times and for the fitness values (total gross profits 

earned). The results are explained below. 

                                                           
2
 In statistics a confidence interval (CI) indicates the reliability of an interval estimate of population 

parameters. 95% CI means to be 95% certain that the population parameters will lie within the interval 
estimate range.  
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Table 7.4.2 give the statistics of the average execution times (AVG) in milliseconds (ms), and 

the 95% confidence interval (95% CI) values of each metaheuristic algorithm.  

Table 7.4.2: The average execution times, in milliseconds, and the 95% CI values of each metaheuristic 
algorithm 

Methods AVG (ms) 95% CI 
BPA 38 AVG   0.4 
IBPA 36 AVG   0.8 
LADA 23 AVG   0.4 

TS 33 AVG   0.3 
SA 36 AVG   0.6 
CS 147 AVG   1.1 
FA 444 AVG   6.4 

GSO 126 AVG   2.7 
GA 141 AVG   2.4 

 

From Table 7.4.2 it can be observed that LADA executed the fastest overall. The average 

execution times of BPA, IBPA, TS and SA are all comparable. The relatively fast execution time 

of LADA is due to its ability to work with two solutions per iteration. 

 

The average execution times of the population based metaheuristic algorithms were much 

slower. FA took the longest time to execute overall. The average execution times of CS, GSO 

and GA were all comparable. The relatively large average execution time of FA is due to its 

nested for loop. In this for loop, each firefly’s fitness value is compared to the fitness value of 

every other firefly. This has shown to be computationally expensive.  

 

For the population based algorithms, the execution time of GSO is the fastest. This is due to 

the limitation on the maximum number of neighbours that a glow-worm is allowed to have. As 

the number of iterations increase, the vision ranges of the glow-worms will decrease. This will 

cause the glow-worms to become more separated in searching the local neighbourhood 

structures of the solution space. This separation will reduce the number of glow-worms 

considered in searching for neighbours, which will speed up the execution process.  
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The 95% CI values, from Table 7.4.2, indicates that one can be 95% certain that the 100 

execution times of each algorithm have fallen within those interval estimates. By observing 

the CI values, one can conclude that the execution times of the algorithms have been fairly 

consistent. A visual representation of the statistical values given in Table 7.4.2 is shown in 

Figure 7.4.1 below. In Figure 7.4.1, the 95% CI values are represented by the black interval 

estimates. 

 

Figure 7.4.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 

 

 Table 7.4.3 gives the statistical values of the overall best (BFV) and average best (ABFV) 

fitness values of each metaheuristic algorithm. The fitness values are the total gross profits 

earned. The 95% CI values for the fitness value populations of each algorithm are also given, 

along with the current agricultural practice (CP) earning. 
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Table 7.4.3: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
CI values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 
CP 332,027,707 N/A N/A 

BPA 336,460,533 336,448,988 ABFV   1,068.1 
IBPA 336,459,139 336,450,788 ABFV   892.4 
LADA 336,453,273 336,436,712 ABFV   1,752.1 

TS 336,456,927 336,441,272 ABFV   1,586.9 
SA 336,249,577 335,887,711 ABFV   23,782.4 
CS 336,461,787 336,459,391 ABFV   255.0 
FA 336,366,886 336,119,823 ABFV   37,178.5 

GSO 336,419,655 335,745,122 ABFV   136,260.2 
GA 336,219,977 335,813,775 ABFV   34,344.2 

 

 

From Table 7.4.3, it is observed that each of the metaheuristic algorithms have determined an 

overall BFV that is superior to the CP at the irrigation scheme.  

 

Of all the algorithms, CS determined the highest BFV. This is followed by BPA, IBPA, TS, LADA, 

GSO, FA, SA and then GA. CS determined a best solution that earned an extra gross profit of 

ZAR 4,434,080. BPAs’ best solution earned an extra gross profit of ZAR 4,432,826. The best 

solutions of IBPA, TS, LADA, GSO, FA, SA and GA earned extra gross profits of ZAR 4,431,432, 

ZAR 4,429,220, ZAR 4,425,566, ZAR 4,391,948, ZAR 4,339,179, ZAR 4,221,870 and ZAR 

4,192,270 respectively. On average, the gross profits earned by each of the metaheuristic 

algorithms were also higher than that of the CP. CS had the highest ABFV. This was followed 

by IBPA, BPA, TS, LADA, FA, SA, GSO and then GA. 

 

A graphical comparison of the algorithm’s best and average fitness values, as determined from 

Table 7.4.3, is shown in Figure 7.4.2. The 95% CI values are represented by the black interval 

estimates over the range of average fitness values. 
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Figure 7.4.2: A comparison of each algorithms best and average fitness values determined, along with 
the 95% CI estimates 

 

For the LS metaheuristic algorithms, Figure 7.4.2 shows that the differences between the 

ABFV’s and the differences between the BFV’s of BPA, IBPA, LADA and TS are minimal. The 

ABFV and BFV of SA are relatively inferior to the values of the other LS algorithms. For the 

population based algorithms, CS delivered the highest ABFV performance. This is followed by 

FA, GA and then GSO. 

 

The 95% CI value of CS is also the least overall. This is followed by IBPA, BPA, TS, LADA, SA, 

GA, FA and GSO. Having determined the overall best and average fitness values, and with CS 

having the lowest 95% CI value proves that it has been the strongest and most consistent 

metaheuristic algorithm for this particular optimization problem. For the LS metaheuristic 

algorithms, by observing the fitness value performances and their 95% CI fitness values, one 

can conclude that BPA and IBPA have been the strongest algorithms. SA, FA and GA have 

similar 95% CI values. GSO has the largest 95% CI value overall. For the LS algorithms it is 

concluded that TS performed better than LADA. SA performed the worst. For the population 
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based algorithms, it is concluded that FA performed better than GSO and GA. GA performed 

the worst overall. 

 

For the LS algorithms, the strength of BPA, IBPA and LADA following from their performances, 

is attributed to their ability to maintain updated lists of their best solutions found. 

Maintaining updated lists allow the algorithm’s to work with a limited number of their best 

solutions found. Working with multiple best solutions allows for exploration of the solution 

space. Performing local search facilitates exploitation within the local neighbourhood 

structures of the solution space. The performances of these three algorithms prove that they 

have good balances in performing exploration and exploitation of the solution space for this 

particular optimization problem.  

 

The ability to maintain updated lists of their best solutions is the primary difference in the 

performances of the new algorithm’s compared to TS and SA. With TS several possibly good 

solutions don’t get exploited due to the fact that only a single solution is being selected from 

the candidate list at each iteration. This technique means the TS is strong in exploitation, but 

lacks slightly in exploration. With SA, the ability to accept worse solutions is the reason for its 

relatively poor performance. Accepting worse solutions facilitates exploration of the solution 

space. This particular optimization problem however requires that the LS algorithms have 

stronger exploitation abilities. This is the primary reason why TS has performed better than 

SA. 

 

For the population based algorithms, the strength of CS lies in its ability to improve on the 

population of host bird nest solutions, in using the best nest solution from the previous 

iteration. The best nest solution is used in performing levy flights. If solutions are found which 

improve on the host bird nest solutions, then the inferior host bird nest solutions will get 

replaced by the improved solutions in moving closer to the best nest solution. This results in a 

population of host bird nest solutions that have found the most promising areas within the 

domains of the solution space. Worst solutions are not considered in performing exploitation 
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in using this technique. The probability of the host bird discovering intrusions facilitates 

exploration. The best host bird nest solution found will then be used to direct the search in the 

next iteration. From all population based algorithms, CS seems to have the best balance in 

exploring and exploiting the local neighbourhood structures of the solution space, for this 

optimization problem.  

 

GSO delivered the worst average performance and has the highest 95% CI fitness value. This 

is due to its weakness in exploitation of the local neighbourhood structures of the solution 

space. As the iteration count increases, a reduction in the glow-worms vision ranges causes 

group-like separations of the glow-worms throughout the domains of the solution space. This 

technique encourages exploration but discourages exploitation. These separations result in 

fewer glow-worms searching the local neighbourhood structures of the solution space. A 

glow-worm moving towards another glow-worm (with a higher level of luciferin than itself) 

may also accept a worse solution. These two factors will not result in the most effective 

exploitation of a solution space, on average. GSOs’ high best fitness value and high 95% CI 

fitness value proves that GSO had determined good, but also poor solutions.  

 

Similar to GSO, the fireflies in FA also accept worse solutions while moving towards brighter 

fireflies. However, they do not deliberately cause group-like separations throughout the 

domains of the solution space. This allows for better exploitation, compared to GSO. The main 

difference in the performances of CS and FA still lie in FAs' ability to accept worse solutions.  

 

Figure 7.4.3 shows the performances of the heuristic algorithms, in determining their BFV 

solutions. It is observed that all algorithms quickly determined improved solutions over the 

current agricultural practices (CP). For the LS algorithms, BPA, IBPA and TS performed very 

similarly in determining their best overall solutions. LADA also performed similarly to these 

algorithms, but it can be seen that its performance was slightly inferior. SA progressed at a 

much slower rate. SA found its best solution at around 11,000 objective function evaluations. 
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Figure 7.4.3: The performance of the metaheuristic algorithms in determining their overall best fitness 
values 

 

For the population based algorithms, GA found its best solution at around 6000 objective 

function evaluations. CS, GSO and FA had already found similar solutions to GAs' best solution 

at around 4,000 objective function evaluations. From this point onwards CS, GSO and FA 

showed slight improvements. CS determined its best solution at around 10,000 objective 

function evaluations. 

Table 7.4.4: Statistics of the irrigated water requirements (IWR) and variable costs of production 
(VCP) values for the best solutions found 

Methods IWR (m3) VCP (ZAR) 
CP 244,491,000 198,176,322 

BPA 241,099,517 199,946,516 
IBPA 241,090,140 199,944,586 
LADA 241,092,160 199,941,918 

TS 241,084,342 199,942,717 
SA 241,101,715 199,841,332 
CS 241,084,702 199,945,194 
FA 241,077,145 199,896,752 

GSO 241,058,226 199,920,593 
GA 241,220,612 199,842,172 
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Table 7.4.4 gives the statistics of the irrigated water requirements (IWR) and the variable 

costs of production (VCP) values for the best solution determined by each of the metaheuristic 

algorithms. It also gives the statistics at the current agricultural practices (CP).  

 

As can be seen from Table 7.4.4, each metaheuristic algorithm determined a best solution that 

required reduced volumes of irrigated water, compared to CP. GSO found a solution that 

required the least volume of irrigated water. This is followed by FA, TS, CS, IBPA, LADA, BPA, 

SA and then GA. GSOs’ solution saved a total volume of 3,432,774 m3. FAs’ solution saved a 

total volume of 3,413,855 m3.  The volume of irrigated water saved by TS, CS, IBPA, LADA, 

BPA, SA and GA was 3,406,658 m3, 3,406,298 m3, 3,400,860 m3, 3,398,840 m3, 3,391,483 m3, 

3,389,285 m3 and 3,270,388 m3 respectively.  At the quota of 9,140 m3ha-1annum-1, the 

savings determined by GSO, FA, TS, CS, IBPA, LADA, BPA, SA and GA would be able to supply 

irrigated water to an extra 375, 373, 373, 372, 372, 372, 371, 371 and 357 hectares of 

agricultural land respectively.  

 

From Table 7.4.4, the relative increases in the VCP values of each algorithm, compared to CP, 

is acceptable considering the increased total gross profits earned. 

 

A graphical representation of the IWR values, as determined from Table 7.4.4, is shown in 

Figure 7.4.4. 
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Figure 7.4.4: Irrigated water requirements (IWR) of the current agricultural practices (CP) and those of 
the best metaheuristic solutions  

 

Figure 7.4.5 gives a graphical comparison of the seasonal hectare allocations of each crop, at 

the current agricultural practices (CP) and that of the best solution determined by each 

metaheuristic algorithm. 

 

As can be observed from Figure 7.4.5, each metaheuristic algorithm determined that primarily 

increasing the hectare allocations for cotton and ground nuts and decreasing the hectare 

allocations for maize were the main differences in determining improved solutions. The 

higher producer prices t-1 and lower irrigated water requirements ha-1 of cotton and ground 

nuts, result in higher profits ha-1 being earned for those two crops. This, coupled with the 

reduction in the hectare allocations for maize, resulted in higher profits being earned for the 

given area of land. 
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Figure 7.4.5: A comparison of the hectare allocations, per crop, at the current agricultural practices and 
for the best metaheuristic solutions 

 

Table 7.4.5, 7.4.6 and 7.4.7 give the statistical values of each crop’s hectare allocations (ha’s 

crop-1), irrigated water requirements (IWR) and variable costs of production (VCP) at the 

current agricultural practices (CP), and that of the best solution determined by each 

metaheuristic algorithm. 
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Table 7.4.5: Statistics of the current agricultural practices (CP) and metaheuristic solutions per crop 

Crops Methods ha’s crop-1 IWR (m3) VCP (ZAR) 

Pecan Nuts 

CP 100 1,155,300 684,655 
BPA 50 581,875 344,831 
IBPA 50 582,499 345,201 
LADA 51 593,125 351,498 

TS 51 586,361 347,489 
SA 69 792,894 469,885 
CS 50 579,742 343,567 
FA 78 903,255 535,288 

GSO 53 616,177 365,160 
GA 77 888,848 526,750 

Wine Grapes 

CP 300 1,497,600 2,040,840 
BPA 432 2,154,918 2,936,593 
IBPA 434 2,166,747 2,952,712 
LADA 434 2,166,095 2,951,825 

TS 434 2,164,291 2,949,366 
SA 430 2,146,469 2,925,080 
CS 434 2,167,416 2,953,625 
FA 442 2,208,255 3,009,278 

GSO 449 2,241,026 3,053,936 
GA 414 2,065,137 2,814,244 

Olives 

CP 400 3,021,200 2,264,951 
BPA 203 1,530,353 1,147,284 
IBPA 203 1,531,019 1,147,784 
LADA 204 1,539,091 1,153,835 

TS 203 1,535,232 1,150,942 
SA 223 1,684,414 1,262,782 
CS 203 1,531,624 1,148,237 
FA 212 1,600,413 1,199,807 

GSO 210 1,585,648 1,188,738 
GA 231 1,747,699 1,310,225 

Lucerne 

CP 7,500 75,022,500 53,999,873 
BPA 7,615 76,176,295 54,830,354 
IBPA 7,613 76,151,169 54,812,269 
LADA 7,611 76,132,584 54,798,892 

TS 7,612 76,147,166 54,809,388 
SA 7,578 75,806,480 54,564,169 
CS 7,613 76,151,414 54,812,446 
FA 7,568 75,698,368 54,486,351 

GSO 7,588 75,900,819 54,632,072 
GA 7,578 75,802,563 54,561,349 
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Table 7.4.6: Statistics of the current agricultural practices (CP) and metaheuristic solutions per crop 

Crops Methods ha’s crop-1 IWR (m3) VCP (ZAR) 

Cotton 

CP 2,000 6,272,000 11,050,054 

BPA 2,520 7,901,862 13,921,557 

IBPA 2,519 7,900,705 13,919,518 

LADA 2,518 7,895,479 13,910,312 

TS 2,520 7,901,970 13,921,747 

SA 2,535 7,951,260 14,008,586 

CS 2,520 7,902,298 13,922,324 

FA 2,498 7,834,265 13,802,464 

GSO 2,500 7,840,663 13,813,737 

GA 2,504 7,851,488 13,832,807 

Maize 

CP 6,500 45,500,000 29,754,920 
BPA 5,000 35,001,705 22,889,515 
IBPA 5,001 35,008,433 22,893,914 
LADA 5,002 35,010,674 22,895,380 

TS 5,001 35,005,960 22,892,298 
SA 5,062 35,434,009 23,172,222 
CS 5,000 35,000,825 22,888,939 
FA 5,009 35,064,728 22,930,729 

GSO 5,008 35,053,734 22,923,540 
GA 5,049 35,340,296 23,110,938 

Ground Nuts 

CP 7,000 40,075,000 39,046,578 
BPA 7,980 45,685,672 44,513,266 
IBPA 7,979 45,682,283 44,509,964 
LADA 7,981 45,689,989 44,517,472 

TS 7,979 45,681,995 44,509,683 
SA 7,903 45,241,930 44,080,911 
CS 7,980 45,685,596 44,513,192 
FA 7,993 45,757,531 44,583,281 

GSO 7,992 45,754,842 44,580,661 
GA 7,948 45,500,715 44,333,055 

Barley 

CP 200 943,400 916,040 
BPA 100 473,907 460,163 
IBPA 100 472,145 458,452 
LADA 102 480,650 466,711 

TS 105 495,415 481,048 
SA 119 562,667 546,349 
CS 101 478,041 464,177 
FA 148 696,036 675,850 

GSO 102 479,890 465,972 
GA 136 642,818 624,175 
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Table 7.4.7: Statistics of the current agricultural practices (CP) and metaheuristic solutions per crop 

Crops Methods ha’s crop-1 IWR (m3) VCP (ZAR) 

Wheat 

CP 12,000 71,004,000 58,418,411 
BPA 12,100 71,592,931 58,902,953 
IBPA 12,100 71,595,142 58,904,772 
LADA 12,098 71,584,473 58,895,994 

TS 12,095 71,565,952 58,880,755 
SA 12,081 71,481,592 58,811,348 
CS 12,099 71,587,746 58,898,687 
FA 12,052 71,314,293 58,673,704 

GSO 12,098 71,585,427 58,896,779 
GA 12,064 71,381,050 58,728,628 

 

 

7.5 Conclusion 

This chapter addresses an Annual Crop Planning (ACP) problem at the Vaalharts Irrigation 

Scheme (VIS), in South Africa.  Due to increase in costs associated with agricultural 

production, and limited availability of resources, it is important that efficient solutions be 

found to the problem of ACP.  

 

To determine efficient solutions, this chapter presents a new ACP mathematical model. This 

model is intended to determine ACP solutions at existing irrigation schemes.  The objective 

function aims at making efficient use of the limited resources available in maximizing total 

gross profits. The limited resources include land, irrigated water supply and the variable costs 

associated with agricultural production.  

 

To determine solutions to the case study problem of this   -Hard optimization problem, 

three new Local Search (LS) and three relatively new Swarm Intelligence (SI) metaheuristic 

algorithms have been investigated. The LS algorithms include the Best Performance Algorithm 

(BPA), the Iterative Best Performance Algorithm (IBPA) and the Largest Absolute Difference 

Algorithm (LADA). The SI algorithms include Cuckoo Search (CS), Firefly Algorithm (FA) and 

Glowworm Swarm Optimization (GSO). To determine the relative merits of the solutions 

found, the solutions of the LS algorithms have been compared with the solutions determined 
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by Tabu Search (TS) and Simulated Annealing (SA). To determine the relative merits of the 

solutions found by the SI algorithms, their solutions have been compared with the solutions 

determined by the Genetic Algorithm (GA). All metaheuristic solutions have also been 

compared to one another and to the statistics of the current agricultural practices at the VIS. 

 

To ensure fairness in the performances of the metaheuristic algorithms, the algorithm specific 

parameter settings of TS, CS, FA and GSO had been set according to recommended settings. 

Other parameter settings, such as the ‘list’ sizes, the ‘population’ sizes and the initial 

population sets were set to be the same. The parameter settings ensure that the total number 

of objective function evaluations, per run, would be the same for each algorithm. Each 

metaheuristic algorithm was run 100 times. From these 100 runs the overall best and average 

solutions of each algorithm were documented.  

 

From the solutions documented, one can observe that each metaheuristic algorithm provides 

superior solutions to that of the current agricultural practice (CP). Each algorithm’s overall 

best solution determined seasonal hectare allocations that increased gross profits and 

reduced the irrigated water requirements. Each algorithm determined that primarily 

increasing the hectare allocations for cotton and ground nuts, and decreasing the hectare 

allocations for maize were the main differences in determining improved solutions over the 

current agricultural practices.  

 

CS delivered the best comparative solutions compared to other methods. It delivered the best 

overall solution, was the best on average, and had the lowest 95% confidence interval fitness 

value. This proved that CS had consistently found very good areas within the domains of the 

solution space. It is concluded that CS is the best metaheuristic algorithm for this particular 

optimization problem. For the LS algorithms, BPA and IBPA were the best performers. Of all 

the metaheuristic algorithms, GA performed the worst. 
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CSs’ strength is attributed to its balance in exploring and exploiting the local neighbourhood 

structures of the solution space. The strength of the new LS algorithms, in their performance, 

is attributed to their ability to maintain updated lists of their best solutions found. 

Maintaining updated lists allows these algorithms to work with multiple best solutions in 

exploring the solution space.  

 

It has also been observed that the GSO has the ability to determine very good solutions, but 

due to the weakness in its exploitation ability, it has performed the worst on average. For the 

LS algorithms, TS performed better than LADA, while SA was the worst. For the population 

based algorithms, FA performed better than GSO and GA, while GA performed the worst 

overall. 
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CHAPTER EIGHT 
PERFORMANCE ON A NEW IRRIGATION SCHEME 

 
 
8.1 Introduction 

The increase in population has increased the need for more food to be produced. Currently, 

the lack of food supply and the increase in producer prices have resulted in a large percentage 

of people being unable to afford sufficient food. According to the Food and Agriculture 

Organization of the United Nations, it is now estimated that more than a billion people suffer 

from undernourishment (FAO, 2010). The problems of hunger and starvation are particularly 

predominant in the developing countries of this world. To try to combat the problem of a lack 

of food supply and increased producer prices, it is important that more land be made available 

for agricultural production and that optimized solutions be found to crop planning problems.  

 

For more food to be produced it is necessary that the agricultural sector increase its output. 

This is because the agricultural sector is the primary supplier of food in the world (Schmitz et 

al., 2007). As discussed in chapter seven, determining optimized solutions to crop planning is 

important, but not sufficient to meet the future demands of food. To produce more food for 

the future, more land must be made available for agricultural production.  

 

This chapter presents the problem of Annual Crop Planning (ACP) at new irrigation schemes. 

Once land is allocated for the development of a new irrigation scheme, and the crops to be 

produced have been finalized, then optimized solutions will need to be found regarding 

resource allocations amongst the various competing crops that are to be grown. To determine 

optimized solutions, an ACP mathematical model is formulated and presented in this chapter. 

This model is similar to the model presented in chapter seven, with slight but significant 

differences. This model is intended to determine solutions to the ACP problem at new 

irrigation schemes. The functions’ objective is also to maximize total gross profits in efficiently 

allocating the limited resources available for crop production, within a production year.  
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To determine solutions to the ACP problem for a new irrigation scheme, this chapter 

investigates the abilities of the Local Search (LS) and population based metaheuristic 

algorithms presented in chapters five and six. The LS algorithms are the Best Performance 

Algorithm (BPA), the Iterative Best Performance Algorithm (IBPA), the Largest Absolute 

Difference Algorithm (LADA), Tabu Search (TS) and Simulated Annealing (SA). The population 

based algorithms include Cuckoo Search (CS), the Firefly Algorithm (FA), Glowworm Swarm 

Optimization (GSO) and the Genetic Algorithm (GA). These algorithms will be compared in 

their ability to determine solutions to the ACP case study problem for a new irrigation 

scheme. The solutions found will be valuable in making suggesting concerning the seasonal 

hectare allocations of the crops that are required to be grown at a new irrigation scheme.  

 

8.2 New Irrigation Schemes 

Unless a portion of land is privately owned, and there are infrastructures available for 

irrigated water supply, the land made available for the development of new irrigation 

schemes is allocated by the government. The government will do so when the need arises and 

for the sake of social and economic development. For land to be made available for the 

development of new irrigation schemes, it needs to be assessed to determine its feasibility for 

crop production. There are several factors that need to be considered in determining the 

feasibility of a portion of land. Some of the most important factors include the soil conditions, 

the climatic conditions, the availability of natural resources, the sustainability of crop 

production and agricultural trends, amongst others. The sustainability of crop production 

would determine the future success of the irrigation scheme. 

 

The nutritional value of the soil, its field capacity and its natural drainage system are 

important factors in determining the suitability of the crops given the soil conditions. The 

climatic conditions also determine the types of crops that will be most suitable. Considering 

the availability of natural land resources is also important. Natural land resources such as 

lakes and rivers are very valuable because the natural land resources can be used to source 

irrigated water. Irrigated water and rainfall are important in determining the full agricultural 
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potential of a given area of land. The agricultural trends determine the types of crops that will 

be most suitable for economic benefits. 

 

Central to the construction of an irrigation scheme is the infrastructure to transport irrigated 

water. If no infrastructure exists then a system will need to be developed to transport the 

irrigated water. The type of infrastructure built will depend on the irrigated water needs of 

the given area of land. The development of an irrigation system is very costly. It is therefore 

important that the crops selected to be grown should be profitable enough to meet the 

financial investments involved in the development of the irrigation scheme. The construction 

of natural or artificial drainage systems is also important.  

 

When an area of land gets allocated for the development of a new irrigation scheme, and it has 

been finalized which crops will be produced, then solutions need to be found concerning the 

hectare allocations amongst the various crops that are to be grown. In determining the 

hectare allocations, the planting and harvesting schedules of the different types of crops must 

be considered. However, in order to do so, the hectare allocations of the different farm plot 

types need to be considered first. The problem of trying to optimize the seasonal hectare 

allocations amongst the various competing crops that are to be grown within the year is 

therefore an ACP problem. In addition to determining the hectare allocations amongst the 

various competing crops, the hectare allocations for the farm plot types will also need to be 

determined. Feasible solutions found must satisfy the multiple hard and soft constraints that 

are associated with ACP for a new irrigation scheme. 

 

8.3 The ACP Model for a New Irrigation Scheme 

This model is similar to the model presented in chapter seven, with the additional complexity 

of determining solutions to the farm plot sizes for the different farm plot types. The functions’ 

objective is the same, which is to maximize gross profits in efficiently allocating the limited 

resources amongst the various competing crops required to be grown within a production 

year. Similarly, feasible solutions must satisfy all constraints associated with this problem.  
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8.3.1 Indices   

   – Plot types. (1 = single-crop plots, 2 = double-crop plots, 3 = triple-crop plots, and so 

on). 

   – Indicative of the groups of crops that are grown in sequence throughout the year, on 

plot type   (      represents the 1st group of sequential crops,       represents the 2nd 

group of sequential crops,       represents the 3rd group of sequential crops, and so on). 

   – Indicative of the individual crops grown at stage  , on plot  . 

 

8.3.2 Input Parameters   

    – Number of different plot types. 

    – Number of sequential groups of crops grown within a year, on plot  . 

     – Number of different types of crops grown at stage  , on plot  . 

      – Average fraction per hectare of crop  , at stage  , on plot  , which needs to be 

irrigated (1 = 100% coverage, 0 = 0% coverage). 

      – Averaged rainfall estimates that fall during the growing months for crop  , at stage  , 

on plot  . 

        – Crop Water Requirements of crop  , at stage  , on plot  . 

   – Total hectares of land allocated for the irrigation scheme. 

   – Volume of irrigated water that can be supplied per hectare (ha-1). 

   – Price of irrigated water m-3. 

      – Other operational costs ha-1 of crop  , at stage  , on plot  . These costs exclude the 

cost of irrigation. 

       – The amount of yield that can be obtained in tons per hectare (t ha-1) from crop  , at 

stage  , on plot  . 

       – Producer prices per ton (t-1) for crop  , at stage  , on plot  . 

       – Lower-bound for crop  , at stage  , on plot  . 

       – Upper-bound for crop  , at stage  , on plot  . 

       – Lower-bound for plot type  . 

       – Upper-bound for plot type  . 
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8.3.3 Calculated Parameters 

        – Volume of irrigated water estimates that should be applied to crop  , at stage  , on 

plot  . (      
    (        –      )                 ). 

    – Total volume of irrigated water that can be supplied to the given area of land, within 

a year (          ). 

         – The cost of irrigated water ha-1 of crop  , at stage  , on plot  . (                  

  ). 

      – Variable costs ha-1 of crop  , at stage  , on plot  . (                      ). 

      – Gross margin that can be earned ha-1 for crop  , at stage  , on plot  . (      

              –     ). 

 

8.3.4 Variables 

    – Total area of land allocated for crop production for plot type  . 

      – Area of land, in hectares, that can be feasibly allocated to crop  , at stage  , on plot  .  

 

8.3.5 Objective Function 

Maximize  

                                                                   ∑ ∑∑        

   

   

  

   

                                                              (   )

 

   

 

In equation    ,   represents the plot types.      indicates the single-crop plots,       

indicates the double-crop plots, and so on. For each plot type  ,   is indicative of the number of 

groups of crops that are grown in sequence throughout the year. For      ,    (or   ) will be 

equivalent to 1. This will represent the group of crops that are grown all year round. For   = 2, 

    . This will represent two groups of crops that are grown in sequence throughout the 

year. These are the summer and winter crop groups.  The explanation is similar for        

and so on. For each sequential crop group  , grown on plot  ,   will represent the individual 

crops grown.  For     and    ,   will be indicative of all the perennial crops grown. For 

    and    ,   will be indicative of all the summer crops grown. For     and    ,   will 

be indicative of all the winter crops grown, and so on. 



114 
 

 

Equation     is subject to the land and irrigated water allocation constraints given in sections 

8.3.6 and 8.3.7 below. The gross benefits      that can be earned per crop must also satisfy the 

non-negative constraint given in section 8.3.8 below. 

 

8.3.6 Land Constraints 

Feasible solutions must satisfy the lower and upper bound constraint of the plot type  . This 

constraint is given in equation     below. 

                                                                                                                                        (   ) 

The sum of the hectares allocated for each plot type   must be less than or equal to  . This 

constraint is given by equation     below. 

                                                                      ∑      

 

   

                                                                           (   ) 

The sum of the hectares allocated for each crop  , at stage  , on plot  , must be less than or 

equal to the total area of land allocated for crop production on plot type  . This constraint is 

given by equation     below. 

                                                                  ∑                                                                               (   )

   

  

 

The lower and upper bound constraint for each crop must be satisfied. This constraint is given 

by equation     below. 

                                                                                                                                          (   ) 

 

8.3.7 Irrigation Constraints 

The total volume of irrigated water required for the production of all crops, within the year, 

must be less than or equal to the total volume of irrigated water that can be supplied to the 
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given area of land. This constraint considers that some crops may require more irrigated 

water then what is supplied ha-1. It is therefore the responsibility of the farmer to distribute 

his supply of irrigated water efficiently. This constraint is given by equation     below. 

                                                              ∑∑∑                                                                         (   )

   

 

 

8.3.8 Non-negative Constraints 

The gross profits that can be earned per crop must be greater than zero. This constraint is 

given by equation     below. 

                                                                                                                                                        (   ) 

 

8.4 Case Study of the Taung Irrigation Scheme 

The Taung Irrigation Scheme (TIS) is situated in the Taung District, in the North West 

Province of South Africa. It is a neighbouring irrigation scheme to the Vaalharts Irrigation 

Scheme (VIS). The VIS is one of the largest irrigation schemes in the world. TIS currently 

consists of a total of 3,764 ha of agricultural land (Smook et al., 2008).  

 

The irrigated water currently supplied to the TIS is drawn from the Vaal River, and is supplied 

via the Vaalharts Canal System. The Vaalharts Canal System also supplies irrigated water to 

the VIS. The irrigated water supplied to the TIS is supplied at a basic quota of 8,417 m3ha-

1annum-1 to the farmers (Smook et al., 2008). 

 

Located close to the TIS is the Taung Dam. At full capacity, the dam consists of a total volume 

of 62.97 million m3 of water. The dam was originally constructed to supply irrigated water to 

the TIS, but no infrastructure has been built to do so. 
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A survey (Smook et al., 2008) was done to determine if extending the existing TIS would be 

feasible and useful for developing new irrigated areas. If adjacent portions of land are seen to 

be feasible and useful for developing new irrigated areas, then the irrigated water supplied to 

the TIS will be drawn from the Taung Dam.  The survey found that 3,315 ha are acceptable for 

agricultural production. It is also believed that agricultural production on this portion of land 

will match the high agricultural output of the neighbouring VIS. 

 

The current expansion of the TIS will cater for 175 people that have been previously excluded 

from the land. A total of 1,750 ha (10 ha per person) will now be allocated to them for 

restitution. According to the choices of the local Department of Agriculture and the local 

farmers, the most suitable crops to be cultivated on this portion of land are those listed in 

Table 8.4.1 (Smook et al., 2008).  The crops include perennial (p), summer (s) and winter (w) 

crops.  

 

To determine solutions concerning the seasonal hectare allocations, amongst the various 

competing crops that are required to be grown, the Crop Water Requirement (CWR) and the 

average rainfall (AR) statistics need to be determined. The AR values are the average volumes 

of rain expected to fall during the developmental months of each crop. The CWR is obtained 

from Smook et al. (2008) and the average rainfall statistics are obtained from Maisela (2010). 

 

The producer prices per ton (ZAR3 t-1) of yield are obtained from the Directorate Statistics and 

Economic Analysis (2012), and the Department of Agriculture, Forestry and Fisheries (2012). 

The yield expected (t ha-1) per crop is determined from Agriculture & Environmental Affairs 

(2010). The water quota of 8,417 m3ha-1annum-1 remains the same. The cost of irrigated 

water is 8.77 cents/m3 (Grove, 2008).   

 

                                                           
3
 ZAR stands for Zuid-Afrikaanse Rand. It is the Dutch translation of saying, “South African Rand.” The 

Rand is the currency in South Africa. 
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Table 8.4.1: Taung irrigation scheme crop and average rainfall statistics 

Crops CWR (mm) AR (mm) ZAR t-1 t ha-1 
Lucerne (p) 1,445 444.7 1,185.52 16.0 
Tomato (s) 1,132 350.8 4,332.00 50.0 

Pumpkin (s) 794 279.0 1,577.09 20.0 
Maize (s) 979 279.0 1,321.25 9.0 

Ground Nut (s) 912 339.5 5,076.00 3.0 
Sunflower (s) 648 314.9 3,739.00 3.0 

Barley (w) 530 58.3 2,083.27 6.0 
Onion (w) 429 177.0 2,397.90 30.0 
Potato (w) 365 152.8 2,463.00 28.0 

Cabbage (w) 350 152.8 1,437.58 50.0 

 

 

8.5 Testing and Evaluation 

The non-heuristic specific parameters, required for the execution of the algorithms had been 

set according to the values given in Tables 8.4.2 and 8.4.3. The lower and upper bound 

settings for the different plot types are given in Table 8.4.2.  

 

Table 8.4.2: Lower and upper bounds for each plot type 

Plot Types 
Bounds (ha) 

            
Single-crop 10 1,700 

Double-crop 50 1,740 

 

 

Table 8.4.3 gives the lower and upper bound settings, the land coverage fraction values, the 

cost of irrigated water and the operational costs for each crop. The large differences in the 

lower and upper bound values were to investigate the ability of the metaheuristic algorithms 

in determining solutions within a larger solution space.      [   ].         is the cost of the 

irrigated water per hectare per crop (ZAR ha-1).      is set to a third of the producer prices per 

ton of yield (ZAR ha-1).  
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Table 8.4.3: Non-heuristic specific parameters required for the execution of the algorithms 

Crops                               

Lucerne  10 1,700 1 877.26 6,259.52 
Tomato  10 1,740 1 685.11 71,478.00 

Pumpkin  10 1,740 1 451.66 10,408.80 
Maize  10 1,740 1 613.90 3,924.09 

Groundnut  10 1,740 1 502.08 5,025.24 
Sunflower  10 1,740 1 292.13 3,701.61 

Barley  12.5 1,740 1 413.68 4,124.88 
Onion  12.5 1,740 1 221.00 23,739.30 
Potato  12.5 1,740 1 186.10 22,758.12 

Cabbage  12.5 1,740 1 172.94 23,720.00 

 

 

The initial parameter settings for the LS metaheuristic algorithms were set as follows: 

 BPA – The           was set at 20. The                was set at 100,000.    was set at 

0.2. 

 IBPA – The           was set at 20. The                was set at 5,000. The 

               was set at 20. 

 LADA – The           was set at 20.  The                was set at 50,000.   was set at 3. 

 TS – The              was set at 7. The                   was set at 20. The 

               was set at 5,000.  

 SA – The                was set at 100.    was set at 230.   was set at 0.01.   was set at 

0.99. 

The initial parameters for the population based metaheuristic algorithms were set as follows: 

 CS – The number of host bird nests   was set at 20. The                was set at 

100,000.    was set at 0.25. 

 FA – The number of fireflies   was set at 20. The                was set at 5,000.   was 

set at 0.25,    at 0.2 and   at 1. 

 GSO – The number of glow-worms   was set at 20. The                was set at 5,000.  

   was set at 1,    at 1.2,    at 1.5,   at 0.4,   at 0.6,   at 0.08,    at 0.3 and    at 10. 

 GA – The number of individuals   was set at 20. The                    was set at 

5,000.       was set at 0.8.       was set at 0.05 (1/ ).  
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The parameter settings are set very similar to the settings given in chapter seven, except for a 

few parameters. The changed parameter settings are;   in LADA,   in SA, the                

parameters and the                    parameter for GA. The                of BPA, 

IBPA, LADA, TS, CS, FA and GSO, the                    of GA and the parameter settings 

of SA ensured that each algorithm executed for 100,000 objective function evaluations. 

Similar to chapter seven, each algorithm was run 100 times, using randomly generated 

population sets for each run. As explained in chapter seven, the population sets were used as 

input parameters for each of the algorithms, for each of the 100 runs.  

 

From the 100 best solutions determined, by each metaheuristic algorithm, the results of the 

best and average solutions have been documented. Using the population of the 100 best 

solutions of each algorithm, the 95% confidence interval4 (95% CI) values have also been 

calculated for the execution times and fitness values (total gross profits earned). The results 

are explained below. 

 

Table 8.4.4 give the statistics of the average execution times (AVG) in milliseconds (ms), and 

the 95% CI values of each metaheuristic algorithm. 

 
Table 8.4.4:The average execution times, in milliseconds, and the 95% CI values of each 

metaheuristic algorithm 

Methods AVG (ms) 95% CI 
BPA 229 AVG   3 
IBPA 223 AVG   3 
LADA 147 AVG   2 

TS 184 AVG   5 
SA 212 AVG   3 
CS 884 AVG   2 
FA 3,455 AVG   6 

GSO 751 AVG   3 
GA 915 AVG   3 

                                                           
4
 In statistics a Confidence Interval (CI) indicates the reliability of an interval estimate of population 

parameters. 95% CI means to be 95% certain that the population parameters will lie within the interval 
estimate range.  
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For this case study, one can again observe that LADA executed the fastest overall. The average 

execution times of the other LS algorithms were all comparable. The execution times of the 

population based algorithms are again much slower than that of the LS algorithms. Once 

more, FA took the longest time to execute overall. The average execution times of CS, GSO and 

GA were also relatively comparable. The nested for loop in FA is the reason for it being 

computationally expensive.  

 

In observing the 95% CI values we conclude that the execution times of the algorithms had 

again been fairly consistent. A visual representation of the statistical values given in Table 

8.4.4 is shown in Figure 8.4.1 below. The 95% CI values are represented by the black interval 

estimates. 

 

Figure 8.4.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 

 

Table 8.4.5 gives the statistical values of the overall best fitness values (BFV) and average best 

fitness values (ABFV) for each metaheuristic algorithm. The fitness values are the total gross 

profits earned. The 95% CI values for the fitness value populations of each algorithm is also 

given. 
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Table 8.4.5: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
CI values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 
BPA 295,382,093 287,575,514 ABFV   732,543 
IBPA 296,166,629 288,864,091 ABFV   756,861 
LADA 296,241,511 280,062,612 ABFV   1,352,737 

TS 298,765,873 296,886,105 ABFV   185,479 
SA 294,824,404 288,363,133 ABFV   866,622 
CS 290,770,383 282,000,392 ABFV   936,537 
FA 297,967,538 295,623,620 ABFV   195,076 

GSO 299,551,069 280,488,876 ABFV   6,352,385 
GA 286,477,093 264,550,148 ABFV   1,502,171 

 

 

From Table 8.4.5, it is observed that GSO determined the highest BFV. This was followed by 

TS, FA, LADA, IBPA, BPA, SA, CS and then GA. On average, TS performed the best. This was 

followed by FA, IBPA, SA, BPA, CS, GSO, LADA and then GA. For the LS algorithms, although 

LADAs’ BFV was higher than IBPA, BPA and SA, its average performance was the worst 

overall. This proves that LADA had the ability to determine good solutions, although it 

performed relatively poorly on average. From all metaheuristic solution, GA performed the 

worst overall.  

 

A graphical comparison of the algorithms best and average fitness values, as determined from 

Table 8.4.5, is shown in Figure 8.4.2. The 95% CI values are represented by the black interval 

estimates over the average fitness values. 

 

The solutions found by the algorithms were in a solution space of constantly changing plot 

type hectare allocations. The hectare allocations of each plot type needed to be determined 

first before the hectare allocations of the crops. The hectare allocations had to satisfy the land 

constraints given in section 8.3.6. 

 



122 
 

 

Figure 8.4.2: A comparison of each algorithm’s best and average fitness values determined, along with 
the 95% CI estimates 

 

For each algorithm, the best solution determined from the population of solutions at iteration 

 , for plot type hectare allocations  , will not necessarily be the best solution at iteration 

(   ) for plot type hectare allocations (   ). The change in the plot type hectare 

allocations at iteration (   ) will change the crop hectare allocations accordingly, so the land 

constraints do not break. The constantly changing dimensions of the solution space make it 

very difficult for the algorithms to perform exploitation. This makes it difficult to determine 

effective solutions. 

 

Under the circumstance of the constantly changing dimensions of the solution space, TS and 

FA had performed the most consistently. This is confirmed by their low 95% CI fitness values. 

BPA had the third lowest 95% CI fitness value. This is followed by IBPA, SA, CS, LADA, GA and 

then GSO. By observing and comparing each algorithm’s BFV, ABFV and 95% CI fitness value 

solutions one can conclude that TS had been the strongest metaheuristic algorithm, in 

determining solutions for this particular optimization problem.  This is followed by FA, IBPA, 

SA, BPA, GSO, LADA, CS and then GA.  
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Although GSOs’ average performance is worse than CS, its best fitness value and its high 95% 

CI fitness value prove that though it determined many good solutions, it also had poor 

solutions leading to a lower average.   

 

The strength of TS, in performing the best overall, is due to its strong exploitation ability. At 

iteration  , generating a candidate list of solutions allows TS to maximize its exploitation 

within the local neighbourhood structure of the solution space, for plot type hectare 

allocations  . The best candidate solution determined at iteration   will be the best solution 

found for plot type hectare allocations  , but as explained earlier, it will not necessarily be the 

best “working” solution at iteration (     ), for plot type hectare allocations (   ). 

However, if (   ) is very similar to  , then the working solution at iteration (   ) will 

become very valuable in trying to effectively exploit the local neighbourhood structure of the 

solution space even further. The possibility of (   ) being similar to  , and in using the best 

candidate solution from iteration   as the working solution at iteration (   ), has further 

encouraged exploitation. This is the reason why TS had performed well.  

 

Similar to TS, IBPA uses a “current” solution to perform exploitation at each iteration  , for a 

certain number of “steps per change”. The solution chosen as the current solution at iteration 

  is restricted to the solutions listed on the Performance List (PL). Any “working” solution 

generated from the current solution, at iteration  , will therefore not necessarily be related to 

the current solution chosen at iteration (   ). This statement holds even if any working 

solution generated updates the PL. The possibility of further exploiting a local neighbourhood 

structure of the solution space if,   is very similar to (   ) is therefore minimized. 

 

The purpose of maintaining updated lists of their best solutions found, for BPA, IBPA and 

LADA, is to facilitate exploration of the solution space. Performing local search facilitates 

exploitation. For this particular optimization problem, IBPA and BPA show a better balance in 

performing exploration and exploitation, compared to LADA. This is in comparism with SA in 

terms of their performances. SA has a naturally good balance in its ability to perform 
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exploration and exploitation. LADA seems to be stronger in its explorative ability. This 

explains its relatively high BFV solution and its relatively low ABFV performance.   

 

For the population based algorithms, the strength of FA and GSO, in determining the best 

fitness solutions, is attributed to the algorithms versatility in being able to accept both 

improved and worse solutions with each iteration.  In FA, as the fireflies get attracted towards 

brighter fireflies, at iteration  , some will accept improved solutions while others will accept 

worse solutions within the local neighbourhood structures of the solution space. The 

solutions found, that are classified as being either improved or worse, depend entirely on the 

plot type hectare allocations  , at iteration  . However, at iteration (   ), the sorting of the 

fireflies will take place according to the plot type hectare allocations (   ) and not  . 

Therefore, what appears to be improved solutions at iteration  , for  , might not necessarily 

be an improved solution at iteration (   ) for (   ). Similarly, what appears to be a worse 

solution at iteration  , for  , might not necessarily be a worse solution at iteration (   ) for 

(   ). The versatility of FA, in accepting both improved and worse solutions, has shown to 

be very valuable for this particular optimization problem, for a population based algorithm.   

 

In GSO, a glow-worm will accept an improved or worse solution in moving towards another 

glow-worm with a higher level of luciferin than itself. Similar to FA, this ability is shown to be 

very valuable for this particular optimization problem. GSOs’ ABFV is however relatively low, 

compared to FA and CS. Interestingly enough, it also has the highest 95% CI fitness value. The 

reason for the instability of its performances is due to its ability to deliberately cause group-

like separations of the glow-worms throughout the neighbourhood structures of the solution 

space. The separations are achieved by reducing the glow-worms vision ranges as the number 

of iterations increase, and in limiting the maximum number of neighbours that a glow-worm 

is allowed to have. The group-like separations result in fewer glow-worms searching the local 

neighbourhood structures of the solution space. This technique is strong in exploration but 

lacks in exploitation. Stronger explorative abilities have shown to be more beneficial for the 

population based algorithms, for this particular type of optimization problem. This is due to 

the constantly changing dimensions of the solution space. However, the weakness in GSOs’ 
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exploitative ability reduces the probability of it performing consistently on average. This 

explains its relatively low ABFV performance. 

 

For each host bird’s nest solution in the population, CS only accepts new nest solutions if it 

improves on the host bird’s nest solutions in the population. The new nest solutions are 

generated by using the best nest solution from the previous iteration, in performing levy 

flights. However, as explained earlier, what appears to be the best nest solution at iteration 

(   ), for plot type hectare allocations (   ), will not necessarily be the best nest solution 

to be used at iteration  , using plot type hectare allocations  . Therefore, due to the constant 

changes in the dimensions of the solution space, performing levy flights will not result in the 

most effective exploitation. The probability of the host bird discovering intrusions facilitates 

exploration. This has given CS the best chance at determining improved solutions.  

 

 

Figure 8.4.3: The performance of the metaheuristic algorithms in determining their overall best fitness 
value solutions 

 

Figure 8.4.3 shows the performances of the metaheuristic algorithms in determining their 

BFV solutions. For the LS metaheuristic algorithms, it can be seen that TS has clearly 

outperformed the other algorithms, in determining its BFV. SA had initially progressed at a 
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very fast rate, up to about 10,000 objective function evaluations, compared to BPA, IBPA and 

LADA.  BPA, IBPA and LADA performed similarly in progressively improving on their BFV 

performances. TS found its best fitness value at around 90,000 objective function evaluations. 

 

For the population based algorithms, FA found improved solutions at the fastest rate up to 

around 25,000 objective function evaluations. At this point, GSO determined a solution similar 

to FA. At around 63,000 objective function evaluations, GSO had determined the best fitness 

value from all metaheuristic algorithms. FA also found its best fitness value at around 90,000 

objective function evaluations. CS showed steady increases in determining improved 

solutions. At around 70,000 objective function evaluations, CS found a neighbourhood within 

the solution space which had a solution that was better than GAs’ best solution. GA found its 

best solution at around 34,000 objective function evaluations. 

Table 8.4.6: Statistics of the irrigated water requirements (IWR) and variable costs of production 
(VCP) for the best solutions found 

Methods IWR (m3) VCP (ZAR) 
BPA 16,922,183 147,701,718 
IBPA 16,961,536 148,093,316 
LADA 17,244,651 74,544,333 

TS 17,142,919 149,397,333 
SA 17,070,610 147,446,530 
CS 16,971,534 145,436,812 
FA 16,962,160 148,980,411 

GSO 17,052,921 149,772,256 
GA 17,103,618 143,339,455 

 

Table 8.4.6 gives the statistics of the IWR and the VCP values for the best solution determined 

by each metaheuristic algorithm. BPAs’ solution required the least volume of irrigated water. 

This was followed by IBPA, FA, CS, GSO, SA, GA, TS and then LADA.       

 

At a cost of ZAR 0.0877 m-3, the cost of BPAs’ irrigated water is ZAR 1,484,075. The IWR of 

IBPA, FA, CS, GSO, SA, GA, TS and LADA was a volume of 39,353 m3, 39,977 m3, 49,351 m3, 

130,738 m3, 148,427 m3, 181,435 m3, 220,736 m3 and 322,468 m3 more than BPAs’ IWR 

respectively. At a water quota of 8,417 m3ha-1annum-1, BPAs’ IWR value would have supplied 
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irrigated water to 4, 5, 6, 16, 17, 22, 26 and 38 ha’s less than the IWR of IBPA, FA, CS, GSO, SA, 

GA, TS and LADA respectively.  

 

 From Table 8.4.6, it is also observed that the VCP values of BPA, IBPA, TS, SA, CS, FA, GSO and 

GA are similar. Interestingly enough, LADAs’ VCP value is about half of the VCP values of each 

of the other heuristic algorithms. From all heuristic algorithms, except LADA, GSO has the 

highest VCP values and GA has the lowest VCP values. Compared to GSO, LADAs’ VCP value is 

ZAR 75,227,923 less. In comparison to GA, LADAs’ VCP value is ZAR 68,795,122 less. 

Although, GSO determined a best overall solution that earned an extra gross profit of ZAR 

3,309,558, and required a volume of 191,730 m3 less of irrigated water in comparison to 

LADAs’ best solution, the remarkable saving in LADAs’ VCP value means that LADA 

determined the most economically feasible solution compared to the other metaheuristic 

algorithms. A graphical representation of the IWR’s, as determined from Table 8.4.6, is shown 

in Figure 8.4.4. 

 

 

Figure 8.4.4: Irrigated water requirements (IWR) of the best metaheuristic solutions 
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Table 8.4.7 gives the plot type hectare allocations for the best solution found by each 

metaheuristic algorithm. Except for LADA, each metaheuristic algorithm determined that the 

total gross profits will be greater in allocating more land for the double-crop plots. LADAs’ 

best solution determined that allocating more land to the single-crop plots would be better. 

This is regardless of lucernes’ relatively high IWR and relatively low producer price t-1 value, 

compared to all other crops. 

Table 8.4.7: Plot type hectare allocations for each metaheuristic algorithm 

Methods Single-Crop Plots Double-Crop Plots 
BPA 17 1,733 
IBPA 12 1,738 
LADA 956 794 

TS 14 1,736 
SA 18 1,732 
CS 16 1,734 
FA 13 1,737 

GSO 14 1,736 
GA 13 1,737 

 

Figure 8.4.5 gives a graphical comparison of the seasonal hectare allocations for each crop, for 

the best solution determined by each metaheuristic algorithm. For the single-crop plots of 

land, all algorithms, except LADA, determined similar hectare allocations for lucerne. LADAs’ 

hectare allocation was clearly higher. For the double-crop plots of land, all metaheuristic 

algorithms allocated the most area of land to tomato, onion and cabbage. The large hectare 

allocation for tomato is due to its high yield ha-1 and high producer price t-1 value. Similar 

hectare allocations were determined for pumpkin, maize, ground nuts and sunflower by each 

algorithm. GAs’ relatively higher hectare allocation for barley contributed to the relatively 

poor best solution obtained.  
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Figure 8.4.5: A comparison of the hectare allocations, per crop, for the best solution found by each 
metaheuristic algorithm 

 

Tables 8.4.8 and 8.4.9 give the statistical values of each crops hectare allocations (ha’s crop-1), 

IWR and VCP for the best solution determined by each metaheuristic algorithm. 

 

The program was written with the Java programming language. It was programmed using the 

Netbeans® 7.0 Integrated Development Environment. All simulations were run on the same 

platform. The computer used had a Windows® 7 Enterprise operating system, an Intel® 

Celeron® Processor 430, 3 GB of RAM and a 500GB hard-drive. 

 

In developing object oriented versions of these metaheuristic algorithms, the LS algorithms 

were relatively easier to implement. The LS algorithms also require minimal parameter 

settings. The SI algorithms were relatively harder to implement. However, compared to GSO, 

FA and CS were relatively easier to implement. For the SI algorithms, CS requires the least 

number of parameter settings. 
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Table 8.4.8: Crop statistics of the best solution determined by each metaheuristic algorithm 

Crops Methods ha’s crop-1 IWR (m3) VCP (ZAR) 

Lucerne 

BPA 17 169,016 120,587 
IBPA 12 123,883 88,386 
LADA 956 9,560,965 6,821,407 

TS 14 138,942 99,130 
SA 18 175,621 125,299 
CS 16 159,049 113,476 
FA 13 129,349 92,286 

GSO 14 145,019 103,466 
GA 13 128,561 91,724 

Tomato 

BPA 1,465 11,442,080 105,695,864 
IBPA 1,461 11,416,473 105,459,327 
LADA 671 5,242,001 48,422,824 

TS 1,483 11,587,560 107,039,732 
SA 1,463 11,426,259 105,549,719 
CS 1,429 11,161,035 103,099,717 
FA 1,479 11,553,491 106,725,022 

GSO 1,487 11,617,618 107,317,394 
GA 1,424 11,125,493 102,771,401 

Pumpkin 

BPA 62 318,126 670,872 

IBPA 73 375,268 791,375 

LADA 31 159,882 337,164 

TS 62 319,971 674,763 

SA 67 343,852 725,124 

CS 93 476,715 1,005,310 

FA 65 336,130 708,840 

GSO 62 320,703 676,306 

GA 103 532,815 1,123,615 

Maize 

BPA 75 522,969 339,033 

IBPA 63 443,563 287,555 

LADA 30 211,339 137,008 

TS 63 437,786 283,810 

SA 65 454,319 294,528 

CS 86 603,190 391,039 

FA 65 453,873 294,239 

GSO 62 434,061 281,395 

GA 67 468,012 303,405 

Ground Nuts 

BPA 69 392,341 378,794 
IBPA 73 416,717 402,328 
LADA 32 184,256 177,894 

TS 64 363,636 351,080 
SA 61 351,911 339,759 
CS 66 378,980 365,895 
FA 65 373,218 360,331 

GSO 62 355,404 343,133 
GA 72 410,972 396,781 
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Table 8.4.9: Crop statistics of the best solution determined by each metaheuristic algorithm 

Crops Methods ha’s crop-1 IWR (m3) VCP (ZAR) 

Sunflower 

BPA 63 211,220 253,245 
IBPA 67 223,812 268,341 
LADA 30 99,098 118,815 

TS 65 215,246 258,072 
SA 77 255,319 306,118 
CS 60 201,401 241,472 
FA 63 209,286 250,925 

GSO 62 206,495 247,579 
GA 71 236,134 283,116 

Barley 

BPA 46 216,110 207,935 
IBPA 36 171,475 164,988 
LADA 12 57,471 55,297 

TS 41 195,287 187,899 
SA 59 278,448 267,915 
CS 36 170,083 163,649 
FA 31 148,232 142,625 

GSO 33 154,230 148,395 
GA 146 689,062 662,995 

Onion 

BPA 499 1,258,048 11,961,592 

IBPA 775 1,952,043 18,560,133 

LADA 276 695,752 6,615,253 

TS 974 2,455,286 23,345,004 

SA 827 2,084,191 19,816,604 

CS 700 1,764,290 16,774,969 

FA 609 1,534,750 14,592,494 

GSO 817 2,059,855 19,585,220 

GA 584 1,471,225 13,988,493 

Potato 

BPA 329 699,027 7,558,257 

IBPA 73 155,092 1,676,941 

LADA 241 512,445 5,540,829 

TS 57 121,629 1,315,123 

SA 211 448,211 4,846,302 

CS 593 1,257,325 13,594,878 

FA 409 867,245 9,377,127 

GSO 90 191,282 2,068,249 

GA 367 778,789 8,420,687 

Cabbage 

BPA 859 1,693,246 20,515,539 
IBPA 854 1,683,210 20,393,942 
LADA 264 521,442 6,317,842 

TS 663 1,307,576 15,842,720 
SA 635 1,252,479 15,175,162 
CS 405 799,466 9,686,407 
FA 688 1,356,586 16,436,522 

GSO 795 1,568,254 19,001,119 
GA 640 1,262,555 15,297,238 
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8.6 Conclusion 

Increase in crop production costs, shortages in food supply, and increase in population 

growth have made the need for optimized solutions in crop planning mandatory. However, 

determining optimized solutions is not enough. In trying to meet the growing demand for food 

in the future, it is important that new irrigation schemes be developed to increase agricultural 

output.  

 

The planning of new irrigation schemes require that optimized solutions be found for the 

seasonal hectare allocations of the crops to be grown within the year. The solutions found 

must seek to maximize the total gross profits that can be earned, in making the most efficient 

use of the limited resources available for crop production.  

 

This chapter introduces an ACP mathematical model for a new irrigation scheme.  The Taung 

Irrigation Scheme (TIS), situated in the North West Province of South Africa was used as the 

case study. The irrigation scheme is currently being expanded to cater for an extra 1,750 

hectares of irrigated land. This portion of land is required to grow ten different types of crops.  

To determine solutions for this ACP problem, three new LS (BPA, IBPA and LADA) and three 

relatively new SI metaheuristic algorithms (GSO, CS and FA) have been investigated.  Results 

of these are compared with the solutions of TS, SA and GA.  

 

To ensure fairness in the performances of the metaheuristic algorithms, the algorithm specific 

parameter settings of TS, CS, FA and GSO were set according to recommended settings. Other 

parameter settings, such as the ‘list’ sizes, the ‘population’ sizes and the initial population sets 

were also set to be the same. The parameter settings ensured that the total number of 

objective function evaluations, per run, would be the same for each algorithm. Each 

metaheuristic algorithm was run 100 times. From these 100 runs, the overall best and 

average solutions for each algorithm have been documented.   
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The solutions found by the metaheuristic algorithms were in a solution space of constantly 

changing dimensions. This made it very difficult for the algorithms to determine effective 

solutions. The results show that GSO determined the best solution overall. On average, TS 

performed the best. Under this circumstance of constantly changing dimensions of the 

solution space, TS and FA had performed the most consistently. This is confirmed by their low 

95% CI fitness values. By observing and comparing each algorithm’s BFV, ABFV and 95% CI 

fitness value solutions, it is concluded that TS has been the strongest metaheuristic algorithm 

in determining solutions to this particular optimization problem. From all metaheuristic 

algorithms, however, LADA determined the most economically feasible solution.  

 

An added advantage of LADA is its low execution time. For all metaheuristic algorithms, FA 

took the longest time to execute. For the population based algorithms, GSO had the fastest 

execution time. Although, GSOs’ average performance was relatively low, its best solution and 

its high 95% CI fitness value proved that it had determined very good solutions. From all 

metaheuristic algorithms, GA performed the worst overall. 
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CHAPTER NINE 
CONCLUSION AND FUTURE RESEARCH 

 
 
9.1 Conclusion 

This research introduces the Annual Crop Planning (ACP) problem for new and existing 

irrigation schemes. Due to increased costs, and the limited resources available for crop 

production, it has become very important that optimized solutions be found in determining 

resource allocation solutions in crop planning. Determining optimized solutions in making 

resource allocation decisions, at the level of an irrigation scheme, amongst the various 

competing crops that are to be produced within a production year is referred to as an ACP 

problem. The objective of determining solutions to an ACP problem is to maximize the total 

gross profits that can be earned in making resource allocation decisions. The resources that 

are required to be optimized include the limited area of agricultural land, the irrigated water 

supply and the variable costs associated with crop production. In determining solutions, it 

should be considered that crops differ in their plant requirements. Different types of crops 

also grow for a different number of days, and have different planting and harvesting 

schedules. Other types of factors that must be considered in determining solutions include the 

crop yields, the climatic conditions, the market demand conditions and the fluctuating 

markets costs, amongst others. These factors will affect the resource allocations for each crop 

and the total gross profits earned at the end of a production year. 

 

ACP is an   -Hard type optimization problem, which is formulated as a multiple knapsack 

problem. Due to the complexity involved in determining solutions, and the uncertainty of 

several factors, it is not advisable that exact algorithms be used to determine solutions. Exact 

methods guarantee that the optimal solution will be found, however, for NP-Hard 

optimization problems there is no guarantee that an optimal solution can be found within 

reasonable computational time. For   -Hard type optimization problems, heuristic 

algorithms are preferred. Heuristic algorithms determine near-optimal solutions within 



135 
 

polynomial time ( ). Near-optimal solutions are acceptable due to the reduction gained in the 

computational time involved with determining feasible solutions. 

To determine near-optimal solutions to the ACP problems presented in this dissertation, three 

new Local Search (LS) metaheuristic algorithms have been introduced. The new LS algorithms 

are called the Best Performance Algorithm (BPA), the Iterative Best Performance Algorithm 

(IBPA) and the Largest Absolute Difference Algorithm (LADA). The motivation in developing 

these algorithms was to investigate techniques that could be used to determine effective 

solutions to difficult optimization problems at low computational costs. Another reason was 

to make a contribution to the field of optimization. The new algorithms developed are based 

on techniques that maintain updated lists of their best solutions found. To determine the 

relative merits of the solutions found by these new LS algorithms, their solutions have been 

compared with the solutions of two other well-known LS metaheuristic algorithms. These 

algorithms are Tabu Search (TS) and Simulated Annealing (SA).  

 

This research also investigates the abilities of three recently developed Swarm Intelligence 

(SI) metaheuristic algorithms, in determining solutions to the same ACP problems. These 

algorithms include Cuckoo Search (CS), the Firefly Algorithm (FA) and Glowworm Swarm 

Optimization (GSO). To the best of the authors’ knowledge, no other research has been found 

that compares the performances of these particular SI algorithms in determining solutions to 

a crop planning problem. To determine the relative merits of the solutions found by these SI 

algorithms, their solutions have been compared against the solutions of another popular 

population based metaheuristic algorithm. This algorithm is the Genetic Algorithm (GA).  

 

The performances of all metaheuristic algorithms have also been compared. The algorithms 

were compared based on their abilities to determine solutions to the ACP problems for a new 

and existing irrigation scheme. Comparisons of the algorithms’ execution times were also 

done. In making comparisons, conclusions were drawn concerning the possible strengths and 

weaknesses of the three new LS and three relatively new SI metaheuristic algorithms, in their 

determination of solutions.  
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This research has also introduced two new ACP mathematical models. The mathematical 

models are intended to be used to determine resource allocation solutions to the ACP 

problems at both new and existing irrigation schemes. The ACP mathematical models have 

been formulated as instances of the Space Allocation Problem (SAP).  Space allocation, in 

optimization, involves allocating a limited area of available space amongst the demanding 

entities that require space utilization (Silva, 2003). The limited space needs to be allocated in 

a way that gives the most amount of satisfaction to all demanding entities involved, in 

optimizing the problems’ objective.  

 

At existing irrigation schemes, the farm plot sizes for the single-crop plots, double-crop plots, 

triple-crops plots, etc., are usually fixed. The single-crop plots are used to grow perennial 

crops. Perennials include tree bearing crops, which are usually harvest once a year. Other 

types of perennial crops include those that are harvested several times within a year. An 

example of this crop is lucerne. Perennial crops grow all year around. The double-crop plots 

are used to grow two groups of crops that are grown in sequence within the year. These 

groups can include seasonal crops such as the summer and winter crops. Triple-crop plots are 

used to grow three groups of sequential crops within the year, and so on.  

 

ACP for an existing irrigation scheme involves determining the seasonal hectare allocations 

amongst the various competing crops that are required to be grown on the single-crop, 

double-crop and triple-crop plots, etc. This is subject to the limited area of land that is 

available for crop production on these farm plots. An optimized solution allocates the limited 

resources amongst the various competing crops that are to be grown within a production 

year. The objective of making resource allocation decisions is to maximize the total gross 

profits that can be earned within a production year.  
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At a new irrigation scheme, the hectare allocations for the various competing crops and the 

hectare allocations of the plots types need to be determined. Determining the hectare 

allocations of the plot types is important. The plot type hectare allocations will generally 

become fixed once decided upon. The hectare allocations of the plot types and the crops to be 

selected are influenced by the geographical location of the irrigation scheme. At a specific 

geographical location, several factors will need to be considered in determining solutions. 

These factors include the climatic conditions, the adaptability of the crops for sustainable crop 

production, the crop yields, the forecasted producer prices, the various costs associated with 

crop production and the market demand conditions, amongst others. The aim of determining 

solutions to this ACP is also to optimize the resource allocations amongst the various 

competing crops that are to be grown. The objective is also to maximize the total gross profits 

earned.  The profits earned must contribute towards the financial investment involved with 

the development of the irrigation scheme. Once the resource allocation decisions are made for 

the first year, the ACP model for an existing irrigation scheme can then be used to determine 

solutions for the following years. 

 

To ensure fairness in the execution of the metaheuristic algorithms, many parameter settings 

were set according to recommended settings found in literature. Many other parameter 

settings were also set to be the same. The parameter settings for each of the algorithms, for 

each problem instance, ensured that the total number of objective function evaluations would 

be the same at each run. For each problem instance, each metaheuristic algorithm was run 

100 times. The 100 runs were to determine the overall best and average solutions 

determined. From the solutions determined, several comparisons were made in the 

algorithm’s abilities to determine solutions. Comparisons of the average execution times, the 

algorithm’s performances, the irrigated water allocations, the variable costs associated with 

crop production and the hectare allocations to the various competing crops were made for 

each problem instance. For the case study of an existing irrigation scheme, the solutions 

determined were compared with the statistics of the current agricultural practices at the 

scheme. 
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The metaheuristic solutions for the existing irrigation scheme showed that, each algorithm 

determined superior solutions to that of the current agricultural practices. Each algorithm’s 

overall best solution determined seasonal hectare allocations that showed increased gross 

profits and reduced volumes of irrigated water allocations. Each algorithm determined that 

primarily increasing the hectare allocations for cotton and ground nuts, and decreasing the 

hectare allocations for maize were the main differences in determining improved solutions. 

From all metaheuristic algorithms, CS determined the best solutions and was the most 

consistent on average. It was concluded that CS was the best metaheuristic algorithm for this 

particular optimization problem. From all LS algorithms, BPA and IBPA performed the best. 

The algorithm that performed the worst overall was GA. LADA had the fastest average 

execution time. FAs’ average execution time was the worst overall.  

 

Determining solutions for a new irrigation scheme is more difficult than determining 

solutions for an existing irrigation scheme. The solutions found by the metaheuristic 

algorithms for this ACP problem were in a solution space of constantly changing dimensions. 

This made it increasingly difficult for the algorithms to determine effective solutions. Under 

this circumstance, the results show that GSO determined the best solution overall. On average, 

TS performed the best. The most consistent metaheuristic performances were given by TS and 

FA. Although GSO determined the best solution overall, by observing and comparing each 

algorithm’s best overall solution, average best solution and 95% confidence interval fitness 

values, it is concluded that TS was the strongest metaheuristic algorithm for this particular 

optimization problem. From all metaheuristic algorithms, however, LADA determined the 

most economically feasible solution. The required financial investment determined by LADAs’ 

best solution was about half of the financial investments required by each of the other 

metaheuristic algorithm’s best solution. The gross profit earned for LADAs’ best solution was 

also only marginally inferior to GSOs’ best solution. The average execution time for LADA was 

again the fastest overall. FAs’ execution time was again the worst overall.  

 

In general, it has been observed that the average execution times for the LS metaheuristic 

algorithms are much faster than that of the population based algorithms. The solutions of the 
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LS algorithms were also very competitive. LS algorithms are much easier to implement, and 

require minimal parameter settings. For the SI algorithms, FA and CS were relatively easier to 

implement compared to GSO. From these algorithms, CS requires the least number of 

parameter settings. However, GSO executes the fastest. 

 

The performance of the three new LS metaheuristic algorithms, in determining solutions to 

both ACP problems is shown to be very competitive. The techniques used to maintain updated 

lists of the best solutions found, have proven to be very effective in determining solutions at 

low computational costs. BPA and IBPA show good balances in exploring and exploiting the 

local neighborhood structures of the solutions space. LADA has a stronger explorative ability.  

 

9.2 Future Research 

There are further opportunities to improve both the model and solutions to the ACP problem, 

especially based on several other case studies that exist.  This will enhance the development 

of a more robust model that will be a replication of the generic case of the ACP model.  

Furthermore, more experiments might still be required to test the robustness and efficiency of 

the three new LS metaheuristic algorithms introduced in this research. Specifically, further 

research can be done on the LADA algorithm whose main weakness lies in its exploitative 

ability which might not be well suited for problems that require strong exploitation. Further 

techniques can be developed or hybridizations made to improve on LADAs’ exploitative 

ability. Possible hybridizations with LADA include hybridizations with GA and/or TS. Possible 

hybridizations of BPA and IBPA with other algorithms should also be investigated.  

 

In ACP, further research can be done in determining solutions to inter-cropping practices. To 

encourage further research in determining solutions to the ACP problems for new and 

existing irrigation schemes, a collection of 12 test benchmark datasets have been compiled 

and is included in Appendix A. These datasets have been used to test the performances of the 

algorithms in determining solutions to larger instances of the ACP problems. 
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APPENDIX A 

Using the statistics of most of the crops listed in this research, 12 test datasets have been 

complied. These datasets have been compiled to test the ability of the algorithms in 

determining solutions to larger instances of ACP problems. From these 12 test datasets, 6 

relates to an existing irrigation scheme and 6 to a new irrigation scheme. Similar to the 

evaluations in chapters 7 and 8, comparisons are made in the ability of the algorithms to 

determine solutions. 

 

To determine solutions for these datasets, the heuristic specific parameter settings were set to 

ensure that each algorithm executed for 100,000 objective function evaluations. Each 

algorithm is also run 100 times. This is to determine the overall best and average 

performances in determining solutions.  

 

The initial parameter settings for all metaheuristic algorithms were set to be the same as the 

settings found in section 8.5. The only exception is that   for LADA was set to 4. All 

simulations were run using the same computer system that had been used to determine 

solutions in sections 7.4 and 8.5. 

 

A.1. Existing Irrigation Scheme 

The hectare allocations for the datasets below consider that at existing irrigation schemes the 

crop planners may only be interested in determining solutions for the primary crops grown. 

Therefore for these datasets, the total area of land allocated to each of the summer and winter 

crop groups have not been set to be the same. However, if all the crops grown at an existing 

irrigation scheme are considered then the land allocations for the crop groups would be the 

same.  
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For the datasets at existing irrigation schemes, the crop types, the crop names, the hectares 

per crop (ha’s crop-1), the tons of yield per hectare (t ha-1), the Crop Water Requirement 

(CWR), the average rainfall (AR), the lower and upper bounds and the producer prices (ZAR t-

1) for each crop has been given. Two datasets consist of a collection of 12 crops; two consist of 

15 crops and two consist of 20 crops. 

 

A.1.1. Test Dataset 1 

This dataset consist of 12 crops. The total area of land allocated for the Perennial crops is 

7,600 ha, the total area of land allocated for the summer crops is 18,600 ha and the total area 

of land allocated for the winter crops is 17,600 ha. 

Table A.1: Test dataset 1 

Crop 
Types 

Crop 
ha’s 

crop-1 
t ha-1 CWR AR 

Lower 
Bound 

Upper 
Bound 

ZAR t-1 

Perennial 
Pecan Nuts 100 5.0 1,600 444.7 50 150 3,500.0 

Lucerne 7,500 16.0 1,445 444.7 7,100 7,900 1,185.52 

Summer 

Cotton 2,000 3.5 700 386.4 1,000 3,000 4,500.00 
Maize 6,500 9.0 979 279.0 5,000 8,000 1,321.25 

Groundnuts 7,000 3.0 912 339.5 4,500 9,500 5,076.00 
Tomato  3,000 50.0 1,132 350.8 1,500 4,000 4,332.00 

Pumpkin  100 20.0 794 279.0 50 200 1,577.09 

Winter 

Barley  2,200 6.0 530 58.3 1,500 4,000 2,083.27 
Wheat 12,000 6.0 650 58.3 10,000 13,000 2,174.64 
Onion 1,400 30.0 429 177.0 800 2,200 2,397.90 
Potato 1,700 28.0 365 152.8 1,000 2,700 2,463.00 

Cabbage 300 50.0 350 152.8 150 500 1,437.58 

 

 

A.1.1.1. Average Execution Times 

The average execution times of the algorithms in determining solutions for test dataset 1 are 

given in Table A.1.1.1. Table A.1.1.1 gives the statistics of the average execution times (AVG) in 

milliseconds (ms), and the 95% confidence interval (95% CI) values. 
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Table A.1.1.1: The average execution times, in milliseconds, and the 95% confidence interval values of 
each metaheuristic algorithm 

Methods AVG (ms) 95% CI 
CS 1001 AVG   3.8 
FA 2711 AVG   10.3 

GSO 650 AVG   3.6 
GA 767 AVG   8.0 

BPA 225 AVG   5.2 
IBPA 208 AVG   2.9 
LADA 126 AVG   1.6 

TS 199 AVG   0.9 
SA 168 AVG   2.3 

 

The AVG values determined by the algorithms are similar to the performances given in 

sections 7.4 and 8.5. A graphical representation of their performances is given in Figure 

A.1.1.1 below. 

 

 

Figure A.1.1.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 
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A.1.1.2. Best and Average Fitness Values 

Table A.1.1.2 gives the statistical values of the overall best (BFV) and average best (ABFV) 

fitness values of each metaheuristic algorithm, and the BFV of the current practice (CP). The 

95% CI values for the fitness value populations of each algorithm is also given. 

 

Table A.1.1.2: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
confidence interval (95% CI) values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 
CP 932,644,726 N/A N/A 
CS 1,093,593,729 1,093,593,585 ABFV   20 
FA 1,089,100,307 1,078,677,746 ABFV   1,985,478 

GSO 1,088,854,007 1,028,732,217 ABFV   11,725,599 
GA 1,074,309,904 1,047,321,084 ABFV   2,148,852 

BPA 1,093,430,848 1,093,209,111 ABFV   32,235 
IBPA 1,093,475,351 1,093,308,062 ABFV   25,378 
LADA 1,093,097,520 1,092,693,187 ABFV   55,156 

TS 1,091,022,396 1,089,811,995 ABFV   186,231 
SA 1,048,409,914 1,032,377,083 ABFV   2,083,434 

 

 

The BFV solution was determined by CS. The BFV performances of IBPA, BPA and LADA were 

marginally inferior to CS. Similarly, the best ABFV and lowest 95% CI values were also 

determined by CS. This was followed by IBPA, BPA and LADA. These were the four best 

metaheuristic algorithm performances. From all metaheuristic algorithms, CS performed the 

best. For the LS algorithms, IBPA performed the best. A graphical comparison of the statistical 

values given in Table A.1.1.2 is shown in Figure A.1.1.2 below. 
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Figure A.1.1.2: A comparison of each algorithms best and average fitness values determined, along with 
the 95% CI estimates 

 
 

A.1.1.3. Irrigated Water Requirements 

Table A.1.1.3 gives the IWR’s of the best solution determined by each metaheuristic algorithm, 

and that of the current practice (CP). 

 Table A.1.1.3: Statistics of the irrigated water requirements (IWR) 

Methods IWR (m3) 
CP 281,084,200 
CS 280,520,054 
FA 280,514,885 

GSO 280,631,455 
GA 280,281,164 

BPA 280,518,356 
IBPA 280,592,825 
LADA 280,798,745 

TS 281,731,166 
SA 280,523,375 

 

A graphical representation of the statistics given in Table A.1.1.3 is shown in Figure A.1.1.3. 
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Figure A.1.1.3: Irrigated water requirements (IWR) of the best metaheuristic solutions 

As can be seen from Figure A.1.1.3, the IWR for GA was higher than CP. The IWR of SA was the 

least. However, SAs’ BFV performance was the worst overall. SAs’ IWR value is therefore 

relative to its BFV solution found. The IWR values of CS, IBPA, BPA and LADA were similar. 

 
A.1.1.4. Crop Hectare Allocations  

Table A.1.1.4 gives the plot type hectare allocations of each crop type, as determined by the 

best solution of each metaheuristic algorithm. 

Table A.1.1.4: Plot type hectare allocations of each crop type 

Crops 
Methods 

CS FA GSO GA BPA IBPA LADA TS SA 
P/Nuts 50 96 55 85 52 50 52 120 135 

W/Grapes 7,550 7,504 7,545 7,515 7,548 7,550 7,548 7,480 7,465 
Cotton 1,291 1,316 1,297 1,305 1,292 1,292 1,297 1,302 1,685 
Maize 7,687 7,651 7,671 7,743 7,687 7,688 7,685 7,679 7,551 

G/Nuts 5,812 5,781 5,833 5,784 5,811 5,811 5,810 5,806 5,692 
Tomato 3,745 3,722 3,733 3,701 3,745 3,745 3,743 3,738 3,553 

Pumpkin 65 130 66 68 65 65 65 76 120 
Barley 1,635 1,641 1,668 1,714 1,636 1,636 1,640 1,709 2,210 
Wheat 10,898 10,946 10,959 11,159 10,898 10,898 10,898 10,865 10,848 
Onion 2,071 2,057 2,077 2,055 2,071 2,070 2,069 2,055 1,909 
Potato 2,507 2,500 2,488 2,381 2,505 2,506 2,504 2,482 2,242 

Cabbage 490 456 408 292 490 490 489 488 390 
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A graphical representation of the statistics given in Table A.1.1.4 is given in Figure A.1.1.4 

below. The hectare allocations of each metaheuristic algorithm were similar. 

 

Figure A.1.1.4: A comparison of the hectare allocations, per crop, for the best solution found by each 
metaheuristic algorithm 

A.1.2. Test Dataset 2 

Similar to test dataset 1, this dataset also consists of 12 crops. This dataset is similar to test 

dataset 1 except for the two additional perennial crops and less summer and winter crops. 

The total area of land allocated for the perennial crops is 8,300 ha, the total area of land 

allocated for the summer crops is 18,500 ha, and the total area of land allocated for the winter 

crops is 17,300 ha. 

Table A.2: Test dataset 2 

Crop 
Types 

Crop 
ha’s 

crop-1 
t ha-1 CWR AR 

Lower 
Bound 

Upper 
Bound 

ZAR t-1 

Perennial 

Pecan Nuts 100 5.0 1,600 444.7 50 150 3,500.0 
Wine Grapes 300 9.5 850 350.8 150 450 2,010.00 

Olives 400 6.0 1,200 444.7 250 600 2,500.00 
Lucerne 7,500 16.0 1,445 444.7 7,100 7,900 1,185.52 

Summer 

Cotton 2,000 3.5 700 386.4 1,000 3,000 4,500.00 
Maize 6,500 9.0 979 279.0 5,000 8,000 1,321.25 

Groundnuts 7,000 3.0 912 339.5 4,500 9,500 5,076.00 
Tomato  3,000 50.0 1,132 350.8 1,500 4,000 4,332.00 

Winter 

Barley  2,200 6.0 530 58.3 1,500 4,000 2,083.27 
Wheat 12,000 6.0 650 58.3 10,000 13,000 2,174.64 
Onion 1,400 30.0 429 177.0 800 2,200 2,397.90 
Potato 1,700 28.0 365 152.8 1,000 2,700 2,463.00 
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A.1.2.1. Average Execution Times 

The average execution times of the algorithms for test dataset 2 are given in Table A.1.2.1. 

Table A.1.2.1 gives the statistics of the average execution times (AVG) in milliseconds (ms), 

and the 95% Confidence Interval (95% CI) values. 

Table A.1.2.1: The average execution times, in milliseconds, and the 95% confidence interval values of 
each metaheuristic algorithm 

Methods AVG (ms) 95% CI 
CS 992 AVG   3.8 
FA 2,494 AVG   13.1 

GSO 571 AVG   3.1 
GA 743 AVG   7.3 

BPA 212 AVG   1.6 
IBPA 201 AVG   5.9 
LADA 120 AVG   1.0 

TS 193 AVG   1.0 
SA 161 AVG   0.7 

 

Table A.1.2.1 shows again that LADA executed the fastest, while FA was the slowest. A 

graphical representation of their performances is given in Figure A.1.2.1 below. 

 

Figure A.1.2.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 
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A.1.2.2. Best and Average Fitness Values 

Table A.1.2.2 gives the statistical values of the BFV and ABFV values of each metaheuristic 

algorithm. It also gives the BFV of CP and the 95% CI fitness values. 

Table A.1.2.2: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
confidence interval (95% CI) values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 
CP 923,685,834 N/A N/A 
CS 1,078,861,903 1,078,861,794 ABFV ± 18 
FA 1,076,311,407 1,067,900,015 ABFV ± 2,080,747 

GSO 1,075,346,901 1,021,880,654 ABFV ± 10,123,234 
GA 1,052,599,353 1,035,986,311 ABFV ± 1,828,358 

BPA 1,078,719,028 1,078,570,131 ABFV ± 31,326 
IBPA 1,078,772,261 1,078,598,868 ABFV ± 26,436 
LADA 1,077,928,251 1,077,124,575 ABFV ± 108,083 

TS 1,077,687,887 1,076,653,892 ABFV ± 153,602 
SA 1,037,500,145 1,023,397,224 ABFV ± 2,257,393 

 

Similar to test dataset 1, CS, IBPA, BPA and LADA were the four best metaheuristic algorithms. 

A graphical comparison of the statistical values given in Table A.1.2.2 is shown in Figure 

A.1.2.2 below. 

 

Figure A.1.2.2: A comparison of each algorithms best and average fitness values determined, along with 
the 95% CI estimates 
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A.1.2.3. Irrigated Water Requirements 

Table A.1.2.3 gives the IWR’s of the best solution determined by each metaheuristic algorithm, 

and that of CP. 

 Table A.1.2.3: Statistics of the irrigated water requirements (IWR) 

Methods IWR (m3) 
CP 284,496,400 

BPA 284,059,343 
IBPA 284,095,711 
LADA 285,130,270 

TS 285,773,881 
SA 284,057,441 
CS 284,055,470 
FA 284,069,535 

GSO 283,990,221 
GA 285,656,899 

 

A graphical representation of the statistics given in Table A.1.2.3 is shown in Figure A.1.2.3 

below. 

 

Figure A.1.2.3: Irrigated water requirements (IWR) of the best metaheuristic solutions 

As can be seen from Figure A.1.2.3, the IWR for GSO, GA and SA was higher than CP. This 

proves that these algorithms did not determine good solutions. The IWR values of CS, FA, 

IBPA, BPA, LADA and TS were similar. 
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A.1.2.4. Crop Hectare Allocations 

Table A.1.2.4 gives the plot type hectare allocations of the best solution determined by each 

metaheuristic algorithm. 

Table A.1.2.4: Plot type hectare allocations of each crop type 

Crops 
Methods 

CS FA GSO GA BPA IBPA LADA TS SA 
P/Nuts 50 66 94 131 50 50 52 65 59 

W/Grapes 429 345 204 177 429 430 430 425 289 
Olives 286 472 347 350 287 287 291 330 498 

Lucerne 7,535 7,417 7,655 7,642 7,534 7,532 7,527 7,479 7,453 
Cotton 1,289 1,309 1,300 1,410 1,290 1,289 1,291 1,293 1,385 
Maize 7,672 7,663 7,689 7,564 7,673 7,672 7,673 7,673 7,886 

G/Nuts 5,801 5,795 5,792 5,869 5,800 5,801 5,801 5,802 5,664 
Tomato 3,738 3,733 3,718 3,657 3,738 3,738 3,734 3,732 3,565 
Barley 1,653 1,664 1,688 1,945 1,654 1,654 1,656 1,653 1,580 
Wheat 11,019 11,043 11,016 11,124 11,019 11,020 11,027 11,024 11,541 
Onion 2,094 2,077 2,077 1,959 2,092 2,093 2,089 2,092 1,960 
Potato 2,534 2,515 2,519 2,272 2,534 2,534 2,529 2,531 2,218 

A graphical representation of the statistics given in Table A.1.2.4 is given in Figure A.1.2.4 

below. The hectare allocations of each metaheuristic algorithm were again similar. 

 

Figure A.1.2.4: A comparison of the hectare allocations, per crop, for the best solution found by each 
metaheuristic algorithm 
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A.1.3. Test Dataset 3 

This dataset consists of 15 crops. It is a combination of all the crops listed in test datasets 1 

and 2. The total area of land allocated for the Perennial crops is 8,300 ha, the total area of land 

allocated for the summer crops is 19,800 ha and the total area of land allocated for the winter 

crops is 17,600 ha. 

Table A.3: Test dataset 3 

Crop 
Types 

Crop 
ha’s 

crop-1 
t ha-1 CWR AR 

Lower 
Bound 

Upper 
Bound 

ZAR t-1 

Perennial 

Pecan Nuts 100 5.0 1,600 444.7 50 150 3,500.0 
Wine Grapes 300 9.5 850 350.8 150 450 2,010.00 

Olives 400 6.0 1,200 444.7 250 600 2,500.00 
Lucerne 7,500 16.0 1,445 444.7 7,100 7,900 1,185.52 

Summer 

Cotton 2,000 3.5 700 386.4 1,000 3,000 4,500.00 
Maize 6,500 9.0 979 279.0 5,000 8,000 1,321.25 

Groundnuts 7,000 3.0 912 339.5 4,500 9,500 5,076.00 
Tomato  3,000 50.0 1,132 350.8 1,500 4,000 4,332.00 

Pumpkin  100 20.0 794 279.0 50 200 1,577.09 
Sunflower 1200 3.0 648 314.9 600 1,800 3,739.00 

Winter 

Barley  2,200 6.0 530 58.3 1,500 4,000 2,083.27 
Wheat 12,000 6.0 650 58.3 10,000 13,000 2,174.64 
Onion 1,400 30.0 429 177.0 800 2,200 2,397.90 
Potato 1,700 28.0 365 152.8 1,000 2,700 2,463.00 

Cabbage 300 50.0 350 152.8 150 500 1,437.58 

 

A.1.3.1. Average Execution Times 

The average execution times of the algorithms in determining solutions for test dataset 3 are 

given in Table A.1.3.1. 

Table A.1.3.1: The average execution times, in milliseconds, and the 95% confidence interval values of 
each metaheuristic algorithm 

Methods AVG (ms) 95% CI 
CS 1,305 AVG ± 47.9 
FA 3,362 AVG ± 72.6 

GSO 805 AVG ± 16.8 
GA 893 AVG ± 29.1 

BPA 272 AVG ± 3.8 
IBPA 257 AVG ± 3.6 
LADA 163 AVG ± 2.5 

TS 253 AVG ± 4.9 
SA 213 AVG ± 9.6 
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Table A.1.3.1 shows again that LADA was the fastest and that FA was the slowest. A graphical 

representation of their performances is given in Figure A.1.3.1 below. 

 

Figure A.1.3.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 

A.1.3.2. Best and Average Fitness Values 

Table A.1.3.2 gives the statistical values of the fitness and 95% CI fitness values of each 

metaheuristic algorithm, and that of the CP. 

Table A.1.3.2: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
confidence interval (95% CI) values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 
CP 948,690,492 N/A N/A 
CS 1,121,643,769 1,121,642,330 ABFV ± 184 
FA 1,117,550,965 1,106,183,360 ABFV ± 2,201,562 

GSO 1,108,573,005 1,025,916,698 ABFV ± 13,763,282 
GA 1,079,589,902 1,062,741,287 ABFV ± 1,759,432 

BPA 1,121,408,488 1,121,031,763 ABFV ± 57,124 
IBPA 1,121,343,275 1,121,092,026 ABFV ± 42,359 
LADA 1,120,322,595 1,119,250,835 ABFV ± 140,951 

TS 1,118,820,894 1,116,469,884 ABFV ± 262,757 
SA 1,069,593,783 1,046,064,917 ABFV ± 2,501,619 

 

Again CS, IBPA, BPA and LADA were the four best metaheuristic algorithms. A graphical 

comparison of the statistical values given in Table A.1.3.2 is shown in Figure A.1.3.2 below. 
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Figure A.1.3.2: A comparison of each algorithms best and average fitness values determined, along with 
the 95% CI estimates 

A.1.3.3. Irrigated Water Requirements 

Table A.1.3.3 gives the IWR’s of each metaheuristic algorithm and that of CP. 

 Table A.1.3.3: Statistics of the irrigated water requirements (IWR) 

Methods IWR (m3) 
CP 289,600,200 

BPA 289,955,298 
IBPA 289,617,992 
LADA 292,036,299 

TS 290,579,543 
SA 290,008,149 
CS 289,952,678 
FA 289,991,868 

GSO 290,045,017 
GA 290,465,056 

 

A graphical representation of the statistics given in Table A.1.3.3 is shown in Figure A.1.3.3 

below. 
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Figure A.1.3.3: Irrigated water requirements (IWR) of the best metaheuristic solutions 

Although the algorithms BFV’s were higher than that of the CP, Figure A.1.3.3 shows that the 

IWR values of each algorithm were also higher than that of the CP. Of these values, GSO, GA 

and SA were again the highest. The IWR values for CS, BPA, IBPA, LADA and TS were again 

similar. 

A.1.3.4. Crop Hectare Allocations 

Table A.1.3.4 gives the plot type hectare allocations of the best solution determined by each 

metaheuristic algorithm. 

Table A.1.3.4: Plot type hectare allocations of each crop type 

Crops 
Methods 

CS FA GSO GA BPA IBPA LADA TS SA 
P/Nuts 50 85 56 77 52 54 55 111 78 

W/Grapes 429 399 156 236 418 430 428 360 343 
Olives 286 497 310 492 289 287 288 458 437 

Lucerne 7,535 7,319 7,779 7,494 7,541 7,529 7,528 7,371 7,443 
Cotton 1,320 1,335 1,349 1,583 1,319 1,320 1,324 1,320 1,394 
Maize 7,856 7,848 7,835 7,601 7,855 7,853 7,857 7,860 7,596 

G/Nuts 5,939 5,943 5,931 5,917 5,939 5,941 5,938 5,941 6,404 
Tomato 3,827 3,813 3,814 3,681 3,826 3,826 3,822 3,818 3,583 

Pumpkin 66 69 80 79 67 66 67 66 66 
S/Flower 792 791 791 939 793 794 792 794 757 

Barley 1,635 1,723 1,833 1,899 1,636 1,636 1,645 1,647 2,102 
Wheat 10,898 10,852 10,984 11,202 10,898 10,899 10,903 10,913 10,934 
Onion 2,071 2,058 2,085 1,859 2,070 2,069 2,070 2,065 2,001 
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Potato 2,506 2,491 2,525 2,372 2,506 2,506 2,492 2,496 2,296 
Cabbage 490 476 174 267 490 490 489 478 268 

A graphical representation of the statistical values given in Table A.1.3.4 is shown in Figure 

A.1.3.4 below.  

 

Figure A.1.3.4: A comparison of the hectare allocations, per crop, for the best solution found by each 
metaheuristic algorithm 

A.1.4. Test Dataset 4 

This dataset also consists of 15 crops. The list is the same as test dataset 3. However, the 

hectare allocations of each crop were set differently. The total area of land allocated for the 

Perennial crops is 7,300 ha, the total area of land allocated for the summer crops is 17,400 ha 

and the total area of land allocated for the winter crops is 18,600 ha. 
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Table A.4: Test dataset 4 

Crop 
Types 

Crop 
ha’s 

crop-1 
t ha-1 CWR AR 

Lower 
Bound 

Upper 
Bound 

ZAR t-1 

Perennial 

Pecan Nuts 1,000 5.0 1,600 444.7 500 1,500 3,500.0 
Wine Grapes 2,300 9.5 850 350.8 1,500 3,500 2,010.00 

Olives 2,500 6.0 1,200 444.7 1,800 3,800 2,500.00 
Lucerne 1,500 16.0 1,445 444.7 500 3,000 1,185.52 

Summer  

Cotton 500 3.5 700 386.4 250 800 4,500.00 
Maize 9,500 9.0 979 279.0 7,000 12,000 1,321.25 

Groundnuts 1,500 3.0 912 339.5 1,000 3,000 5,076.00 
Tomato  500 50.0 1,132 350.8 250 800 4,332.00 

Pumpkin  1,200 20.0 794 279.0 450 2,000 1,577.09 
Sunflower 4,200 3.0 648 314.9 3,200 5,800 3,739.00 

Winter 

Barley  7,200 6.0 530 58.3 5,800 9,500 2,083.27 
Wheat 2,000 6.0 650 58.3 1,200 3,000 2,174.64 
Onion 3,400 30.0 429 177.0 2,300 4,500 2,397.90 
Potato 2,700 28.0 365 152.8 1,900 3,800 2,463.00 

Cabbage 3,300 50.0 350 152.8 2,500 5,000 1,437.58 

 

A.1.4.1. Average Execution Times 

The average execution times and the 95% CI values are given in Table A.1.4.1 below. 

Table A.1.4.1: The average execution times, in milliseconds, and the 95% confidence interval values of 
each metaheuristic algorithm 

Methods AVG (ms) 95% CI 
CS 1,306 AVG ± 18.7 
FA 3,415 AVG ± 44.1 

GSO 823 AVG ± 16.9 
GA 913 AVG ± 19.6 

BPA 280 AVG ± 5.4 
IBPA 262 AVG ± 4.2 
LADA 166 AVG ± 3.2 

TS 259 AVG ± 7.6 
SA 215 AVG ± 4.8 

 

A graphical representation of the values given in Table A.1.4.1 is shown in Figure A.1.4.1 

below. 
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Figure A.1.4.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 

A.1.4.2. Best and Average Fitness Values 

Table A.1.4.2 gives the statistical values of the BFV and ABFV values of each metaheuristic 

algorithm. It also gives the BFV of CP and the 95% CI fitness values. 

Table A.1.4.2: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
confidence interval (95% CI) values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 
CP 812,599,360 N/A N/A 
CS 940,816,290 940,812,035 ABFV ± 701 
FA 936,533,041 923,880,167 ABFV ± 2,023,049 

GSO 918,842,773 874,453,781 ABFV ± 6,128,663 
GA 910,728,635 900,693,053 ABFV ± 1,192,756 

BPA 940,360,275 939,978,717 ABFV ± 51,048 
IBPA 940,430,497 940,170,928 ABFV ± 39,239 
LADA 939,915,505 939,418,676 ABFV ± 61,359 

TS 937,803,353 935,478,367 ABFV ± 183,131 
SA 904,795,579 894,524,615 ABFV ± 1,461,699 

 

Again CS, IBPA, BPA and LADA were the best metaheuristic algorithms. A graphical 

comparison of the statistical values given in Table A.1.4.2 is shown in Figure A.1.4.2 below. 
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Figure A.1.4.2: A comparison of each algorithms best and average fitness values determined, along with 
the 95% CI estimates 

A.1.4.3. Irrigated Water Requirements 

Table A.1.4.3 gives the IWR’s of each metaheuristic algorithm, and that of the CP. 

 Table A.1.4.3: Statistics of the irrigated water requirements (IWR) 

Methods IWR (m3) 
CP 224,254,700 

BPA 216,653,524 
IBPA 212,214,084 
LADA 220,698,821 

TS 213,763,196 
SA 216,789,120 
CS 216,656,080 
FA 216,730,843 

GSO 215,883,272 
GA 216,834,920 

 

A graphical representation of the statistics given in Table A.1.4.3 is shown in Figure A.1.4.3 

below. 
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Figure A.1.4.3: Irrigated water requirements (IWR) of the best metaheuristic solutions 

Figure A.1.4.3 shows that all metaheuristic algorithms determined improved IWR values.  

A.1.4.4. Crop Hectare Allocations 

Table A.1.4.4 gives the plot type hectare allocations of each crop type as determined by the 

best solution of each metaheuristic algorithm. 

Table A.1.4.4: Plot type hectare allocations of each crop type 

Crops 
Methods 

CS FA GSO GA BPA IBPA LADA TS SA 
P/Nuts 503 838 1169 800 532 511 521 611 698 

W/Grapes 2,642 3,258 1,611 2,583 2,621 2,642 2,625 2,796 1,716 
Olives 1,953 2,666 2,357 2,298 1,961 1,955 1,965 2,084 2,809 

Lucerne 2,202 539 2,163 1,618 2,185 2,193 2,188 1,810 2,076 
Cotton 325 425 469 819 326 335 330 346 476 
Maize 9,110 9,068 9,324 8,458 9,113 9,105 9,098 9,166 8,077 

G/Nuts 1,301 1,331 1,396 1,338 1,302 1,303 1,309 1,306 1,804 
Tomato 742 736 745 662 742 741 740 739 625 

Pumpkin 1,757 1,698 461 1,165 1,745 1,754 1,749 1,677 1,404 
S/Flower 4,165 4,141 5,005 4,957 4,172 4,163 4,175 4,166 5,014 

Barley 5,807 5,823 5,872 5,911 5,812 5,813 5,813 5,830 6,048 
Wheat 1,179 1,198 1,204 1,374 1,180 1,180 1,186 1,190 1,311 
Onion 3,930 3,909 3,772 3,918 3,925 3,928 3,928 3,929 3,901 
Potato 3,318 3,307 3,350 3,209 3,319 3,312 3,318 3,273 2,981 

Cabbage 4,366 4,363 4,402 4,188 4,365 4,366 4,355 4,379 4,358 
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A graphical representation of the statistical values given in Table A.1.4.4 is shown in Figure 

A.1.4.4 below.  

 

Figure A.1.4.4: A comparison of the hectare allocations, per crop, for the best solution found by each 
metaheuristic algorithm 

A.1.5. Test Dataset 5 

This dataset consists of 20 crops. It extends test dataset 3 by adding an additional 5 crops. The 

total area of land allocated for the Perennial crops is 8,300 ha, the total area of land allocated 

for the summer crops is 20,150 ha and the total area of land allocated for the winter crops is 

19,300 ha. 
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Table A.5: Test dataset 5 

Crop 
Types 

Crop 
ha’s 

crop-1 
t ha-1 CWR AR 

Lower 
Bound 

Upper 
Bound 

ZAR t-1 

Perennial 

Pecan Nuts 100 5.0 1,600 444.7 50 150 3,500.0 
Wine Grapes 300 9.5 850 350.8 150 450 2,010.00 

Olives 400 6.0 1,200 444.7 250 600 2,500.00 
Lucerne 7,500 16.0 1,445 444.7 7,100 7,900 1,185.52 

Summer 

Cotton 2,000 3.5 700 386.4 1,000 3,000 4,500.00 
Maize 6,500 9.0 979 279.0 5,000 8,000 1,321.25 

Groundnuts 7,000 3.0 912 339.5 4,500 9,500 5,076.00 
Tomato  3,000 50.0 1,132 350.8 1,500 4,000 4,332.00 

Pumpkin  100 20.0 794 279.0 50 200 1,577.09 
Sunflower 1200 3.0 648 314.9 600 1,800 3,739.00 
Dry Beans 200 2.0 650 269.2 100 400 5,600.00 
Soya Beans 150 3.0 600 269.2 50 350 2,528.01 

Winter 

Barley  2,200 6.0 530 58.3 1,500 4,000 2,083.27 
Wheat 12,000 6.0 650 58.3 10,000 13,000 2,174.64 
Onion 1,400 30.0 429 177.0 800 2,200 2,397.90 
Potato 1,700 28.0 365 152.8 1,000 2,700 2,463.00 

Cabbage 300 50.0 350 152.8 150 500 1,437.58 
Water Melon 500 20.0 500 22.4 350 700 934.00 
Cauliflower  400 10.0 500 152.8 300 600 4,252.00 

lettuce 800 20.0 300  33.7 500 1,500 4,432.00 

 

A.1.5.1. Average Execution Times 

The average execution times of the algorithms are given in Table A.1.5.1 below. 

Table A.1.5.1: The average execution times, in milliseconds, and the 95% confidence interval values of 
each metaheuristic algorithm 

Methods AVG (ms) 95% CI 
CS 1,643 AVG ± 5.8 
FA 3,968 AVG ± 16.2 

GSO 817 AVG ± 17.2 
GA 1,020 AVG ± 18.7 

BPA 336 AVG ± 2.3 
IBPA 317 AVG ± 2.8 
LADA 197 AVG ± 1.4 

TS 312 AVG ± 1.3 
SA 260 AVG ± 3.2 

 

A graphical representation of the algorithms performances is shown in Figure A.1.5.1 below. 
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Figure A.1.5.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 

A.1.5.2. Best and Average Fitness Values 

Table A.1.5.2 gives the statistical values of the BFV and ABFV values of each metaheuristic 

algorithm. It also gives the BFV of the CP and the 95% CI fitness values. 

Table A.1.5.2: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
confidence interval (95% CI) values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 
CP 1,015,153,957 N/A N/A 
CS 1,217,097,419 1,217,074,709 ABFV ± 2,996 
FA 1,210,133,562 1,193,402,878 ABFV ± 2,894,260 

GSO 1,147,040,976 1,053,749,462 ABFV ± 14,629,463 
GA 1,157,164,650 1,136,633,718 ABFV ± 2,111,637 

BPA 1,216,093,121 1,215,240,526 ABFV ± 125,491 
IBPA 1,216,159,829 1,215,476,100 ABFV ± 93,595 
LADA 1,214,984,543 1,213,835,287 ABFV ± 137,531 

TS 1,209,300,640 1,204,735,213 ABFV ± 403,786 
SA 1,141,774,391 1,121,525,585 ABFV ± 2,497,189 

 

A graphical comparison of the statistical values given in Table A.1.5.2 is shown in Figure 

A.1.5.2 below. 
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Figure A.1.5.2: A comparison of each algorithms best and average fitness values determined, along with 
the 95% CI estimates 

A.1.5.3. Irrigated Water Requirements 

Table A.1.5.3 gives the IWR’s of each metaheuristic algorithm, and that of the CP. 

 Table A.1.5.3: Statistics of the irrigated water requirements (IWR) 

Methods IWR (m3) 
CP 296,765,200 

BPA 296,197,908 
IBPA 295,855,625 
LADA 302,656,627 

TS 297,196,010 
SA 296,209,781 
CS 296,330,663 
FA 296,125,157 

GSO 296,703,395 
GA 298,554,213 

 

A graphical representation of the statistics given in Table A.1.5.3 is shown in Figure A.1.5.3 

below. 

0.95

1

1.05

1.1

1.15

1.2

1.25

CS FA GSO GA BPA IBPA LADA TS SA

Fi
tn

e
ss

 V
al

u
e

s 
(Z

A
R

/B
ill

io
n

) 
Average and Best Fitness Values with 95% CI 

ABFV BFV



171 
 

 

Figure A.1.5.3: Irrigated water requirements (IWR) of the best metaheuristic solutions 

Figure A.1.5.3 shows that the IWR of CS, FA, BPA, IBPA and LADA are relatively lower than the 

CP. 

A.1.5.4. Crop Hectare Allocations 

Table A.1.5.4 gives the plot type hectare allocations of the best solution determined by each 

metaheuristic algorithm. 
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Table A.1.5.4: Plot type hectare allocations of each crop type 

Crops 
Methods 

CS FA GSO GA BPA IBPA LADA TS SA 
P/Nuts 50 65 61 115 75 66 51 98 121 

W/Grapes 426 445 207 340 426 405 429 222 151 
Olives 287 460 540 446 292 290 291 480 351 

Lucerne 7,536 7,329 7,492 7,399 7,507 7,540 7,529 7,500 7,677 
Cotton 1,330 1,324 1,338 1,299 1,333 1,332 1,340 1,350 1,431 
Maize 7,915 7,870 7,908 7,659 7,909 7,914 7,906 7,848 7,667 

G/Nuts 5,984 5,962 5,950 5,837 5,981 5,980 5,976 5,966 5,814 
Tomato 3,857 3,828 3,832 3,707 3,852 3,853 3,847 3,821 3,616 

Pumpkin 67 153 67 107 71 71 67 147 165 
S/Flower 798 796 794 1,192 801 798 805 801 940 
D/Beans 133 150 174 275 136 134 134 140 219 
S/Beans 67 67 85 74 68 68 74 77 298 
Barley 1,582 1,601 1,803 2,076 1,584 1,594 1,605 1,658 2,181 
Wheat 10,547 10,597 12,001 10,901 10,553 10,550 10,544 10,531 10,983 
Onion 2,004 2,006 1,803 1,760 2,002 2,002 2,001 1,970 1,510 
Potato 2,426 2,418 1,210 2,188 2,426 2,425 2,420 2,412 1,879 

Cabbage 475 413 241 329 471 474 470 460 445 
W/Melons 369 435 437 544 370 370 369 405 487 
C/Flower 527 458 504 368 524 517 526 503 448 

Lettuce 1,371 1,371 1,302 1,133 1,369 1,368 1,365 1,359 1,367 

A graphical representation of the statistical values given in Table A.1.5.4 is given in Figure 

A.1.5.4 below.  

 

Figure A.1.5.4: A comparison of the hectare allocations, per crop, for the best solution found by each 
metaheuristic algorithm 
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A.1.6. Test Dataset 6 

This dataset also consists of 20 crops. It is an extension of test dataset 4 with the addition of 

the 5 crops included in test dataset 5. The hectare allocations of each of the additional 5 crops 

in this dataset has been set differently compared to the same crops listed in test dataset 5. The 

total area of land allocated for the Perennial crops is 7,300 ha, the total area of land allocated 

for the summer crops is 21,100 ha, and the total area of land allocated for the winter crops is 

26,300 ha. 

 

Table A.6: Test dataset 6 

Crop 
Types 

Crop 
ha’s 

crop-1 
t ha-1 CWR AR 

Lower 
Bound 

Upper 
Bound 

ZAR t-1 

Perennial 

Pecan Nuts 1,000 5.0 1,600 444.7 500 1,500 3,500.0 
Wine Grapes 2,300 9.5 850 350.8 1,500 3,500 2,010.00 

Olives 2,500 6.0 1,200 444.7 1,800 3,800 2,500.00 
Lucerne 1,500 16.0 1,445 444.7 500 3,000 1,185.52 

Summer 

Cotton 500 3.5 700 386.4 250 800 4,500.00 
Maize 9,500 9.0 979 279.0 7,000 12,000 1,321.25 

Groundnuts 1,500 3.0 912 339.5 1,000 3,000 5,076.00 
Tomato  500 50.0 1,132 350.8 250 800 4,332.00 

Pumpkin  1,200 20.0 794 279.0 450 2,000 1,577.09 
Sunflower 4,200 3.0 648 314.9 3,200 5,800 3,739.00 
Dry Beans 1,200 2.0 650 269.2 600 2,200 5,600.00 
Soya Beans 2,500 3.0 600 269.2 1,500 4,500 2,528.01 

Winter 

Barley  7,200 6.0 530 58.3 5,800 9,500 2,083.27 
Wheat 2,000 6.0 650 58.3 1,200 3,000 2,174.64 
Onion 3,400 30.0 429 177.0 2,300 4,500 2,397.90 
Potato 2,700 28.0 365 152.8 1,900 3,800 2,463.00 

Cabbage 3,300 50.0 350 152.8 2,500 5,000 1,437.58 
Water Melon 3,500 20.0 500 22.4 2,500 5,000 934.00 
Cauliflower  1,400 10.0 500 152.8 600 2,500 4,252.00 

lettuce 2,800 20.0 300  33.7 1,500 4,000 4,432.00 
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A.1.6.1. Average Execution Times 

The average execution times of the algorithms for test dataset 6 are given in Table A.1.6.1. 

Table A.1.6.1: The average execution times, in milliseconds, and the 95% confidence interval values of 
each metaheuristic algorithm 

Methods AVG (ms) 95% CI 
CS 1,673 AVG ± 13.1 
FA 4,053 AVG ± 16.1 

GSO 803 AVG ± 12.9 
GA 1,032 AVG ± 8.1 

BPA 339 AVG ± 3.7 
IBPA 319 AVG ± 3.5 
LADA 198 AVG ± 4.2 

TS 322 AVG ± 5.3 
SA 266 AVG ± 5.9 

 

A graphical representation of the statistical values given in Table A.1.6.1 is shown in Figure 

A.1.6.1 below. 

 

Figure A.1.6.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 

A.1.6.2. Best and Average Fitness Values 

Table A.1.6.2 gives the statistical values of the BFV and ABFV values of each metaheuristic 

algorithm. It also gives the BFV of the CP and the 95% CI fitness values. 
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Table A.1.6.2: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
confidence interval (95% CI) values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 
CP 1,079,260,957 N/A N/A 
CS 1,260,171,850 1,260,107,403 ABFV ± 6,452 
FA 1,251,293,827 1,229,429,484 ABFV ± 2,148,021 

GSO 1,194,524,453 1,104,380,831 ABFV ± 6,093,006 
GA 1,201,341,963 1,184,142,667 ABFV ± 1,372,857 

BPA 1,258,252,113 1,257,153,897 ABFV ± 103,616 
IBPA 1,258,799,974 1,257,533,739 ABFV ± 93,407 
LADA 1,258,386,709 1,257,564,089 ABFV ± 66,794 

TS 1,245,701,248 1,242,221,913 ABFV ± 335,751 
SA 1,193,462,905 1,174,651,260 ABFV ± 1,367,235 

 

Again CS, IBPA, BPA and LADA were the best metaheuristic algorithms. LADA however 

performed better than BPA and had a better ABFV than both IBPA and BPA. CS was again the 

best overall. IBPA was the best LS metaheuristic algorithm. A graphical comparison of the 

statistical values given in Table A.1.6.2 is shown in Figure A.1.6.2 below. 

 

Figure A.1.6.2: A comparison of each algorithms best and average fitness values determined, along with 
the 95% CI estimates 

A.1.6.3. Irrigated Water Requirements 

Table A.1.6.3 gives the IWR’s of each metaheuristic algorithm and that of the CP. 
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 Table A.1.6.3: Statistics of the irrigation water requirements (IWR) 

Methods IWR (m3) 
CP 266,127,500 

BPA 258,268,634 
IBPA 256,555,066 
LADA 256,289,353 

TS 262,469,623 
SA 259,788,342 
CS 259,352,209 
FA 258,435,614 

GSO 259,832,205 
GA 258,993,284 

 

A graphical representation of the statistics given in Table A.1.6.3 is shown in Figure A.1.6.3 

below. 

 

Figure A.1.6.3: Irrigated water requirements (IWR) of the best metaheuristic solutions 

Figure A.1.6.3 shows that the IWR values of all metaheuristic algorithms are better than the 

IWR of the CP. 

A.1.6.4. Crop Hectare Allocations 

Table A.1.6.4 gives the plot type hectare allocations. 
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Table A.1.6.4: Plot type hectare allocations of each crop type 

Crops 
Methods 

CS FA GSO GA BPA IBPA LADA TS SA 
P/Nuts 506 783 762 1,210 857 747 521 614 748 

W/Grapes 2,645 2,485 1,614 1,764 2,473 2,532 2,614 1,892 2,205 
Olives 1,956 3,046 3,805 2,404 1,907 1,902 1,975 2,711 2,858 

Lucerne 2,193 986 1,119 1,922 2,064 2,118 2,190 2,082 1,489 
Cotton 341 372 301 499 342 355 347 495 348 
Maize 9,547 9,348 8,634 9,595 9,501 9,537 9,552 9,362 8,964 

G/Nuts 1,364 1,694 1,959 1,567 1,423 1,382 1,364 1,460 2,471 
Tomato 777 752 674 680 773 775 775 757 587 

Pumpkin 1,841 1,698 621 587 1,830 1,831 1,819 1,538 1,265 
S/Flower 4,364 4,274 4,991 5,374 4,345 4,360 4,371 4,374 3,913 
D/Beans 818 803 2,105 819 839 817 822 1,081 914 
S/Beans 2,046 2,158 1,816 1,978 2,046 2,044 2,049 2,033 2,638 
Barley 6,081 6,073 6,206 6,146 6,087 6,089 6,087 6,137 6,754 
Wheat 1,235 1,235 1,269 1,256 1,238 1,238 1,236 1,251 1,215 
Onion 4,115 4,096 4,044 3,796 4,112 4,104 4,111 4,097 4,001 
Potato 3,475 3,465 3,520 3,421 3,468 3,472 3,472 3,295 3,254 

Cabbage 4,572 4,552 4,605 3,671 4,564 4,573 4,557 4,576 4,369 
W/Melons 2,561 2,561 2,596 2,555 2,565 2,567 2,580 2,655 2,561 
C/Flower 604 669 1,306 1,830 616 606 606 616 758 

Lettuce 3,658 3,648 2,753 3,625 3,648 3,651 3,652 3,674 3,390 

A graphical representation of the statistical values given in Table A.1.6.4 is shown in Figure 

A.1.6.4 below.  

 

Figure A.1.6.4: A comparison of the hectare allocations, per crop, for the best solution found by each 
metaheuristic algorithm 
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A.2. New Irrigation Scheme 

In contrast to an existing irrigation scheme, the optimized hectare allocations for the crops at 

a new irrigation scheme would need to be determined. This includes the land allocations of 

the different farm plot types. The solutions determined for this problem would suggest to the 

crop planners what would be the ideal hectare allocations of the farm plot types in 

progressing forward.  

For the test datasets at new irrigation schemes, the crop types, the crop names, the tons of 

yield per hectare (t ha-1), the Crop Water Requirement (CWR), the average rainfall (AR), the 

lower and upper bounds and the producer prices per ton of yield (ZAR t-1) of each crop is 

given. Similar to the test datasets of an existing irrigation scheme, two datasets consist of 12 

crops, two consist of 15 crops and two consist of 20 crops. 

The 6 test datasets given below are the same as those found in test datasets 1 to 6. The 

exception is the exclusion of the hectare allocations of each crop type. However, for these 

datasets, the total area of land available for agricultural production at a new irrigation scheme 

is specified. 

A.2.1. Test Dataset 7 

The total area of agricultural land available for crop production for this dataset is 1 ,    ha’s. 

 

Table A.7: Test dataset 7 

Crop 

Types 
Crop t ha-1 CWR AR 

Lower 

Bound 

Upper 

Bound 
ZAR t-1 

Perennial 
Pecan Nuts 5.0 1,600 444.7 10 9,890 3,500.0 

Lucerne 16.0 1,445 444.7 10 9,890 1,185.52 

Summer 

Cotton 3.5 700 386.4 10 9,890 4,500.00 

Maize 9.0 979 279.0 10 9,890 1,321.25 

Groundnuts 3.0 912 339.5 10 9,890 5,076.00 

Tomato 50.0 1,132 350.8 10 9,890 4,332.00 

Pumpkin 20.0 794 279.0 10 9,890 1,577.09 

Winter 

Barley 6.0 530 58.3 10 9,890 2,083.27 

Wheat 6.0 650 58.3 10 9,890 2,174.64 

Onion 30.0 429 177.0 10 9,890 2,397.90 

Potato 28.0 365 152.8 10 9,890 2,463.00 

Cabbage 50.0 350 152.8 10 9,890 1,437.58 
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A.2.1.1. Average Execution Times 

The average execution times of the algorithms in determining solutions for test dataset 7 are 

given in Table A.2.1.1. Table A.2.1.1 gives the statistics of the average execution times (AVG) in 

milliseconds (ms), and the 95% Confidence Interval (95% CI) values. 

Table A.2.1.1: The Average execution times, in milliseconds, and the 95% confidence interval values of 
each metaheuristic algorithm 

Methods AVG (ms) 95% CI 

CS 1,047 AVG ± 28.9 

FA 4,293 AVG ± 130.9 

GSO 923 AVG ± 33.7 

GA 1,033 AVG ± 27.5 

BPA 282 AVG ± 23.1 

IBPA 239 AVG ± 5.8 

LADA 206 AVG ± 9.7 

TS 223 AVG ± 7.9 

SA 244 AVG ± 7.1 

 
As can be observed from Table A.2.1.1, LADAs’ AVG is still the best overall. FA still shows the 

worst execution times. A graphical representation of the values given in Table A.2.1.1 is 

shown in Figure A.2.1.1 below. 

 

Figure A.2.1.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 
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A.2.1.2. Best and Average Fitness Values 

Table A.2.1.2 gives the statistical values of the overall best (BFV) and average best (ABFV) 

fitness values of each metaheuristic algorithm. The 95% CI values for the fitness value 

populations of each algorithm is also given. 

Table A.2.1.2: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
confidence interval (95% CI) values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 
CS 1,718,276,405 1,682,327,674 ABFV ± 16,200,309 
FA 1,787,089,970 1,758,445,768 ABFV ± 19,172,136 

GSO 1,808,200,026 1,672,792,907 ABFV ± 118,996,166 
GA 1,639,408,016 1,566,138,119 ABFV ± 32,415,994 

BPA 1,763,365,587 1,713,479,214 ABFV ± 17,232,492 
IBPA 1,751,148,623 1,699,990,264 ABFV ± 21,129,353 
LADA 1,687,995,443 1,625,471,861 ABFV ± 22,021,582 

TS 1,794,634,348 1,782,380,599 ABFV ± 4,611,740 
SA 1,744,446,345 1,713,868,027 ABFV ± 13,026,862 

 

Compared to the solutions of an existing Irrigation Scheme, the fitness value performances of 

the algorithms in determining solutions for a new Irrigation Scheme is more uncertain. This is 

due to the difficulty of determining solutions in a solution space of constantly changing 

dimensions. From Table A.2.1.2, it can be observed that GSO determined the best BFV and TS 

has the best ABFV solutions. Overall, TS was the most consistent. GA performed the worst 

overall. This is visually seen in Figure A.2.1.2 below. 

 

Figure A.2.1.2: A comparison of each algorithms best and average fitness values determined, along with 
the 95% CI estimates 
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A.2.1.3. Plot Type Hectare Allocations 

Table A.2.1.3 gives the plot type hectare allocations for the best solution found by each 

metaheuristic algorithm.  

Table A.2.1.3: Plot type hectare allocations for each metaheuristic algorithm 

Methods Single-Crop Plots Double-Crop Plots 
CS 598 9,402 
FA 536 9,464 

GSO 516 9,484 
GA 778 9,222 

BPA 526 9,474 
IBPA 534 9,466 
LADA 4,578 5,422 

TS 527 9,473 
SA 551 9,449 

 

As can be observed from Table A.2.1.3, LADA allocated the most amount of land to the single-

crop plots compared to the other algorithms. This is due to its stronger explorative ability. All 

the other algorithms performed similarly in making plot type hectare allocation decisions. 

A.2.1.4. Crop Hectare Allocations 

Table A.2.1.4 gives the plot type hectare allocations for each crop type, as determined by the 

best solution of each metaheuristic algorithm. 

Table A.2.1.4: Plot type hectare allocations of each crop type 

Crops 
Methods 

CS FA GSO GA BPA IBPA LADA TS SA 
P/Nuts 373 68 22 491 102 108 3,881 132 334 

W/Grapes 226 468 494 287 423 427 697 394 216 
Cotton 95 50 20 341 119 92 200 21 89 
Maize 104 30 20 226 110 22 72 21 22 

G/Nuts 67 47 25 110 63 207 99 40 244 
Tomato 9,069 9,306 9,400 8,452 9,109 9,066 5,028 9,338 8,960 

Pumpkin 67 31 20 92 74 79 22 53 134 
Barley 87 87 17 611 98 41 237 51 84 
Wheat 938 25 43 84 77 184 66 54 77 
Onion 1,861 3,124 7,769 3,337 3,996 1,871 2,050 2,852 3,529 
Potato 1,900 2,928 48 2,365 655 2,928 1,690 1,724 153 

Cabbage 4,616 3,300 1,607 2,824 4,649 4,441 1,379 4,792 5,606 

A graphical representation of the statistical values given in Table A.2.1.4 is shown in Figure 

A.2.1.4 below. 
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Figure A.2.1.4: A comparison of the hectare allocations, per crop, for the best solution found by each 
metaheuristic algorithm 

As can be observed from Figure A.2.1.4, most of the algorithms determined that allocating 

more land to Tomato, Onion, Potato and Cabbage would determine the highest returns. 

 

A.2.2. Test Dataset 8 

The total area of agricultural land available for crop production for this dataset is 2 ,    ha’s. 

Table A.8: Test dataset 8 

Crop 
Types 

Crop t ha-1 CWR AR 
Lower 
Bound 

Upper 
Bound 

ZAR t-1 

Perennial 

Pecan Nuts 5.0 1,600 444.7 10 9,890 3,500.0 
Wine Grapes 9.5 850 350.8 10 9,890 2,010.00 

Olives 6.0 1,200 444.7 10 9,890 2,500.00 
Lucerne 16.0 1,445 444.7 10 9,890 1,185.52 

Summer 

Cotton 3.5 700 386.4 10 9,890 4,500.00 
Maize 9.0 979 279.0 10 9,890 1,321.25 

Groundnuts 3.0 912 339.5 10 9,890 5,076.00 
Tomato  50.0 1,132 350.8 10 9,890 4,332.00 

Winter 

Barley  6.0 530 58.3 10 9,890 2,083.27 
Wheat 6.0 650 58.3 10 9,890 2,174.64 
Onion 30.0 429 177.0 10 9,890 2,397.90 
Potato 28.0 365 152.8 10 9,890 2,463.00 
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A.2.2.1. Average Execution Times 

The average execution times of the algorithms for this dataset are given in Table A.2.2.1. 

Table A.2.2.1: The average execution times, in milliseconds, and the 95% confidence interval values of 
each metaheuristic algorithm 

Methods AVG (ms) 95% CI 

CS 1,043 AVG ± 49.9 

FA 4,217 AVG ± 115.5 

GSO 873 AVG ± 21.8 

GA 998 AVG ± 23.8 

BPA 259 AVG ± 2.4 

IBPA 234 AVG ± 2.7 

LADA 202 AVG ± 2.6 

TS 234 AVG ± 25.3 

SA 241 AVG ± 3.7 

 

As can be observed, LADAs’ AVG is still the best overall. A graphical comparison of the values 

given in Table A.2.2.1 is shown in Figure A.2.2.1 below. 

 

Figure A.2.2.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 

A.2.2.2. Best and Average Fitness Values 

Table A.2.2.2 gives the statistical values of the BFV and ABFV values of each metaheuristic 

algorithm. The 95% CI fitness values is also given. 
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Table A.2.2.2: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
confidence interval (95% CI) values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 

CS 1,717,269,933 1,682,796,805 ABFV ± 18,580,922 

FA 1,804,999,630 1,772,058,929 ABFV ± 18,726,435 

GSO 1,791,012,803 1,505,002,640 ABFV ± 159,624,331 

GA 1,672,510,247 1,565,333,506 ABFV ± 29,823,992 

BPA 1,754,297,353 1,705,166,875 ABFV ± 13,100,845 

IBPA 1,735,289,103 1,705,642,556 ABFV ± 13,933,737 

LADA 1,696,370,221 1,654,928,771 ABFV ± 17,973,045 

TS 1,799,119,889 1,785,982,013 ABFV ± 4,661,099 

SA 1,782,526,402 1,707,423,528 ABFV ± 24,346,220 

 

From Table A.2.2.2, it is observed that FA determined the best BFV and TS gave the best ABFV 

performance. Overall, TS again performed the most consistently. A visual representation of 

the values given in Table A.2.2.2 is shown in Figure A.2.2.2 below. 

 

Figure A.2.2.2: A comparison of each algorithms best and average fitness values determined, along with 
the 95% CI estimates 

A.2.2.3. Plot Type Hectare Allocations 

Table A.2.2.3 gives the plot type hectare allocations of the farm plots. 
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Table A.2.2.3: Plot type hectare allocations for each metaheuristic algorithm 

Methods Single-Crop Plots Double-Crop Plots 
CS 561 9,439 
FA 504 9,496 

GSO 620 9,380 
GA 625 9,375 

BPA 622 9,378 
IBPA 582 9,418 
LADA 5,751 4,249 

TS 502 9,498 
SA 504 9,496 

 

A.2.2.4. Crop Hectare Allocations 

Table A.2.2.4 gives the plot type hectare allocations of each crop type as also determined by 

the best solution of each metaheuristic algorithm. 

Table A.2.2.4: Plot type hectare allocations of each crop type 

Crops 
Methods 

CS FA GSO GA BPA IBPA LADA TS SA 
P/Nuts 108 212 49 76 93 211 3027 141 186 

W/Grapes 453 292 571 549 529 371 2724 361 318 
Cotton 62 38 19 636 82 216 36 49 37 
Maize 112 33 20 36 105 77 21 39 76 

G/Nuts 36 22 25 92 26 86 144 29 35 
Tomato 9,196 9,378 9,295 8,557 9,081 8,918 3,964 9,360 9,305 

Pumpkin 34 25 20 54 84 121 84 21 43 
Barley 550 32 10 298 66 11 215 31 295 
Wheat 921 30 11 202 105 202 64 114 16 
Onion 1,185 4,236 4,657 3,975 4,000 4,190 1,440 4,674 4,297 
Potato 2,855 336 28 516 1,290 121 742 524 1,823 

Cabbage 3,928 4,862 4,674 4,384 3,917 4,894 1,788 4,155 3,065 

A graphical representation of the statistics given in Table A.2.2.4 is shown in Figure A.2.2.4 

below.  
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Figure A.2.2.4: A comparison of the hectare allocations, per crop, for the best solution found by each 
metaheuristic algorithm 

A.2.3. Test Dataset 9 

The total area of agricultural land allocated for this test dataset is 1 ,    ha’s. 

Table A.9: Test dataset 9 

Crop 
Types 

Crop t ha-1 CWR AR 
Lower 
Bound 

Upper 
Bound 

ZAR t-1 

Perennial 

Pecan Nuts 5.0 1,600 444.7 10 9,910 3,500.0 
Wine Grapes 9.5 850 350.8 10 9,910 2,010.00 

Olives 6.0 1,200 444.7 10 9,910 2,500.00 
Lucerne 16.0 1,445 444.7 10 9,910 1,185.52 

Summer 

Cotton 3.5 700 386.4 10 9,910 4,500.00 
Maize 9.0 979 279.0 10 9,910 1,321.25 

Groundnuts 3.0 912 339.5 10 9,910 5,076.00 
Tomato  50.0 1,132 350.8 10 9,910 4,332.00 

Pumpkin  20.0 794 279.0 10 9,910 1,577.09 
Sunflower 3.0 648 314.9 10 9,910 3,739.00 

Winter 

Barley  6.0 530 58.3 10 9,912 2,083.27 
Wheat 6.0 650 58.3 10 9,912 2,174.64 
Onion 30.0 429 177.0 10 9,912 2,397.90 
Potato 28.0 365 152.8 10 9,912 2,463.00 

Cabbage 50.0 350 152.8 10 9,912 1,437.58 

 

A.2.3.1. Average Execution Times 

The average execution times of the algorithms are given in Table A.2.3.1.  
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Table A.2.3.1: The average execution times, in milliseconds, and the 95% confidence interval values of 
each metaheuristic algorithm 

Methods AVG (ms) 95% CI 

CS 1,291 AVG ± 86.2 

FA 4,938 AVG ± 141.1 

GSO 950 AVG ± 16.9 

GA 1,097 AVG ± 42.2 

BPA 298 AVG ± 4.4 

IBPA 276 AVG ± 4.9 

LADA 228 AVG ± 6.4 

TS 266 AVG ± 10.5 

SA 284 AVG ± 10.3 

 

A graphical representation of these execution times is shown in Figure A.2.3.1 below. 

 

Figure A.2.3.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 

A.2.3.2. Best and Average Fitness Values 

Table A.2.3.2 gives the statistical values of the BFV and ABFV values of each metaheuristic 

algorithm. The 95% CI fitness values are also given. 
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Table A.2.3.2: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
confidence interval (95% CI) values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 

CS 1,610,709,670 1,581,896,507 ABFV ± 21,102,679 

FA 1,711,518,317 1,682,910,171 ABFV ± 21,814,803 

GSO 1,645,688,301 1,174,021,690 ABFV ± 229,510,218 

GA 1,481,188,526 1,434,528,695 ABFV ± 27,857,649 

BPA 1,654,236,740 1,615,428,956 ABFV ± 28,482,871 

IBPA 1,650,850,089 1,605,145,930 ABFV ± 27,259,032 

LADA 1,637,334,948 1,528,021,131 ABFV ± 53,699,345 

TS 1,713,373,531 1,701,474,497 ABFV ± 9,648,062 

SA 1,682,069,214 1,641,448,908 ABFV ± 38,177,820 

 

For this dataset, TS and FA performed the best overall. This can be seen visually in Figure 

A.2.3.2 below. 

 

Figure A.2.3.2: A comparison of each algorithms best and average fitness values determined, along with 
the 95% CI estimates 

A.2.3.3. Plot Type Hectare Allocations 

Table A.2.3.3 gives the plot type hectare allocations for the farm plots.  
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Table A.2.3.3: Plot type hectare allocations for each metaheuristic algorithm 

Methods Single-Crop Plots Double-Crop Plots 
CS 636 9,364 
FA 628 9,372 

GSO 664 9,336 
GA 743 9,257 

BPA 664 9,336 
IBPA 700 9,300 
LADA 4,744 5,256 

TS 669 9,331 
SA 685 9,315 

 

A.2.3.4. Crop Hectare Allocations 

Table A.2.3.4 gives the plot type hectare allocations for each crop type as also determined by 

the best solution of each metaheuristic algorithm. 

Table A.2.3.4: Plot type hectare allocations of each crop type 

Crops 
Methods 

CS FA GSO GA BPA IBPA LADA TS SA 
P/Nuts 17 200 40 19 377 165 1,301 127 155 

W/Grapes 187 74 428 185 90 254 953 226 232 
Olives 292 171 166 304 44 143 1587 41 73 

Lucerne 140 184 29 235 154 138 904 274 225 
Cotton 151 100 125 87 117 149 100 101 124 
Maize 161 108 119 712 192 149 68 126 95 

G/Nuts 251 123 135 327 111 291 78 101 119 
Tomato  8,325 8,779 8,709 7,543 8,462 8,420 4,709 8,776 8,612 

Pumpkin  223 111 124 114 238 185 215 103 181 
S/flower 254 150 124 475 215 106 86 124 185 

Barley  436 69 1,511 803 206 114 246 67 273 
Wheat 630 81 69 767 221 242 77 77 133 
Onion 2,341 3,297 2,980 1,145 1,472 4,159 1,419 3,855 3,875 
Potato 4,520 2,469 1,621 2,865 4,132 3,541 1,725 659 66 

Cabbage 1,437 3,456 3,155 3,677 3,304 1,245 1,789 4,673 4,968 

A graphical representation of the statistics given in Table A.2.3.4 is shown in Figure A.2.3.4 

below.  
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Figure A.2.3.4: A comparison of the hectare allocations, per crop, for the best solution found by each 
metaheuristic algorithm 

A.2.4. Test Dataset 10 

The total area of agricultural land available for this dataset is 2 ,    ha’s. 

Table A.10: Test dataset 10 

Crop 
Types 

Crop t ha-1 CWR AR 
Lower 
Bound 

Upper 
Bound 

ZAR t-1 

Perennial 

Pecan Nuts 5.0 1,600 444.7 10 9,910 3,500.0 
Wine Grapes 9.5 850 350.8 10 9,910 2,010.00 

Olives 6.0 1,200 444.7 10 9,910 2,500.00 
Lucerne 16.0 1,445 444.7 10 9,910 1,185.52 

Summer 

Cotton 3.5 700 386.4 10 9,910 4,500.00 
Maize 9.0 979 279.0 10 9,910 1,321.25 

Groundnuts 3.0 912 339.5 10 9,910 5,076.00 
Tomato  50.0 1,132 350.8 10 9,910 4,332.00 

Pumpkin  20.0 794 279.0 10 9,910 1,577.09 
Sunflower 3.0 648 314.9 10 9,910 3,739.00 

Winter 

Barley  6.0 530 58.3 10 9,912 2,083.27 
Wheat 6.0 650 58.3 10 9,912 2,174.64 
Onion 30.0 429 177.0 10 9,912 2,397.90 
Potato 28.0 365 152.8 10 9,912 2,463.00 

Cabbage 50.0 350 152.8 10 9,912 1,437.58 

 

A.2.4.1. Average Execution Times 

The average execution times of the algorithms are given in Table A.2.4.1. 
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Table A.2.4.1: The average execution times, in milliseconds, and the 95% confidence interval values of 
each metaheuristic algorithm 

Methods AVG (ms) 95% CI 

CS 1,265 AVG ± 76.9 

FA 4,822 AVG ± 68.3 

GSO 945 AVG ± 16.3 

GA 1,082 AVG ± 25.2 

BPA 295 AVG ± 2.9 

IBPA 276 AVG ± 5.2 

LADA 254 AVG ± 9.4 

TS 259 AVG ± 3.2 

SA 279 AVG ± 4.7 

 

A graphical representation of the execution time performances is given in Figure A.2.4.1 

below. 

 

Figure A.2.4.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 

A.2.4.2. Best and Average Fitness Values 

Table A.2.4.2 gives the statistical values of the BFV and ABFV values of each metaheuristic 

algorithm. The 95% CI fitness values is also given. 
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Table A.2.4.2: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
confidence interval (95% CI) values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 

CS 3,262,673,147 3,194,568,560 ABFV ± 34,102,233 

FA 3,514,075,506 3,447,014,183 ABFV ± 50,209,803 

GSO 3,557,740,772 3,228,345,873 ABFV ± 308,656,232 

GA 3,012,157,550 2,884,178,098 ABFV ± 43,672,947 

BPA 3,471,540,379 3,336,195,659 ABFV ± 45,186,469 

IBPA 3,368,660,909 3,282,738,785 ABFV ± 33,493,865 

LADA 3,218,202,294 3,085,063,455 ABFV ± 58,929,985 

TS 3,530,357,906 3,504,575,225 ABFV ± 9,563,007 

SA 3,469,938,794 3,358,274,990 ABFV ± 44,164,804 

 

A graphical representation of the statistical values given in Table A.2.4.2 is shown in Figure 

A.2.4.2 below. 

 

Figure A.2.4.2: A comparison of each algorithms best and average fitness values determined, along with 
the 95% CI estimates 

A.2.4.3. Plot Type Hectare Allocations 

Table A.2.4.3 gives the plot type hectare allocations for the farm plot types.  
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Table A.2.4.3: Plot type hectare allocations for each metaheuristic algorithm 

Methods Single-Crop Plots Double-Crop Plots 
CS 829 19,171 
FA 790 19,210 

GSO 671 19,329 
GA 1,795 18,205 

BPA 646 19,354 
IBPA 639 19,361 
LADA 10,978 9,022 

TS 661 19,339 
SA 657 19,343 

 

A.2.4.4. Crop Hectare Allocations 

Table A.2.4.4 gives the plot type hectare allocations for each crop type as also determined by 

the best solution of each metaheuristic algorithm. 

Table A.2.4.4: Plot type hectare allocations of each crop type 

Crops 
Methods 

CS FA GSO GA BPA IBPA LADA TS SA 
P/Nuts 347 339 25 348 382 230 1712 51 214 

W/Grapes 184 170 570 35 78 107 3446 265 296 
Olives 168 135 45 721 150 60 1855 52 55 

Lucerne 129 147 30 691 35 241 3965 292 92 
Cotton 267 219 188 380 493 229 147 368 203 
Maize 246 214 225 1,096 263 596 220 201 61 

G/Nuts 676 241 191 228 410 402 197 201 316 
Tomato  16,811 18,132 18,344 15,063 17,732 17,036 7,424 18,182 17,843 

Pumpkin  371 204 193 680 251 785 486 194 229 
S/flower 800 200 188 757 206 313 548 194 192 

Barley  349 254 188 295 221 233 215 160 267 
Wheat 1,881 269 188 1,450 288 567 257 422 522 
Onion 8,387 8,807 15,084 6,484 8,553 7,636 3,612 8,779 7,343 
Potato 7,048 4,370 2,679 2,679 2,573 4,326 931 1,605 4,806 

Cabbage 1,507 5,509 1,191 7,297 7,719 6,599 4,008 8,373 6,405 

A graphical representation of the statistics given in Table A.2.4.4 is shown in Figure A.2.4.4 

below.  
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Figure A.2.4.4: A comparison of the hectare allocations, per crop, for the best solution found by each 
metaheuristic algorithm 

A.2.5. Test Dataset 11 

The total area of agricultural land available for this dataset is 1 ,    ha’s. 

Table A.11: Test dataset 11 

Crop 
Types 

Crop 
t ha-

1 
CWR AR 

Lower 
Bound 

Upper 
Bound 

ZAR t-1 

Perennial 

Pecan Nuts 5.0 1,600 444.7 10 9,890 3,500.0 
Wine Grapes 9.5 850 350.8 10 9,890 2,010.00 

Olives 6.0 1,200 444.7 10 9,890 2,500.00 
Lucerne 16.0 1,445 444.7 10 9,890 1,185.52 

Summer 

Cotton 3.5 700 386.4 10 9,890 4,500.00 
Maize 9.0 979 279.0 10 9,890 1,321.25 

Groundnuts 3.0 912 339.5 10 9,890 5,076.00 
Tomato  50.0 1,132 350.8 10 9,890 4,332.00 

Pumpkin  20.0 794 279.0 10 9,890 1,577.09 
Sunflower 3.0 648 314.9 10 9,890 3,739.00 
Dry Beans 2.0 650 269.2 10 9,890 5,600.00 
Soya Beans 3.0 600 269.2 10 9,890 2,528.01 

Winter 

Barley  6.0 530 58.3 10 9,890 2,083.27 
Wheat 6.0 650 58.3 10 9,890 2,174.64 
Onion 30.0 429 177.0 10 9,890 2,397.90 
Potato 28.0 365 152.8 10 9,890 2,463.00 

Cabbage 50.0 350 152.8 10 9,890 1,437.58 
Water Melon 20.0 500 22.4 10 9,890 934.00 
Cauliflower  10.0 500 152.8 10 9,890 4,252.00 

lettuce 20.0 300  33.7 10 9,890 4,432.00 
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A.2.5.1. Average Execution Times 

The average execution times of the algorithms for this dataset are given in Table A.2.5.1. 

Table A.2.5.1: The average execution times, in milliseconds, and the 95% confidence interval values of 
each metaheuristic algorithm 

Methods AVG (ms) 95% CI 

CS 1,626 AVG ± 32.5 

FA 6,069 AVG ± 68.1 

GSO 1,118 AVG ± 34.5 

GA 1,270 AVG ± 29.1 

BPA 373 AVG ± 4.8 

IBPA 346 AVG ± 3.2 

LADA 279 AVG ± 3.1 

TS 332 AVG ± 2.1 

SA 350 AVG ± 4.1 

 
A graphical representation of the execution time performances of the algorithms is given in 

Figure A.2.5.1 below. 

 

Figure A.2.5.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 

A.2.5.2. Best and Average Fitness Values 

Table A.2.5.2 gives the statistical values of the BFV and ABFV values of each metaheuristic 

algorithm. The 95% CI fitness values is also given. 
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Table A.2.5.2: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
confidence interval (95% CI) values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 

CS 1,468,231,312 1,413,908190 ABFV ± 27,621,277 

FA 1,731,781,471 1,631,522,354 ABFV ± 33,305,453 

GSO 1,221,123,781 898,823,539 ABFV ± 139,268,092 

GA 1,231,409,024 1,140,485,224 ABFV ± 32,362,504 

BPA 1,652,258,800 1,541,708,943 ABFV ± 35,258,372 

IBPA 1,594,108,853 1,521,369,602 ABFV ± 24,002,645 

LADA 1,421,119,721 1,344,960,509 ABFV ± 25,879,300 

TS 1,626,096,701 1,603,835,824 ABFV ± 9,861,072 

SA 1,593,957,846 1,538,132,311 ABFV ± 27,043,105 

 

For this dataset, FA performed the best overall. This was followed by BPA. A visual 

representation of the fitness value performances is given in Figure A.2.5.2 below. 

 

Figure A.2.5.2: A comparison of each algorithms best and average fitness values determined, along with 
the 95% CI estimates 

A.2.5.3. Plot Type Hectare Allocations 

Table A.2.5.3 gives the plot type hectare allocations for the farm plots.  
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Table A.2.5.3: Plot type hectare allocations for each metaheuristic algorithm 

Methods Single-Crop Plots Double-Crop Plots 
CS 806 9,194 
FA 630 9,370 

GSO 598 9,402 
GA 601 9,399 

BPA 594 9,406 
IBPA 711 9,289 
LADA 1,526 8,474 

TS 797 9,203 
SA 790 9,210 

 

A.2.5.4. Crop Hectare Allocations 

Table A.2.5.4 gives the plot type hectare allocations of each crop type as also determined by 

the best solution of each algorithm. 

Table A.2.5.4: Plot type hectare allocations of each crop type 

Crops 
Methods 

CS FA GSO GA BPA IBPA LADA TS SA 
P/Nuts 150 125 167 99 124 53 193 179 241 

W/Grapes 226 204 272 199 136 281 405 241 367 
Olives 185 18 146 113 37 187 184 70 135 

Lucerne 245 283 14 190 298 190 744 306 47 
Cotton 237 121 285 76 156 132 193 88 348 
Maize 210 100 215 1,192 91 634 231 322 102 

G/Nuts 382 124 2,913 594 191 154 203 87 161 
Tomato  7,582 8,545 5,155 5,696 8,204 7,902 6,102 8,175 7,805 

Pumpkin  217 106 59 384 254 129 542 133 218 
S/flower 87 132 81 434 148 113 128 107 91 
D/Beans 109 114 577 397 244 96 488 153 270 
S/Beans 370 128 116 627 117 131 587 138 215 
Barley  1,351 130 139 187 357 312 513 430 301 
Wheat 202 191 140 1,096 51 254 267 106 186 
Onion 2,411 432 78 1,017 3,039 507 1,787 863 648 
Potato 2,367 592 2,729 1,918 524 1034 1,640 1,840 2,149 

Cabbage 1,996 1,951 2,288 1,608 1,884 3,372 1,657 1,652 175 
W/Melon 216 116 429 686 344 84 292 105 156 
C/Flower  575 222 733 903 49 623 177 802 757 

Lettuce 77 5,736 2,867 1,986 3,157 3,104 2,142 3,403 4,837 

A graphical representation of the statistics given in Table A.2.5.4 is shown in Figure A.2.5.4 

below.  
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Figure A.2.5.4: A comparison of the hectare allocations, per crop, for the best solution found by each 
metaheuristic algorithm 

A.2.6. Test Dataset 12 

The total area of agricultural land available for this dataset is 2 ,    ha’s. 

Table A.12: Test dataset 12 

Crop 
Types 

Crop 
t ha-

1 
CWR AR 

Lower 
Bound 

Upper 
Bound 

ZAR t-1 

Perennial 

Pecan Nuts 5.0 1,600 444.7 10 9,890 3,500.0 
Wine Grapes 9.5 850 350.8 10 9,890 2,010.00 

Olives 6.0 1,200 444.7 10 9,890 2,500.00 
Lucerne 16.0 1,445 444.7 10 9,890 1,185.52 

Summer 

Cotton 3.5 700 386.4 10 9,890 4,500.00 
Maize 9.0 979 279.0 10 9,890 1,321.25 

Groundnuts 3.0 912 339.5 10 9,890 5,076.00 
Tomato  50.0 1,132 350.8 10 9,890 4,332.00 

Pumpkin  20.0 794 279.0 10 9,890 1,577.09 
Sunflower 3.0 648 314.9 10 9,890 3,739.00 
Dry Beans 2.0 650 269.2 10 9,890 5,600.00 
Soya Beans 3.0 600 269.2 10 9,890 2,528.01 

Winter 

Barley  6.0 530 58.3 10 9,890 2,083.27 
Wheat 6.0 650 58.3 10 9,890 2,174.64 
Onion 30.0 429 177.0 10 9,890 2,397.90 
Potato 28.0 365 152.8 10 9,890 2,463.00 

Cabbage 50.0 350 152.8 10 9,890 1,437.58 
Water Melon 20.0 500 22.4 10 9,890 934.00 
Cauliflower  10.0 500 152.8 10 9,890 4,252.00 

lettuce 20.0 300  33.7 10 9,890 4,432.00 
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A.2.6.1. Average Execution Times 

The average execution times of the algorithms for this dataset are given in Table A.2.6.1. 

Table A.2.6.1: The average execution times, in milliseconds, and the 95% confidence interval values of 
each metaheuristic algorithm 

Methods AVG (ms) 95% CI 

CS 1,603 AVG ± 38.9 

FA 5,991 AVG ± 88.0 

GSO 1,074 AVG ± 16.6 

GA 1,257 AVG ± 27.7 

BPA 367 AVG ± 2.8 

IBPA 339 AVG ± 3.2 

LADA 276 AVG ± 3.4 

TS 326 AVG ± 2.2 

SA 346 AVG ± 7.1 

 
A graphical representation of the execution time performances is given in Figure A.2.6.1 

below. 

 

Figure A.2.6.1: The average execution times, in milliseconds (ms), and the 95% CI values of each 
metaheuristic algorithm 

A.2.6.2. Best and Average Fitness Values 

Table A.2.6.2 gives the statistical values of the BFV and ABFV values of each metaheuristic 

algorithm. The 95% CI fitness values is also given. 
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Table A.2.6.2: Statistics for the best fitness values (BFV), average best fitness values (ABFV) and 95% 
confidence interval (95% CI) values 

Methods BFV (ZAR) ABFV (ZAR) 95% CI 

CS 2,920,041,406 2,825,297,678 ABFV ± 52,044,585 

FA 3,428,234,563 3,260,593,213 ABFV ± 63,914,114 

GSO 2,740,310,583 1,714,495,779 ABFV ± 230,564,859 

GA 2,612,756,569 2,297,555,653 ABFV ± 90,445,429 

BPA 3,223,706,055 3,122,522,187 ABFV ± 41,966,964 

IBPA 3,217,308,789 3,061,306,477 ABFV ± 53,539,509 

LADA 2,804,236,704 2,661,080,953 ABFV ± 41,490,755 

TS 3,313,893,985 3,249,081,678 ABFV ± 27,823,967 

SA 3,181,663,979 3,078,341,017 ABFV ± 45,387,969 

 

From Table A.2.6.2, it can be observed that FA performed the best. This was followed by TS, 

BPA and IBPA. The fitness value performances can be seen in Figure A.2.6.2 below. 

 

Figure A.2.6.2: A comparison of each algorithms best and average fitness values determined, along with 
the 95% CI estimates 

A.2.6.3. Plot Type Hectare Allocations 

Table A.2.6.3 gives the plot type hectare allocations for the farm plots.  
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Table A.2.6.3: Plot type hectare allocations for each metaheuristic algorithm 

Methods Single-Crop Plots Double-Crop Plots 
CS 1,172 18,828 
FA 1,251 18,749 

GSO 1,055 18,945 
GA 1,738 18,262 

BPA 1,171 18,829 
IBPA 1,248 18,752 
LADA 8,120 11,880 

TS 1,129 18,871 
SA 1,196 18,804 

 

A.2.6.4. Crop Hectare Allocations 

Table A.2.6.4 gives the plot type hectare allocations for each crop type as also determined by 

the best solution of each metaheuristic algorithm. 

Table A.2.6.4: Plot type hectare allocations of each crop type 

Crops 
Methods 

CS FA GSO GA BPA IBPA LADA TS SA 
P/Nuts 486 583 82 650 106 463 2,642 386 55 

W/Grapes 258 340 490 218 113 294 2,649 101 698 
Olives 295 69 79 687 288 57 1,518 129 280 

Lucerne 133 259 405 183 664 434 1,311 512 163 
Cotton 634 218 980 377 697 325 128 221 459 
Maize 572 200 2,360 390 390 474 1,241 444 762 

G/Nuts 1,094 259 512 583 900 491 693 200 553 
Tomato  13,989 17,038 12,729 13,430 15,822 15,796 8,590 16,445 15,587 

Pumpkin  458 355 1,436 358 193 282 199 272 405 
S/flower 184 209 203 459 227 315 430 372 344 
D/Beans 875 230 505 1,504 300 753 204 381 404 
S/Beans 1,022 239 220 1,160 301 315 395 536 289 
Barley  439 66 727 1,120 855 189 637 215 72 
Wheat 1,089 106 179 1,975 67 120 282 208 312 
Onion 2,393 4,338 9,409 1,844 2,681 3,796 2,168 5,166 5,083 
Potato 5,147 5,062 5,907 5,823 3,031 5,260 2,559 4,025 4,140 

Cabbage 1,347 2,117 979 708 3,734 4,625 2,221 4,427 4,606 
W/Melon 354 86 414 419 674 149 685 96 478 
C/Flower  1,666 166 847 5,463 324 393 985 275 191 

Lettuce 6,393 6,808 482 909 7,465 4,220 2,344 4,459 3,921 

A graphical representation of the statistics given in Table A.2.6.4 is shown in Figure A.2.6.4 

below.  
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Figure A.2.6.4: A comparison of the hectare allocations, per crop, for the best solution found by each 
metaheuristic algorithm 
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