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Abstract

The simulation of the dynamics of quantum systems is very difficult, due

to the fact that, in general, it cannot be calculated exactly for interacting

many-body systems. Brute force simulations of quantum dynamics are sim-

ply not feasible, and approximations need to be made. In many instances a

quantum system can be approximated as a quantum-classical system, where

only a subsystem of interest is treated quantum mechanically, and the rest is

considered as a classical bath. When energy is free to be exchanged between

the subsystem and its environment, the dynamics that occur is said to be

nonadiabatic. This type of dynamics is challenging to calculate on a com-

puter, as it can lead to large statistical errors at long times. Hence, there is

a need for improved algorithms for nonadiabatic dynamics. In this thesis, a

recently introduced nonadiabatic sampling scheme [A. Sergi and F. Petruc-

cione, Phys. Rev. E 81, 032101 (2010)] is used to calculate the long-time

dynamics of a model system comprising a quantum spin coupled to a bath

of harmonic oscillators. Also, various technical aspects of the algorithm are

investigated.
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Chapter 1

Introduction

While quantum theory has been well known for almost a century, one of the

greatest problems encountered by computational physicists today remains

the development of algorithms for calculating the dynamics of quantum

systems. This difficulty stems from the theory itself; indeed, for most many-

body quantum systems their dynamics is unsolvable, and approximations

have to be made to obtain solutions.

When solving classical dynamics of many-body systems numerically,

there a number of algorithms which are very general, and can be used to

simulate a wide range of different systems. Most commonly, Molecular Dy-

namics, or Monte Carlo methods are used for classical dynamics [1]. Classi-

cal theory, however, is given in terms of functions of phase-space, which are

suited to implementation on a computer. Quantum theory is rather more

complex, since it is defined in terms of operators which may or may not

commute. This is what causes quantum dynamics to be so difficult to simu-

late. Unlike classical dynamics, there is no general algorithm or method for

solving the dynamics of quantum systems. Algorithms are generally tailored

specifically for the system or problem of study.

An additional problem which is very limiting on numerical quantum dy-

namics is simply that, in many cases, the required computer memory far

1
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exceeds that which is available. In [1] it is shown that even for a lattice of

as few as 64 electrons, the memory that is required to solve the system com-

pletely is of the order of 1028Gb, which is obviously completely unfeasible.

To construct any successful algorithm for simulating quantum dynamics,

one of the main objectives will be to reduce the computational resources

required for the calculation. It is pointless to devise a simulation scheme

that can solve a quantum system accurately if there is no computer capable

of running it. It is also obviously desirable for any simulation to complete

in a reasonable length of time.

Good quantum algorithms therefore generally rely on making approxi-

mations which, while dramatically reducing run-time and system resources,

do not sacrifice the integrity of the result. A highly useful approximation

is that of quantum-classical dynamics [2, 3]. When studying a quantum

system, there is often a subsystem of interest which is interacting with its

environment. In the quantum-classical approximation, only the subsystem

is considered as being quantum, and the environment is treated in a classical

way. This greatly simplifies the algorithm required to simulate the dynam-

ics, since classical dynamics is so well studied and so much easier to calculate

numerically. Many systems can be approximated this way, either because

the degrees of freedom of the environment are numerous enough to be ap-

proximated as classical, or because it is not required to know the detailed

evolution of the bath to obtain good results for the quantum subsystem.

Because so many systems can be approximated as quantum-classical, the

numerical study of quantum-classical dynamics is of interest in a wide range

of topics.

Quantum information processing [4, 5] - a relatively new field which

concerns using quantum principles in an effort to achieve greater capabilities

of information processing and transfer - utilises many systems that can be

treated semiclassically. Aspects such as external control in quantum optics
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[6, 7], quantum transport through meso- and nanoscale structures, quantum

tunneling in macroscopic systems, and quantum Brownian motors, all relate

to dissipative quantum systems which can be treated semiclassically [8].

Dynamical properties of such systems can be calculated using a quantum-

classical formalism. It has also been demonstrated that rate constants of

chemical reactions and transport coefficients can computed using a quantum-

classical approach [9].

There is a further problem to simulating dynamics, however, even in

the quantum-classical approximation. When a subsystem of interest and

the classical bath are free to exchange energy, the dynamics is said to be

nonadiabatic. If no energy is exchanged, then the dynamics is adiabatic.

Adiabatic dynamics of quantum-classical systems is relatively easy to for-

mulate, as evolution occurs on one potential energy surface. It is more com-

plicated, however, to model nonadiabatic dynamics. The implementation of

nonadiabatic quantum transitions between potential energy surfaces is dif-

ficult to achieve computationally, and so approximations have to be made.

In general, the implementation of nonadiabatic transitions is performed in

a stochastic way, using sampling probabilities. However, these algorithms

result in large statistical error in the calculation after long time intervals, so

that meaningful results can only be obtained for short times. Recently, an

improved sampling probability was proposed, which reduced this long-time

error, allowing good results to be achieved for greater times [10].

The nature of the equations of motion for mixed quantum-classical sys-

tems are not clear, since the interaction between the bath and quantum

subsystem results in the bath acquiring certain quantum-like characteris-

tics [2]. If stationary phase analysis of the equations of motion is per-

formed, it can be shown that the variational principle giving the equations

of motion is non-Lagrangian in nature, and the equations do not result in

unique solutions [11]. There are various methods for solving mixed quantum-
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classical dynamics. One of the most common strategies for dealing with

quantum-classical systems is to devise a so-called surface-hopping scheme

[12-16]. Surface-hopping algorithms describe quantum-classical dynamics

as adiabatic evolution on potential energy surfaces interspersed by nona-

diabatic transitions to different energy surfaces. One of the more recent

surface-hopping schemes is based on the quantum-classical Liouville equa-

tion [17, 18, 19, 20, 21, 22, 23, 24]. This equation results in a formulation

which realises the statistical mechanics of quantum-classical dynamics in

terms of a density matrix. In a convenient basis, this formulation leads

naturally to the development of surface-hopping schemes due to the way in

which the evolution can be separated into adiabatic and nonadiabatic parts,

where the latter are generally realised by a transition operator.

In part of the research reported here, an existing surface-hopping algo-

rithm has been used, together with the improved transition sampling scheme

in [10]. Calculations were performed for system parameters which have not

been presented thus far [25], and it is shown that the statistical error was

greatly reduced.

A detailed study of the momentum-jump approximation was also per-

formed. This approximation is used in surface-hopping schemes to realise

the action of the transition operator on the classical bath, by shifting bath

momenta. The effects of three different momentum-shift rules [26] were ex-

amined, in an effort to better understand what properties are important

when devising a successful sampling scheme for nonadiabatic transitions.

The layout of the thesis is as follows. Chapter 2 introduces some of

the theory used when simulating quantum-classical systems. The Wigner

phase-space representation of quantum mechanics is defined, as well as the

quantum-classical bracket. In Chapter 3, two common bases used for sim-

ulating quantum-classical dynamics are discussed, and the so-called surface

hopping algorithms are introduced - specifically, the sequential short-time
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propagation algorithm [27], which are used to obtain results. Chapter 4

defines the model used to represent the simulated quantum-classical sys-

tem, and presents the results of numerical studies, including the study of

momentum-jump rules for nonadiabatic transitions and results of calcula-

tions using the improved sampling scheme of [10] for system parameters

hitherto unshown in literature. Finally, Chapter 5 concludes by discussing

the results and their relevance in achieving accurate results for simulations

at longer times, as well as possible future work. In the appendices, several

aspects of the theory are derived.



Chapter 2

Theory of Quantum-Classical

Systems

This chapter discusses, in detail, the theory required to understand and sim-

ulate quantum-classical dynamics. It starts with a brief summary of Heisen-

berg’s formulation of quantum mechanics and introduces the density matrix

operator. Representation of quantum mechanics in phase-space is exam-

ined, in particular, the Wigner representation. This is followed by a general

outline of bracket algebra, and concludes by defining the quantum-classical

bracket.

2.1 Heisenberg’s Formulation of Quantum

Mechanics

Formulated in June 1925 by Werner Heisenberg, this was the first full de-

scription of quantum mechanics to be developed [28]. Also known as matrix

mechanics, this formulation is equivalent to the wave theory of Schrödinger.

In Heisenberg theory, operators are represented by matrices that act on

quantum states represented by vectors - either column vectors (kets), or

row vectors (bras).

6
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The dimensions of these matrices and vectors are governed by the number

of basis vectors required to form a complete basis set for the system. If a

system can be described by a minimum of N basis states (vectors), then

operators for that system are N×N matrices, kets are N×1 column vectors,

and bras 1×N row vectors.

One of the main differences between the Heisenberg representation and

that of Schrödinger, is the placement of time dependence. Consider a 1D

system with state |ψ〉 at time t = 0. In the Schrödinger picture, to calculate

the expectation value of an arbitrary operator χ̂ at a future time t = t′, the

Schrödinger wave equation is used to evaluate the wave function ψ(x, t′),

and then the expectation value

〈χ(t′)〉 =
∫
ψ∗(x, t′)χ̂ψ(x, t′) dx , (2.1)

is evaluated. In this representation, the states evolve in time, and the op-

erators are constant. In the Heisenberg picture, the reverse is true. In the

same situation as above, the observable would be calculated by determining

the operator at the future time, and then acting it upon time independent

states. Any operator χ̂ changes in time according to the Heisenberg equation

of motion

dχ̂(t)
dt

=
i

h̄

[
Ĥ, χ̂(t)

]
+
(
∂χ̂

∂t

)
, (2.2)

where [Ĥ, χ̂(t)] ≡ Ĥχ̂(t) − χ̂(t)Ĥ. Equation (2.2) can, in fact, be derived

using Equation (2.1), which is evidence of the fact that the Heisenberg and

Schródinger representations are equivalent. This derivation is performed in

Appendix A. In (2.2), the operator may have an explicit time dependence.

However, from now on, only operators without an explicit time dependence

are considered, and the Heisenberg equation of motion simplifies to
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dχ̂(t)
dt

=
i

h̄

[
Ĥ, χ̂(t)

]
. (2.3)

2.2 Quantum Statistical Mechanics

In both classical and quantum mechanics, statistical theories are required

when the initial conditions for a system are not known. Due to the Heisen-

berg indeterminacy principle, quantum mechanics has an additional level of

uncertainty which gives it an intrinsic statistical nature [29]. Even if quan-

tum states and operators are propagated in time by deterministic equations,

the results of these are still only linked to the physical world in a statistical

way.

When it can be said with complete certainty that a system is in a specific

state |ψ〉, the system is said to be in a pure state. This state vector can be

represented in an orthonormal basis |φj〉 as

|ψ〉 =
∑
j

cj |φj〉 , (2.4)

where cj = 〈φj |ψ〉 are coefficients with
∑
j |cj |2 = 1. Consider now an

operator χ̂ for which χ̂|φj〉 = aj |φj〉, where aj is a real number. The average

of this operator for a system in pure state |ψ〉 is given by

χ̄ = 〈ψ|χ̂|ψ〉 . (2.5)

Substituting Eq. (2.4) into Eq. (2.5) gives

χ̂ =
∑
j

∑
k

cjc
∗
k〈φj |χ̂|φk〉

=
∑
j

∑
k

cjc
∗
kak〈φj |φk〉

=
∑
j

∑
k

cjc
∗
kakδjk
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=
∑
k

|ck|2ak . (2.6)

The last line above demonstrates that even if everything about the initial

conditions of the system is known, the measurable quantities are given by

statistical averages. This is because the Heisenberg indeterminacy principle

gives quantum mechanics a second inherent level uncertainty not encoun-

tered in classical mechanics.

2.2.1 The Density Matrix

If a system of interest with coordinates (x) is coupled to an environment

with coordinates (y), while it is possible for the entire system to have a

wave function Ψ(x, y), it does not necessarily follow that the subsystem

with coordinates (x) has its own wave function Ψ(x). This is due to the fact

that Ψ(x, y) cannot in general be written as a product of wave functions

Φ(x)Φ(y) [30].

In this case, it is not possible to know what state the subsystem of

interest is in, it is only possible to know the probabilities that the subsystem

is in each accessible microstate. It is convenient to introduce a statistical

ensemble of identical systems, and the probabilities then give the fraction

of the ensemble in each microstate.

Since not all the systems in the ensemble are in the same state, averages

of observables can no longer be calculated according to Equation (2.6). Av-

erages for the ensemble must now be calculated by determining the average

for each accessible state, and summing all the terms, each weighted by the

probability associated with that state [29]:

〈χ̂〉 =
∑
i

γiχ̄i

=
∑
i

γi
∑
j

∑
k

ci∗j c
i
k〈j|χ̂|k〉 , (2.7)
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where γi is the probability that the system is in the state Ψi(x). These

probabilities are all positive, and must satisfy the normalisation condition

∑
i

γi = 1 . (2.8)

Using Eq. (2.7), it is now possible to introduce the matrix element

ρkj =
∑
i

γic
i
kc
i∗
j , (2.9)

in terms of which

〈χ〉 =
∑
j

∑
k

χjkρkj . (2.10)

The operator ρ̂ can now be defined, with matrix elements ρkj . This operator

is known as the von Neumann density matrix [29]. It follows from the

definition for the matrix elements in Equation (2.8) that ρ̂ is a Hermitian

operator, since

(ρkj)∗ =

(∑
i

γic
i
kc
i∗
j

)∗
=

∑
i

γic
i∗
k c

i
j = ρjk . (2.11)

The matrix elements may also be written in terms of the bra-ket notation

as

ρkj = 〈k|ρ̂|j〉 . (2.12)

Using this form for the matrix elements, it is apparent that the average 〈χ̂〉

in Eq. (2.9) is given in terms of a product of operators:

〈χ̂〉 =
∑
j

∑
k

〈j|χ̂|k〉〈k|ρ̂|j〉



11

=
∑
j

〈j|χ̂ρ̂|j〉 , (2.13)

where the closure relation has been used. Equation (2.13) gives the average

as the sum of the diagonal matrix elements of the matrix product of χ̂ and

ρ̂, that is, the trace. Since the trace of a matrix is basis-independent, the

identity Tr(AB) = Tr(BA) can be used, and the observable can be written

in general form

〈χ̂〉 = Tr χ̂ρ̂ = Tr ρ̂χ̂ . (2.14)

It follows from Eqs. (2.8) and (2.9) that the trace of the density matrix

must be unity:

Tr ρ̂ =
∑
j

ρjj

=
∑
i

γi
∑
j

|cij |2

=
∑
i

γi = 1 . (2.15)

The diagonal elements of the density matrix are thus the fractional popula-

tions of the ensemble for each accessible state. This leads to another useful

property of the density matrix. For a pure state, one of the γi will be equal

to 1, with all the others zero, and therefore

Tr (ρ̂2) = 1 . (2.16)

For a mixed state, this will naturally not be the case, since more than one

γi will be non-zero.

While this normalised property of the diagonal elements of ρ̂ applies in

any basis, there are no intrinsic properties of the off-diagonal elements. A

density matrix may be diagonal in one basis, but it does not mean it is

diagonal in another basis. Furthermore, unlike the diagonal elements, the
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off-diagonal elements may be either positive or negative. These elements are

related to the coherence effects in a system, and are a consequence of the

wave-like properties of matter [29].

Just as the wave function has an equation of motion in the Schrödinger

equation, so does the density matrix in the von Neumann equation obtained

below. Consider the average for the operator χ̂ at some time t:

〈χ(t)〉 = Tr (χ̂(t)ρ̂)

= Tr
(
eiĤt/h̄χ̂e−iĤt/h̄ρ̂

)
, (2.17)

where Ĥ is time independent. Exploiting the cyclic invariance of the trace,

this becomes

〈χ(t)〉 = Tr
(
χ̂e−iĤt/h̄ρ̂eiĤt/h̄

)
= Tr (χ̂ρ̂(t)) , (2.18)

where the time dependence of the density matrix is defined in the last line.

Equation (2.17) can be thought of as the Heisenberg picture of quantum

statistical mechanics, while Eq. (2.18) represents that of Schrödinger. The

von Neumann equation of motion for the density matrix can be obtained by

∂

∂t
ρ̂(t) =

∂

∂t

[
e−iĤt/h̄ρ̂eiĤt/h̄

]
= − iĤ

h̄
e−iĤt/h̄ρ̂eiĤt/h̄ + e−iĤt/h̄

(
iĤ

h̄

)
eiĤt/h̄

= − i
h̄

[
Ĥ, ρ̂(t)

]
. (2.19)
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2.3 Phase-space Representation of Quantum Me-

chanics

It has been shown [33] that probability distributions for many quantum

dynamical variables may approach a classical limit in certain conditions

(usually in the limit h̄ → 0). This is possible when using either a coordi-

nate space representation or a momentum space representation. However,

this does still not provide a full classical-like description of quantum me-

chanics. In classical mechanics, the Hamilton equations of motion dictate a

correlation between the positions and momenta of a particle:

dp

dt
= − ∂

∂q
H(q, p, t) ,

dq

dt
=

∂

∂p
H(q, p, t) . (2.20)

This correlation is manifested in probability distributions of both variables,

known as phase-space distributions. To obtain a complete classical descrip-

tion of quantum systems, it must hence be possible to describe quantum

dynamics in phase-space [33]. Of the many attempts to achieve this, one of

the most successful was by Eugene Wigner.

2.3.1 The Wigner Representation

In standard formulations of quantum mechanics, wave functions and prob-

ability densities are given most commonly in terms of the coordinate repre-

sentation [31]:

ψ(x) = 〈x|ψ〉, P (x) = |ψ(x)|2 . (2.21)

If ψ(x) is known, it is a simple matter of performing a Fourier transform

to obtain the wave function in the momentum representation:
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ψ(p) =
1√
h̄

∫
e−ixp/h̄ψ(x)dx , (2.22)

and hence the momentum probability density |ψ(p)|2.

It is desirable to obtain a representation where the probability density

is given as a function of both these dynamical variables. This quantum

phase-space probability density would have to obey the constraints that it

is everywhere positive, and normalised over phase-space, for it to be inter-

preted as a probability distribution. In addition to this, it would have to be

possible to use it to calculate expectation values, since all the information

of a quantum system is given by quantum averages of physical observables.

Before the Wigner function can be introduced, the Weyl transform needs

to be defined. For an arbitrary operator χ̂, this transform is [31]

χ̃(x, p) =
∫
e−ipy/h̄〈x+ y/2|χ̂|x− y/2〉dy , (2.23)

where the tilde denotes the Weyl transform. Here it is done for an operator

which is represented in the position basis, although this transform can also

be applied to an operator whose matrix elements are given in the momentum

basis. The Weyl transform thus provides a way to convert a quantum oper-

ator to a function of phase-space. This was a historical step in the field of

quantum mechanics. Prior to this representation, quantum mechanics was

described only using operators acting on wave functions in coordinate space

(Schrödinger), or operators given by matrices (Heisenberg). When Wigner

first introduced his representation in 1932, it was the first time that it was

proven that quantum mechanics could be described by functions, and not

operators.

The Wigner function for a single particle is defined as the Weyl transform

of the density matrix divided by Planck’s constant [32]:
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W (x, p) =
1
h

∫
eipy/h̄〈x+ y/2|ρ̂|x− y/2〉dy

=
1
h

∫
eipz/h̄〈p+ z/2|ρ̂|p− z/2〉dz . (2.24)

An important characteristic of the Weyl transform is that the integral over

phase-space of the product of Weyl transforms of two operators is equivalent

to the trace of the product of these two operators [31]:

Tr
(
ÂB̂

)
=

1
h

∫ ∫
Ã(x, p)B̃(x, p)dx dp . (2.25)

This identity provides a way to calculate expectation values using the Wigner

function:

Tr (ρ̂χ̂) =
1
h

∫ ∫
ρ̃(x, p)χ̃(x, p)dx dp

=
∫ ∫

W̃ (x, p)χ̃(x, p)dx dp , (2.26)

thereby fulfilling one of the conditions for a phase-space probability density.

The Wigner function is also normalised over phase-space. For it to be

possible to interpret the Wigner function as a probability function, this must

be so. It is a simple matter to prove this property:

If the Weyl transform of the identity matrix is taken, we find that it is

equal to 1:

1̃ =
∫
e−ipy/h̄〈x+ y/2|1̂|x− y/2〉

=
∫
e−ipy/h̄δ(y) dy = 1 . (2.27)

This can be used in conjunction with Eq. (2.25) to obtain

Tr
(
ρ̂1̂
)

=
1
h

∫ ∫
ρ̃(x, p)1̃dx dp
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=
∫ ∫

W (x, p)dx dp = 1 , (2.28)

because of Eq. (2.15). It is also possible to determine whether or not the

system is in a pure state by using the Wigner function and the condition

(2.16). The integral over phase-space of the square of the Wigner function

can be expressed in terms of Tr(ρ̂2):

∫ ∫
W (x, p)2dx dp =

1
h

(
1
h

∫ ∫
ρ̃(x, p)ρ̃(x, p)dx dp

)
=

1
h
Tr (ρ̂2) =

1
h
, (2.29)

when Tr (ρ̂2) = 1. Thus Eq. (2.29) gives the condition for a pure state.

From the above properties, it might be tempting to interpret the Wigner

function as a probability density. However, it is not possible to do so, due to

a particular characteristic. Consider two orthogonal states of a system ψ1

and ψ2. There will be a density operator associated with each state, given

by ρ̂1 and ρ̂2. Using Eqs. (2.24) and (2.25) we obtain

Tr (ρ̂1ρ̂2) =
1
h

∫ ∫
hW1(x, p)hW2(x, p)dx dp . (2.30)

But Tr (ρ̂1ρ̂2) = |〈ψ1|ψ2〉|2, and for orthogonal states this is equal to zero.

Thus,

∫ ∫
W1(x, p)W2(x, p)dx dp = 0 . (2.31)

This of course implies that W1(x, p) or W2(x, p), or both, must be nega-

tive for some regions of phase-space. Obviously this denies the interpretation

of the Wigner function as a probability density. One might find this property

peculiar considering that the diagonal elements of the density operator are

always positive, but it must be remembered that the off-diagonal elements

of the density matrix are not positive definite, and it is these elements which
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cause the Wigner function to be negative in some regions of phase-space.

Because equations of motions in quantum mechanics are given in terms

of products of operators, it must be possible to represent this in the Wigner

representation as well. If we consider 2 operators Â and B̂, the Wigner

transform of their product is [9]

(ÂB̂)W = A(R,P )e
h̄Λ
2i B(R,P )

= B(R,P )e−
h̄Λ
2i A(R,P ) , (2.32)

where the subscript W denotes the Wigner transform, and Λ = −(
←
∂
∂R

→
∂
∂P

−
←
∂
∂P

→
∂
∂R is the negative of the Poisson bracket. This identity also applies

for the partial Wigner representation, which is discussed below.

2.3.2 The Partial Wigner Representation

The partial Wigner representation is very useful in quantum-classical stud-

ies [34]. It stems from the more general Wigner formulation of quantum

mechanics. When considering a system where a quantum subsystem of in-

terest is interacting with an environment, it is usually impossible to obtain

a fully quantum-mechanical solution. When the particles constituting the

environment are much more massive than those of the subsystem, it is much

more convenient to treat the environmental degrees of freedom classically.

To this end, a partial Wigner transform can be performed. This is done by

taking the Weyl function over only the bath coordinates of the system. The

Hamiltonian is thus converted from a full quantum-mechanical operator to

an operator of the Hilbert space of the subsystem, as well as a function of

phase-space variables for the bath:

Ĥ(R̂, P̂ , q̂, p̂)→ HW (R,P, q̂, p̂) , (2.33)
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where the subscript W denotes the partial Wigner transformed Hamiltonian.

The lower case variables denotes the coordinates for the quantum subsystem,

while the upper case variables denote those of the bath. As is evident in the

above equation, the operators of the quantum subsystem remain unchanged,

and thus the subsystem is treated quantum-mechanically, as desired.

For a subsystem comprising a quantum subsystem coupled to an envi-

ronment of N particles, the partial Wigner transform for the density matrix

is given by

ρ̂W (R,P ) = (2πh̄)−3N
∫
dzeiP ·z/h̄〈R− z

2
|ρ̂|R+

z

2
〉 . (2.34)

Note that the change from a single particle to N particles means that all

variables must be interpreted as vectors of dimension 3N , and the factor

(2πh̄)−1 becomes (2πh̄)−3N [33].

For an operator of the system,

χ̂(R,P ) =
∫
dzeiP ·z/h̄〈R− z

2
|χ̂|R+

z

2
〉 . (2.35)

In this representation, χ̂ is both an operator on the Hilbert space of the

subsystem, and an operator of phase-space. Equations (2.34) and (2.35)

for the density matrix and operators are ideal for working with quantum-

classical systems, due to the ability to treat the bath coordinates classically.

Naturally, since the forms of the operator and density matrix have been

altered, so should their respective equations of motion. Indeed, their time

evolution is no longer governed by the quantum commutator, but rather

by the quantum-classical bracket. It is interesting to note that this bracket

is non-Hamiltonian in nature, as opposed to the commutator of quantum

mechanics and analogous Poisson bracket of classical mechanics. This will

be demonstrated in the following section.
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2.4 Hamiltonian Theory, Non-Hamiltonian

Theory and the Quantum-Classical Bracket

2.4.1 Hamiltonian Theory

The purpose of describing any system mathematically, be it in the realm of

classical mechanics or quantum mechanics, is to be able to predict values for

properties of that system that are measurable experimentally. In general,

we consider a system subject to external influences, and wish to describe

how this system evolves in time. These measurable properties are given by

ensemble averages. In both quantum or classical mechanics, we use linear

response theory to obtain ensemble averages in terms of time correlation

functions. However, linear response theory requires that the formalism used

to describe the dynamics should be invariant under time translation. A

theory with this property is known as a Hamiltonian theory. Due to this

constraint of linear response theory, formalisms used for quantum mechanics

and classical mechanics are Hamiltonian.

Quantum mechanics and classical mechanics share an analogous alge-

braic bracket structure [35]; classical theory is governed by the Poisson

bracket, and quantum theory by the commutator bracket. The condition

for a theory to be Hamiltonian is that the algebra of its bracket must con-

stitute a Lie algebra. Consider a mathematical space, of which the elements

{A,B,C} are a part. A Lie algebra for this space is one which possesses the

following properties [36]:

(A,B) = −(B,A) , (2.36)

λ(A,B) = (λA,B) = (A, λB) , (2.37)

(A+B,C) = (A,C) + (B,C) . (2.38)

Here (.., ..) denotes a generic bracket, which could be classical or quantum
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in nature and λ is a c-number. In addition to the above there properties,

the Jacobi relation must also hold; that is,

J = ((A,B), C) + ((C,A), B) + ((B,C), A) = 0 . (2.39)

An algebra may thus satisfy the first three properties given by Eqs. (2.36-

2.38), but it is only a Lie algebra (and consequently a Hamiltonian theory)

if the Jacobi relation is also fulfilled.

Equations (2.37) and (2.38) imply that the bracket is a linear operator

of its space, and of c-numbers. The antisymmetric property (2.36) of the

bracket is important for defining time evolution. When the elements of the

space of the bracket are not explicitly dependent on time, then time evolution

can be given choosing by an element H, and defining the equations of motion

by [36]:

dA

dt
= (A,H) , (2.40)

with H usually chosen to be the Hamiltonian.

Two elements A and B, which are in the space of the algebra defined by

the bracket (.., ..), are constants of motion if and only if

Ȧ = (A,H) = 0 Ḃ = (B,H) = 0 , (2.41)

where a dot denotes a time derivative. H is generally (but not necessarily)

taken to be the Hamiltonian. The requirement of time translation invariance

is that this further then implies that (A,B) is also a constant of motion:

((A,B), H) = 0 . (2.42)

We can confirm directly that this condition is satisfied by any Lie algebra,



21

since from the Jacobi relation we have

((A,B), H) = −((H,A), B)− ((B,H), A)

= ((A,H), B)− ((B,H), A)

= (Ȧ, B)− (Ḃ, A) = 0 . (2.43)

2.4.2 Non-Hamiltonian Theory

Now that the algebra for a Hamiltonian theory has been defined, it is possible

to introduce non-Hamiltonian theories. Simply put, these are theories for

which the Jacobi relation does not hold,

J = ((A,B), C) + ((C,A), B) + ((B,C), A) 6= 0 . (2.44)

It is easy to show, using Eqs. (2.41) and (2.44), that if A and B are

constants of motion, then it is impossible for (A,B) to be a constant of

motion. As a result, the time translation property no longer holds. We thus

see that the Jacobi relation is not only an indication of time translation

invariance, it is indeed a requirement of it.

It might not seem intuitive to choose to use a non-Hamiltonian theory

over a Hamiltonian one, since time translation invariance is a very useful

property. However, the advantages of non-Hamiltonian theories become

apparent when considering simulations of systems with a large number of

coordinates. When implementing thermodynamic constraints on a system,

Hamiltonian theory dictates that an infinite number of degrees of freedom

should be considered. Using a non-Hamiltonian formalism, on the other

hand, it has been shown that the same constraints can be achieved, with

only a small number of degrees of freedom [35] [37]. In quantum dynamics

it is an arduous task to simulate even a small number of degrees of freedom,

with larger numbers becoming impossible due to computational constraints.
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It is possible to circumvent this problem by using non-Hamiltonian quantum-

classical methods.

2.4.3 The Quantum-Classical Liouville Equation and the Quantum-

Classical Bracket

In light of the fact that the bracket associated with a quantum-classical

formalism must describe a system that is partly quantum and partly classical

in nature, it would not be unreasonable to assume that its form would in

some way resemble that of the classical Poisson bracket and the quantum

commutator bracket. To better understand the quantum-classical bracket

it is thus convenient to first consider the brackets of quantum and classical

mechanics.

It has long been known that the symplectic nature of the Poisson bracket

allows it to be easily cast into matrix form [38][39]. For any two functions

f and g of phase-space,

{f, g} =
[

∂f
∂R

∂g
∂P

]
· Bc ·

 ∂f
∂P

∂g
∂R

 , (2.45)

where Bc is the symplectic matrix

Bc =

 0 1

−1 0

 . (2.46)

Any bracket that can be written in terms of the symplectic matrix in such

a way is symplectic.

It has been shown [35] that the quantum commutator is also symplectic,

and can therefore be written as

[A,B] =
[
A B

]
· Bc ·

 A

B

 . (2.47)
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When expressed this way, it is easy to see the similarity in the algebraic

structures of quantum and classical mechanics. It is interesting to note that

the symplectic form for the bracket is a requirement for the equations of

motion to be canonical, but not for it be a Lie algebra. If a bracket is

symplectic, however, then it constitutes a Lie algebra. This is illustrated in

Fig. 2.1 below.

Figure 2.1: The bracket algebra may be broken up into two main groups
- Lie (or Hamiltonian) algebras and non-Lie (non-Hamiltonian) algebras.
Hamiltonian algebras can further be split into those that can be cast into
a symplectic form, and those that cannot. Whether or not a bracket is
symplectic then dictates whether its corresponding equations of motion are
canonical. Note that if a bracket is symplectic, it implies that it is a Lie
algebra, but the reverse is not true.

Noting that both the quantum and classical bracket can be written in
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this matrix form, it is not unreasonable to assume that this can also be

done for the quantum-classical bracket. With this in mind, we can define a

generalised bracket [35] with the form

(A,B) =
[
A B

]
· K ·

 A

B

 , (2.48)

where K is an antisymmetric matrix

K =

 0 ζ̂

−ζ̂ 0

 , (2.49)

and then write equations of motion in terms of this bracket. Note that ζ̂

can be an operator or a c-number.

We wish to cast the quantum-classical bracket in this form. First, con-

sider a system defined by the total Hamiltonian operator

Ĥ = ĤS + ĤB + ĤSB , (2.50)

where the subscripts S,B and SB stand for the subsystem, bath and coupling

interaction respectively. The equation of motion for the density matrix ρ̂ is

given by the von Neumann equation, which in matrix from, is

∂ρ̂

∂t
= − i

h̄

[
Ĥ ρ̂

]
· Bc ·

 Ĥ

ρ̂

 . (2.51)

We assume that the bath Hamiltonian is dependent upon a pair of canon-

ically conjugate operators R̂, P̂ , with a coupling of form ĤSB = ĤSB(R̂).

Since we wish to consider quantum-classical dynamics, it would be conve-

nient to express the bath Hamiltonian in terms of the classical phase-space

coordinates, and to this end we perform a partial Wigner transform over the

bath coordinates R̂ and P̂ . The partial Wigner transformed Hamiltonian of

the system is given by
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ĤW (X) = ĤS +HW,B(X) + ĤW,SB(R) . (2.52)

Here, the symbol X has been used to denote the canonically conjugate

classical phase-space variables (R,P ). Making use of the identity in Eq.

(2.32), the evolution equation for the density matrix becomes

∂

∂t
ρ̂W (X, t) = − i

h̄

[
ĤW (X) ρ̂W (X, t)

]
· D ·

 ĤW (X)

ρ̂W (X, t)

 ,

(2.53)

where

D =

 0 e
ih̄
2

←
∂ kBckj

→
∂ j

−e
ih̄
2

←
∂ kBckj

→
∂ j 0

 . (2.54)

In the above equation, the symbols
←
∂ j and

→
∂ j denote the derivative

∂/∂Xj with respect to the phase-space point coordinates, acting to left

and right respectively. Here, and in the following, repeated indices imply

summation.

We see that the matrix D is not symplectic, and hence the associated

equations of motion are not canonical. However, Eq. (2.53) is still a Lie

algebra, and thus it is Hamiltonian (see Fig. (2.1).

Equation (2.53) displays a mixed Wigner-Heisenberg representation of

quantum mechanics, where the operators also contain a functional depen-

dence on the phase-space coordinates. This representation is equivalent to

that of Heisenberg, but calculations are usually very difficult to perform

when the equations are written this way. However, if (i) the bath Hamilto-

nian is quadratic
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ĤW,B =
N∑
j=1

(
P 2
j

2
+
ω2
jR

2
j

2

)
, (2.55)

and (ii) the interaction Hamiltonian is of the form

ĤW,SB = VB(R)⊗ Ĥ ′S , (2.56)

with (iii) VB(R) being at most a quadratic function of R, and (iv) Ĥ ′S

acts only in the Hilbert space of the subsystem, then an expansion of the

exponential terms in the matrix D can be taken up to linear order. Equation

(2.53) can then be rewritten as [25]

∂

∂t
ρ̂W (X, t) = − i

h̄

[
ĤW (X) ρ̂W (X, t)

]
· Dlin ·

 ĤW (X)

ρ̂W (X, t)

 ,

(2.57)

with

Dlin =

 0 1 + ih̄
2

←
∂ k Bckj

→
∂ j

−1− ih̄
2

←
∂ k Bckj

→
∂ j 0

 . (2.58)

This linear expansion is exact for Hamiltonians, satisfying conditions (i)

to (iv), as the higher order terms go to zero when operated on ĤW (X). The

evolution equation (2.57) is the quantum-classical Liouville equation, and in

general it is easier to simulate numerically than Eq. (2.53). Equation (2.57)

can also be written in terms of the quantum commutator bracket, and the

classical Poisson bracket:

∂

∂t
ρ̂W (X, t) = − i

h̄
[ĤW , ρ̂W ] +

1
2

(
{ĤW , ρ̂W } − {ρ̂W , ĤW }

)
= −

(
ĤW , ρ̂W

)
= −iLρ̂W (X, t) . (2.59)
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In the second line above, the quantum-classical bracket has been defined

as a combination of the quantum and classical brackets. The last line in-

troduces the quantum-classical Liouville superoperator L. Note that since

Dlin is of the same form as K in (2.49), the quantum-classical bracket is in

the class of general bracket defined by Eq. (2.48). However, the quantum-

classical bracket no longer obeys the Jacobi relation (2.39) [35]; it is thus

not a Lie algebra, and is therefore non-Hamiltonian. The violation of this

relation is not to a great extent, however, and a more accurate term would

be approximately Hamiltonian. This accounts for the fact that certain dy-

namical properties of systems that require linear response theory can still

be computed within this formalism.

Note that the conversion of the Heisenberg equation into the partial

Wigner representation is performed in exactly the same way as that of the

von Neumann equation, except for a change in sign. We thus have for an

arbitrary operator χ̂

∂

∂t
χ̂W (X, t) =

(
ĤW , χ̂W

)
= iLχ̂W (X, t) . (2.60)



Chapter 3

Numerical Algorithms for

Nonadiabatic Dynamics

This chapter begins by discussing briefly two bases convenient for quantum-

classical simulations. Emphasis will be placed on the adiabatic basis, and

show how it naturally leads to the formation of surface-hopping algorithms.

The evolution equation for the density matrix will be solved in such a way

that the form is convenient for computational use. The momentum-jump

approximation of the J-operator will then be introduced, which provides a

way of implementing this operator in numerical calculations. Finally, the

sequential short-time propagation algorithm will be discussed, which was used

in the project work.

3.1 Representation into a Basis

If the Hamiltonian is time independent, then so is the quantum-classical

Liouville superoperator L introduced above. Then Eqs. (2.53) and (2.60)

have formal solutions

28
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ρ̂W (R,P, t) = e−iL̂tρ̂W (R,P, 0) , (3.1)

and

χ̂W (R,P, t) = eiL̂tχ̂W (R,P, 0) , (3.2)

where ρ̂W (R,P, 0) and χ̂W (R,P, 0) denotes the density matrix and operator

respectively, at time zero.

As it stands, these equations are abstract, and to perform numerical

calculations, we need to rotate them into a basis. In terms of a set of basis

vectors |α〉 which span the Hilbert space of the quantum subsystem, Eqs.

(3.1) and (3.2) are

ρ̂αα
′

W (R,P, t) =
∑
ββ′

(
e−iL̂t

)
αα′,ββ′

ρ̂ββ
′

W (R,P, 0) , (3.3)

and

χ̂αα
′

W (R,P, t) =
∑
ββ′

(
eiL̂t

)
αα′,ββ′

χ̂ββ
′

W (R,P, 0) . (3.4)

Of course, the choice of basis used in numerically simulating the dynam-

ics of a given system is governed by the type of problem being investigated.

Two bases that are very convenient for simulations of quantum-classical

dynamics are the subsystem basis and the adiabatic basis.

3.1.1 The Subsystem Basis

As the name indicates, the subsystem basis is given by the solutions of the

eigen value equation for the subsystem Hamiltonian:
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ĤS |α〉 = εα|α〉 . (3.5)

In this basis, the quantum-classical Liouville superoperator is given by [34]

−iLαα′,ββ′ = − (iω̃αα′ + iLb) δαβδα′β′ + δαβ

(
i

h̄
V β′α′
c +

1
2
∂V β′α′

c

∂R
· ∂
∂P

)

+ δα′β′

(
− i
h̄
V αβ
c +

1
2
∂V αβ

c

∂R
· ∂
∂P

)
. (3.6)

Here ω̃αα′ = (εα − εα′)/h̄, V αβ
c = 〈α|V̂c|β〉, and Lb is a Liouville operator

responsible for the classical evolution of the bath:

iLb =
P

M

∂

∂R
− ∂Vb
∂R

∂

∂P
, (3.7)

where Vb is the potential energy of the bath. For a system with a large

number of classical bath coordinates, this is not the most convenient basis to

use. However, this is a useful basis when considering a quantum subsystem

coupled to a single environmental coordinate, such as an electromagnetic

mode or a thermostat.

3.1.2 The Adiabatic Basis

When considering dynamics of a system in which the bath comprises many

classical coordinates, it is convenient to utilise the adiabatic basis. It shall

be seen that this basis leads naturally to the formulation of so-called surface-

hopping schemes, a common type of algorithm used in simulating quantum-

classical dynamics. The adiabatic Hamiltonian ĥW is given by

ĥW (R) = ĥs + Vb(R) + V̂c(R) , (3.8)

and the adiabatic basis is defined by the eigenvalue equation
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ĥW (R)|α;R〉 = Eα(R)|α;R〉 . (3.9)

In this basis, the quantum-classical Liouville superoperator is given by [34]

−iLαα′,ββ′ = −(iωαα′ + iLαα′)δαβδα′β′ + Jαα′,β,β′

= −iL0
αα′δαβδα′β′ + Jαα′,ββ′ . (3.10)

In the last line, the adiabatic quantum classical Liouville superoperator L0

has been introduced: it describes purely adiabatic dynamics. The derivation

of Eq. (3.10) can be found in Appendix B.

The quantum-classical Liouville superoperator (3.10) contains three terms.

Firstly, the Bohr frequency, obtained from the difference in energies of the

adiabatic states -

ωαα′(R) =
Eα(R)− Eα′(R)

h̄
. (3.11)

This term will give rise to a phase factor multiplying the operator being

acted upon, when α 6= α′. The second term is the classical-like Liouville

operator

iLαα′ =
P

M
· ∂
∂R

+
1
2

(
FαW + Fα

′
W

)
· ∂
∂P

, (3.12)

which realises the evolution of the bath determined by the average of the

Hellmann-Feynman forces for states α and α′. The final term is the operator

responsible for nonadiabatic transitions between the energy levels of the

quantum subsystem as a result of coupling to the bath. It is given by

Jαα′,ββ′ = − P

M
· dαβ(R)

(
1 +

1
2

∆Eαβ(R)d̂αβ(R)
P
M · d̂αβ(R)

· ∂
∂P

)
δα′β′

− P

M
· d∗α′β′(R)

1 +
1
2

∆Eα′β′(R)d̂∗α′β′(R)
P
M · d̂

∗
α′β′(R)

· ∂
∂P

 δαβ .
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(3.13)

Here ∆Eαβ(R) = Eα(R)− Eβ(R), dαβ is the nonadiabatic coupling vector

dαβ = 〈α;R| ∂
∂R
|β;R〉 , (3.14)

and d̂αβ denotes its normalised form. The transition operator will be

dealt with in more detail in the next section. Note that while both the

adiabatic basis states and energies depend on the bath position coordinate

R, this dependence will henceforth not be written explicitly, and is to be

assumed.

3.2 Surface-hopping Schemes

There a number of different methods for simulating quantum-classical dy-

namics, such as path-integral formulations and mean-field approximations.

The studies presented here focus on surface-hopping algorithms. Surface-

hopping schemes are a way of solving quantum-classical dynamics in terms

of trajectories in which classical evolution on single adiabatic potential en-

ergy surfaces is interspersed with nonadiabatic transitions. The evolution

equation thus needs to be cast in a form convenient for this type of algo-

rithm.

3.2.1 Solution of the Evolution Equation

As it stands, the evolution equation is

ρW (R,P, t) = e(−iωαα′−iLαα′ )δαβδα′β′+Jαα′,ββ′ρW (R,P, t) , (3.15)

which is not a useful form for numerical calculations. The Dyson expansion

can be used to obtain a more convenient form. This expansion is given by
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e(Â+B̂)t = eÂt +
∫ t

0
dt′eÂ(t−t′)B̂e(Â+B̂)t′ . (3.16)

Applying this to e−iLt yields

(e−iLt)αα′,ββ′ = e−iL
0
αα′ tδαβδα′β′

+
∑
νν′

∫ t

0
dt′e−iL

0
αα′ (t−t

′)Jαα′,νν′
(
e−iLt

′)
νν′,ββ′

,(3.17)

where

L0
αα′ = ωαα′ + Lαα′ . (3.18)

This Dyson integral form for the evolution operator can be incorporated

into the evolution equation (3.15), which can then be solved in a perturbative

way. Thus, the solution for the density matrix at time t becomes

ρ
α0α′0
W (R,P, t) = e

−iL0
α0α
′
0

t
ρ
α0α′0
W (R,P ) +

∞∑
n=1

×
∑

(α1α′1)...(αnα′n)

∫ t0

0
dt1

∫ t1

0
dt2...

∫ tn−1

0
dtn

×
n∏
k=1

[
e
−iL0

αk−1α
′
k−1

(tk−1)−tk)
Jαk−1α

′
k−1

,αkα
′
k

]

× e
−iL0

αnα
′
n
tn
ρ
αnα′n
W (R,P ) , (3.19)

where ραα
′

W (R,P ) is the density matrix element at time t = 0. For an opera-

tor, the solution can be obtained in the same way except for a difference in

sign which arises from the difference in sign between the Heisenberg equa-

tion (2.2) and the von Neumann equation (2.19). For an arbitrary operator

χ̂, we thus have
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χ
α0α′0
W (R,P, t) = e

iL0
α0α
′
0

t
χ
α0α′0
W (R,P, 0) +

∞∑
n=1

(−1)n

×
∑

(α1α′1)...(αnα′n)

∫ t0

0
dt1

∫ t1

0
dt2...

∫ tn−1

0
dtn

×
n∏
k=1

[
e
iL0
αk−1α

′
k−1

(tk−1)−tk)
Jαk−1α

′
k−1

,αkα
′
k

]

× e
iL0
αnα

′
n
tn
χ
αnα′n
W (R,P, 0) . (3.20)

This iterated form of the evolution equation is more convenient for imple-

menting in numerical simulations.

3.2.2 The SSTP Algorithm

The surface-hopping scheme studied and used to simulate the dynamics is

known as sequential short-time propagation (SSTP)[27]. In this scheme, the

evolution operator is broken up into a sequence of short-time propagators.

The result for the entire simulation can then be obtained by concatenating

these propagators.

If the time interval of study is divided into N segments each of length

∆t, the evolution operator can be rewritten as [34]

(
e−iLt

)
α0α′0,αNα

′
N

=
∑

(α1α′1)···(αNα′N )

N∏
j=1

(
e−iL∆t

)
αj−1α′j−1,αjα

′
j

. (3.21)

The evolution operator can be written in this way because the quantum-

classical Liouville superoperator is independent of time. If Eq. (3.17) is

written for a time step ∆t, propagating from time t = tj−1 to t = tj we

obtain
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e−iL(tj−tj−1) = e−iL
0(tj−tj−1)

+
∫ tj

tj−1

dt′e−iL
0(tj−tj−1−t′)Je−iLt

′
. (3.22)

The subscripts denoting the states have been dropped momentarily to sim-

plify the notation. If a sufficiently small time segment is chosen, a one-point

approximation can be made to the time integral above, and the Dyson series

can be truncated at first order [27]. Letting t′ = tj , we have

e−iL∆t = e−iL
0∆t

+
∫ tj

tj−1

dt′e−iL
0(−tj−1)Je−iL

0tj . (3.23)

Since a one-point approximation is being made, the integrand in Eq.

(3.23) can be regarded as constant, and taken out the integral. In addition

to this, the order of operators can be changed. This is due to the fact that

the term arising from non-commutability of the operators is higher than first

order, and can therfore be disregarded. Thus

e−iL∆t = e−iL
0∆t + e−iL

0tje−iL
0(−tj−1)J

∫ tj

tj−1

dt′

= e−iL
0∆t (1 + ∆t J) . (3.24)

Now bringing back the subscripts for the adiabatic states, we have

(
e−iL∆t

)
αj−1α′j−1,αjα

′
j

≈ e
−iL0

αj−1α
′
j−1

∆t (
δαj−1αjδα′j−1α

′
j

+ ∆tJαj−1α′j−1,αjα
′
j

)
. (3.25)

We see that the short-time propagator is split into two terms. The first term

describes completely adiabatic dynamics, while the second term realises the

nonadiabaticity of the dynamics. In the adiabatic approximation J → 0,
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and we recover adiabatic dynamics.

Now consider the calculation of observables of the system. These are

given by

〈χ〉(t) =
∑
α0α′0

∫
dRdP A

α0α′0
W (R,P )ρα0α′0

W (R,P, t) . (3.26)

If the time dependence is written explicitly, and cyclic invariance of the trace

is exploited, then

〈χ〉(t) =
∑
α0α′0

∫
dRdP A

α0α′0
W (R,P )e−iHt/h̄ρα0α′0

W (R,P, 0)eiHt/h̄

=
∑
α0α′0

∫
dRdP eiHt/h̄A

α0α′0
W (R,P )e−iHt/h̄ρα0α′0

W (R,P, 0)

=
∑
α0α′0

∫
dRdP A

α0α′0
W (R,P, t)ρα0α′0

W (R,P ) . (3.27)

Evidently, the difference between Eqs. (3.26) and (3.27) is that in the for-

mer the density matrix is propagated in time, with the operator remaining

constant, while in the latter the reverse is true. Equation (3.27) is, in fact, a

more convenient form for computational studies [34], since the initial density

matrix can be used as a weight to sample phase-space points in calculating

the average.

For the SSTP algorithm, the quantity χα0α′0
W (R,P, t) is given by the dis-

cretised form of Eq. (3.20) [34], namely

χ
α0α′0
W (R,P, t) = e

iL0
α0α
′
0

t
χ
α0α′0
W (R,P, 0) +

N∑
n=1

(−1)n
∑

(α1α′1)···(αn−1α′n−1)

×
N−n+1∑
k1=1

N−n+2∑
k2=k1+1

· · ·
N∑

kn=kn−1+1

e
iL0
α0α
′
0

(tk1
−t0) (

∆tJα0α′0,α1α′1

)
× e

iL0
α1α
′
1

(tk2
−tk1

) (
∆tJα1α′1,α2α′2

)
· · ·
(
∆tJαn−1α′n−1,αNα

′
N

)
× e

iL0
αNα

′
N

(t−tkn )
. (3.28)
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To implement this equation numerically, the J-operator needs to be con-

sidered. As it stands, it is difficult to calculate the effect of this operator

in computational algorithms, and one of the solutions to this is to use the

momentum-jump approximation.

3.2.3 Momentum-Jump Approximation

As stated before, the J-operator is responsible for the nonadiabatic transi-

tions in the subsystem, and accompanying changes in the bath momentum.

Inclusion of the effects of this operator in the dynamics of the system re-

mains one of the biggest challenges to devising surface-hopping algorithms.

The problem lies in the quantum back reaction; that is the way in which the

bath momentum changes when a nonadiabatic transition occurs. Looking

at Eq. (3.13), it can be seen that the J-operator involves bath momentum

derivatives.

Intuitively, one might think of performing these derivatives using a finite

difference method, so that

dαβ · ∇P f(P ) ≈ (∆P )−1 [f(P + dαβ∆P )− f(P )] . (3.29)

However, this causes the trajectory to branch each time a quantum transition

occurs. The method is thus highly computationally expensive for longer time

calculations with the ensuing larger number of nonadiabatic transitions 1

A more pragmatic approach involves making a so-called momentum-

jump approximation, as this circumvents the branching of trajectories prob-

lem. This approximation involves changing J into an operator that shifts

the bath momentum when a quantum transition occurs. To perform this

conversion we consider the first term of the J-operator:
1The number of trajectories goes as 2n, where n is the number of nonadiabatic transi-

tions.
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J1stterm =
P

M
· dαβ

(
1 +

1
2

∆Eαβ(R)d̂αβ
P
M · d̂αβ

· ∂
∂P

)
δα′β′ . (3.30)

There are two ways to convert this operator; however, one is approximate,

and does not conserve the energy of the system, while the other is exact,

and does conserve the energy. Both are presented below.

Non-Conserving Momentum-Jump Approximation

In both cases, the approximation in the momentum-jump scheme is intro-

duced by rewriting the term in brackets above as an exponential -

(
1 +

1
2

∆Eαβ d̂αβ
P
M · d̂αβ

· ∂
∂P

)
≈ e

1
2

∆Eαβd̂αβ
P
M
·d̂αβ

· ∂
∂P

. (3.31)

In the energy non-conserving rule, a further approximation is made.

Since the changes in bath momentum accompanying a transition are rela-

tively small compared to the total momentum, the term 1
2

∆Eαβ d̂αβ
P
M
·d̂αβ

is taken

as a constant, and the identity

ec
∂
∂x g(x) = g(x+ c) , (3.32)

can be used to give

e
1
2

∆Eαβd̂αβ
P
M
·d̂αβ

· ∂
∂P
f(P ) ≈ f

(
P +

1
2

∆Eαβ d̂αβ
P
M · d̂αβ

)
. (3.33)

The J-operator is now a momentum translation operator, shifting the mo-

mentum of the jth oscillator by an amount

∆AMJPj =
1
2

∆Eαβ d̂
j
αβ

P j

M · d̂
j
αβ

. (3.34)

Since the factor multiplying the momentum derivative on the left hand
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side of (3.33) depends on P , it is not constant, and the use of identity (3.32)

is an approximation, causing this momentum shift rule to violate energy

conservation. The AMJ superscript denotes this approximate (and thus

energy non-conserving) momentum-jump rule.

Energy-Conserving Momentum-Jump Approximation

As before, the J-operator is approximated by an exponential (see Eq. (3.31)).

However, this time, the chain rule is used to express the argument of the

exponential as

∆Eαβ d̂αβ
2 P
M · d̂αβ

· ∂
∂P

= ∆EαβM
∂

∂(P · d̂αβ)2
. (3.35)

Here, a change of variable has been performed, and the prefactor of the

differential operator in the exponential no longer depends on the bath mo-

mentum.

The J-operator is again an exponential translation operator, shifting the

variable (P · d̂αβ)2 by an amount ∆EαβM . Therefore, the function of mo-

mentum upon which this translation operator acts needs to be rewritten as

a function of (P · d̂αβ)2. If the momentum vector is resolved into components

parallel and perpendicular to the nonadiabatic coupling vector, we see that

the J-operator has the following effect on a function of the bath momentum:

e∆EαβM∂/∂(P ·d̂αβ)2
f(P ) =

f

[
P − d̂αβ(P · d̂αβ) + d̂αβsgn(P · d̂αβ)

√
(P · d̂αβ)2 + ∆EαβM

]
.

(3.36)

This gives the formula for the change in momentum associated with a quan-

tum transition:
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∆EMJPj = −d̂αβ(P · d̂αβ)+ d̂αβsgn(P · d̂αβ)
√

(P · d̂αβ)2 + ∆EαβM . (3.37)

Here the superscript EMJ denotes the exact momentum-jump rule that

conserves energy in each quantum transition. For a full derivation of this

rule, and a proof of energy conservation, see Appendix A.

3.2.4 Sampling Nonadiabatic Transitions

In the SSTP algorithm, the system is propagated adiabatically and at each

time step a quantum transition may or may not occur. This is performed by

letting the J-operator act in a stochastic way. At the end of each time step,

the probability P is calculated to determine if a nonadiabatic transition is

accepted. Naturally, this means that Q = 1−P gives the probability that a

transition will be rejected. A primitive choice for the transition probability

is

Pαβ(X,∆t) =

∣∣∣ PM · dαβ(R)
∣∣∣∆t

1 +
∣∣∣ PM · dαβ(R)

∣∣∣∆t , (3.38)

and correspondingly, the probability that a transition will not occur is given

by

Qαβ(X,∆t) = 1− Pαβ

=
1

1 +
∣∣∣ PM · dαβ(R)

∣∣∣∆t . (3.39)

The term P
M · d in is a measure of coupling between the bath and the

subsystem. If the bath momentum lies along the nonadiabatic coupling

vector, then the coupling is at a maximum and a transition is more likely.

This is reflected in the transition probability P in Eq. (3.38), which increases

monotonically with P
M · d.
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From (3.13), it is seen that the J-operator comprises two terms, and

whenever the J-operator acts, both terms should be considered. However,

this leads to a branching of trajectories. The number of trajectories that

need to be considered increases as 2n, where n is the number of times the

J-operator has acted. Naturally, this is computationally undesirable, since

dynamics can only be simulated for short times before running out of com-

puter memory. A solution to this problem is to make the approximation

of only acting one term of the J-operator when a transition is accepted. A

natural choice is to use a probability of 1/2 for each term, to determine

which term acts. For a state (αα′), the first term will change the α index to

any of the other states in the Hilbert space of the system, while the second

term will change the α′ index. For a system with more than two states,

weights are associated with each state, giving the probability of each transi-

tion the system may undergo. In the case of a two-level quantum subsystem,

however, this weight is unity, since there is only one other possible state to

which a transition may occur.



Chapter 4

Numerical Studies

Here will be discussed the model used to represent a particular quantum-

classical system, namely the spin-boson model. The choice of system pa-

rameters is given, as well as a description of the dimensionless units used

for convenience in the calculations. The observable σz will be introduced,

for which expectation values were calculated. The results for the simula-

tions performed using the improved sampling scheme are displayed, showing

the reduced statistical error. Finally, a study of three different momentum

shift rules is presented, to determine what aspects of a rule are important to

obtain accurate results.

4.1 The Numerical Example

4.1.1 The Spin-Boson Model

The theory discussed thus far can be applied to any system comprising a

quantum subsystem coupled to a classical environment. However, to per-

form numerical calculations, a model must be chosen with which the theory

can be applied. The choice of model will vary, according to what is being

investigated. A convenient model to use for studying general nonadiabatic

quantum-classical dynamics is the spin-boson system. It is a well-studied

42
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system [40] and thus provides a way to check the efficacy and accuracy of

a simulation scheme. The spin-boson system comprises a simple two-level

quantum subsystem coupled to a bath of harmonic oscillators. The subsys-

tem is interpreted as a spin with states {| ↑〉, | ↓〉}, and the oscillators are

bosons. The Hamiltonian for such a system is

Ĥ = −h̄Ωσ̂x +
N∑
j=1

(
P̂ 2
j

2Mj
+

1
2
Mjω

2
j R̂

2
j − cjR̂j σ̂z

)
, (4.1)

where σ̂x and σ̂z are the usual Pauli matrices, and Ω is a constant. The

summation is over all the bath oscillators, with Mj and ωj denoting the

mass and angular frequency, respectively, of the the jth oscillator. cj is

the coupling constant giving the coupling strength between the quantum

subsystem and the jth oscillator. The energy gap of the two level system is

given by 2h̄Ω.

The partial Wigner transformed Hamiltonian

Ĥ = −h̄Ωσ̂x +
N∑
j=1

(
P 2
j

2Mj
+

1
2
Mjω

2
jR

2
j − cjRj σ̂z

)
, (4.2)

depends both on phase-space coordinates, and quantum spin degrees of free-

dom. This Hamiltonian can be split up into the subsystem Hamiltonian

ĥs = −h̄Ωσ̂x , (4.3)

bath Hamiltonian

Hb(R,P ) =
N∑
j=1

(
P 2
j

2Mj
+

1
2
Mjω

2
jR

2
j

)
, (4.4)

and the coupling potential

V̂c(R) = −
N∑
j=1

cjRj σ̂z

= γ(R)σ̂z . (4.5)
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Note that while it is possible to work with different masses for each bath

coordinate, for convenience, all masses are now assumed to be the same.

Thus the j subscript on the mass will henceforth be dropped.

For consistency with past work concerning dynamics of the spin-boson

model, the forms of the coupling constants and frequencies of the bath os-

cillators were chosen to be those first used by Makri and Thompson [41].

That is,

ωj = −ωc ln
(

1− j ω0

ωc

)
, (4.6)

and

cj = ωj
√
ξh̄ω0M , (4.7)

with

ω0 =
ωc
N

(
1− e−ωmax/ωc

)
. (4.8)

Here, ωc is a cutoff frequency. The parameter ξ in Eq. (4.7) is a measure

of strength of coupling between the quantum subsystem and the bath. It is

usually known as the Kondo parameter. Equations (4.6) and (4.7) provide

a way of representing a finite number of oscillators as an infinite bath of

ohmic spectral density.

4.1.2 Scaled Units

Scaled (or dimensionless) un1its were used for convenience as well as accu-

racy. Scaled units of energy, length and time are much more appropriate for

calculations for a quantum-sized system (see below), as it avoids very small

numbers which then result in round-off error.

They are defined by scaling the phase-space variables (R,P ) according

to
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R′j =
(
Mωc
h̄

) 1
2

Rj , P ′j = (h̄Mωc)
− 1

2 Pj . (4.9)

This use of scaling is widespread practice in numerical simulations. In this

system of units, the spin-boson Hamiltonian is given by

Ĥ ′W = −Ω′σ̂x +
∑
j

(
P ′j

2

2
+

1
2
ω′j

2
R′j

2 − c′j σ̂zR′j

)
, (4.10)

where

Ω′ =
Ω
ωc
, ω′j =

ωj
ωc
, c′j = ω′j

√
ξ
ωj
ωc

. (4.11)

Thus, in this system of units, effectively

M = h̄ = 1 . (4.12)

Time and inverse temperature are also scaled, according to

t′ = tωc, β′ =
ωc
kBT

. (4.13)

The use of this system of scaled units is not merely for the sake of

simplifying the mathematics, however. The scaling of units ensures that

in the computational calculations, accuracy is not lost by multiplying very

large numbers with much smaller ones. This is due to the fact that all values

in the calculation are of roughly the same order.

Henceforth, only scaled units will be used and, for convenience, the

primes denoting scaled units will be omitted.

4.1.3 Propagation of Trajectories

An Eulerian description of the dynamics is adopted, with the phase-space

points propagated in time, and the observable calculated at the new phase-

space point after each time step. Since the quantum variables of the system
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also depend upon the bath coordinates, the abstract space of the system

is defined so that there is a Hilbert space associated with each phase-space

point (see Fig. 4.1).

Figure 4.1: Diagrammatic representation of the abstract space for a
quantum-classical spin-boson system. Due to the dependence of the quan-
tum variables upon the bath coordinates, the quantum evolution of the
Hilbert space is affected by displacements in phase-space. As an example,
we see above that at a point (R,P ) the energy splitting between the two en-
ergy levels is bigger than that at the point (R′, P ′). Evolution of the Hilbert
space also affects the phase-space points via the quantum back reaction of
nonadiabatic transitions.

Consider the adiabatic action of the quantum-classical Liouville super-

operator for a small time ∆t on an operator with a functional dependence

on phase-space coordinates:

eiL
0
αα′∆tχαα

′
W (R,P, 0) = eiωαα′χ

(
eiLαα′ tR(0), eiLαα′ tP (0)

)
= W(t, t+ ∆t)χαα

′
W (R(∆t), P (∆t)) . (4.14)
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Here, W(t, t+ ∆t) is a phase factor associated with the trajectory segment

from t to t+ ∆t. If α = α′, then ωαα′ = 0, and the phase factor is unity.

Figure 4.2: Diagrammatic representation of a single trajectory. In this ex-
ample, the trajectory undergoes two nonadiabatic transitions. It begins at a
phase-space point (R,P ),and evolves adiabatically on an energy surface Eα.
Once the first nonadiabatic transition occurs, the system evolves coherently
on mean of the adiabatic energy surfaces, Eα and Eβ. During this time, a
phase factor Wαβ is associated with the evolution. A second nonadiabatic
transition then occurs, and the system again evolves adiabatically on an
energy surface Eβ, ending at phase space point (R′, P ′).

Each trajectory in the simulation begins with the bath and subsystem

decoupled, with interaction beginning at t = 0. The initial phase-space point

is obtained by sampling from the bath distribution function. The subsystem

is initially in a pure state | ↑〉, and the bath is in thermal equilibrium. The

density matrix at t = 0 is thus simply a product of the subsystem density

matrix, and bath distribution function:

ρ̂(0) = ρ̂s(0)ρb(R,P ) , (4.15)

where

ρ̂s =

 1 0

0 0

 , (4.16)
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and the bath distribution function is given by

ρb(R,P ) =
e−βĤb

Zb
. (4.17)

Here, Zb, the bath partition function, ensures normalisation of the dis-

tribution function over phase-space. In the partial Wigner representation,

the bath distribution function becomes

ρbW (R,P ) =
N∏
j=1

tanh (βωj/2)
π

exp

[
−2 tanh (βωj/2)

ωj
Hb

]
. (4.18)

The derivation for this is given in Appendix C.

The Observable σ̂z

The FORTRAN90 code written performs calculations for the observable of

the operator σ̂z. Since much of the literature involving numerical simula-

tions of the spin-boson model display results for this observable, it is easy

to compare the effects of suggested improvements to the algorithm with the

results already known. To understand better the physical meaning of the ob-

servable 〈σz〉, it is useful to consider an isolated two-level system. According

to quantum statistical mechanics,

〈σz〉 = Tr (ρχ)

= Tr


 ρ11 ρ12

ρ21 ρ22


 1 0

0 −1




= Tr

 ρ11 −ρ12

ρ21 −ρ22


= ρ11 − ρ22 . (4.19)
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Since the diagonal elements of the density matrix are the populations of

each of the states in the system, the observable 〈σz〉 is thus the difference

between the populations of the two energy levels in the system.

Rotation into the Adiabatic Basis

Since the calculations are performed in the adiabatic basis, both the operator

σ̂z and the density matrix have to be rotated into this basis. To do this, the

eigenenergies and eigenvectors first need to be obtained. This is done in the

usual way, by using the condition

det (A− λI) = 0 (4.20)

The adiabatic Hamiltonian for the spin-boson model is now substituted

for A -

det (A− λI) = det
(
ĥW − λI

)
= det (Ωσx + Vb(R) + γ(R)σ̂z − λI)

= det

 Vb + γ(R)− λ Ω

Ω Vb − γ(R)− λ


= 0 . (4.21)

This yields the following quadratic equation in λ,

(Vb + γ(R)− λ) (Vb − γ(R)− λ)− Ω2 = 0

⇒ λ2 − 2Vbλ− γ(R)2 + V 2
b − Ω2 = 0 , (4.22)

the solutions of which are the adiabatic energies
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λ = Vb ±
√

Ω2 + γ(R)2 . (4.23)

Once these energies are known, it is a simple matter of substituting them

back into the eigenequation and to obtain the adiabatic basis vectors. In

their normalised form, these are

|0〉 =
1√

2(1 +G2)

 1 +G

1−G

 ,

|1〉 =
1√

2(1 +G2)

 −(1−G)

1 +G

 . (4.24)

The rotation matrix R for the adiabatic basis is therefore

R =
1√

2 (1 +G2)

 1 +G −(1−G)

1−G 1 +G

 , (4.25)

and

R−1 =
1√

2 (1 +G2)

 1 +G 1−G

−(1−G) 1 +G

 . (4.26)

The transformation of an operator into the adiabatic basis is given by

χ̂ad = Rχ̂R−1 . (4.27)

By applying this transformation to the population observable and the den-

sity matrix for the subsystem we obtain

σadz =
1

1 +G2

 2G 1−G2

1−G2 2G

 , (4.28)

and
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ρads =
1

2(1 +G2)

 (1 +G)2 1−G2

1−G2 (1−G)2

 . (4.29)

The expectation value of observable σz can then be evaluated using the

formula

〈σadz (t)〉 =

∫
dRdPρ0(R,P )

[
ρ−1

0 ρbW (R,P )Tr
(
ρads σ

ad
z (t)

)]
∫
dRdPρbW (R,P )

. (4.30)

This is calculated using a Monte Carlo importance sampling scheme with

importance sampling function

ρ0 = exp
[
−β

(
P 2/2 + Eα

)]
. (4.31)

4.2 Improved Sampling Scheme

As was explained in Chapter 3, the transition operator J is implemented

stochastically, with a transition probability calculated at each time step of

the simulation. Consider again an α→ β transition. The common choice of

sampling probability used in surface-hopping schemes is given by

P0
αβ(X,∆t) =

∣∣∣ PM · dαβ(R)
∣∣∣∆t

1 +
∣∣∣ PM · dαβ(R)

∣∣∣∆t . (4.32)

The corresponding probability that the system will not undergo a transition

is

Q0
αβ(X,∆t) = 1− P0

αβ

=
1

1 +
∣∣∣ PM · dαβ(R)

∣∣∣∆t . (4.33)

When a transition is accepted, the operator ∆tJ acts, changing the quan-
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tum state, and multiplying the observable by a factor of ∆t PM · d. A factor

of
(
P0
)−1 is then included in the observable. When a transition is rejected,

however, the observable is multiplied by
(
Q0
)−1. While this primitive sam-

pling scheme is sufficient for short simulation times, the concatenation of

factors leads to the results becoming unstable at longer time, resulting in

large statistical error. The factor P
M · d included in the observable each time

a transition occurs can vary in sign and magnitude. This, combined with the

oscillatory phase factor associated with each adiabatic trajectory segment,

causes the main error in the results [34]. While increasing the number of

trajectories in the ensemble may partially remedy this problem, it is at the

cost of dramatic increases in run time. To achieve good results at longer

times, the size of ensemble required becomes unrealistic.

Another partial solution is to fix a parameter nmax, which stipulates

the number of quantum transitions a single trajectory may undergo. When

a trajectory has performed nmax transitions, and attempts to undergo a

further transition at some time t = τ , its contribution to the observable is

not included after this time. Again, however, this places a restriction upon

the length of time that the results remain accurate. At longer times, more

trajectories are truncated, and the observable is being calculated using a

smaller sample size, thus increasing the statistical error.

It is possible, however, to exploit an arbitrariness in the definition of the

transition probabilities (Eqs. (4.32) and (4.33)) in such a way as to filter the

nonadiabatic transitions. Consider the change in energy of the system when

the approximated momentum-jump rule is used for a α→ β transition:

Eαβ =
∑
j

(Pj + ∆Pj)
2

2M
+ Eα(R)−

∑
j

P 2

2M
+ Eβ(R)

 . (4.34)

New generalised transition probabilities [10] are introduced, defined as
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Pαβ(X,∆t) =
∆t
∣∣∣ PM · dαβ(R)

∣∣∣ω (cE , Eαβ)

1 + ∆t
∣∣∣ PM · dαβ(R)

∣∣∣ω (cE , Eαβ)
, (4.35)

and correspondingly

Qαβ(X,∆t) = 1− Pαβ

=
1

1 + ∆t
∣∣∣ PM · dαβ(R)

∣∣∣ω (cE , Eαβ)
, (4.36)

where

ω (cE , Eαβ) =

{
1 if Eαβ ≤ cE

0 otherwise
. (4.37)

This amounts to disallowing any transition if Eαβ > cE . The numerical

parameter cE thus controls the allowed amplitude for energy fluctuations

accompanying a transition. To a large extent, the analytical form chosen for

ω is arbitrary. In Ref. [10], the generalised sampling scheme has been based

upon enforcing energy conservation upon the approximate momentum-jump

rule, to within a certain numerical fluctuation. There is no set value for cE ,

and as such it is an adjustable constant whose value is chosen in such a way

as to obtain the best results.

4.3 Study of the Improved Sampling Scheme

In this study, the SSTP algorithm was modified to include the improved

nonadiabatic sampling scheme. Simulations were performed for a range of

parameters, calculating the observable 〈σz〉, using both the primitive and

improved sampling to demonstrate the efficacy of this scheme [25]. In the

results below, the two sampling schemes are compared. In all the simulations

performed, a maximum of two quantum transitions were considered for each
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Figure 4.3: Comparison of the primitive (4) and improved (•) sampling
schemes for the observable 〈σz〉 versus time. The vertical lines denote the
standard deviation of the results. The results are for β = 0.3, Ω = 1/3 and
ξ = 0.007. A value of 0.01 for the numerical parameter cE yielded the best
result. Two quantum transitions were included in each trajectory. As can
be seen, the error in the result for the primitive sampling grows rapidly after
t = 10, and by t = 20 the result is wildly inaccurate. The statistical error
for the improved sampling scheme, however, remains small up to t = 25,
achieving reliable results for twice as long as that of the primitive sampling.

trajectory. For each set of parameters the code was run ten times, each time

with a different seed for the initial conditions, so that the error in the result

could be calculated. Each run comprised a phase-space ensemble of 2.5×104

points, and the integration time step was taken as ∆t = 0.01.

Figure 4.3 displays the result of the calculations for β = 0.3, Ω = 1/3

and ξ = 0.007. This is the same calculation as that shown in [10], and is in

the realm of weak coupling between the subsystem and the bath. A value of

0.05 for the parameter cE allows for reliable results to be accessed for twice

as long a time period as that of the primitive sampling. This was the first
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Figure 4.4: Comparison of the primitive (4) and improved (•) sampling
schemes for the observable 〈σz〉 versus time. This plot displays the results
for system parameters β = 3.0, Ω = 1/3 and ξ = 0.1. The numerical
parameter cE was taken as 0.05. Two quantum transitions were included
per trajectory. The statistical error for the primitive sampling result grows
rapidly after t = 10 and by t = 12, the error is already larger than the
possible range of the result, [−1, 1]. When the improved sampling is used,
this magnitude of error is not encountered, and the result is stable for 3
times as long as that of the primitive sampling.

calculation performed. It reproduced the result from Ref. [10], showing that

the improved sampling scheme had been implemented correctly.

Once this had been achieved, it was possible to run simulations for a wide

ranged of parameters. In Fig. 4.4 we see the result for the population for

moderate coupling. The system parameters used were β = 3.0,Ω = 1/3 and

ξ = 0.1. For this coupling strength, the result for the primitive sampling

soon becomes unstable, and the statistical error becomes larger than the

allowed ranged for the observable after t = 12. (Naturally, since 〈σz〉 is the

fractional population difference in the two level system, it can only have a
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Figure 4.5: Comparison of the primitive (4) and improved (•) sampling
schemes for the observable 〈σz〉 versus time. The calculation was performed
for β = 1.0, Ω = 0.4 and ξ = 0.13. The best result was obtained for cE = 0.1.
Two quantum transitions were included per trajectory. The inset shows the
results for the two sampling schemes at short time, where they both agree,
with small statistical error. The main figure shows the long-time dynamics,
where the error in the primitive sampling result becomes large. The error
bars associated with the improved sampling remain small up until t = 18.

range of [−1, 1].) The implementation of the improved sampling, however,

reduces the error to the point where the dynamics can be accessed for three

times as long a time period as that of the primitive sampling.

For the result displayed in Fig. 4.5, β = 1.0, Ω = 0.4 and ξ = 0.13.

This is still moderate coupling strength, but the temperature and energy

level splitting has been increased. The two results are almost identical at

short time, but after = 10 the statistical error for the primitive result grows,

while the error in the improved sampling result stay small. This allows the

dynamics to be accessed reliably for up to twice as long.

Finally, I performed the calculation for the observable 〈σz〉 for strong
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Figure 4.6: Comparison of the primitive (4) and improved (•) sampling
schemes for the observable 〈σz〉 versus time. In this calculation, β = 0.25,
Ω = 1.2 and ξ = 2.0. Again, the optimum result was achieved using cE = 0.1.
Two quantum transitions were included per trajectory. The error in the
result for the primitive sampling grows large after t = 5, but the error for
the improved sampling result remains scarcely bigger than the data points.

coupling between the subsystem and the bath. Dynamics for strong coupling

is a problem for the SSTP algorithm, as the statistical error becomes great

even at shorter times. In Fig. 4.6 the result is shown for β = 0.25, Ω = 1.2

and ξ = 2.0. Only at short time (up to t ≈ 5) does the primitive sampling

scheme reliably simulate the dynamics. After this time, the statistical error

grows very rapidly, and by t = 7 the error is greater than the possible range

for 〈σz〉. Using a value for the numerical parameter cE = 0.1, this problem

with the error is removed. The error bars are indistinguishable from the

bullets up until t = 6, and at t = 8 they remain small.
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4.4 Study of Momentum-Shift rules for Nonadia-

batic Transitions

With the aim of formulating even more efficient sampling schemes, a more

detailed study of momentum-shift rules for quantum transitions was per-

formed in an attempt to discover what aspects are important in the rules.

Any arbitrariness found can possibly be exploited to create an effective fil-

tering scheme. Four different rules were studied by determining their effects

on the results for the observable σz.

The first two rules have already been discussed in Chapter 3, namely the

exact and approximate momentum-jump rules. It is instructive to determine

whether the fact that one conserves the energy exactly, while the other does

not, affects the result in any way. To indicate graphically the violation in

energy conservation by the approximate momentum-jump rule, the energy

for a single trajectory was monitored as a function of time. The result is

shown in Fig. 4.7. The same was done for the exact momentum-jump rule,

illustrating the fact that it conserves the energy (see Fig. 4.8).

Energy-Conserving Fictitious Momentum-Shift Rule

Consider the system in an αα′ state. The energy of the entire system is

Ebefore =
N∑
j=1

P 2
j

2M
+

1
2

(Eα + Eα′) . (4.38)

If the system undergoes an α→ β transition, the energy becomes

Eafter =
N∑
j=1

(Pj + ∆Pj)
2

2M
+

1
2

(Eβ + Eα′) . (4.39)

Enforcing energy conservation requires that
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Figure 4.7: A plot of the energy of a single trajectory versus time. This
particular trajectory performed three nonadiabatic transitions. A jump
in the energy approximately three times the average numerical fluctuation
can be seen accompanying each transition, evidence that the approximate
momentum-jump rule does indeed not conserve the energy of the system.

N∑
j=1

P 2
j

2M
+

1
2

(Eα + Eα′) =
N∑
j=1

(Pj + ∆Pj)
2

2M
+

1
2

(Eβ + Eα′) , (4.40)

⇒ ∆Eαβ =
N∑
j=1

[
(Pj + ∆Pj)

2

M
−
P 2
j

M

]
. (4.41)

where ∆Eαβ = Eα − Eβ. Multiplying out, cancelling the P 2
j /M terms, and

taking the Eαβ term across gives

N∑
j=1

[
∆P 2

j + 2Pj∆Pj −
∆EαβM

N

]
= 0 . (4.42)

Naturally, if the bath comprises more than one oscillator, there are in-
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Figure 4.8: Plot of the energy of a single trajectory versus time. This
trajectory performed two nonadiabatic transitions, at t = 1.75, and t =
14.74. As can be seen, there is essentially no change in the energy when a
quantum transition occurs. Any change of energy accompanying a transition
is roughly one hundredth of that of the average numerical fluctuation. The
tiny variation of the energy for the transition at t = 1.75 is shown inset. This
clearly demonstrates the energy conserving nature of the exact momentum-
jump rule.

finitely many combinations of ∆Pj which satisfy Eq. (4.42). The simplest

case is when all ∆Pj are the same. The ∆Pj are then given by the solutions

to the quadratic equation ∆P 2
j + 2Pj∆Pj −∆EαβM/N = 0. That is,

∆Pj = −Pj +

√
P 2
j +

∆EαβM
N

. (4.43)

Only the solution with the positive square root is considered, as the negative

square root would lead to a large change in the momentum, of the order

−2Pj , as opposed to the smaller shift (4.43).

Figure 4.9 displays the results for the population for the exact and ap-
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Figure 4.9: Result for observable σz when using the exact momentum-shift
rule (•), and approximate rule (4). The results are concordant despite the
fact that only the exact rule conserves the energy.

proximate momentum shift rules. The results agree with each other almost

exactly, indicating that to achieve good results the momentum-shift rule

used does not necessarily have to conserve energy exactly. The next logical

step would be to investigate whether the fact that a momentum-shift rule

conserves the energy exactly implies that it gives good results. To this end,

a third fictitious momentum-shift rule was derived directly from the stipula-

tion of energy conservation, giving rise to Eq. (4.43). Numerical calculations

for this momentum-shift rule were performed, and the results are compared

in Fig. 4.10 with those of the exact rule.

The results were found to agree for only short times (up to t ≈ 4),

after which they begin to diverge. The fictitious rule is thus not a viable

momentum-shift rule, even though it conserves the energy exactly.

There must therefore be something common to the exact and approxi-
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Figure 4.10: Comparison of results for observable σz for the exact
momentum-shift rule (•), and the fictitious rule derived from energy conser-
vation (4). It is observed that the results only remain concordant before
t = 4. After this time, the results begin to differ greatly, despite the fact
that both rules exactly conserve the total energy of the system.

mate momentum-shift rules which is not included in the fictitious rule. This

common trait is that in both exact and approximate rules, the quantum

back reaction is taken along the nonadiabatic coupling vector d̂.

With knowledge of the restrictions and areas of freedom in devising a

viable momentum-shift scheme, it is hoped that even more efficient stochas-

tic sampling schemes can be designed. This would help in the accessing of

increasingly long times in nonadiabatic dynamics.



Chapter 5

Conclusions and Perspectives

One of the persisting problems in quantum computational physics is the

inability to formulate any general algorithm to solve quantum dynamics of

many-body interacting systems. The non-commuting algebra of quantum

mechanics is very difficult to implement on the computer, and brute force

methods for solving quantum systems is unrealistic as it generally demands

far greater system resources than we currently possess. Because of the com-

plexity involved in simulating quantum systems, approximations are made

in such a way that the calculations become easier and algorithms developed

can be faster and demand less computational resources. Quantum algo-

rithms are generally devised to solve specific systems, and not for solving a

diverse number of problems.

In the realm of classical numerical simulations we are generally far more

able, with Molecular Dynamics or Monte Carlo methods being available to

solve a wide variety of classical systems. This is what makes the quantum-

classical approximation such a useful tool for modelling quantum systems.

By treating the environment as classical, and only the subsystem of interest

quantum mechanically, we are able to utilise many algorithms and tech-

niques for solving classical dynamics, thereby making the problem much

simpler computationally.

63
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When considering systems where energy is free to be exchanged between

the quantum subsystem and the classical bath, however, there are still non-

trivial difficulties in implementing this numerically. Since the subsystem of

interest is still quantum, there will be effects on the bath which are not classi-

cal in nature. More specifically, energy conservation requires that quantum

transitions in the energy of the subsystem cause concomitant changes in

the bath momentum. This remains a problem in numerical simulations, as

methods used to implement this quantum back reaction cause large statisti-

cal error in the calculations. Solutions to these problems plaguing numerical

quantum dynamics are of interest in a number of fields as computational

simulations may give insights into the workings of many quantum systems.

Within the last decade there has been a high level of interest in the new field

of quantum biology [42]. In 2007, a paper published in Nature presented ev-

idence that quantum coherent effects in photosynthesis cause the extremely

efficient energy transfer observed in this biological process [43]. The nu-

merical investigation of this phenomenon would naturally need algorithms

for quantum dynamics, since there is no classical analogue for quantum co-

herence. Quantum-classical approximations may even be applied here, as

the system comprises excitons interacting with an environment of proteins.

Since the proteins are much more massive than the excitons, it is possible to

treat them classically, while the exciton dynamics is still treated in a fully

quantum way. It is with the long-term goal of being able to shed light on

problems of interest such as these that my study was performed.

To summarise: the theory of nonadiabatic dynamics of quantum-classical

systems was studied and discussed in detail. Focus was on the partial Wigner

representation, leading to the quantum-classical Liouville equation. Surface-

hopping algorithms, one of the most useful in simulating nonadiabatic quan-

tum classical dynamics, which naturally arises from this formalism were ex-

amined. Specifically, sequential short-time propagation was used to perform
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numerical studies of the spin-boson system, to better understand why such

large error in the results occurs at long time.

In an effort to reduce this long-time error, an improved scheme for sam-

pling nonadiabatic transitions was recently developed. This was based on

the enforcement of energy conservation on the approximate momentum-

shift rule arising from the momentum-jump approximation. I modified the

sequential short-time propagation (SSTP) algorithm [27] to include this im-

proved sampling scheme, and compared the results with simulations without

the new sampling scheme. This was done for a range of system parameters

hitherto not studied. As was shown, this improved scheme leads to a dra-

matic decrease in error in the results, compared to those of the old primitive

scheme. The wide range of parameters used were chosen to show the efficacy

of the improved sampling schemes [25].

I studied different momentum-shift rules used to numerically realise the

quantum back reaction of the system on the bath accompanying a transition

[26]. This was in an attempt to determine what constitutes a momentum-

shift rule that will yield good numerical results. Any arbitrariness could be

exploited in designing an even more efficient transition sampling scheme. It

was found that exact energy conservation was firstly not a prerequisite to

obtaining good numerical results, nor was it indicative of a good rule. The

approximate momentum-shift rule was found to yield results just as accurate

as those of the exact rule, even though its violation in energy conservation

was of the order of three times the magnitude of the numerical fluctuation

of the energy. A fictitious rule that was derived directly from energy con-

servation, however, gave results that only agreed with those of the exact

momentum-shift rule at short times, after which it deviated. Comparison of

the different rules implied that it is more important for a momentum-shift

rule to take the quantum back reaction along the coupling vector d, than to

conserve the energy exactly.
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While we may attempt to reduce statistical error in numerical simula-

tions by improving the sampling scheme utilised, there are other methods as

well. Another area that can be improved upon is the short-time propagator

in the algorithm. Recently, a new form for the time propagator derived using

Trotter factorisation was shown to have greatly improved the accuracy of

results [44], when compared with the SSTP algorithm. In fact, the method

used is the same as that of the SSTP, which is to break up the propaga-

tor into small time segments. The major difference, however, is that the

short-time propagator is more accurately approximated.

In future work, I plan to use this improved representation of the short-

time propagator in conjunction with the improved sampling scheme, so

that even greater times can be accessed reliably. In addition to this, I

will continue my study of the various approximations used when simulating

quantum-classical dynamics with the aim of devising even more effective

sampling schemes.



Appendix A

Miscellaneous Derivations

A.1 The Heisenberg Equation of Motion

Writing the time dependence of the wave function explicitly, Eq. (2.1) be-

comes

〈χ(t)〉 =
∫
ψ∗(x)eiĤt/h̄χ̂e−iĤt/h̄ψ(x) dx . (A.1)

This allows us to define the time-dependent operator

χ̂(t) = eiĤt/h̄χ̂e−iĤt/h̄ . (A.2)

Taking the time derivative of this equation, we have

dχ̂(t)
dt

=
(
d

dt
eiĤt/h̄

)
χ̂e−iĤt/h̄ + eiĤt/h̄

(
∂χ̂

∂t

)
e−iĤt/h̄ + eiĤt/h̄χ̂

(
d

dt
e−iĤt/h̄

)
=

iĤ

h̄
eiĤt/h̄χ̂e−iĤt/h̄ +

(
∂χ̂

∂t

)
+ eiĤt/h̄χ̂

−iĤ
h̄

e−iĤt/h̄

=
i

h̄
Ĥχ̂(t) +

(
∂χ̂

∂t

)
− i

h̄
χ̂(t)Ĥ

=
i

h̄

[
Ĥ, χ̂(t)

]
+
(
∂χ̂

∂t

)
. (A.3)
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A.2 Derivation of the Energy-Conserving Momentum-

Jump Approximation Rule

We begin by approximating the J-operator with an exponential:

(
1 +

1
2

∆Eαβ d̂αβ
P
M · d̂αβ

· ∂
∂P

)
≈ e

1
2

∆Eαβd̂αβ
P
M
·d̂αβ

· ∂
∂P

. (A.4)

Using the chain rule on the momentum derivative, the argument of the

exponential becomes

∆Eαβ d̂αβ
2 P
M · d̂αβ

· ∂
∂P

=
∆EαβM

2

[
d̂αβ

P · d̂αβ

]
·
[

∂

∂(P · d̂αβ)2

∂(P · d̂αβ)2

∂P

]
. (A.5)

Now

∂(P · d̂αβ)2

∂P
= 2(P · d̂αβ)d̂αβ , (A.6)

and since d̂αβ is a unit vector, we have d̂αβ · d̂αβ = 1. Hence, Eq. (A.5)

reduces to

∆Eαβ d̂αβ
2 P
M · d̂αβ

· ∂
∂P

= ∆EαβM
∂

∂(P · d̂αβ)2
. (A.7)

The J-operator acting on an arbitrary function of the bath momentum

is now given (in addition to some multiplicative factors which are omitted

here) by

→
J f [P ] = e∆EαβM∂/∂(P ·d̂αβ)2

f [P ] . (A.8)

If we resolve the bath momentum variable into its components along d̂αβ

and d̂⊥αβ, the function of P can be rewritten as
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f [P ] = f
[
d̂⊥αβ(P · d̂⊥αβ) + d̂αβ(P · d̂αβ)

]
= f

[
d̂⊥αβ(P · d̂⊥αβ) + d̂αβsgn(P · d̂αβ)

√
(P · d̂αβ)2

]
. (A.9)

We know from the identity given in Eq. (3.32) that the exponential in

Eq. (A.8) acts by shifting the variable
(
P · d̂

)2
by an amount ∆EαβM . We

therefore have

e∆EαβM∂/∂(P ·d̂αβ)2
f [P ]

= f

[
d̂⊥αβ(P · d̂⊥αβ) + d̂αβsgn(P · d̂αβ)

√
(P · d̂αβ)2 + ∆EαβM

]
= f

[
P − d̂αβ(P · d̂αβ) + d̂αβsgn(P · d̂αβ)

√
(P · d̂αβ)2 + ∆EαβM

]
= f

[
P + ∆EMJP

]
. (A.10)

The last line defines the formula for changing the momentum accompanying

a quantum transition:

∆EMJPj = −d̂αβ(P ·d̂αβ)+d̂αβsgn(P ·d̂αβ)
√

(P · d̂αβ)2 + ∆EαβM . (A.11)

A.3 Proof of Energy Conservation for the EMJ

rule

Consider an α → β transition. The total energy of the spin-boson system

before the transition occurs is

Ebefore =
∑
j

P 2
j

2M
+

1
2

(Eα + Eα′) . (A.12)

The potential energy of the bath and the potential energy of coupling have
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not been included in Eq. (A.12), as they are only dependent on the R coor-

dinate. Since only the bath momentum changes accompanying a quantum

transition, the potential energy of the system does not change during the

transition. For energy to be conserved for the nonadiabatic transition, the

energy of the system before must be equal to the energy afterwards, so

∑
j

P 2
j

2M
+

1
2

(Eα + Eα′) = Eafter

=
∑
j

(Pj + ∆Pj)
2

2M
+

1
2

(Eβ + Eα′) .(A.13)

Multiplying both sides by 2 and cancelling the Eα′ terms,

∑
j

P 2
j

M
+ (Eα − Eβ) =

∑
j

(Pj + ∆Pj)
2

M

=
∑
j

P 2
j

M
+
∑
j

2Pj∆Pj
M

+
∑
j

(∆Pj)
2

M
.

(A.14)

This gives the energy change in the subsystem for an α → β transition

in terms of the bath momentum and the changes in the bath momentum:

∆Eαβ =
∑
j

2Pj∆Pj
M

+
∑
j

(∆Pj)
2

M
. (A.15)

Now substitute the exact momentum-jump rule for ∆Pj (Eq. A.11). It

is easier to deal with each term separately, looking at the first term on the

right-hand side:

∑
j

2Pj∆Pj =
∑
j

2Pj

[
−d̂j

(
P · d̂

)
+ d̂jsgn

(
P · d̂

)√(
P · d̂

)2
+ ∆EαβM

]
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= −2
(
P · d̂

)2
+ 2

(
P · d̂

)
sgn

(
P · d̂

)√(
P · d̂

)2
+ ∆EαβM ,

(A.16)

where the fact that
∑
Pj d̂j =

(
P · d̂

)
and

√(
P · d̂

)2
+ ∆EαβM and

(
P · d̂

)
are constant over the summation has been used. The mass M is the same

for all the bath coordinates, and can thus be taken out of the summation.

Now for the second term:

∑
(∆Pj)

2 =
∑
j

[(
P · d̂

)2
d̂2
j − 2d̂2

j

(
P · d̂

)
sgn

(
P · d̂

)

×
√(

P · d̂
)2

+ ∆EαβM + d̂2
j

[(
P · d̂

)2
+ ∆EαβM

]]

=
(
P · d̂

)2
− 2

(
P · d̂

)
sgn

(
P · d̂

)√(
P · d̂

)2
+ ∆EαβM

+
(
P · d̂

)2
+ ∆EαβM , (A.17)

where the fact that
∑
d̂2
j = d̂ · d̂ = 1 has been used. Eqs. A.16 and A.17

added together and multiplied by 1/M now yields

∑
j

2Pj∆Pj
M

+
∑
j

(∆Pj)
2

M
= ∆Eαβ . (A.18)

This shows that the exact momentum-jump rule does indeed conserve the

energy of the system.



Appendix B

Derivation of the

quantum-classical Liouville

superoperator in the

Adiabatic Basis

This is a complete derivation of the one found in Ref. [2]. I performed

this derivation as part of my study of the theory. Here I present the full

derivation, including the steps not shown in the reference given above.

The first step is to take the matrix elements of the quantum-classical Liou-

ville equation for the density matrix -

〈α|∂ρW
∂t
|α′〉 = − i

h̄
〈α|

[
ĤW , ρ̂W

]
|α′〉+

1
2
〈α|{ĤW , ρ̂W }|α′〉

− 1
2
〈α|{ρ̂W , ĤW }|α′〉 , (B.1)

where {.., ..} denotes the classical Poisson bracket. Expand the first term

on the right-hand side:

72
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〈α|
[
ĤW , ρ̂W

]
|α′〉 = − i

h̄

[
〈α|ĤW ρ̂W |α′〉 − 〈α|ρ̂W ĤW |α′〉

]
. (B.2)

Now using the fact that ĤW = P 2/2M + ĥW , and ĥW |α〉 = Eα|α〉, this

becomes

i

h̄

[
〈α|ĤW ρ̂W |α′〉 − 〈α|ρ̂W ĤW |α′〉

]
= − i

h̄

[
Eα〈α|ρ̂W |α′〉 − Eα′〈α|ρ̂W |α′〉

]
= −iωαα′ραα

′
W , (B.3)

where 〈α|ρ̂W |α′〉 = ραα
′

W . The second term of Eq. (B.1) can now be expanded

as well:

〈α|{ĤW , ρ̂W }|α′〉 = 〈α|∂ĤW

∂R

∂ρ̂W
∂P
|α′〉 − 〈α|∂ĤW

∂P

∂ρ̂W
∂R
|α′〉 . (B.4)

Using the completeness relation, this becomes

〈α|{ĤW , ρ̂W }|α′〉 = 〈α|∂ĤW

∂R

∑
β

|β〉〈β|∂ρ̂W
∂P
|α′〉

−〈α|∂ĤW

∂P

∑
β

|β〉〈β|∂ρ̂W
∂R
|α′〉

= −
∑
β

FαβW
∂ρβα

′

W

∂P
−
∑
β

P

M
δαβ〈β|

∂ρ̂W
∂R
|α′〉 ,

(B.5)

where the fact that 〈α|β〉 = δαβ has been used, as well as ∂ĤW /∂R =

∂V̂W /∂R and ∂ĤW /∂P = P/M . The Hellmann-Feynman matrix elements

in the partial Wigner representation are given by

FαβW = −〈α|∂V̂W
∂R
|β〉 . (B.6)

The third term in Eq. (B.1) can be similarly expanded to yield
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〈α|{ρ̂W , ĤW }|α′〉 =
∑
β

〈α|∂ρ̂W
∂R
|β〉 P

M
δα′β +

∑
β

∂ραβW
∂P

F βα
′

W . (B.7)

Adding equations (B.3), (B.5) and (B.7) gives

∂ραα
′

W

∂t
= −iωαα′ραα

′
W − 1

2

∑
β

(
FαβW

∂ρβα
′

W

∂P
+
∂ραβW
∂P

F βα
′

W

)

−1
2

∑
β

(
P

M
〈α|∂ρ̂W

∂R
|β〉δαβ +

P

M
〈β|∂ρ̂W

∂R
|α′〉

)

= −iωαα′ραα
′

W − 1
2

∑
β

(
FαβW

∂ρβα
′

W

∂P
+
∂ραβW
∂P

F βα
′

W

)

− P
M
〈α|∂ρ̂W

∂R
|α′〉 . (B.8)

The term on the last line of the above equation can not be written

simply as P
M

∂ραα
′

W
∂R , since the adiabatic basis states are dependent on the

bath position coordinate R. We thus consider

∂

∂R
〈α|ρ̂W |α′〉 = 〈 ∂α

∂R
|ρ̂W |α′〉+ 〈α|∂ρ̂W

∂R
|α′〉+ 〈α|ρ̂W |

∂α′

∂R
〉

= 〈 ∂α
∂R
|
∑
β

|β〉〈β|ρ̂W |α′〉+ 〈α|∂ρ̂W
∂R
|α′〉

+〈α|ρ̂W
∑
β

|β〉〈β|∂α
′

∂R
〉

= 〈α|∂ρ̂W
∂R
|α′〉+

∑
β

(
〈 ∂α
∂R
|β〉ρβα

′

W + ραβW 〈β|
∂α′

∂R
〉
)
,

(B.9)

where the completeness relation has again been used. We know that, by

definition, 〈β|∂α′∂R 〉 = 〈β| ∂∂R |α
′〉 = dβα′ , but to simplify the term 〈 ∂α∂R |β〉, we

must consider

∂

∂R
〈α|β〉 = 0 . (B.10)
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This is obviously true, since 〈α|β〉 = δαβ. But

∂

∂R
〈α|β〉 = 〈 ∂α

∂R
|β〉+ 〈α| ∂β

∂R
〉 . (B.11)

We thus obtain the identity

〈 ∂α
∂R
|β〉 = −〈α| ∂β

∂R
〉

= −dαβ . (B.12)

Using this identity in Eq. (B.9), and rearranging to make 〈α|∂ρ̂W∂R |α
′〉

the subject of the formula now gives

〈α|∂ρ̂W
∂R
|α′〉 =

∂ραα
′

W

∂R
−
∑
β

(
ραβW dβα′ − dαβρβα

′

W

)
. (B.13)

Substituting this expression for 〈α|∂ρ̂W∂R |α
′〉 back into Eq. (B.8), we arrive at

the following equation for the time derivative of the density matrix elements:

∂ραα
′

W (R,P, t)
∂t

= −iωαα′ραα
′

W − 1
2

∑
β

(
FαβW

∂ρβα
′

W

∂P
+
∂ραβW
∂P

F βα
′

W

)

− P
M

∂ραα
′

W

∂R
+
P

M

∑
β

(
ραβW dβα′ − dαβρβα

′

W

)
=

∑
ββ′

[
−iωαα′δαβδα′β −

1
2

(
FαβW δα′β′

∂

∂P
+ F β

′α′

W δαβ
∂

∂P

)

− P

M
δαβδα′β′

∂

∂R
+
P

M

(
dβ′α′δαβ − dαβδα′β′

)]
ρββ

′

W (R,P, t)

=
∑
ββ′

−iLαα′,ββ′ρββ
′

W (R,P, t) . (B.14)

In the last line of the above equation, the quantum-classical Liouville

superoperator has been defined. Now we wish to cast it in the form given

in Eq. (3.10). We first define the Liouville operator [2]

iLαα′ =
P

M

∂

∂R
+

1
2

(
FαW + Fα

′
W

) ∂

∂P
. (B.15)
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This operator describes the classical evolution of the bath coordinates,

and is given in terms of the Hellmann-Feynman forces for the adiabatic states

α and α′ [34]. The quantum-classical Liouville superoperator can now be

written in the form

−iLαα′,ββ′ = −(iωαα′ + iLαα′)δαβδα′β′ +
[
P

M

(
dβ′α′δαβ − dαβδα′β′

)
− 1

2

(
FαβW δα′β′ + F β

′α′

W δαβ − (FαW + Fα
′

W )δαβδα′β′
) ∂

∂P

]
.

(B.16)

The terms in the square brackets are the operator Jαα′,ββ′ . We now wish

to obtain from these terms, the form for the J-operator given by Eq. (3.13).

The first step is to group all the terms with a coefficient δα′β′ together, and

all the terms with a coefficient δαβ together, to give

Jαα′,ββ′ =
[
− P
M
dαβ −

1
2

(
FαβW − FαW δαβ

) ∂

∂P

]
δα′β′

+
[
P

M
dβ′α′ −

1
2

(
F β
′α′

W − Fα′W δα′β′
) ∂

∂P

]
δαβ . (B.17)

Now consider the derivative with respect to the bath position coordinate

R, of the matrix elements of the Hamiltonian:

− ∂

∂R
〈α|ĤW |β〉 = −〈 ∂α

∂R
|ĤW |β〉 − 〈α|

∂ĤW

∂R
|β〉 − 〈α|ĤW |

∂β

∂R
〉

= −〈 ∂α
∂R
|
(
P 2

2M
+ ĥW

)
|β〉 − 〈α|

(
∂

∂R

(
P 2

2M
+ ĥW

))
|β〉

−〈α|
(
P 2

2M
+ ĥW

)
| ∂β
∂R
〉

= 〈α| ∂
∂R

ĥW |β〉 − 〈α|
(
∂ĥW
∂R

)
|β〉 − 〈α|ĥW

∂

∂R
|β〉 .

(B.18)

The bath kinetic energy terms all disappear because ∂P/∂R = 0. Using
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〈α|ĥW = Eα, ĥW |β〉 = Eβ, and −〈α|
(
∂ĥW
∂R

)
|β〉 = FαβW , the above equation

becomes

− ∂

∂R
〈α|ĤW |β〉 = Eβ〈α|

∂

∂R
|β〉+ FαβW − Eα〈α|

∂

∂R
|β〉

= FαβW − (Eα − Eβ) dαβ . (B.19)

But

− ∂

∂R
〈α|ĤW |β〉 = − ∂

∂R

[
〈α| P

2

2M
|β〉+ 〈α|ĥW |β〉

]

= − ∂

∂R
Eβδαβ

= F βW δαβ = FαW δαβ . (B.20)

If we substitute this expression for − ∂
∂R〈α|ĤW |β〉 back into Eq. (B.19), we

obtain the identity

FαβW − FαW δαβ = (Eα − Eβ)dαβ . (B.21)

Upon use of this identity, Eq (B.17) becomes

Jαα′,ββ′ =
[
− P
M
dαβ −

1
2

(Eα − Eβ) dαβ
∂

∂P

]
δα′β′

+
[
P

M
dβ′α′ +

1
2
(
Eα − Eβ′

)
dβ′α′

∂

∂P

]
δαβ . (B.22)

Note that dβ′α′ = −d∗α′β, since the matrix for the nonadiabatic coupling

vector is anti-hermitian. Making this substitution for dβ′α′ , and taking out

common factors of −dαβP/M and −dα′β′P/M from the first and second pair

of square brackets respectively, gives
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Jαα′,ββ′ = − P

M
· dαβ

(
1 +

1
2

∆Eαβdαβ
P
M · dαβ

∂

∂P

)
δα′β′

− P

M
d∗α′β′

(
1 +

1
2

∆Eαβd∗α′β
P
M · d

∗
α′β′

∂

∂P

)
δαβ , (B.23)

which is the form for the J-operator given in Eq. (3.13).



Appendix C

Derivation of the bath

phase-space distribution

function

Here is the complete derivation for the distribution function for a canonical

ensemble of harmonic oscillators. This derivation can be found in [45]. I

performed and checked this derivation as part of my study of the theory.

Consider the canonical ensemble. The density matrix is given by

ρ̂ =
1

Z(β)
e−βĤ ≡ 1

Z(β)
Ω̂ , (C.1)

where β = 1/kT , with k being the Boltzmann constant, and Z(β) =

Tr
(
e−βĤ

)
is the canonical partition function. If the initial condition

Ω̂ (β = 0) = Î is satisfied, where Î is the identity matrix, then the un-

normalised density matrix satisfies the Bloch equation -

∂Ω̂
∂β

= −ĤΩ̂
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= −Ω̂Ĥ . (C.2)

If we apply the Wigner transform, using the identity given in Eq. (2.32),

this equation becomes:

∂ΩW (q, p)
∂β

= −HW (q, p)e
h̄Λ
2i ΩW (q, p)

= −ΩW (q, p)e
h̄Λ
2i HW (q, p) , (C.3)

where Λ is the negative of the Poisson bracket and (q, p) are phase-space

coordinates. Using Eq. (C.3) and Eq. (2.32), we find that

HW (q, p)e
h̄Λ
2i ΩW (q, p) = HW (q, p)e−

h̄Λ
2i ΩW (q, p) . (C.4)

Therefore, the Wigner transformed Bloch equation can be rewritten as

∂ΩW (q, p)
∂β

=
1
2

[
−HW (q, p)e

h̄Λ
2i ΩW (q, p)−HW (q, p)e−

h̄Λ
2i ΩW (q, p)

]
. (C.5)

Using the Euler formula,

∂ΩW (q, p)
∂β

=
1
2

[
−HW

(
cos

(
h̄Λ
2

)
− i sin

(
h̄Λ
2

))
ΩW

− HW

(
cos

(
h̄Λ
2

)
+ i sin

(
h̄Λ
2

))
ΩW

]
= −HW (q, p) cos

(
h̄Λ
2

)
ΩW (q, p) . (C.6)

Consider now a harmonic Hamiltonian

HW =
p2

2m
+

1
2
mω2q2 . (C.7)

The Wigner transformed Bloch equation for this Hamiltonian is
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∂ΩW

∂β
= −

(
p2

2m
+

1
2
mω2q2

)
cos

 h̄
2

 ←∂
∂q

→
∂

∂p
−
←
∂

∂p

→
∂

∂q

ΩW . (C.8)

We expand the cosine term to second order:

cos

 h̄
2

 ←∂
∂q

→
∂

∂p
−
←
∂

∂p

→
∂

∂q

 = 1− 1
2

(
h̄

2

)2
 ←∂
∂q

→
∂

∂p
−
←
∂

∂p

→
∂

∂q

2

. (C.9)

Multiplying out the derivatives term gives

 ←∂
∂q

→
∂

∂p
−
←
∂

∂p

→
∂

∂q

2

=

←
∂

∂q

→
∂

∂p

←
∂

∂q

→
∂

∂p
−
←
∂

∂q

→
∂

∂p

←
∂

∂p

→
∂

∂q

−
←
∂

∂p

→
∂

∂q

←
∂

∂q

→
∂

∂p
+

←
∂

∂p

→
∂

∂q

←
∂

∂p

→
∂

∂q

=

←
∂2

∂q2

→
∂2

∂p2
−

←
∂2

∂q∂p

→
∂2

∂q∂p
−

←
∂2

∂p∂q

→
∂2

∂q∂p

+

←
∂2

∂p2

→
∂2

∂q2

=

←
∂2

∂q2

→
∂2

∂p2
−2

←
∂2

∂q∂p

→
∂2

∂q∂p
+

←
∂2

∂p2

→
∂2

∂q2
. (C.10)

If we substitute this second order expression for the cosine term into Eq.

(C.8), we obtain

∂ΩW

∂β
= − p2

2m

1− h̄2

8

 ←
∂2

∂q2

→
∂2

∂p2
−2

←
∂2

∂q∂p

→
∂2

∂q∂p
+

←
∂2

∂p2

→
∂2

∂q2

ΩW

− mω2q2

2

1− h̄2

8

 ←
∂2

∂q2

→
∂2

∂p2
−2

←
∂2

∂q∂p

→
∂2

∂q∂p
+

←
∂2

∂p2

→
∂2

∂q2

ΩW
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= −
(
p2

2m
− 1

2
mω2q2

)
ΩW +

h̄2

8m
∂2ΩW

∂q2
+
h̄2

8
mω2∂

2ΩW

∂p2
.

(C.11)

This is the Wigner transformed Bloch equation for the harmonic os-

cillator. The second order approximation for the cosine term is exact for

harmonic Hamiltonians, as higher order terms only contain derivatives of

order higher than two, which, when acting on the Hamiltonian, yield zero.

The above equation is difficult to solve as it stands, so we make the

ansatz

ΩW (q, p) = e−A(β)HW+B(β) , (C.12)

where A and B are subject to the initial conditions A(0) = B(0) = 0. Now

we determine the derivatives of ΩW with respect to the spatial coordinate:

∂ΩW

∂q
= ΩW

(
−A(β)

∂HW

∂q

)
,

and hence

∂2ΩW

∂q2
=

∂ΩW

∂q

(
−A(β)

∂HW

∂q

)
−A(β)ΩW

∂2HW

∂q2

=
(
−A(β)

∂HW

∂q

)2

ΩW −A(β)ΩW
∂2HW

∂q2

=
(
A2(β)m2ω4q2 −A(β)mω2

)
ΩW . (C.13)

Similarly, with respect to the momentum coordinate:

∂ΩW

∂p
= −A(β)

∂HW

∂p
ΩW ,

and hence
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∂2ΩW

∂p2
= −A(β)

∂2HW

∂p2
ΩW −A(β)

∂HW

∂p

∂ΩW

∂p

= −A(β)
∂2HW

∂p2
ΩW +

(
A(β)

∂HW

∂p

)2

= −A(β)
m

ΩW +
(
A(β)

p

m

)2

ΩW

= −A(β)
m

Ω +A2(β)
p2

m2
ΩW . (C.14)

And finally, with respect to β:

∂ΩW

∂β
=
(
−∂A
∂β

HW +
∂B

∂β

)
ΩW .

The Wigner transformed Bloch equation thus becomes

(
−∂A
∂β

HW +
∂B

∂β

)
ΩW = −

(
p2

2m
+

1
2
mω2q2

)
ΩW

+
h̄2

8

(
1
m

∂2ΩW

∂q2
+m2ω2∂

2ΩW

∂p2

)
. (C.15)

Now

h̄2

8m

(
∂2ΩW

∂q2

)
=

h̄2

8m
(A2m2ω4q2 −Amω2)ΩW

=
h̄2

8
A2mω4q2ΩW −

h̄2

8
Aω2ΩW , (C.16)

and

h̄2

8
m2ω2∂

2ΩW

∂p2
=

h̄2

8
mω2

(
−A
m

ΩW +A2 p
2

m2
ΩW

)
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= − h̄
2

8
ω2AΩW +

h̄2

8
ω2A2 p

2

m
ΩW . (C.17)

Dividing through by ΩW , the Eq. (C.15) becomes

−∂A
∂β

HW +
∂B

∂β
= −

(
p2

2m
+

1
2
mω2q2

)
+
h̄2

8
A2mω4q2 − h̄

8
Aω2

− h̄
2

8
ω2A+

h̄2

8
ω2A2 p

2

m

= −HW +
h̄2

8

[
A2mω4q2 −Aω2 − ω2A+ ω2A2 p

2

m

]

= −HW +
h̄2

4

[
−Aω2 + ω2A2

(
1
2
mω2q2 +

p2

2m

)]

= −HW +
(
h̄ω

2

)2 [
−A+A2HW

]
. (C.18)

Thus

−∂A
∂β

HW +HW = −∂B
∂β

+
(
h̄ω

2

)2 [
−A+A2HW

]
,

and so

[
−∂A
∂β

+ 1−
(
h̄ωA

2

)2
]
H +

[
∂B

∂β
+
(
h̄ω

2

)2

A

]
= 0 . (C.19)

All the terms in square brackets in Eq. (C.19) are independent of the

phase-space coordinates q and p. Since this equation must hold for all values

of (q, p), the two terms must vanish independently, and so

dA

dβ
− 1 +

(h̄ω)2

4
A2 = 0 , (C.20)

and
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dB

dβ
+

(h̄ω)2

4
A = 0 . (C.21)

Equation (C.20) can be rewritten

dA

1− (h̄ω)2

4 A2
= dβ . (C.22)

We now let x = h̄ω
2 A. Then dA = 2

h̄ωdx, and the above equation in terms

of x is

2
h̄ω

∫
dx

1− x2
=

∫
dβ . (C.23)

Using the identity

1
1− x2

=
1
2
d

dx
ln
(

1 + x

1− x

)
, (C.24)

we get

β =
1
h̄ω

∫
dx

d

dx
ln
(

1 + x

1− x

)
=

1
h̄ω

ln
(

1 + x

1− x

)
=

1
h̄ω

ln

(
1 + h̄ω

2 A

1− h̄ω
2 A

)
. (C.25)

Or, written in exponential form:

eh̄ωβ =
1 + h̄ω

2 A

1− h̄ω
2 A

.
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Thus,

A =
2
h̄ω

eh̄ωβ − 1
eh̄ωβ + 1

=
2
h̄ω

e
h̄ω
2
β − e−

h̄ω
2
β

e
h̄ω
2
β + e−

h̄ω
2
β

=
2
h̄ω

tanh
(
h̄ω

2
β

)
. (C.26)

Substituting this result into Eq. (C.21) we obtain

∂B

∂β
+
(
h̄ω

2

)
2
h̄ω

tanh
(
h̄ω

2
β

)
= 0 . (C.27)

The solution to (C.27) is

B = − h̄ω
2

∫
dβ tanh

(
h̄ωβ

2

)
. (C.28)

To solve this integral, we consider

tanhx =
sinhx
coshx

=
d

dx
ln(coshx) . (C.29)

Let h̄ωβ
2 = x, so dβ = 2

h̄ωdβ. Then

B = − h̄ω
2

2
h̄ω

∫
dx tanhx

= −
∫
dx

d

dx
ln (coshx)

= − ln (coshx)
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= − ln
[
cosh

(
h̄ωβ

2

)]
. (C.30)

We can now substitute this expression for B, as well as the expression

for A given by Eq. (C.26), into the original ansatz Eq. (C.12) for the

un-normalised distribution function:

ΩW = e−AHW+B

= e− ln cosh( h̄ωβ2 )e−
2
h̄ω

tanh( h̄ωβ2 )H

=
1

cosh
(
h̄ωβ

2

)e− 2
h̄ω

tanh( h̄ωβ2 )H . (C.31)

To obtain the distribution function for the canonical ensemble, we now

need to normalise ΩW . The canonical partition function is defined as

Z(β) =
∫ ∫

dqdpΩ

=
1

cosh
(
h̄ωβ

2

) ∫ ∫ dqdpe
− 2
h̄ω

tanh( h̄ωβ2 )
(
p2

2m
+ 1

2
mω2q2

)
. (C.32)

This double integral factorises:

Z(β) =
1

cosh
(
h̄ωβ

2

) ∫ dpe−
2
h̄ω

tanh( h̄ωβ2 ) p
2

2m

∫
dqe−

2
h̄ω

tanh( h̄ωβ2 )mω2

2
q2
.

(C.33)

Both integrals are simple Gaussians, and so

Z(β) =
1

cosh
(
h̄ωβ

2

)
 π(

1
h̄ωm

)
tanh (h̄ωβ)

 1
2 (

π(
mω
h̄

)
tanh (h̄ωβ)

) 1
2
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=
1

cosh
(
h̄ωβ

2

) π

tanh
(
h̄ωβ

2

) 1√
1

h̄ωm
mω
h̄

=
πh̄

cosh
(
h̄ωβ

2

) cosh
(
h̄ωβ

2

)
sinh

(
h̄ωβ

2

)
=

πh̄

sinh
(
h̄ωβ

2

) . (C.34)

Now the Wigner transformed distribution function is given by

ρW =
1

Z(β)
ΩW .

Substituting the derived terms for Z(β) and ΩW yields the final result,

ρW (q, p, β) =
sinh

(
h̄ωβ

2

)
πh̄

e−
2
h̄ω

tanh( h̄ωβ2 )H

cosh
(
h̄ωβ

2

)
=

1
πh̄

tanh
(
h̄ωβ

2

)
e−

2
h̄ω

tanh( h̄ωβ2 )H . (C.35)

High-Temperature Limit

In the high-temperature limit, it is possible to show that we recover the

classical canonical distribution function. We have

T →∞, ⇒ β → 0 . (C.36)

We can write the hyperbolic tangent in terms of exponentials and take first-

order approximations, so

tanh
(
h̄ωβ

2

)
=

e
h̄ωβ

2 − e
h̄ωβ

2

e
h̄ωβ

2 + e
h̄ωβ

2

=
1 + h̄ωβ

2 −
(
1− h̄ωβ

2

)
1 + h̄ωβ

2 + 1− h̄ωβ
2
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=
h̄ωβ

2
. (C.37)

Then, Eq. (C.35) becomes

ρW (q, p, β) =
1
πh̄

h̄ωβ

2
e

2
h̄ω

h̄ωβ
2
HW

=
ωβ

2π
e−βHW . (C.38)

The factor ωβ
2π must be the inverse of the partition function for this to

be the classical canonical result. This is easily checked:

Z(β) =
∫ ∫

dqdp e−βH

=
∫
dq e−β

mω2q2

2

∫
dp e−β

p2

2m

=

√
2π

βmω2

√
2πm
β

=
2π
βω

. (C.39)

We have thus shown that the classical canonical distribution function

is recovered from the quantum-Wigner canonical distribution in the high-

temperature limit.
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