# THE LITHOSTRATIGRAPHY

#### AND

#### PETROGENESIS

# OF THE

# NSUZE GROUP

# NORTHWEST OF NKANDLA,

# NATAL

#### by

# Peter Bruce Groenewald.

N -Thesis (MSC, Geology) - Uncircriting of Natal, Petermaniciphentes, 1984. N Tel am MAPTY / J 1 1 M. M. 684/050

Submitted in partial fulfilment of the requirements

for the degree of Master of Science in the

Department of Geology, University of Natal,

Pietermaritzburg, South Africa.

I, PETER BRUCE GROENEWALD, hereby declare that this thesis is my own original work, that all assistance and sources of information have been acknowledged, and that this work has not been presented to any other University for the purpose of a higher degree.



# ABSTRACT

The volcanic and sedimentary Nsuze Group constitutes the lower part of the 3.0 Ga Pongola Supergroup which is exposed sporadically in southeastern Transvaal, Swaziland and northern Natal.

The pre-Nsuze basement in the area studied consists of the Nondweni Group, a typical Archaean volcanic and sedimentary sequence, and gneissic tonalite. This basement was deformed and denuded prior to deposition of the Nsuze Group which rests upon greenstones to the north and south of the study area and on tonalite in the east.

The 4 000 m thick Nsuze Group consists of five formational units. The lowest unit in the north of the study area, the Ndikwe Formation is a 1 200 m thick assemblage of sediments, pyroclastics and lavas. Turbidites, BIF and shallow marine siliciclastic sediments interdigitate with ash-flow and ash-fall tuffs. Rare, thin lava flows of basaltic andesite are also present. This sequence reflects a complex history of synchronous sedimentation and volcanism which is interpreted as precursory to the main development of the Nsuze depository.

This unit interdigitates with, or is overlain unconformably southwards by the Mdlelanga Formation, a thick ( $\sim 1\ 200\ m$ ) sequence of arenaceous and argillaceous rock-types. Biogenic carbonates occur sporadically at the base of the unit. Debris flow deposits high up in the formation contain large blocks of locally derived quartz-arenite and smaller fragments of tuff and banded iron formation.

The Qudeni Formation, a 40 - 600 m thick sequence of andesites and basaltic andesites, overlies the lower two stratigraphic units, apparently conformably. This formation becomes significantly thinner north of its type area in the Nsuze River Valley. Lava flows are rarely recognizable and extensive silicification, chloritization and epidotization is present. Plagioclase

(i)

phenocrysts are commonly present in these lavas which are predominantly composed of tremolite, chlorite, untwinned albite and guartz.

Overlying this is the Vutshini Formation, a 600 - 1 000 m sequence of arenaceous and argillaceous sediments. These sediments are heterogeneous with alternations of argillites, ferruginous argillites and mature arenites on a variety of scales. Immature arenites occur in the basal and upper parts of the formation.

The overlying Ekombe Formation has a limited outcrop area with a residual thickness of only 60 m. It consists of andesitic lavas.

Preliminary sedimentological analysis of the Nsuze Group suggests that shallow marine sediments are dominant. Facies associations similar to those of intertidal prograding, transgressive tidal and proximal to distal shelf models are recognized. More rare are sequences ascribed to braided stream depositional environments. Palaeocurrent data indicate that flow towards the south and southeast was most common. A more distal setting than that observed elsewhere in the Nsuze Group is inferred.

The geochemistry of the Nsuze volcanics is as yet poorly understood because many of the samples analysed display aberrant chemistry as a result of pervasive alteration. In some cases this alteration is attributed to interaction with sea water soon after extrusion. Tholeiitic and calc-alkalic affinities are present, but the available data do not allow a more definite classification of the magma type. Major and trace element abundances differ slightly for the two volcanic units analysed. The data are inadequate for petrogenetic modelling of the volcanics.

Deformation of the Archaean sequences is dominated by tight to isoclinal folding possibly related to the 1 000 m Natal Thrust Front. An earlier folding event is recognized and a younger weak deformation is locally distinguishable.

(ii)

Faulting associated with the dominant folding event produced crestal and wrench displacements. Younger block faulting of two generations is also present.

Metabasites are characterized by the presence of tremolite-chlorite-albiteclinozoisite/epidote. Biotite and muscovite co-exist in metapelites, an assemblage which is taken to indicate upper greenschist facies metamorphic conditions. More than one metamorphism cannot be discounted as early phyllonitic cleavages are present, and post-folding, unfoliated dykes also have greenschist facies mineral assemblages.

Numerous intrusions of mafic and ultramafic rock-types are present in the study area and include the pre-metamorphic sills of the Hlagothi Complex, and metapyroxenite and metagabbro dykes. The Hlagothi sills are conformable with the Nsuze Group which they intrude close to its stratigraphic base. The age of the complex is equivocal, but it does predate the main penetrative deformation. The form of the sills suggests intrusion at depths shallower than the inferred maximum thickness of the Nsuze Group. The sills consist of peridotites, pyroxenites, olivine gabbronorites and gabbros which define a threefold macrolayering of each body. Smaller-scale layering of olivine-rich and -poor lithologies occurs locally. The upper marginal rocks of the sills have a skeletal texture identical to the spinifex textures of extrusive komatiites. Geochemistry of the complex indicates that fractionation of olivine, orthopyroxene and clinopyroxene has occurred. Estimated bulk compositions derived from quench-textured marginal rocks are consistent with the inferred crystallization history of the body and, significantly, conform to criteria for the recognition of basaltic komatiites of the Barberton type. The composition is similar to spinifex-textured rocktypes from the Nondweni Group in its type area.

Ultramafic units within the Nsuze Group appear to be locally transgressive and represent either intrusions or intersliced sheets of the pre-Nsuze basement. These bodies have chemical similarities to komatiites. If they represent

(iii)

intrusions, they provide further evidence of a post-Pongola resurgence of komatilitic magmatism. Other pre-tectonic intrusions show petrographic similarities to the complex, but there is little geochemical evidence for this.

Most of the area studied consists of Phanerozoic cover sequences. The Natal Group comprises conglomerates, immature arenites and argillites which locally attain thicknesses of 60 ~ 100 m. These are interpreted as alluvial fan deposits. Karoo Sequence sediments of the Dwyka and Ecca Groups are present. These are glaciogenic diamictites and sandstones, and pelagic argillites respectively. High ground in much of the area consists of post-Karoo dolerite in the form of 10 - 150 m thick sills of wide lateral extent.

# CONTENTS

| CHAPTER 1 - INTRODUCTION                                                                                                                                                                                                                           | Page                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| <ol> <li>General</li> <li>Location and Extent of the Study area</li> <li>Objectives and Methods</li> <li>Previous Work</li> <li>Age and Chronostratigraphic Relationship of the<br/>Nsuze Group to the Archaean of southern Africa</li> </ol>      | 3<br>3<br>5<br>6<br>8                  |
| CHAPTER 2 - TECTONIC AND STRATIGRAPHIC FRAMEWORK                                                                                                                                                                                                   |                                        |
| <ol> <li>General</li> <li>The Nondweni Group</li> <li>Gneissic Tonalite</li> <li>The Nsuze Group</li> <li>The Natal Group</li> <li>The Karoo Sequence</li> <li>Intrusions</li> </ol>                                                               | 10<br>12<br>15<br>17<br>18<br>20<br>23 |
| CHAPTER 3 - NSUZE GROUP - LITHOSTRATIGRAPHY                                                                                                                                                                                                        |                                        |
| <ol> <li>The Ndikwe Formation</li> <li>The Mdlelanga Formation</li> <li>The Qudeni Formation</li> <li>The Vutshini Formation</li> <li>The Ekombe Formation</li> <li>Discussion</li> </ol>                                                          | 26<br>40<br>42<br>50<br>51<br>52       |
| CHAPTER 4 - STRUCTURE AND METAMORPHISM                                                                                                                                                                                                             |                                        |
| <ol> <li>Introduction</li> <li>Structure</li> <li>Metamorphism</li> </ol>                                                                                                                                                                          | 56<br>56<br>63                         |
| CHAPTER 5 - SEDIMENTOLOGY OF THE NSUZE GROUP                                                                                                                                                                                                       |                                        |
| <ol> <li>General</li> <li>Dominant Sedimentary Facies</li> <li>Sediment Gravity Flow Deposits</li> <li>Facies Associations and Sequences</li> <li>Palaeocurrent Direction</li> <li>Summary of Sedimentological Data and Interpretations</li> </ol> | 69<br>70<br>101<br>107<br>124<br>128   |

.

| CHAPT | ER 6 - GEOCHEMISTRY OF THE NSUZE LAVAS | Paga |
|-------|----------------------------------------|------|
|       | AND SUME DETRAMATIC ROCK-TTPES         | raye |
| 1.    | Introduction                           | 129  |
| 2.    | Alteration                             | 129  |
| З.    | Oxidation Ratio of Iron                | 133  |
| 4.    | The Nsuze Group                        | 135  |
| 5.    | Ultramafic Rocks                       | 147  |
| 6.    | Discussion                             | 152  |

# CHAPTER 7 - THE HLAGOTHI COMPLEX

.

| 1, | Introduction                                      | 164 |
|----|---------------------------------------------------|-----|
| 2. | Field Relationships and Extent of the Complex     | 164 |
| 3. | Petrography                                       | 166 |
| 4. | Geochemistry                                      | 187 |
| 5. | Comparison of Skeletal Pyroxene and True Spinifex | 202 |
|    | Textures and Implications for Petrogenesis        |     |
| 6. | Magmatic Affinity                                 | 206 |
| 7. | Relationship of Complex to Pre-Tectonic Dykes     | 209 |

# CHAPTER 8 - DISCUSSION AND CONCLUSIONS

| 1. | The Pre-Nsuze                      | 217 |
|----|------------------------------------|-----|
| 2. | The Nsuze Group                    | 218 |
| 3. | Early Post-Nsuze Intrusions        | 221 |
| 4. | Structural and Metamorphic History | 223 |
| 5. | Conclusions                        | 224 |

227

## ACKNOWLEDGEMENTS

| REFERENCES | 229 |
|------------|-----|
| APPENDIX   | 241 |

---000000----

# CHAPTER 1

#### INTRODUCTION

#### 1. General

The Archaean Pongola Supergroup occurs in isolated, but locally extensive exposures in northern Natal, southeastern Transvaal and southern Swaziland (Fig. 1.1). The Supergroup overlies granitoid basement and greenstones unconformably. It is commonly obscured by younger cover of the Natal Group and Karoo Sequence.

The Pongola sequence is subdivided into a lower, predominantly volcanic Nsuze Group and an upper, mostly sedimentary Mozaan Group. The type areas for these groups are in the extensive outcrops in the Vryheid - Piet Retief area. The Nsuze Group in this northern area consists of a lower volcanic-sedimentary unit 800 m thick, overlain by 7 500 m of volcanics which, in turn, are overlain by a volcaniclastic-sedimentary unit locally attaining a thickness of 600 m (Armstrong *et al.*, 1982). There is an upward transition from this unit into the Mozaan Group which comprises 3 000 m of alternating argillites and arenites with a subordinate, upper volcanic zone (Watchorn, 1978).

In the southern inliers of the Mhlatuze, Nsuze, Buffalo and White Mfolozi Rivers, the stratigraphy is somewhat different (Fig. 1.2). The Nsuze Group has a residual thickness of, at most, 4 500 m. It consists of alternating sedimentary and volcanic units with considerable lateral variations in thickness and lithology. The Mozaan Group is present only in the White Mfolozi inlier (Matthews, 1967), where it is lithostratigraphically similar to the type area described by Watchorn (1978). It is separated from the Nsuze Group by an angular unconformity inclined to the southeast. The Mozaan Group is not present in the inliers around Nkandla.



Figure 1.1 Locality map showing distribution of Pongola Supergroup inliers. Study area is indicated by the arrow in lower centre of map.

The present study is concerned with several inliers northwest of Nkandla (Fig. 1.2). The Nsuze Group in this area is exposed in two major synclines. These trend east-west with opposed plunges. The Central Nsuze Syncline plunges west, whereas the more northerly Gem Syncline plunges east. The intervening anticline has been disrupted by diabase intrusion and faulting. Discontinuous outcrop from the highest exposed stratigraphic level in the Vutshini Syncline to the inliers in the upper Mhlatuze Valley in the northeast of the study area provides a section through most of the stratigraphic thickness of the Nsuze Group. North of the Gem Syncline is an area of tight, small-scale folding. This peters out northwestwards in the headwaters of the Nsuze Valley. Here dips are consistently southwards, except where local deformation related to the intrusion of major gabbro sills has occurred.

# 2. Location and Extent of the Study Area

The study area is situated northwest of Nkandla and covers some 280 square kilometres (Map 1): Rocks of the Nsuze Group occur in several isolated windows in the Phanerozoic cover sequences which in total cover just over 30% of the area.

Access is by way of gravel roads between Nkandla, Qudeni, Fort Louis and Babanango. Minor tracks traverse the areas between the roads and may be negotiated to within easy walking distance of remoter parts of the area. The topography is generally rugged, with most of the outcrops in deeply-incised valleys. This is especially true in the southern part of the area where valleys 300 m deep have been incised. Fresh outcrop is most common in these actively eroding river valleys which provide good vertical and lateral sections through the rock sequences.



Figure 1.2 Distribution and stratigraphy of the southern part of the Pongola depository. Intervals of 1 000 m indicated on stratigraphic columns. (Modified after Matthews, 1967).

#### 3. Objectives and Methods

This study is intended to establish the lithostratigraphy, depositional palaeoenvironment and petrogenesis of Nsuze Group sediments and volcanics in the southern part of the Pongola basin. The area is of particular interest in that no detailed work has been done since the pioneering mapping carried out by A.L. du Toit (1931).\* Recognition of the antiquity of the sequence dates back to Hatch (1911) who used the name "Insuzi\*\* Series", a term subsequently applied to the lower division of the Pongola Supergroup in other areas.

Mapping of the area was done directly onto 1 : 10 000 aerial photographs. Various marker horizons were identified and used to provide lateral correlation in areas of discontinuous outcrop. A formal stratigraphic subdivision was defined in an attempt to conform with the stratigraphy given by Matthews (1979, cited by SACS, 1980). Subdivision presented serious problems in that the area is complexly deformed and rapid lateral changes in thickness and lithology are characteristic of the Nsuze Group in this area.

Sedimentological analysis of measured sections was undertaken and this enabled identification of the dominant environments of deposition. Diagenetic and metamorphic effects have obscured primary sedimentary textures and structures in parts of the area. This has rendered very detailed sedimentological work impracticable.

The petrography of the volcanic rocks and various diabasic and layered gabbroic intrusions was studied. Fifty samples were analysed by X-ray fluorescence spectroscopy for eleven major and minor elements and thirteen trace elements. The trace elements are: Sc, V, Cr, Ni, Cu, Zn, Ba, Rb, Sr, Y, Nb, Zr and La. These data provide the basis for discussion of magma type, tectonic setting and petrogenesis. The analytical methodology is described in Appendix 4.

\* This mapping was completed in 1918 but not published until 1931.

\*\* The spelling of "Insuzi" has been changed to "Nsuze", SACS (1980) in order to conform with accepted usage in the vernacular language.

The effects of metamorphism on the rocks were investigated using petrographic sections. Although the age of the metamorphism is not precisely known, the pre- or post-metamorphic age of various intrusions was established petrographically. The deformational history of the area has been partly elucidated using numerous measurements of S surfaces. At least two folding events are discernible locally, but appear to be coaxial and indistinguishable on a regional scale. The age relationships of block faulting and thrusting were investigated where the exposures permitted this.

#### 4. Previous Work

Previous work on the Nsuze Group inliers around Nkandla is limited to a few publications and the unpublished mapping of Matthews (1979). The emphasis thus far has been on elucidating the regional stratigraphy and structural geology; hence little is known about the detailed lithostratigraphy, sedimentology and deformational history of the area.

Du Toit (1931) proposed a six-fold subdivision of the Nsuze Group into alternating quartzite and volcanic units (Table 1.1). He proposed a correlation of these units with the lower Pongola series recognized by Humphreys (1912, p. 99) in the Vryheid - Utrecht area.

Matthews (1979, unpublished work cited in SACS, 1980) proposed a formal nine-fold subdivision of the group. The lower five formations (Table 1.1) correspond to the units of Du Toit (1931), whereas the upper four define a stratigraphy which is apparently unique to the Central Nsuze Syncline. Matthews (1979) could not correlate these units beyond the limits of this syncline due to shearing in the anticlines separating it from the adjacent structures.



The relationship of the granitoids east of Nkandla to the Nsuze Group has been the subject of some dispute. Du Toit (1931, p. 53) considered two phases of intrusion to be present, one predating and the other postdating the Nsuze. Matthews (1959) found that all the granitoids postdated the Nsuze Group because they intrude what he considered to be the lowest sedimentary unit of the Nsuze Group. Subsequently (Matthews, 1979, cited SACS, 1980) correlated the sediments intruded by the granites with the Nondweni Group, and acknowledged a normal sedimentary contact between stratigraphically higher sediments and the granitoids, thus demonstrating that intrusion occurred prior to accumulation of the Nsuze sequence.

A series of mafic-ultramafic sills intrusive into the lower Nsuze sediments in the north of the area was recognized by Du Toit (1931). He named these intrusions the Hlagothi Complex in view of their lithological variability and substantial extent from the upper Mhlatuze Valley in the east to west of the Nsuze River, and possibly as far as the Buffalo River. No work has been done on the Hlagothi Complex since Du Toit's (1931) study.

# 5. Age and Chronostratigraphic Relationship of the Nsuze Group to the Archaean of southern Africa

Direct radiometric age determinations have not yet given a precise age for the Nsuze Group. An age of  $3.090 \pm 0.090$  Ga (U-Pb) for lavas from the Nsuze River inlier was obtained by Burger and Coertze (1973), who considered the age reliable. Nsuze Group lavas from southwestern Swaziland give a Rb-Sr whole rock age of  $2.900 \pm 0.060$  Ga (Allsopp, unpublished data, cited by Barton, 1983, p. 76). (All Rb-Sr ages have been recalculated using a decay constant of  $1.42 \times 10^{-11} \text{ yr}^{-1}$ ).

Near Amsterdam in the southeastern Transvaal the Pongola Supergroup rests unconformably on the Lochiel Granite which is dated at  $3.028 \pm 0.014$  Ga (Rb-Sr whole rock) (Barton *et al.*, 1983). Pre-Nsuze Group granitoids in the

Vryheid - Piet Reitef area have yielded two ages,  $3.160 \pm 0.080$  Ga (Allsopp, unpublished data, quoted in Burger and Coertze, 1973, p. 18; Rb-Sr whole rock) and  $2.980 \pm 0.070$  Ga (Burger and Coertze, 1973; U-Pb). The maximum age of the Pongola Supergroup is thus close to  $\sim 3.0$  Ga.

A minimum age is provided by the Usushwana Complex which intrudes Pongola rocks in the northern outcrop areas. The complex has been dated at 2.813  $\pm$  0.059 Ga (Rb-Sr whole rock, Davies *et al.*, 1970).

The Pongola Supergroup has considerable chronostratigraphic significance for the evolution of the Kaapvaal craton because it is different in every respect from typical Archaean sedimentary-volcanic assemblages emplaced synchronously, notably those of Zimbabwe (Hawkesworth *et al.*, 1979), North America (Peterman, 1979) and Australia (reviewed by Windley, 1977, p. 29). Most important is the evidence for accumulation of the Pongola sediments and volcanics in a stable, epicratonic environment at about 3.0 Ga.

# CHAPTER 2

#### TECTONIC AND STRATIGRAPHIC FRAMEWORK

#### 1. General

Diverse lithologies of various ages occur in and around the study area. Although this study is mainly concerned with the Nsuze Group, the regional tectonic and chronostratigraphic setting is considered an essential part of the study. The description which follows extends beyond the limits of the actual study area; where data sources have not been indicated the information is based on unpublished data accumulated by the writer in 1980-1981 during a mineral exploration project in the region. A simplified stratigraphic column is shown in Figure 2.1.

The regional geology is dominated by two tectonic features: (i) the thrust belt which defines the southern limit of the Kaapvaal craton and (ii) the basement high extending from east of Nkandla to Nondweni (Fig. 1.2).

Volcanics with intercalated sediments of the Nondweni Group occur as a discontinuous belt within the basement high. They have been intensely deformed, and were intruded by tonalitic granitoids prior to initiation of the Pongola depository. The Nsuze Group rests unconformably on the granite-greenstone terrane. The residual thickness of the group increases progressively southwards from the basement high. Individual units also increase in thickness in the same direction. The Nsuze sequence is terminated abruptly by the Natal Thrust Front, which marks the northern limit of the Natal high-grade metamorphic province. The north-verging imbricate thrusts of the Thru: Front reflect the orientation of the compressive forces responsible for deformation of the Nsuze Group. This major tectono-thermal event ( $\sim$  1 000 Ma) obliterated most of the evidence of an early deformational history and resulted in tight to isoclinal folding of the Nsuze Group about east-west trending axes.

| Supergroup/<br>Sequence | GROUP            | FORMATION | INTRUSIONS                                                                             |
|-------------------------|------------------|-----------|----------------------------------------------------------------------------------------|
|                         |                  |           | Dolerite sills and<br>dykes                                                            |
| Kamaa                   | Ecca             |           |                                                                                        |
| кагоо                   | Dwyka            |           |                                                                                        |
| Cape (?)                | Nata]            |           | Monzogabbros/Gabbros/<br>Syenites/Pyroxenites/<br>Diorite/Porphyry<br>Hlagothi Complex |
|                         |                  | Ekombe    |                                                                                        |
|                         |                  | Vutshini  |                                                                                        |
| Pongola                 | Nsuze            | Qudeni    |                                                                                        |
|                         |                  | Mdlelanga |                                                                                        |
|                         |                  | Ndikwe    | Gneíssic Tonalite                                                                      |
|                         | <b>Nondwen</b> i |           |                                                                                        |

Figure 2.1 Simplified stratigraphic sequence for the area northwest of Nkandla.

Much of the area is now overlain by the undeformed Phanerozoic Natal Group and Karoo Sequence. These sedimentary successions occupy a rugged palaeotopography which reflects pre-Natal downwarping to the southeast of the present Natal coastline (Hobday and von Brunn, 1979). Numerous post-Karoo dolerite sills are present in the area.

A prominent lineament strikes east-southeast across the northern part of the study area. This feature has been the locus of several episodes of intrusion, notably pre-metamorphic gabbros of the Hlagothi Complex, syn- or late-tectonic syenites and monzogabbros and post-Karoo dolerites. As is demonstrated in Chapter 7, the Hlagothi Complex is of basaltic komatiite composition possibly reflecting tapping of upper mantle sources by deep fracturing. Alkaline rocks are also characteristic of rift settings. Thus, a long-lived, deep-seated fracture or rift feature is probably present. However, the significance and implications of the lineament are not yet understood fully and considerable further work is required.

# 2. The Nondweni Group

The most extensive outcrops of this volcanic and sedimentary sequence lie in an arcuate belt of inliers north of the study area (Fig. 1.2). Another linear belt southeast of Nkandla has also been correlated with the Nondweni Group (Du Toit, 1931, p. 29). The name of the group is derived from the area surrounding Nondweni where the similarity of the succession to the Barberton Sequence was first recognized by Du Toit (1931).

The age of the group is not known with any degree of precision as direct radiometric age determinations have yet to be reported. It predates tonalitic basement which yields ages of  $3.138 \pm 0.038$  Ga (U-Pb on zircons, A. Burger, pers. comm.) to  $3.160 \pm 0.080$  Ga (Rb-Sr, Allsopp, unpublished data quoted by Burger and Coertze, 1973, p. 18).

A formal stratigraphic subdivision of the Nondweni Group has not yet been published. Work still in progress in the Nondweni area suggests that a substantial thickness of komatiites, basalts, rhyolites, cherts and clastic sediments is present (J.A. Versfeld, pers. comm., 1983).

Metamorphosed ultramafic rocks ascribed to the Nondweni Group are present at one locality in the study area. Field relations are equivocal, but there is other evidence to substantiate the correlation. The occurrence is situated in a structurally low, fault-controlled site close to the stratigraphic base of the Nsuze Group. In addition, the rocks may be defined as ultramafic komatiites (on chemical criteria), rock types which have not yet been reported from the Nsuze Group. Metamorphic textures and structural features of the rocks do not clarify the age relationships.

The exposure of the Nondweni Group rocks at the confluence of the Mdlelanga and Welendhlovu Rivers lies within the core of the anticline separating the Gem and Central Nsuze Synclines (Map 2). The dark greenish-grey, tremolite-talc-chlorite schists are highly sheared and their exact relationship to overlying Nsuze sediments cannot be established. This is due to the presence of a cross-cutting diabase dyke and to shearing at the interface between the schists and the quartzites (Fig. 2.2). Grain size within the schists is highly variable with tremolite laths ranging from barely discernible to several millimetres in length. The rock has a well-developed tectonic fabric. Planar zones of interlayered schists and secondary quartz demarcate faint changes in lithology and are thought to represent sheared primary bedding features, possibly flow top breccias. An irregular 1 m long amygdaloidal zone is present below one of these zones.

In thin section, the rock is seen to have variable composition and grain size (BG112, 122, 123, 124, Appendix 1). The minerals present are: tremolite (45 - 90%); chlorite (5 - 50%); and talc ( $\sim$  5%).



Figure 2.2 Schematic section through the area between the Gem and Central Nsuze Synclines at the confluence of the Welendhlovu and Mdlelanga Rivers. : Sample localities (cf. Chapter 6).

The tremolite laths, which occur as well-defined aggregates, have acicular, branching terminations (Fig. 2.3). These needles are commonly bent, rotated or kinked. Ragged flakes of chlorite are either evenly dispersed or concentrated in cleavage planes. This cleavage is crenulated, indicating more than one deformational event. Microfracturing of some tremolite laths also indicates that deformation has occurred after the main metamorphic event. Euhedral chrome-spinel is present locally, as are ragged patches of an opaque mineral, possible magnetite.

Another occurrence of ultramafic rocks is situated west of Ndikwe (Map 2). Here ultramafic schists have been caught up in the sole of a thrust fault and lie within the Nsuze sequence. The mineral assemblages in these schists range from talc-chlorite to talc-tremolite and talc-magnesite-tremolite.

Several analyses of the two ultramafic units were undertaken in order to assess the possibility that they are related to the Nsuze volcanics. This geochemistry is discussed in a later chapter, but it is worth noting that trace element data indicate similarities to the Nondweni rather than to the Nsuze volcanics.

#### 3. Gneissic Tonalite

A small outcrop of gneissic tonalite is present in the upper reaches of the Mhlatuze River on the farm Driefontein 336 (Maps 1 and 4). Tonalitic gneisses are also present east of Nkandla(Matthews and Charlesworth, 1981).

In outcrop the tonalite is a pinkish-grey, medium-grained, foliated, leucocratic rock. In thin section the rock is seen to consist of 60% plagioclase, 26% quartz, 10% microcline, 3% chloritized biotite and 1% white mica (point count analysis). Trace amounts of chlorite, epidote, sphene and apatite are also present. The seriate, granular rock has very large, elongated quartz grains (4 - 8 mm long) which display minor strain-



Figure 2.3 Photomicrograph of tremolite-chlorite schist from the Welendhlovu-Mdlelanga confluence (60x magnification).



Figure 2.4 Photomicrograph of tonalite form the Nkungumathe inlier. Note deformed quartz and large plagioclase primocrysts with smaller late plagioclase crystals along margins (centre right). Saussuritization of plagioclase is also visible (25x magnification).

induced wavy extinction. Large (3 - 4 mm) equant grains of oligoclase-andesine have abundant small grains of albite along their boundaries. This texture is reminiscent of a mortar texture that has been partly obscured by recrystallization (Fig. 2.4). It appears that the feldspar in the rock has undergone brittle deformation, whereas the quartz deformed ductilely. Small microcline grains are present interstitially. Myrmekitic texture is sparsely present in the plagioclase grains where they abut against microcline. Alteration is indicated by the chloritization of ragged patches of biotite and the extensive saussuritization of the larger plagioclase grains.

The tonalites are intrusive into the Nondweni Group east of Nkandla (Du Toit, 1931, p. 55) and contain large xenoliths of amphibolite southeast of the study area. They are overlain unconformably by the Nsuze Group, and in the exposure mentioned above, conglomerates of this group may be observed to occupy palaeochannels scoured in the underlying tonalite. Direct radiometric age determinations of the tonalitic gneisses have not yet been reported. However, Charlesworth and Matthews (1981, p. 34) cite a personal communication (T. Elworthy, E. Barton and R. Harmer) of preliminary Rb-Sr isochron data which indicate ages of 3.177 to 3.199 Ga for granitoids along the southern limit of the Kaapvaal craton.

# 4. The Nsuze Group

The Nsuze Group has been mapped in greater detail than the other units and its stratigraphy is the subject of a later chapter. The erection of a formal lithostratigraphy for the group poses problems in that it is structurally complex, has considerable lateral variability in thickness and lithology, and occurs in several discrete inliers. The stratigraphic subdivision proposed by Matthews (1979, cited SACS, 1980, p. 73) has been used, with the addition of one new formational name. The Nsuze Group is subdivided as follows:

- (i) Ndikwe Formation: a sequence of intercalated volcaniclastic and epiclastic sediments up to 1 000 m thick, but wedging out southwards, at the base of the group. This formational unit has not previously been recognized.
- (ii) Mdlelanga Formation: a 1 200 m thick unit of quartz wackes and quartz arenites at the base of the Nsuze Group. It attains maximum thickness in the south of the study area and wedges out or interfingers with the Ndikwe Formation to the north.
- (iii) Qudeni Formation: a basaltic andesite, andesite and dacite unit overlying the lower two formations. It increases in thickness from 50 m in the north to 750 m in the south of the area.
- (iv) Vutshini Formation: an argillaceous and arenaceous sedimentary unit1 000 m thick.
- (v) Ekombe Formation: this is stratigraphically the highest unit of the Nsuze Group in the study area and comprises at least 60 m of andesitic volcanics. It is present only in the core of the Vutshini Syncline. This unit was previously termed the Mankane Formation (Matthews, 1979, cited SACS, 1980).

#### 5. The Natal Group

Sediments of the Natal group are exposed in the Mdlelanga, Nsuze and Mhlatuze River valleys. They overlie the Nsuze Group on a rugged palaeotopography which represents a major erosional episode. The Natal Group comprises, in order of abundance, conglomerates, arkosic arenites and argillites. Clasts in the conglomerates are predominantly boulder-size, but decrease in size upwards. The clasts are well-rounded to subrounded and reflect the lithology of the basement with Nsuze quartzite and vein quartz being the dominant clast types. Rare gneiss and jaspilite clasts are also present. The conglomerates display moderate to good sorting and are clastsupported. Clast imbrication indicates a southeastward palaeocurrent direction. Arkosic sandstones overlie boulder conglomerates either gradationally in upward-fining sequences, or abruptly. These typically medium- or coarsegrained immature sediments contain rare mudstone intercalations. The mudstone units may occur as drapes over primary structures, as discrete layers or as a more regular interlayering with the arkose. Sedimentary structures are commonly obscured by weathering. Where present, the sedimentary structures observed are planar, angular based cross-stratification or trough cross-stratification.

Maroon, micaceous silty mudstones occur in the Mhlatuze and Mdlelanga River exposures (Map 1). At the former locality they overlie arkoses within palaeovalleys and contain minor intercalations of arkosic sandstone. The mudstones extend beyond the limits of these valleys and rest directly on basement rocks to the north.

At the Mdlelanga locality mudstones appear to have accumulated prior to the deposition of boulder conglomerates which occupy an incised palaeovalley cut into the mudstones.

A synthesis of Natal Group sedimentology (Hobday and von Brunn, 1979) has demonstrated that the association of boulder conglomerates and arkosic sands most probably resulted from aggradation of a humid alluvial fan. These authors considered the high flow competence, evidenced by the clast size of the conglomerates, to have resulted from the confinement of flow in steep intermontane valleys. As aggradation occurred a more distal, braided stream environment became dominant. The maroon silts represent abandoned channel deposits, or perhaps suspension deposits resulting from waning high water episodes in areas removed from the aggrading fans.

The Natal Group sediments were correlated with the Table Mountain Group of the Cape Supergroup for many years (e.g. Du Toit, 1931). This correlation is no longer considered tenable, instead an approximate lateral time equivalence with either the Table Mountain or Witteberg groups is accepted (SACS, 1980).

# 6. The Karoo Sequence

Much of the higher ground in the study area is underlain by sediments of the Karoo Sequence. These are predominantly glaciogenic sediments of the Dwyka Group, with shales of the Ecca Group preserved in topographically higher areas.

#### (a) The Dwyka Formation

Glaciogenic sediments of the Dwyka Formation overlie all the older sequences unconformably. The presence of these sediments in areas up to 100 m below the general topographic level of the Nsuze Group rocks indicates that considerable pre-Dwyka incision occurred. The best exposures of these rocks occur in the upper reaches of the Mankane River and in a belt north of Itala Mountain in the valleys of the Gozweni and Nsuze Rivers (Map 1). At the firstmentioned locality, the lower part of the sequence consists of 20 m of blue tillite. The tillite has a clay-dominated matrix which supports scattered angular clasts up to 2 m in diameter. The clasts are mainly gneisses or granite with quartzite, chert, pyroxenite and jaspilite as less frequently observed compositions. Overlying the tillite is a thick unit (> 40 m) of diamictite. This is distinguished from the tillite by its darker colour and sandier nature. Clasts are generally smaller than those in the tillite. The diamictite is overlain by a fine-grained massive sandstone unit about 19 m thick. Sedimentary structures are not recognizable because this unit has ubiquitous leisegang banding. The sandstone is overlain by an unknown thickness of diamictite.

In the valley of the Nsuze River, immediately north of Hlagothi (Map 1) diamictites, identical to those described above, crop out in a palaeovalley more than 100 m deep. These deposits have a crude stratification indicating a pulsatory depositional mechanism (Fig. 2.5). Farther to the north, these diamictites are overlain by a massive sandstone unit. This is similar to that in the Mankane Valley described above. When traced eastwards along the



Figure 2.5 Crudely stratified diamictites in the Dwyka Group north of Hlagothi Mountain. These deposits are interpreted as debris flows.

flanks of Itala Mountain, the sandstone unit bifurcates. The lower sandstone is inclined southwards at 5° and may be traced for two kilometres south along the Mhlatuze River valley on the farm Riversmeet. The upper sandstone is horizontal. The two units are separated by a great wedge of diamictite.

The deposition of the Dwyka tillites and diamictites occurred in a glacially-dominated environment. After a period of erosion by southwardmoving glaciers, the ice sheets receded, leaving behind basal tills in the deeper valleys. Debris deposited on the higher ground slumped down into the valleys as gravity flows. Periods of submergence also occurred as indicated by the presence of sandstone deposits. These processes may have been repeated, although the later ice sheets were probably not grounded. The diamictites filled the topographic depressions to form a virtually horizontal surface, on which sediments of the Ecca Group were deposited.

Nsuze Group outcrops at the base of the Dwyka Group reveal several glacial pavements. *Roche moutonées* are also recognizable at some localities. The direction of ice movement may be inferred from the striations which result from clasts embedded in the sole of the ice sheet scraping across the underlying rock. Several of these striated surfaces were measured and indicate a dominant movement towards N130°, with variations of up to 90° noted locally where the direction of movement has been influenced by elevated parts of the palaeotopography.

# (b) The Ecca Group

Outliers of the lowest shales of the Ecca Group, the Pietermaritzburg Formation, occur only in the topographically highest areas. Outcrop of the shales is rare and consequently little can be said about them. They are dark bluish-grey where fresh and weather to pale yellow, beige or grey. They are locally micaceous or ferruginous. An origin as pelagic suspension deposits is considered likely.

#### 7. Intrusions

Post-Nsuze intrusions of several types and ages are present within the area. Lithological differences between the intrusions are generally sufficiently marked to enable recognition of the various dykes and sills as belonging to different episodes. The episodes of intrusion may be subdivided into post- or pre-deformational on petnographic grounds. Where intrusions belonging to different episodes are juxtaposed the field relations allow recognition of relative ages within the pre- or post-tectonic groups.

The petrography, geochemistry and petrogenetic aspects of the pre-tectonic intrusions are the subject of Chapter 7. For this reason the description below is restricted to a brief introduction to the relative ages and distribution of the intrusions.

# (a) <u>The Hlagothi Complex</u>

This group of differentiated sheet-like bodies intrudes the lower part of the Nsuze Group in the northern part of the study area. Peridotitic, pyroxenitic and gabbroic cumulates make up the major part of each sheet. The uppermost unit of each sheet is a non-cumulate gabbro or granophyric quartz gabbro. Estimated bulk compositions for the complex fall in the basaltic komatiite-high magnesium tholeiite range as defined by Jensen (1976). Individual sheets are 50 - 300 m in thickness, with substantial lateral variation in some areas. The peridotitic cumulates have been totally serpentinitized. The primary mineralogy is largely preserved in the pyroxenites and gabbros, but the uppermost gabbros have undergone deuteric and metamorphic alteration.

The complex predates the main metamorphic and deformational event as evidenced by the tectonic fabric of the serpentinites. Greenschist facies mineral parageneses have been recognized in the gabbros.

#### (b) Other Pre-Tectonic Mafic Intrusions

Sills and dykes of metagabbro and metapyroxenite 10 - 100 m thick are common in the area between the Gem and Central Nsuze Synclines and in the area north of the Mhlazi River (Map 2). The metagabbros are typically albite-tremolite/ actinolite-epidote rocks. The meta-pyroxenites are now composed mainly of tremolite. Du Toit (1931) considered these rocks to be coeval with the Hlagothi Complex. This hypothesis is considered in Chapter 7. Dykes of plagioclase porphyry 10 - 40 m wide occur as remarkably linear and persistent intrusions in the area south and east of Hlagothi. They are intrusive into the Hlagothi Complex, but predate a greenschist facies metamorphic event. These dykes were intruded along pre-existing fault planes which form part of a north-south trending block faulting episode.

# (c) Syenite, Monzogabbro and Albitite Intrusions

Syenite and monzogabbro occur in the northeastern part of the study area in the valleys of the Mbizwe, Gozweni and Mhlatuze Rivers (Map 1). These occurrences are the westward extension of a larger syenite body in the Mhlatuze Valley which extends as far east as the farm Naauwkloof. Fresh outcrops of the syenite are not present in the study area due to the proximity of the pre-Dwyka erosion surface at the present level of exposure. For this reason it is difficult to assess the relationship between the syenites and monzogabbros. The monzogabbros are exposed in the Igozwe River valley where reasonably fresh outcrop extends for nearly a kilometre along the river bed. These rocks are separated from pyroxenites of the Hlagothi Complex by a thin remnant of Nsuze Group sediments. At the northern limit of this exposure a gabbro, which has many characteristics in common with the gabbros of the Hlagothi Complex, is in contact with the monzogabbros. The field relations are equivocal and it is not possible to establish the relative ages of the two intrusions. A narrow (10 m wide) dyke in the lower Mankane River valley (Map 2) consisting of albite (70%) and secondary carbonate (30%) is thought to be an albitite. The dyke is conformable with the general strike of the Nsuze Group volcanics which it intrudes. Its relative age, chemistry and origins are obscure.

A dark, fine-grained dyke (< 1 m wide) of syenitic composition is intrusive into Nsuze Group lavas in the Welendhlovu Valley (Map 2). The dyke is highly irregular in thickness and orientation. For this reason it was initially thought to be contemporaneous with the Nsuze magmatism, but its geochemistry is not consistent with this interpretation (Chapter 6).

# (d) Post-Tectonic Dolerite Intrusions

Dolerite of post-Karoo age occurs as narrow dykes (10 - 50 m wide) and sills which are generally more substantial (10 - 100 m thick). Dykes are rarely observed in the area, except just south of Ndikwe Store where several have been recognized (Map 2). The Dwyka Formation is virtually devoid of dolerite intrusions. The most common loci of sill intrusion are at the Ecca-Dwyka contact and within the overlying Ecca shales. Most of the higher ground in the area is underlain by about equal proportions of the Ecca Group and dolerite.

Dolerite dykes are typically fine-grained, dark, grey-black rocks. The sills are medium-grained and are variable in composition. They range from dark, feldspar-poor rocks to light grey, quartz dolerites with a high plagioclase content. The dark mineral in all the dolerites is augite, with minor amounts of olivine present in the more mafic rock types.

#### CHAPTER 3

#### NSUZE GROUP - LITHOSTRATIGRAPHY

#### 1. The Ndikwe Formation

#### General

The type area for this formation is the Nsuze River valley north of its confluence with the Ndikwe River. Continuous outcrops extend for several kilometres upstream from this area, but they are generally weathered. Other outcrops of the formation are situated between the Gem and Central Nsuze Synclines and in the valleys of Nsongeni, Gozweni, Mbizwe and Mhlatuze Rivers (Map 1).

The thickness of the formation is difficult to estimate accurately owing to deformation, lack of continuous vertical exposure, disruption of the sequence by gabbroic intrusions of the Hlagothi Complex, and lateral variation in thickness and lithology of individual units. A further complexity is introduced by the possibility that sediments of the Mdlelanga Formation, which occurs farther south, interfinger northwards with the Ndikwe Formation. A maximum thickness of 1 000 - 1 500 m is probably present in the type area. The thickness diminishes considerably farther south in the Welendhlovu-Mdlelanga inlier where the upper and lower contacts of the formation can be located. Here the sequence is disturbed by gabbro intrusions, but an estimate of 500 m is reasonable (Map 1). This southwards-thinning is ascribed to either the initial morphology of the basin or pre-Mdlelanga northwards tilting and consequent erosion to form a low-angle, angular unconformity which truncates the sequence southwards.

The dominant lithologies are pyroclastics, volcanogenic sediments, arenites and argillites. Subordinate intercalations of lava and banded iron formation are also present (Fig. 3.1). This diversity within a formational unit results



Figure 3.1 Stratigraphy of the Ndikwe Formation in its various outcrop areas.

from the complexity of internal lithological relationships which makes subdivision into smaller, more homogeneous formational units impracticable.

#### Lithology

#### (a) Volcaniclastites

Although volcaniclastites dominate the lithostratigraphy of the Ndikwe Formation, the paucity of fresh outcrops and the sheared nature of the rocks prevent detailed subdivision and description such as that presented by Armstrong (1980) for the Vryheid - Piet retief area. Several varieties of volcaniclastite can be distinguished locally, but cannot be correlated laterally for any distance.

Pyroclastic rock types make up about 65% of the formation in the type area. Bomb, lapilli and ash tuffs are most common. Crystal tuffs are present as minor constituents of the sequence, but most of the pyroclastics contain some crystals or crystal fragments.

In outcrop, the pyroclastics are greenish-grey chloritic rocks composed of very fine-grained angular or flattened volcanic fragments set in a fine, heterogeneous groundmass. Most of the volcanic fragments are of identical composition; grey or light grey dacite. Accidental fragments of amygdaloidal basalt, quartzite, chert and banded iron formation have also been recognized. These probably originated by explosive fragmentation from the sequence through which the conduits passed.

Lapilli tuffs are the most common pyroclastics. The lapilli are usually 5 - 10 mm in diameter, but range from 2 - 32 mm. Bombs up to 30 cm in diameter are relatively common in the lapilli tuffs (Fig. 3.2). The lava fragments are flattened parallel to the stratification, a feature which is conspicuous only where the angle between the primary and tectonic fabric is high (Fig. 3.3). In rocks where the angle between S<sub>0</sub> and S<sub>1</sub> is small, it is difficult to detect whether the lapilli are flattened parallel to the tectonic cleavage or the primary layering.


Figure 3.2 Lapilli tuff in the Ndikwe Formation, Nsuze Valley southwest of Ndikwe Store. Note compositional similarity of lapilli, bombs and groundmass. Accidental quartzite fragment indicated by arrow. Pen is 15 cm long.



Figure 3.3 Lapilli tuff, Ndikwe Formation, showing flattening of fragments in bedding plane. Tectonic fabric,  $S_1$ , is oblique to  $S_0$ . Note amygdales in bomb-sized fragment. Nsuze Valley, south of Ndikwe Store. Pen is 15 cm long. The primary mineralogy of the lithic fragments is not preserved. Two varieties may be distinguished in thin section. The first is a microcrystalline mica, untwinned albite and quartz assemblage which probably represents recrystallized volcanic glass (Fig. 3.4). The second is a coarser-grained, chlorite - albite - quartz - mica volcanic rock which was probably very finegrained dacite or andesite (Fig. 3.4). Larger fragments of this type may be amygdaloidal, but are considered to be juvenile ejecta because of their rounded shape (Fig. 3.3).

Crystal tuffs and crystal-bearing lapilli tuffs are common, particularly in the lowest pyroclastics on the southern flanks of Hlagothi Mountain (Map 1). Rounded to extremely angular broken crystal fragments are the dominant form. Euhedral crystals are rare. Resorption features are commonly present (Fig. 3.5). About 95% of the crystals are of quartz, the remainder being plagioclase. The quartz crystals are typically strained, 1 - 2 mm in diameter and locally contain fluid inclusions. Plagioclase crystals are generally untwinned and virtually indistinguishable from the quartz grains except for a biaxial positive optic figure and slightly higher birefringence. Glide twinning is present in some grains. The untwinned and glide twinned grains have been strained; in the case of the former, the wavy extinction pattern is identical to that of adjacent quartz grains. Apparently undeformed albite-twinned grains are rare. These plagioclase crystals have the composition of andesine using the Michel-Levy method for extinction on albite twins.

Volcanogenic sediments are rarely present at the basal and upper contacts of the pyroclastic units. An agglomerate which may have been reworked is present at the base of the third pyroclastic unit. This rock is composed of a wide variety of juvenile and accidental clast types and is sporadically developed along the contact with the underlying quartz arenite (Fig. 3.6). The agglomerate probably represents airborne ejecta which landed in water as



Figure 3.4 Photomicrograph of lapilli tuff shown in Figure 3.3. Coarsergrained fragment (centre right) is thought to be altered lava whereas very fine-grained fragment (below left centre) was probably volcanic glass. Groundmass is predominantly chlorite. Lapilli composed of mica, talc, chlorite and albite. Quartz crystals show reaction boundaries in unrecrystallized examples. (10x magnification, crossed nicols).



Figure 3.5 Crystal tuff from the Ndikwe Formation, south slope of Hlagothi Mountain. Note partial resorption of quartz and plagioclase crystals. (63x magnification, crossed nicols).

suggested by the preservation of bedforms on the upper contact of the quartz arenite. The agglomerate apparently grades upwards into lapilli tuff.

A 20-m thick unit of tuffaceous greywacke is present near the top of the highest pyroclastic unit (Fig. 3.1). It is composed of rounded volcanic clasts, 5 - 20 mm in diameter, in a sandy immature matrix. This rock type is thought to represent partially reworked debris flows or laharic breccias. This unit is overlain, with a gradational contact, by typical Ndikwe Formation lapilli tuffs. These become finer grained upwards and grade into ash tuffs. A gradual upward change in these ash tuffs to tuffaceous siltstones is observable in the area around the confluence of the Nsuze and Ndikwe Rivers. An X-ray diffraction analysis of the tuffaceous siltstones reveals that they are composed predominantly of chlorite with subordinate geothite and quartz.

The upper epiclastites contain rare dacitic lava bombs up to 25 cm in diameter. These are rounded and tapered clasts with some fractures or scalloped boundaries resembling conchoidal fractures. One bomb, weighing about 4 kg, was extracted and analysed (Chapter 6).

## (b) Lavas

Although lava flows constitute a small percentage of the Ndikwe Formation, dark greenish-gray basalt and lighter grey andesite and dacite have been recognized. These fine-grained rocks have weakly to well-developed tectonic foliation. Amygdales and vesicles are frequently present, but primary textural features such as flow top breccias, pillows or pahoehoe surfaces have not been positively identified.

The lavas cropping out along the Malunga, Ndikwe, Mankane and Mamba Rivers are dark grey to greenish-grey chloritic, vesicular basaltic andesites (Maps 2 and 3). They consist of chlorite, limpid albite and tremolite in variable proportions. Minor amounts of epidote, biotite and quartz are present.



Figure 3.6 Basal contact of third pyroclastic unit of the Ndikwe Formation north of Ndikwe Store. Note agglomerate includes wide variety of clast lithologies and that underlying bedform has been preserved. There is no evidence for basal scour. Agglomerate overlain by lapilli tuff. Pen is 15 cm long. White mica, sphene, leucoxene, opaques and carbonate occur in trace amounts. The carbonate, most probably calcite, and quartz become major constituents in carbonated and silicified zones respectively. Phenocrysts, or pseudomorphs after phenocrysts, are 1 - 3 mm long plagioclase crystals.

The amygdaloidal lavas in outcrops along the Welendhlovu and Mdlelanga Rivers are fresher and less sheared than those described above. Compositionally, the rocks range from basaltic andesite to dacite. The basaltic andesites are green, mediumgrained rocks made up of saussuritized andesine (40%), tremolite (30%), epidote (20%) and quartz (5%). Chlorite, sphene and opaques are present in accessory or trace amounts.

The andesites are dark green-grey, very fine-grained, vesicular, porphyritic rocks composed of tremolite and plagioclase laths, anhedral epidote and flakes of chlorite. The andesine phenocrysts show albite twinning and are surrounded by a thin rim of biotite-enriched groundmass (Fig. 3.7). The amygdales consist of recrystallized quartz with subordinate chlorite, biotite and epidote.

Some of the dacites have features resembling those found in welded tuffs. These include the presence of flattened, barely distinguishable lapilli, and a very fine lamination. The very fine-grained groundmass consists of actinolite, albite, quartz and epidote. Phenocrysts of quartz and oligoclase up to 3 mm in length display resorption textures. The boundaries of the flattened and welded fragments are narrow, irregular zones defined by higher concentrations of chlorite and opaques than in the rest of the groundmass (Fig. 3.8).

A basaltic andesite flow is present in the upper pyroclastic unit west of Ndikwe Store. The flow is less than a metre thick and has an irregular base thought to have resulted from disruption and compaction of the underlying, unconsolidated pyroclastic debris (Fig. 3.9).



Figure 3.7 Photomicrograph of andesite from Welendhlovu River outcrop of Ndikwe Formation. Plagioclase phenocrysts, locally glomeroporphyritic, show twinning according to albite and Carlsbad laws. Groundmass is chlorite and albite with local concentrations of biotite. Epidote at top left. (10x magnification, crossed nicols).



Figure 3.8 Photomicrograph of welded tuff from Welendhlovu River outcrop of Ndikwe Formation. Boundary of devitrified glassy fragment aligned vertically in centre of field. Note the abundant crystals. (10x magnification, crossed nicols).

#### (c) Sediments

Arenites and argillites make up over 90% of the sedimentary sequences of the Ndikwe Formation. Arenite is used as a broad term here since the quartzose rocks include quartz arenites, quartz wackes and lithic wackes. The quartz arenites are coarse- to fine-grained rocks composed of rounded to subangular quartz grains set in a sericitic or chloritic matrix which constitutes 5 - 20% of the rock. The quartz wackes are medium- to very fine-grained rocks consisting of subangular to angular quartz grains in a clayey matrix (up to 30% of the rock). The quartz arenites are generally lighter coloured than the quartz wackes. Colours range from off-white to tan and apple green for the arenites, whereas the wackes are a duller green or grey colour. The quartz grains are commonly recrystallized and have metamorphic overgrowths, although the original grain shapes have been well-preserved locally.

The argillites are quite variable mineralogically. Light brown pelites composed of white mica, quartz and plagioclase represent one end member of a continuum. At the other extreme is a dark grey phyllitic rock with a mineralogy dominated by chlorite. Other argillaceous sediments contain a high proportion of iron and may have centimetre-scale layering similar to that in the banded iron formation. Another variety of argillite is a massive black mudstone containing blocks of carbonate or siltstone. The carbonate has fine laminations reminiscent of algal mat deposits.

In the lower part of the Ndikwe Formation (Fig. 3.1) in the outcrops along the Nsuze, Gozweni, Mbizwe and Mhlatuze Rivers the arenites have been recrystallized more intensely than elsewhere due to the proximity to the intrusions of the Hlagothi Complex. In these outcrops, the arenites fine upwards into a heterolithic unit, which, in turn, is overlain by argillite.

In the outcrop on the Mhlatuze River close to Nkungumathe (Map 4), the basal arenite rests with a sedimentary contact on gneissic tonalite. Conglomerate lenses are present in channels scoured into the underlying tonalite. The medium pebble, polymictic, clast-supported conglomerate consists of subrounded quartzite and quartz clasts. The matrix has an apple green colouration due to the presence of Cr or Ni illites (recognized by XRD). These are thought to reflect high proportions of ultramafic rock types in the provenance. A 50 m-thick banded iron formation occurs in association with tuffaceous wackes about 300 m above the base in the Mbizwe River valley. The banded iron formation (BIF) comprises alternating micro- or mesobands of magnetite-rich, haematite-rich and iron-poor chert (Fig. 3.10). The BIF is laterally extensive and is recognized in the headwaters of the Gozweni and Ngwekwene Rivers (Map 4). At the former locality chert-rich bands are less abundant than elsewhere and silt is a significant component (Fig. 3.11). In the Ngwekwene inlier it is virtually devoid of light-coloured chert bands.

An arenite unit is present about 50 m above the BIF in the Mbizwe River outcrops. This unit is significant because it contains a unique internal conglomerate horizon. This is a matrix-supported, oligomictic, medium pebble conglomerate with disc-shaped clasts of haematitic cherty iron formation. Further comment on this unit is deferred to the section on debris flows (Chapter 5).

A debris flow, situated at the base of an arenite unit 1 200 m from the base of the sequence (Fig. 3.1), consists of scattered clasts up to 30 cm in diameter in a quartz wacke matrix. The clasts consist of rhyolite, black chert and fine-grained quartzite. The arenite unit overlying this debris flow is 30 m thick and is, in turn, overlain by a pyroclastic sequence in excess of 300 m thick. The volcaniclastites are overlain by a 60 m-thick unit of dark grey, glossy phyllitic argillite composed of chlorite (70%), quartz (20%) and white mica (10%). This unit probably represents a reworked ash tuff.



Figure 3.9 Thin basaltic andesite flows in pyroclastics of the Ndikwe Formation west of Ndikwe Store. The irregular basal contact is interpreted as a product of loading of the underlying lapilli tuff. Scale is 15 cm long.



Figure 3.10 Cherty banded iron formation, Ndikwe Formation, Ngwekweni Valley. Scale in centimetres.



Figure 3.11 Cherty banded iron formation showing quartzose lenses and argillaceous horízons. Ndíkwe Formation, Upper Gozweni Valley. Scale is 15 cm long.

The uppermost sediments of the formation are found in the Nsuze and Mhlazi River valleys (Map 2) north of the Gem Syncline. These comprise alternating arenites and ferruginous argillites in which sedimentary structures and textures are well-preserved (Chapter 5). The sequence consists of several thin (29 - 40 m) alternating layers in the lower part, with two much thicker (199 m) arenaceous units in the upper part. The sequence is overlain, apparently with a slight angular unconformity, by a thick sequence of pyroclastics.

## 2. The Mdlelanga Formation

#### General

The type section for the Mdlelanga Formation is situated in the valley of the Mdlelanga River in the southern part of the map area (Map 1). The name was first applied by Du Toit (1931) who referred to the formation as the Mdlelanga Quartzite. Matthews (1979, cited SACS, 1980) changed the term "quartzite" to Formation in order to conform with accepted lithostratigraphic nomenclature.

Rocks of this formation are present in the Central Nsuze Syncline and on the south limb of the Gem Syncline. They are not recognized north of the latter fold because of northward interdigitation of the Mdlelanga and Ndikwe Formations. Alternatively, the Mdlelanga Formation may have been deposited as a southwardthickening wedge as a result of differential subsidence of the depository.

The formation comprises 1 200 m of dominantly arenaceous sediments in its type area. Farther north, in the area around Vuleka, the sediments are more heterogeneous and have a total thickness of 800 m. In the Mankane River the sequence has been partly eliminated by faulting, but is at least 500 m thick.

## Lithology

In the type area the Mdlelanga Formation consists almost exclusively of recrystallized quartzose rocks. These are very pure quartz arenites with

intercalations of quartz wackes. Minor intercalations of argillite and volcanogenic sediments have been recognized. The domination of the sequence by arenites may be an illusion resulting from the extensive recrystallization of the rocks in the type area, which to some extent discourages detailed study of the sequence.

Good outcrops of the sediments are present upstream of the type area on the south limb of the Gem Syncline. The sequence in this area consists of alternating quartz arenites, siltstones and mudstones. The quartz arenite units, which are up to 30 m thick, show both upward-fining and coarsening cycles. The coarser-grained parts are mature, matrix-poor sandstones consisting of well-rounded quartz grains. These grade into finer-grained, mature quartz arenites which, in turn, grade into siltstones or mudstones. Not all the graded sequences include all of the lithologies and some abrupt changes from arenite to mudstone, for example, occur over a distance of a few centimetres. Whereas complete graded sequences range in thickness from 10 - 30 m, some incomplete sequences are thinner than 10 m and some homolithic units exceed 30 m. The various configurations and associated sedimentary structures are the result of a dynamic depositional environment as discussed in Chapter 5.

A diamictite layer cuts across a part of the sequence described above. The layer is  $\sim 40$  m thick at its eastern extremity, but becomes considerably thinner westwards. It is composed of large blocks of quartz arenite chaotically distributed in a lithic greywacke matrix. This lithology is considered to be the product of large-scale sediment gravity flow (Chapter 5).

The basal unit of the Mdlelanga Formation is a 40 m zone of calc-arenite in which carbonate lenses are present The carbonates commonly exhibit crinkle lamination of inferred biogenic origin. Stromatolites have been recognized in this unit to the south of the study area (cf. Chapter 5).

#### 3. The Qudeni Formation

#### General

The Qudeni Formation overlies the Mdlelanga Formation conformably in the Gem and Central Nsuze Synclines. The formation was called the "second volcanic group" by Du Toit (1931) and named the Qudeni Formation by Matthews (1979 cited SACS 1980) The type area according to SACS (1980) is situated south of the study area on the farm Qudeni

The formation is 580 m thick in the type area (Matthews. 1979, cited SACS. 1980) but becomes much thinner northwards. In the Gem Syncline it is 40 - 60 m thick. The correlation between the thick lava sequence of the Central Nsuze Syncline and the thinner sequence in the Gem Syncline has not previously been recognized. However, overlying sediments and the lavas themselves are lithologically similar enough to substantiate the correlation. In addition the chemistries of the correlated lavas are reasonably similar (Chapter 6). The problems of correlation stem from the structural relationship of the two synclines which brings laterally distant parts of the sequence into closer proximity with one another.

## Lithology

The Qudeni Formation comprises volcanics which range in composition from basaltic andesite to dacite. The lavas commonly contain quartz-, calcite-, chlorite- or epidote-bearing amygdales. The amygdales range from minute spherical or elongate bodies to large (20 cm) irregular bodies (Fig. 3.12). Very large tunnel-like cavities (up to 1 m in diameter) also occur. No pillow structures have been observed.

Flow top textures are rare, and, even where two flows of markedly different lithology are seen in juxtaposition, the contact is not usually characterized by any textural change. Exceptions do occur, as can be seen in the Nsuze River outcrops close to the upper contact of the Qudeni Formation. At this locality a light-coloured andesite overlies a darker basaltic andesite, in which small, spherical amygdales become more concentrated towards its highly irregular upper contact (Fig. 3.13). In the Nsuze River valley on the north limb of the Gem Syncline, flow tops are typified by networks of siliceous, light-coloured material separating angular fragments of darker-coloured rock. This texture probably represents a flow top breccia cemented by secondary quartz.

Silicification of the volcanics has occurred in some areas. This results in patchy and lenticular leucocratic zones in the lava flows. On the north limb of the Gem Syncline these silicified zones are spatially associated with the amygdales (Fig. 3.12). The introduction of silica was apparently controlled by the location of microfractures, which were probably more dilated close to voids left by gas bubbles. Alternatively, the silica-filled amygdales may have had different thermal expansion-contraction behaviour from the enclosing lava, resulting in a higher density of microfractures in their immediate area.

Another form of silicification is present on the north limb of the Vutshini Syncline. Here, angular, curved, elongate patches of silicified lava are present within unsilicified volcanics (Fig. 3.14). These leucocratic patches possibly represent autoclastic breccia ripped from the top of the flow underlying the one in which they occur. Subaerial leaching or weathering may have produced the change in composition in this detritus prior to its inclusion in the later flow.

The quality and lateral continuity of outcrop are seldom sufficient to enable the measurement of flow dimensions. Where observed, flow thickness ranges from 1 - 16 m, with an average of 2 - 4 m. The lateral extent of flows is unknown, although one flow containing large amygdales and phenocrysts is tentatively correlated across the Gem Syncline, a distance of about 3 km.

The mineralogy of the lavas is not always easy to ascertain accurately due to the fine grain size of the rocks. In addition, very little of the original mineralogy has survived the greenschist-facies regional metamorphism.



Figure 3.12 Amygdaloidal basaltic andesite, Qudeni Formation, north limb of Gem Syncline, Nsuze River valley. Silicification in zones surrounding quartz - calcite - chlorite-filled amygdales.



Figure 3.13 Contact between basaltic andesite and andesite (upper) flows, Qudeni Formation, north limb of Central Nsuze Syncline.



Figure 3.14 Irregular patches of silicification on upper contact of basaltic andesite flow. Locality as for Figure 3.13. See text for further discussion.

The basaltic andesites are texturally and mineralogically diverse. One example, (BG22, Appendix 1), is a very fine-grained, phenocryst-free amygdaloidal rock composed of xenocrystic biotite (20%), epidote (20%), saussuritized plagioclase (55%), leucoxene/sphene (5%), and traces of tremolite, chlorite and calcite. There is no recognizable twinned plagioclase, possibly as a result of metamorphic transformation to untwinned albite. Quartz and epidote occupy a cross-cutting microfracture. More typical basaltic andesites have an intergranular to hyaloophitic texture with small, partially saussuritized laths of plagioclase (well-orientated in some specimens) surrounded by wisps of xenocrystic chlorite or biotite (Fig. 3.15). Plagioclase phenocrysts (1 - 5 mm in length) occur singly or as glomeroporphyritic clusters. Typical mineral abundances are presented in Table 3.1.

The andesites are also variable in mineralogy and show the same tendency to either biotite- or chlorite-rich parageneses. The rocks lack primary igneous textures, although some ghost phenocryst outlines may be recognized. Sparse 2 - 20 mm amygdales are zoned. The core is filled with light green, isotropic chlorite. Surrounding this is a ring of granular biotite with a few euhedral zoned epidote crystals. The biotite is surrounded by a ring of calcite, which is surrounded by a thin rim of epidote (Fig. 3.16). The mineralogy of the andesites is summarized in Table 3.1.

In the basaltic andesites and andesites there is some remnant andesine although most of the plagioclase has undergone metamorphic transformation to albite. Epidote is present either as 0,5 mm equant, zoned grains or as finegrained aggregates (Fig. 3.16). The biotite is a light brown to dark brown pleochroic variety and occurs in ragged to euhedral flakes. Chlorite is present as minute to large (5 mm) irregular flakes. It is a dark green, pleochroic variety, most probably prochlorite.

|                      | Basaltic<br>Andesites | Andesites           | Dacites |
|----------------------|-----------------------|---------------------|---------|
| Plagioclase          | 30 - 60               | 30 - 50             | 50 - 60 |
| Chlorite             | 0 - 401               | 0 - 20 <sup>1</sup> | 5 - 15  |
| Biotite              | 0 - 25                | 0 - 30              | Trace   |
| Tremolite/Actinolite | 0 - 30                | 0 - 15              | Trace   |
| Epidote              | 5 - 25                | 8 - 30              | 5 - 10  |
| Muscovite            | 0 - 5                 | 0 - 5               | Trace   |
| Calcite              | 0 - 10                | 0 - 8               | 0 - 20  |
| Quartz               | 1 - 10                | 2 - 20²             | 2 - 30  |
| Sphene/Leucoxene     | 1 - 3                 | 1 - 5               | Trace   |
| Opaques              | 1 - 3                 | 1                   | Trace   |
| Kaolinite            | -                     | -                   | Trace   |

# TABLE 3.1: MINERALOGY OF THE QUDENI FORMATION VOLCANICS

<sup>1</sup> - Biotite seldom co-exists with chlorite

<sup>2</sup> - Higher quartz contents in silicified rocks.



Figure 3.15 Photomicrograph of basaltic andesite, Qudeni Formation, locality as for Figure 3.12. Plagioclase phenocrysts are surrounded by very fine-grained xenocrystic chlorite groundmass possibly representing original hyalo-ophitic téxture. Epidote and sphene present as accessory minerals. (63x magnification, crossed nicols).



igure 3.16 Photomicrograph of amydaloidal andesite from the Qudeni Formation, north limb, central syncline in the Nsuze River valley. Fine-grained biotite, albite and saussurite (epidote - zoisite - clinozoisite - white mica) make up the host rock. The amygdale has a central core of chlorite (at extinction). This is surrounded by an irregular layer of granular biotite with some epidote crystals. A thin calcite layer overlies the biotite and this, in turn, is rimmed by epidote. (25x magnification, crossed nicols). The dacites are similar in appearance to the andesites except for a lower content of the mafic minerals. They are generally partly carbonated or silicified. The range in mineralogy for rocks considered to be dacites is given in Table 3.1.

The relative proportions of plagioclase and quartz are not always easy to ascertain because the former is invariably untwinned albite. The fine grain size compounds this problem and discrimination is possible only where traces of alteration products are present within the plagioclase.

The proportions of the various lithologies in the formation are difficult to estimate. Available outcrops indicate a greater content of andesitic lavas than basaltic andesites and dacites.

# 4. The Vutshini Formation

#### General

The type area of the Vutshini Formation is situated in the valley of the river of that name in the southern limb of the Central Nsuze Syncline (Matthews, 1979, cited SACS, 1980, p. 73). The formation is restricted to the cores of the two major synclines and the best outcrops are to be found where the Nsuze River cuts through these structures (Maps 1 and 2).

A total thickness of 1 000 m is present in the south, whereas a residual thickness of 350 m is preserved in the Gem Syncline.

#### Lithology

The Vutshini Formation comprises arenaceous and argillaceous sediments in three slightly different sequences. The lower 350 m of the formation in the Vutshini Syncline consists of a sequence of alternating argillite and quartz arenite units 2 - 25 m thick. This is overlain by a substantial thickness of immature arenites with rare argillite intercalations. The lower sequence comprises at least twenty alternations of the two main lithologies on the north limb of the syncline, whereas on the south limb only three cycles are present. This reflects a southward-thinning of the lower sequence and a concomitant increase in the thickness of the upper arenaceous sequence.

The sediments of the Vutshini Formation in the Gem Syncline are the equivalent of the lower sequence in the Central Nsuze Syncline. They comprise a similar alternation of arenites and argillites, but differ in that the arenites are the dominant lithology, whereas the southern occurrence has about equal amounts of each lithology.

Limited recrystallization and the excellent preservation of primary sedimentary structures are features of the Vutshini Formation sediments.

#### 5. The Ekombe Formation

#### General

The Ekombe Formation is restricted to the core of the Vutshini Syncline. The exposed area is very small (8 000  $m^2$ ) owing to overlap of the Phanerozoic cover sequence. Matthews (1979, cited SACS, 1980) termed this formation the "Mankane Formation", a name which is not retained in this study because no rocks which may be correlated with this formation occur in the Mankane River valley. Similar lithologies do occur in the Mankane Valley, but their stratigraphic position precludes correlation with the outcrops ascribed to the Ekombe Formation. It is hoped that the change will prevent confusion between the two stratigraphic levels at which the volcanics occur.

A residual thickness of 60 m is present in the exposed area.

## Lithology

The Ekombe Formation consists of fine-grained, amygdaloidal andesites. These lavas are always highly weathered and have a weakly developed tectonic fabric. Pipe amygdales are recognizable, as are very small, zoned spherical amygdales. The filling of the larger amygdales is quartz, whereas the small ones have a chlorite core surrounded by quartz. The quartz is not the microcrystalline variety typical of amygdales, but consists of coarse grains with well-defined triple junctions.

In the only thin section available (NZ-1, Appendix 1), the groundmass consists of white mica (40%), quartz or albite (not distinguishable, 55%), and sphene (5%). Du Toit (1931, p. 51) reports a groundmass of quartz, pale chlorite and some feldspar.

# 6. Discussion

# Correlation

The critical aspect of the lithostratigraphy presented above is the correlation between areas separated by either younger cover sequences or structural breaks. The former situation may even include major structural features which are obscured by the Phanerozoic cover. Adequate marker horizons are usually present to enable correlation between the inliers, but there are two important exceptions.

The first is the correlation between various inliers of rocks attributed to the Ndikwe Formation. In this case, correlation between the various outcrops in the valleys of the Mhlatuze, Gozweni and Mbizwe Rivers can be achieved using the presence of the banded iron formation horizon and associated sediments (Fig. 3.1 and Map 1). The relationship between these inliers and the major outcrop area in the Nsuze River valley is not so easily resolved and remains uncertain. Likewise, precise correlation between the outcrops of Ndikwe Formation sediments in the Welendhlovu and Mdlelanga River valleys and those north of the Gem Syncline is not possible. The grounds for the correlation are a general similarity in lithologic sequence which in each case consists of alternating arenites and banded, ferruginous argillites. One of the upper units in the Welendhlovu Valley has been traced laterally under the Karoo cover, to the Ngwekweni River inlier using geophysical methods (Esterhuizen and Groenewald, 1980). This banded iron formation is correlated with one near the base of the Ndikwe Formation in the Gozweni River valley on lithological grounds. This apparent lateral continuity of sedimentary units in the lower part of the formation is not displayed by the upper volcaniclastic units as these are absent in the southern part of the map area as noted earlier.

The second correlation, which is fundamental to the lithostratigraphic subdivision, is the one between the sequences in the two major synclines. Matthews (1979, unpublished mapping) recognized the Mdlelanga, Qudeni and Vutshini Formations in the Central Nsuze Syncline but ascribed the sequence in the Gem Syncline to the Dlabe, Mome and Mankane Formations (Table 1.1). The present study has revealed that the basal part of the Mdlelanga Formation is lithologically unique within the Nsuze Group, and that correlation between the two synclines is possible. The lithology in question is the calcareous arenite containing biogenic carbonates mentioned earlier. Since biogenic carbonates are rare in the Nsuze Group, it seems reasonable to correlate the three occurrences of the calc-arenite unit in the field area. Two of the outcrops are situated at the base of the Mdlelanga Formation on the north limb of the Vutshini Syncline in the Mdlelanga and Nsuze River valleys. The third occurrence is only a few hundred metres north of the Mdlelanga River outcrop, but is northward facing, that is, on the south limb of the Gem Syncline (Map 2).

Lithostratigraphic Relationship to the Pongola Supergroup

In the foregoing presentation of the local lithostratigraphy there has been no mention of the regional correlation of the sequence in the study area with the Nsuze Group elsewhere in the Pongola depository. The situation is not as simple as that implied by Du Toit (1931, p. 38): " ... the Insuzi Series can without any doubt be correlated with Humphrey's (1912, 1913) 'Lower Pongola Beds', a great succession of quartzites, amygdaloids and slates, that crop out in the Vryheid and Utrecht districts ...". Armstrong (1980, p. 65) reports that the Nsuze Group in the Vryheid - Piet Retief area comprises three subunits: a lower sedimentary-volcanic unit ( $\sim$  800 m), a middle, predominantly volcanic unit (7 500 m), and an upper volcaniclastic sedimentary unit (500 m).

In the White Mfolozi inlier (Fig. 1.1), the stratigraphy of the Nsuze Group as described by Matthews (1967; 1979, cited SACS, 1980) comprises six formational units. The formations and their lithologies (SACS, 1980, p.76) are given in Table 3.2.

| TABLE 3.2: | LITHOSTRATIGRAPHY OF THE NSUZE GROUP, WHITE MFOLOZI INLIER<br>(SACS, 1980, p. 76). |            |  |
|------------|------------------------------------------------------------------------------------|------------|--|
| Formation  | Lithology                                                                          | Thickness  |  |
| Taka       | quartzites and shales                                                              | > 530 m    |  |
| Bivane     | lavas                                                                              | > 2 050 m  |  |
| Chobeni    | sandstones, mudstones, breccias and dolomites with stromatolites                   | 760 m      |  |
| Thembeni   | banded shales with sandy and pebbly intercalations                                 | 60 - 240 m |  |
| Nhlebela   | lavas                                                                              | 0 - 120 m  |  |
| Bomvu      | quartzitic sandstone with arkosic<br>layer near base                               | 0 – 60 m   |  |

From the above, it is apparent that the sequences in the various outcrop areas of the Nsuze Group differ substantially. The proportion of volcanics in the sequence is a good indicator of the variation. In the northern areas 90% of the group is of volcanic origin (Armstrong, 1980, p. 65; SACS, 1980, p. 75), but in the White Mfolozi and Nkandla areas the proportions are 57% and 38% respectively. The proportion of fragmental volcanics in the same areas is 5%, 0% and 22% in the order given above. Although there is a systematic increase in the volume of sediment in the group southwards, there is apparently no consistant variation in the volcaniclastic content.

On the basis of chronostratigraphic position and general lithology, it is reasonable to correlate the Nsuze Group in the study area with the outcrop areas mentioned above. It is also clear that correlation of individual units or erosion surfaces between the various areas is not possible. This is not unexpected, given the necessarily complex tectonic, magmatic and sedimentological evolution of an Archaean depository. In fact, it is more surprising that the Pongola Supergroup is as undeformed and lithologically uniform as it appears to be.

#### CHAPTER 4

#### STRUCTURE AND METAMORPHISM

### 1. Introduction

The study area is situated close to the southern margin of the Kaapvaal province and consequently its structure is influenced by the high-grade tectonic front marking this boundary. Intense deformation in the basement sequence adjacent to the Natal Thrust Front has been described by Clark (1983), Brown (1982) and Matthews (1959). The deformation and metamorphic grade diminishes northwards and most outcrops of the Nsuze Group north of Nkandla have undergone tight to isoclinal folding and greenschist facies metamorphism. Several deformational episodes have affected the Nsuze group in the Vryheid - Piet Retief area (Armstrong, 1980), but these are relatively less intense than the dominant folding event recognized in the study area. The geometry of these folds suggests that they resulted from northwards compression along the Natal Thrust Front and are thus synchronous with the  $\sim$  1 000 Ma Namaqua-Natal orogenic province. Later deformation is restricted to two episodes of block faulting.

# 2. Structure

The earliest structural element recognized in the study area is a faint cleavage which is virtually obliterated by later refoliation. The cleavage, which is crenulated by the younger foliation (Fig. 4.1), is defined by orientated phyllosilicates and occurs rarely in tuffaceous and argillaceous rock types. This  $S_1$  fabric is observed only in thin section, consequently no field data are available for its orientation. Only microscopic folding has been recognized in association with  $S_1$  (Fig. 4.2).



Figure 4.1 S<sub>1</sub> cleavage in Vutshini Formation argillite, from northern limb of Central Nsuze Syncline. Note crenulation by S<sub>2</sub> cleavage. 63x magnification - crossed nicols.



Figure 4.2 Micro folding in argillite shown in Figure 4.1. 10x magnification - crossed nicols.

The dominant deformation,  $D_2$ , is tight to isoclinal folding related to the 1 000 Ma Natal belt episode. This event resulted in the three large synclinal structures in the Nsuze River Valley, of which only the northern two fall within the study area. These folds have wavelengths of 3 - 5 km with numerous associated smaller parasitic folds. A pervasive axial planar foliation is developed in all the fine-grained rocks and is faintly visible in arenaceous rock types. A grain shape lineation is developed on  $S_{0}$  surfaces in the arenites. Several measurements of S<sub>o</sub> surfaces were taken on many of the smaller folds.  $S_2$  surfaces were also measured where visible, as were  $L_2$  lineations. A typical Schmidt net plot of these data for a single fold is shown in Figure 4.3, the remainder of the data being presented in Appendix 2, also as Schmidt net plots. In general; the poles to  $S_0$  define a girdle indicative of cylindrical folding. All fold axes are inclined at less than 40° and are in a broadly east-west orientation.  $L_2$  lineations commonly lie close to the fold axes, although in some plots there is considerable dispersion.  $S_2$  surfaces are steep, although south and north dipping fabrics are common within a single fold. This is a result of cleavage refraction and obscures the axial planar nature of the  $S_2$ cleavage. Most of the axial surfaces dip southwards at 70 - 85°.

Dislocations recognized as being related to D<sub>2</sub> are equivocal, but at least three examples are thought to exist. A large part of the stratigraphy is absent from the north limb of the anticline separating the Central Nsuze and Gem Synclines. The Mdlelanga Formation is obliquely truncated by a linear feature along this limb which marks the contact with the underlying volcanics of the Ndikwe Formation. As this fault is orientated parallel to the fold axis and occurs at the contact between rock types of very different rheology, it is thought to represent a large lag structure within the limb of the fold (Fig. 4.4). North of the Gem Syncline steep overthrusts occur within the northern limb of the main syncline itself and adjacent isoclinal anticlines



Figure 4.3 Schmidt net plot for  $D_2$  small-scale fold south of Vuleka.



t Pyroclastics

🕺 🗯 Gabbro

Figure 4.4 Section through the anticline separating the Gem and Central Nsuze Synclines. Note the oblique truncation of the Mdlelanga Formation by faulting. Not to scale.

(Map 2, Mhlazi River area and west of Ndikwe Store). These thrusts result in local duplication of incompetent arenite units along curved fault planes. Although the actual fault planes are not exposed, the sense of movement is inferred from displaced markers. The throw on these faults is of the order of 20 - 80 m (Fig. 4.5).

Faults orientated normal to the axial surface of the Gem Syncline are recognized in the area between the Mankane and Nsuze Rivers and farther west close to the limit of the inlier. These have almost vertical fault planes and downthrow to the west. They resemble the cross and wrench faults described by De Sitter (1964), who considers them a consequence of longitudinal stretching in cylindrical folds.

Boudinaging has occurred locally where thin quartz arenite beds are present within a thick sequence of phyllitic pyroclastics. The boudins are 5 - 10 m thick and 10 - 50 m long and are spaced at intervals of several hundred metres. Internal sedimentary structures are well preserved within the boudins, but extension and brecciation is marked towards their extremities.

There is little evidence for  $post-D_2$  folding although local crenulation and kink folding of the  $S_2$  fabric has been observed (Fig. 4.7). The kink folding is limited to ash tuffs in the area north of Ndikwe Store and comprises 1 cm wide kink bands spaced at 10 - 30 cm intervals. The banding is sub-parallel and forms an anastomosing network on some exposed  $S_2$  surfaces. Ramsay (1967, p. 440) considers this type of folding to be a product of flexural slip as a result of compressive stress acting along the layering.

Plots of  $S_2$  and  $L_2$  measurements have been prepared in an attempt to identify post-D<sub>2</sub> folding. These diagrams (Fig. 4.8) show some dispersion of  $L_2$  lineations, but do not define clearly any arc or cone segments which may be ascribed to D<sub>3</sub> folding.



Cross-section through the north limb of the Gem Syncline showing thrusting within the Vutshini and Ndikwe Formations. Not to scale. -Figure 4.5

Post-D<sub>2</sub> faulting is common within the study area and consists essentially of east-west and north-south trending generations of normal dip-slip faults. The north-south faults are commonly displaced by the east-west generation. Several of the north-south faults in the upper Nsuze Valley have been the locus of plagioclase porphyry dyke intrusion, after the main displacement occurred but prior to the later east-west faulting event. The throw on these faults is seldom greater than 10 m, with the exception of the fault along the Nsuze River east of Hlagothi Mountain, which has a downthrow of at least 150 m to the west.

The east-west trending faults are of post-Karoo age in at least two examples although there are other cases where the displacement cannot be traced into Karoo strata. The two definitely post-Karoo examples are situated north of the Ndikwe Store and north of Hlagothi Mountain. The downthrow on these faults is to the south and north respectively, resulting in a horst-type structure now represented by Itala Mountain. There is some evidence that these faults were active prior to Karoo times in that they are the locus of intrusion of diabase and syenite in the upper Mhlatuze and Igozweni Valleys.

# 3. Metamorphism

The Nsuze Group, Nondweni ultramafics, Hlagothi Complex and the pre-Natal Group dykes have all been subjected to regional greenschist facies metamorphism.

Minerals recognized in the various rock types are detailed in Table 4.1. The major parageneses are all unequivocally of low grade of greenschist facies origin. According to Winkler (1974, p. 73), the beginning of low grade is defined by the paragenesis:

Chlorite + zoisite/clinozoisite  $\pm$  actinolite  $\pm$  quartz This paragenesis is common in the Nsuze Group sediments and volcanics, as well as in the metagabbros of the Hlagothi Complex and post-Nsuze dykes. Metaultramafic rocks of the Hlagothi Complex and Nondweni Group have the paragenesis:

Chlorite + tremolite + talc ± magnesite ± serpentine



Figure 4.6 Photomicrograph of post- $D_2$  cleavage (horizontal) cutting across  $S_2$  fabric. Metapelite of the Ndikwe Formation south of Ndikwe River. 63x magnification



Figure 4.7 Photomicrograph of kinking of  $S_2$  foliation in tuff from the Ndikwe Formation north of Ndikwe Store. 10x magnification.


Figure 4.8 Schmidt net plots of  $L_2$  lineations and  $F_2$  fold axes for the north and south limbs of the Gem Syncline.

The upper limit of low grade, greenschist facies metamorphism may be defined on the basis of appearance of hornblende, oligoclase, almandine and cordierite. None of these minerals is present in the study area, although garnet is present in a sample of metapelite from Vuleka. The small, colourless, subhedral crystals are probably manganiferous pyralspitic garnet. Garnet of this composition may form at relatively low temperatures and pressures within low grade metamorphic terranes (Winkler, 1974, p. 209). Miyashiro (1973) considers the lower limit of spessartine stability to be about 400°C. Stilpnomelane has not been recognized within the study area. Several likely samples were examined by X-ray diffraction methods, but in all cases the mineral thought to be stilpnomelane was identified as biotite. Tainton (1977) and Bühmann (1983, pers. comm.) have found stilpnomelane in Nsuze Group metapelites east of the study area. The metamorphic grade of the study area is, therefore, considered to exceed the isograd:

(Stilpnomelane + muscovite). out/(biotite + muscovite). in The timing of the metamorphism is not readily determined although there is evidence for several episodes. Muscovite is present in the earliest recognized cleavage in pelitic rock types. There is, however, no other evidence for pre-D<sub>2</sub> metamorphism. The main development of greenschist facies mineralogy probably accompanied D<sub>2</sub> folding in which a strong penetrative foliation developed. This fabric is defined by orientated phyllosilicates and tremolite.

That this metamorphism has also affected the Hlagothi Complex is demonstrated by the local development of an  $S_2$  fabric in serpentinitized and talcified parts of the complex. In the unfoliated gabbros the tremolite saussurite - chlorite mineral assemblage (Chapter 7) predates the growth of very fine tremolite crystals which display a preferred orientation. The earlier mineral assemblage may reflect a metamorphic event prior to  $D_2$ deformation. Another possibility is that deuteric alteration and metamorphism have combined to produce the observed mineralogy (Chapter 7).

METAMORPHIC PARAGENESES AND OTHER MINERALS IN ROCKS OF THE NONDMENI, NSUZE GROUP AND PRETECTONIC INTRUSIONS TABLE 4.1

|                      | Chlorite | Fremolite/<br>Actinolite | Biotite | Clino<br>zoisite | Epidote | Calcite | Quartz    | Muscovite | Albite. | Talc | Serpentine | Magnesite |
|----------------------|----------|--------------------------|---------|------------------|---------|---------|-----------|-----------|---------|------|------------|-----------|
|                      |          |                          |         |                  |         |         |           |           |         |      |            |           |
| Nsuze Group:         |          |                          |         |                  |         |         |           |           |         |      |            |           |
| Pelites'             | xx       | ×                        | ×       | XXX              | XXX     | XX      | *         | XXX       | ×       | ı    | ı          |           |
| Tuffs                | ххх      | XX                       | xx      | ×                | XX      | ×       | *         | ×         | ×       |      |            |           |
| \$<br>Arenites       | ×        | •                        | ×       | ХХХ              | ххх     | ×       | *         | XX        | •       | £    |            | •         |
| <b>Volcan</b> ics    | ххх      | XX                       | x       | XX               | ХХХ     | ×       | ххх       | ×         | ххх     | ı    | ı          | ,         |
| Nondweni Group:      |          |                          |         |                  |         |         |           |           |         |      |            |           |
| Ultramafícs          | XXX      | XXX                      | ,       | ı                | ł       | ı       | ,         | r         | I       | XXX  | ×          | XX        |
| Hlagothi Complex:    |          |                          |         |                  |         |         |           |           |         |      |            |           |
| Metaperidotites      | XXX      | XXX                      | ×       | •                | ı       | ı       |           |           | •       | XX   | XX         | 1         |
| Metapyroxenites      | XXX      | ххх                      | ×       | •                | ٤       | •       |           | ſ         | ×       | ×    | ×          |           |
| Metagabbros          | xxx      | ХХХ                      | ×       | ×                | ххх     | •       | <b>5-</b> | £         | xx      | ۲    | ,          | •         |
| Intrusions:          |          |                          |         |                  |         |         |           |           |         |      |            |           |
| Plag porphyry        | ×        | ххх                      | ×       | ×                | ×       | ı       | ×         | XX        | XXX     | •    | 1          | ,         |
| Gabbros              | XX       | ХХХ                      | ×       | £-               | ×       |         | ٤         |           | XX      | ı    |            | ł         |
| Pyrox <b>eni</b> tes | XX       | XXX                      | ,       |                  | £       | ı       | •         |           | ,       | XX   | ×          | •         |
|                      |          |                          |         |                  |         |         |           |           |         |      |            |           |

Key to Abundances:

r = rare

x = present in 25 - 50% of samples examined

xx = present in 51 - 75% of samples examined

xxx= present in 76 - 100% of samples examined

\* = present in all samples

NOTES: 1. Garnet (spessartine) recognized in one sample.

2. Calcite present in all metacarbonates and calc-arenites.

A relatively young metamorphic event may also have occurred. Plagioclase porphyry dykes which intrude along  $post-D_2$  fault planes (thus post-dating the main greenschist facies metamorphism) have the mineral assemblage:

Albite + zoisite + epidote + actinolite + chlorite

This paragenesis is typical for greenschist facies metabasites. However, this metamorphism was not accompanied by penetrative deformation, for there is a total lack of foliation in these dykes. Thus, the possibility of a third greenschist facies metamorphism cannot be discounted.

#### CHAPTER 5

#### SEDIMENTOLOGY OF THE NSUZE GROUP

#### 1. General

Sedimentary rocks account for over 60% of the stratigraphic thickness of the Nsuze Group in the study area. An attempt has been made to identify the dominant sedimentary facies and facies assemblages in order to provide an insight into the geological evolution of this southern part of the Pongola depository.

Several measured sections were described in detail for areas where the preservation of sedimentary structures and textures has been adequate. The sections are limited to areas of continuous outcrop where tectonic deformation has not been excessive. Their localities are shown on maps 2, 3 and 4. In the Ndikwe Formation, the considerable disruption of the sequence by intrusions of the Hlagothi Complex prevents the investigation of continuous sequences. This necessitated the use of numerous short sections for which the relative stratigraphic position in the formation is not well established. Few data were collected for the Mdlelanga Formation in the Central Nsuze Syncline as diagenetic and metamorphic effects have obliterated most of the primary textural characteristics of the sequence.

Detailed facies definitions are avoided below, partly because the facies vary slightly in different facies associations, but also because of poor lateral control of facies interrelationships which precludes detailed sedimentological analysis in the present study.

## 2. Dominant Sedimentary Facies

## (a) Medium-scale Cross-stratified Sandstone $(S_A)$

Sandstone units thicker than 1 m with planar and trough cross-stratification are ascribed to facies  $S_A$ . The sandstones range from extremely pure quartz arenites to quartz wackes and quartz arkoses. Grain sizes vary from very fine to very coarse, but are most commonly fine to medium. Facies  $S_A$  ranges in thickness from 1 to 50 m, and cross-strata set heights range from 5 cm to 1.20 m. Upper and lower boundaries of the facies are of several types including planar or irregular scour surfaces, gradational or abrupt non-erosive transitions.

The planar cross-stratification is either angular or tangentially based. Angular based cross-stratification (Fig. 5.1) occurs in individual, compound or multiple sets. Individual sets are of tabular form and diminish in thickness laterally over several metres at low angles. The foresets are rarely graded and more typically consist of alternations of slightly different grain sizes. Regressive ripples are uncommon. Tangentially based cross-strata are generally ungraded. They display characteristic changes in foreset slope angle within single sets (Fig. 5.2). Reactivation surfaces may be present in either type of planar cross-stratification (Figs 5.1 and 5.2).

Trough cross-stratification is present in many facies  $S_A$  units. There is a continuum of widths and depths, ranging from very broad, shallow troughs to narrower features of much smaller radius of curvature. The depth of individual troughs is generally between 2 and 30 cm. Evidence for both lateral and vertical accretion is present, and adjacent troughs may show accretion in opposing directions. Small current or oscillation ripples are commonly observed in the troughs where bedding surfaces are exposed (Fig. 5.3).

All three of the above cross-stratification types are found commonly in a single sandstone body. The planar cross-strata in many outcrops show opposed directions of transport, both in immediately adjacent sets (as herringbone cross-stratification) and in sets separated by trough or horizontal stratification (Fig. 5.4).



Figure 5.1 Angular based planar cross-stratification (centre) of facies  $S_A$ . Note reactivation surface below centre, recumbent foresets in upper half. Ndikwe Formation east of Hlagothi Mountain. Pen is 15 cm long.

Recumbent foresets and water escape structures are common in these sandstones. The former are either smooth overturns of the upper parts of the foresets in a downcurrent direction (Fig. 5.1), or a more irregular but generally continuous folding of the foresets (Fig. 5.5). Water escape structures are present as vertically orientated disruptions of the stratification by small pipe-like channelways or more diffuse disturbances (Fig. 5.6). Some of these structures may be traced upwards for several metres in the sandstone.

#### Interpretation

Medium-scale cross-stratification results from the migration of bedforms of appropriate size in response to hydraulic conditions encountered in several environments. On its own cross-stratification is not diagnostic of specific depositional settings, but associations of different types of cross-strata are of greater significance.

Planar cross-stratification forms as a result of dune, megaripple or sand bar migration in fluvial, marine or aeolian environments. The accretionary foresets result from flow separation in the lee of the bedform, with flow reversal moving sediment up the lee face. Higher current velocities lead to deposition farther from the lee fall and favours tangentially-based crossstratification. Graded, avalanche foresets result from migration of smaller superimposed bedforms across the upper surface of the large body. As the small bedforms migrate over the brink point of the sandwave, the coarser detritus from interripple troughs cascades down the lee face first, followed by the finer sand making up the body of the ripples. This process occurs in both fluvial and marine environments.

Reactivation surfaces imply interruption of the migration of a bedform owing to changes in hydraulic regime. In fluvial settings this results from a change in flow direction or depth for a period, during which the shape of the bedform is modified, followed by a resumption of normal conditions



Figure 5.2 Tangentially-based cross-stratification in facies S<sub>A</sub>, Mdlelanga Formation, due west of Vuleka. Note current reversals in centre and reactivation surface, arrowed. Box is 35 mm long.



Figure 5.3 Bedding surface exposure of shallow trough in facies  $S_A$ , Ndikwe Formation south of Hlagothi Mountain. Note ripples superimposed on trough surface. Pen is 15 cm long.



Figure 5.4 Herringbone cross-stratification showing sharp set boundaries and reversed palaeocurrent directions. Mdlelanga Formation, west of Vuleka. Pen is 15 cm long. (Collinson, 1970). In a marine environment, tidal flow reversals can produce reactivation surfaces (Klein, 1977a, b). Similarly, herringbone crossstratification reflects switches in flow direction which are most common in tidal settings (Klein, 1977a, b).

Recumbent foresets are the result of either liquefaction of the sand (Allen, 1970) or an increase in drag at the interface of the water and bedform (Reineck and Singh, 1980). In this facies, the former case is supported by the presence of water escape structures, whereas the alternative process finds support in the presence of sedimentary structures indicative of high sediment load. These are horizontal, and climbing-ripple laminations which commonly overlie recumbent foresets in the study area (Fig. 5.1). The crenulated foresets are probably a result of compaction.

(b) Sandstones with Low-angle Cross-stratification and Horizontal Lamination  $(S_p)$ 

This facies consists of fine- to medium-grained mature sandstones, 0.5 to 20 m thick, in which low-angle, planar cross-stratification and horizontal lamination are the dominant structures. Thin clay drapes are commonly present as are rip-up clasts and thin coarse-grained sandstone lenses.

The horizontal laminae are 1 mm to 1 cm thick, laterally continuous units which are parallel in planar or slightly sinuous configurations (Fig. 5.7). Grading from medium to very fine grain sizes characterizes some units of this facies. Horizontal lamination has been observed to change laterally to inclined or planar cross-stratification.

The low-angle planar cross-stratification occurs in sets up to 2 m thick. Foreset-bedding angles are typically 5 to 10° but may be variable within a single set. Very small-scale planar or trough cross-stratification is common within the foresets. The small planar foresets are overturned in many places. Set boundaries are defined typically by very low-angle truncations by the overlying set, reflecting slight changes in three-dimensional orientation of the foresets.



Figure 5.5 Overturned foresets in facies S<sub>A</sub>, Vutshini Formation, Mhlazi Valley south of Ndikwe. Hammer is 40 cm long



Figure 5.6 Water-escape structure, facies S<sub>A</sub> arenites, Vutshini Formation, Mankane Valley. Pen is 15 cm long.

Facies  $S_B$  commonly has gradational upward transitions into facies  $S_C$  (Fig. 5.8). The basal contacts are generally sharp or erosive with development of thin pebble lags (Fig. 5.7).

#### Interpretation

Horizontal lamination and low-angle planar cross-stratification are generally considered the products of different processes. Reineck and Singh (1980) recommended that the structures be distinguished wherever possible. However, in the study area, they are commonly in close association which suggests a related origin. Furthermore, the two structures are not readily distinguished from each other in small or poor outcrops.

Horizontal lamination is formed under both upper and lower flow regime conditions. Lower flow regime plane bedding or lamination is not favoured because it is restricted to sediments coarser than 0.6 mm mean grain size and results in very low rates of accumulation of sediments of low survival potential (Harmes *et al.*, 1975). However, Klein (1977a) included lower flow regime plane bedding in his tidal bedload process-response model. Horizontal lamination occurs in ephemeral stream deposits (Pickard and High, 1973; Tunbridge, 1981). Middleton and Hampton (1973) suggested an association of this structure with turbidites, and more specifically, with migration of long wavelength antidunes. Smith (1971) observed horizontal lamination developing from low-angle sand waves in very shallow water under lower or transitional flow regime conditions. A generally accepted, single mode of origin for these structures does not exist, although the most commonly cited mechanism is deposition from sediment-laden water at high flow velocities on plane beds in water depths deep enough to prevent the formation of in-phase waves (Harms *et al.*, 1975).

Large, low-angle planar cross-stratification has been ascribed to various sedimentary processes. Beach and longshore bar cross-bedding are probably the most commonly recognized low-angle planar cross-strata. Beach surfaces



Figure 5.7A Planar bedding in arenites of the Vutshini Formation, central Nsuze Syncline. Note local low-angle attenuation.



B Plane bedding in Mdlelanga Formation, Nsuze River valley. Note structureless basal part with numerous intraformational mud clasts. Lamination becomes progressively clearer upwards. Pen is 15 cm long in both figures. characteristically dip seawards at 2 to 10° and are laterally continuous, planar surfaces. The internal structure of beach deposits consists of evenly laminated sand, analogous in most respects to horizontal lamination. Seawards-dipping faces of longshore bars are similar and consist of low-angle (4 - 5°) crossstrata in tabular, wedge-shaped units (Reineck and Singh, 1980).

Ancient low-angle cross-stratification of the Beaufort Group has been related to a high sinuosity fluvial environment by Turner (1981). He postulated high velocity, sediment-laden currents in which the settling rates of saltating grains are considerably reduced. This results in suppression of sand wave relief, which produced long wavelength, low-angle bedforms. Parallel-laminated sand-dominated deposits have been interpreted as products of ephemeral stream flooding (Tunbridge, 1981).

Hummocky cross-stratification, according to Harms (1975), is characterized by low-angle, erosional lower bounding surfaces overlain by nearly parallel laminae. Scattered dip directions and low-angle truncation are noteworthy features of this type of bedding. Harms (1975) recognized a shoreline origin for these structures where deposition on low swales and hummocks is related to fluctuations in tidal energy.

(c) Cross-laminated Sandstone Facies  $(S_{C})$ 

Very fine-grained and fine-grained sandstones characterized by ubiquitous micro-cross-stratification are ascribed to facies  $S_c$ . These sandstones, which are probably quartz arenites, are typically 20 - 100 cm thick and less commonly several metres thick. Recrystallization has obscured most of the original textures. Thin drapes of green clay are commonly present on the ripples.

Sedimentary structures present include climbing-ripples, wave-ripples and current ripple cross-laminations. In and out of phase climbing-ripple



Figure 5.8 Ripple cross-lamination in facies S<sub>C</sub>, Ndikwe Formation east slope of Hlagothi Mountain. Note climbing ripples (in phase) in upper part of photograph. Plane lamination is also present. Pen is 15 cm long.



Figure 5.9 Wave ripple cross-lamination in facies S<sub>C</sub>, Ndikwe Formation, Nsuze Valley west of Ndikwe Store. Coin is 20 mm in diameter.

lamination is present, commonly in association with horizontal lamination. Intricately interwoven trough lamination is common (Fig. 5.9) and closely resembles the wave-ripple lamination described by Boersma (1970, cited in Johnson, 1978). Planar cross-lamination is also present in many units of this facies. Interference ripples are common on bedding surfaces and display a variety of forms. These are described in more detail below.

### Interpretation

Ripple cross-lamination is the product of deposition in small bedforms typically generated by currents of low Froud number in the lower flow regime. Oscillatory currents produce symmetrical ripples which result in wave-ripple cross-lamination. However, wave-ripples or symmetrical ripples can also develop from unidirectional current action.

Climbing-ripples result from simultaneous vertical accretion and lateral migration of current ripples. In-phase climbing-ripples may represent high rates of sediment fall-out in either flowing or oscillating water. The change from in-phase to out-of-phase climbing-ripples results from increased current velocities and rates of deposition (Harms *et al.*, 1975). These structures have been recognized in several sedimentary environments, especially overbank and flood plain deposits (McKee, 1966), deltaic settings (Coleman and Gagliano, 1965) and in turbidite sequences (Walker, 1969). They may be locally important in tidal settings (Wunderlich, 1970) but are not always present.

The interference ripples are worthy of further comment. Most examples in the study area display two prominent directions of ripples which intersect at 70 - 90°. The small size of many of the interference ripples on horizontal planar surfaces probably implies an origin in very shallow water. The change in direction of oscillation responsible for interference wave ripples could be a result of either changes in direction of winds blowing over shallow ponds or of different ebb and flow tidal paths. Within a tidal setting, small waves

may be propagated in different directions by the breaking of large waves at different points along a curved foreshore. Where small ripples are superimposed on linear mega-wave-ripples with orientations at close to 90° "ladderback" ripples are produced (Fig. 5.10). These reflect wave generation of the larger ripples, whereas the smaller, superimposed ones result from drainage currents moving nearly parallel to the shoreline (Davis, 1978).

## (d) Large-scale Cross-stratified Sandstones $(S_D)$

Sandstones characterized by large-scale planar or sigmoidal crossstratification belong to facies  $S_D$ . Although rare, this facies is recognized in all three of the formations comprising sedimentary rock types.

The sigmoidal cross-strata are up to 3 m in height (Fig. 5.11) in their only occurrence which is in the lower part of the Ndikwe Formation. The sandstones in which they occur are extensively recrystallized which prevents recognition of grain size and grain shape parameters. Internal structures are poorly defined, but small-scale planar and trough cross-stratification and ripple lamination are recognized.

Large-scale, angular-based planar cross-stratification is present at several localities. These sandstones are mature medium-grained quartz arenites and have frequent pebbly and very coarse-grained horizons close to the base. Normal grading is apparent in the lower parts of the foresets. Small-scale internal structures are generally avalanche planar cross-beds and small scour troughs.

#### Interpretation

Large-scale composite bedforms occur in several environments of which fluvial and shallow marine settings are the most important. Sigmoidal crossstrata may result from the lateral migration of point bars in fluvial and tidal channels. In the present instance there are insufficient data to distinguish between these possibilities, although the association of the sigmoidal cross-



Figure 5.10 Ladderback ripples with local infill of clay. Mdlelanga Formation west of Vuleka. The relief has been accentuated by tectonic shortening. Pen is 15 cm long.



Figure 5.11 Large-scale, sigmoidal cross-stratification of facies  $\rm S_D,$  Ndikwe Formation, Nsuze River valley southeast of Hlagothi Mountain. Person at far left is 1,7 m tall.

strata with sediments interpreted as tidal deposits indicates an origin in relatively high sinuosity tidal channels.

The large-scale planar cross-strata also represent composite bedforms, either transverse bars in a fluvial setting or shallow marine sand bars. They may also represent delta foresets. No realistic interpretation can be made on the basis of available data, although this facies occurs exclusively in sequences interpreted as proximal shelf deposits.

# (e) Heterolithic Facies - $H_A$ , $H_B$ and $H_C$

Units in which an appreciable amount of clay-size material is present are classified as heterolithic. Facies  $H_A$  has between 75 and 90% sand-sized material which forms beds less than 1 m thick. These alternate with 1 to 10 cm thick argillite units. The facies is usually thinner than 3 m, but locally may attain 10 or 15 m in thickness. The internal structure of the sandstone units may be horizontal or ripple lamination, planar or trough cross-stratification. Basal scour surfaces are rarely present. Clay drapes are commonly present on ripple surfaces. The arenite-argillite contacts are either abrupt or gradational with flaser, wavy or lenticular bedding in the transition zone (Figs. 5.12 and 5.13).

Facies  $H_B$  differs from  $H_A$  in that sand content is in the range of 50 to 70%. The sandstone beds are thinner than those of facies  $H_A$ . Lenticular, flaser and wavy bedding are common (Fig. 5.14), especially the first-mentioned which may make up several metres of this facies within its normal 5 to 20 m thickness.

Heterolithic units having a sand content of 10 to 50% are assigned to facies  $H_{C}$ . This facies occurs as 1 to 10 m thick units consisting of laminated argillites which contain 5 to 20 cm thick, isolated, tabular beds of sandstone. Lenticular bedding is very common, but flaser bedding is less common than in the other heterolithic facies. The same internal structures observed in facies  $H_{A}$  are also present in facies  $H_{B}$  and  $H_{C}$ .



Figure 5.12 Facies H<sub>c</sub> and S<sub>B</sub> contact in the Vutshini Formation, Central Nsuze Syncline. Note scoured nature of contact and mudclasts (MC) in the arenite. Ruler is 20 cm long.



Figure 5.13 Facies  $H_A$  and  $S_A$  contact, showing transitional nature with lenticular bedding in the lower part of the arenite (arrowed). Locality as for Figure 5.12.

A notable variant of facies  $H_g$  consists of laterally continuous, horizontal or slightly undulose, alternating arenite and argillite laminae. The individual lamina are 3 to 5 mm thick and commonly have normal grading from fine sand to mud (Fig. 5.15). These sediments, which fit the definition of rhythmites (Reineck and Singh, 1980, p. 123), attain a substantial thickness ( $\sim$  50 m) in the Mdelanga Formation in the Central Nsuze Syncline.

#### Interpretation

Sand and mud accumulation require substantially different hydraulic regimes in that the former is transported as bedload and the latter as suspended load. The intimate association of these two lithologies in the heterolithic facies thus reflects an environment in which variable periods of alternating current or wave activity and slack water occur. The lengths of these periods and the survival potential of their deposits determines the relative proportion of each sediment type in the facies. In the latter regard, water depth can also be assumed to have an influence as deeper water is less likely to be affected by traction currents than shallow water.

Various environmental settings are thought to favour deposition of heterolithic sequences. Lower delta front environments have been invoked for similar sediments of the Ecca Group in the Tugela Valley (Hobday, 1973). Ephemeral streams deposit similar sediments locally (Pickard and High, 1973), but not to any great extent. The tidal environment is, however, the setting most commonly invoked to account for heterolithic sequences (Klein, 1977a, b; Johnson, 1978). In this environment, bedload transport occurs during tidal ebb and flow, with periods of slack water occurring at high and low tides. This model is favoured for all occurrences in this study in view of the considerable vertical and lateral extent of units of this facies.

The alternating sand-mud laminated variant of facies  $H_C$  resembles the longitudinal bedding of Reineck and Singh (1980) and the tidal "pinstripe" bedding of Wunderlich (1970). Its association with the other heterolithic



Figure 5.14 Lenticular bedding in facies H<sub>B</sub>, Mdlelanga Formation east of Vuleka. The sequence, although distorted by loading or tectonic deformation, shows excellent preservation of planar micro cross-stratification within the arenaceous layers. Pen is 15 cm long.



## Figure 5.15

Lenticular, wavy and flaser bedding in facies H<sub>p</sub>, Vutshini Formation, north limb of Central Nsuze Syncline. Note the high degree of rounding and sphericity of coarse sediment layer interpreted as a product of storm surge. Scale in millimetres. facies, which are inferred to be tidal in origin, favours alternating bedload and suspension load deposition in a mid-tidal setting (Wunderlich, 1970; Klein, 1977a).

(f) Massive  $(M_M)$ , Laminated  $(M_L)$  and Ferruginous  $(M_F)$  Argillite Facies

Argillaceous rock-types constitute a minor but significant part of the Nsuze Group. Several facies may be defined on the basis of internal structure and composition as set out below. However, in weathered outcrops, the variations are not easily recognized and for argillites of indeterminant type, the symbol M is used without a subscript.

Massive dark grey or black mudstones  $(M_M)$  occur as units 1 - 30 m thick. Although rare silty or sandy laminae are present, these rocks are largely featureless. A tuffaceous massive mudstone is present in the Ndikwe Formation and is characterized by an extremely high chlorite content.

The laminated argillites  $(M_L)$  consist of alternating silt and mud layers on a variety of scales. Graded beds 1 - 3 cm thick are commonly upward-fining but inverse grading has been observed. Compactional slumping of these units has resulted in the frequent occurrence of complex deformation structures. At some localities chaotic slump units contain intraformational, angular, deformed blocks of argillite or carbonate.

The massive and laminated mudstones are pyritic in some areas. Pyrite occurs as poorly-defined, lenticular stringers of closely-packed millimetre-sized cubes of secondary origin. Locally, sulphides may constitute as much as 25% of the rock.

Ferruginous argillites  $(M_F)$  are the most common fine-grained rocks in the Ndikwe Formation but are also present in the other sedimentary sequences. They consist of regular alternations of 1 cm argillite and cherty, ferruginous sediment. These rocks have, in the past, been mapped as banded iron formations (Tunnington, 1981), but their high content of fine clastic material is not in accordance with the definition of cherty banded iron formation.

#### Interpretation

In modern environments significant mud deposits accumulate in high sinuosity fluvial systems, along muddy prograding shorelines, and in distal shelf and abyssal marine settings (Harms *et al.*, 1975). The interpretation of these modern mud sequences rests largely upon observed environmental conditions, but in ancient deposits the characteristics of associated clastic sediments and the overall geometry of the sequence must be considered before reliable conclusions may be drawn.

The thickest massive mudstones in the study area overlie coarse- to finegrained sandstones and have ferruginous argillites in their upper parts. Identification of pelagic or abyssal deposits in Archaean rocks is difficult (cf. Selley, 1970) because of the lack of faunal remains and other definitive indicators of water depth. In the present instance the thick, massive mudstones may represent pelagic sediments, but there is some evidence to support a slightly less distal environment. In particular, the vertical association of these sediments with proximal shelf sediments which occur in repeated cyclical sequences indicates a shelf setting. Rare, coarser-grained zones within the argillites suggest that deposition by traction currents or suspension generated by storm turbulence also occurred. Thus a distal to middle shelf setting is favoured for the deposition of these sediments.

The laminated mudstones  $(M_L)$  with thin graded units may be ascribed to distal shelf processes of two types with a continuous background suspension deposition superimposed on these effects. Firstly, graded beds of silt and mud may result from periodic high-energy storms producing traction currents at depths where these are not usually present. Coarser sediment than usual may also be held in suspension by turbulence and current activity during these storms. Abatement of the storm results in lower energies, and suspension settling in accordance with Stokes' law produces graded laminae.

Secondly, distal turbidite deposits are characterized by silt to mud-graded units. These have been recognized in several ancient and modern distal delta front and distal shelf sequences (Rupke, 1978) and the graded units may represent deposition of suspension loads or low density turbidity flows.

Interpretation of the ferruginous argillite facies is deferred to the section on facies BIF below.

(g) Banded Iron Formation (BIF)

Facies BIF is common in the Ndikwe Formation, but virtually absent from the remainder of the Nsuze Group. A single occurrence at the base of the Mdlelanga Formation is laterally equivalent to a BIF unit in the Ndikwe Formation and reflects the interfingering of these formations.

This facies is typically 10 - 15 m thick and may be traced for several kilometres along strike. It consists of alternating thin (~ 2 cm) layers of three different chert types. These are: reddish, haematitic chert, black, magnetite-bearing chert, and white iron-poor chert. The layers are variable in thickness; they may be of equal thickness or of very different thickness. Two scales of layering may be observed in a single specimen, usually consisting of centimetre-scale bands of the three lithologies interspersed with layers which consist of microscopic laminae. The micro-banded layers typically have specularite on parting surfaces.

The cherty BIF may change laterally or vertically to ferruginous argillite with a transition zone characterized by alternating argillite and chertdominated layers.

Deformation of the banding is common and is typically tight angular and cylindrical intrastratal folding (Fig. 5.16). This deformation is similar to that produced by compaction or slumping in semi-consolidated sediments except for the distribution of the deformation. In areas where the Nsuze Group as a



Figure 5.16 Banded iron formation consisting of alternating magnetiterich and poor cherty banding. Ndikwe Formation, Mbizwe River valley. Penknife is 7 cm long. whole has undergone tight folding, the BIF shows intense internal deformation. Elsewhere, such as the area north of Itala Mountain, the BIF is relatively undeformed, as is the remainder of the sequence. For this reason, the intrastratal deformation is ascribed to tectonic rather than penecontemporaneous processes.

#### Interpretation

Argillites in which cherty iron formation occupies the upper, fine-grained part of normally graded units has already been described. Dimroth (1975) observed a similar association in Canadian Archaean sequences. He ascribed the ferruginous cherts to a continuous background precipitation of chemical sediments, interrupted periodically by an influx of clastic material as low density turbidity flows. Thus, a continuum of distal shelf environments may be envisaged for the deposition of facies  $M_F$  and BIF. In areas devoid of clastic input, pure cherty banded iron formation forms. The same processes of precipitation occur in more proximal areas, but in these, the volume of clastic input prevents the development of BIF.

This is in general agreement with the conclusion of Watchorn (1978) that banded iron formation and associated argillites of the Mozaan Group were deposited in a distal shelf environment. In contrast, von Brunn and Hobday (1974) demonstrated a high tidal flat depositional environment for jaspilitic iron formations of the Mozaan Group. Thus, the development of banded iron formations in the Pongola Supergroup does not appear to be controlled by the bathymetry of the basin. In this respect and in their haematitic component these sediments have some features in common with Superior type banded iron formation. However, the Ndikwe Formation occurrences are spatially associated with volcanics, are lenticular and are volumetrically not very substantial. These features are more similar to Algoma type iron formation

as defined by Gross (1966). It may be that two distinct types of BIF occur in the Pongola Supergroup, but too little is known at present to allow resolution of this problem.

(h) Conglomerate Facies ( $G_{MS}$  and  $G_{I}$ )

Two conglomerate facies are recognized primarily on the basis of their sorting and packing characteristics. Facies  $G_L$  consists of poorly- to wellpacked clasts in a medium- to coarse-grained arenaceous matrix. The conglomerates of facies  $G_L$  may be matrix-supported where the matrix is coarse-grained and has primary sedimentary structures indicative of emplacement through current action. Facies  $G_{MS}$  consists of clasts of highly variable sizes and compositions scattered in a heterogeneous, largely argillaceous matrix. This facies is described in detail in the section on debris flow and is not discussed further here.

G<sub>L</sub> facies conglomerates occur as laterally-extensive, thin (2 - 30 cm) beds, lenticular bodies in troughs, sporadic pebble accumulations on planar erosion surfaces, and as local, thicker bodies. The thickest conglomerates in the study area are those on Driefontein in the Mhlatuze Valley (Map 4). At this locality the base of the Ndikwe Formation is marked by a basal conglomerate between 10 cm and 1 m thick. It consists of subrounded, moderately spherical clasts of white or clear quartz, white granular quartzite and, more rarely, chert. Sorting is apparently good with the development of bimodal clast size distributions. The dominant clast size range is 15 - 40 mm with less common, well-rounded clasts about 1 cm in diameter in the matrix. Granular, siliceous, coarse-grained quartz arenite forms the matrix. This is highly recrystallized which obscures most of the primary textures. Green mica, probably fuchsite, and pyrite are present as accessory minerals. Stylolitic surfaces mark bedding planes and clast-clast interfaces, representative of differential dissolution

during diagenesis. At the basal contact with the gneissic tonalite, only the upper parts of the clasts are preserved.

The basal conglomerate is overlain by an upward-fining quartz arenite sequence in which three other conglomerate units occur. These are similar in textural characteristics except that a systematic upward decrease in clast size and bed thickness occurs.

Two laterally-extensive planar units of well-sorted, clast-supported conglomerates 5 - 20 cm thick occur in the Gem syncline area. These are situated at the lower contact of the Vutshini Formation and about 80 m above the base. The conglomerates consist of clasts 0,5 - 3 cm in diameter of white quartzite, striped chert, vein quartz and clear greyish quartz. The clasts are commonly well-rounded and moderately spherical (Fig. 5.17). The matrix is medium-grained, mature quartz arenite in which well-rounded, highly spherical quartz grains are dominant. Heavy mineral lenses are locally present and consist predominantly of ilmenite.

An extensive, but discontinuous conglomerate sheet 0, 1 - 1 m thick is present at the base of the Vutshini Formation in the Central Nsuze syncline. This variant of facies  $G_L$  is less well packed than that described above. The same clast types are present, but these are subangular and the matrix is generally less mature. Trough-shaped scours are common in this unit and contain more mature conglomerates than the remainder of the sheet. The conglomerate is split into several thinner horizons locally by quartz arenite units of facies  $S_A$ .

Thin, sporadic conglomerates are common in the arenites of the Vutshini Formation. These layers are typically one or two clasts thick. The pebbles are smaller than those in the other conglomerates and range from 3 - 10 mm in diameter. They consist of blue, grey or colourless quartz or, rarely, finegrained granular quartzite. Although locally well packed, these units of facies G<sub>L</sub> consist predominantly of dispersed clasts on planar erosion surfaces or shallow trough-shaped scour surfaces.



Figure 5.17 Conglomerate of facies GL at base of the Wutshini Formation north of Vuleka. Matchbox is 52 mm long.

#### Interpretation

Rudaceous sediments of the Nsuze group have been ascribed to fluvial processes (Watchorn and Armstrong, 1980) and transgressive marine reworking of fluvial sediments (von Brunn and Hobday, 1974). Within the context of the portion of the Pongola depository under discussion, these two modes of origin require careful evaluation. The basal conglomerates of the Ndikwe Formation show a strong association with trough cross-bedded arenites of facies  $S_A$ . This association is also found at the base of the Vutshini Formation in the Central Nsuze Syncline. In the more northerly Gem Syncline the major conglomerates rest on essentially planar erosion surfaces. The sediments overlying the conglomerates are interpreted as marine deposits (see Facies Associations, below), which provides an insight to the origin of facies  $G_1$  sheets. Hydrodynamic factors make the deposition of extensive lags in marine settings unlikely unless a transgressive phase occurs. Transgression is essentially an erosive process and results in reworking of the existing sediments at the transgressive boundary. Thus, the facies G<sub>1</sub> deposits are possibly fluvial sediments which have been reworked by marine processes. The cases where scour troughs containing conglomerates are present may represent unreworked deposits or tidal channels within the transgressive sequence.

#### (i) Carbonate Rocks

Carbonates and their silicified equivalents are present near the base of the Mdlelanga Formation. Clasts of carbonate and porous calc-arenite are present in rare, sporadically-developed horizons in both the Mdlelanga and. Ndikwe Formations.

The main occurrence is south of the study area in the south limb of the Central Nsuze Syncline and was recognized during regional mapping prior to the start of the present investigation. It consists of a 40 m unit in which chert and limestone occur in a variety of forms. Most of the sequence consists of silicified or cherty, massive limestones except for a 10 m thick unit near the top of the sequence. The lower 8 m of this unit consists of crenulated laminae of alternating cherty and arenaceous sediment. In thin section calcite is observed to form fine stringers along the boundary between the two lithologies. It is recrystallized and is probably a relict of somewhat thicker laminae which have been silicified. This unit bears considerable resemblance to algal mat deposits identified in the Malmani Dolomite (Eriksson, 1977) and Bulawayan rocks in southern Zimbabwe (Martin et al., 1980). The latter authors refer to this structure as "crinkle lamination".

The uppermost 2 m consist of well-defined undulating laminae, which, where observed in plan view, define domical structures. These domes, which are 20 - 25 cm in diameter have superimposed smaller domical structures a few centimetres in diameter. The overall structure, which is persistent for as much as 20 cm vertically in the lamination, is identical to stromatolites from the Nsuze Group described by Mason and von Brunn (1977).

Although no exposures as extensive as the one described above have been found within the study area, carbonate beds and clast horizons are always present at the base of the Mdlelanga Formation. On the north limb of the Central Nsuze Syncline, numerous 10 - 20 cm thick carbonate layers are present in the basal 40 m of the sequence. These layers commonly display crinkle lamination (Fig. 5.18). On the south limb of the Gem Syncline in the Mdlelanga Valley similar, although thinner (2 - 3 cm thick) units are present.

Angular blocks of crinkle laminated impure limestone occur in argillites northeast of Hlagothi Mountain. The blocks are commonly 10 - 20 cm in diameter, but attain 50 cm in some cases. They are scattered through a sequence of chaotically-disrupted banded black and grey argillites interpreted as a submarine slump.



Figure 5.18 Carbonate layer in basal unit of Mdlelanga Formation north limb of the Central Nsuze Syncline, Nsuze River valley.

#### Interpretation

Stromatolitic limestones in Archaean sequences are usually associated with subtidal or intertidal sedimentary sequences (Martin et al., 1980, Mason and von Brunn, 1977). The same situation applies in the present study where the sediments enclosing limestones are interpreted as being of shallow marine or intertidal origin.

Stromatolites and crinkle lamination result from an accumulation of clastic and carbonate sediment over colonies of blue-green algae in modern rocks. There is evidence to suggest a different form of algae in early Proterozoic and Archaean time (Walter, 1977) but the general principles remain the same. The close spatial association between all Archaean stromatolitic limestones and volcanic rock types (Martin *et al.*, 1980; Mason and von Brunn, 1977), and evident in the present study, is thought to be of fundamental importance to the existence of the early life forms. Mineral nutrients and warmth generated by submarine volcanic activity may have been essential for the existence of the algae which presumably survived by some form of photosynthesis.

The existence of these oxygen-generating organisms during the essentially anaeorobic Archaean has significant implications. The scale on which oxygen production took place was probably insufficient to have any effect on the composition of the atmosphere. It is more likely that this free oxygen was fixed by the precipitation of ferric oxides in the form of haematitic banded iron formation (Cloud, 1973).

As noted above, the carbonates are dominantly limestone rather than dolomite. This fact has been demonstrated using X-ray diffraction analysis and the identification of calcite as by far the dominant carbonate species is unequivocal (Fig. 5.19). This is in agreement with the findings of Martin *et al.* (1980) that the Belingwe greenstone belt stromatolites occur in limestones rather than dolomites.




# 3. Sediment Gravity Flow Deposits

Sediment gravity flow encompasses a variety of depositional systems in which sediment transport is achieved by one or more of several support mechanisms rather than simple entrainment of grains by moving fluids. The different support mechanisms, notably dispersion by grain-grain interaction, escaping pore fluids, turbulence or matrix strength, result in different rheologic behaviour and thus produce deposits which vary in parameters such as sorting, stratification and packing. Although multiple support mechanisms commonly occur in a single flow, the dominant process can usually be recognized from the nature of the deposit. The nomenclature and understanding of these sedimentary processes is not yet thoroughly established, although substantial advances have been made recently (Lowe, 1979, 1982; Cook, 1979; Middleton and Hampton, 1973, 1976.) The classification used below is largely after Lowe (1979) and the summary of Weimer (1976).

## (a) Turbidites and Slumps: Ndikwe Formation

Sediments with the characteristics of turbidity current deposits are present within quartz arenites and ferruginous and black argillites northeast of Hlagothi Mountain in the Nsuze Valley (Map 4). Within the black muddy argillite, normally-graded silt to mud units are present in sequences 1 - 4 cm thick These are thought to represent distal, low density turbidity flow deposits. This argillite unit is overlain by medium-grained quartz arenite of a subtidal facies association (see later). Within this unit are several incomplete Bouma sequences which typically consist of small-scale planar cross-stratification overlain by climbing ripple and then plane bedding. These units, which are 20 - 30 cm thick, could be interpreted differently but, because of their similarity to the upper part of Bouma sequences and their presence in sediments interpreted as of shallow marine origin, a genesis by low density turbidity flow mechanisms is favoured. Walker (1978) indicated that partial Bouma sequences beginning at the B (plane parallel laminated) or C (ripple or wavy bedded) units occur in intermediate to distal parts of submarne fans. Levees within proximal turbidite environments may also show partial Bouma sequences.

A 1 m thick chaotic slump or cohesive debris flow deposit cuts across the argillite unit containing the graded units. This unit cannot be traced laterally for more than 6 m due to poor outcrop. It consists of randomly orientated, deformed blocks of the banded argillite set in a homogeneous silty mudstone matrix. Carbonate clasts, showing crinkle lamination, are also present. These were probably introduced from a more proximal environment by mass transport mechanisms.

(b) Volcanogenic Sediments: Ndikwe Formation

Resedimented pyroclastic rocks occur in the upper part of the Ndikwe Formation adjacent to the Ndikwe River (Map 2). The sequence, the boundaries of which are obscured, is at least 30 m thick. It consists of crudely stratified 20 - 50 cm thick units of volcanic clasts set in a generally massive, immature sandy matrix. This contrasts with the adjacent lapilli tuffs, which have a chloritic matrix, presumably derived from volcanic ash.

Ash flow emplacement generally takes place by gravity processes analogous to cohesive debris flow and grain flow (Lajoie, 1979). In this sense it is difficult to distinguish, on a process-response basis, between the resedimented pyroclastic rocks and the more normal pyroclastic rock types described in Chapter 3. The distinction made here is based largely upon the difference in matrix composition. A possible interpretation is that progressive winnowing of pyroclastic ash occurred on the flanks of the volcanic pile by traction currents. Periodic oversteepening of the residual pyroclastic debris resulted in slumping, especially when water saturated to produce the crudely stratified units. Earthquakes or tremors may have been the triggering mechanism. (c) Slumps and Cohesive Debris Flows: Mdlelanga Formation Lithology

[ ]. A sequence of matrix-supported conglomerates, greywackes and resedimented ferruginous argillites in the Mdlelanga Formation at Vuleka (Map 2) is attributed to sediment gravity flow processes. The sequence is at least 40 m thick at the eastern extremity of the Vuleka exposures and tapers to about 5 m towards the western limit, along a strike length of 1,5 km.

The sequence is situated in a core of a synclinal structure which, combined with discontinuous outcrop, makes recognition of lateral lithological variations and thicknesses difficult. A crude three-fold subdivision of the sequence is, nevertheless, possible.

The base of the sequence is discordant and transgresses southeastwards across 40 m of tidal sedimentary rocks. Where the contact is exposed, the sedimentary structures in the underlying sediments display considerable deformation. The basal unit is 5 - 20 m thick and is present over the observed strike length of the sequence. It consists of quartz arenite boulders up to 7 m in diameter set in a pebbly, tuffaceous mudstone matrix (Fig. 5.20A). The boulders are rarely in contact with one another and are generally separated by several metres of matrix. Internal sedimentary structures of the boulders are commonly distorted by plastic deformation. In one occurrence the bedding surfaces are folded through nearly 360°. Despite this deformation, the assemblage of sedimentary structures is recognized as including planar, trough and herringbone cross-stratification with rare micro-cross-lamination, clay drapes and plane bedding. These structures, in addition to compositional features, are identical to those of the quartz arenites truncated by the basal contact of the mass-flow sequence. This suggests that the boulders were locally derived, were relatively ductile and only partially consolidated at the time of emplacement.

Figure 5.20A

Block of quartz arenite in debris flow of the Mdlelanga Formation southwest of Vuleka. The block is 1,7 m in length. It rests in a greywacke matrix. Note the disturbance of internal sedimentary structures.





Figure 5.20B

Tabular clasts of banded chert and cherty iron formation in uppermost unit of Mdelanga Formation debris flow sequence, southeast of Vuleka. The clasts are commonly plastically deformed. Lichen covering at left and top of photograph. Lens cap is 5,5 cm in diameter. The matrix containing the boulders is extremely poorly sorted and inhomogeneous. Rounded quartz pebbles 1 - 5 cm in diameter occur sparsely throughout the unit, but are locally more concentrated. Sandy and gritty patches are present, but have diffuse boundaries. Dark chloritic particles 1 - 2 cm in length are locally common. Their shape suggests that they represent ripup clasts. Light grey tuffaceous fragments up to 1 cm in diameter are common near the base of the unit. The remainder of the matrix is a fine-grained greywacke consisting of fine- to medium-grained sand ( $\sim$  40%) and chloritic argillite.

The second or middle unit is a discontinuous graywacke up to 20 m thick, which is compositionally identical to the matrix of the underlying unit. It is distinguished by an absence of clasts exceeding 5 cm in diameter and a local crude stratification. Rare trough cross-stratification is present towards the top of this unit. A single, 15 m long quartz arenite body is present near the upper contact. This body is intensely deformed as indicated by small-scale tight folding along its margins.

The uppermost unit is a clast-supported conglomerate up to 8 m thick, which may be traced for about 150 m along strike. The clasts are angular, elongate or tabular fragments of banded iron formation consisting of alternating haematitic and cherty layers 1 - 5 mm thick (Fig. 5.208). Clast sizes range from '1 - 15 cm in length and are 0.6 - 5 cm thick. The matrix consists of a poorlysorted mixture of ferruginous argillite and grains of chert, haematite and subordinate quartz. Lenses of specular haematite 2 mm thick occur locally. A vague horizontal alignment of clasts is apparent locally. Elsewhere the clasts are randomly orientated.

# Inferred Mode of Origin

The sequence described above has several characteristics which can be attributed to a combination of three gravity-driven depositional mechanisms.

The variety of clast sizes and lithologies and paucity of bedforms and grading in the basal unit suggest deposition by cohesive debris flow as defined by Lowe (1982). The principal support mechanism in cohesive debris flow is the yield strength of the matrix. Buoyant lift is provided by the high density of interstitial mud which provides considerable support for the larger clasts in debris flows. Boulders as large as those in the basal unit are unlikely to be transported as suspended material unless the matrix had very high viscosity and hence yield strength. Lowe (1972) found that blocks 50 cm in diameter exceed the yield strength and buoyant support in debris flows of the Great Valley Sequence, California. Lowe (1972) concluded that some larger blocks are moved as bedload and are thus likely to be confined to the base of a debris flow. He does, however, document transport of discrete blocks up to 10 m in diameter at the top of flow units in the same sequence, a feature ascribed to buoyant support provided by the mudflows. High sediment cohesion is another critical aspect of cohesive debris flows in that it prevents particle size-segregation (Enos, 1977). In the Vuleka deposits local concentrations of pebbles or coarse sand may reflect local zones of poor cohesion and lower viscosity which allowed some sorting to occur. Alternatively, these pebbles or sandy zones may represent reworking of the debris flow deposits by traction currents.

The middle unit is also interpreted as the product of debris flow sedimentation, although a slightly different mechanism must be invoked to explain the lack of clasts greater than 5 cm in diameter. These debris flows are probably more distal than those observed at the base. Cook (1979) documented variations in debris flow sequences whereby lateral change in dominant transport and support mechanisms may be recognized. "Many flows probably undergo a secular evolution involving changes in the relative effectiveness of a number of support mechanisms. A mass of sediment may fail as a slump, liquify, accelerate and become a turbulent high density turbidity current, and finally slow and resediment as a liquified flow." (Lowe, 1979, p. 180).

Pure laminge or non-turbulent flow of liquified sediment masses is probably a relatively uncommon transport mechanism in flows other than those consisting of cohesionless silt or sand (Lowe, 1979). The middle Vuleka unit has a high mud content and thus may have originated as a series of high density turbidity flows or mud flows.

The upper agglomeratic unit is thought to have formed as normal banded iron formation by processes discussed above. Partial lithification occurred during deposition. This was followed by disruption as a result of pore water overpressures to form the flattened, angular clasts and local resedimentation. Cook (1979) illustrated a similar rock type in which tabular clasts of laminated lime mudstone and greywackes occur in a micritic matrix. He interpreted these deposits as the product of submarine sliding in which the yield strength of an initially plastic flow was exceeded, resulting in fragmentation and deposition by debris flow mechanisms. The conglomerates illustrated by Cook (1979, p. 299) are clast-supported and have a matrix of identical composition to the clasts. These two features are typical of the Mdlelanga Formation agglomerate, suggesting a possibly similar mode of origin.

The probable sequence of events responsible for the Mdlelanga Formation sediment gravity flow deposits is summarized in Figure 5.20C. The available field data are insufficient to allow formulation of a definite depositional model and collection of such data is precluded by the nature and extent of the outcrops.

## 4. Facies Associations and Sequences

For the purposes of this section a facies association is defined as a recognizably consistent co-existence of several facies. Facies sequences consist of a preferred vertical order in which facies occur. The associations and sequences described below are defined on the basis of several measured vertical











Figure 5.20C Schematic representation of the five stages in the development of the debris flow sequence, Mdlelanga Formation south of Vuleka.

sections through the Nsuze Group. This may be open to considerable subjectivity since the definition of the facies themselves is somewhat subjective. This is one of several points argued by Reading (1978) against the use of statistical methods in defining facies models. Although Markov analysis has been used below, the conclusions reached are not well constrained and must be considered tentative. Nonetheless, the facies associations recognized resemble welldocumented depositional models.

The four most prominent facies associations and their areas of occurrence are as follows:

(a) Upwards-fining sequences in all Vutshini Formation outcrops in the Gem Syncline area and the lowest part of the Central Nsuze Syncline consist predominantly of facies  $S_A$  and  $S_B$  with subordinate occurrences of  $G_I$  basal to the sequences (Figs. 5.21 and 5.22). Facies  $G_L$  is laterally extensive and ranges from 2 - 25cm in thickness. It is best developed in low relief channels, 0 - 3 mm deep and 10 -20 m wide, but is continuous over the intervening areas. The overlying  $S_{\rm A}$ facies (5 - 80 m thick) has abundant trough and planar cross-bedding as well as shallow, low relief channels in which thin (1 pebble thick), sporadic, small pebble lags are present. Soft sediment deformation structures are common, generally as recumbent foresets and rarely as water-escape structures. Planar or gently undulating surfaces marked by a 1 - 5 cm thick green argillite unit are common. Facies  $S_{B}$  (0 - 15 m thick) is commonly fine-grained to very finegrained and is characterized by plane lamination and low-angle, large-scale planar cross-stratification in this facies association. Small-scale crosslamination is rarely observed, as are wave ripples on bedding surfaces. This facies is not always present. All three of the facies are present in several of the sequences in the order  $G_L \rightarrow S_A \rightarrow S_B \rightarrow G_L$ . The sequence  $G_L \rightarrow S_A \rightarrow G_L \rightarrow S_A \rightarrow$  $S_{R} \rightarrow S_{\Delta}$  is not uncommon.



Figure 5.21 Measured section showing vertical facies relationships in the lower part of the Vutshini Formation in the Gem Syncline north of Vuleka.

110

Key

Planar cross beds

Trough cross beds

7777

لک

This facies association and sequence is broadly similar to the prograding tidalite model proposed by von Brunn (1974), von Brunn and Hobday (1976) and Watchorn (1978) in other parts of the Pongola depository. Several major differences exist, including the substantially greater thickness of the cycles, the virtual absence of true mudstones and a complete absence of features such as mudclasts, mud cracks and herringbone cross-stratification. For this reason an upwards-fining, prograding tidalite model is considered inapplicable. The sequence does have many characteristics of shallow marine sediments. In particular, the thin laterally extensive gravel lags are probably best explained by marine transgression, whereas the overlying sandstones may represent migration and aggradation of subtidal sand bodies (cf. Johnston, 1978). This model would require a high rate of accumulation, continuous, slow subsidence and rapid delivery of clastic sediment to the shelf. Some tidal activity probably occurred to account for the shallow channels. A more detailed comparison with existing depositional models cannot be made on the basis of available data.

(b) An association of several arenaceous, heterolithic and mudstone facies is recognized in the Mdlelanga and Vutshini Formations. Two different types of sequence may be distinguished. The first comprises upwards-fining sequences with strong evidence for periodic emergence; the second being essentially random or upwards-coarsening sequences lacking evidence for emergence.

The upwards-fining sequences are present at the base of the Vutshini and within the Mdlelanga Formations in the Central Nsuze Syncline and south of Vuleka respectively (Figs. 5.22 and 5.23). Typically, the sequence has arenaceous facies  $S_A$  and  $S_C$  at the base with minor sporadic occurrences of facies  $G_L$  along or close to the basal contact. Facies  $S_A$  has, in addition to the cross-bedding noted in the facies definitions, rare herringbone cross-stratification and ubiquitous reactivation surfaces. An upwards decrease in grain size over



Figure 5.22 Measured section showing occurrence of various facies in the Vutshini Formation, Central Nsuze Syncline. Symbols and ornamentation as in Figure 5.21.

several metres is accompanied by a gradual reduction in the size of the crossstratification. Facies  $S_C$  overlies this unit transitionally as a 1 - 5 m thick micro-cross laminated bed. In the upper part, thin mud drapes are present on the ripple laminae. Superimposed sedimentary structures are common, generally as small wave ripples on troughs or megaripples. The orientation of the ripples is generally oblique or normal to that of the larger bedform. Thicker mud layers are not common, but, where present, may rarely exhibit mudcracks. These mud units are commonly disrupted or scoured (Fig. 5.15). Beds containing mudclasts are common. The remainder of the facies sequence is:  $H_A - H_B - H_C - M_L$  in the rare complete vertical sequences. More commonly one or more of the facies is absent.

The upwards-fining facies sequence described above is identical in many respects to the tidal circulation model defined by Klein (1971, 1977a, b) on the basis of numerous modern and ancient sequences interpreted to be products of deposition in prograding epeiric and mioclinal shelf seas. Klein (1977a, b) defines nine groups of sedimentary features and inferred processes which form the basis of the prograding tidal sedimentation model. The characteristics of the Nsuze Group facies association are compared with these groups in Table 5.1. It is apparent that the Nsuze sediments conform to many of the criteria for all of the subenvironments defined by Klein (1977a, b). This alone does not prove a tidal origin, but supports strongly the inference that this facies association represents tidalite deposition. Von Brunn and Hobday (1976) and von Brunn (1974) related sediments from the upper Nsuze Group in areas to the northeast of the study area to prograding macrotidal shorelines on the basis of the Klein (1977a, b) model. Watchorn (1978) recognized an identical facies association in the Mozaan Group in southeastern Transvaal and northern Natal.

(c) The facies association  $S_A$ ,  $S_B$ ,  $S_C$ ,  $H_A$ ,  $H_B$ ,  $H_C$  and  $G_L$  occurs in the Vutshini Formation in the Central Syncline and the lower Mdlelanga and Ndikwe Formations

# TABLE 5.1: CLASTIC TIDALITE PROCESS-RESPONSE MODELS (After Klein, 1971, 1977)

| TRANSPORT PROCESSES CRITERIA                                                          |              | NDIKWE                                                                                                                  | OCCURS IN:<br>MOLELANGA | VUTSHINI | COMMENT |                                  |
|---------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|---------|----------------------------------|
| A. Tidal current bedload<br>transport with bipolar-                                   | ۱.           | Cross stratification with sharp set boundaries                                                                          | V                       | V        | V       |                                  |
| bimodal reversals of<br>flow direction                                                | 2.           | Herringbone cross-stratification                                                                                        | -                       | √        | 1       | Uncommon                         |
| TOW direction                                                                         | 3.           | Bimodal-bipolar palaeocurrent<br>directions                                                                             | 1                       | J        | J       |                                  |
|                                                                                       | 4.           | Parallel lamination                                                                                                     | 1                       | √        | 1       |                                  |
|                                                                                       | 5.           | Complex internal organi-<br>zation of dune and sand<br>waves                                                            | J                       | ?        | ?       |                                  |
|                                                                                       | б.           | Supermature rounding of quartz grains                                                                                   | ?                       | ?        | J       | Obscured by<br>recrystallization |
| 8. Time velocity assymetry of                                                         | 7.           | Reactivation surfaces                                                                                                   | 1                       | J        | 1       |                                  |
| tidal current bedload<br>transport                                                    | 8.           | Bimodal or multimodal frequency distribution of set thickness of cross-strata                                           | ?                       | ?        | ?       | Suspected but not measured       |
|                                                                                       | 9.           | Bimodal frequency distribution of dip angle cross-strata                                                                | 1                       | J        | 1       |                                  |
|                                                                                       | , <b>10.</b> | Unimodal palaeocurrent<br>directions of planar cross-<br>strata                                                         | ?                       | -        | -       |                                  |
|                                                                                       | 11.          | Orientation of cross-strata<br>parallel sand body trend and<br>basinal topographic strike.                              | ?                       | ?        | ?       | Insufficient data                |
|                                                                                       |              | Also 5 and 6 above.                                                                                                     |                         |          |         |                                  |
| C. Late-stage emergence ebb out-<br>flow and emergence with<br>sudden changes in flow | 12.          | Trimodal distribution of palaeo-<br>current directions of planar<br>cross-strata                                        | •                       | -        | -       | Insufficient data                |
| direction at shallow<br>water depths ( 2.0 m).                                        | 13.          | Quadrimodal distribution of<br>palaeocurrent data                                                                       | -                       | -        | -       | Insufficient data                |
|                                                                                       | 14.          | Small current ripples super-<br>imposed at 90° of obliquely<br>on larger current ripples                                | V                       | 1        | 4       |                                  |
|                                                                                       | 15.          | Interference ripples                                                                                                    |                         |          |         |                                  |
|                                                                                       | 16.          | Double crested ripples                                                                                                  | -                       | ?        | -       | One occurrence                   |
|                                                                                       | 17.          | Flat topped ripples                                                                                                     | •                       | -        | -       |                                  |
|                                                                                       | 18.          | Current ripples superimposed<br>at 90° and 180° on crest and<br>slip faces of dunes and sand<br>waves, and cross-strata | ?                       | -        | -       | One occurrence                   |
|                                                                                       | 19.          | "B-C" sequence of cross-<br>stratification overlain by<br>micro-cross-laminae                                           | 1                       | J        | 1       |                                  |
|                                                                                       | 20.          | Symmetrical ripples                                                                                                     | •                       | -        | -       |                                  |
|                                                                                       | 21.          | Etchmarks on slip faces of<br>cross-strata                                                                              | V                       | 1        | ?       |                                  |
|                                                                                       | 22.          | Wash out structures                                                                                                     |                         |          |         |                                  |
| D. Alternation of tidal current                                                       | 23.          | Cross-stratification with flasers                                                                                       | 1                       | 1        | J       |                                  |
| bedload transport with                                                                | 24.          | Flaser bedding                                                                                                          | 1                       | 1        | J       |                                  |
| slack water periods                                                                   | 25.          | Wavy bedding                                                                                                            | 1                       | 1        | 1       |                                  |
|                                                                                       | 26.          | Lenticular bedding                                                                                                      | 1                       | 1        | 1       |                                  |
|                                                                                       | 27.          | Tidal bedding                                                                                                           | 1                       | 1        | ?       |                                  |
|                                                                                       | 28.          | Convolute bedding                                                                                                       | 1                       | 1        | 1       |                                  |
|                                                                                       | 29.          | Current ripples with muddy                                                                                              | 1                       | 1        | J       |                                  |
| E. Tidal slack water mud                                                              | 30.          | troughs<br>As 23 above                                                                                                  | 1                       | 1        | 1       |                                  |

#### TABLE 5.1 continued

| TRANSPORT PROCESSES                                                         | CRITERIA                                                            | NDIKWE | OCCURS 1N:<br>MDLELANGA | VUTSHINI | COMMENT                                                           |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------|--------|-------------------------|----------|-------------------------------------------------------------------|
| F. Tidal Scour                                                              | 31. Mud chip agglomerates at base of wash outs and channels         | J      | J                       | 1        |                                                                   |
|                                                                             | 32. Shell lag conglomerates at<br>base of wash outs and<br>channels | •      | -                       | -        |                                                                   |
|                                                                             | 33. Ilots                                                           | ?      | -                       | -        | One possible example in<br>dip surface exposure at<br>Wonderdraai |
|                                                                             | 34. Intraformational conglomerates                                  | 1      | 4                       | 1        |                                                                   |
|                                                                             | 35. Flutes                                                          | -      | -                       | -        |                                                                   |
|                                                                             | 36. Rills                                                           | -      | -                       | -        |                                                                   |
| G. Exposure and evaporation                                                 | 37. Muderacks                                                       | ?      | 4                       | 1        |                                                                   |
|                                                                             | 38. Runzelmarks                                                     | -      | ?                       | -        |                                                                   |
|                                                                             | (Also 34 above and rip-up clasts)                                   | 1      | 4                       | √        |                                                                   |
| H. Burrowing and organic                                                    | 39. Depth of burrowing                                              | -      | -                       | -        | ( Stromatolites at base                                           |
| diagenesis                                                                  | 40. Tracks and trails                                               | -      | •                       | •        | ( of Milelanga are<br>products of shallow                         |
|                                                                             | 41. Drifted plant remains                                           | -      | -                       | -        | ( water or intertidal                                             |
|                                                                             | 42. Impoverished fauna                                              | -      | -                       | -        | ( biogenic activity                                               |
| [. Differential compaction,                                                 | 43. Load casts                                                      | √      | 1                       | √        |                                                                   |
| loading and hydroplastic<br>readjustment                                    | <pre>44. Pseudonodules (Also 28 above)</pre>                        | -      | 1                       | ?        |                                                                   |
| J. High rates of sedimentation<br>combined with regressive<br>sedimentation | 45. Graded, fining upwards<br>sequence •                            | 1      | J                       | V        |                                                                   |

KEY:

√ = Present - = Absent ? = Recognition not positive

in the area of the Mdlelanga and Nkonisa River confluence and the lower Welendhlovu River valley. Measured vertical sections through these areas reveal that the facies occur either in upwards-coarsening cycles or in a random sequence (Figs. 5.22 and 5.24). In order to test the relationship between the facies, Markov chain statistics were calculated for a part of the Vutshini Formation between the clearly upwards-fining basal unit and the predominantly arenaceous lithologies present in the upper half of the formation (Fig. 5.25, Table 5.2). These data indicate a strong tendency for upwards transitions to occur in the order:  $H_C \rightarrow H_B \rightarrow H_A \rightarrow S_A$  with less probable transitions  $S_B \rightarrow S_C$  and  $S_B \rightarrow S_A$ . In addition, field observations indicate that the basal part of each facies  $H_C$ unit is highly ferruginous and locally may be classified as banded iron formation.

This upwards- coarsening facies sequence is similar to deposits described by Watchorn (1978) who related this sequence to prograding shelf or delta front sedimentation. Hobday (1973) documented stacked, upwards-coarsening facies sequences in Phanerozoic sediments which resulted from deltaic progradation into a gradually subsiding basin. The cyclicity reflected lateral migration of delta lobes in this occurrence. The sequences of the Vutshini Formation differ from those of the Phanerozoic example in that they are seldom complete and have a considerable range in thickness (1 - 10 m, Fig. 5.22). As mentioned above, the Vutshini Formation comprises upwards-fining marine sequences in the Gem Syncline at an equivalent stratigraphic level to the sequence under discussion. As there is some evidence for the Vutshini upwards-fining sequences being of subtidal origin, any palaeoenvironmental interpretation must account for the lateral equivalence of substantially different facies assemblages. Taking folding of the sequence into account, the two localities were originally no more than 10 km apart. Thus a fundamental geographical control must have existed, such as a major change in the topography of the coastline. Possibly the difference between the sequences is related to the proximity of a fluvial entry point to the basin.



Mdlelanga Formation-Mdlelanga Valley south of Vuleka

Figure 5.23 Measured section through the Mdlelanga Formation south of Vuleka in the Mdlelanga River valley. Symbols and ornamentation as in Figure 5.21.



Ndikwe Formation-lower Welendhlovu Valley

Figure 5.24 Measured vertical sections through parts of the Ndikwe Formation. lower Welendhlovu River valley. Key to ornamentation as in Figure 5.21.



Figure 5.25 Markov chain showing facies transitions which are encountered more frequently than is statistically probable.

# TABLE 5.2 : MARKOV CHAIN STATISTICS FOR UPWARDS FACIES TRANSITIONS, VUTSHINI FORMATION

| (a)            | Observed       | Transition     | Matrix         |                |                |     |
|----------------|----------------|----------------|----------------|----------------|----------------|-----|
|                | s <sub>A</sub> | s <sub>8</sub> | s <sub>c</sub> | н <sub>А</sub> | н <sub>в</sub> | чc  |
| SA             | -              | 2              | 4              | 5              | 8              | 4   |
| Sg             | 3              | -              | t              | 0              | 0              | 0   |
| s <sub>c</sub> | 1              | 2              | -              | 0              | 1              | 1   |
| HA             | 11             | 0              | 0              | -              | 1              | 1   |
| H <sub>R</sub> | 6              | G              | 0              | 6              | -              | . 1 |
| н <sub>с</sub> | 3              | . <b>0</b>     | Û              | 1              | 3              | -   |

| (b) | Difference     | Matrix:        | Observed Mi | bilities       |                |       |
|-----|----------------|----------------|-------------|----------------|----------------|-------|
|     | s <sub>A</sub> | s <sub>B</sub> | sc          | H <sub>A</sub> | н <sub>в</sub> | нс    |
| SA  | -              | -0.01          | 0.05        | -0.09          | 0.04           | Ø     |
| SB  | 0.36           | -              | 0.13        | -0.21          | -0.21          | -0.11 |
| sc  | -0.19          | 0.32           | -           | -0.21          | -0.01          | 0.09  |
| HA  | 0.40           | -0.08          | -0.09       | -              | -0.17          | -0.05 |
| H_  | 0.01           | -0.08          | -0.09       | 0.21           | -              | -0.05 |

TABLE 5.3: MARKOV CHAIN ANALYSIS FOR UPWARDS FACIES TRANSITIONS MDLELANGA FORMATION

-0.07 -0.08 -0.08

0.21

0.02

нс

| (a)            | Observed       | Transition     |    |    |                |    |
|----------------|----------------|----------------|----|----|----------------|----|
|                | s <sub>A</sub> | s <sub>B</sub> | sc | HA | н <sub>в</sub> | нс |
| s <sub>a</sub> | -              | 1              | 1  | 1  | 2              | 3  |
| s <sub>B</sub> | 2              | -              | t  | 0  | 0              | 0  |
| sc             | 2              | 0              | -  | 0  | 0              | 1  |
| H <sub>A</sub> | 1              | 0              | 0  | -  | Û              | 1  |
| н <sub>в</sub> | 1              | 1              | Û  | 0  | -              | 0  |
| н <sub>с</sub> | 2              | 1              | t  | 1  | 0              | -  |

(b) Difference Matrix: Observed Minus Calculated Probabilities

|                | s <sub>A</sub> | s <sub>B</sub> | s <sub>c</sub> | н <sub>А</sub> | н <sub>в</sub> | н <sub>с</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| s <sub>a</sub> | -              | -0.07          | -0.07          | Q_1            | 0.12           | 0.05           |
| s <sub>B</sub> | 0.24           | -              | 0.19           | -0.10          | -0.10          | -0.24          |
| s <sub>c</sub> | 0.24           | -0.14          | -              | -0,10          | -0.10          | 0.09           |
| HA             | 0.09           | -0.14          | -0.14          | -              | -0-09          | 0.27           |
| н <sub>в</sub> | 0.09           | 0.36           | -0.14          | -0.09          | -              | -0.23          |
| н <sub>с</sub> | -0.07          | 0.04           | 0.04           | 0.09           | 0.09           | -              |

Other occurrences of the heterolithic and arenaceous facies association  $(S_A, S_B, S_C, H_A, H_B, H_C, M)$  are in the lower parts of the Mdlelanga and Ndikwe Formations, south of Vuleka (Map 2) and east of Hlagothi Mountain (Map 3) respectively. The measured sections through these parts of the stratigraphy are short owing to a paucity of outcrop and do not provide evidence for cyclicity or preferred sequences of occurrence (Fig. 5.26). They display considerable evidence for a subtidal origin (wave ripples, flaser, lenticular and wavy bedding, polymodal cross-bed orientation, reactivation surfaces). The absence of sequential ordering is ascribed to a complex interplay between subsidence through epeirogenic movement, transgression and progradation. Markov analyses (Table 5.3) for the Mdlelanga sequences suggest the order  $H_B - S_B - S_A$  is most common with  $H_B - S_B - S_C - S_A$  being slightly less probable. The significance of this is not readily apparent.

(d) Several sections measured in the field cannot yet be ascribed to facies associations or sequences because of the constraints placed on interpretation by discontinuous outcrop and a resultant lack of data regarding the lateral and vertical relationship between the facies.

Figure 5.27 shows the vertical section through a part of the Ndikwe Formation west of Ndikwe Store. This sequence has trough and planar crossstratification ( $S_A$  facies) at the base. The upper half of the 30 m section consists only of facies  $S_B$  (parallel laminated) and  $S_C$  (microcross-laminated, always with climbing ripples) in alternating units 30 - 100 cm thick. This alternation reflects an environment in which cycles of high energy and high sediment load preceded periods of lower energy flow and high rates of sediment fall-out. There is no visible difference in grain size between the two facies, possibly as a result of complete recrystallization. Facies  $S_B$  rests with a sharp or slightly scoured contact upon facies  $S_C$ . The  $S_B - S_C$  transition



## Lower Mdlelanga Formation, south of Vuleka





Figure 5.26 Measured vertical sections through parts of the Ndikwe Formation in the area around Hlagothi Mountain and the Mdlelanga Formation south of Vuleka. Symbols and ornamentation as in Figure 5.21.



Ndikwe Formation west of Ndikwe store

Figure 5.27 Measured vertical section through a portion of the Ndikwe Formation due west of Ndikwe Store. Symbols and ornamentation as in Figure 5.21.

occurs over a few centimetres in which in-phase climbing ripple cross-lamination is common. The sequence resembles high-energy flood deposits described by Tunbridge (1981) as the product of an ephemeral stream environment. However, the observed sequence lacks the rip-up clasts and evidence for exposure considered to be essential criteria for recognition of ancient ephemeral stream deposits (Tunbridge, 1981). It is difficult to envisage a shallow marine environment for these sediments because there are few features indicative of normal marine conditions.

## 5. Palaeocurrent Direction

The palaeocurrent directions measured in the Nsuze Group have been plotted as rose diagrams for each formation and the whole sequence (Figs. 5.28, 5.29, 5.30 and 5.31). The number of measurements within individual facies sequences is too small to make meaningful interpretations with regard to local sedimentary environments.

Within the Ndikwe Formation trough cross beds indicate a range between southwest and northwest (Fig. 5.28). Planar foreset measurements indicate a bimodal population with south and southeasterly directions being dominant. Wave ripple strikes range between northeast and north, whereas current ripples indicate a southeasterly flow direction. These data represent mixing of populations from different depositional environments which may account for the apparently contradictory evidence. The common factor in the groups is that south to southeast and west to southwest palaeocurrent directions are most common.

The Mdlelanga Formation trough cross-stratification data are weakly bimodal with dominantly south-southeast trends (Fig. 5.29). A weak westwards trend is also present. Planar cross-stratification yields generally southwards flow directions with no well-defined maximum. Wave ripple strikes display a strong northeast-southwest mode, normal to the flow direction inferred from the trough



#### NDIKWE FORMATION

Figure 5.28 Palaeocurrent rose diagrams for the Ndikwe Formation.



Figure 5.29 Palaeocurrent rose diagrams for the Mdlelanga Formation.



Figure 5.30 Palaeocurrent rose diagrams for the Vutshini Formation.



Figure 5.31 Palaeocurrent rose diagrams for the Nsuze Group.

and planar cross-stratification. This group of measurements is reasonably consistent and indicates a palaeoslope towards the south or southeast.

The data for the Vutshini Formation are more contradictory. Troughs could be measured most commonly on dip surfaces where they are exposed as shallow scoops. The recrystallization and maturity of the sandstones generally prevents recognition of the actual foresets and direction of movement. For this reason the trough long axes were measured and plotted, which provides an orientation but not a sense of movement. On the rose diagram the troughs display a dominant east-west trend (Fig. 5.30). The few instances where actual cross-strata could be measured indicate eastwards palaeocurrent directions. Planar cross-beds are equally uninformative, although weak northeasterly and northwesterly maxima are present. Wave ripple strikes are dispersed between north and west with a weakly trimodal distribution. A more detailed study might permit recognition of several subgroups, perhaps related to different facies assemblages. The Vutshini Formation overlies the Qudeni Formation volcanics which diminish substantially in thickness northwards (Chapter 3). Extrusion of this volcanic pile may have reversed the palaeoslope locally.

The combined data for the Nsuze Group are shown in Figure 5.31. Troughs in this population are dominated by those measured in the Vutshini Formation (36 out of 71 measurements), therefore the data are shown as strike azimuths. The dominant orientation of the troughs is east-west. No well-defined maximum is present in the ripple strike data, although three weak maxima are present: N-S, NE-SW and E-W. Planar cross beds show a bimodal, bipolar distribution. The dominant mode is towards the south and southeast; a moderately strong northwest trend also being present.

The palaeocurrent data are thus reasonably consistent with a predominantly souteastwards palaeoslope, but reflect the influences of shifting depositional environments. The Qudeni Formation volcanics may have changed the local basin morphology prior to deposition of the Vutshini Formation, resulting in a temporary northwards palaeoslope.

#### 6. Summary of Sedimentological Data and Interpretations

Although the sedimentological data presented in this study are as yet inadequate for detailed facies modelling, several inferences can be made. The arenaceous and argillaceous sediments may be divided into several facies on the basis of sedimentary structures and petrographic associations. The sequence in which the facies occur allows comparison with established facies models. Thus far the Nsuze Group appears to be predominantly marine in origin, particularly in areas where cycles of arenaceous and argillaceous deposits have the characteristics of shoreline, proximal shelf and distal shelf sequences. Fluvial sediments are rarer but are probably locally developed. In the upper part of the Vutshini Formation poorly-exposed sediments seem likely to represent distal alluvial fan deposits.

Available palaeocurrent data are not particularly useful except that a dominant south to southeast palaeoslope is indicated. The manner in which cycles of shallow and deeper water deposits are in juxtaposition and the vertical and lateral variation in the sequence suggest a complex tectonic history for the depositional basin. Repeated transgression and regression must have occurred in response to isostatic adjustment or crustal flexing caused by deepseated magmatism or variations in regional stress field. The occurrence of volcanics at various levels within the sequence is evidence for repeated resurgence of magmatism. A feature common to the Vutshini and Mdlelanga Formations is a southwards thickening. Whether this represents a shift in position of the depocentre or progressive uplift of the Nondweni-Nkandla basement high cannot be inferred at this stage. If the latter is the case, then the area studied may lie within an embayment or trough separate from the remainder of the Pongola Supergroup. This may have significant implications for crustal evolution of the Kaapvaal province in terms of proximity to the original boundary of the early crustal fragment.

#### CHAPTER 6

# GEOCHEMISTRY OF THE NSUZE LAVAS AND SOME ULTRAMAFIC ROCK-TYPES

#### 1. Introduction

Sixteen Nsuze Group lavas and eight ultramafic rock-types of intrusive or extrusive origin have been analysed for major and minor elements as well as thirteen trace elements. The data provide a basis for comparison with analyses from other areas and some indication as to magmatic affinity and possible fractionation trends. In addition, data from Tunnington (1981) and Brown (1982) are used in discussion of the geochemistry of the Nsuze Group lavas.

Relevant information concerning the sample localities, stratigraphic position, petrography and alteration of the samples is provided in Appendix 1. A description of the analytical methodology is given in Appendix 4.

## 2. Alteration

In addition to devitrification, metamorphism and deformation, the lavas have undergone considerable alteration. As it is not always possible to obtain samples free of all alteration, it is considered important to review available data pertaining to chemical variations stemming from calcitization, silicification, epidotization and chloritization.

Condie *et al.* (1977) indicated that considerable mobilization of many elements occurs during intense alteration although at levels less than 10% calcitization and 60% epidotization the elements Ti, Y, Nb, Zr, Cr and Ni are effectively immobile. Other changes are summarised in Table 6.1.

| Mineralogical Change                      | Si    | A1    | Mg | Fe <sup>3+</sup> | Fe <sup>2+</sup> | Ca    | Na    | K    | Ti |  |
|-------------------------------------------|-------|-------|----|------------------|------------------|-------|-------|------|----|--|
| Augite to chlorite'                       | -     | +     | 0  | 0                | 0                | -     | 0     | 0    |    |  |
| Labradorite to albite <sup>1</sup>        | +     | -     | 0  | 0                | 0                | -     | +     | -    |    |  |
| Calcitization/chloritization <sup>2</sup> |       |       |    | -                | +                | -     | -     |      | +  |  |
| Epidotization <sup>2</sup>                | -     |       | -  | +                | -                | +     |       | -    | -  |  |
| ' - Hughes (1982, p. 476)                 |       | 2     | -  | Condie           | e et al          | L. (1 | 1977) | )    |    |  |
| - = depletion + = er                      | nricl | hment | t  |                  | 0 =              | = ur  | nchar | Igeo | i  |  |

TABLE 6.1: CHANGE IN CHEMISTRY RELATED TO TRANSFORMATION AND ALTERATION OF PRIMARY MINERALOGY IN VOLCANIC ROCKS

For these reasons it is essential to attempt to identify samples which have undergone significant alteration before proceeding to a discussion of the chemical data. The Nsuze group samples retain little of their primary mineralogy. For this reason it has been necessary to classify them on the basis of their chemistry. As sodium and potassium abundances strongly influence classification, it is important to identify samples which have been subjected to alkali enrichment or depletion. Hughes (1972) suggests the plot:  $K_2 O + Na_2 O$  versus  $K_2 O/(K_2 O + Na_2 O)$ for this purpose. A large proportion of the analyses fall outside of the igneous spectrum of Hughes (1972) (Fig. 6.1). Most of the same samples are also aberrant on a plot of total alkalies against differentiation index (D.I.) (Fig. 6.2). A plot of normative diopside and corundum versus silica may also be used to identify alteration (Chayes, 1969) although the presence of normative corundum, considered in isolation, need not necessarily indicate alteration. Armstrong (1980, p. 216) considers corundum normative Nsuze lavas to be products of normal petrologic processes in rocks with D.I. > 60. Cawthorn *et al.* (1976) maintain that some corundum normative lavas result from amphibole fractionation in calc-alkaline



Figure 6.1  $K_2 0 + Na_2 0$  vs  $K_2 0/(K_2 0 + Na_2 0)$  variation for the Nsuze Group samples. Analyses which plot outside of the Hughes (1972) "igneous spectrum" are assumed to be altered. Ornamentation: • – Qudeni Formation; x - Ndikwe Formation lavas; A - Ndikwe Formation pyroclastics; • - Analyses from Tunnington (1981) and Brown (1982).



Figure 6.2 Plot of  $K_2$  0 + Na<sub>2</sub> 0 against D.I. for the Nsuze Group lavas. Samples which plot away from the main trend are probably altered, leached or have been affected by alkali metasomatism. Ornamentation as for Figure 6.1.



Figure 6.3 Variation diagrams showing the relationship between normative diopside, normative corundum, D.I. and  $SiO_2$ . Samples containing normative corundum at D.I. < 65 and  $SiO_2$  < 65 wt. % are considered to be altered. Ornamentation as for Figure 6.1.

suites. Nsuze Group samples which plot well away from the amphibole fractionation trend and have normative corundum at D.I. values < 60 (Fig. 6.3) are considered to be altered.

# 3. Oxidation State of Iron

Analysis by XRF yields a value for the concentration of iron metal irrespective of the oxidation state. In the present case the lavas analysed are extensively altered and unlikely to have iron oxidation ratios resembling the original values. Wet chemical methods have therefore not been used

Several methods have been proposed for estimating  $Fe^{3+}/Fe^{2+}$  ratios of altered volcanic rocks (Table 6.2). In spite of detailed investigation of the problem, the validity of any estimate for a particular rock is difficult to prove. It is generally agreed that  $Fe^{2+}$  is the dominant species in basaltic rocks. Although use of a single value for the oxidation ratio in these rocks has been suggested (e.g. Kay *et al.*, 1970; Flower, 1973), this practice is questionable because oxidation ratios are dependent on bulk composition, pressure, temperature and oxygen fugacity.

The accurate estimation of iron oxidation is particularly important in computing the normative mineralogy. Hughes and Hussey (1976) and Le Maitre (1976) stress this in connection with methods of classification based on normative mineralogy. The presence or absence of normative quartz is critical in many classification schemes, yet quartz in the norm depends largely on the oxidation ratio used. Equal amounts of FeO and Fe<sub>2</sub>O<sub>3</sub> are allocated to magnetite, and in the event of ferric iron being overestimated, reduced amounts of ferrous iron are available to form diopside, hypersthene and olivine. This results in an excess of SiO<sub>2</sub> which is reflected as normative quartz.

Le Maitre's (1976) statistical evaluation of a large number of analyses indicates that the oxidation ratio may be calculated thus:  $FeO/(FeO + Fe_2 O_3) = 0.88 - 0.0016.SiO_2 - 0.022.(K_2 O + Na_2 O).$ 

| ESTIMATED OXIDATION<br>STATE OR RATIO | VALUE OR<br>FUNCTION                                                                               | AUTHOR                             |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------|--|--|
| Fe <sub>2</sub> O <sub>3</sub>        | 1.5%                                                                                               | Kay et al. (1970)                  |  |  |
|                                       | 2.0%                                                                                               | Flower (1973)                      |  |  |
|                                       | 1.5% + wt % TiO2                                                                                   | Irvine and Baragar<br>(1971)       |  |  |
|                                       | 1.5% if $(K_2O + Na_2O) < 4\%$<br>2.0% if $(K_2O + Na_2O) < 7\%$<br>2.5% if $(K_2O + Na_2O) > 7\%$ | ) Thompson<br>) et al.<br>) (1972) |  |  |
| Fe <sub>2</sub> O <sub>3</sub> /FeO   | 0.15                                                                                               | Green et al. (1974)                |  |  |
|                                       | 0.25                                                                                               | Stice (1968)                       |  |  |
| $Fe^{3^+}/(Fe^{2^+} + Fe^{3^+})$      | 0.1                                                                                                | Pyke et al. (1973)                 |  |  |
|                                       | 0.2                                                                                                | O'Hara (1973)                      |  |  |
|                                       | 0.25                                                                                               | Baker <i>et al</i> . (1974)        |  |  |
| $Fe_2O_3/(Fe_2O_3 + FeO)$             | 0.2 (basic rocks only)                                                                             | Hughes and Hussey<br>(1976)        |  |  |
| $FeO/(FeO + Fe_2O_3)$                 | $0.88 - 0.0016 \text{ SiO}_2 - 0.022 (Na_2O + K_2O)$                                               | Le Maitre (1976)                   |  |  |

# TABLE 6.2: METHODS OF ESTIMATING FERRIC/FERROUS RATIOS FOR VOLCANIC ROCKS.

.

.

.

For most of the lavas analysed this equation gives values between 0.75 and 0.85, equivalent to an Fe<sub>2</sub>  $O_3$  /FeO ratio of 0.20 to 0.25. However, in order to facilitate comparison with data presented in other studies, the following values for Fe<sub>2</sub>  $O_3$  are used: komatiites, 0.1; basalts, 0.2; basaltic andesites, 0.3; andesites and dacites, 0.4; and rhyolites, 0.5.

### 4. The Nsuze Group

Major and minor element abundances for the ten Ndikwe Formation and six Qudeni Formation rocks analysed are presented in Tables 6.3, 6.4 and 6.5. Additional samples from Tunnington (1981) and Brown (1982) are also used in this section. The samples of Ndikwe lavas are from thin flows intercalated in the pyroclastic succession in the south limb of the Gem Syncline (BG128, 129, 131, 147 and 152), and a thin flow northwest of Ndikwe (BG266 and 267). A volcanic bomb from due west of Ndikwe (BG257), a crystal tuff from just south of Hlagothi (BG238) and a welded lapilli tuff from south of Vuleka (BG130) have also been analysed. Samples BG180, 183 and 184 are from the Qudeni Formation on the north limb of the Central Nsuze Syncline. BG156, BG157 and BG159 are from the same unit on the north limb of the Gem Syncline. The Tunnington (1981) samples were taken from the Qudeni Formation immediately south of the study area, but Brown's (1982) data are from uncorrelated lavas from an area some 12 km to the southeast.

Chemically the rocks show evidence for alteration and disturbance of alkali contents. Only ten of the analyses fall within the criteria for unaltered rocks discussed in part two of this chapter (above) despite the absence of obvious weathering or alteration in hand specimen. In thin section minor epidotization, calcitization and silicification are recognized, particularly in the Ndikwe Formation lavas. On the variation diagrams the altered samples are identified but not excluded because the ten relatively fresh samples are compositionally too similar to define any meaningful trends.

|                                | BG1 28 | BG1 29 | BG1 30 | BG131  | BG1 4 7 | BG1 52 | BG266       | BG267  | BG238  | BG257 |
|--------------------------------|--------|--------|--------|--------|---------|--------|-------------|--------|--------|-------|
| <b>SiO</b> 2                   | 58.14  | 57.94  | 54.43  | 60.98  | 50.16   | 57.26  | 55.28       | 57.73  | 71,57  | 74.04 |
| Al <sub>2</sub> O <sub>4</sub> | 13.93  | 13.87  | 25.43  | 13.55  | 19.37   | 14.53  | 15.97       | 14.96  | 8.51   | 8.75  |
| Fe203                          | 3,50   | 3.53   | 2.96   | 3.38   | 2.51    | 3.32   | 4.73        | 3.96   | 2,06   | 1.07  |
| <b>Fe</b> 0                    | 7.88   | 7.95   | 8.88   | 7.61   | 11.28   | 7.47   | 10.63       | 8.91   | 4.64   | 2.42  |
| MnO                            | 0.15   | 0.16   | 0.15   | 0.14   | 0.08    | 0.13   | 0.21        | 0.04   | 0.10   | 0.07  |
| MgO                            | 3.91   | 3.67   | 2.89   | 5.62   | 6.68    | 4.94   | 9.39        | 11.95  | 7.18   | 5.38  |
| CaO                            | 4.96   | 6.33   | 7.51   | 2,31   | 1.51    | 4.68   | 1.05        | 0.28   | 4,59   | 3.53  |
| NażO                           | 4,22   | 4.43   | 3.18   | 1.88   | 5.94    | 5.12   | 0.24        | 0.06   | 0.98   | 3.39  |
| K10                            | 1.61   | 1.73   | 2.33   | 3.57   | 0.55    | 1.68   | 1.24        | 0.59   | 0.68   | 0.90  |
| T102                           | 1.42   | 1.44   | 1.63   | 1.50   | 1.59    | 0.97   | 1.69        | 1.55   | 0.28   | 0.34  |
| P205                           | 0.19   | 0.22   | 0.22   | 0.24   | 0.27    | 0.20   | 0,23        | 0.21   | 0.03   | 0.00  |
| total*                         | 99.92  | 101.17 | 99.61  | 100.78 | 99.94   | 100.37 | 100.66      | 100.24 | 100.62 | 99.92 |
|                                |        |        |        |        |         |        |             |        |        |       |
| Sc                             | 20     | 20     | 21     | 15     | 49      | 30     | 29          | 28     | 21     | 23    |
| v                              | 201    | 203    | 219    | 197    | 383     | 205    | 24 <b>2</b> | 239    | 116    | 112   |
| Cr                             | 63     | 57     | 62     | 68     | 65      | 193    | 216         | 69     | 1239   | 496   |
| NÍ                             | 51     | 48     | 49 *   | 50     | 112     | 84     | 99          | 112    | 199    | 126   |
| Cu                             | 45     | 45     | 12     | 22     | 56      | 16     | 102         | ٥      | 38     | 78    |
| 2n                             | 115    | 99     | 102    | 105    | 122     | 86     | 182         | 76     | 48     | 35    |
| Y                              | 31     | 33     | 33     | 35     | 26      | 12     | 32          | 32     | 29     | 16    |
| 2 <b>г</b>                     | 201    | 209    | 225    | 222    | 240     | 162    | 228         | 214    | 92     | 61    |
| Nb                             | 12     | 12     | 12     | 12     | 9       | 8      | 11          | 12     | 4      | 6     |
| RЬ                             | 57     | 62     | 79     | 102    | 9       | 57     | 36          | 18     | 20     | 17    |
| Sr                             | 177    | 273    | 391    | 129    | 150     | 134    | ٥           | 0      | 63     | 87    |
| Ba                             | 364    | 402    | 493    | 642    | 184     | 517    | 126         | 1      | 493    | 263   |
| La                             | 16     | 19     | 18     | 19     | 25      | 20     | 18          | 16     | 12     | 14    |
|                                |        |        |        |        |         |        |             |        |        |       |

TABLE 6.3: CHEMICAL DATA FOR THE NDIKWE FORMATION VOLCANICS

Loss on ignition not determined for any of the samples analysed.
.

| <b>a</b> : <b>a</b> | BG180  | BG183        | BG184  | BG156  | BG157  | BG159  |
|---------------------|--------|--------------|--------|--------|--------|--------|
| S10 <sub>2</sub>    | /1.49  | 61.60        | 62.34  | 66./8  | 53.29  | 65.51  |
| $Al_2O_3$           | 15.52  | 14.73        | 15.03  | 12.54  | 16.00  | 12.42  |
| $Fe_2O_3$           | 2.40   | 2.46         | 2.36   | 3.31   | 4.36   | 3.41   |
| FeO                 | 4.31   | <b>5.</b> 52 | 5.32   | 7.45   | 13.09  | 7.67   |
| MnO                 | 0.11   | 0.13         | 0.12   | 0.15   | 0.20   | 0.18   |
| MgO                 | 1.12   | 3.47         | 3.30   | 1.07   | 2.78   | 1.13   |
| CaO                 | 0.25   | 6.67         | 6.66   | 3.17   | 5.12   | 5.09   |
| Na <sub>2</sub> O   | 0.18   | 2.43         | 3.24   | 3.93   | 3.34   | 3.75   |
| K <sub>2</sub> O    | 4.42   | 2.51         | 1.71   | 0.16   | 0.36   | 0.40   |
| $TiO_2$             | 1.03   | 0.76         | 0.78   | 1.02   | 1.30   | 1.05   |
| $P_2O_5$            | 0.05   | 0.20         | 0.19   | 0.50   | 0.63   | 0.52   |
| TOTAL               | 100.88 | 100.47       | 101.05 | 100.08 | 100.47 | 101.13 |
|                     |        |              |        |        |        |        |
| Sc                  | 34     | 19           | 17     | 19     | 24     | 22     |
| v                   | 217    | 134          | 126    | 7      | 11     | 7      |
| Cr                  | 41     | 84           | 96     | 38     | 12     | 2      |
| Nì                  | 19     | 32           | 33     | 5      | 0      | 0      |
| Cu                  | 7      | 19           | 18     | 3      | 2      | 13     |
| Zn                  | 38     | 82           | 83     | 172    | 275    | 175    |
| Y                   | 35     | 25           | 24     | 47     | 47     | 46     |
| Zr                  | 200    | 193          | 195    | 235    | 278    | 236    |
| Nb                  | 10     | 8            | 9      | 12     | 14     | 13     |
| Rb                  | 91     | 36           | 28     | 4      | 12     | 15     |
| Sr                  | 6      | 514          | 638    | 220    | 218    | 275    |
| Ba                  | 256    | 840          | 474    | 149    | 172    | 218    |
| La                  | 21     | 26           | 24     | 37     | 45     | 44     |

.

| (1982)     |
|------------|
| BROWN      |
| AND        |
| (1861)     |
| TUNNINGTON |
| FROM       |
| VOLCANICS  |
| FORMATION  |
| OUDENT     |
| 40         |
| ANALYSES   |
| CHEMICAL   |
| 5          |
| Ŷ          |
| TABLE      |

|                   | NZ 7-4 | N27-5  | N27-7  | 6-7 ZN | 0 T-2 ZN | 11-72N | NZ7-12 | NZ7-13 | 1-18XN | NK81-2 | NK81-6 |
|-------------------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|
| Si02              | 56.07  | 54.65  | 56.88  | 53.52  | 54.32    | 57,60  | \$5.73 | 57.30  | 57.64  | 55.39  | 57.62  |
| A1203             | 13.69  | 13.06  | 15.55  | 14.96  | 14.87    | 14.23  | 14.74  | 14.44  | 14.54  | 15.11  | 15.14  |
| FeO               | 3.66   | 3.28   | 3.46   | 2.99   | 3.67     | 3.26   | 3.46   | 3.23   | 3.29   | 3.50   | 2.69   |
| Fe203             | 8.24   | 7.39   | 7.78   | 8.98   | 8.26     | 7.33   | 7.79   | 7.25   | 7.40   | 7.87   | 6.05   |
| ЮпО               | 0.20   | 0.18   | 0.15   | 0.18   | 0.16     | 0.16   | 0.18   | 0.16   | 0.13   | 0.17   | 0.14   |
| MgO               | 6.12   | 5.01   | 3.80   | 6.65   | 6.45     | 4.96   | 5.06   | 4.55   | 4.61   | 5.17   | 6.10   |
| CaO               | 7.11   | 5.22   | 7.32   | 6.55   | 6.50     | 7.46   | 7.08   | 7.49   | 6.00   | 5.63   | 6.89   |
| Na <sub>2</sub> 0 | 3.34   | 2.92   | 2,83   | 3.78   | 3.49     | 3.50   | 3.85   | 3.77   | 3.51   | 3.23   | 3.72   |
| K20               | 0.22   | 2.00   | 0.79   | 0.28   | 0.17     | 0.13   | 0.43   | 0.27   | 1.69   | 2.59   | 0.78   |
| $r_{10_2}$        | 66.0   | 0.94   | 1.04   | 1.10   | 1.16     | 1.02   | 1.00   | 1.00   | 0.88   | 0.97   | 0.59   |
| $P_2O_5$          | 0.43   | 0.40   | 0.45   | 0.48   | 0.49     | 0.47   | 0.46   | 0.44   | 0.32   | 0.20   | 0.29   |
| TOTAL             | 100.08 | 100.05 | 100.06 | 99.47  | 100.04   | 100.11 | 99.79  | 06.90  | 100.01 | 59.63  | 100.02 |
|                   |        |        |        |        |          |        |        |        |        |        |        |

N27 Samples - Tunnington (1981)

NK81 Samples - Brown (1982)

Each element has been plotted against differentiation index and MgO content (Figs. 6.4, 6.5 and 6.6). The former, (D.I.), is the sum of normative quartz, albite and orthoclase. Although it represents the extent of evolution of the magma and provides good separation of data, it has the disadvantage of being sensitive to ferric/ferrous iron ratio inaccuracy. It is also too complex to provide petrologically meaningful trends. MgO is independent of iron ratio and is more easily related to magmatic processes, but provides little separation of low magnesium rock-types. The trends identified by Armstrong (1980) for the Nsuze Group volcanics have been superimposed on the diagrams to facilitate comparison between the lavas in the two areas studied.

MgO abundances of the Ndikwe Formation samples are slightly higher overall than for the Qudeni lavas. This produces a displacement of the trends for the two groups of samples on the MgO variation diagrams, but not on the D.I. Plots. The differences between the groups are discussed in more detail below.

Silica,  $K_2$  0 and total alkalies increase with D.I. and decrease with MgO, as would be expected. The Ndikwe Formation lavas have slightly higher alkali contents than those from the Qudeni Formation. Na<sub>2</sub> 0 and Al<sub>2</sub> O<sub>3</sub> show little variation over the range of compositions with the exception of pyroclastic and altered samples which have spuriously high or low values. CaO, FeO\* and MnO decrease with increasing D.I., but show no systematic variation on the MgO diagram. Altered samples have extremely low CaO contents. Samples from the Ndikwe Formation have slightly higher FeO\* than the remainder of the samples. TiO<sub>2</sub> and P<sub>2</sub> O<sub>5</sub> are more or less constant but provide separation of the Ndikwe and Qudeni Formation samples. The Ndikwe lavas have higher TiO<sub>2</sub> but lower P<sub>2</sub> O<sub>5</sub> than those from the Qudeni Formation. The pyroclastic rocks have very low abundances of these elements.

On all of the plots data for the unaltered samples lie within or close to the trends defined by Armstrong (1980).



Figure 6.4 D.I. and MgO variation diagrams for SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, MgO and CaO in the Nsuze lavas. Ornamentation: • - Qudeni Formation (unaltered); • - Qudeni Formation (altered); X - Ndikwe Formation (unaltered); Ø - Ndikwe Formation (altered); Δ - Ndikwe pyroclastics. (All oxides as weight percentages). Trends determined by Armstrong (1980) lie within the solid lines on each diagram.



Figure 6.5 D.I. and MgO variation diagrams for FeO\*,  $TiO_2$ ,  $Na_2O$  and  $K_2O$ . Ornamentation as for Figure 6.4. All oxides as weight percentages.

· . ·

.

1



Figure 6.6 D.I. and MgO variation diagrams for MnO,  $P_2 O_3$  and total alkalies. Ornamentation as for Figure 6.4. All oxides as weight percentages.

The trace elements are shown on D.I., MgO and Ti variation diagrams (Figs. 6.7, 6.8 and 6.9). Ti is used because it is essentially immobile and was shown to provide reasonable separation of the data in the major element plots.

Nb, Y, Sc and Zr have no apparent covariance with D.I. and MgO. On the titania plot, positive trends are poorly defined, but do show enrichment of these elements at higher Ti values. Y/Ti, Zr/Ti and Nb/Ti ratios for Qudeni Formation lavas show enrichment relative to chondritic values. The Ndikwe lavas have similarly high Nb/Ti and Zr/Ti ratios but chondritic Y/Ti ratios. Sc shows no systematic variation on any of the plots. On the Sc/Ti plot Sc seems to be nearly constant between 20 and 30 ppm except for two or three samples. The chondritic ratio for Sc/Ti (1/78, which is off the scale of the plot used), is very much higher than the observed values. Extreme Sc depletion is thus recognized for the Nsuze lavas.

V for the Ndikwe samples decreases systematically with increasing D.I. and MgO and decreasing Ti. These samples define a linear trend passing through the origin, with a slope considerably lower than chondritic V/Ti ratios, suggesting that the Ndikwe lavas were derived from a source which was either depleted in vanadium or enriched in zirconium. In contrast, the plots for the Qudeni lavas show no systematic trends against D.I., MgO or Ti.

Cr shows no systematic variation on any of the plots, although Cr abundances in two samples from the Ndikwe Formation are significantly higher than the remainder.

Ba, La and Zn do not vary systematically with D.I. The Ndikwe samples show decreasing Ba contents at higher MgO values. Contents of La and Zn in the Ndikwe lavas show little variation with increasing MgO content. However, these lavas lie in fields discrete from those of the Qudeni samples on the La/Ti and Zn/Ti diagrams. On the Ti diagram samples from the Qudeni Formation have a negative slope for Ba, whereas La and Zn lie on trends of positive slope. The La/Ti ratios are higher than that of chondrites for both sample groups.



Figure 6.7 D.I., MgO and Ti variation diagrams for Nb, Y, Sc and Zr in the Nsuze lavas. Ornamentation: • - Qudeni Formation; x - Ndikwe Formation. In these and subsequent variation diagrams the pyroclastic samples are excluded. Ch - chondrite ratio for elements concerned; A - field for lower Ndikwe lavas; B - upper Ndikwe; C - (where shown) field for the Qudeni lavas.



Figure 6.8 D.I., MgO and Ti variation diagrams for Ba, La, Zn and V in the Nsuze lavas. Ornamentation as for Figure 6.7.



Figure 6.9 D.I., MgO and Ti variation diagram for Cr, Rb, Sr, Cu and Ni in the Nsuze lavas. Ornamentation as for Figure 6.7.

Rb and Sr values for the Qudeni lavas show no systematic variation when plotted against D.I., MgO or Ti. In contrast, the Ndikwe samples decrease in Rb and Sr contents with increasing MgO with the exception of two apparently aberrant plots on the Rb-MgO diagram.

Cu decreases with increasing D.I. and decreasing MgO along a dispersed trend which includes the samples from both of the units. For the Qudeni Formation, a decrease of Cu with increasing Ti occurs, whereas the Ndikwe Formation shows no correlation between Ti and Cu. Ni-D.I. reveals no systematic variation. On the Ni-MgO plot the combined sample populations show a sympathetic increase in Ni with MgO. There is no correlation between Ni and Ti abundances of the Ndikwe lavas, but there is an antipathetic increase in Ni with decreasing Ti in the Qudeni samples.

Fields in which samples from the lower and upper parts of the Ndikwe Formation fall (fields A and B respectively on Figs. 6.7, 6.8 and 6.9) are shown on the trace element plots. There is an apparent difference between the two subpopulations, but this may be spurious because all of the samples from the lower group are altered. Additional data are required to confirm that the Qudeni Formation and upper and lower lava sequences in the Ndikwe Formation do have distinctive geochemical signatures with respect to trace elements. The fact that the distinction can be made with respect to minor and trace elements that are believed to be relatively immobile during alteration suggests that there are real differences between the three lava sequences.

# 5. Ultramafic Rocks

Chemical analyses of eight ultramafic rocks of uncertain correlation are presented in Table 6.6. Samples BG122, BG123 and BG124 are from talc - tremolite - chlorite schists interpreted as lavas because of the presence of features resembling sheared out flow-top textures, amygdaloidal zones and local

# TABLE 6.6: CHEMISTRY OF ULTRAMAFIC ROCKS

. .

|       | EXTRUSIVE ROCKS |        |        | SERPENTINITES |       | ULTRAMAFIC DYKES |        |        |
|-------|-----------------|--------|--------|---------------|-------|------------------|--------|--------|
|       | BG1 22          | BG1 23 | BG1 24 | BG173         | BG175 | BG116            | BG1 21 | BG1 58 |
| 5102  | 50.79           | 44.94  | 48.14  | 47.65         | 51.04 | 50.72            | 50.18  | 50.34  |
| A1203 | 5.69            | 9.37   | 6.59   | 8.21          | 7.45  | 5.03             | 4.78   | 5.93   |
| Fe2O1 | 1.25            | 1.45   | 1.42   | 1.05          | 0.99  | 1.34             | 1.29   | 1.21   |
| FeO   | 11.23           | 13.01  | 12.75  | 9.42          | 8.92  | 12.09            | 11.58  | 10.93  |
| MinO  | 0.27            | 0.23   | 0,18   | 0.23          | 0.16  | 0.19             | 0.19   | 0.20   |
| MgO   | 20.64           | 22.60  | 21.36  | 24.01         | 25.95 | 19.28            | 21.99  | 20.87  |
| CaO   | 9.92            | 6.64   | 8.37   | 8.03          | 4.34  | 10.22            | 8.99   | 9.47   |
| Naz O | 0.00            | 0.29   | 0.08   | 0.24          | 0.00  | 0.28             | 0.00   | 0.10   |
| K2 0  | 0.02            | 0.01   | 0.00   | 0.00          | 0.00  | 0.00             | 0.00   | 0.00   |
| T102  | 0.61            | 0.39   | 0.51   | 0.21          | 0.19  | 0.52             | 0.35   | 0.83   |
| P2 05 | 0.09            | 0.07   | 0.09   | 0,03          | 0,04  | 0.09             | 0.08   | 0.11   |
| Cr203 | 0.42            | 0.70   | 0.44   | 0.82          | 0.77  | 0.24             | 0.66   | 0.31   |
| TOTAL | 100.93          | 99.70  | 99.93  | 99.90         | 99.85 | 100.00           | 100.09 | 100.30 |

# Trace elements (ppm)

| Sc | 47   | 19   | 42    | 31   | 22   | 27   | 13       | 20   |
|----|------|------|-------|------|------|------|----------|------|
| v  | 259  | 168  | 272   | 172  | 142  | 166  | 116      | 160  |
| Cr | 3580 | 4804 | 3887  | 5627 | 6207 | 1611 | 4620     | 2680 |
| NI | 899  | 1623 | -1090 | 1058 | 1348 | 540  | 1779     | 1399 |
| Cu | -    | 3    | 3     | -    | 97   | 205  | 184      | 13   |
| 3n | 122  | 98   | 109   | 116  | 80   | 106  | 77       | 100  |
| Y  | 14.6 | 4.8  | 11.2  | 4.4  | 6.0  | 13.4 | 6.0      | 12.7 |
| Zr | 72.1 | 43.3 | 62.3  | 26.1 | 27.6 | 62.5 | 52.3     | 83.3 |
| Nb | 1.9  | 0.6  | 2.4   | 0.2  | 1.0  | 2.6  | 1.4      | 4.6  |
| Rb | 0.9  | 1.6  | 0     | 1.3  | 0.3  | -    | -        | -    |
| Sr | 31.9 | 37.2 | 35.7  | 127  | 9.5  | 3    | 7.9      | 18   |
| Ba | -    | 12   | -     | -    | -    | -    | -        | 2    |
| La | 14   | -    | 9     | -    | -    | 7    | <u>_</u> | 6    |

.

compositional heterogeneity. The rocks now consist of relatively coarse-grained secondary mineralogy and no relict textures are present. These samples are from the anticline separating the Central and Gem Synclines in the Mdlelanga Valley. Two samples, BG116 and BG121, from sub-vertical, conformable intrusions in the same area are included in this group because of their petrographic similarity. Two samples from a sheared serpentinite body in the sole of a thrust west of Ndikwe are also included (BG173 and BG175). The serpentinite may represent part of the pre-Nsuze basement "squeezed" along the fault. A sample (BG158) from a conformable sill intruded along the contact of the Ndikwe and Qudeni Formations 1 km south of Ndikwe is included as it is petrographically identical to the other ultramafic dyke samples.

The major elements are shown on MgO variation diagrams (Fig. 6.10). The three samples believed to be extrusive show increasing  $SiO_2$ ,  $TiO_2$ , CaO and CaO/Al<sub>2</sub>O<sub>3</sub> with decreasing MgO, with FeO\*, Al<sub>2</sub>O<sub>3</sub> and Cr<sub>2</sub>O<sub>3</sub> decreasing synpathetically. As these trends are defined by only three samples they cannot be assumed to have any significance. The samples from the intrusions are scattered on all of the plots except  $SiO_2$  and CaO on which an apparent linear increase in these elements accompanies decreasing MgO. The two serpentinites plot at higher MgO values and are not obviously related to the other two sample groups. Combined data for all three groups are scattered on the  $SiO_2$ ,  $Al_2O_3$  and  $CaO/Al_2O_3$  and decreasing  $Cr_2O_3$  trends with decreasing MgO. All of the samples have similar alkali contents, but these are close to the detection limits of the analytical methods used.

Plots of trace element contents against MgO (Fig. 6.11) reveal increases in Zr, Sc, Y and Nb with decreasing MgO. V is nearly constant with only a poorlydefined negative slope. Nickel decreases with decreasing MgO contents. These trends are not particularly useful as Zr, Sc and Y are incompatible in most



Figure 6.10 MgO variation diagrams for  $SiO_2$ ,  $Al_2O_3$ ,  $FeO^*$ ,  $TiO_2$ ,  $Cr_2O_3$ ,  $CaO/Al_2O_3$  and CaO in extrusive (?) - (solid triangles) and intrusive - (crosses) ultramafic rocks. Serpentinites - (open triangles) are included. Shaded fields are for komatiitic lavas in the Nondweni type area (after Wilson *et al.*, in preparation).



Figure 6.11 MgO variation diagrams for selected trace elements in the ultramafic rocks. Ornamentation and shaded field as in Figure 6.10.

mafic phases. Likewise, the behaviour of Ni and Cr could indicate olivine or pyroxene fractionation.

Selected trace elemnts are plotted against Zr (Fig. 6.12). The fields of the lavas and intrusive rock-types are generally coherent. The rocks have Y/ZrTi/Zr, Nb/Zr, V/Zr and Sc/Zr ratios slightly lower than chondritic values for the same ratios. Although the Y/Zr, Ti/Zr and Nb/Zr show linear distributions which extrapolate close to the origin, V and Sc plot in scattered fields. V/Sc and Sc/Y ratios are approximately chondritic, whereas the Nb/Y ratio is slightly higher than chondrite (diagrams for these relationships are not presented) A phase in which these elements are compatible, or at least less incompatible than Zr must have been involved either as a fractionating phase or as a residual phase during partial melting. This suggests the involvement of garnet at some stage as Sc is partitioned into this mineral. Significantly, these plots show considerable similarity between the trace element values and ratios and those reported from the Nondweni type area (Wilson *et al.*, in prep.).

### 6. Discussion

The Nsuze lavas and associated ultramafic rock-types have a wide range in chemistry which shows few consistent trends. There is no apparent relationship between the two groups of samples which must, therefore, be discussed separately.

Data for the Nsuze volcanics plot close to the trends identified by Armstrong (1980), indicating some geochemical similarity between lavas from the Vryheid -Piet Retief inlier and the study area. The altered samples commonly plot beyond the limits of these trends as might be expected.

On the basis of the few samples considered to be unaltered, there are few differences between the Ndikwe and the Qudeni lavas. The former do have slightly higher  $Al_2 O_3$ , FeO\* and TiO<sub>2</sub> contents and lower CaO than the latter. It is clear



Figure 6.12 Diagram showing selected trace element concentrations plotted against Zr. Ornamentation as in Figure 6.10. Fields are for komatiites (lower Zr values) and high magnesium basalts in the Nondweni type area (after Wilson *et al.*, in preparation). Slope of heavy line is the chondrite ratio for the elements involved.

that the sampling of the different volcanic units has been inadequate to allow modelling of their petrogenesis, either as a group or as separate units.

Several samples show extreme depletion of CaO and excessively high MgO contents for their silica, alumina and iron abundances. Alteration by interaction with seawater may be the cause of this. Mottle and Holland (1978) and Seyfried and Mottle (1982) documented experimental studies of Ca-Mg ion exchange during submarine alteration of basalt. Substitution of Mg for Ca can lead to extreme depletion of the latter element. Despite the lack of primary textural evidence for extrusion of the lavas subaqueously, their stratigraphic association with shallow marine sediments presumes that the lavas were submerged at some stage. If submarine alteration did affect the lavas displaying aberrant chemistry, then the possibility exists that other rocks sampled may have been affected, albeit to a lesser degree. This implies that any variation involving Mg, Ca and perhaps the alkali elements cannot be related unequivocally to primary igneous processes.

The trace element data, although showing considerable scatter on the variation diagrams, provide some discrimination between the various lava units sampled. The three fields shown on the trace element plots as A, B and C represent sample groups from the lower and upper Ndikwe and the Qudeni Formation in the order given. The general alteration of the volcanics means that the slight separation of the fields for the lower and upper Ndikwe volcanics is probably not meaningful, particularly as this separation is least pronounced on plots of the immobile elements. There is, however, good evidence for separation of the Ndikwe and Qudeni lavas on the basis of their Nb, Y, Zr, Ni, La and Cr abundances. As noted in section 2 of this chapter (above), these are the elements least likely to be disturbed by the effects of alteration.

The magmatic affinity of the Nsuze Group lavas may be assessed using various parameters. On the basis of a total alkalies - silica diagram, the lavas are classified as sub-alkaline (Fig. 6.13) according to the parameters defined by



Figure 6.13 Plot of total alkalies vs silica. Field of the subalkaline rocks after Irvine and Baragar (1971). Solid line defines boundary between alkaline and subalkaline magma suites after Irvine and Baragar (1971). Ornamentation as in Figure 6.1.

Irvine and Baragar (1971). Sub-alkaline rocks may be separated into calc-alkaline and tholeiitic using other discrimination diagrams. On the ternary plot of Na:  $+ K_2 O - FeO^* - MgO$  (AFM) (Fig. 6.14A) the plots of the data overlap both calc-alkaline and tholeiite fields as defined by Irvine and Baragar (1971). If only the unaltered samples are considered (Fig. 6.14B), most of the points lie within the calc-alkaline field and well away from the tholeiite trend defined by Armstrong (1980) for the northern area of the Nsuze group. On the ternary plot of  $Al_2 O_3$  - FeO + Fe<sub>2</sub> O<sub>3</sub> + TiO<sub>2</sub> - MgO the data plot close to the boundary of the high Fe, high-Mg tholeiitic basalts and the calc-alkalic basalt fields (Fig. 6.15) as defined by Jensen (1976). If the altered samples are excluded, the data plot predominantly within the calc-alkalic field. This apparent variation from the dominantly tholeiitic trend identified by Armstrong (1980) requires careful evaluation. Several parameters based on FeO\*, MgO, V and Cr may also be used to distinguish calc-alkalic from tholeiitic suites (Miyashiro and Shido, 1975). On the FeO\* : FeO\*/MgO diagram the lavas plot predominantly in the tholeiitic field (Fig. 6.16), but on the Cr/V diagram, they plot in the transitional field (Fig. 6.17). According to the parameters defined by Irvine and Baragar (1971) for discriminating between calc-alkaline and tholeiitic suites using the relationship of alumina content to normative plagioclase content all of the samples except BG147, which is altered, may be classified as tholeiites (Fig. 6.18). The Nsuze lavas from the study area thus have some characteristics of both tholeiitic and calc-alkalic magma suites. This is in agreement with the findings of Armstrong (1980), who reported that no discriminant diagram provided an unequivocally calc-alkaline classification of the Nsuze Group lavas in the Vryheid - Piet Retief area. He also reported that not all of the major and trace element data indicated a wholly tholeiitic character for these lavas.



Figure 6.14B AFM diagram showing only unaltered Nsuze Group lavas. Circles - Qudeni Formation; crosses - Ndikwe Formation.



Figure 6.15 Jensen diagram for the Nsuze Group volcanics. Ornamentation as for Figure 6.1. (Boundaries after Jensen, 1976).



Figure 6.16 Diagram showing variation of FeO\* with FeO\*/MgO for the Nsuze Group lavas. Fields A, B and C represent calc-alkaline, transitional and tholeiitic suites respectively. Fields after Miyashiro and Shido (1975). Ornamentation as for Figure 6.1.



Figure 6.17 Cr-V discrimination diagram showing Nsuze Group lavas in relation to calc-alkaline, transitional and tholeiitic fields as defined by Miyashiro and Shido (1975). Ornamentation as in Figure 6.1. Pyroclastics and rhyolites excluded.



Normative Plagioclase Composition

Figure 6.18 Plot of AL<sub>2</sub>O<sub>3</sub> against normative plagioclase content for the Nsuze Group lavas. Fields of tholeiitic and calc-alkaline rocks after Irvine and Baragar (1971). Ornamentation as for Figure 6.1.

The tectonic setting within which lavas are generated is thought to influence their chemistry and several discrimination diagrams have been devised for the recognition of these settings (Pearce et al., 1977; Floyd and Winchester, 1976 and Pearce and Cann, 1973). These schemes of discrimination were devised for Mesozoic volcanics erupted in known plate tectonic settings. Their application to the Nsuze lavas requires the equivocal supposition that similar plate motions were operative during the Archaean. Furthermore, the plots were devised for rocks of basaltic composition which are rare in the study area. On the ternary plot of Mq0 - Fe0\* - Al<sub>2</sub> O<sub>3</sub> presented by Pearce et al. (1977) for sub-alkaline rocks having SiO<sub>2</sub> contents of 51 - 56% magmas generated in a number of settings may be distinguished. The eight Nsuze lavas which meet the above criteria plot predominantly within the field of continental volcanic (Fig. 6.19). However, only two of the samples are unaltered on chemical criteria and one of these plots in the oceanic island field and the other in the field of continental volcanics. This evidence for an intraplate setting is tenuous, but is in agreement with Armstrong's (1980) conclusion in this regard for the Nsuze volcanics.

Rocks of ultramafic composition are found as dykes, sills and, possibly, interbedded flows in the stratigraphically lowest parts of the Nsuze Group. The possibility cannot be excluded that those ultramafic rocks interpreted as flows and sills could represent members of the pre-Nsuze Nondweni Group tectonically intersliced with the Nsuze rocks. The sheared nature of the rocks, together with the lack of laterally extensive outcrop could obscure such interslicing.

Alternatively, the marked difference in chemistry between these rocks and the more typical Nsuze volcanics does not preclude a chronostratigraphic relationship between these rock-types. Chemically distinct and apparently unrelated tholeiitic and komatiitic lavas commonly occur together in typical Archaean sequences (Wilson, *et al.*, in prep., Smith and Erlank, 1983; Jahn *et al.*, 1980). Even the sub-vertical intrusions, here referred to as dykes, are



Figure 6.19 Ternary plot of MgO-FeO\*-Al<sub>2</sub>O<sub>3</sub> showing fields of tectonic setting as defined by Pearce *et al.* (1977). Nsuze Group lavas having SiO<sub>2</sub> between 51 and 56% plotted.

- = Qudeni Formation
- X = Ndikwe Formation

- 1. Oceanic island
- 2. Continental
- 3. Spreading centre island.
  4. Orogenic.
  5. Ocean ridge and floor.

conformable to the enclosing Nsuze rocks. Thus there is no unequivocal evidence to support a post-Nsuze age for these rocks. It may be significant that these sub-vertical intrusions are restricted to the stratigraphically lowest parts of the Nsuze Group. This relationship could be interpreted in two ways. If tectonic interslicing had occurred it might be reasonable to assume that it would manifest itself most commonly at or near the base of the Nsuze pile. An alternative argument could be that this komatiitic magmatism was limited to the earliest evolutionary stage of the Nsuze basin. Evidence will be presented in Chapter 8 that there was indeed a period of post-Nsuze magmatism of komatiitic affinity. The komatiitic rocks described above might, therefore, herald this later magmatic event.

Rocks of komatiitic affinity have yet to be found in other areas where the Pongola Supergroup crops out. The only exception is the classification of the Thole sills near Amsterdam as komatiitic by Hammerbeck (1977). This author believes these sills to be related to the Usushwana Complex. That these rocks may represent cumulates cannot be excluded at this time. If such were the case, they would not, of course, represent a primary magmatic composition. A similar argument could apply in the present case despite the obviously komatiitic character of the ultramafic rocks on a Jensen plot (Fig. 6.20).

A more detailed investigation of these poorly-exposed rocks is necessary before this enigma can be adequately resolved.



Figure 6.20 Ternary plot of  $Al_2 O_3 - (FeO + Fe_2 O_3 + TiO_2) - MgO$  for the ultramafic rocks. Ornamentation as for Figure 6.10. Field boundaries from Jensen (1976).

#### CHAPTER 7

### THE HLAGOTHI COMPLEX

# 1. Introduction

A series of layered mafic to ultramafic sills intrudes the Nsuze Group in the northern part of the study area (Map 1). These bodies were first recognized by Du Toit (1931), who termed them the Hlagothi Igneous Complex. Du Toit (1931) noted that the intrusions comprised alternating layers of peridotite, gabbro and diorite, representing "the differentiated products of a single reservoir." He also mentioned the extensive alteration of most of the rock types.

Preliminary geochemical and petrographic studies have been carried out in order to identify the broad characteristics, magmatic affinity and crystallization history of the Complex.

# 2. Field Relationships and Extent of the Complex

Intrusions regarded as being associated with the Complex are located in an 18 km belt from the farm Wonderdraai in the east to west of the Nsuze River (Map 1). A maximum north-south extent for the complex is 8 km, measured along the Nsongeni and Nsuze Rivers. The most extensive occurrence is along the above-mentioned rivers where at least five layered sills are recognized. The sills are generally conformable with the Nsuze Group country rocks, which dip south at 10 -20°, but transgress and disrupt the sequence locally (Fig. 7.1). The combined observed thickness of the sheets is in excess of 500 m, with the thickest individual body being about 200 m thick. For the purposes of the ensuing discussion, the northern, stratigraphically lower sills are collectively known as the Nsongeni sheets. The southern, stratigraphically higher sheets are referred to as the main Hlagothi sheets.



Simplified E-W and N-S cross-section through the Hlagothi Complex (not to scale). E-W section represents 18 km long section from Wonderdraai to the headwaters of the Nsuze River. The N-S section shows the 8 km long outcrop area along the upper Nsuze Valley. Figure 7.1

Eastward extensions of the complex are situated in the valleys of the Mbizwe, Gozweni and Mhlatuze Rivers (Map 4). These sills are poorly exposed and their thickness and lateral extent are not well known. A minimum total thickness of 200 m is probable. The eastern sills, in particular the Wonderdraai sheet in the Mhlatuze Valley, dip conformably with the Nsuze Group to the southwest (Fig. 7.1). Their correlation with specific sheets in the western outcrops is not known.

The complex is intruded by porphyritic dykes which predate the Natal Group sediments of Ordovician age. Much of the complex is obscured by the overlying Dwyka Group sediments. The Complex predates deformation and metamorphism thought to be related to the 1 000 Ma Natal-Namaqua orogenic event (Chapter 6), as it is locally deformed by folding and faulting of the main tectonic episode.

# 3. Petrography

### General

A broad four-fold subdivision of the complex is possible on petrographic grounds. Individual sheets may not include all of the petrographic subdivisions but at least two may be recognized in each body. The lower portion of each sheet is feldspathic wehrlite, olivine websterite or lherzolite (the IUGS nomenclature presented by Streckeisen, 1973 is used). Rock types characterized by a dominance of two pyroxenes overlie the olivine-rich lithologies and are generally devoid of olivine. These rocks are either gabbronorites or websterites. The upper part of most of the sheets is gabbroic. Fine-grained marginal rocks containing skeletal minerals are present in some of the sills.

### Olivine-bearing Rocks

The lower half of the Wonderdraai and the Nsongweni sheets consist of olivine-bearing rock types. Clino- and orthopyroxene are the other major

constituent minerals, with minor amounts of plagioclase. These rocks are mostly completely altered to tremolite, chlorite, talc and serpentine, but retain relict textures.

Unaltered and partly altered olivine gabbronorites and lherzolites are present in the Wonderdraai sheet. These are locally layered on a 20 - 100 cm scale with alternating olivine-rich and olivine-poor zones. Outcrop is insufficient to allow more detailed observation of the layering and only broad mineralogical characteristics have been documented here. In relatively unaltered Interzolites and gabbromorites the following range in mineralogy is observed: olivine (40 - 60% by volume); clinopyroxene (10 - 30%); orthopyroxene (10 - 40%) and plagioclase (0 - 15%). The subhedral to euhedral olivine grains are 1 - 5 mm in diameter (Fig. 7.2). The pyroxenes are subhedral to anhedral, 0.1 - 7 mm in diameter and generally enclose the olivine crystals. Plagioclase occurs as interstitial anhedra up to 3 mm long. Reaction and textural relationships between the crystals indicate the crystallization sequence: olivine - orthopyroxene/ clinopyroxene - plagioclase. A rarely observed reaction boundary between the pyroxenes may indicate earlier crystallization of orthopyroxene than clinopyroxene in some rock specimens. Biotite, chromite and magnetite occur in roughly equal amounts as accessory minerals. The biotite, which is a deep orange variety, occurs as minute flakes adjacent to the ore minerals. Incipient chloritization and serpentinization are present in even the freshest samples from this body.

Completely altered ultramafic rocks make up the lower parts of the Nsongeni sheets (Fig. 7.1). Two lithologies are present: resistant tremolitechlorite schists lacking relict textures; and talc-chlorite-tremolite-antigorite rocks in which relict olivine crystal shapes are easily recognized.

The tremolite-chlorite schists are green, medium-grained and consist of intergrown coarse fibrous tremolite and fine ragged flakes of chlorite. Magnetite occurs as sparse, minute, irregular grains.

The talc-chlorite-tremolite-antigorite rocks are massive and dark greygreen to black. In thin section, the original olivine crystals are defined by concentrations of fine magnetite and chromite along grain boundaries and fractures within the grains (Fig. 7.3). The olivine has been replaced by talc, antigorite and chlorite. The finely intergrown talc-chlorite-tremolite groundmass may reflect the presence of ortho- and clinopyroxene in the original mineral assemblages.

A lens of fresh wehrlite is present at the upper, southwestern contact of the main Hlagothi sheets with the Nsuze Group. The rock is dark green-brown or black, coarse-grained and massive. Olivine and clinopyroxene constitute about 30 and 65% of the rock respectively. The olivine crystals are 1 - 3 mm in diameter and are euhedral or subhedral (Fig. 7.4). The clinopyroxene is of similar grain size and ranges from subhedral to anhedral. A small amount of interstitial plagioclase is present. Accessory chromite and magnetite are present.

### Pyroxenites

Pyroxene-dominated lithologies occur as 10 m thick layers between the peridotites and gabbros of the Nsongeni sheets. Although extensively altered, relict textures have been well preserved. Original large euhedral clinopyroxenes have been pseudomorphed by amphibole. The surrounding finer-grained tremolite and chlorite probably represents altered clino- and orthopyroxene. These rocks were probably websterites.

The basal 80 m of the 150 m thick sheet on Hlagothi Mountain consists of pyroxenite. Gabbro constitutes the upper part of this sheet. The pyroxenite appears to be rather homogeneous and consists of ortho- and clinopyroxene with minor amounts of plagioclase. Incipient alteration to tremolite and chlorite is pervasive, but does not obscure the original mineralogy. Orthopyroxene is by far the dominant mineral (60 - 70%) and occurs as small, equant, subhedral



Figure 7.2 Olivine websterite from lower part of Wonderdraai sheet, Mhlatuze Valley. Note olivine - hyperstheme - augite zonation. (63x).



Figure 7.3 Altered harzburgite from lower ultramafic unit, near Nsongeni Valley. Talc-antigorite replacement of olivine crystals whose form is defined by fine opaques. Pale green chlorite after orthopyroxene in the groundmass. (25x). grains. Clinopyroxene (25 - 30%) occurs rarely as small euhedral grains, and more commonly as large, elongated crystals (Fig. 7.5). The latter have reacted strongly with the orthopyroxene crystals which are often enclosed poikilitically. Magnetite and chromite occur as accessory minerals.

#### Gabbros

Gabbro constitutes a major proportion of the complex. It occurs as thin  $(\sim 10 \text{ m})$  units in the Nsongeni sheets, but as much thicker layers (up to 70 m) in the main Hlagothi and Wonderdraai sheets. They are greenish-grey, medium-grained unfoliated rocks composed almost entirely of secondary replacement minerals.

Amphibole (30 - 60%), plagioclase (0 - 25%) granular aggregates of epidote - zoisite - clinozoisite - mica (5 - 40%), epidote (5%), leucoxene (trace - 5\%), quartz (0 - 20%) and chlorite (0 - 15%) are present in variable proportions. Prior to alteration the rock probably consisted of plagioclase and pyroxene.

The amphibole, a pale green to colourless tremolitic hornblende, occurs as single and polycrystalline pseudomorphs after clinopyroxene in equant to elongate subhedral grains 1 - 15 mm long (Fig. 7.6). Plagioclase, which is seldom unaltered, occurs as anhedral interstitial grains of labradorite composition. In general, it has been extensively saussuritized to produce fine-grained, brownish aggregates of zoisite - clinozoisite and white mica. It is also present as micrographic intergrowths with quartz (Fig. 7.7). These intergrowths have also been subjected to saussuritization and probably represent a primary, late-stage eutectic crystallization. Epidote is present as 0.2 - 2 mm equant, zoned grains which do not seem related to the alteration of plagioclase, but do have a spatial relationship to rounded quartz-rich patches (Fig. 7.8) Biotite is commonly associated with these patches which represent segregations of late-stage fluids. Leucoxene is present as large



Felspathic wehrlite, upper sheet on Hlagothi Mountain, east of Jubilee Store (Map 3). Olivine (highest relief) as euhedral Figure 7.4 to subhedral crystals. Augite (intermediate relief) is subhedral to anhedral. Interstitial plagioclase has lowest relief (10x).



Clinopyroxene-orthopyroxenite, upper sheet on north slope of Hlagothi Mountain. Large augite lath in reaction relationship with earlier orthopyroxene cyrstals (63x). Figure 7.5

irregular grains (Fig. 7.7) as well as trellis-textured pseudomorphs after ilmeno-magnetite (Fig. 7.9). Chlorite occurs in irregular blebs within the amphibole crystals and as well-defined, interstitial anhedra associated with the biotite, quartz and epidote segregations mentioned above. Biotite, chromite and magnetite are present in trace amounts.

The gabbros are not observed in direct contact with the underlying more mafic rock types although the transition may be located to within a few metres. These contacts are likely to be sharp as there is no gradual change in the mineralogy of either rock-type near mutual boundaries. In the main Hlagothi sheets the gabbros grade upwards into the marginal zones described below. Elsewhere, the upper contacts have not been observed.

### Marginal Rocks

Two types of marginal rock sequences are recognizable: (a) a 1 - 10 m thick zone at the top of each of the three upper main Hiagothi gabbro units contains skeletal pyroxene and variolitic textures and (b) a chilled margin is present in the lower Nsongeni sheet and comprises skeletal olivine and plagioclase crystals in a devitrified glassy groundmass.

(a) Skeletal-pyroxene-textured marginal sequence

The skeletal-textured and variolitic marginal rocks are best developed at the upper contact of the second highest gabbro sheet east of Hlagothi Mountain (Map 3 and Fig. 7.1). A complex variation in textures and grain sizes is present (Fig. 7.10), which is considered important to an understanding of the complex and is therefore described in detail below.

The varioles are leucocratic, spherical bodies (Figs. 7.11 and 7.12) which consist of very fine-grained quartz, epidote, chlorite and white mica. They are typically 1 - 10 mm in diameter, although rarely as large as 10 cm. The contacts of the varioles are sharp although there is no marked mineralogical difference


Figure 7.6 Typical gabbro from Hlagothi Complex. Amphibole (high birefringence) is partly pseudomorphic after pyroxene. Fine-grained groundmass consists of epidote - zoisite - clinozoisite - white mica, produced by saussuritization of felspar, and minor chlorite. Lower gabbro unit, Nsongeni Valley. (25x).



Figure 7.7 Micrographic intergrowth of quartz and plagioclase in gabbro of the Hlagothi Complex. Note leucoxene and sphene produced by breakdown of ilmeno-magnetite. Lower gabbro unit, Nsongeni Valley. (160x).



Figure 7.8 Zoned epidotes, quartz patches and large curved amphibole crystal possibly pseudomorphic after original augite. Upper gabbro unit, Hlagothi Mountain. (63x).



Figure 7.9 Trellis texture, leucoxene after exsolved ilmenomagnetite. Upper gabbro unit, Hlagothi Mountain. (160x).



Figure 7.10 Textural relationships of upper marginal sequence, uppermost gabbro unit, due east of Hlagothi Mountain.

between them and the groundmass of the surrounding gabbro. The varioles are concentrated along the upper contact and rest in a very fine-grained chloritic groundmass.

Similar structures are common in metavolcanics of the Barberton (Ferguson and Currie, 1972), Canadian (Gélinas *et al.*, 1976) and Nondweni (Wilson *et al.*, in prep.) Archaean sequences. Philpotts (1977) reports similar structures in lamprophyric dykes in eastern Canada. Armstrong (1980) reports several varieties of spheroid from the Nsuze Group lavas, some of which resemble those in the Hlagothi Complex. The origin of the varioles, ocelli, or spherulites is a contentious issue. Liquid immiscibility has been invoked by numerous authors (Gélinas *et al.*, 1976, 1977; Ferguson and Currie, 1972; Philpotts, 1977), but it has been argued that only liquids of extreme composition can exsolve a second liquid phase. Alternative hypotheses have been proposed that envisage the structures being formed by metasomatic and metamorphic alteration (Hughes, 1977). Roedder (1978) reviewed evidence for liquid immiscibility in lunar and Hawaiian basaltic glasses. He concluded that there is unequivocal evidence for silicate liquid immiscibility over a limited range of composition.

Available data for the Hlagothi Complex varioles do not allow speculation as to their origin. In addition to the possibility of silicate liquid immiscibility, processes such as local silicification, assimilation of siliceous country rock or the effects of intrusion into hydrous sediments may be involved.

With progressive distance from the upper contact, varioles become sparser and the groundmass grades into a skeletal-textured gabbro. This texture consists of randomly orientated, ( $\sim$  1 cm long) skeletal amphibole crystals (Fig. 7.13A), which represent pseudomorphic replacement of pyroxene. In the description below the term '"pyroxene" crystals' is used throughout to identify these pseudomorphs. Evidence for the replacement is presented below. The



Figure 7.11 Siliceous varioles in gabbroic marginal sequence, uppermost gabbro unit, due east of Hlagothi Mountain.



Figure 7.12 Dip surface view of felsic varioles, upper marginal sequence due east of Hlagothi Mountain. Lens cap is 55 mm in diameter.

amphibole is colourless to very pale green under plane light and resembles tremolite. In sections cut parallel to long axes, the individual crystals consist of several parallel laths, in optical continuity, separated by narrow cores of chlorite (Fig. 7.13B). Sections cut normal to the long axes reveal that the crystals have polygonal outlines resembling the sector growth patterns (Fig. 7.14) illustrated by Arndt and Fleet (1979). The proportion of these "pyroxene" crystals in the rock is very variable, ranging from 10 - 50%.

The groundmass consists of very fine-grained chlorite, tremolite and epidote-clinozoisite. Delicate fan-like sprays are visible locally and may reflect devitrification of glass. Amygdales 1 - 5 mm in diameter are present locally, and are composed of quartz, biotite, epidote and chlorite (Fig. 7.15) There is little variation in the groundmass mineralogy throughout the marginal sequence.

The skeletal-textured gabbro becomes coarser downwards with 2 - 3 cm long "pyroxene" crystals common in the zone 1 - 2 m below the upper contact. About 2 m from the upper contact, is another variolitic layer. This has sharp upper and diffuse lower boundaries. The upper 20 cm has closely packed 5 - 10 mm varioles which decrease in size and abundance downards. Sparse varioles are present in the underlying 30 cm (Fig. 7.10). The gabbro below the variolitic unit consists of up to 50% by volume of skeletal amphibole crystals about 2 cm long, in the groundmass described above. These crystals are crudely aligned (Fig. 7.16) parallel to the contact.

At the base of the aligned crystal unit is a 40 cm thick gabbro unit consisting of downward-branching skeketal "pyroxene" crystals arranged in conical sheaves. The sheaves originate at a point source on the upper contact and spread downwards (Fig. 7.17). Individual crystals become more robust downwards. The cones are typically 30 - 40 cm in height and have an estimated basal diameter of 20 - 30 cm. The observed growth of megacrysts probably indicates very low



- Figure 7.13 A. Amphibole pseudomorph after skeletal pyroxene crystals, upper marginal sequence due east of Hlagothi Mountain. Note the presence of quartz amygdales in lower righthand quadrant. (10x).
  - B. Detail of composite structure of crystal in A. Note the chlorite in the core surrounded by amphibole. (160x).



Figure 7.14 Section cut normal to long axis of skeletal pyroxene texture in Figure 7.15. Note sector growth in crystal at centre left. Crystals from a single sheaf in optical continuity indicated by arrows. Quartz-epidote amygdales in right-hand half of field. (25x).



Figure 7.15 Detail of segregation (amygdale?) in skeletal pyroxenetextured gabbro, upper marginal sequence. (63x). Q = quartz; ep = epidote; ch = chlorite; Cc = calcite; B = biotite.



Figure 7.16 Aligned skeletal pyroxene crystals pseudomorphed by amphibole, upper marginal sequence. Scale in centimetres.



Figure 7.17 Downwards branching conical sheaves of skeletal pyroxene crystals, upper marginal sequence, due east of Hlagothi Mountain. Pen is 15 cm long.

nuclei density. In thin section crystals belonging to individual cones are in optical continuity (Fig. 7.14). They commonly have a core of chlorite and are less commonly twinned parallel to their long axes.

Below the unit of branching crystals is a zone of coarse-grained gabbro containing randomly orientated skeletal "pyroxene" crystals. These crystals have a shorter, thicker habit than the "pyroxenes" described above, a feature which becomes more marked downwards until the gabbro is indistinguishable from typical Hlagothi gabbros. Within this coarse unit are rare incompletely transformed pyroxene crystals in which the core zone consists of pigeonite (Fig. 7.18). Most of the composite crystals have undergone transformation to a core of chlorite and a margin of colourless amphibole identical to those higher up in the marginal sequence. Electron microprobe analysis of the amphibole provides a composition equivalent to tremolitic hornblende as defined by Leake (1968). Recalculation of the analysis using 6 oxygen atoms yields an augite of sub-calcic stochiometry (Table 7.4). This is in agreement with the chemistry reported for spinifex texture pyroxenes and experimentally produced quenched pyroxenes (Arndt and Fleet, 1979).

The similarity of petrological and chemical aspects of the skeletaltextured rocks to spinifex textures in effusive komatiites has considerable significance for petrogenetic interpretation. For this reason a discussion of their origin is deferred to a later section.

(b) Chilled Margin, Nsongeni Sheet

The chill phase recognized from the Nsongeni sheets is in an equivocal relationship with the upper contact of the lowest sheet and the margin of a feeder dyke to an overlying sheet. It is part of the Hlagothi Complex, but cannot be ascribed with any certainty, due to poor outcrop, to a particular sill. The chill phase is a thin (20 cm), sporadically developed, very fine-grained, black, massive rock-type. Small olivine phenocrysts are visible in hand specimen.



In section, the rock consists of skeletal olivine (5%) and plagioclase (10%) crystals set in a devitrified glassy groundmass. The olivine crystals are generally 0.1 - 0.3 mm across, but some slender elongate crystals 3 mm long are present. Most of the crystals are euhedral in external form, but contain irregular or rounded voids filled with fine-grained groundmass material (Fig. 7.19). The skeletal forms are similar to those recognized in experimental guenching of high Mg-basalts by Donaldson (1976). Plagioclase crystals occur as very thin, up to 5 mm long needles which have a central core of groundmass material. In crosssection the crystals are rectangular with a rounded core. They appear to radiate from olivine megacrysts, perhaps indicating that nucleation of the plagioclase occurred in the proximity of olivine grains where a local depletion of iron and magnesium resulted from diffusion to the olivine. The groundmass consists of sub-microscopic brownish crystallites in radiating fans which appear to start at the terminations of the plagioclase crystals. Some very small orthopyroxene grains are recognizable. Accessory chromite and magnetite occur as small euhedra and anhedra respectively.

## Feeder Dykes

Dykes which penetrate lower sills but not the upper ones have been recognized in the Nsongeni and main Hlagothi sheets. These are typically altered but at least one has retained its primary mineralogy. This dyke, which intruded the lowermost ultramafic portion of a sheet near the confluence of the Nsongeni and Nsuze Rivers (Map 3), cannot be traced into the overlying sill. The dyke is a thin (< 10 m), fine-grained, olivine gabbronorite body which trends parallel to the strike of the sills. The rock consists of plagioclase (40%), augite (25%), olivine (20%) and orthopyroxene (10%) with accessory biotite and magnetite. In general, the rock is granular but some radiating plagioclase-augite intergrowths are present. This texture has been described by Mackenzie *et al.* (1982, p. 57) who considered it to be allied to skeletal growth of pyroxene. The olivine grains are typically subhedral or euhedral but embayed by reaction with the augite. The augite occurs in angular, elongate anhedral crystals, whereas the orthpyroxene generally occurs as equant subhedra. Exsolved pigeonite is present within some of the larger augite and orthopyroxene grains. Plagioclase, which occurs as large, elongate crystals, encloses the mafic minerals poikilitically in parts of the rock. Alteration to chlorite and talc is restricted to small angular patches, suggesting that the alteration may be related to fractures. Undulatory extinction of the plagioclase indicates that the rock has undergone some deformation.

### Summary

Mafic and ultramafic rock types of the Hlagothi Complex, although rarely unaltered, are recognized as consisting predominantly of olivine, two pyroxenes and plagioclase prior to alteration. Pigeonite, ilmeno-magnetite, biotite and chromite are the most commonly encountered minor phases.

The lower ultramafic rocks of the Nsongeni sheets consisted of olivineorthopyroxene-(clinopyroxene) cumulates before alteration. In the Wonderdraai sheet olivine websterites are the most common ultramafic rocks, whereas in the main Hlagothi sheets feldspathic wehrlites and clinopyroxene-orthopyroxenites are the most mafic rock types recognized. Within these lithologies, the following sequences of crystallization are apparent:

Olivine → orthopyroxene → clinopyroxene (Upper Wonderdraai and lower Nsongeni ultramafics)

Olivine → orthopyroxene + clinopyroxene → plagioclase (Wonderdraai sheet, olivine websterite)

Olivine → clinopyroxene → plagioclase (main Hlagothi sheet, feldspathic wehrlite)

Orthopyroxene → clinopyroxene → plagioclase (main Hlagothi sheet, clinopyroxene orthopyroxenites) Pigeonite → clinopyroxene (skeletal-textured marginal sequence)

Olivine → plagioclase (chill phase, Nsongeni feeder dyke)

The gabbroic rocks have undergone total alteration (with rare exceptions) to an amphibole - chlorite - epidote assemblage, which may represent a metamorphic transformation related to the regional greenschist facies metamorphism. However, this metamorphic event was accompanied by strong northwards directed stress where it has affected Nsuze Group volcanics close to the Complex, a feature which is not apparent in the altered gabbros. Additional evidence in favour of possibly late or magmatic or autometasomatic alteration is provided by other textures and structures in the gabbros. The vesicles in the upper parts of the gabbro sheets, trellis-textured sphene pseudomorphs after ilmeno-magnetite, quartzplagioclase micrographic intergrowths and the chlorite-biotite-zoned epidote patches are interpreted as reflecting originally high water contents of the gabbroic magma. If the primary magma had a relatively high water content, a progressive crystallization of anhydrous phases would have resulted in a concomitant concentration of water in the higher parts of the body. This progressive increase in water activity may have caused early, anhydrous phases to become unstable and out of equilibrium with interstitial late-stage liquids. The alteration of the gabbros pre-dates the growth of small, aligned fibrous tremolite crystals which transgress the original mineral boundaries. It is considered probably that this later generation of amphibole grew during the regional greenschist facies episode and associated deformation.

The petrographic data and field relationships place certain constraints on a model for the development of the Hlagothi Complex. Cross-cutting relationships between the sills imply that repeated sill intrusion occurred along the same general locus. The presence of amygdales and late-stage deuteric/hydration effects indicates a relatively shallow depth of intrusion. High magmatic

water contents probably applied, particularly towards the top of the complex, and the exsolution of a hydrous phase was possible because of low confining pressure at the time of intrusion.

Significantly, the sills were intruded close to the base of the 4 km-thick Nsuze Group prior to deformation.

The optimum depths at which sill emplacement occurs has been discussed by Roberts (1970) in terms of the stress field applicable at the time of intrusion. He considers an initial state of stress such that  $\sigma_x = \sigma_y = n \cdot \sigma_z$  where  $\sigma_x$ ,  $\sigma_y$  and  $\sigma_z$  are the principal stresses and n is a constant less than unity. Where n = 1, the initial state is one of hydrostatic stress and sill emplacement can occur at any depth. However, if n = 1/3 the initial state is one of complete lateral restraint, and sill emplacement would be restricted to within 1 - 2 km of the surface. Mudge (1968) concluded that minor sills are intruded at depths between 0.5 and 2 km. Some major sills appear to have been emplaced at somewhat greater depths (Bradley, 1965).

The fact that the Hlagothi Complex predates deformation of the Nsuze Group, coupled with the above conclusions, suggests that the Hlagothi sills might have been emplaced at shallow depths soon after or nearly synchronously with the accumulation of the Nsuze Group.

### 4. Geochemistry

### Geochemical Variation

The nineteen samples analysed were selected so as to provide a broad characterization of individual sheets. Similar fractionation histories for the sills are likely, and therefore the combined data are considered to provide broad geochemical characteristics of the whole complex. The sampling is not considered adequate for petrogenetic modelling. The analyses for the major, minor and trace elements were done by XRF spectroscopy according to the methodology outlined in Chapter 6 and Appendix 2 Chemical abundances and distribution of the samples are presented in Tables 7.1 - 7.3. Comprehensive listings of normative data and computed phase diagram projections are presented in Appendix 5. In the following discussion, the olivine- and pyroxene-dominated rock types are referred to as peridotites and pyroxenites respectively for ease of reference. It is recognized that the terms are not strictly applicable but the common factor in each group is not easily expressed by other terminology.

The major elements have been plotted on MgO variation diagrams (Fig. 7.20). SiO<sub>2</sub> abundances show little variation with all of the gabbroic and pyroxenitic rocks falling in the range 53 - 56%. These rocks have MgO contents of less than 23%, but a large compositional gap in the range 11 - 18% MgO separates the gabbroic and pyroxenitic rocks. The peridotites, which have MgO > 23%, all have SiO<sub>2</sub> in the range 46 - 49%.

Alumina decreases from 23% for the gabbros to  $\sim 6\%$  in the peridotite range along a reasonably coherent trend (Fig. 7.20). There is a slight inflection at the change from olivine-poor to olivine-rich lithologies. The skeletal-textured samples have lower Al<sub>2</sub>O<sub>3</sub> than gabbros of similar MgO content. Low alumina values are to be expected in the ultramafic rocks as they are dominated by pyroxene and olivine, neither of which contains appreciable alumina. Total iron, as FeO, shows little variation with changing magnesia except for a slight increase in the peridotitic rocks. Iron-magnesia ratios thus increase with decreasing MgO. CaO abundances decrease systematically with increasing MgO. Values of 11% CaO are typical of the gabbros, falling to 4% in the ultramafic rocks.

No clear or coherent relationships exist between  $Na_2 O$  or  $K_2 O$  and MgO. The alkalies are more abundant in the gabbros than in the ultramafic rocks.

|                                | BG192 <sup>a</sup> | BG220ª | BG222ª | BG223 <sup>a</sup> | BG231 <sup>a</sup> | BG237 <sup>a</sup> | BG232 <sup>b</sup> | BG239 <sup>b</sup> | BG242 <sup>b</sup> |
|--------------------------------|--------------------|--------|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| \$102                          | 53.49              | 57.17  | 55.43  | 54.97              | 56.32              | 56.03              | 55.98              | 54.69              | 54.75              |
| A1203                          | 15.64              | 15.00  | 15.03  | 12.98              | 14.96              | 14.21              | 12.15              | 11.92              | 11.50              |
| Fe <sub>2</sub> 0 <sub>3</sub> | 0.71               | 0.95   | 0,90   | 0.83               | 0.91               | 1.05               | 0.96               | 0.96               | 0.98               |
| Fe0                            | 6.39               | 8.55   | 8.12   | 7.47               | 8.23               | 9.49               | 8.64               | 8.60               | 8.84               |
| MnO                            | 0.15               | 0,17   | 0.16   | 0.16               | 0.17               | 0.19               | 0.17               | 0.19               | 0.18               |
| MgO                            | 8.97               | 5.94   | 6.65   | 10.57              | 6.56               | 5.35               | 8.53               | 9.75               | 10.01              |
| CaO                            | 11.69              | 8,47   | 10.52  | 9.20               | 10.74              | 10.74              | 9.73               | 9.25               | 9.30               |
| Na <sub>2</sub> O              | 1.76               | 3.76   | 2.19   | 2.77               | 2.16               | 2.15               | 1.89               | 2.86               | 2.10               |
| K2O                            | 0.83               | 0.66   | 0.74   | 0.85               | 0.78               | 0.58               | 1.35               | 0.73               | 0.96               |
| T102                           | 0.34               | 0.65   | 0.55   | 0.46               | 0.37               | 0.45               | 0.67               | 0.64               | 0.64               |
| P205                           | 0.06               | 0.13   | 0.10   | 0.09               | 0.06               | 0.07               | 0.10               | 0.11               | 0.10               |
| Cr <sub>2</sub> O <sub>3</sub> | 0.11               | 0.01   | 0.01   | 0.08               | 0.01               | 0.00               | 0.11               | 0.13               | 0.18               |
| TOTAL                          | 100.14             | 101.46 | 100.40 | 100.43             | 101.27             | 100.31             | 100.28             | 99.83              | 99.54              |
| Trace el                       | ements (ppm)       | 1      |        |                    |                    |                    |                    |                    |                    |
| Sc                             | 28                 |        | 36     | 32                 | 44                 | 47                 | 34                 | 31                 | 30                 |
| v                              | 170                | 233    | 217    | 199                | 221                | 245                | 222                | 213                | 216                |
| Cr                             | 740                | 44     | 57     | 568                | 89                 | 23                 | 741                | 893                | 1247               |
| Ni                             | 225                | 129    | 132    | 276                | 1 2 1              | 86                 | 1 57               | 200                | 236                |
| Cu                             | 26                 | 52     | 42     | 36                 | 60                 | 43                 | 79                 | 105                | 72                 |
| Zn                             | 70                 | 68     | 62     | 59                 | 72                 | 91                 | 68                 | 76                 | 77                 |
| X                              | 14                 | 24     | 20     | 18                 | 14                 | 16                 | 23                 | 20                 | 21                 |
| Zr                             | 55                 | 103    | 84     | 69                 | 60                 | 71                 | ગ                  | 90                 | 88                 |
| ΝЬ                             | 3.9                | 5.5    | 4.7    | 4.1                | 2.9                | 4.0                | 4.4                | 5.3                | 4.8                |
| Rb                             | 33                 | 26     | 26     | 32                 | 19                 | 12                 | 32                 | 17                 | 21                 |
| Sr                             | 21 3               | 277    | 240    | 251                | 110                | 129                | 463                | 106                | 103                |
| Ba                             | 138                |        | 136    | 467                | 206                | 200                | 476                | 268                | 394                |
| La                             | 8                  | 13     | 9      | 6                  | 11                 | 4                  | 12                 | 5                  | 7                  |

TABLE 7.1: CHEMICAL ANALYSES OF GABBROIC<sup>a</sup> AND SKELETAL-TEXTURED<sup>b</sup> ROCKS

BG192 - Wonderdraai Sheet. BG231 - BG242 - Main Hlagothi Sheets

BG220 - BG223 - Nsongeni Sheet.

|                                | BG193 <sup>C</sup> | BG196 <sup>C</sup> | BG212 <sup>C</sup> | BG216 <sup>C</sup> | BG226 <sup>C</sup> | BG228 <sup>C</sup> | BG224 <sup>d</sup> | BG227 <sup>d</sup> | BG 229 <sup>d</sup> | BG236 <sup>d</sup> |
|--------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|--------------------|
| \$10,                          | 50.06              | 47.76              | 47.60              | 47.59              | 46.26              | 49.14              | 54,86              | 55,75              | 55.58               | 55.33              |
| A1:0,                          | 7.00               | 6.74               | 6.44               | 8.64               | 5.83               | 5.85               | 8,23               | 8.02               | 6.80                | 6.49               |
| Fe <sub>2</sub> 0 <sub>3</sub> | 1.09               | 1.14               | 1.08               | 1.10               | 1.18               | 1.16               | 0.99               | 0.94               | 0.92                | 0.94               |
| Pe0                            | 9.60               | 10.25              | 9.71               | 9.88               | 10.61              | 10.40              | 8.88               | 8.49               | 8.32                | 8.50               |
| MnO                            | 0.20               | 0.20               | 0.19               | 0.22               | 0.19               | 0.20               | 0.23               | 0.19               | 0.21                | 0.21               |
| Ng()                           | 25.51              | 27.57              | 26.93              | 23.42              | 30 <b>.97</b>      | 26.22              | 18.00              | 18.45              | 20.00               | 21.52              |
| CaO                            | 5.38               | 5.13               | 5.91               | 8.04               | 3.85               | 5.11               | 7.65               | 7.47               | 6.64                | 5.63               |
| Na <sub>2</sub> O              | 0.68               | 1.12               | 0.04               | 0.37               | 0.00               | 0.43               | 0.85               | 0.61               | 0.32                | 0.63               |
| K <sub>2</sub> O               | 0.24               | 0.31               | 0.40               | 0.02               | 0.13               | 0.36               | 0.03               | 0.04               | 0.59                | 0.23               |
| T102                           | 0.23               | 0.29               | 0.29               | 0.35               | 0.24               | 0.31               | 0.37               | 0.35               | 0.22                | 0.17               |
| P203                           | 0.05               | 0.07               | 0.05               | 0.06               | 0.04               | 0.07               | 0.06               | 0.06               | 0.03                | 0.02               |
| Cr203                          | 0.55               | 0.64               | 0.56               | 0.57               | 0.77               | 0.56               | 0.29               | 0.35               | 0.38                | 0.62               |
| TOTAL                          | 100.79             | 101.21             | 99.20              | 100.26             | 100.07             | 99.81              | 100.44             | 100.72             | 100.01              | 100.29             |
| Trace                          | elements (p        | (mga               |                    |                    |                    |                    |                    |                    |                     |                    |
| Sc                             | 19                 | 17                 | 36                 | 21                 | 18                 | 20                 |                    | 31                 | 32                  | 34                 |
| v                              | 115                | 119                | 129                | 149                | 104                | 131                | 164                |                    | 160                 | 153                |
| Cr                             | 3785               | 4420               | 3834               | 4352               | 4429               | 3775               | 2391               | 2748               | 2591                | 4241               |
| Ni                             | 1280               | 1632               | 2088               | 1298               | 1909               | 1375               | 635                | 596                | 469                 | 811                |
| Cu                             | 24                 | 29                 | 0                  | 0                  | 0                  | 15                 | 13                 | 8                  | 6                   | 36                 |
| \$n                            | 68                 | 69                 | 64 ,               | 78                 | 76                 | 55                 | 72 .               | 65                 | 68                  | 60                 |
| Y                              | 8                  | 8                  | 7                  | 13                 | 17                 | 9                  | 13                 | 9                  | 10                  | 6                  |
| Ir                             | 36                 | 44                 | 41                 | 49                 | 37                 | 45                 | 55                 | 46                 | 37                  | 26                 |
| ND                             | 1.9                | 1.9                | 1.0                | 1.9                | 1.0                | 2.0                | 1.8                | 1.1                | 1.4                 | 1.3                |
| Rb                             | 12                 | 14                 | 27                 | 0                  | 12                 | 27                 | 1                  | 1                  | 37                  | 9                  |
| Sr                             | 79                 | 78                 | 49                 | 6                  | 17                 | 48                 | 24                 | 12                 | 13                  | 40                 |
| Ba                             | 50                 | 78                 | 22                 | 1                  | 5                  | 14                 |                    | 8                  | 29                  | 43                 |
| La                             | 2                  | 4                  | 3                  | 4                  | l                  | 1                  | 3.5                | 7                  | 5                   | 0                  |

TABLE 7.2: CHEMISTRY OF THE PERIDOTITES AND PYROXENITES

BG193 + BG196 - Wonderdraai Sheet. BG212, BG216, BG224, BG226, BG227, BG228 - Nsongeni Sheets BG229, BG236 - Main Hlagothi Sheet.

|                    | Perido           | tites | Pyroxenites       |      | Gabbros  |      | Skeleta<br>texture<br>Gabbros | Skeletal-<br>textured<br>Gabbros |       |
|--------------------|------------------|-------|-------------------|------|----------|------|-------------------------------|----------------------------------|-------|
|                    | <u>n</u> ≖6<br>x | σ     | <u>n</u> = 4<br>z | σ    | n=6<br>x | σ    | <u>n</u> =3<br>x              | σ                                | A     |
| S102               | 48.07            | 1.21  | 55.38             | 0.34 | 55.57    | 1,16 | 55.14                         | 0.73                             | 53.75 |
| A1,0,              | 6.75             | 0.95  | 7.39              | 0.75 | 14.64    | 0.85 | 11.86                         | 0.27                             | 10.02 |
| Fe <sub>2</sub> 0, | 1.13             | 0.04  | 0.95              | 0.03 | 0.89     | 0.10 | 0.97                          | `0.01                            |       |
| FeO                | 10.11            | 0.33  | 8.55              | 0.20 | 8.04     | 0.95 | 8.69                          | 0.10                             | 11.02 |
| MnO                | 0.20             | 0.01  | 0.21              | 0.01 | 0.17     | 0.01 | 0.18                          | 0.01                             | 0.22  |
| MgÔ                | 26.77            | 2.51  | 19.49             | 1.39 | 7.34     | 1.83 | 9.43                          | 0.65                             | 10.30 |
| CaO                | 5.57             | 1.27  | 6.85              | 0.80 | 10.23    | 1.07 | 9.43                          | 0.11                             | 10.18 |
| Na <sub>2</sub> 0  | 0.44             | 0.38  | 0.60              | 0.19 | 2.47     | 0.65 | 2.28                          | 0,42                             | 0.47  |
| K 20               | 0.24             | 0.13  | 0.22              | 0.23 | 0.74     | 0.09 | 1.01                          | 0.26                             | 0.87  |
| Ti0,               | 0.29             | 0.04  | 0.28              | 0.08 | 0.47     | 0,11 | 0.65                          | 0.01                             | -     |
| P205               | 0.06             | 0.01  | 0.04              | 0.02 | 0.09     | 0.03 | 0.10                          | 0.00                             | -     |
| Cr2 03 -           | 0.61             | 0.08  | 0.41              | 0.13 | 0.04     | 0.04 | 0.14                          | 0.03                             | -     |
|                    | 100.24           |       | 100.37            |      | 100.69   |      | 99.88                         |                                  | 99.53 |

A = Average basaltic komatiite, Barberton type, Barberton greenstone belt (Viljoen and Viljoen, 1969, p. 80). Total iron as FeO. TABLE 7.4: MINERAL CHEMISTRY

|                                | 1      | 2     | 3      | 4     | 5     | 6     |
|--------------------------------|--------|-------|--------|-------|-------|-------|
| SiO <sub>2</sub>               | 52.50  | 38.57 | 54.55  | 56.80 | 55.00 | 51.90 |
| Al <sub>z</sub> 0 <sub>3</sub> | 2.42   | 0.03  | 1.79   | 1.44  | 3.05  | 4.60  |
| Fe0*                           | 6.70   | 20.65 | 7.84   | 11.18 | 12.64 | 7.70  |
| MnO                            | 0.17   | 0.16  | 0.20   | 0.30  | -     | 0.25  |
| Mg0                            | 17.67  | 39.60 | 16.08  | 27.39 | 14.98 | 17.80 |
| CaO                            | 19.71  | 0.19  | 19.30  | 2.23  | 12.99 | 17.30 |
| Na <sub>2</sub> O              | -      |       | 0.16   | 0.01  | 0.23  | 0.14  |
| K2 0                           | -      |       | 0.03   | 0.03  | 0.08  | -     |
| Ti O <sub>z</sub>              | 0.26   |       | 0.27   | 0.06  | 0.03  | 0.37  |
| Cr2 03                         | -      |       | -      | 0.17  | -     | 0.23  |
| NiO                            | 0.60   | 0.50  | 0.03   | 0.10  |       | -     |
| TOTAL                          | 100.02 | 99.69 | 100.24 | 99.69 | 99.00 | 99.80 |

- 1. BG292 clinopyroxene
- 2. BG292 olivine
- 3. BG235 clinopyroxene
- 4. BG235 orthopyroxene
- 5. Tremolitic hornblende pseudomorph of clinopyroxene.
- 6. Augite from composite needle. Arndt and Fleet (1979, p. 859, analysis  $\neq 3$ ).

The plot of TiO<sub>2</sub> vs MgO shows discrete fields for the three rock-types. The peridotites lie on a linear trend of low negative slope indicating a slight enrichment of Ti with increasing fractionation. Pyroxenitic rock-types define a trend of steeper negative slope. Gabbroic rock-types plot as a dispersed field although the three skeletal-textured samples plot close together.

MnO shows very little variation over the entire range of MgO contents.

Trace element contents of the Hlagothi Complex are presented in Tables 7.1 and 7.2. These values have not been used in the discussion below because they do not contribute significantly to an understanding of the Complex. An attempt to model parental magma composition and origin on the basis of trace element geochemistry is considered premature in view of the limited number of analyses available at present.



Figure 7.19 Chilled margin of feeder dyke to second lowest sill, Nsongeni River valley. Hopper olivine and acicular, skeletal plagioclase crystals are set in devitrified groundmass. (25x).



Figure 7.20 Variation diagrams for major and minor elements plotted against MgO. All values as weight percentages. Solid circles - gabbros; stars - skeletal-textured gabbros; hollow circles - peridotites; squares - pyroxenites and gabbronorites. Continued overleaf.

.



Figure 7.20 continued

.

Molecular Proportion Ratios

The principal behind the use of molecular proportion ratio (MPR) plots has been given by Pearce (1968). Pearce (1970) and Beswisk (1982) have shown that these ratios may be used to identify fractionating phases in layered intrusions and volcanic sequences respectively. MPR plots may also be used to identify open system behaviour since only closed system fractionation produces coherent chemical variation trends (Beswick, 1982).

Petrographic evidence for olivine, clinopyroxene and orthopyroxene fractional crystallization has been indicated above. The object of this section is to demonstrate the relative importance of these phases in the crystallization of the various rock types. As Zr is incompatible over the range of compositions present, its abundance is used to compute the oxide molecular proportion ratios.

In order to recognize olivine, orthopyroxene and clinopyroxene fractionation the covariation of MgO/Zr, FeO\*/Zr and (MgO + FeO\*)/Zr with SiO<sub>2</sub>/Zr is investigated. The MPR slopes required for fractionation of the minerals analysed by electron-microprobe are given in Table 7.5. The peridotitic rocktypes plot on a linear trend with a slope midway between those predicted for olivine and orthopyroxene fractionation (Fig. 7.21). The pyroxenites fall on a linear trend of slope within the range predicted by clinopyroxene and orthopyroxene fractionation. Data points for the gabbroic rocks plot with some scatter on a line, the slope of which is close to that expected for clinopyroxene fractionation.

The involvement of clinopyroxene and plagioclase in fractionation is tested using  $Al_2 O_3 / Zr$  and CaO/Zr versus  $SiO_2 / Zr$  MPR plots (Fig. 7.22). On the  $Al_2 O_3 / Zr$  :  $SiO_2 / Zr$  plot, the slope of the line defined by the gabbro analyses is close to that predicted for fractionation of plagioclase of composition  $An_{75}$ . The other rock types plot on a linear, horizontal trend which indicates that alumina is not a component of any of the fractionating phases in these rocks.

| Sample | Phase | Mg0/ | Fe0/ | (FeO+MgO)/ | Alz O3 / | CaO∕ | Ca0/      |
|--------|-------|------|------|------------|----------|------|-----------|
| No.    |       | Si0₂ | SiO₂ | SiO₂       | SiOz     | SiO₂ | (Fe0+MgO) |
| BG292  | 01    | 1.54 | 0.46 | 2.0        | -        | -    | -         |
|        | Срх   | 0.49 | 0.11 | 0.6        | <0.1     | 0.40 | 0.66      |
| 86235  | Орх   | 0.77 | 0.18 | 0.95       | -        | -    | -         |
|        | Срх   | 0.47 | 0.13 | 0.60       | <0.1     | 0.40 | 0.66      |

# TABLE 7.5: SLOPES FOR MPR FRACTIONATION TRENDS PREDICTED FROM OBSERVED MINERAL COMPOSITIONS

TABLE 7.6:CATION FORMULAE FOR MEGACRYSTIC AMPHIBOLE<br/>(No. 4 in Table 7.4).

|       | Amphibole<br>(22 oxygens/formula unit) | Pyroxené<br>(6 oxygens/formula unit) |
|-------|----------------------------------------|--------------------------------------|
| Si    | 7.44                                   | 2.03                                 |
| AI    | 0.49                                   | 0.13                                 |
| Fe    | 1.43                                   | 0.39                                 |
| Mg    | 3.02                                   | 0.82                                 |
| Ca    | 1.88                                   | 0.51                                 |
| Na    | 0.06                                   | 0.06                                 |
| К     | 0.01                                   | 0.00                                 |
| Total | 14.33                                  | 3.90                                 |



Figure 7.21 Molecular proportion ratio (MPR) plots showing the relationships Mg0/Zr, Fe0\*/Zr and (Fe0\* + Mg0)/Zr versus Si0<sub>2</sub>/Zr. All ratios computed using molecular proportions. Lines of predicted slope calculated from minerals analysed by electron microprobe (Table 7.5). Symbols as for Figure 7.20. See text for explanation.

On the CaO/Zr : SiO<sub>2</sub>/Zr plot (Fig. 7.22), the gabbros plot on a trend whose slope is midway between predicted slopes for An, and An<sub>100</sub> and close to that expected for clinopyroxene fractionation. The pyroxenites plot on a line of very low positive slope, indicating that the covariance of calcium and silica is influenced by the presence of a calcium-free fractionating phase in addition to the clinopyroxene postulated earlier. Peridotites plot on a horizontal trend indicating the absence of calcium-bearing phases as fractionating components in these rocks.

In order to test for clinopyroxene fractionation in the gabbros, a plot of CaO/Zr: (FeO\* + MgO)/Zr is used (Fig. 7.23). The gabbros plot close to or on the line predicted for clinopyroxene fractionation, whereas the pyroxenitic rock-types plot on a subhorizontal trend. As expected, the peridotites plot on a trend of zero or negative slope.

From the preceding, it is clear that crystallization of the olivine-bearing rock-types was dominated by olivine and orthopyroxene fractionation. The pyroxenites were dominated by orthopyroxene crystallization, although minor clinopyroxene fractionation, probably as an interstitial phase, must have occurred to account for the CaO - SiO<sub>2</sub> and CaO - (FeO\* + MgO) covariance. The gabbros evolved through fractionation of clinopyroxene and plagioclase in about equal amounts. Clinopyroxenes and plagioclase did not crystallize during the formation of the olivine-bearing rock-types as evidenced by a lack of variation in CaO and  $Al_2 O_3$ molecular proportion ratios. Plagioclase was almost certainly unimportant in the crystallization of the pyroxenites as shown by a lack of  $Al_2 O_3$  variation.

### Phase Diagram Considerations

The crystallization history of layered complexes in which olivine, pyroxene and plagioclase are dominant crystal phases may be examined in terms of the



Figure 7.22 MPR plots of  $Al_2 O_3/Zr$  and CaO/Zr versus  $SiO_2/Zr$ . The clinopyroxene slope is given for  $Wo_{40} = En_{40} = Fs_{12}$ . Symbols as for Figure 7.20.



Figure 7.23 MPR plot of CaO/Zr versus (FeO\* + MgO/Zr). Clinopyroxene slope is given for  $Wo_{40} En_{40} Fs_{12}$ . Symbols as for Figure 7.20.

simple system olivine - clinopyroxene - plagioclase - quartz developed by Irvine (1970, 1979). Orthopyroxene may be plotted on the olivine - quartz edge of the tetrahedron at a point determined by the equation:

 $SiO_2$  + (Mg,Fe)<sub>2</sub>  $SiO_2$  = 2(Mg,Fe)  $SiO_2$ 

The system is a gross simplification of the complex chemistry of the magma but has been used to model crystallization sequences for the Bushveld, Muskox, Stillwater and Skaergaard intrusions (Irvine, 1970). Calculation of the projection of the composition for the Hlagothi Complex through the clinopyroxene, olivine and plagioclase apices has been done according to the method of Irvine (1970). The numerical data are given in Appendix 5.

Petrographic data and MPR plots for the complex dictate that any proposed bulk composition must be capable of crystallizing extensive olivine, orthopyroxene, clinopyroxene and plagioclase in that order. Final crystallization must occur at the quartz - plagioclase eutectic in order to account for micrographic intergrowths of these minerals observed in the gabbros. Wehrlites present a problem (see later section).

The system and the three projections used are shown in Figure 7.24. As noted above, the main parental liquid must plot within the olivine field (shaded area in Figure 7.24A). The projected skeletal-textured gabbro compositions project close to the orthopyroxene end of the predicted bulk composition field. Their projected compositions would, however, change if the apportioning of iron to Fe<sup>3+</sup> has been incorrect, as indicated by the scale bar shown for reduction in FeO content. For the purposes of this discussion, the skeletal-textured gabbros are considered a first order approximation of the initial liquid composition although the rationale behind this is deferred to a later section. Before discussing the proposed liquid path, mention must be made of the reaction boundary separating the olivine and orthopyroxene volumes. A liquid, crystallizing olivine, upon reaching this boundary begins forming enstatite, but at the same time, olivine reacts with the liquid as follows:



Figure 7.24 The system plagioclase - clinopyroxene - olivine - quartz. A. Projection from clinopyroxene apex.

B. Projection from olivine apex.

C. Plagioclase projection.

System after Irvine (1970, 1979). Symbols as in Figure 7.20. See text for further discussion.

| (Mg,Fe) | 25i04 | + Si02 | <b>→</b> | (MgFe) SiO₃ |
|---------|-------|--------|----------|-------------|
| olivine |       | liquid |          | enstatite   |

Once all the olivine is consumed or mantled by orthopyroxene, the liquid composition is free to move across the boundary into the orthopyroxene field. If the olivine is not consumed or removed from the system, the liquid path is constrained to the olivine - orthopyroxene peritectic boundary and moves towards the clinopyroxene - orthopyroxene - olivine cotectic line.

If the skeletal-textured gabbro is a first order approximation of the bulk composition, then olivine would begin crystallizing, with the result that the liquid composition moves to the olivine - orthopyroxene peritectic boundary plane (orthopyroxene - plagioclase line on clinopyroxene projection, Fig. 7.24A). The olivine-bearing rocks plot towards the olivine apex of the clinopyroxene projection which is in general agreement with this initial stage of crystallization. As crystallization was unlikely to be in an equilibrium situation, the removal by crystal settling or isolation of the olivine as noted above would allow the liquid composition to move out of the olivine volume before all olivine was consumed by reaction.

The liquid composition reaches the clinopyroxene - orthopyroxene cotectic plane before the plagioclase - orthopyroxene boundary (Fig. 7.248). Crystallization of both clinopyroxene and orthopyroxene would then occur, driving the liquid composition towards a more felsic composition beyond the plane of observation in Fig. 7.24B. The rocks formed during this stage of crystallization would be the clinopyroxene orthopyroxenites which plot astride the olivine orthopyroxene cotectic in Fig. 7.24A and on the orthopyroxene control line in Fig. 7.24B. The liquid path beyond the olivine volume is not easily illustrated, but the clinopyroxene-plagioclase-orthopyroxene cotectic line, towards which the liquid moves, is shown (Fig. 7.24B). Upon reaching the three phase cotectic, the liquid may move along the line, or across it into the plagioclase-clinopyroxene plane. In either case, the final liquid composition must be on a quartz-plagioclase volume boundary or a quartz-plagioclase-clinopyroxene cotectic line (Fig. 7.24C) in order to account for the plagioclase - quartz - micrographic intergrowth observed in the gabbroic rocks.

Feldspathic wehrlite (BG292 - not analysed) occurs near the top of the main Hlagothi sill and presents a minor problem in that the observed modal composition of 30% olivine, 65% clinopyroxene and 5% plagioclase cannot be achieved along the equilibrium crystallization path proposed above. Two possible explanations exist. First, a different bulk composition may have existed such that the olivine control line could reach the clinopyroxene - olivine cotectic directly (without reaching the orthopyroxene peritectic boundary). Second, and more probable, a combination of relatively rapid cooling and low nuclei concentration could have resulted in metastable crystallization of clinopyroxene. This is shown as line B in Fig. 7.24B.

# 5. <u>Comparison of Skeletal Pyroxene and True Spinifex Textures</u> and Implications for Petrogenesis.

The skeletal pyroxene texture of the upper marginal sequence has been described in an earlier section. The term "spinifex" has not been applied to the texture as an origin by extrusion and resultant quenching is generally associated with this usage. Although the rocks in which the texture occurs are clearly intrusive, the texture conforms well with the definition of pyroxene spinifex agreed upon at the Penrose Conference on komatiites (Arndt and Nisbet, 1982, p. 211): "pyroxene spinifex texture consists of pigeonite and augite or both pyroxenes in complex skeletal megacrysts that are arranged in sheaths perpendicular to flow margins. The pyroxene needles typically are 1 - 5 cm long but only 0.5 cm wide, and lie in a matrix of fine augite and devitrified glass, or augite, plagioclase and quartz. Usually the primary phases are replaced by hydrous phases." The example under discussion differs from this definition

only in that the "sheaves" are found to be cones radiating downwards from point sources (recognized elsewhere prior to this study by A.H. Wilson, *et al.*, in preparation), the megacrysts may exceed the given dimensions, and that the aligned-skeletal crystals are parallel to the upper contact of the cooling unit (also recognized in Barberton komatiites, Viljoen *et al.*, 1983).

The structure of the megacrysts is also typical of pyroxene spinifex as described by Arndt and Fleet (1979) who point out that the pyroxene megacrysts are typically composite. Pigeonite occurs as the core of the grains described by these authors and is surrounded by subcalcic augite. In the Hlagothi Complex pyroxene megacrysts, the usual form consists of a central core of chlorite surrounded by amphibole, which are the common hydrous replacement products of pigeonite and augite respectively. Pigeonite has been found in the cores of some of the grains but unaltered augite has not yet been recognized. The pseudomorphism of amphibole after the clinopyroxene has been excellent and the morphology in sections cut normal to the long axis of the crystals is identical to that recognized by Arndt and Fleet (1979) in unaltered samples.

Spinifex textures are commonly attributed to supercooling of high magnesium rocks (Viljoen *et al.*, 1983; Donaldson, 1983; Arndt and Fleet, 1979) and show evidence for metastable crystallization of pyroxenes in that these commonly have compositions not found in rocks crystallized under equilibrium conditions. Arndt and Fleet (1979) report pigeonite cores surrounded by subcalcic augite as the typical form of pyroxene spinifex.

In order to test the similarity of the chemistry of skeletal crystals from the Hlagothi Complex with that of pyroxene spinifex in extrusive rocks, microprobe analysis of the crystals was attempted. Owing to difficulties with the instrument used, only a single analysis of the outer part of a skeletal crystal was obtained. No satisfactory results were obtained on the cores of the crystals. The analysis is presented as an amphibole composition (calculated using 22

oxygens) and as a pyroxene (calculated using 6 oxygens) (Table 7.5, p.197). Inis requires the equivocal assumption that little bulk chemical change occurred during hydration of the original pyroxene. Nonetheless, the analysis compares well with the data presented by Arndt and Fleet (1979). Thus, a common crystallization mechanism may be applicable to the Hlagothi marginal sequence and to normal spinifex-textured extrusive rock-types.

Available data do not allow identification of this mechanism, although the following factors are probably involved: (i) skeletal crystals are typical of rapid cooling and large degrees of supercooling. This condition is easily envisaged for extrusive high magnesium rocks of high liquidus temperature, but not for an intrusive body of the observed composition (MgO of skeletal-textured rocks = 8 - 10%; (ii) megacrystic growth is favoured by high water contents (Hughes, 1982) and by low nuclei density (Donaldson, 1982). Both these conditions may have been operative in the Hlagothi Complex since a high water content is postulated for the complex (see above) and the conical sheaves radiate downwards from point sources at the base of the variolitic unit. If the varioles are a product of liquid immiscibility, which is favoured by high water concentrations (Philpotts and Doyle, 1983), they may have formed at temperatures above the liquidus. In this case, heterogeneous nucleation may have occurred once the magma cooled to the pyroxene liquidus temperature. High water contents reduce magma viscosity and enhance diffusion to nuclei (Donaldson, 1979).

Spinifex-textured komatiites have been used to estimate the bulk composition of the cooling units. However, recent work (Viljoen *et al.*, 1983; Wilson *et al.*, in prep.) indicates that considerable fractionation occurs through flows having these textures. Fractionation almost certainly occurred within the marginal sequence of the Hlagothi Complex, but may not have been of the same order of magnitude as in the remainder of the intrusion. This is substantiated by the chemical similarity of the three skeletal-textured rocks analysed in this study (Fig. 7.20). For this reason the skeletal-textured rocks may be used as a first order approximation of the bulk composition of the complex.

## 6. Magmatic Affinity

The chemical data presented above display reasonable consistency and coherence and may, therefore, be used to identify the magmatic affinity of the complex. When plotted on an AFM ternary diagram (Fig. 7.25), the plots with one exception lie in the tholeiitic field as defined by Irvine and Baragar (1971).

Jensen (1976) presented a ternary diagram of  $Al_2 O_4 - (FeO + Fe_2 O_3 + TiO_2)$ - MgO on which tholeiitic, calc-alkalic and komatiitic rock series may be discriminated. The analyses plot in the high Mg-tholeiite, basaltic komatiite and ultramafic komatiite fields (Fig. 7.26). The skeletal-textured rocks plot astride the boundary of the basaltic komatiite field. These rocks have been compared with all of the chemical parameters used by Viljoen *et al.* (1982) to characterize the different classes of komatiite and have been found to lie within the limits of "Barberton" type basaltic komatiites in most respects.

The recognition of komatiitic affinities of the Hlagothi Complex and the ultramafic dykes (cf. Chapter 6) is significant in that a resurgence of typically Archaean magmatism is indicated. No evidence for the existence of komatiites in the Pongola Supergroup has been reported as yet. This absence, in conjunction with the sedimentological evidence for the deposition of the Pongola on a stable craton, has been interpreted as evidence for cratonisation of the Kaapvaal crustal fragment at about 3.0 Ga when large volumes of potassic granite are known to have been emplaced (Hunter, 1974a). The emplacement of



Figure 7.26 Jensen cation plot of Hlagothi Complex rock-types. Boundaries after Jensen (1976). See text for further discussion. Symbols as in Figure 7.20.
komatilitic magmas as dykes rather than eruptive rocks could be expected if crustal thickening through underplating by thick granitic sheets caused reduced geothermal gradients and also provided a physical impediment to the upwards passage of the magmas except where deep fractures are present. An analogous situation has been proposed for the Great Dyke of Zimbabwe which was emplaced at about 2.5 Ga shortly after cratonization of the Zimbabwean region (Wilson et al., 1978). The probable bulk composition of the Great Dyke contains about 15% MgO (Wilson, 1982) and falls within the komatiitic basalt field defined by Jensen (1976). It has been proposed that the Great Dyke represents an aborted greenstone belt and that the initial stages of rifting resulted in mantle-tapping fractures through which komatiitic liquids were emplaced to high crustal levels (Wilson, et al., 1978). According to this model, the factors which prevented the magmas from being erupted are very similar to those mentioned above for the Kaapvaal structural province. Clearly, a great deal more research is required to resolve the problems introduced by the recognition of komatilitic dykes in the southern part of the Pongola Basin. In particular, geochronological data are essential in order to establish the duration of Archaean style magmatism in areas marginal to the Kaapvaal crustal fragment.

# 7. The Relationship of the Complex to Pretectonic Dykes

Several pretectonic dykes are present in the study area. The samples analysed (Table 7.7) are distributed as follows: BG84 is from an irregular body which intrudes the Ndikwe pyroclastics west of Ndikwe Store; BG125 and BG126 are from gabbroic dykes on the south limb of the Gem Syncline; BG141 is a thin irregular dark-coloured, aphyric dyke in the Welendhlovu Valley; BG208 is a gabbro from a sill close to the base of the complex; BG164 is from a narrow dyke which is truncated by the erosional base of the debris flow sequence south of Vuleka.

|                          | BG84   | BG125  | BG126   | BG141       | BG164  | BG208 |
|--------------------------|--------|--------|---------|-------------|--------|-------|
| <b>Si</b> O <sub>2</sub> | 54.26  | 52.00  | 50.72   | 52.76       | 61.79  | 50.98 |
| A1203                    | 5.09   | 14.97  | 16.78   | 18.85       | 13.43  | 13.81 |
| $Fe_2O_3$                | 1.08   | 0.91   | 0.78    | 0.93        | 1.57   | 1.63  |
| FeO                      | 9.73   | 8.20   | 6.99    | 8.40        | 14.14  | 13.20 |
| MnO                      | 0.18   | 0.17   | 0.13    | 0.20        | 0.27   | 0.25  |
| MgO                      | 13.35  | 9.81   | 9.20    | 7.60        | 5.13   | 5.38  |
| CaO                      | 13.28  | 10.73  | 10.63   | 2.94        | 9.14   | ა.77  |
| Na <sub>2</sub> O        | 1.55   | 1.81   | 2.52    | 0.78        | 2.59   | 2.43  |
| K <sub>2</sub> O         | 0.23   | 1.02   | 1.14    | 6.01        | 0.48   | 1.06  |
| TiO <sub>2</sub>         | 0.73   | 0.48   | 0.39    | 1.01        | 1.89   | 1.52  |
| P 2 O 5                  | 0.11   | 0.08   | 0.07    | 0.15        | 0.24   | 0.16  |
| $\operatorname{Cr}_2O_3$ | 0.38   | 0.09   | 0.12    | -           | -      | -     |
| TOTAL                    | 100.02 | 100.27 | 99.47   | 99.63       | 100.62 | 99.19 |
|                          |        |        |         |             |        |       |
|                          |        |        | Trace e | elements (p | pm)    |       |
| Sc                       | 28.3   | 32.5   | 19.7    | 32.2        | 51.4   | 46.2  |
| v                        | 148    | 165    | 118     | 253         | 360    | 455   |
| Cr                       | 2571   | 583    | 818     | 536         | 66     | 79    |
| Ni                       | 436    | 286    | 435     | 105         | 42     | 94    |
| Cu                       | 149    | 50     | -       | 55          | 45     | 241   |
| Zn                       | 90     | 74     | 69      | 25          | 105    | 113   |
| Y                        | 13     | 23     | 11      | 20          | 33     | 42    |
| Zr                       | 85     | 92     | 56      | 88          | 111    | 125   |
| Nb                       | 7.4    | 6.0    | 4.4     | 5.0         | 4.4    | 4.7   |
| Rb                       | 5      | 27     | 26      | 297         | 26     | 40    |
| Sr                       | 164    | 148    | 260     | 233         | 262    | 130   |
| Ba                       | 112    | 476    | 507     | 2203        | 62     | 205   |
| La                       | 4.7    | 5.0    | ~       | 3.7         | 1.8    | 8.4   |

.

Petrographically only BG125 and BG126 resemble the Hlagothi gabbros. BG141, BG164 and BG208 are dissimilar and cannot be related to any specific group of intrusions. BG84 is probably related to the gabbroic dykes, but is very coarse-grained and may be of cumulate origin. In addition, the ultramafic dykes described in Chapter 6 are examined here with a view to establishing any possible relationship to the Hlagothi Complex.

The chemical variation of the dykes is shown in Figure 7.27. It is immediately clear that the dykes have no definite chemical similarity to the Hlagothi rock-types on the basis of major and minor element chemistry. There is also no obvious geochemical relationship between the dyke samples which suggests that they may not be from a single magmatic event. The ultramafic rock-types discussed in Chapter 6 are also shown on these plot and show some broad similarities to the peridotites of the complex.

Whilst it is not intended to attempt a detailed examination of the differences between the various groups of samples on the basis of the limited data available, some evidence for an absence of a genetic relationship is presented When plotted on a Jensen cation diagram, the dyke samples fall predominantly within the tholeiite field with samples BG125 and BG126 plotting close to the Hlagothi gabbros (Fig. 7.28). The remainder of the samples are somewhat removed from the Hlagothi trend, although the observed differences are not very significant. On a plot of MgO versus  $SiO_2$  (Fig. 7.29) the different sample populations fall into overlapping fields, but small displacements of the fields may be significant. The same feature is evident on plots of the incompatible elements Y and Nb versus Zr (Fig. 7.30). Most significant on the plots is the large displacement between the Nsuze group lavas and the intrusive rock-types. The latter samples plot close to the chondritic ratio on the Nb/Zr diagram. The Nsuze lavas are highly enriched in Zr or depleted in Y relative to chondrite. This would support the hypothesis that the Nsuze Group magmatism is distinct from the later intrusive events.



Figure 7.27 Geochemical variation for the pre-tectonic dykes (crosses), ultramafic dykes (triangles) and Hlagothi Complex gabbros (A), pyroxenites (B) and peridotites (C).



Figure 7.28 Jensen cation diagram for the pre-tectonic dykes (solid circles). Hlagothi Complex samples shown as open circles. Ultramafic rocks also shown.

In order to test the possibility that some of the dykes may be related to the complex, the CMAS system of O'Hara (1968) is used. This system has the benefit of allowing fractionation trends to be evaluated, and magmas of the same origin should be related by their trends to a common starting composition. Inspection of Figure 7.31 reveals that the Hlagothi peridotites and pyroxenites fall on control lines equivalent to 70% olivine, 30% enstatite and 90% enstatite, 10% diopside respectively. This serves to confirm the MPR and phase diagram conclusions reached above. Also noteworthy is the displacement of the ultramafic rocks away from the Hlagothi trends which suggests an unrelated origin for these rocks. The various gabbroic dyke rocks are not obviously related to any of the other groups and may thus be considered unrelated magmatic events. The exceptions are BG125 and BG126 which are chemically similar to the Hlagothi gabbros. The field for the Nsuze volcanics is superimposed on the CMAS projections and shows clearly that these cannot be related genetically to the other suites.



- Unaltered Nsuze volcanics
- x Post-Nsuze gabbro dykes
- 4 Ultramafic rocks
- Hlagothi Complex

Figure 7.29 Plot of MgO vs  $SiO_2$  for the various groups of samples analysed. See text for discussion.



Figure 7.30 Y/Zr and Nb/Zr plots for the intrusive rocks and the Nsuze volcanics. Note displacement of Nsuze Group volcanics from the remainder of the samples on Y/Zr diagram. Slope of line is chondritic ratio in each case. Ornamentation as for Figure 7.29.



Figure 7.31 Olivine and diopside projections in the system CMAS after O'Hara (1968). A and B are for the Hlagothi Complex and show the control lines for peridotites (70% olivine, 30% enstatite) and pyroxenites (90% enstatite, 10% diopside). C and D show the plots of the other sample groups. Note the dispersion of the post-Nsuze, pre-tectonic dykes (crosses) and displacement of the trends for ultramafic dykes (triangles) and Nsuze Group volcanics (circles). Ornamentation for Hlagothi Complex samples as in Figure 7.31. Invariant point and cotectic boundaries for 1 atm.

### CHAPTER 8

### DISCUSSION AND CONCLUSIONS

#### 1. The Pre-Nsuze

The earliest geological evolution of the study area is obscure, although it is known that a substantial sequence of komatiitic, high-magnesium and tholeiitic lavas with intercalated sediments constituting the Archaean Nondweni Group accumulated during this time. In the type area around Nondweni the thickness of the sequence is substantial (of the order of several thousand metres), but in the Nkandla area thickness and precise correlation of this group are as yet equivocal. The Nondweni komatiites have many characteristics in common with the Barberton examples, especially very high Ca/Al ratios and a compositional gap between komatiite and high-magnesium basalt compositions (Wilson *et al.*, in prep.). Sedimentary rock-types are subordinate and as yet poorly understood. In the study area the only rock-types that can be correlated tentatively with the Nondweni Group are tremolite - chlorite - talc schists in which poorly-defined relict volcanic textures are recognized. These rock-types have chemical compositions similar to the ultramafic komatiites in the Nondweni type area reported by Wilson *et al.* (in prep.).

This sequence was intruded by tonalitic granitoids and subjected to folding and erosion prior to the start of the Nsuze deposition. As a result the Nsuze Group rests unconformably upon Nondweni in the south and to the far north of the study area, but directly on gneissic tonalites in the northeast at Nkungumathe.

The crustal fragment upon which the Nsuze Group accumulated is considered to have achieved a substantial degree of stability by about 3.0 Ga, at which time large volumes of potassic granite were emplaced in the area to the north of the study area. The Nsuze Group rests with a sedimentary contact on this granite in the vicinity of Amsterdam (Fig. 1.1). The accumulation of the group was contemporaneous with active komatiitic and tholeiitic volcanism in Zimbabwe; where cratonization of the early Precambrian crust occurred at about 2.6 Ga. The Nsuze Group thus records a period of crustal evolution that is apparently unique to southern Africa. The study area is also significant in that it is situated close to the boundary between the Kaapvaal and Natal-Namaqua structural provinces.

## 2. The Nsuze Group

Nsuze Group deposition began with the accumulation of the 1 200 m-thick Ndikwe Formation in the north of the study area. The Ndikwe Formation is dominated by pyroclastic rock-types in which thin lava flows occur. It also contains substantial arenaceous and argillaceous sediments as well as subordinate banded iron formation. This sequence becomes thinner southwards and interdigitates with the 1 200 m-thick, sedimentary Mdlelanga Formation which consists of arenites, argillites and greywackes. Carbonates are present near the base of the sequence. A lateral time equivalence between the formations is envisaged as quartz arenite units within the Ndikwe may be correlated with the lower units of the Mdlelanga.

The Qudeni Formation, a lava sequence consisting predominantly of basalticandesites, overlies the Mdlelanga and Ndikwe Formations. This unit is 580 m thick in the south, but only 50 m is present in the north. As there is little evidence for an angular unconformity the variation in thickness of the formation is thought to reflect an original depositional feature.

The Vutshini Formation, which has much in common with the Mdlelanga Formation, is a 1 000 m-thick sequence of quartz-arenites, argillites and heterolithic sediments. However, it lacks carbonate rock-types and has a thin unit of fluvial and transgressive marine conglomerate and arenite at the base.

The uppermost part of the formation comprises relatively immature quartz arenites which may represent a fluvial fan which prograded over the shelf sequence.

A thin volcanic unit termed the Ekombe Formation overlies the Vutshini Formation. It consists of andesites about which little is known as the unit is poorly exposed and has a residual thickness of only 60 m.

The sedimentology of the group is not thoroughly established, although several facies associations and probable depositional environments are recognized. A large proportion of the sediments is thought to have been deposited in environments ranging from tidal to distal shelf. Fluvial sediments are not common in the area, although a large part of the sequence has not yet been defined in terms of depositional environment. Palaeocurrent data indicate predominantly south- and southeastwards palaeoslopes with considerable local variation. This is consistent with a northeast-southwest trending shoreline.

The geochemistry of the lavas is poorly constrained and shows considerable variation which is neither consistent nor readily explained. The lavas are heterogeneous in addition to being altered. The small number of samples analysed does not provide adequate data to represent these variations. The chemistry does allow discrimination between samples from the Qudeni and Ndikwe Formations, particularly in terms of Ti, Mn and Zr concentrations. The data are considered inadequate for modelling of petrogenesis, but resemble the data for the Nsuze type area presented by Armstrong (1980) sufficiently to allow the assumption that the volcanics in both areas share similar sources and fractionation histories. Characterization of the magma type is inconclusive, but it appears to have both tholeiitic and calc-alkalic affinities. Neither an oceanic nor a continental origin is clearly indicated for these volcanics, but they do show some characteristics of intra-plate magmatism using criteria established by Winchester and Floyd (1976).

The broad inferred depositional setting of the Nsuze Group is little different from that proposed for the Pongola Supergroup by Watchorn (1978) and Armstrong (1980). However, the Ndikwe Formation has some features more typical of Archaean volcanic - sedimentary sequences than the rest of the Nsuze Group. These are specifically the presence of Algoma-type banded iron formation of the oxide facies and the admittedly rare turbidite deposits. Turbidite deposits have been interpreted as the result of prograding submarine fans in Archaean sequences (Eriksson, 1980) which is consistent with the deep water, tectonically active depositories envisaged for Archaean terranes. The chemistry of the Ndikwe volcanics also differs subtly from that of the remainder of the Nsuze Group, especially in trace element abundances. The implications of this are not yet clear and more samples are required to determine whether the differences are due to alteration, metasomatism or a primary petrogenetic control. The absence of komatiitic volcanics is significant in this regard and is the major difference between this formation and typically Archaean sequences.

Sedimentological differences between this area and the type area are also significant. This study has shown that a considerable part of the Nsuze Group consists of shallow marine sediments in contrast to the fluvial deposits reported from the northern areas by Watchorn and Armstrong (1981). Furthermore, the arenaceous rocks in the southern area are considerably more mature than those documented by these authors. A more distal setting is thus indicated for the southern part of the Nsuze basin.

The lateral facies changes in the sedimentary formations and the repetition of volcanics within the group are evidence for some degree of instability of this part of the basin. It is unfortunate that no studies of the Pongola Supergroup have attempted to document the lateral facies variation in other areas, so it is impossible to assess probable variation in tectonic stability of different areas in the Pongola depositional basin.

## 3. Early Post-Nsuze Intrusions

Several episodes of intrusion post-date the deposition of the Nsuze Group These are the ultramafic dykes, the layered sheets of the Hlagothi Complex, diabases and porphyry dykes. All predate the main tectonic and metamorphic events which have affected the Nsuze Group. The ultramafic dykes are high-magnesium rocks which are characterized by high Ca/Al ratios and trace element ratios close to chondritic values. Chemically they conform to established criteria for the recognition of komatiitic lavas and are thus considered to be an intrusive equivalent to these rock-types. The narrow widths of the bodies appear to preclude an origin as cumulates. Dykes of similar chemistry have not been reported from other outcrops of the Nsuze Group.

The Hlagothi Complex consists of ultramafic and mafic rock-types intruded as differentiated sheet-like bodies in which altered harzburgites, olivine websterites and wehrlites are overlain by olivine gabbronorite and pyroxenites. The top of each sheet consists of gabbro and leucogabbro. Marginal rocks containing skeletal pyroxene crystals analogous to the spinifex texture of extrusive komatiites are present. Significantly these rocks have the chemical characteristics of komatiitic basalts. Field relationships indicate intrusion prior to the main deformational events in the area. The fact that the complex consists of sills suggests intrusion at depths less than a few kilometres. If this is valid, further work may provide evidence for a relationship between the complex and Nsuze magmatism. This would be important because of the apparent absence of komatilitic lavas from the Pongola Supergroup. Proposed parental magma compositions for the complex bear considerable resemblance to the least magnesiumrich spinifex-textured komatiites of the Nondweni Group as reported by Wilson et al. (in prep.). Therefore, a similar petrogenesis is envisaged for the Hlagothi Complex, that is, partial melting of upper mantle material followed by fractionation of olivine, clinopyroxene and perhaps orthopyroxene prior to intrusion.

The crystallization history of the complex in terms of the simple system Ol - Cpx - An - Qz suggests that olivine crystallized first in much of the complex. This was followed by orthopyroxene, ortho- and clinopyroxene together and finally plagioclase and possibly quartz. In the upper skeletal-textured marginal rocks initial metastable crystallization of pigeonite was followed by clinopyroxene as a result of supercooling and relatively high  $P_{H_{\rm e},0}$ .

This recurrence of typical Archaean-type magmatism in late or post-Nsuze times, apparently restricted to the southernmost part of the Nsuze depositional basin adjacent to the Natal-Namaqua structural province, may have significant implications in understanding crustal evolution during the late Archaean in southern Africa. As noted above, komatiitic magmatism prevailed north of the Kaapvaal structural province in Zimbabwe until 2.6 Ga. It is tempting to speculate that this style of volcanism was a feature of the marginal areas of the Kaapvaal crustal fragment during late Archaean times. The komatiitic intrusions into the Nsuze Group in the southern part of this fragment could thus represent a manifestation of this volcanism, the komatiitic magmas being emplaced into the more stable plate as dykes rather than being extruded. Thickening of the Kaapvaal crustal fragment as a consequence of underplating by large volumes of granite as thick sheets may have prevented the rise and extrusion of mafic and ultramafic magmas except along deep crustal fracture systems. Clearly further research is required to resolve this matter.

Other pre-tectonic intrusions are of gabbroic, plagioclase porphyry and pyroxenitic composition and occur as cross-cutting irregular bodies and dykes. These intrusions are petrographically similar to the gabbros and pyroxenites of the Hlagothi Complex, but there is insufficient geochemical evidence to link the two episodes of intrusion. In any event, the plagioclase porphyry dykes are clearly younger than the complex. Syenites and monzogabbros in the northeastern corner of the study area have been afforded little attention, but appear worthy

of more detailed study because their age relationship to the Hlagothi Complex is uncertain, although they are aligned parallel to the main locus of intrusion of the complex. This linear feature has apparently been active in Phanerozoic times as there is associated minor post-Karoo faulting and dolerite dyking.

### 4. Structural and Metamorphic History

The earliest  $D_1$  fabric element,  $S_1$ , is a rarely recognized phyllonitic cleavage, which is deformed by the younger  $D_2$  event. This  $D_2$  episode dominates the area and has produced tight and isoclinal folding on various scales. These have axial planes dipping steeply southwards, with shallow eastwards or westwards plunging fold axes.  $S_2$  cleavage is axial planar to the folds and is pervasive in all argillaceous and tuffaceous rock-types, but only faintly visible in the arenites and lavas. Kinking and crenulation of  $S_2$  by a later, spaced cleavage is the only observed evidence for a third penetrative deformation.

Faulting of at least three ages is recognized. The first comprises slides (thrust and lag faulting), as well as crestal and wrench faulting associated with the  $D_2$  folding event. North-south trending block faulting post-dates  $D_2$ , but pre-dates porphyry dykes and a group of east-west trending block faults, which may have been active in pre- and post-Karoo times.

Regional greenschist facies metamorphism has affected all pre-D<sub>2</sub> sequences and intrusions. The mica defining  $S_1$  cleavages in Nsuze Group rocks represents the earliest metamorphic event. Subsequent metamorphism to upper greenschist facies probably occurred during D<sub>2</sub>. This event is characterized by the co-existence of biotite and muscovite in pelitic rocks, in addition to the common diagnostic low-grade mineral parageneses. The absence of stilpnomelane in pelitic rocks indicates upper greenschist facies conditions. Post-D<sub>2</sub> dykes also have greenschist facies mineralogy, indicating a possible third regional metamorphism.

- 5. Conclusions
- A. Ultramafic komatiites having features reminiscent of lava flows which occur in small structurally and stratigraphically low areas are tentatively assigned to the Nondweni Group. These rocks are chemically indistinguishable from unequivocally extrusive komatiites in the Nondweni type area and in the Barberton belt.
- B. Intrusion of tonalite post-dates the Nondweni Group, but pre-dates deposition of the Nsuze Group.
- C. Nsuze Group deposition began with the Ndikwe Formation, a clastic wedge up to 1 400 m thick which consists of pyroclastic, argillaceous, arenaceous and cherty ferruginous rock-types. Minor lava flows accompanied the pyroclastic volcanism which was dominated by Pelean or ash flow extrusion. The banded iron formation was deposited in a distal environment, in association with other ferruginous, clastic rock-types deposited by turbidity flows and suspension settling. Intertidal, proximal shelf and ephemeral stream environments existed during the deposition of this sequence. The wedge tapers southwards to less than 500 m, concomitantly, the overlying Mdlelanga increases in thickness to 1 200 m. This unit consists of quartz wackes and quartz arenites with subordinate argillaceous rock-types. It was deposited by shallow marine processes. A thin basal unit of silicified carbonates resulted from chemical and biogenic precipitation of calcite. Rare stromatolites and algal mats are recognized.

The Qudeni Formation is 60 - 580 m thick and comprises tholeiitic basaltic andesites, andesites and dacites. Textures such as flow top breccias are recognizable, but there are no unequivocal pillow structures. The Vutshini Formation (up to 1 000 m thick) consists of arenites and argillites deposited by tidal and proximal shelf processes. Some arenite and conglomerates may be products of fluvial incursions into the predominantly marine depositional environment.

The stratigraphically highest formation of the Nsuze Group is the Ekombe Formation which comprises andesitic lavas with a maximum residual thickness of 60 m.

The geochemistry of the volcanics is similar to that reported from the northern parts of the Nsuze group by Armstrong (1980), although most of the samples analysed show evidence for alteration. Extreme CaO depletion and MgO enrichment in several samples is ascribed to submarine alteration. The magmas are sub-alkalic in character and show tholeiitic and calc-alkalic affinities. Available data do not allow modelling of the petrogenesis. Palaeocurrent data from all sedimentary units indicate a palaeoslope towards the southeast, although there is considerable dispersion of the data. The dominance of sedimentary rocks of inferred tidal origin favours a broad shallow shelf sea. This part of the Pongola basin is probably more distal than the more northerly areas described in the literature.

D. A resurgence of magmatism occurred soon after deposition resulting in the intrusion of ultramafic dykes and the Hlagothi Complex. The latter consists of several layered sills in which cumulate rocks comprising olivine, orthoand clinopyroxene are present in the lower part and gabbros and leucogabbros in the upper parts. These gabbros have been altered deuterically as a result of increasing water pressures with advancing fractionation. This alteration has also affected skeletal-pyroxene-textured marginal rocks, but has not obscured these textures. The skeletal textures are thought to reflect quenching. The estimated bulk composition of the Hlagothi Complex has the characteristics of a basaltic komatiite.

Ultramafic rock-types occur as dykes and sills which clearly intrude the lower part of the Nsuze Group. These are chemically similar to the komatiitic rocks ascribed to the Nondweni Group. This casts doubt on the recognition of the Nondweni Group in the study area, but confirms that a resurgence of komatiitic magmatism occurred in post-Nsuze time.

E. Several episodes of deformation and metamorphism are recognized. The folding is predominantly isoclinal with steep, southwards dipping, axial surfaces and subhorizontal fold axes. Regional low-grade metamorphism of greenschist facies has occurred repeatedly with three episodes being distinguishable.

.

### ACKNOWLEDGEMENTS

I am indebted to Professor D.R. Hunter of the University of Natal, Pietermaritzburg for his guidance during this project. His geological insight and patience with an often wayward student have contributed substantially to this thesis. All errors and misinterpretations remain, of course, my own.

My thanks also to Dr A.H. Wilson for his guidance in the petrochemical procedures used. He also provided all computer software for calculating the XRF analyses, normative data and phase diagram projections.

I am grateful to the following people who have contributed to this study in many ways:

Professor V. von Brunn for accompanying me to the field and for maintaining my interest in sedimentology; Geoff Grantham for many hours of useful disucssion; Professor C.J. Talbot (University of Uppsala, Sweden) and Dr A.R. Allen for their contributions to my understanding of structural geology;

Dr D. Bühmann for his guidance in X-ray diffraction; Roy Seyambu and Pat Suthan for assistance with photography, thin section preparation and other technical aspects;

Leslie le Roux for drafting the figures and maps;

Barbara Rimbault for typing the manuscript with considerable forbearance; Anton Esterhuizen for many enjoyable days spent in the Nkandla area; Gold Fields of South Africa for allowing me to use data accumulated whilst working in their mineral exploration programme in southern Zululand;

Anne and Don Balmer, Audrey and Des Pollock and Trish and Bob Turner for providing accommodation, entertainment and making my stay in Babanango memorable.

Finally, I thank Lisa, my wife, for her support in all things.

#### REFERENCES

- ALLEN, J.R.L., 1970. Physical Processes of Sedimentation. Allen and Unwin, London. 248 pp.
- ARMSTRONG, N.V., 1980. Geology and Geochemistry of the Nsuze Group in northern Natal and southeastern Transvaal. Unpub. Ph.D. thesis, Univ. of Natal. 386 pp.

of the Archaean Nsuze Group, northern Natal and southeastern Transvaal, South Africa. *Precambrian Res.*, 19, 75-107.

ARMSTRONG, N.V., HUNTER, D.R. and WILSON, A.H., 1982. Stratigraphy and petrology

- ARNDT, N.T. and FLEET, M.G., 1979. Stable and metastable pyroxene in layered komatiite lava flows. *Am. Miner.* 64, 856-864.
- ARNDT, N.T. and NISBET, E.G., 1982. Editorial Introduction to Part 3, 211-212. Komatiites. Allen and Unwin, London. 525 pp.
- BAKER, P.E., BUCKLEY, F. and HOLLAND, J.G., 1974. Petrology and geochemistry of Easter Island. *Contr. Miner. Petrol.*, 44, 85-100.
- BARTON, J.M., Jr., 1983. Isotopic constraints on possible tectonic models for crustal evolution in the Barberton granite-greenstone terrane, Southern Africa. Spec. Pub. Geol. Soc. S. Afr., 9, 73-79.
- BARTON, J.M., Jr., ROBB, L.J., ANHAEUSSER, C.R. and VAN NIEROP, D.A., 1983. Geochronological and Sr-isotopic studies of certain units of the Barberton granite-greenstone terrane, South Africa. *Spec. Pub. Geol. Soc. S. Afr.*, 9,
- BESWICK, A.E., 1982. Some geochemical aspects of alteration and genetic relations in komatiitic suites., 283-308. In: Arndt, N.T. and Nisbet, E.G. (Eds). Komatiites. Allen and Unwin, London. 525 pp.
- BOERSMA, J.R., 1970. Distinguishing features of wave-ripple cross stratification and morphology. Doctoral thesis, Univ. of Utrecht. 65 pp.
- BRADLEY, J., 1965. Intrusion of major dolerite sills. Trans. R. Soc. N. Zealand, 3, 27-55.

- BROWN, G.J., 1982. The geology of the pre-Natal formations of the area to the west of the Nkandla forest reserve. Unpub. B.Sc. Hons. thesis, Univ. of Natal, Pietermaritzburg. pp.
- BURGER, J.A. and COERTZE, F.J., 1973. Radiometric age measurements on rocks from Southern Africa to the end of 1971. Geol. Surv., Pretoria, Bull. 58, 46 pp.
- CARMICHAEL, I.E.S., 1964. The petrology of Thingumuli, a Tertiary volcano in eastern Iceland. J. Petrology, 5, 435-460.
- CAWTHORN, R.G., STRONG, D.G. and BROWN, P.A., 1976. Origin of corundum-normative intrusive and extrusive magmas. *Nature*, 259, 102-104.
- CHARLESWORTH, E.G. and MATTHEWS, P.E., 1981. Archaean granulites along the southern margin of the Kaapvaal craton in eastern South Africa. Geol. Soc. S. Afr. Abstracts of South African Geodynamics Symposium. 34-35.
- CHAYES, F., 1969. On the occurrence of corundum in the norms of the common volcanic rocks. *Carnegie Inst. Washington Yearbk.* 64, 179-182.
- CLARK, S.M., 1983. The geology of an area southeast of Nkandla, particularly the Nkandla Formation. Unpub. B.Sc. Hons. thesis, Univ. of Natal, Pietermaritzburg. 64 pp.
- CLOUD, P., 1973. Paleoecological significance of banded iron formation. Econ. Geol., 68, 1135-1143.
- COLEMAN, J.M. and GAGLIANO, S.M., 1965. Sedimentary structures: Mississippi River deltaic plain. In: Middleton, G.V. (Ed). Primary sedimentary structures and their hydrodynamic interpretation. Soc. Econ. Paleontologists and Mineralogists, 12, 133-148.
- COLLINSON, J.D., 1970. Bedforms of the Tana River, Norway. Geogr. Annal. 52-A, 31-56.
- CONDIE, K.C., VILJOEN, M.J. and KABLE, E.J.D., 1977. Effects of alteration in element distributions in Archaean tholeiites from the Barberton greenstone belt, South Africa. *Contr. Miner. Petrol.*, 64, 75-89.
- COOK, H.E., 1979. Ancient continental slope sequences and their value in understanding modern slope development. *Soc. Econ. Paleontologists and Mineralogists Spec. Pub.*, 27, 287-305.

- DAVIES, R.D., ALLSOPP, H.L., ERLANK, A.J. and MENTON, W.I., 1970. Sr-isotope studies on various layered mafic intrusions in southern Africa. In: Symposium on the Bushveld Complex and other Layered Intrusions, (D.J.L. Visser and G. von Gruenewaldt, eds). Geol. Soc. S. Afr. Spec. Pub., 1, 576-593.
- DAVIS, J.R., Jr. (Ed.)., 1978. Coastal sedimentary environments. Springer Verlag., New York. 420 pp.
- DE SITTER, L.U., 1964. Structural Geology. 2nd Ed. McGraw-Hill, New York. 551 pp.
- DIMROTH, E., 1975. Depositional environment of the iron-rich sedimentary rocks. *Geol. Rdsch.*, 64, 751-767.
- DONALDSON, C.H., 1976. An experimental investigation of olivine morphology. Contr. Miner. Petrol., 57, 187-213.
- DONALDSON, C.H., 1979. An experimental investigation of the delay in nucleation of olivine in mafic magmas. *Contr. Miner. Petrol.*, 69,
- DONALDSON, C.H., 1982. Spinifex-textured komatiites: a review of textures, mineral compositions and layering, 213-244. In: Arndt, N.T. and Nisbet, E.G. (Eds). Komatiites. Allen and Unwin, London. 525 pp.
- DU TOIT, A.L., 1931. Explanation of sheet 109 (Nkandla). Geol. Surv. S. Afr. 105 pp
- ELLIOT, T., 1978. Clastic Shorelines, 143-177. In: Reading, H.G. (Ed). Sedimentary Environments and Facies. Blackwell, London. 145-177.

ENOS, P., 1977. Flow regimes in debris flow. Sedimentology, 24, 144-142.

- ERIKSSON, K.A., 1977. A palaeoenvironmental analysis of the Archaean Moodies Group, Barberton Mountain Land, South Africa. Unpub. Ph.D. thesis, Univ. of the Witwatersrand. 155 pp.
- ERIKSSON, K.A., 1980. Hydrodynamic and paleogeographic interpretation of turbidite deposits from the Archean Fig Tree Group of Barberton Mountain Land, South Africa. *Geol. Soc. Am. Bull.*, *91*, 21-26.

- ESTERHUIZEN, A. and GROENEWALD, P.B., 1980. Report on Magnetometer Traverses in the Nkandla District. Unpub. Company Repts. Gold Fields of South Africa Limited, Johannesburg.
- FLOWER, M.J.F., 1973. Evolution of basaltic and differentiated lavas from Anjouan, Comores Archepelago. Contr. Miner. Petrol., 38, 237-260.
- FLOYD, P.A. and WINCHESTER, J.A., 1975. Magma type and tectonic setting discrimination using immobile elements. Earth Planet. Sc. Lett., 27, 211-218.
- FERGUSON, J. and CURRIE, K.L., 1972. Silicate immiscibility in the ancient "basalts" of the Barberton Mountain Land, Transvaal. Nature, Phys. Sci., 235, 86-89.
- GELINAS, L., BROOKS, C., TRZCIENSKI, W.E., Jr., 1976. On Archaean variolites quenched immiscible liquids. Can. J. Earth Sc., 13, 210-230.
- GREEN, D.H., EDGAR, A.D., BEASLEY, P., KISS, E. and WARE, N.G., 1974. Upper mantle origin for some hawaiites, mugearites and benmorites. Contr. Miner. Petrol., 48, 33-43.
- GROSS, G.A., 1968. Geology of iron deposits in Canada, Vol. 3. Iron ranges of Labrador Geosyncline. Geol. Surv. Canada Econ. Geol. Dept., 22, Vol. 3, 179 pp.
- HAMMERBECK, E.C.O., 1977. The Usushwana Complex in the southeastern Transvaal with special reference to its economic mineral potential. Unpub. D.Sc. thesis, Univ. Pretoria. 226 pp.

HARMS, J.C., 1975. Stratification and sequence in prograding shoreline deposits. Soc. Econ. Paleontologists and Mineralogists. Spec. Pub. 12, 84-115.

HARMS, J.C., SOUTHARD, J., SPEARING, D.R. and WALKER, R.G., 1975. Depositional Environments as interpreted from Primary Sedimentary Structures and Stratification Sequences. Lecture Notes. Soc. Econ. Paleontologists and Mineralogists. Short Course 2. Dallas. 161 pp. HATCH, F.H., 1910. Report on mines and minerals of Natal. Clay, London. 155 pp. HAWKESWORTH, C.J., BICKLE, M.J., GLEDHILL, A.R, WILSON, J.F. and ORPEN, J.L., 1979.

A 2.9 by event in the Rhodesian Archaean. Earth Planet. Sc. Lett., 43, 285-297.

- HAWKESWORTH, C.J., MOORBATH, S. and O'NIONS, R.K., 1975. Age relationships between greenstone belts and "granites" in the Rhodesian Archaean craton. *Earth Planet*. *Sc. Lett.*, *25*, 251-262.
- HOBDAY, D.K., 1973. Middle Ecca deltaic deposits in the Muden-Tugela Ferry area of Natal. Trans. geol. Soc. S. Afr., 76, 309-318.
- HOBDAY, D.K. and VON BRUNN, V., 1979. Fluvial sedimentation and paleogeography of an early Paleozoic failed rift, southeastern margin of Africa. *Palaeogeography*, *Palaeoclimatology*, *Palaeogeography*, 28, 169-184.
- HOLM, P.E., 1982. Non recognition of continental tholeiites using the Ti-Y-Zr Diagram. Contr. Miner. Petrol., 79, 308-310.
- HUGHES, C.J., 1972. Spilites, keratophyres and the Igneous Spectrum. *Geol. Mag.*, 109, 513-527.
- HUGHES, C.J., 1977. Archaean variolites-quenched immiscible liquids: Discussion Can. J. Earth Sci., 14, 137-139.
- HUGHES, C.J., 1982. Igneous Petrology. Developments in Petrology, Vol. 7. Elsevier. 551 pp.
- HUGHES, C.J. and HUSSEY, E.M., 1976. M and Mg values in igneous rocks: proposed usage and a comment on currently employed Fe<sub>2</sub> O<sub>3</sub> corrections. *Geochim. cosmochim. Acta.*, 40, 485-486.
- HUMPHREY, W.A., 1911. Notes on a traverse through parts of the Vryheid district and Zululand. Ann. Rep. Geol. Surv., Union of S. Afr., 91-94.
- HUMPHREY, W.A., 12. Geology of a portion of northern Natal between Vryheid and the Pongola River. Ann. Rep. Geol. Surv., Union of 5. Afr. 99-124.

HUMPHREY, W.A. and KRIGE, L.J., 1931. The Geology of the country south of Piet
Retief, an explanation of Sheet No. 68. Govt. Printer, Pretoria. 66 pp.
HUMPHREY, W.A. and KRIGE, L.J., 1932. The geology of the country surrounding

Vryheid - an explanation of sheet No. 102. Govt. Printer, Pretoria. 59 pp.

- HUNTER, D.R., 1974a. Crustal Development in the Kaapvaal Craton: I The Archaean. Precam. Res., 1, 259-294.
- HUNTER, D.R., 1974b. Crustal Development in the Kaapvaal Craton: II The Proterozoic. *Precam. Res.*, 1, 295-326.
- IRVINE, T.N., 1970. Crystallization sequences in the Muskox intrusion and other layered intrusions, I. Olivine - pyroxene - plagioclase relations. Spec. Pub. Geol. Soc. S. Afr., 1. 441-476.
- IRVINE, T.N., 1979. Rocks whose composition is determined by crystal accumulation and sorting, 245-306. In: Yoder, H.S. (Ed). The evolution of Igneous Rocks. Princeton Univ. Press.
- IRVINE, T.N. and BARAGER, W.R.A., 1971. A Guide to the Chemical Classification of the Common volcanic rocks. Can. J. Earth Sci., 8, 523-548.
- JAHN, B.M., AUVRAY, B., BLAIS, S., CAPDEVILA, R. CORNICHET, J. VIDAL, F. and HAMEURT, J., 1980. Trace element geochemistry and petrogeneis of Finnish greenstone belts. J. Petrology, 21, 201-244.
- JENSEN, L.S., 1976. A new cation plot for classifying sub-alkalic volcanic rocks Ontario Division of Mines, Misc. Paper. 66 pp.
- JOHNSON, H.D., 1978. Shallow siliciclastic seas, 207-258. In: Reading, G.E. (Ed), Sedimentary Environments and Facies. Blackwell, London.
- KAY, R., HUBBARD, N.J. and GAST, P.W., 1970. Chemical characteristics and origin of oceanic ridge basalts. J. Geophys. Res., 75, 1585-1613.
- KLEIN, G. DE V., 1971. A sedimentary model for determining paleotidal range. Bull. geol. Soc. A., 82, 2585-2592.

KLEIN, G. DE V., 1977a. *Clastic Tidal Facies*. Cepco, Champaign, Illinois. 149 pp. KLEIN, G. DE V., 1977b. Tidal circulation model for deposition of clastic

sediment in epeiric and mioclinal shelf seas. Sedim. Geol., 18, 1-12.

- LAJOIE, J., 1979. Volcaniclastic rocks, 191-200. In: Walker, R.G. (Ed). Facies Models. Geosci. Can. Reprint Series, 1.
- LEAKE, B.E., 1968. A catalogue of analyzed calciferous and subcalciferous amphiboles together with their nomenclature and associated mineral. *Geol. Soc. Am. Spec. Paper 98.*
- LE MAITRE, R.W., 1976. A new approach to the classification of Igneous rocks using the basalt-andesite-dacite suite as an example. *Contr. Miner. Petrol.*, 56, 191-203.
- LOWE, D.R., 1972. Implications of three submarine mass-movement deposits, Cretaceous, Sacremento Valley, California. J. sedim. Petrol., 42, 89-101.
- LOWE, D.R., 1979. Sediment Gravity Flows: Their Classification and some problems of application to natural flows and deposits. Soc. Econ. Paleontologists and Mineralogists, Spec. Pub. 27, 75-88.
- LOWE, D.R., 1982. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity cements. J. sedim. Petrol., 52, 279-297.
- MACKENZIE, W.S., DONALDSON, C.H. and GUILDFORD, C., 1982. Atlas of Igneous Rocks and their Textures. Longman, London. 148 pp.
- MARTIN, A., NISBET, E.G. and BICKLE, M.J., 1980. Archaean stromatolites of the Belingwe Greenstone Belt, Zimbabwe (Rhodesia). Precam. Res., 13, 337-362.
- MASON, T.R. and VON BRUNN, V., 1977. 3 Gyr-old stromatolites from South Africa. Nature, 266, 47-49.
- MATTHEWS, P.E., 1959. The metamorphism and tectonics of the Pre-Cape formations in the post-Ntingwe thrust belt, S.W. Zululand, Natal. Trans. geol. Soc. S. Afr., 62, 258-322.
- MATTHEWS, P.E., 1967. The Pre-Karoo formations of the White Mfolozi Inlier, N. Natal. Trans. geol. Soc. S. Afr., 70, 39-64.
- MATTHEWS, P.E., 1979. Unpublished mapping of the Nkandla district. Univ. Natal, Durban.

- MCKEE, E.D., 1966. Experiments on ripple lamination, 66-83. In: Middleton,
   G.V. (Ed). Primary Sedimentary Structures and their Hydrodynamic Interpretation.
   Soc. Econ. Paleontologists and Mineralogists Spec. Pub., 12.
- MIALL, A.D., 1978. Lithofacies types and vertical profile models in braided river deposits: a summary, 597-604. In: Miall, A.D. (Ed) Fluvial Sedimentology. Can. Soc. Petrol. Geol., Calgary.
- MIDDLETON, G.V. and HAMPTON, M.A., 1973. Sediment gravity flows: mechanics of flow and deposition, in Turbidites and deep water sedimentation. Soc. Econ. Paleontologists and Mineralogists, Pacific Sect. Short Course Lecture Notes.
- MIDDLETON, G.V. and HAMPTON, M.A., 1976. Subaqueous sediment transport and deposition by sediment gravity flows, 197-218. In: Stanley, D.J. and Swift, D.J.P., (Eds), Marine Sediment Transport and Environmental Management. John Wiley, New York.
- MIYASHIRO, A., 1973. Metamorphism and Metamorphic Belts, Allen and Unwin, London. 440 pp.
- MIYASHIRO, A. and SHIDO, F., 1975. Tholeiitic and calc-alkaline series in relation to the behaviors of titanium, vanadium, chromium and nickel. Am. J. Sc., 275, 265-277.
- MOTTL, M.J. and HOLLAND, H.D., 1978. Chemical exchange during hydrothermal alteration of basalt by sea-water I. Experimental results for major and minor components of seawater. *Geochim. cosmochim. Acta*, 42, 1103-1115.
- MUDGE, M.R., 1968. Depth control of some concordant intrusions. Bull. Geol. Am. 79, 315-331.
- NESBITT, R.W., SUN, S.-S. and PAVES, A.C., 1979. Komatiites: geochemistry and genesis. *Can. Mineral.*, *17*, 155-186.
- NORRISH, K. and HUTTON, J.T., 1969. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. *Geochim. cosmochim. Acta.*, 33, 431-453.
- O'HARA, M.J., 1968. The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. *Earth-sc. Rev.*, *4*, 69-133.

- O'HARA, M.J., 1973. Non-primary magmas and dubious mantle plume beneath Iceland. Nature, 243, 507-508.
- PARK, W.C. and SCHOT, E.H., 1968. Stylolites: their nature and origin. J. sedim. Petrol., 38, 175-191.
- PEARCE, J.A. and CANN, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analysis. *Earth Planet Sc. Lett.*, 19, 290-300.
- PEARCE, T.H., 1968. A contribution to the theory of variation diagrams. Contr. Miner. Petrol., 19, 142-157.
- PEARCE, T.H., 1970. Chemical variations in the Palisades sill. J. Petrology, 11, 15-32.
- PEARCE, T.H., GORMAN, B.T. and BIRKET, T.L., 1977. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks. *Earth Planet. Sc. Lett.*, 36, 121-132.
- PETERMAN, Z.E., 1979. Geochronology and the Archaean of the United States. Econ. Geol., 74, 1544-1562.
- PHILPOTTS, A.R., 1976. Silicate liquid immiscibility, its probable extent and petrogenetic significance. Am. J. Sc., 276, 1147-1177.
- PHILPOTTS, A.R., 1982. Compositions of immiscible liquids in volcanic rocks. Contr. Miner. Petrol., 80, 201-206.
- PHILPOTTS, A.R. and DOYLE, C.D., 1983. Effect of magma oxidation state on the extent of silicate liquid immiscibility in a tholeiitic basalt. Am. J. Sci., 283, 967-986.
- PICARD, M.D. and HIGH, L.R., Jr., 1973. Sedimentary structures of ephemeral streams. Developments in Sedimentrology, 17, 223. Elsevier, Amsterdam.
- PYKE, D.R., NALDRETT, A.J. and ECKSTRAND, O.R., 1973. Archaean ultramafic flows in Munro Township, Ontario. Bull. geo. Soc. Am., 84, 955-978.
- REINECK, H.-E. and SINGH, I.D., 1980. Depositional Seidmentary Environments (2nd Ed). Springer-Verlag, Berlin. 549 pp.

- ROBERTS, J.L., 1970. The intrusion of magma into brittle rocks, 287-338. In: Newall, S. and Rant, N. (Eds). Mechanism of Igneous Intrusion. Gallery Press, Liverpool.
- ROEDDER, E., 1979. Silicate liquid immiscibility in magmas, 15-57. In: Yoder, H.S. (Ed). The Evolution of the Igneous Rocks. Princeton Univ. Press.
- RUPKE, N.A., 1978. Deep clastic seas, 372-415. In: Reading, H.G. (Ed). Sedimentary Environments and Facies.
- SELLEY, R.C., 1970. Ancient Sedimentary Environments. Chapman and Hall, London. 237 pp.
- SEYFRIED, W.E., Jr. and MOTTL, M.J., 1982. Hydrothermal alteration of basalt by seawater and under sea water dominated conditions. *Geochim. Cosmochim. Acta*, 46, 985-1002.
- SMITH, H.S. and ERLANK, A.J., 1982. Geochemistry and petrogenesis of komatiites from the Barberton greenstone belt, South Africa, 347-397. In: Arndt, N.T. and Nisbet, E.G. (Eds). Komatiites. Allen and Unwin, London. 525 pp.
- SMITH, N.D., 1971. Transverse bars and braiding in the Lower Platte River, Nebraska. Bull. geol. Soc. Am., 82, 3407-3420.
- SOUTH AFRICAN COMMITTEE FOR STRATIGRAPHY (SACS), 1980. Stratigraphy of South Africa. Part 1. (Comp. L.E. Kent). Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia and the Republics of Bophuthatswana, Transkei and Venda. *Handb. Geol. Surv. S. Afr.*, *8*.
- STICE, G.D., 1968. Petrography of Manua Islands, Somoa. Contr. Miner. Petrol., 19, 343-357.
- TAINTON, S., 1977. An interpretation of the geology of the Mhlatuzi gorge, Nkandla-Mtonjaneni district, Zululand. Unpub. B.Sc. Hons thesis, Univ. Natal, Pietermaritzburg. 157 pp.
- THOMPSON, R.N., ESSON, J. and DUNHAM, A.C., 1972. Major element chemical variation in the Eocene lavas of the Isle of Skye, Scotland. J. Petrology, 13, 219-252.

- TUNBRIDGE, I.P., 1981. Sandy high-energy flood sedimentation some criteria for recognition with an example from the Devonian of S.W. England. *Sedim. Geol.*, 28, 79-95.
- TUNNINGTON, D.P., 1981. The geology of the Central Nsuze Syncline. Unpub. B.Sc. Hons thesis, Univ. Natal, Pietermaritzburg. 58 pp.
- TURNER, B.R., 1980. Palaeohydraulics of an Upper Triassic braided river system in the main Karoo Basin, South Africa. Trans. geol. Soc. S. Afr., 83, 425-431.
- VILJOEN, M.J., VILJOEN, R.P. and PEARTON, T.N., 1982. The nature and distribution of Archaean komatiite volcanics in South Africa, 53-80. In: Arndt, N.T. and Nisbet, E.D. (Eds), Komatiites. Allen and Unwin, London. 525 pp.
- VILJOEN, M.J., VILJOEN, R.P., SMITH, H.S. and ERLANK, A.J., 1983. Geological, textural and geochemical features of komatiitic flows from the Komati Formation, 1-20. In: Anhaeusser, C.R. (Ed). Contributions to the geology of the Barberton Mountain Land. Geol. soc. S. Afr. Spec. Pub. 9.
- VON BRUNN, V., 1974. Tidalites of the Pongola Supergroup (Early Precambrian) in the Swart-Mfolozi area, Northern Natal, 107-122. In: Kröner, A., (Ed), Contributions to the Precambrian geology of Southern Africa. Precambrian Research Unit, U.C.T./ Bull. 15.
- VON BRUNN, V. and HOBDAY, D.K., 1976. Early precambrian tidal sedimentation in the Pongola Supergroup of South Africa. J. sedim. Petrol., 46, 670-679.
  WALKER, R.G., 1969. Geometrical analysis of ripple-drift cross-lamination.

Can. J. Earth Sci., 6, 383-391.

WALKER, R.G., 1978. Deep-water sandstone facies and ancient submarine facies: models for exploration for stratigraphic traps. Amer. Assoc. Petrol. Geol., 62, 932-966.

WALTER, M.R., 1977. Interpreting stromatolites. Am. Sci., 65, 563-571.

- WATCHORN, M.B., 1978. Sedimentology of the Mozaan Group in the southeastern Transvaal and northern Natal. Unpub. M.Sc. thesis, Univ. Natal, Pietermaritzburg. 111 pp.
- WATCHORN, M.B., 1980. A Reappraisal of the geology of the western Mozaan basin. Trans. geol. Soc. Sc. Afr., 83, 135-139.
- WATCHORN, M.B. and ARMSTRONG, N.V., 1980. Contemporaneous sedimentation and volcanism at the base of the early Precambrian Nsuze Group, South Africa. *Trans. geol. Soc. S. Afr.*, *83*,
- WEIMER, R.J., 1976. Deltaic and shallow marine sandstones: sedimentation, tectonics and petroleum occurrences. A:A.P.G. Continuing Education Course Note Series No. 2.
- WILSON, A.H., 1982. The Geology of The Great "Dyke", Zimbabwe: the ultramafic rocks. J. Petrology, 23, 240-292.
- WILSON, A.H., VERSFELD, J.A. and HUNTER, D.R. (in prep.). The petrology and geochemistry of spinifex-bearing komatiites and associated basalts of the Archaean Nondweni greenstone belt, South Africa.
- WILSON, J.F., BICKLE, M.T., HAWKESWORTH, R.J., MARTIN, A., NISBET, E.G. and ORPEN, J.L., 1978. The granite-greenstone terrains of the Rhodesian Archaean craton. *Nature*, 271, 23-27.
- WINCHESTER, J.A. and FLOYD, P.A., 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. *Earth Planet*. *Sc. Lett.*, 28, 459-469.
- WINCHESTER, J.A. and FLOYD, P.A. Geochemical discrimination of different magma series and their differentation products using immobile elements. *Chem. Geol.*, 20, 325-343.

WINDLEY, B.F., 1977. The Evolving Continents. John Wiley, New York. 385 pp.

- WINKLER, H.G.F., 1974. Petrogenesis of metamorphic rocks. (3rd Ed). Springer-Verlag, Berlin. 316 pp.
- WUNDERLICH, F., 1970b. Schichtbänke, 48-55. In: Reineck, H.-E. (Ed). Das Watt, Ablagerungs-und Lebensnaum. Kramor, Frankfurt.

# APPENDIX 1

Thin section descriptions

- A. Nsuze Group Volcanics
- B. Nsuze Group Sediments
- C. Ultramafic Rocks
- D. Hlagothi Complex
- E. Pre-tectonic Dykes

In this appendix entries such as tremolite(50), plagioclase(10) etc. indicate the estimated mean content of the mineral in volume percent.

\* indicates samples (or duplicates of samples) analysed.

.

| <b>PYROCLASTS</b> |
|-------------------|
| AND               |
| LAVAS             |
| GROUP             |
| SUZE              |

Ndikwe Formation

| CONSTITUENT MATRIX AMYGDALES COMMENTS<br>MINERALS | Plagioclase Epidote Quartz Quartz amygdales recrystallized.<br>Biotite Untwinned albite in matrix (?).<br>Tremolite/<br>Actinolite  | As above Quartz, Phenocrysts sparser, otherwise biotite (dentical to BG128. | Plagioclase Absent Identical to matrix in 86129.<br>Biotite<br>Epidote/zoisite | Plagioclase Absent Partially reworked quartz crystals<br>Quartz buddent. Chloritic zones define<br>Epidote lapiili boundaries.<br>Saussuritized groundmass Biotite<br>Chlorite Chlorite | Actinolite Quartz<br>Plagiociase<br>Epidote                                                      | Chlorite Carbonate Absent Local calcitization. Rarely preserve<br>Actinolite Epidote albite twinning in plagioclase<br>Plagioclase crystals. | Tremolite/actinolite Quartz Local silicification.<br>Plagioclase<br>Chlorite | Chlorite Chlorite<br>Plagioclase<br>Epidote                       |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| NOCRYSTS CONSTI<br>MINERA                         | gioclase Plagio<br>Biotit<br>Tremol<br>Actino                                                                                       | sbove As abo                                                                | ent Plagio<br>Biotit<br>Epidot                                                 | glociase Plagio<br>rtz Quartz<br>Epidot<br>Sausu<br>Busu<br>Biorit                                                                                                                      | ent Actino<br>Plagio<br>Epidot                                                                   | ant Chlori<br>Actino<br>Plagio                                                                                                               | pioclase Tremol<br>Plagio<br>Chlori                                          | ant Chlori<br>Plagio<br>Epidot                                    |  |
| TEXTURE                                           | Porphyritic, glomero-<br>Porphyritic with plagioclase<br>phenocrysts set in fine-<br>grained felspar, blotite,<br>amphibole matrix. | As above As                                                                 | Very fine-grained, lacks Abs<br>phenocrysts.                                   | Consists of flattened Pla<br>irregular fragments with Qua<br>porphyritic zones.                                                                                                         | Fine- to medium-grained, Abs<br>short fibrous amphibole<br>intergrown with<br>plagioclase laths. | Fine-grained intergrowth Abs<br>of chlorite and untwinned<br>plagicclase.                                                                    | Fine-grained intergrowth Pla<br>of amphibole, chlorite<br>and plagioclase.   | Fine-grained chlorite, Abs<br>plagioclase epidote<br>intergrowth. |  |
| ROCK-TYPE                                         | Andesite                                                                                                                            | Andesite                                                                    | Andesite                                                                       | Weided<br>dacitic<br>tuff(?)                                                                                                                                                            | Basalt                                                                                           | Basaltic<br>andesite                                                                                                                         | Basalt                                                                       | Basaltic<br>andesite                                              |  |
| LOCALITY                                          | Ndikwe Formation<br>Welendhlovu Valley                                                                                              | As above                                                                    | As above                                                                       | As above                                                                                                                                                                                | Ndikwe Formation,<br>Mdlelanga Valley<br>south of Vuleka.                                        | Ndikwe lavas,<br>Mankane River,                                                                                                              | As above                                                                     | As above                                                          |  |
| SAMPLE<br>NO.                                     | *86128                                                                                                                              | *BG129                                                                      | *86130                                                                         | *86131                                                                                                                                                                                  | 36142                                                                                            | 'BG147                                                                                                                                       | 36148                                                                        | 6152                                                              |  |

|                           |                                                                                                                                                                                                    | I                                                                                                                          | II        |                                                                                                   | ġ                                                                                              | I                                 | 243                                                                                                                                       | I                                                            |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| COMMENTS                  | Abundant partially resorbed quartz crystals.                                                                                                                                                       | Quartz and plagioclase crystals 0.5<br>- 1.0 mm in diameter. Resorbed<br>boundaries. Strained.                             |           |                                                                                                   | Abundant sphene. Local calcitizatio<br>Rare twinned plagioclase has<br>composition An, .       | Abundant ragged magnetite grains. | Locally carbonitized.                                                                                                                     | Texturally-identical to BG183, but<br>contains more epidote. |
| AMYGDALES                 |                                                                                                                                                                                                    | **                                                                                                                         |           | Calcite                                                                                           | Calcite<br>Quartz                                                                              | Calcite<br>Quartz                 | Epidote                                                                                                                                   | quartz                                                       |
| <b>HATRIX</b>             | -grained<br>sses of<br>/actinolite.<br>ned inter-<br>f chlorite,<br>and<br>se.<br>Actinolite.<br>Plagioclase.<br>ite/<br>as accessory                                                              | crystals (70<br>of rock)<br>orite and<br>and<br>intergrown<br>, chiorite<br>uritic                                         |           | Magnetite<br>Sphene<br>Épidote                                                                    | Leucoxene<br>Magnetite<br>Sphene                                                               |                                   | Muscovi te<br>Leucoxene                                                                                                                   | Muscovite<br>Quartz<br>Sphene                                |
| CONSTITUENT (<br>MINERALS | Lapilli:<br>1. very fine<br>felted ma<br>tremolite<br>2. fine-grain<br>growths o<br>amphibole<br>plagiocia<br>chlorite,<br>Locally seri<br>Epidote/zois<br>Epidote/zois<br>tremolite<br>namphibole | Quartz }<br>Plagioclase]<br>Lapilli: chi<br>amphibole<br>plagiocla:<br>Groundmass:<br>amphibole<br>and sauss:<br>material: |           | Plagioclase<br>Chlorite<br>Muscovite                                                              | Plagioclase<br>Chlorite<br>Actinolite<br>Epidote                                               | As for 86156                      | Plagioclase<br>Biotite<br>Quartz<br>Epidote                                                                                               | Plagtoclase<br>Biotite<br>Epidote<br>Actinolite              |
| PHENOCRYSTS               |                                                                                                                                                                                                    |                                                                                                                            |           |                                                                                                   | Local<br>angular con-<br>centration<br>of chlorite<br>may represent<br>mafic pheno-<br>crysts. | ,                                 | Plagioc lase                                                                                                                              | Plagioclase                                                  |
| TEXTURE                   | Extremely heterogeneous rock<br>composed of crystalline and<br>aphyric fragments in very<br>fine-grained matrix. Has<br>banding as a result of<br>either flow or compaction.                       | Abundant quartz and<br>feldspar and ash fragments<br>set in very fine-grained<br>matrix.                                   |           | Recrystallized. Fine-grained<br>Intergrown chlorite<br>plagioclase with local<br>carbonitization. | Recrystallized except for<br>local felted masses of<br>short plagioclase laths.                | As for BGI56                      | Remnants of plagioclase<br>phenocrysts set in an<br>allotriomorphic granuiar<br>fine-grained groundmass<br>of Plagioclase and<br>biotite. | As above                                                     |
| ROCK-TYPE                 | Lapilli<br>tuff.                                                                                                                                                                                   | Crystal<br>tuff.                                                                                                           |           | Andesite.                                                                                         | Basaltic<br>andesite                                                                           | Andesite                          | Andesite                                                                                                                                  | Andesite                                                     |
| 10CAL 1TY                 | Pyroclastic unit.<br>Tuffs west of Mdikwe<br>Store.                                                                                                                                                | Pyroclastic unit.<br>south slope of<br>Hlagothi Mountain.                                                                  | ormation  | Lava flows, morth<br>limb Gem Syncline,<br>Nsuze River<br>Valley.                                 | As above                                                                                       | As above                          | Upper flow. North<br>limb of Central Nsuze<br>Syncline, Nsuze River<br>Valley.                                                            | As above                                                     |
| SAMPLE<br>NO.             | <b>6</b> 19                                                                                                                                                                                        | *86238                                                                                                                     | Qudeni Fu | *B6156                                                                                            | *86157                                                                                         | *BG159                            | *B6183                                                                                                                                    | BG184                                                        |

Т

| SEDIMENTS |
|-----------|
| GROUP     |
| NSUZE     |
| в.        |

| SAMPLE NO.<br>And Rock-Type       | LOCALITY                                                                   | MINERALOGY                                                                                                              | TEXTURE                                                                                                                                                                                                                                                                                                              | COMMENT                                                                                                          |
|-----------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| BG110<br>Ferruginous<br>argillite | Upper part of debris flow<br>sequence due east of<br>Vujeka.               | Quartz(70)<br>Magnetite(30)<br>Haematite(tr)                                                                            | Alternating layers of opaques<br>and cherty quartz 1 - 3 mm thick,<br>Alteration of magnetite to<br>haematite along margins of<br>layers.                                                                                                                                                                            | Very small local concentrations of epidote.                                                                      |
| B6144<br>Meta<br>calcarenite      | Basal unit of Mdlelanga<br>Formation south of<br>Vuleka.                   | Quartz(40) as clasts<br>Zoisite(30)*<br>Calcite(25)<br>Epidote(30)*<br>Plagioclase(5)                                   | <pre>Irregularly banded, immature poorly<br/>sorted arenite clasts and grains<br/>angular to subangular, 1 - 3 mm in<br/>diameter. Recrystallized quartz<br/>grains have overgrowths, but<br/>primary shape is preserved. Ground-<br/>mass is dominantly epidote/zoisite.<br/>Carbonate as lenticular patches.</pre> | * Zoisite and epidote dominant in different<br>parts of specimen. Proximal sands lacking<br>in composite grains. |
| B6150<br>Greywacke                | Matrix of debris flows<br>south of Vuleka in upper<br>Mdlelanga Formation. | Clasts-quartz<br>Groundmass-quartz,<br>Phengitic mica,<br>Chlorite,<br>Actinolite<br>(Epidote)<br>(Magnetite)           | Poorly-sorted, matrix-supported sand-<br>stone. Clasts are generally single<br>grains or recrystallized. Rare<br>composite grains. lenticular clasts<br>composed of chlorite, tremolite and<br>sericite. Very fine-grained<br>groundmass.                                                                            | Rounding of grains suggests resedimentation.                                                                     |
| BG166<br>Pyritic argillite        | Argillite unit below debris<br>flow sequence south of<br>Vuleka.           | Quartz(60)<br>Chlorite(30)<br>Actinolite(tr)<br>Epidote(tr)<br>Pyrite(~ 5)<br>Garnet(~ 1)<br>Magnetite<br>Muscovite(tr) | Very fine-grained, wholly<br>recrystaliized intergrowth of quartz<br>and chlorite. Ubiquitous euhedral<br>pyrite crystals. Garnet as 1 - 2 mm<br>subhedral, poikitoblastic crystals.                                                                                                                                 | Garnet is probably spessartine. Quartz is<br>strained.                                                           |
|                                   |                                                                            |                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |
| SAMPLE NO.<br>SAMPLE NO. | LOCALITY                                                                 | MINERALOGY                                                                   | TEXTURE                                                                                                                                     | COMMENT                                                                                                                          |
|--------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 36189C<br>Juartz arenite | Vutshini Formation, north<br>limb, Centrai Nsuze<br>Synciine.            | Quartz(90)<br>Mica<br>Chlorite<br>Epidote<br>Magnetite/ haematite            | Medium-grained, well-sorted and<br>rounded quartz grains with minor<br>interstitial material.                                               | Quartz grains are strained but rarely<br>recrystallized and lack overgrowths.<br>Extremely well rounded. No composite<br>grains. |
| 16200<br>Songlomerate    | Basal unit of Mdikwe<br>Formation at Nkungamathe                         | Quartz(80)<br>Feldspar(10)<br>Muscovite<br>Detrital sphene and zircon        | Clasts, up to 5 cm in diameter,<br>(in this section < 4 mm) set in<br>medium-grained immature matrix,                                       | Clasts recrystallized, rarely composite<br>quartz-feidspar masses (tonalitic).                                                   |
| ic285A<br>arbonate       | Mdikwe Formation, east of<br>Hlagothi Mountain in Nsuze<br>River Valley. | Calcite(60)<br>Quarz(20)<br>Chlorite(10)<br>Sericite<br>Epidote<br>Magnetite | Recrystallized calcite-quartz-<br>chlorite in fine-grained mozaic.<br>Fine irregular lamination defined<br>by variations in quartz content. | Crinkle laminated carbonate from clast in<br>debris flow unit. Contains rare angular<br>plagioclase crystals.                    |
| 61858<br>rgillite        | As above                                                                 | Quartz(50)<br>Calcite(20)<br>Chlorite(10-20)<br>Magnetite(10-20)<br>Epidote  | Finely laminated, recrystallized<br>rock. Alternating magnetite- and<br>chlorite-rich laminae. Calcite<br>in lenticular stringers.          | Magnetite is very fine-grained, irregular<br>grains - possibly some graphite present.                                            |
|                          |                                                                          |                                                                              |                                                                                                                                             |                                                                                                                                  |

× .

245

:

| SAMPLE<br>NO. | LOCALITY                                                                                                               | ROCK-TYPE                  | fEXTURE                                                                                                                                                                                   | MINERAL OGY                                                     |                                  | RELICT IGNEDUS<br>TEXTURE                                            | COMMENTS                                                                                                                       |
|---------------|------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| *8623         | Sill intrusive into base<br>of Qudeni Formation,<br>north limb Gem Syncline,<br>Nsuze River Valley,                    | Meta<br>ultramafic         | Equant crystals of colour-<br>less amphibole 1-3 am in<br>diameter set in groundmass<br>of fine ragged amphibole<br>needles and flakes of<br>chlorite.                                    | Tremolite(70)                                                   | Epidate                          | Larger amphibole crystals<br>may be pseudomorphic<br>after pyroxene. | BG158 is a duplicate sample<br>of BG23.                                                                                        |
| B627          | Same intrusion as above,<br>2 km farther west in<br>Ndikwe River Valley.                                               | Meta<br>ultramafic         | As above, patches of<br>serpentine.                                                                                                                                                       | Tremolite(60)<br>Chlorite(30)<br>Antigorite(10)                 | Epidote<br>Magnetite<br>Quartz   | Opaque minerals define<br>vague banded texture<br>(flow banding?)    | Local concentrations of<br>magnetite                                                                                           |
| *BG91         | Wedge-shaped body of<br>serpentinite due west<br>of Mdikwe Store.                                                      | Serpentinite               | Long fibrous amphibole<br>needles set in fine-<br>grained taic, chlorite<br>serpentine groundmass.                                                                                        | Tremolite(30) (<br>Chlorite(30)<br>Talc(20)<br>Antigorite(15)   | Magnetite<br>(Quartz?)           | None                                                                 | Duplicate of BG175                                                                                                             |
| *86112        | Central part of ultra-<br>mafic body in core of<br>anticline, at confluence<br>of Mdlelanga and<br>Welendhlovu Rivers. | Meta<br>ultramafic         | Coarse-grained, elongate<br>tremolite crystals with<br>acicular terminations set<br>in groundmass of ragged<br>chlorite. Local concen-<br>trations of chlorite<br>define tectonic fabric. | Tremolite(60)  <br>Chlorite(30)<br>Antigorite(10)               | Magnetite<br>(Sphene?)           | Kone                                                                 | Sample adjacent to amygdaloidal<br>zone (duplicate of BG124).<br>Ubiquitous anhedra of<br>magnetite.                           |
| *8116         | Dyke within Nsuze<br>sediments 200 m north<br>of B6112.                                                                | Met <i>a</i><br>ultràmafic | Fractured and broken<br>amplibole crystals up to<br>3 mm long set in fine<br>felted mass of amphibole,<br>chlorite and antigorite.                                                        | Tremolite(50)  <br>Chlorite(30)  <br>Antigorite(20)             | Leucoxene<br>Epidote             | kone                                                                 | Chlorite and antigorite<br>concentrated in fractures/<br>cleavage.                                                             |
| *BG173        | Same locality as BG91<br>above.                                                                                        | Serpentinite               | Fine-grained ragged inter-<br>growth of talc, magnetite,<br>antigorite, chlorite,                                                                                                         | Talc(50)<br>Magnetite(30) (<br>Chlorite(10) (<br>Antigorite(10) | Tremolite<br>Magnetite<br>Quartz | kone                                                                 | Tectonic fabric strongly<br>developed.                                                                                         |
| *BG121        | Dyke along northern<br>contact of Mdlelanga<br>sediments, south of<br>86112.                                           | Meta<br>ultramafic         | As above, except antigorite<br>absent.                                                                                                                                                    | Tremolite(60) h<br>Chlorite(40)                                 | Vagnet i te                      | None .                                                               | Ubiquitous anhedra of magnetite<br>Ubiquitous anhedra of magnetite<br>suggests originally medium-<br>grained granular texture. |
| *BG173        | Same locality as BG91<br>above.                                                                                        | Serpentinite               | Fine-grained, ragged inter-<br>growth of taic, magnetite,<br>antigorite, chlorite.                                                                                                        | Talc(50)<br>Magnetite(30) h<br>Chlorite(10) (<br>Antigorite(10) | fremolite<br>Magnelite<br>Quartz | None                                                                 | Tectonic fabric strongly<br>developed.                                                                                         |

C. ULTRAMAFIC ROCKS

| SAMPLE<br>No, | LOCALITY AND<br>STRATIGRAPHIC POSITIOM                                                        | ROCK-TYPE                                                                          | TEXTURE                                                                                                                        | CONSTITUENT MINERALS<br>MAJOR ACCESSORY                                                     | COMMENTS                                                                                                  |
|---------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 86209         | Upper Nsongeni River,<br>base of lowest sill.                                                 | Meta-peridotite                                                                    | Randomly orientated sheaves<br>of amphibole set in fine.<br>xenocrystic chlorite and<br>talc groundmass. Mo relict<br>texture. | Tremolite(70) Magnetite<br>Chlorite(20)<br>Talc(10)                                         | Colourless amphibole and<br>very pale green chlorite.<br>No primary mineralogy.<br>Faint tectonic fabric. |
| *86212        | 5 m above BG209                                                                               | Meta-peridotite                                                                    | Fine tremolite and anti-<br>gorite replace euhedral<br>olivine grains defined by<br>magnetite. Interstitial<br>chiorite.       | Tremolite(40) Taic<br>Chiorite(40) Magnetite<br>Serpentine(15)                              | Olivine and pyroxene cumulate?                                                                            |
| *BG216        | Lower sill, Nsongeni River.<br>Above B6212.                                                   | Meta-peridotite                                                                    | Coarse amphibole grains<br>prismatic to ragged.<br>Coarse chlorite inter-<br>growth.                                           | Tremolite(75)<br>Chiorite(25)                                                               | No relict texture.<br>No magnetite or chromite.                                                           |
| 86217         | Dyke cutting lower sill,<br>but terminated by over-<br>lying gabbro sheet.<br>Nsongeni River. | Olivine gabbronorite.                                                              | Medium-grained, granular.<br>Radial intergrewths between<br>zoned clinopyroxene and<br>plagioclase.                            | Plagioclase(40) Biotite<br>Augite(25) Magnetite<br>Olivine(20) Epidote<br>Orthopyroxene(10) | Plagioclase is An,.<br>Incipient serpentinization<br>and chloritization.                                  |
| BG218         | Chill zone of dyke of<br>BG217.                                                               | Black, fine-grained rock<br>with rare olivine<br>phenocrysts, appears<br>basaltic. | Skeletal olivines and<br>plagioclase set in micro-<br>crystalline groundmass<br>(devitrified?).                                | 0livine(10) Magnetite<br>Plagioclase(10) Chromite(?)<br>Groundmass(80)<br>Orthopyroxene(?)  | Olivine brown, euhedra,<br>skeletal. Plagioclase-<br>acicular, skeletal, Au <sub>4</sub> ,(?)             |
| *86222        | Asongeni River, second<br>Gabbro Sheet.                                                       | Meta-gabbro                                                                        | Medium-grained, equi-<br>granular to intergranular<br>relict igneous texture.                                                  | Amphibole(70) Saussurite<br>Plagioclase(20) Leucoxene<br>Epidote(5) Magnetite               | Micrographic intergrowths<br>between plagioclase and quartz,<br>Large leucoxene patches (5 mm),           |
| *86223        | Contact zone between<br>Gabbro and pyroxene,<br>below 86222.                                  | Meta-gabbro (?)                                                                    | Medium⊷grained, equi-<br>granular relict texture.                                                                              | Tremolite)(65) Magnetite<br>Pargasite)(55) Leucoxene<br>Chlorite(25)<br>Epidote(5)          |                                                                                                           |

D. HLAGOTHI COMPLEX: Nsongeni (lower) sheets.

.

•

| OWNENTS                                | remolite contains zones of<br>reenish-brown amphibole and i<br>seudomorphic after pyroxene.            | elict mineral shapes suggest<br>60% olivine, 40% pyroxene<br>#mulate rock.                                                         |                              | wphibole is pale green<br>remolite/actinolite. Replace<br>riginal orthopyroxene or<br>livine grains. May represent<br>mulate. | arpentinization up to 20% of<br>ock. Augite is cumulate and<br>ist-cumulate in reaction<br>siationship with hyperstheme. | rthopyroxene predates augite.<br>umulate rock.                                                                      | arge zoned epidotes and fine<br>canular epidote-zoisite-white<br>ica aggregates. | cicular plagioclase crystals,<br>therwise as for BG237. Singl<br>igeonite core to amphibole<br>ith. Quartz-plagioclase<br>icrographic intergrowth. |
|----------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| ERALS<br>ACCESSORY                     | Chromite(?) 11<br>91                                                                                   | Magnetite R                                                                                                                        |                              | Leucoxene A<br>Magnetite ti<br>(Quartz ?) oi<br>ci                                                                            | Magnetite Se                                                                                                             | Magnetite O                                                                                                         | Leucoxene te<br>(40) gi<br>ni                                                    | Leucoxene A<br>(50)<br>pi<br>14<br>14<br>14<br>14<br>14<br>14<br>14                                                                                |
| CONSTITUENT MIN<br>MAJOR               | Tremolite(60)<br>Chlorite(40)                                                                          | Tremolite(50)<br>Falc(20)<br>Chlorite(25)<br>Antigorite(10)                                                                        |                              | Amphibole(60)<br>Chlorite(30)<br>Talc(10)                                                                                     | Hypersthene(50)<br>Augite(35)<br>Plagioclase(10)                                                                         | Hypersthene (50)<br>Augite (40)<br>Plagioclase (40)                                                                 | Tremolite(40)<br>Epidote/Zoisite<br>Chlorite(10)<br>Plagioclase(< 1              | Tremolite(40)<br>Epidote/Zoisite<br>Chiorite (~ 5)<br>Plagioclase(5)<br>Quartz(2)                                                                  |
| TEXTURE                                | Medium-grained, equi-<br>granular relict texture,<br>euhedra and subhedra<br>closely packed, cumulate. | Medium-grained relict<br>texture, euhedral olivine<br>(?) replaced by talc-<br>antigorite. Chlorite and<br>tremolite interstitial. |                              | Bimodal grain size - large<br>square or octagonal crystals<br>(6 mm) amphibole surrounded<br>by fine-grained groundmass.      | Closely packed subhedra<br>and euhedra of pyroxene.<br>Orthocumulate.                                                    | Equigranular, closely-<br>packed euhedra and<br>subhedra of both<br>pyroxenes. Also large<br>orthocrysts of augite. | Elongate or lath-like<br>crystals of amphibole set<br>in finer-grained matrix.   | As above                                                                                                                                           |
| ROCK-TYPE                              | Metapyroxenite.                                                                                        | Metaperidotite                                                                                                                     | upper} sheets                | Metaperidotite                                                                                                                | Pyroxenite                                                                                                               | Pyroxenite                                                                                                          | Metagabbro                                                                       | Metagabbro.                                                                                                                                        |
| LOCALITY AND<br>STRATIGRAPHIC POSITION | 10 m below BG223 in meta-<br>pyroxenite unit, Nsongeni<br>River.                                       | Lower "peridotite unit,<br>Nsongeni River.                                                                                         | LEX: Hlagothi Mountain (main | Bottom of pyroxenite unit,<br>north slope Hiagothi<br>Mountain.                                                               | Above BG229, 25 m from<br>base of sheet.                                                                                 | 25 m above BG225                                                                                                    | Upper part of Hlagothi<br>Mountain, 50 ¶ above<br>BG236.                         | West slope of Hlagothi<br>Mountain. Approximately<br>same level as BG237.                                                                          |
| SAMPLE<br>NO.                          | *BG224                                                                                                 | *86228                                                                                                                             | D. HLAGOTHI COMP             | *B6229                                                                                                                        | *86235                                                                                                                   | *B6236                                                                                                              | *86237                                                                           | *86230                                                                                                                                             |

D. HLAGOTHI COWPLEX: Nsongeni (lower) sheets continued

| SAMPLE<br>NO. | LOCALITY AND<br>STRATIGRAPHIC POSITION                                                                  | ROCK-TYPE  | TEXTURE                                                                                                                                                                                                        | CONSTITUENT MINERALS<br>MAJOR ACCESSORY                                                                                                             | COMMENTS                                                                                                                                                                |
|---------------|---------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B6231         | 20 m above 8G230                                                                                        | Metagabbro | Elongate or lath-like<br>crystals of amphibole set<br>in finer-grained matrix.                                                                                                                                 | Tremolite(40) Leucoxene<br>Saussurite<br>groundmass(40)<br>Chlorite(5)<br>Piagiociase(5-10)<br>Quartz(2-3)                                          | Texturally very similar to<br>BG230, but amphibole crystals<br>more slender.                                                                                            |
| B6275         | South slope, Hlagothi<br>Mountain, near top of<br>Uppermost gabbro.                                     | Metagabbro | Medium-grained, bimodal<br>with laths up to 3 mm of<br>amphibole set in finer<br>groundmass.                                                                                                                   | Tremolite(30) Magnetite<br>Sausurite(35)<br>Epidote(<10)<br>Chlorite(5)<br>Leucoxene(5)<br>(Plagiovelase and quartz in<br>rare patches)             | Micrographic intergrowths of<br>quartz and plagioclase.<br>Tremolite (?) is pale green and<br>has central zones of chlorite<br>(see BG242 below).                       |
| *86239        | Upper marginal sequence<br>of second highest gabbro<br>unit, Nsuze Valley east<br>of Hlagothi Mountain. | Metagabbro | Coarse-grained skeletal<br>crystals set in fine<br>groundmass. Skeletal<br>crystals are amphibole<br>pseudomorphic after<br>pyroxene, contain chlorite<br>cores. Arranged in down-<br>wards branching sheaves. | Tremolite(50) Leucoxene<br>Remainder is Magnetite<br>very fine- Blotite<br>grained<br>groundmass. (~5)<br>Quartz in amygdales (~5)<br>Chlorite(-5a) | "Skeletal" texture is identical<br>to spinifex texture of extrusive<br>rocks. Amphibole laths up to<br>20 cm in length. Rounded<br>amygdales and patches of<br>biotite. |
| *86242        | 2 m above BG239                                                                                         | Metagabbro | Finer-grained than BG239,<br>consists of randomly<br>orientated, 20 mm long<br>skeletal crystals set in<br>fine-grained groundmass.                                                                            | Tremolite(60) Leucoxene<br>Chlorite(10) Magnetite<br>Quartz(5) Sphene<br>Epidote(5) Sulphide<br>Plagioclase(5)<br>Saussuritic groundmass            | Quartz in amygdales. Some<br>relict plagioclase.                                                                                                                        |
| BG283         | Gabbro 10 m below<br>Marginal sequence.                                                                 | Metagabbro | Medium-grained, inter-<br>granular sub-ophitic<br>relict texture.                                                                                                                                              | Tremolite/<br>Actinolite(35)<br>Plagioclase<br>Micrographic Intergrowth}(35)<br>Biotite(3)<br>Epidote(3)<br>Saussuritic groundmass(20)              | Plagioclase rarely<br>unrecrystallized, also in<br>micrographic intergrowths.                                                                                           |

| SAMPLE<br>NO.     | LOCALITY AND<br>STRATIGRAPHIC POSITION                                                    | ROCK-TYPE              | TEXTURE                                                                                                        | CONSTITUENT MINERALS<br>MAJOR ACCESSORY                                                           | COMMENTS                                                                                                                                                             |
|-------------------|-------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BG302             | Close to base of upper<br>wehrlite sheet, Hiagothi<br>Mountain.                           | Wehrlite (feidspathic) | Coarse-grained,<br>equigranular,                                                                               | 01 vine(60) Magnetite<br>Augite(25) (Chlorite)<br>Plagioclase(10) (Saussurite)<br>Hypersthene(<5) | Euhedral olivines surrounded by<br>anhedral post-cumulate augite.<br>Local alteration.                                                                               |
| B6304             | Upper wehrlite sheet.<br>Hlagothi Mountain.                                               | Neta-wehrlite          | Medium-grained and<br>equigranular, millimetre<br>scale layering defined<br>by olivine and clino-<br>pyroxene. | Augite(40)<br>Serpentine(40)<br>(after olivine)<br>Tremolite(8)<br>Magnetite(2)<br>Chlorite(10)   | Relict olivine grain shape is<br>euhedral. Microfracturing of<br>pyroxenes post-dates magnetite<br>stringers and alteration of<br>olivines. Cumulate rock.           |
| Wonderdraai Sheet |                                                                                           |                        |                                                                                                                |                                                                                                   |                                                                                                                                                                      |
| 8611              | Central part of sheet<br>on east flank of Itala<br>Mountain,                              | Olivine gabbronorite   | Fine-grained. Equi-<br>grained except for<br>local poikilitic<br>enclosure of olivine<br>by pyroxenes.         | Olivine(30) Biotite<br>Hypersthene(35) Magnetite<br>Augite(25) Chromite<br>Plagioclase(10)        | Partially altered to serpentine,<br>chlorite and epidote. Pyroxenes<br>in reaction relationship with<br>olivine.                                                     |
| B613              | As above                                                                                  | Olivine gabbronorite   | As above                                                                                                       | As above                                                                                          | Orthopyroxene predates augite,<br>reaction relationship.                                                                                                             |
| BG28              | Central part of sheet on<br>southwest bank of<br>Mhlatuze River near<br>Wonderdraai farm. | Olivine gabbronorite   | Medium-grained granular.<br>Post-cumulate augite<br>and plagioclase.                                           | Olivine(25) Biotite<br>Hypersthene(35) Magnetite<br>Augite(30)<br>Plagioclase(10)                 | Serpentine and chlorite as<br>alteration product locally.<br>Euhedral olivine and ortho-<br>pyroxeme. Reaction of later<br>augite with olivine and<br>orthopyroxene. |
| *BG193            | Upper part of sill, above<br>BG28.                                                        | Olivine websterite     | Medium-grained, equi-<br>granular, locaily<br>poikilitic with augite<br>enclosing olivine.                     | 01ivine(30) Magnetite<br>Hypersthene(45)<br>Augite(20)<br>Plagioclase(<5)                         | Incipient alteration to anti-<br>gorite and chlorite. Olivine-<br>euhedral, hypersthene, sub-<br>hedral, plagicclase and augite<br>interstitial/post-cumulate.       |
| 86194             | Central part of sill, below<br>BG28.                                                      | therzolite             | Medium-grained,<br>equigranular.                                                                               | Augite(40) Magnetite<br>Olivine(30) Biotite<br>Hypserthene(25)<br>Piagioclase (<5)                | Olivine crystals, small and commonly enclosed by pyroxenes with a reaction relationship.                                                                             |

250

| COMMENTS                                | Some secondary biotite<br>replacing olivine. Has<br>alteration to serpentine and<br>chlorite. | Local veining of serpentine.                                                           |
|-----------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| CONSTITUENT MINERALS<br>MAJOR ACCESSORY | Augite(50) Biotite<br>Olivine (5) Magnetite<br>Hypersthene(20)<br>Plagioclase(<5)             | Olivine(55) Magnetite<br>Augite(25)<br>Hypersthene(15)<br>Plagioclase(~5)              |
| TEXTURE                                 | Medium-grained.<br>granular.                                                                  | Medium-grained,<br>granular.                                                           |
| ROCK-TYPE                               | Lherzol i te                                                                                  | Lherzol I te                                                                           |
| LOCALITY AND<br>Stratigraphic position  | Lower part of sill<br>50 m below B6194.                                                       | Lowest exposed part of<br>sill, east bank of<br>Mhlatuze River on farm<br>Wonderdraai, |
| SAMPLE<br>No.                           | BG195                                                                                         | *86196                                                                                 |

| SAMPLE<br>No. | LOCALITY AND<br>STRATIGRAPHIC POSITION                                                                      | ROCK-TYPE                       | TEXTURE                                                                                                                                                      | CONSTITUENT MINERALS<br>MAJOR ACCESSORY                                                                                 | COMMENTS                                                                                                                                             |
|---------------|-------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8617          | Mbizwe River, small<br>domical outcrop at base<br>of Dwyka Formation                                        | Syenite(?)                      | Coarse-grained, equi-<br>granular, altered rock.                                                                                                             | Orthoclase(60) Haematite<br>Saussuritic patches<br>(after plagioclase)(20)<br>Riebeckite(15)<br>Augite(3)<br>(paques(2) | Meathered/altered. High<br>content of opaque minerals.                                                                                               |
| BG66          | Gozweni River, sill below<br>Wonderdraai sheet of the<br>Hlagothi Complex                                   | Monzonite(?)<br>(metamorphosed) | Coarse-grained, inter-<br>granular, equigranular,                                                                                                            | Plagioclase(60) Apatite<br>Green<br>Hornblende(30) Opaques<br>Orthoclase(5) Epidote<br>Quartz(3)<br>Biotite(2)          | Plagioclase extensively<br>saussuritized. Highly pleo-<br>chroic amphibole has a dark<br>green rim.                                                  |
| *8634         | Sill(?) intrusive into<br>Ndikwe Pyroclastics<br>west of Ndikwe Store.                                      | Metagabbro                      | Coarse-grained to very<br>coarse-grained, granular.<br>Elongate laths of amphibole<br>form interlocking framework<br>around smaller plagioclase<br>crystals. | Plagioclase(50) Epidote<br>Amphibole(50) Leucoxene                                                                      | Two generations of amphibole,<br>both very pale green to colour<br>less but the earlier has higher<br>relief. (Paragasite replaced<br>by tremolite?) |
| *86125        | Conformable intrusion<br>immediately above base<br>of Vutshini Formation<br>in the Mankane River<br>Valley. | Metagabbro                      | Medium-grained, granular.                                                                                                                                    | Tremolite/ Leucoxene<br>Actimolite(50)<br>"Saussurite(30)<br>Epidote(5)<br>Zoisite(Tr)<br>Chiorite(5)<br>Quartz(5)      | Irregular laths of amphibole<br>surrounded by saussuritic<br>"groundmass".                                                                           |
| *86126        | Dyke identical to 06125<br>at confluence of Mdlelanga<br>and Welendhlovu Rivers.                            | Metagabbro                      | As above                                                                                                                                                     | As above As above                                                                                                       |                                                                                                                                                      |
| *86141        | Narrow dyke in lavas. Ndikwe<br>Formation, Welendhlovu River<br>Valley.                                     | Metagabbro(?)                   | Intergranular with large<br>phenocrysts(tremolite<br>after pyroxene?) set in<br>very fine-grained<br>plagioclase rich ground-<br>mass.                       | Plagioclase(60) Epidote<br>Tremolite(35) Opaques<br>Chlorite(Tr) Leucoxene<br>Quartz(2)<br>Orthoclase(2)                | Although cross-cutting dykelets<br>may be andesitic and of Msuze                                                                                     |
| *BG164        | Dyke west of Vuleka,<br>cuts debris flow<br>sequence in Mdlelanga<br>River Valley.                          | Metagabbro                      | Fine-grained, granular.                                                                                                                                      | Chlorite(45) Calcite<br>Piagioclase(50) Ilmeno-<br>Epidote(5) magnetite<br>Apatite                                      | No relict igneous textures.                                                                                                                          |

| SAMPLE<br>No. | LOCALITY AND<br>Stratigraphic position                                       | ROCK-TYPE                | TEXTURE                                                                                                                                                                                | CONSTITUENT MINERALS<br>Major Accessory                                                                                | COMMENTS                                                                                                                |
|---------------|------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| BG187         | Intrusion at confluence<br>of Nsuze and Mankane<br>Rivers.                   | Metagabbro/<br>monzonite | Sub-ophitic relict<br>igneous texture.                                                                                                                                                 | Green Opaque,<br>Hornblende(30) leucoxene<br>Plagioclase(50)<br>Orthoclase(10)<br>Quart2(10)                           | Very similar to B666, B6208.<br>Plagioclase almost entirely<br>saussuritized. Trellis<br>texture in magnetite crystals. |
| BG188         | Conformable intrusion in<br>Ndikwe Formation lavas,<br>Mankane River Valley. | Carbonatized albitite.   | Equigranular plagioclase<br>laths cut across by<br>carbonated patches.                                                                                                                 | Plagioclase(60) Magnetite<br>Calcite(35)<br>Chlorite(5)                                                                | Glide twinning in plagioclase<br>which is otherwise unaltered<br>except where large "blebs" of<br>carbonate occur.      |
| 86198         | Nkungumathe (Manlatuze<br>River Valley)                                      | Tonalite                 | Coarse-grained, seriate<br>granular, large elongate<br>quartz grains (deformed)<br>and fractured plagioclase<br>crystals up to 4 mm long.<br>Small microcline and<br>bjotite crystals. | Plagioclase(60) Chlorite<br>Quartz(26) Epidote<br>Microcline(10) Apatite<br>Biotite(3)                                 | Biotite is chloritized.<br>Local saussuritization of<br>plagioclase.                                                    |
| *BG208        | Sill at base of Hiagothi<br>Complex in Nsongeni<br>Valley.                   | Metagabbro/monzonite     | Sub-ophitic.                                                                                                                                                                           | Plagioclase(30) Epidote<br>Green ) teucoxene<br>Hornblende}(50)Magnetite<br>Tremolite)<br>orthoclase(20)<br>Quartz(30) | Cf. 8G187, 8G66                                                                                                         |

# APPENDIX 2

Schmidt net plots for selected minor folds in the Nsuze Group which are considered representative of the  $F_{\rm 2}$  folding event.



A2.1 Schmidt net plots of antiform and syncline in the upper Welendhlovu Valley. Poles to bedding (dots),  $S_2$  cleavage (triangles) and  $L_2$  lineations (crosses) indicated. Fold axes indicated by dot within circle.



-A2.2 Schmidt net plots of poles to bedding in folded quartz arenites west of Vuleka. Anticline (above) and syncline (below) show slightly different orientations. Ornamentation as in A2.1. No fabric or cleavages and very few lineations are recognizable.



A2.3 Plots of poles to bedding and cleavage for anticline (upper) and syncline (lower) situated east of Vuleka.

# APPENDIX 3

Palaeocurrent Data

### UNCORRECTED PALAEOCURRENT DATA FOR NSUZE GROUP SEDIMENTS

(Values given as inclination and direction of inclination)

| \$ <sub>0</sub> | Planar Cross-Strata                                                                                                           | Trough Cross-<br>Strata                                                                                        | Ripples                                                                           | Locality                                                                      |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 70.012          | 68.046, 73.041,<br>72.019, 72.029<br>64.020, 62.023,<br>86.020, 79.034                                                        | :                                                                                                              | 80.056A<br>86.340A<br>38.090A<br>66.080A                                          | Mdlelanga Formation,<br>Welendhlovu Vallue<br>(Le = 26.066)'                  |
| 79.012          | 69.024, 78.026                                                                                                                | •                                                                                                              | -                                                                                 |                                                                               |
| 79.014          | 78.358, 71.354<br>79.002, 70.030                                                                                              | :                                                                                                              | 12.072B                                                                           |                                                                               |
| 60.026          | 47.052, 49.056,<br>41.042, 47.058<br>53.354, 45.060<br>40.062, 42.056,<br>42.054, 32.052,<br>62.060, 62.058<br>64.042, 66.044 | -                                                                                                              |                                                                                   | Hdielanga Formation west<br>of Vuleka<br>(T <sub>e</sub> = 22.104)            |
| 20.157          | -                                                                                                                             | -                                                                                                              | 10.160A<br>11.106A<br>18.170A<br>13.146A<br>18.146A                               | Ndikwe Formation northeast<br>of Hlagothi Mountain in<br>Nsuze River Valley.  |
| 28.145          |                                                                                                                               |                                                                                                                | 16.186A<br>00.110A                                                                | (Fold axis assumed horizontal)                                                |
| 23.168          |                                                                                                                               |                                                                                                                | 14.132A<br>23.186A<br>18.172A<br>21.168A<br>22.208A                               |                                                                               |
| Flat-lying      | Towards: 208, 198,<br>123, 80                                                                                                 | Towards 217,<br>224, 239, 272,<br>296, 226, 252,<br>288, 336, 292,<br>178, 264, 213,<br>168, 232, 192,<br>190. | (Strikes)<br>014, 028,<br>012, 216,<br>230, 242,<br>192, 240,<br>230, 312         | Nonderdraai Farma<br>(Ndikwe Formation)                                       |
| 43.222          | 52.197, 67.212,<br>58.210                                                                                                     | 30.272A,<br>25.243A, 28.256A,<br>15.177A, 20.270A                                                              |                                                                                   | Upper Gozweni Valley, Ndikwe<br>Formation.<br>(Fold axis assumed horizontal)  |
| 17.186          | -                                                                                                                             | -                                                                                                              | 14.210,<br>9.262,<br>18.212,<br>12.260,<br>5.105,<br>17.230,<br>15.140,<br>00.268 | Upper Nsongeni Valley, Ndikwe<br>Formation.<br>(Fold axis assumed horizontal) |
| 19.023          | 14.140                                                                                                                        |                                                                                                                | 25.060A                                                                           | Mbizwe<br>(Assumed horizontal fold axis)                                      |

# UNCORRECTED PALAEOCURRENT DATA FOR NSUZE GROUP SEDIMENTS continued

| s <sub>o</sub> | Planar Cnoss-Strata | Trough Cross<br>Strata | Ripples                                  | Locality                                    |
|----------------|---------------------|------------------------|------------------------------------------|---------------------------------------------|
| 34.230         |                     | 00.130B                |                                          | Vutshini Formation north limb,              |
| 30.249         |                     |                        | 20.274A<br>26.270A<br>09.156A<br>15.283A | (Fold axis: 20.290)                         |
| 32.262         |                     |                        | 20.332A<br>05.132A<br>05.136A<br>12.288A |                                             |
| 30.230         |                     |                        | 14.167A<br>27.168A<br>20.270A            |                                             |
| 34.240         |                     |                        | 18.276A                                  |                                             |
| ,              |                     |                        |                                          |                                             |
| 66.030         |                     |                        | 37.318                                   | Vutshini Formation, core of<br>Sem Syncline |
| 20.157         |                     |                        | 14.180                                   | (Fold axis 20.100)                          |
| 29.178         |                     |                        | 26.137                                   |                                             |
| 08.163         |                     |                        | 05.225                                   |                                             |
| 25.112         | 12.006              |                        |                                          |                                             |
| 19.168         | 20,040              |                        |                                          |                                             |
| 19.134         | 05.121              |                        |                                          |                                             |
| 10.121         | 10.024              |                        |                                          |                                             |
| 18.088         | 58.052              |                        |                                          |                                             |
| 36.066         | 56.068              |                        |                                          |                                             |
| 20.029         | 60.052              |                        |                                          |                                             |
| 06.050         | 41.026              |                        |                                          |                                             |

•

.

| .S <sub>o</sub> | Planar Cross-Strata | Trough Cross-<br>Strata                                                                                                                                                                                           | Ripples                                             | Locality                 |
|-----------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------|
| 64.009          |                     | 69,342B                                                                                                                                                                                                           |                                                     | Vutshini Formation north |
| 57.353          | 76.010              | 33.2848<br>33.0548<br>12.292A<br>20.283A<br>13.2868<br>12.2568<br>20.2728<br>22.0768<br>08.2828<br>68.3088<br>26.3048<br>19.2848<br>16.0798<br>06.0698<br>26.2768                                                 | 31.050A<br>04.079A<br>30.300A<br>18.288A            | (Fold axis: 22.108)      |
| 65.005          |                     | 19.2728<br>31.0548<br>00.0868<br>14.0748<br>18.0938<br>12.0688, 31.0608<br>00.0888, 08.0808<br>11.2828, 41.3088<br>14.2768, 39.2968<br>11.2788, 28.2928<br>19.0668, 19.0668<br>14.074, 44.0598<br>16.074, 06.0908 | 67.030A<br>40.054A<br>22.066A<br>33.290A<br>05.274B |                          |
|                 |                     |                                                                                                                                                                                                                   |                                                     |                          |

#### UNCORRECTED PALAEOCURRENT DATA FOR NSUZE GROUP SEDIMENTS continued

1. A = Direction of flow; B = Orientation (no direction inferred).

2. A = Ripple Strike direction; B = Inferred flow direction.

3.  $T_{z} = Mean L_{z}$  lineation as used in re-orientating these data.

# APPENDIX 4

Analytical and sampling methodology

-

#### SAMPLING AND ANALYTICAL METHODOLOGY

Samples were taken from the freshest outcrops of the various rock units using normal hammer and cold chisel methods. At least 4 Kg of sample were taken from the volcanics and larger amounts from the coarser-grained units. All traces of weathering, alteration and old fracture surfaces were removed. The samples were then reduced to 5 cm chunks using an hydraulic splitter and the fragments examined under a hand-lens for traces of alteration which were then removed, if present. The fragments were scrubbed under running water with a nylon brush, then cleaned in an ultrasonic bath for a few minutes. After drying at 100°C for one hour, the samples were crushed to less than 1 cm diameter chips. The amyodaloidal lava samples were hand-picked under a low-power binocular microscope to remove all traces of amygdales. After cone and guartering to a residual mass of 100 g, the samples were ground to a very fine powder using a tungsten carbide swing mill. Fusion beads were prepared using the method of Norrich and Hutton (1969). These beads were used for major and minor element analyses. Pressed powder discs were also prepared by compressing 5 - 6 g of sample mixed with a polysynthetic binding agent in a stainless steel die at a pressure of 10 t. The pressed pellets were used for trace element analyses.

The chemical analyses were done using a Phillips PW 1410 X-ray fluorescence spectrometer. International, NIM and in-house rock standards were used to calibrate each analytical run. In-house synthetic standards were used to calibrate certain of the trace element runs, but these were checked against established whole rock standards in each case. Results were in good agreement with the standard values in all cases.

# APPENDIX 5

Norms, Phase Diagram Projections and Other Petrologic Data

- A. Nsuze Group Volcanics
- B. Ultramafic Rocks
- C. Hlagothi Complex
- D. Pre-tectonic Dykes

| NDIKWE FORMATION                                                                                                                                                      | VOLCANICS                                                                                                                         |                                                                                                                                |                                                                                |                                  |                                                                                |                               | 265                              |                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------|-------------------------------|----------------------------------|-------------------------------|
| SAMPLE NUMBER                                                                                                                                                         | 80 128                                                                                                                            |                                                                                                                                |                                                                                |                                  |                                                                                |                               | 200                              |                               |
| ORIGINAL WEICHT<br>SIO2 AL203<br>58.14 13.93                                                                                                                          | PERCENT OX<br>FE203 F<br>2,99 7                                                                                                   | IDES<br>160 MNO<br>147 -15                                                                                                     | НGO<br>3.91                                                                    | CA0<br>4.96                      | NA20 K<br>4.22 L                                                               | 20 TIO<br>61 1.42             | P205 CR203                       | TUTAL<br>98,99                |
| WEIGHT PERCENT<br>5102 AL203<br>58.73 14.07                                                                                                                           | OXIDES RECAL<br>FE203 F<br>3.02 7                                                                                                 | CULATED TO<br>TEO MND<br>55 .15                                                                                                | 100 PERCEN<br>MGD<br>3.95                                                      | CAU<br>5.01                      | NA20 K<br>4.26 1,                                                              | 20 1102<br>63 1,4             | P205 CR203                       | TUTAL<br>100,00               |
| CATION PROPORTI<br>SI AL<br>54.96 15,52                                                                                                                               | DNS IN ANALY<br>FE(3) F<br>2.13 S                                                                                                 | (SIS<br>E(2) MN<br>.91 .12                                                                                                     | MG<br>5.51                                                                     | CA<br>5,02                       | NA K<br>7.73 1.                                                                | 74 TI<br>94 1.0               | P.15 CR.00                       |                               |
| CIPW NORM                                                                                                                                                             |                                                                                                                                   |                                                                                                                                |                                                                                |                                  |                                                                                |                               |                                  |                               |
| WEIGHT PERCENT<br>MOLE PERCENT<br>CATION PERCENT                                                                                                                      | QTZ<br>9,381<br>29.653<br>8,778                                                                                                   | COR<br>.000<br>.000<br>.900                                                                                                    | 0R<br>9.610<br>7.994<br>9.708                                                  | ав<br>36,060<br>26,118<br>38,665 | AN<br>14.457<br>9.870<br>14.610                                                | .00<br>.00<br>.00             | NE<br>0 ,000<br>0 ,000<br>0 ,000 | . 889<br>. 900<br>. 900<br>KB |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                      | AC<br>,000<br>,000                                                                                                                | NG<br>. 000<br>. 000<br>. 000                                                                                                  | KS<br>.000<br>.000<br>.000                                                     | DI<br>7,551<br>6.242<br>7,392    | μΟ<br>. 000<br>. 000<br>. 000                                                  | HY<br>15.38<br>12.86<br>15,23 | 01.<br>5000<br>4008<br>3         | CS<br>.000<br>.000<br>.000    |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                      | MT<br>4.379<br>3.592<br>3.190                                                                                                     | CM<br>. 800<br>. 800<br>. 800<br>. 808                                                                                         | 11<br>2.724<br>3.410<br>2.019                                                  | HM<br>000<br>000<br>000          | TN<br>, 000<br>, 000<br>, 000                                                  | PF<br>.00<br>.00<br>.00       | RL<br>0 .000<br>0 .000<br>0 .000 | ар<br>, 455<br>, 257<br>, 405 |
| MAFIC INDEX =<br>NORM TOTAL = 1                                                                                                                                       | 30.495<br>00.003                                                                                                                  |                                                                                                                                |                                                                                |                                  |                                                                                |                               |                                  |                               |
| OLIVINE COMPOSI<br>FORSTERITE                                                                                                                                         | TION ,000                                                                                                                         | FAYALI                                                                                                                         | TE .00                                                                         | Ð                                |                                                                                |                               |                                  |                               |
| ORTHOPYROXENE C<br>ENSTATITE                                                                                                                                          | OMPOSITION<br>51.451                                                                                                              | FERROS                                                                                                                         | ILITE 48.54                                                                    | 9                                |                                                                                |                               |                                  |                               |
| CLINOFYROXENE C<br>WOLLASTONI                                                                                                                                         | OMPOSITION<br>TE 50.562                                                                                                           | ENSTAT                                                                                                                         | ITE 25.43                                                                      | 16 F                             | ERROSILITE                                                                     | 24.002                        |                                  |                               |
| FELDSPAR COMPOS<br>ORTHOCLASE<br>PLAGIOCLAS                                                                                                                           | ITION<br>15,983<br>E compositi                                                                                                    | ALBITE<br>DN (PERC AN                                                                                                          | 59.97<br>) 28.61                                                               | 72 A<br>9                        | NORTHITE                                                                       | 24.044                        |                                  |                               |
| THORN FON AND TU<br>SOLIDIFICATION<br>CRYSTALLIZATION<br>LARSEN INDEX (1<br>ALBITE RATIO (<br>IRON RATIO ((FE<br>MG NUMBER AS CA<br>UXIDATION RATIO<br>DENSITY OF DRY | TTLE DIFFER<br>INDEX (190%)<br>INDEX (AN+<br>331+K)-(CA<br>00*(AB+AB E<br>2*MN)*10U/(1<br>TIONS MG/CA<br>ACCORDING<br>LIQUID OF T | ENTIATION I<br>MGQ/(MGD+FE<br>MG,DI+FD+FO<br>MG)<br>IV IN NE)/<br>FE2+MN+MG)<br>TIONS (FE2+MN+MG)<br>TIONS (FEA<br>MIS COMPOSI | NDEX<br>O+FE203+NA2<br>EQIV OF EN<br>PLAG)<br>G)<br>E (FE0/FE0+<br>TION (AT 10 | FE203)                           | = 55.051 $= 19.3322$ $= 24.1433$ $= 10.3381$ $= 71.5335$ $= 48.2784$ $= 2.567$ |                               |                                  |                               |
| TUTAL ALKA                                                                                                                                                            | L15 29.29                                                                                                                         | TOTAL                                                                                                                          | FE 51.07                                                                       | • +                              | G                                                                              | 19.64                         |                                  |                               |
|                                                                                                                                                                       |                                                                                                                                   |                                                                                                                                |                                                                                |                                  |                                                                                |                               |                                  |                               |
| KOMATIITE PARAM                                                                                                                                                       | ETERS                                                                                                                             |                                                                                                                                |                                                                                |                                  |                                                                                |                               |                                  |                               |
| FEO/(FED+HGO)<br>7222                                                                                                                                                 | CA0/AL203 :                                                                                                                       | 5102/1102<br>40.94                                                                                                             | AL203/TI02<br>9.81                                                             | FE0*/T1<br>7.16                  | 02 CAO/TIO<br>3,49                                                             | 2 NA20/T<br>2.972             | 1,134 K20/TI02                   |                               |
| JENSEN CATION                                                                                                                                                         | AL203 - FEO<br>51.61                                                                                                              | +FE203+1102<br>30.08                                                                                                           | - MGO<br>18.32                                                                 |                                  |                                                                                |                               |                                  |                               |
| QUARTZ - FELDSP<br>QUARTZ<br>QUARTZ<br>QUARTZ<br>CATION PROPORTI                                                                                                      | AR RATIOS<br>13.50<br>17.04<br>DNS                                                                                                | ORTHO<br>Ortho<br>Ca 20                                                                                                        | CLASE 13.83<br>CLASE 17.44                                                     | FE 3                             | LAGIOCLASE<br>LBITE<br>19.83                                                   | 72,68<br>65,50<br>MG 3        | 1,47                             |                               |
|                                                                                                                                                                       |                                                                                                                                   | CA 7                                                                                                                           | . 67                                                                           | MG                               | B.41                                                                           | SI 8                          | 3.92                             |                               |
|                                                                                                                                                                       |                                                                                                                                   | 5I 80                                                                                                                          | . 55                                                                           | AL 1                             | 1.37                                                                           | MG                            | B.07                             |                               |
|                                                                                                                                                                       |                                                                                                                                   | 2MG 30                                                                                                                         | , 64                                                                           | 2FE 3                            | 88.78                                                                          | 51/5 3                        | 0.57                             |                               |
|                                                                                                                                                                       |                                                                                                                                   | CA 29                                                                                                                          | . 51                                                                           | AL 4                             | 4,04                                                                           | NA+K 2                        | /,40                             |                               |

| COORDINATES IN THE SYSTEM PLAGIOCLASE - OLIVINE - CLINOPYROXENE - QUARTZ (IN MOLE | PERCENT) |
|-----------------------------------------------------------------------------------|----------|
| PROPORTION OF ANALYSIS IN BASALT TETRAHEDRON IS 84,68 MOLE PERCENT                |          |

| BASAL TETRAHEDRON        | ٥L   | 13,49 | CPX  | Ð,73  | PLAG | 62,91 | QTZ        | 14.86 |
|--------------------------|------|-------|------|-------|------|-------|------------|-------|
| CLINOPYROXENE PROJECTION |      | 14,78 |      | U.G   |      | 68,93 |            | 16.29 |
| QUARTZ PROJECTION        |      | 15.85 |      | 10725 |      | 23,98 |            | ۵.٥   |
| PLAGIDCLASE PROJECTION   |      | 36.30 |      | 23,54 |      | 0.0   |            | 40.00 |
| OLIVINE PROJECTION       |      | U. D  |      | 6,66  |      | 47.99 | 0PX+(4QTZ) | 45.35 |
| CHAS PROJECTIONS         |      |       |      |       | •    |       |            |       |
| TETRAHEDRON COORDINATES  | С    | 17.01 | м    | 12.40 | A    | 17.27 | S          | 53.32 |
| DIOPSIDE PROJECTION      | C3A  | 33.44 | 'n   | 13.63 | 5    | 52.93 |            |       |
| ULIVINE PROJECTION       | CS   | 20.19 | м    | 61,81 | S    | 18.00 |            |       |
| ENSTATITE PROJECTION     | r126 | 20,29 | C2S3 | 34.15 | A253 | 45.56 |            |       |
| QUARTZ PROJECTION        | CAS2 | ****  | MS   | ****  | CMS2 | ****  |            |       |

| MOLE PERCENT 6,752<br>MOLE PERCENT 22,751<br>CATION PERCENT 6,316                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .000<br>.000<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.190<br>9.043<br>10.298                                                                                                                                                                                                               | 28.864                                                                                                                                                              | 12.821<br>9.330<br>12.951                                                                                                                                                                                                                                                                                                                             | •                                                                                                                   | 000<br>000<br>0 <b>00</b>                                                                                                                  | .000                                                   | , 000<br>, 000<br>, <b>000</b>                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KS                                                                                                                                                                                                                                      | DI<br>14 14                                                                                                                                                         | 5 00 N                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                                  | HY                                                                                                                                         | BL<br>0.00                                             | CS                                               |
| MOLE PERCENT .000<br>CATION PERCENT .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , 0 0 0<br>, 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .000                                                                                                                                                                                                                                    | 12,424                                                                                                                                                              | , 000<br>, 000                                                                                                                                                                                                                                                                                                                                        | 10.                                                                                                                 | 823<br>708                                                                                                                                 | . 0 0 0                                                | .000                                             |
| MT<br>WEIGHT PERCENT 4.360<br>MOLE PERCENT 3.812<br>CATION PERCENT 3.175                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CM<br>.000<br>.000<br>.000<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,728<br>3,640<br>2,021                                                                                                                                                                                                                 | HM<br>. 00(<br>. 00(<br>. 00(                                                                                                                                       | ИТ<br>000.<br>000.<br>000.                                                                                                                                                                                                                                                                                                                            |                                                                                                                     | PF<br>0 0 0<br>0 0 0<br>0 0 0                                                                                                              | RU<br>.000<br>.000<br>.000                             | ар<br>. 520<br>. 313<br>. 464                    |
| MAFIC INDEX = 32.849<br>NORM TOTAL = 100.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                         |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                                                                                                                            |                                                        |                                                  |
| OLIVINE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EAYA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (75 )                                                                                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                                                                                                                            |                                                        |                                                  |
| OR THOPYROXENE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T H L AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                         |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                                                                                                                            |                                                        |                                                  |
| ENSTATITE 48.970<br>CLINDPYROXENE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SILITE 51.0                                                                                                                                                                                                                             | 030                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                                                                                                                            |                                                        |                                                  |
| WOLLASTONITE 50.394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ENST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATITE 24.1                                                                                                                                                                                                                              | 292                                                                                                                                                                 | FERROSILITE                                                                                                                                                                                                                                                                                                                                           | 25,314                                                                                                              |                                                                                                                                            |                                                        |                                                  |
| PLAGIOCLASE COMPOSITION<br>DRTHOCLASE 16.884<br>PLAGIOCLASE COMPOSITI                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALBIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TË 61.8<br>AN) 25,5                                                                                                                                                                                                                     | 891<br>537                                                                                                                                                          | ANORTHITE                                                                                                                                                                                                                                                                                                                                             | 21,225                                                                                                              |                                                                                                                                            |                                                        |                                                  |
| THORNTON AND TUTTLE DIFFER<br>SOLIDIFICATION INDEX (100)<br>CRYSTALLIZATION INDEX (AN<br>LARSEN INDEX (1/3SI+K)-(CA<br>ALBITE RATIO (100*(AB+AB E<br>IRON RATIO (100*(AB+AB E<br>IRON RATIO (100*(AB+AB E<br>OXIDATION RATIO ACCORDING<br>DENSITY OF DRY LIQUID OF 1<br>AFM RATIO                                                                                                                                                                                                                                          | ENTIATION<br>MGD/(MGD+1<br>MG D1+F0+1<br>A+MG)<br>GIV IN NE<br>GIV IN NE<br>GIV IN NE<br>ATIONS (FE<br>TO LE MAI<br>TO LE MAI<br>TO LE MAI<br>TO LE MAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INDEX<br>FED+FE203+N<br>FO EQIV DF (<br>)/PLAG)<br>)<br>HAG)<br>IRE (FED/FE)<br>SITION (AT )                                                                                                                                            | A20+K20)<br>EN)<br>D+FE203)<br>1050 DEG                                                                                                                             | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                  | 12 67                                                                                                               |                                                                                                                                            |                                                        |                                                  |
| TOTAL ALKALIS 30,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AL FE 51.4                                                                                                                                                                                                                              | 29                                                                                                                                                                  | MG                                                                                                                                                                                                                                                                                                                                                    | 17.87                                                                                                               |                                                                                                                                            |                                                        |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                         |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                                                                                                                            |                                                        |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAO/AL203<br>,7416 .46<br>JENSEN CATION AL203 - FEO<br>S2.20                                                                                                                                                                                                                                                                                                                                                                                                                         | 5102/T102<br>40.24<br>3+FE203+T10<br>30.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AL203/TI0<br>9.63<br>32 - HGO<br>16.99                                                                                                                                                                                                  | 2 FEO*/<br>7.                                                                                                                                                       | 102 CA0/TI                                                                                                                                                                                                                                                                                                                                            | 02 NA20<br>3.0                                                                                                      | 77102<br>176 1                                                                                                                             | K20/T102<br>,201                                       |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAO/AL203<br>.7416 .46<br>JENSEN CATION AL203 ~ FEO<br>S2.20<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                       | 5102/T102<br>40.24<br>3+FE203+T10<br>30.02<br>0RT1<br>0RT1<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AL203/TI0<br>9.63<br>32 - HGO<br>16.99<br>HOCLASE 15.<br>HOCLASE 15.<br>44.71                                                                                                                                                           | 2 FEG*/<br>7.<br>19<br>77<br>FE                                                                                                                                     | PLAGIOCLASE<br>ALBITE<br>38.05                                                                                                                                                                                                                                                                                                                        | 02 NA20<br>3.0<br>74.76<br>68.80<br>MG                                                                              | 27,24                                                                                                                                      | K20/T <b>102</b><br>.201                               |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAO/AL203<br>.7416 .46<br>JENSEN CATION AL203 ~ FEO<br>S2.20<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                       | 5102/1102<br>40.24<br>30.92<br>30.92<br>0R1<br>CA<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AL203/TI0<br>9.63<br>32 - HG0<br>16.99<br>HOCLASE 15.<br>HOCLASE 15.<br>34.71<br>9.68                                                                                                                                                   | 2 FED*/<br>7.<br>19<br>77<br>FE<br>MG                                                                                                                               | Г102 CA0/TI<br>12 4.40<br>PLAGIOCLASE<br>ALBITE<br>38.05<br>7.60                                                                                                                                                                                                                                                                                      | 02 NA20<br>3.0<br>74.76<br>69.80<br>MG<br>SI                                                                        | 27,24<br>82,72                                                                                                                             | K20/T102<br>.201                                       |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAO/AL2D3<br>.7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                                | 5102/T102<br>40.24<br>3+FE203+T10<br>30.02<br>0RT1<br>0RT<br>CA<br>51 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AL203/TI0<br>9.63<br>32 - HGO<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>81.11                                                                                                                                          | 2 FEG*/<br>7.<br>19<br>77<br>77<br>FE<br>MG<br>AL                                                                                                                   | PLAGIOCLASE<br>ALBITE<br>38.05<br>7.50<br>12.44                                                                                                                                                                                                                                                                                                       | 02 NA20<br>3.0<br>74.76<br>68.80<br>MG<br>SI<br>MG                                                                  | 27.24<br>82.72<br>7.45                                                                                                                     | K20/TI02<br>.201                                       |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAO/AL203<br>.7416 .46<br>JENSEN CATION AL203 ~ FEO<br>S2.20<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                       | 5102/T102<br>40.24<br>3+FE203+T10<br>08T1<br>08T1<br>CA<br>51<br>2hG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AL203/TI0;<br>9.63<br>32 - HG0<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>91.11<br>28.69                                                                                                                                | 2 FED»/<br>7.<br>77<br>FE<br>MG<br>AL<br>2FE                                                                                                                        | 1102 CAU/TI<br>12 4.40<br>PLAGIOCLASE<br>ALBITE<br>38.05<br>7.50<br>11.44<br>40.08                                                                                                                                                                                                                                                                    | 02 NA20<br>3.0<br>74.76<br>68.80<br>MG<br>SI<br>MG<br>SI/5                                                          | 27.24<br>82.72<br>7.45<br>31.24                                                                                                            | K20/T <b>102</b><br>,201                               |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CA0/AL203<br>.7416 .46<br>JENSEN CATION AL203 ~ FEO<br>S2.20<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                       | 5102/1102<br>40.24<br>3+FE203+TIO<br>30.82<br>0RTI<br>CA<br>51 0<br>2hG 3<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AL203/TI0<br>7.63<br>32 - HG0<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>81.11<br>28.69<br>33.32                                                                                                                        | 2 FED*/<br>7.<br>7.<br>7.<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77                                                                               | 1102 CAO/TI<br>12 4.40<br>PLAGIOCLASE<br>ALBITE<br>38.05<br>7.60<br>11.44<br>40.08<br>40.16                                                                                                                                                                                                                                                           | 02 NA20<br>3.0<br>69,80<br>MG<br>SI<br>MG<br>SI/5<br>NA+K                                                           | 27,24<br>82,72<br>7,45<br>31,24<br>26,52                                                                                                   | K20/T102<br>.201                                       |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAO/AL203<br>.7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                                | 5102/T102<br>40.24<br>3+FE203+T11<br>30.02<br>0RT1<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AL203/TI0<br>9.63<br>32 - HG0<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>91.11<br>28.69<br>33.32<br>SE - OLIVIN                                                                                                         | 2 FED»/<br>7.<br>77<br>FE<br>MG<br>AL<br>2FE<br>AL<br>E - CLIN                                                                                                      | 102 CA0/TI<br>12 4.40<br>PLACIOCLASE<br>ALBITE<br>38.05<br>7.50<br>11.44<br>40.08<br>40.16<br>OPYROXENE - (                                                                                                                                                                                                                                           | 02 NA20<br>3.0<br>3.0<br>69.80<br>MG<br>SI<br>MG<br>SI/5<br>NA+K                                                    | 27.24<br>82.72<br>7.45<br>31.24<br>26.52<br>IN MOLE                                                                                        | K20/TI02<br>,201                                       |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAO/AL203<br>.7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS<br>LOORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN                                                                                                                                                                                                                                                                                      | 5102/T102<br>40.24<br>3+FE203+T10<br>30.02<br>0RT1<br>CA<br>51<br>CA<br>51<br>CA<br>2hG<br>CA<br>2hG<br>2hG<br>CA<br>2hG<br>CA<br>2hG<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AL203/TI0<br>9.63<br>32 - HG0<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>81.11<br>28.69<br>33.32<br>GE - OLIVING<br>TRAHEDRON-15                                                                                        | 2 FED*/<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                              | TIO2 CAO/TII<br>12 4.40<br>PLAGIOCLASE<br>ALBITE<br>38.05<br>7.50<br>11.44<br>40.00<br>40.16<br>DPYROXENE - 0<br>MOLE PERCEI                                                                                                                                                                                                                          | 02 NA20<br>3.0<br>49,76<br>69,80<br>MG<br>SI<br>MG<br>SI/5<br>NA+K<br>QUARTZ (                                      | 27.24<br>82.72<br>7.45<br>31.24<br>26.52<br>IN MOLE                                                                                        | K20/TI02<br>.201<br>Percent)                           |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAD/AL203<br>.7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 10.05<br>ATION PROPORTIONS<br>LOORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON                                                                                                                                                                                                                                                                 | 5102/T102<br>40.24<br>0+FE203+T10<br>0RT1<br>0RT1<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0R<br>0RT<br>0R<br>0R<br>0R<br>0R<br>0R<br>0R<br>0R<br>0R<br>0<br>0R<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AL203/TI0<br>7.63<br>32 - HGU<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>01.11<br>28.69<br>33.32<br>5E - OLIVINI<br>TRAHEDRON-11<br>9.73                                                                                | 2 FED*/<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.                                                                               | TIO2 CAO/TII<br>12 4.40<br>PLAGIOCLASE<br>ALBITE<br>38.05<br>7.60<br>11.44<br>40.08<br>40.16<br>DPYROXENE - 0<br>MOLE PERCED<br>16.42                                                                                                                                                                                                                 | 02 NA20<br>3.0<br>3.0<br>74.76<br>69.80<br>MG<br>SI<br>SI/5<br>NA+K<br>QUARTZ (<br>NT<br>PLAG                       | 27.24<br>82.72<br>7.45<br>31.24<br>26.52<br>IN NOLE<br>63.09                                                                               | K20/TI02<br>.201<br>Percent)<br>QT2                    | 10.76                                            |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAD/AL203<br>.7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION                                                                                                                                                                                                                                    | 5102/T102<br>40.24<br>3+FE203+T10<br>30.02<br>0RT1<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AL203/TI0<br>9.63<br>32 - HGO<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>01.11<br>28.69<br>33.32<br>5E - OLIVINI<br>TRAHEDRON~15<br>9.73<br>11.65                                                                       | 2 FED*/<br>7.<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77                                                                               | PLACIOCLASE           ALBITE           38.05           7.60           11.44           40.08           40.16           OPYROXENE - 0           MOLE PERCEN           16.42           0.0                                                                                                                                                               | 02 NA20<br>3.0<br>74.76<br>68.80<br>MG<br>SI<br>SI/5<br>NA+K<br>QUARTZ (<br>NT<br>PLAG                              | 27.24<br>82.72<br>7.45<br>31.24<br>26.52<br>IN MOLE<br>63.09<br>75.48                                                                      | R20/TIO2<br>.201<br>Percent)<br>QTZ                    | 10.76<br>12.87                                   |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAO/AL203<br>,7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS<br>LOORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION                                                                                                                                                                                                               | 5102/T102<br>40.24<br>3+FE203+T10<br>08T1<br>CA<br>CA<br>SI<br>CA<br>2hG<br>CA<br>CA<br>PLAGIOCLAS<br>BASALT TE<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AL203/TI0<br>9.63<br>32 - HG0<br>16.99<br>HOCLASE 15.<br>HOCLASE 15.<br>34.71<br>9.68<br>01.11<br>28.69<br>33.32<br>SE - OLIVINI<br>TRAHEDRON~15<br>9.73<br>11.65<br>10.91                                                              | 2 FED*/<br>7.<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77                                                                               | 102 CA0/TI<br>A.40<br>ALBITE<br>38.05<br>7.50<br>13.44<br>40.08<br>40.16<br>DPYROXENE - 0<br>MOLE PERCEN<br>16.42<br>0.0<br>15.40                                                                                                                                                                                                                     | 02 NA20<br>3.0<br>60,80<br>MG<br>SI<br>MG<br>SI/5<br>NA+K<br>QUARTZ (<br>NA+K<br>PLAG                               | 27.24<br>82.72<br>7.45<br>31.24<br>26.52<br>IN NOLE<br>63.09<br>75.48<br>70.70                                                             | K20/TI02<br>,201<br>Percent)<br>QTZ                    | 10.76<br>12.87<br>0.0                            |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAO/AL203<br>.7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                                                                                                     | 5102/T102<br>40.24<br>3+FE203+T10<br>30.02<br>0RT1<br>CA<br>51<br>CA<br>51<br>CA<br>2hG<br>2hG<br>CA<br>2hG<br>2hG<br>2hG<br>2hG<br>2hG<br>2hG<br>2hG<br>2hG<br>2hG<br>2hG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AL203/TI0;<br>9.63<br>32 - HG0<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>81.11<br>88.69<br>33.32<br>SE - OLIVING<br>TRAHEDRON~15<br>9.73<br>11.65<br>10.91<br>26.37                                                    | 2 FED*/<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                              | 1102 CAO/TII<br>12 4.40<br>PLACIOCLASE<br>ALBITE<br>38.05<br>7.60<br>11.44<br>40.00<br>40.16<br>DPYROXENE - (<br>MOLE PERCE)<br>16.42<br>0.0<br>15.40<br>44.40                                                                                                                                                                                        | 02 NA20<br>3.0<br>49,76<br>69,80<br>MG<br>SI<br>MG<br>SI/5<br>NA+K<br>QUARTZ (<br>PLAG                              | 27.24<br>82.72<br>7.45<br>31.24<br>26.52<br>IN MOLE<br>63.09<br>75.48<br>70.70<br>0.0                                                      | K20/TI02<br>.201<br>Percent)<br>QTZ                    | 10.76<br>12.87<br>0.0<br>29.15                   |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAD/AL203<br>.7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS<br>COURDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                                                                                                     | 5102/T102<br>40.24<br>3+FE203+T11<br>30.02<br>0RT1<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT<br>0RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AL203/TI0<br>9,63<br>32 - HGO<br>16.99<br>HOCLASE 15.<br>40CLASE 18.<br>34.71<br>9,68<br>01.11<br>28.69<br>33.32<br>SE - OLIVIN<br>TRAHEDRON-15<br>9.73<br>11.65<br>10.91<br>26.37<br>0.0                                               | 2 FED*/<br>7.<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>72<br>72<br>40<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80 | FIO2         CAO/TII           12         4.40           12         4.40           ALBITE         38.05           7.50         11.44           40.08         40.16           DPYROXENE         -           MOLE         PERCEN           16.42         0.0           15.40         44.48           13.40         -                                    | 02 NA20<br>3.0<br>40,76<br>60,80<br>40<br>51<br>51/5<br>NA+K<br>20ARTZ (<br>NT<br>PLAG                              | 27.24<br>82.72<br>7.45<br>31.24<br>26.52<br>IN MOLE<br>63.09<br>75.48<br>70.70<br>0.0<br>51.48                                             | K20/TI02<br>,201<br>PERCENT)<br>QTZ<br>UFX+(4QTZ)      | 10.76<br>12.87<br>0.0<br>29.15<br>35.12          |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAD/AL203<br>.7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 10.05<br>ATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CMAS PROJECTIONS                                                                                                                                                                  | 5102/1102<br>40.24<br>0+FE203+T10<br>0R 11<br>0R 11<br>0R 12<br>0R 12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AL203/TI0<br>7.63<br>32 - HGU<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>01.11<br>28.69<br>33.32<br>5E - OLIVINI<br>TRAHEDRON-19<br>9.73<br>11.65<br>10.91<br>26.37<br>0.0                                              | 2 FED*/<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.                                                                               | TIO2 CAO/TII<br>12 4.40<br>PLACIOCLASE<br>ALBITE<br>38.05<br>7.60<br>11.44<br>40.00<br>40.16<br>DPYROXENE - (<br>MOLE PERCEN<br>16.42<br>0.0<br>15.40<br>44.48<br>13.40                                                                                                                                                                               | 02 NA20<br>3.0<br>44.76<br>69.80<br>MG<br>SI<br>MG<br>SI/5<br>NA+K<br>QUARTZ (<br>NT<br>PLAG                        | 27,24<br>82,72<br>7,45<br>31,24<br>26,52<br>IN NOLE<br>63,09<br>75,48<br>70,70<br>0,0<br>51,48                                             | K20/TI02<br>.201<br>PERCENT)<br>QTZ<br>UPX+(4QTZ)      | 10.76<br>12.87<br>0.0<br>29.15<br>35.12          |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAD/AL203<br>.7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS<br>LOORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>QUARTZ PROJECTION<br>CMAS PROJECTIONS<br>LETRAHEDRON COORDINATES                                                                                                                                           | 5102/T102<br>40.24<br>)+FE203+T10<br>0RT1<br>CA<br>CA<br>51 0<br>2hG<br>CA<br>BASALT TE<br>OL .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AL203/TI0<br>9.63<br>32 - HGU<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>01.11<br>28.69<br>33.32<br>SE - OLIVINE<br>TRAHEDRON~15<br>9.73<br>11.65<br>10.91<br>26.37<br>0.0                                              | 2 FED*/<br>7.<br>7.<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77                                                                               | ГЮ2 CAO/TII<br>12 4.40<br>PLAGIOCLASE<br>ALBITE<br>38.05<br>7.60<br>11.44<br>40.08<br>40.16<br>DPYROXENE - (<br>MOLE PERCE)<br>16.42<br>0.0<br>15.40<br>44.48<br>13.40                                                                                                                                                                                | 02 NA20<br>3.0<br>74.76<br>69.80<br>MG<br>SI<br>MG<br>SI/5<br>NA+K<br>QUARTZ (<br>NT<br>PLAG                        | 27.24<br>82.72<br>7.45<br>31.24<br>26.52<br>IN MOLE<br>63.09<br>75.48<br>70.70<br>0.0<br>51.48<br>17.37                                    | K20/TIO2<br>.201<br>PERCENT)<br>QTZ<br>OFX+(4QTZ)<br>S | 10.76<br>12.87<br>0.0<br>29.15<br>35.12<br>51.88 |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAD/AL203<br>.7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CMAS PROJECTIONS<br>IETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION                                                                                                               | 5102/T102<br>40.24<br>3+FE203+T11<br>0RT1<br>CA<br>CA<br>SI<br>CA<br>2hG<br>CA<br>DASALT TE<br>OL<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AL203/TI0<br>9.63<br>32 - HGO<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>01.11<br>28.69<br>33.32<br>SE - OLIVIN<br>TRAHEDRON-15<br>9.73<br>11.65<br>10.91<br>26.37<br>0.0<br>19.00<br>34.52                             | 2 FED*/<br>7.<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77                                                                               | 102 CA0/TI<br>12 4.40<br>PLACIOCLASE<br>ALBITE<br>38.05<br>7.50<br>13.44<br>40.00<br>40.16<br>DPYROXENE - 0<br>MOLE PERCEN<br>16.42<br>0.0<br>15.40<br>44.40<br>13.40<br>11.75<br>13.30                                                                                                                                                               | D2 NA20<br>3.0<br>74.76<br>68.80<br>MG<br>SI/5<br>NA+K<br>QUARTZ (<br>NT<br>PLAG                                    | 27.24<br>82.72<br>7.45<br>31.24<br>26.52<br>IN MOLE<br>63.09<br>75.48<br>70.70<br>0.0<br>51.48<br>17.37<br>52.19                           | K20/TI02<br>.201<br>PERCENT)<br>QTZ<br>UFX+(4QTZ)<br>S | 10.76<br>12.87<br>0.0<br>29.15<br>35.12<br>51.80 |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAD/AL203<br>.7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ 10.05<br>.0000 JUARTZ 10.05<br>.0000 PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINDPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CMAS PROJECTIONS<br>IETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>OLIVINE PROJECTION                                                                                      | 5102/T102<br>40.24<br>3+FE203+T10<br>0RT1<br>CA<br>51 0<br>2hG<br>2hG<br>2hG<br>2hG<br>2hG<br>2hG<br>2hG<br>2hG<br>2hG<br>2hG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AL203/TI0;<br>9.63<br>32 - HG0<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>81.11<br>28.69<br>33.32<br>GE - OLIVING<br>TRAHEDRON~15<br>9.73<br>11.65<br>10.91<br>26.37<br>0.0<br>19.00<br>34.52<br>23.48                  | 2 FED*/<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>8<br>4<br>4<br>4<br>4<br>7<br>7<br>7<br>7                                               | FIO2       CAO/TII         12       4.40         ALBITE       38.05         7.50       11.44         40.08       40.16         DP YROXENE       - (1000)         MOLE       PERCEN         16.42       0.0         15.40       44.48         13.40       - (11.75)         13.30       - (27.69)                                                      | D2 NA20<br>3.0<br>40,76<br>60,80<br>MG<br>SI/5<br>NA+K<br>QUARTZ (<br>PLAG<br>A<br>5<br>S                           | 27.24<br>82.72<br>7.45<br>31.24<br>26.52<br>IN NOLE<br>63.09<br>75.48<br>70.70<br>0.0<br>51.48<br>17.37<br>52.19<br>18.84                  | K20/TIO2<br>.201<br>PERCENT)<br>QTZ<br>OFX+(4QTZ)<br>S | 10.76<br>12.87<br>0.0<br>29.15<br>35.12<br>51.90 |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAD/AL203<br>.7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>AUARTZ 10.05<br>AUARTZ 12.43<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>QUARTZ PROJECTION<br>CMAS PROJECTIONS<br>IETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>CLIVINE PROJECTION<br>CLIVINE PROJECTION<br>CLIVINE PROJECTION                                  | 5102/1102<br>40.24<br>0+FE203+TIO<br>CA<br>CA<br>SI<br>CA<br>2hG<br>CA<br>PLAGIOCLAS<br>DASALT TE<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AL203/TI0;<br>7.63<br>32 - HGU<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>81.11<br>28.69<br>33.32<br>5E - OLIVINI<br>TRAHEDRON-15<br>9.73<br>11.65<br>10.91<br>26.37<br>0.0<br>19.00<br>31.52<br>23.44<br>24.92         | 2 FED*/<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                              | ΓΙΟ2       CAO/TII         12       4.40         ALBITE       38.05         7.50       11.44         40.08       40.16         DP YROXENE       - 0         MOLE PERCEN       16.42         0.0       15.40         13.40       - 40         11.75       - 30         57.69       - 4.11                                                              | 02 NA20<br>3.0<br>4,76<br>69,80<br>MG<br>SI<br>MG<br>SI/5<br>NA+K<br>QUARTZ (<br>PLAG<br>A<br>5<br>S<br>A253        | 27,24<br>82.72<br>7,45<br>31.24<br>26.52<br>IN MOLE<br>63.09<br>75.48<br>70.70<br>0.0<br>51.48<br>17.37<br>52.19<br>18.34<br>40.97         | K20/TIO2<br>.201<br>PERCENT)<br>QTZ<br>UFX+(4QTZ)<br>S | 10.76<br>12.87<br>0.0<br>29.15<br>35.12<br>51.80 |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAD/AL203<br>.7416 .46<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 10.05<br>QUARTZ 12.43<br>CATION PROPORTIONS<br>CORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CMAS PROJECTIONS<br>IETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>CLIVINE PROJECTION<br>CLIVINE PROJECTION<br>CLIVINE PROJECTION<br>CHASTITE PROJECTION<br>CLIVINE PROJECTION | 5102/T102<br>40.24<br>)+FE203+T10<br>0RT1<br>CA<br>CA<br>51 0<br>2hG<br>2hG<br>CA<br>DASALT TE<br>OL<br>CA<br>CA<br>E<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AL203/TI0<br>9.63<br>32 - HGU<br>16.99<br>HOCLASE 15.<br>HOCLASE 18.<br>34.71<br>9.68<br>01.11<br>28.69<br>33.32<br>SE - OLIVINE<br>TRAHEDRON~15<br>9.73<br>11.65<br>10.91<br>26.37<br>0.0<br>19.00<br>34.52<br>23.44<br>24.92<br>77.93 | 2 FED*/<br>7.<br>19<br>77<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>5 84.04<br>CPX<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                          | FIO2       CAO/TII         12       4.40         PLAGIOCLASE       ALBITE         38.05       7.50         12.44       40.08         40.16       09         PYROXENE       - (1000)         MOLE       PERCEN         16.42       0.0         15.40       44.48         13.40       - (11.75)         13.30       - (57.69)         34.11       16.38 | 02 NA20<br>3.0<br>74.76<br>69.80<br>MG<br>SI/5<br>NA+K<br>QUARTZ (<br>NT<br>PLAG<br>A<br>5<br>S<br>A<br>253<br>CM52 | 27.24<br>82.72<br>7.45<br>31.24<br>26.52<br>IN MOLE<br>63.09<br>75.48<br>70.70<br>0.0<br>51.48<br>17.37<br>52.19<br>18.84<br>40.97<br>5.68 | K20/TIO2<br>.201<br>PERCENT)<br>QTZ<br>OFX+(4QTZ)<br>S | 10.76<br>12.87<br>0.0<br>29.15<br>35.12<br>51.80 |

NDIKWE FORMATION VOLCANICS 266 SAMPLE NUMBER BG 129 ORIGINAL WEIGHT PERCENT OXIDES SIO2 AL203 FE203 FE0 57.94 13.87 3.01 7.53 HND .16 NA20 4,43 K20 TI02 1.73 1.44 P205 .22 CR203 TOTAL 100.24 HGD 3,57 CAÚ 6,33 WEIGHT PERCENT OXIDES RECALCULATED TO 100 PERCENT SIO2 AL203 FE203 FE0 MND MGO CAD 57.80 13.84 3.01 7.52 .16 3.56 6.31 NA20 4,42 TI02 P205 CR203 K20 1.73 TOTAL 100.00 CATION PROPORTIONS IN ANALYSIS SI AL FE(3) FE(2) 54.07 15.26 2.12 5.98 MN .13 НС СА 4.96 6.33 K TI 2.06 1.01 P.17 CR.00 NA 8,01 CIPW NORM UTZ COR OR AB AN LC NE KΡ

| ORIGINAL WEIGHT PERCENT O<br>SID2 AL203 FE203<br>54.43 15.43 2.96                                                | KIDES<br>FED MN<br>3-38 -1        | ) MGO<br>5 2.49              | 040<br>1607         | N420<br>3-19 2                            | K20              | f 102<br>1 +63                   | P205        | CR 203       | TOTAL<br>99.61          |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|---------------------|-------------------------------------------|------------------|----------------------------------|-------------|--------------|-------------------------|
| NEIGHT PERCENT OXIDES RECA                                                                                       | ALCULATED TO                      | 100 PERCE                    | NT<br>CAIT          | NA20                                      | K20              | T 102                            | P205        | 68203        | TOTAL                   |
| 54:54 15:49 2:97                                                                                                 | 1.31 .13<br>1.91 .13              | 5 2.90                       | 7.34                | 3.19 z                                    | -34              | 1.64                             | - 22        |              | 100.00                  |
| 51 AL FE(3)<br>51.69 17.27 2.12                                                                                  | FE(2) MN<br>7-05 +1               | MG<br>2 4⊾09                 | 7.64                | NA<br>5+35 2                              | K<br>•82         | []<br>1.16                       | P.18        | CR .00       |                         |
| CIPW NORM                                                                                                        |                                   |                              |                     |                                           |                  |                                  |             |              |                         |
| QTZ<br>WEIGHT PERCENT 5-261                                                                                      | 502<br>• 000                      | OR<br>13-822                 | 27.005              | AN<br>21-029                              |                  | - 000                            | NE          | 2            | .000                    |
| CATION PERCENT 4.977                                                                                             | • 000                             | 12.780                       | 29.272              | 21.482                                    | 1                | - 000                            | -00         | 3            | - 000                   |
| WEIGHT PERCENT .000                                                                                              | - 000                             | KS.000                       | D1<br>12.548        | .000                                      | 1                | HY<br>2.400                      | DL<br>• 004 | 2            | - 000                   |
| CATION PERCENT .000                                                                                              | : 388                             | :000                         | 12:281              | :000                                      |                  | 1:333                            | :00         | 8            | :000                    |
| MEIGHT PERCENT 4-309                                                                                             | СН<br>- 000                       | IL<br>3.108                  | • 000<br>• 000      | TN<br>•000                                | •                | PF<br>• 000                      | 40<br>• 00  | 2<br>2       | • 52 3                  |
| CATION PERCENT 3.173                                                                                             | .000                              | 2.326                        | :000                | .000                                      |                  | .000                             | .00         |              | . 47 2                  |
| MAFIC INDEX = 32.989<br>NORH TOTAL = 100.007                                                                     |                                   | ŗ                            |                     |                                           |                  |                                  |             |              |                         |
| OLIVINE COMPOSITION<br>FORSTERITE 4000                                                                           | FAYAL                             | ITE .0                       | 00                  |                                           |                  |                                  |             |              |                         |
| OR THOP YROX ENE COMPOSITION                                                                                     | FFAROS                            | 111TE 61.3                   | 8 <b>9</b>          |                                           |                  |                                  |             |              |                         |
| CLINOPYROXENE COMPOSITION                                                                                        |                                   |                              |                     |                                           |                  |                                  |             |              |                         |
| WOLLASTONITE 49-679                                                                                              | ENSTA                             | FITE 19.4                    | 30                  | FERROSILITE                               | 30.89            | 2                                |             |              |                         |
| PLAGIGCLASE 22.346<br>PLAGIGCLASE COMPOSITI                                                                      | ALBITI                            | 43.6<br>1) 43.7              | 58<br>79            | ANDRTHITE                                 | 33.99            | 6                                |             |              |                         |
| THORNTON AND TUTTLE DIFFE                                                                                        | ENTIATION                         | NOEX                         | 20+620)}            | = <u>+6-089</u><br>= 14-290               |                  |                                  |             |              |                         |
| CRYSTALLIZATION INDEX (AN-<br>LARSEN INDEX (1/351+K)-(C                                                          | • 4G • D1 + F0 + F(<br>↓ + 4G)    | EQIV DE E                    | NĴ                  | = 29.643<br>= 8.047                       |                  |                                  |             |              |                         |
| 1 8848877011 0118837184<br>1001⊄18823911 011888888<br>10108 286188 28 938888 28                                  | FE2+MN+AGI                        | /PLAG)<br>                   |                     | = 36.721<br>= 80.104<br>= 36.711          |                  |                                  |             |              |                         |
| OXIDATION RATIO ACCORDING<br>DENSITY OF DRY LIQUID OF                                                            | TO LE MAITS<br>THIS COMPOSI       | E (FEO/FEO<br>TION (AT 1)    | +F2203)<br>050 DEG) | ■ .796<br>= 2.617                         |                  |                                  |             |              |                         |
| AFN RATIO<br>TOTAL ALKALIS 27.63                                                                                 | TOTAL                             | . FE 57.8                    | 8                   | ĦG                                        | 14.49            |                                  |             |              |                         |
| KUMATIITE PARAMETERS                                                                                             |                                   |                              |                     |                                           |                  |                                  |             |              |                         |
| FED/(FEO+HGO) CAD/AL203                                                                                          | \$102/TI02                        | AL203/TIC2                   | FE0#/T              | 102 CAQ/TI                                | 02 NA            | 20/1102                          | K 20/T 10   | 2            |                         |
| 154554 (AT 104 AL 202 - 65                                                                                       |                                   | - 400                        |                     |                                           | _                |                                  |             |              |                         |
| JENSEN LAT (UN AL293 - FEL<br>54.50                                                                              | 32.60                             | 12.91                        |                     |                                           |                  |                                  |             |              |                         |
| QUARTZ - FELOSPAR RATIOS                                                                                         | 08 TH(                            | CLASE 20.50                  | <b>.</b>            |                                           | 71.57            |                                  |             |              |                         |
| CUARTZ 11.42<br>CATION PROPORTIONS                                                                               | ORTHO<br>CA 38                    | CLASE 29.94                  | F∈                  | 40.37                                     | 58.59<br>4G      | 20-52                            |             |              |                         |
|                                                                                                                  | CA 12                             | . 05                         | MG                  | 6.45                                      | <b>S1</b>        | 81.50                            |             |              |                         |
|                                                                                                                  | SI 80                             | - 25                         | 4L                  | 13.40                                     | ЖG               | 6.35                             |             |              |                         |
|                                                                                                                  | ZMG 23                            | 4 55                         | 285                 | 46.53                                     | SI /5            | 29.76                            |             |              |                         |
|                                                                                                                  | CA 37                             | 407                          | AL                  | 41.89                                     | NA +K            | 21-05                            |             |              |                         |
| COORDINATES IN THE SYSTEM                                                                                        | PLAGIOCLASE                       | - OLIVINE                    | - CLIND             | PYROXENE -                                | QUARTZ           | IN MOLE                          | PERCEN      | 173          |                         |
| PROPORTION OF ANALYSIS IN                                                                                        | BASALT TETP                       | AHEDRON IS                   | 79.91               | HOLE PERCE                                | NT<br>Dr. AC     | ( 3 = 1                          |             |              | • •                     |
| CUNDERSURENC DEVICTION<br>Desert ictmaneurun                                                                     |                                   | . • ∠ <del>•</del><br>1- 27  | UPX .               | 13+4/<br>0-0                              | ۳ζ46             | 03+3L<br>74.04                   |             | <b>4</b> + L | 74 90<br>11.77          |
| CEINOPTRUXENE PROJECTION                                                                                         | 12                                | ). 49                        |                     | 16.96                                     |                  | 70.55                            |             |              | 0.0                     |
| PLAGIDCLASE PROJECTION                                                                                           | 11                                | 1-81                         |                     | 41,84                                     |                  | 0-0                              |             |              | ~ ~ ~                   |
| ALL VINE PROJECTION                                                                                              |                                   |                              |                     |                                           |                  |                                  |             |              | 27. 14                  |
|                                                                                                                  | c                                 | •••                          |                     | 12.86                                     |                  | 23+21                            | UP X + ( 4  | QT23         | 27•34<br>33•62          |
| CHAS PROJECTIONS                                                                                                 | C                                 |                              |                     | 12.85                                     |                  | 23+21                            | UP X+ ( 4   | QT2)         | 27.34<br>33.62          |
| CHAS PROJECTIONS                                                                                                 | c 19                              |                              | н                   | 12.86                                     | ۵                | 18-02                            | UP X+ ( 4   | S            | 27.34<br>33.62<br>51.01 |
| CHAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIOE PROJECTION                                               | C 19<br>C3A 34                    | 0.00<br>0.00                 | н<br>Н              | 12.86<br>11.97<br>13.50                   | ∆<br>S           | 18.02<br>51.33                   | UP X+ ( 4   | S            | 27.34<br>33.62<br>51.01 |
| CHAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>OLIVINE PROJECTION                         | C 19<br>C3A 34<br>CS 23           | ).00<br>).00<br>).67         | H<br>H              | 12.86<br>11.97<br>13.50<br>56.37          | ∆<br>۲<br>۲      | 18.02<br>51.03<br>19.82          | UP X+ ( 4   | S            | 27.34<br>33.62<br>51.01 |
| CHAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>OLIVINE PROJECTION<br>ENSTATITE PROJECTION | C 19<br>C3A 34<br>CS 23<br>M2S 21 | 0.00<br>0.67<br>0.81<br>7.12 | H<br>H<br>M<br>C2S3 | 12.86<br>11.97<br>13.50<br>56.37<br>32.45 | ۵<br>۲<br>۲<br>۲ | 18.02<br>51.03<br>19.82<br>40.43 | UP X+ ( 4   | \$<br>\$     | 27.34<br>33.62<br>51.01 |

SAMPLE MUNBER BG 130

ŀ

| NDIKWE FORMATION VO                                                                                                                                                          | LCANICS                                                                                                          |                                                                                             |                                                                  |                            |                                                                               |                        |                            |                         | 268         |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------|------------------------|----------------------------|-------------------------|-------------|----------------------------|
| SARPLE NURBER                                                                                                                                                                | BG 131                                                                                                           |                                                                                             |                                                                  |                            |                                                                               |                        |                            |                         | 200         |                            |
| 08161NAL WEIGAT P<br>SIO2 AL203 F<br>60.90 13.55                                                                                                                             | ERCENT UXID<br>E203 FE<br>2.89 7.2                                                                               | 0 MNO<br>1 14                                                                               | MG0<br>5.42                                                      | 2,31                       | NA20<br>1.00 3                                                                | K20<br>5,57            | T102<br>1.50               | P205<br>.24             | CR203       | 101AL<br>99.89             |
| WEIGHT PERCENT OX<br>9102 AL203 F<br>61,05 13,57                                                                                                                             | 1DE5 RECALC<br>E203 FE<br>2.89 7.2                                                                               | ULATED TO<br>O MNO<br>2 .14                                                                 | 100 PERCENT<br>MGD<br>5.63                                       | CAO<br>2.31                | NA20<br>1,88 3                                                                | K20<br>3.57            | TIQ2<br>1.50               | P205<br>.24             | CR203       | TOTAL<br>100.00            |
| CATION PROPORTION<br>SI AL F                                                                                                                                                 | S IN ANALYS<br>E(3) FE                                                                                           | 15<br>(2) MN                                                                                | HG                                                               | CA                         | NA                                                                            | к                      | TI                         | P                       | CR          |                            |
| 57.72 15.12<br>CIPH NORM                                                                                                                                                     | 2.05 5.7                                                                                                         | 1 ,11                                                                                       | 7,93                                                             | 2.34                       | 3.45 4                                                                        | .31                    | 1.07                       | ,19                     | .00         |                            |
|                                                                                                                                                                              | OTZ                                                                                                              | COR                                                                                         | D.R                                                              | AB                         | AN                                                                            |                        | LC                         | NE                      |             | KP                         |
| WEIGHT PERCENT 1<br>Mole Percent 4<br>Cation Percent 1                                                                                                                       | 9,821<br>7,881<br>8,739                                                                                          | 2,971<br>4,229<br>3,311                                                                     | 21.119<br>13.424<br>21.553                                       | 15,921<br>8,812<br>17,247  | 9,902<br>5,164<br>10,110                                                      | 2                      | .000<br>.000<br>.000       | .00<br>.00<br>.00       | 0<br>0<br>0 | .000<br>.000<br>.000       |
| WEIGHT_PERCENT                                                                                                                                                               | AC                                                                                                               | NS<br>.000                                                                                  | KS<br>.000                                                       | , 000                      | . 00 (                                                                        | ) 23                   | HY<br>2.665                | 0L<br>, 00              | Q           | . 000                      |
| MOLE PERCENT<br>Cation Percent                                                                                                                                               | .000<br>,000                                                                                                     | .000<br>.040                                                                                | . 869<br>, 6 <b>9</b>                                            | .000<br>.000               | .000                                                                          | 1 - 14                 | 1,888<br>3,308             | ,08<br>,00              | 0<br>Q      | .000<br>.000               |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                             | HT<br>4.188<br>2.625<br>3.082                                                                                    | CM<br>. 0 0 0<br>. 0 0 0<br>. 0 0 0                                                         | (L<br>2.852<br>2.728<br>2.135                                    | HM<br>.000<br>.000<br>.000 | TN<br>.00(<br>.00(<br>.00(                                                    | )<br> <br>]            | PF<br>.000<br>.000<br>,000 | RU<br>.00<br>.00<br>.00 | 0<br>0<br>U | AP<br>.569<br>.246<br>.513 |
| MAFIC INDEX = 30<br>NORM TOTAL = 100                                                                                                                                         | .275                                                                                                             |                                                                                             |                                                                  |                            |                                                                               |                        |                            |                         |             |                            |
| OLIVINE COMPOSITI<br>FORSTERITE                                                                                                                                              | 00                                                                                                               | FAYALIT                                                                                     | E .000                                                           | 1                          |                                                                               |                        |                            |                         |             |                            |
| ORTHOPYROXENE COM                                                                                                                                                            | POSITION                                                                                                         | FERROST                                                                                     | LITE 38.175                                                      | 2                          |                                                                               |                        |                            |                         |             |                            |
| CLINOP YROXENE COM                                                                                                                                                           | POSITION                                                                                                         | FNRTATT                                                                                     | TE                                                               |                            |                                                                               | 7 . AA                 | · ·                        |                         |             |                            |
| FELDSPAR COMPOSIT<br>ORTHOCLASE<br>PLACIDCLASE                                                                                                                               | 10N<br>44,990<br>COMPOSITION                                                                                     | ALBITE                                                                                      | 33.915                                                           | - · · -<br>AA Ç            | ORTHITE                                                                       | 21,09                  | 5                          |                         |             |                            |
| THORN FON AND TUTT                                                                                                                                                           | LE DIFFEREN                                                                                                      | TIATION IN                                                                                  | DEX                                                              |                            | 56.061                                                                        |                        |                            |                         |             |                            |
| CRYSTALLIZATION I<br>LARSEN INDEX (1/3)<br>ALBITE RATIO (100<br>IRON RATIO (FE2=<br>MG NUMBER AS CATI<br>OXIDATION RATIO A<br>DENSITY OF DRY LI<br>AFM RATIO<br>TOTAL ALKALI | NDEX (AN+HG<br>SI+K)-(CA+H<br>*(AB+AB EQI<br>MN)*100/(FE<br>ONS MG/CATI<br>CCORDING TO<br>QUID OF THI<br>S 26.10 | JDI+FO+FO<br>G)<br>VIN NE)/P<br>2+MN+MG)/<br>ONS (FE+MG<br>LE MAITRE<br>S COMPOSIT<br>TOTAI | EQIV OF EN<br>LAG)<br>)<br>(FEO/FEO+F<br>ION (AT 105<br>FF 46.98 | FE203)                     | - 19.722<br>= 12.722<br>= 61.653<br>= 62.772<br>= 58.132<br>= .786<br>= 2.546 | 26.92                  |                            |                         |             |                            |
| KOMATIITE PARAMET<br>FEO/(FEO+MGD) CA                                                                                                                                        | ERS<br>0/AL203 SI                                                                                                | 02/TID2 A                                                                                   | L203/1102                                                        | FE0*/TI(<br>5.54           | 02 CAQ/13                                                                     | 102 NĄ                 | 20/1102                    | K20/TI                  | 02          |                            |
| JENSEN CATION AL                                                                                                                                                             | 203 - FEO+F                                                                                                      | E203+1102                                                                                   | - MGQ                                                            |                            | •••                                                                           |                        |                            |                         |             |                            |
| ٩/                                                                                                                                                                           | · 76                                                                                                             | ten 7 + 7 Å                                                                                 |                                                                  |                            |                                                                               |                        |                            |                         |             |                            |
| QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION                                                                                                                   | RATIOS<br>29,69<br>34,86<br>IS                                                                                   | ORTHOC<br>ORTHOC<br>CA. 13.                                                                 | LASE 31,63<br>LASE 37.14<br>77 F                                 | PL<br>Al<br>FE 39          | AGIOCLASE<br>LBITE<br>7.61                                                    | E 38.58<br>28,00<br>HG | 46.62                      |                         |             |                            |
|                                                                                                                                                                              |                                                                                                                  | CA 3.                                                                                       | 45 M                                                             | 1 <b>G 1</b> .1            | 1,66                                                                          | sı                     | 84,89                      |                         |             |                            |
|                                                                                                                                                                              |                                                                                                                  | SI 79                                                                                       | 85 4                                                             | 4L 11                      | . 32                                                                          | HC                     | 10.97                      |                         |             |                            |
|                                                                                                                                                                              |                                                                                                                  | /4/<br>2MC 70                                                                               |                                                                  | <br>366 74                 | 3 94                                                                          | лын<br>Ст/м            | אני בע                     |                         |             |                            |
|                                                                                                                                                                              |                                                                                                                  | ∠MG 3법,                                                                                     | 50 Ì                                                             | 27E 34                     | 5.70                                                                          | 21/2                   | 20,24                      |                         |             |                            |
|                                                                                                                                                                              |                                                                                                                  | CA 17.                                                                                      | 4 00                                                             | AL 54                      | 1.84                                                                          | NA+K                   | 20.14                      |                         |             |                            |
| COORDINATES IN TH                                                                                                                                                            | E SYSTEM PL                                                                                                      | AGIOCLASE                                                                                   | - OLIVINE -                                                      | - CLINOP                   | ROXENE -                                                                      | QUARTZ                 | (IN MOLE                   | PERCE                   | NT)         |                            |
| PROPORTION OF ANA                                                                                                                                                            | LYSIS IN BA                                                                                                      | SALT TETRA                                                                                  | HEDRON 15                                                        | 69,41                      | OLE PERCE                                                                     | ENT                    |                            |                         |             |                            |
| BASALT TETRAHEDRO                                                                                                                                                            | IN                                                                                                               | 01. 25j.                                                                                    | 19 0                                                             | CPX                        | . 90                                                                          | PLAG                   | 39,42                      |                         | QTZ         | 35,40                      |
| CLINOPYROXENE PRO                                                                                                                                                            | JECTION                                                                                                          | 25.                                                                                         | 19                                                               | ſ                          | ).0                                                                           |                        | 39.42                      |                         |             | 35.40                      |
| QUARTZ PROJECTION                                                                                                                                                            | I                                                                                                                | 38.                                                                                         | 9 <b>9</b>                                                       |                            | . 0.2                                                                         |                        | 61.01                      |                         |             | 0,0                        |
| PLAGIOCLASE PROJE                                                                                                                                                            | CTION                                                                                                            | 41 .                                                                                        | 57                                                               |                            | . 0 0                                                                         |                        | 9.0                        |                         |             | 58.43                      |
| OLIVINE PROJECTIO                                                                                                                                                            | IN                                                                                                               | ٥,                                                                                          | 0                                                                |                            | . 00                                                                          |                        | 21.78                      | DPX+(                   | 4QTZ)       | 70.22                      |

٠ CHAS PROJECTIONS 15.74 TETRAHEDRON COORDINATES C 11,38 м 14.75 A S DIOPSIDE PROJECTION 55.35 C3A 30.18 м 14.47 S м OLIVINE PROJECTION CS 12.20 72,98 5 14.02 ENSTATITE PROJECTION H2S C2S3 \*\*\*\*\* \*\*\*\* A253 \*\*\*\*\* QUARTZ PROJECTION CAS2 \*\*\*\* MS \*\*\*\* CHS2 \*\*\*

58.12

| SI AL FE(3)<br>45.77 20.83 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ALYSIS<br>FE(2) M<br>8.61 4                                                                                                                                                                                                              | N MG<br>06 9₊08                                                                                                                                                                                                                                        | CA<br>1.48                                                                                                         | NA<br>10-51                                                                                                                                                         | ×                                                                                                                       | T I<br>1.09                                                                                                                | ۰21                                   | CR .00                      |                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|-----------------------------------------------|
| CIPW NORM<br>QTZ<br>WEIGHT PERCENT .000<br>MOLE PERCENT .000                                                                                                                                                                                                                                                                                                                                                                                                                                              | COX<br>6-908<br>14-232                                                                                                                                                                                                                   | DR<br>3.252<br>2.992                                                                                                                                                                                                                                   | 50.276<br>40.27                                                                                                    | AN<br>5.730<br>4.326                                                                                                                                                | :                                                                                                                       | LC<br>030                                                                                                                  | NE<br>•000                            |                             | KP<br>• 00 0<br>• 00 0                        |
| AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NS                                                                                                                                                                                                                                       | KS                                                                                                                                                                                                                                                     | 92.53d<br>01                                                                                                       | 9-643<br>WQ                                                                                                                                                         |                                                                                                                         | HY .                                                                                                                       |                                       |                             | C2                                            |
| WEIGHT PERCENT .000<br>Molé Percent .000<br>Cation Percent .000                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 300                                                                                                                                                                                                                                    | -000                                                                                                                                                                                                                                                   | - 500<br>- 600<br>- 600                                                                                            | .000<br>.000                                                                                                                                                        | 9<br>8<br>8                                                                                                             | . 307<br>. 36 7                                                                                                            | 17.535<br>21.987<br>17.205            |                             | • 00 0<br>• 00 0<br>• 00 0                    |
| WEIGHT PERCENT 3.639<br>MOLE PERCENT 3.301<br>CATION PERCENT 2.583                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000<br>.000                                                                                                                                                                                                                             | 3.022<br>4.132<br>2.132                                                                                                                                                                                                                                | .000                                                                                                               | .000<br>.000                                                                                                                                                        |                                                                                                                         | .000<br>.000                                                                                                               | .000<br>.000                          |                             | 49<br>- 640<br>- 400<br>- 556                 |
| MARIC INDEX = 33.836<br>NORM TOTAL = 100.003                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |                                                                                                                    |                                                                                                                                                                     |                                                                                                                         |                                                                                                                            |                                       |                             |                                               |
| CLIVINE COMPOSITION<br>FORSTERITE 48.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FAYA                                                                                                                                                                                                                                     | LITE 51.                                                                                                                                                                                                                                               | .715                                                                                                               |                                                                                                                                                                     |                                                                                                                         |                                                                                                                            |                                       |                             |                                               |
| OR THOP YROX ENE COMPOSITIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N                                                                                                                                                                                                                                        | 0511175 49                                                                                                                                                                                                                                             | 287                                                                                                                |                                                                                                                                                                     |                                                                                                                         |                                                                                                                            |                                       |                             |                                               |
| CLINDPYROXENE COMPOSITIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N<br>ENST                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                        | .000                                                                                                               | FERROSLITE                                                                                                                                                          | . 000                                                                                                                   |                                                                                                                            |                                       |                             |                                               |
| FELDSPAR COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |                                                                                                                    |                                                                                                                                                                     |                                                                                                                         |                                                                                                                            |                                       |                             |                                               |
| PLAGIOCLASE COMPOSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TION (PERC                                                                                                                                                                                                                               | AN) 10                                                                                                                                                                                                                                                 | 231                                                                                                                | ANURTHITE                                                                                                                                                           | 9.670                                                                                                                   |                                                                                                                            |                                       |                             |                                               |
| THORNTON AND TUITLE OIFF<br>SDLDIFICATION INDEX (A<br>CRYSTALLIZATION INDEX (A<br>LARSEN INDEX (I/3SI+K)-(C<br>ALBITE RATIO (IOC*(AB+AB<br>IRON RATIO (IFE2=MN)#100<br>MG NUMBER AS CATIONS MG/<br>CXICATION RATIO ACCORDIN<br>OENSITY OF ORY LIQUID OF                                                                                                                                                                                                                                                   | ERENTIATION<br>000000000000000000000000000000000000                                                                                                                                                                                      | INDEX<br>FED+FE203+A<br>FO EQIV OF<br>)/PLAG)<br>}<br>+MG)<br>TRE (PED/FE<br>SITION (AT                                                                                                                                                                | NA20+K20))<br>EN)<br>E0+FE203)<br>1650 DEGI                                                                        | x 53.523<br>24.777<br>= 17.396<br>x 6.040<br>= 39.769<br>= 59.675<br>x 51.338<br>x .759<br>2.656                                                                    |                                                                                                                         |                                                                                                                            |                                       |                             |                                               |
| AFM RATIO<br>TOTAL ALKALIS 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C TOT                                                                                                                                                                                                                                    | AL FE 50.                                                                                                                                                                                                                                              | . 67                                                                                                               | MG                                                                                                                                                                  | 25.01                                                                                                                   |                                                                                                                            |                                       |                             |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |                                                                                                                    |                                                                                                                                                                     |                                                                                                                         |                                                                                                                            |                                       |                             |                                               |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.0696 .08                                                                                                                                                                                                                                                                                                                                                                                                                                              | SI02/T102<br>31.55                                                                                                                                                                                                                       | 41203/TIC                                                                                                                                                                                                                                              | ]2 F€0≭/1<br>8.5                                                                                                   | 102 CAO/TI                                                                                                                                                          | 0Z NA2(<br>3+                                                                                                           | 0/T 102                                                                                                                    | K20/T10<br>•346                       | 2                           |                                               |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAC/AL2O3<br>-6696 -08<br>JENSEN CATION AL2O3 - F                                                                                                                                                                                                                                                                                                                                                                                                                   | SI02/T102<br>31+55<br>E0+FE203+T1<br>27+63                                                                                                                                                                                               | AL203/TIC<br>12.18<br>02 21.97                                                                                                                                                                                                                         | 02 FEO#/1<br>8-5                                                                                                   | 102 CAO/TI<br>2 •95                                                                                                                                                 | 02 NA 20<br>3+                                                                                                          | 2/T 102                                                                                                                    | K20/T10<br>•346                       | 2                           |                                               |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAC/AL203<br>-6696 -08<br>JENSEN CATION AL203 - FI<br>50-39<br>QUARTZ - FELDSPAR RATIOS<br>OUARTZ - OU<br>QUARTZ - OU<br>QUARTZ - OU                                                                                                                                                                                                                                                                                                                                | SI02/T102<br>31.55<br>ED+FE203+T1<br>27.63<br>CA                                                                                                                                                                                         | AL203/TIC<br>12.18<br>02 - MGC<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.                                                                                                                                                                                    | 02 FEO*/1<br>8.5<br>8.5<br>8.5                                                                                     | PLAGIOCLASE                                                                                                                                                         | 94.51<br>93.92                                                                                                          | 45• 35                                                                                                                     | K2D∕T10.<br>•346                      | 2                           |                                               |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAC/AL203<br>-6696<br>JENSEN CATION AL203 - FI<br>SOLARTZ - FELDSPAR RATIOS<br>OUARTZ - OUARTZ - OU<br>QUARTZ - OU<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                            | SI02/T102<br>E0+FE203+T1<br>27+63<br>CA<br>CA                                                                                                                                                                                            | AL203/TIC<br>12.18<br>02 - MGO<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>7.37<br>2.62                                                                                                                                                                    | 02 FE0#/1<br>8-5<br>8-5<br>8-5<br>8-5<br>8-5<br>8-5<br>8-5<br>8-5<br>8-5<br>8-5                                    | 102 CAO/TI<br>2 .95<br>PLAGIOCLASE<br>ALBITE<br>47.28<br>16.13                                                                                                      | 02 NA 21<br>3+<br>94+51<br>93+92<br>MG<br>11                                                                            | 45.35<br>81.25                                                                                                             | K20/T10<br>•346                       | 2                           |                                               |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAC/AL203<br>-0696<br>JENSEN CATION AL203 - FI<br>SO-39<br>CUARTZ - FELDSPAR RATIOS<br>OUARTZ - O<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                             | SI02/T102<br>31.55<br>ED+FE203+T1<br>27.63<br>CA<br>CA<br>CA<br>SI                                                                                                                                                                       | AL203/TIC<br>12.18<br>02 - MGO<br>21.97<br>HOCLASE<br>90CLASE<br>7.37<br>2.62<br>70.12                                                                                                                                                                 | 02 FEO#/1<br>8.5<br>08<br>FE<br>MG<br>AL                                                                           | 102 CAO/TI<br>2 .95<br>PLAGIOCLASE<br>ALBITE<br>47.28<br>16.13<br>15.96                                                                                             | 02 NA2<br>3.<br>93.<br>93.<br>93.<br>92<br>MG<br>S1<br>NG                                                               | 45.35<br>81.25<br>13.92                                                                                                    | K2D/T10.<br>•346                      | 2                           |                                               |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAC/AL2O3<br>-6696 -08<br>JENSEN CATION AL2O3 - P<br>SO.39 - P<br>CUARTZ - FELDSPAR RATIOS<br>OUARTZ - O<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                      | SI02/T102<br>ED+FE203+T1<br>27+63<br>CA<br>CA<br>SI<br>2MG                                                                                                                                                                               | AL203/TIC<br>12.18<br>02 _ MGO<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>7.37<br>2.62<br>70.12<br>39.27<br>. (4                                                                                                                                          | 02 FEO#/1<br>8.9<br>08<br>Fe<br>MG<br>AL<br>2FE                                                                    | 102 CAD/TI<br>2 .95<br>PLAGIOCLASE<br>ALBITE<br>47.28<br>16.13<br>15.96<br>40.94                                                                                    | 02 NA21<br>3+<br>94+51<br>93-92<br>MG<br>SI<br>MG<br>SI/5                                                               | 45.35<br>81.25<br>13.92<br>19.79                                                                                           | K20/T10.                              | 2                           |                                               |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGO) CAC/AL203<br>-0696<br>JENSEN CATION AL203 - FI<br>SO-39<br>CUARTZ - FELDSPAR RATIOS<br>OUARTZ - O<br>QUARTZ - O<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                               | SI02/T102<br>31.55<br>ED+fE203+T1<br>27.63<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA                                                                                                                                                          | AL203/TIC<br>12.18<br>02 - MGO<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>7.37<br>2.62<br>70.12<br>39.27<br>8.45                                                                                                                                          | 02 FEO#/1<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>FE<br>MG<br>AL<br>2FE<br>AL                                        | 102 CAO/TI<br>2 .95<br>PLAGIOCLASE<br>40115<br>47.28<br>16.13<br>15.96<br>40.94<br>59.63                                                                            | 02 NA2(<br>3+<br>93+51<br>93+72<br>S1<br>MG<br>S1/5<br>NA+K                                                             | 45.35<br>81.25<br>13.92<br>19.79<br>31.92                                                                                  | K20/TIO                               | 2                           |                                               |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6696 .08<br>JENSEN CATION AL203 - FI<br>SO.39 - FI<br>QUARTZ - FELDSPAR RATIOS<br>OUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM                                                                                                                                                                                                                                                                                         | SI02/T102<br>ED+FE203+T1<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLA                                                                                                                                                                     | AL203/TIC<br>12.18<br>02 21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>HOCLASE 5.<br>7.37<br>2.62<br>70.12<br>39.27<br>8.45<br>SE - OLIVIN                                                                                                                      | 02 FE0#/1<br>8.9<br>08<br>FE<br>MG<br>AL<br>2FE<br>AL<br>8.4<br>100<br>100                                         | 102 CAD/TI<br>2 .95<br>PLAGIOCLASE<br>ALBITE<br>47.28<br>16.13<br>15.96<br>40.94<br>59.63<br>PYROXENE -                                                             | 02 NA 29<br>3+<br>93+ 51<br>93+ 72<br>MG<br>SI<br>NG<br>SI/5<br>NA +K<br>QUAR TZ 0                                      | 45.35<br>81.25<br>13.92<br>19.79<br>31.92                                                                                  | K2D/TIO                               | 2                           |                                               |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAC/AL203<br>-6696<br>JENSEN CATION AL203 - FI<br>SO.39<br>CUARTZ - FELDSPAR RATIOS<br>OUARTZ - O<br>QUARTZ - O<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAMEOROM                                                                                                                                                                                                                                               | SI02/T102<br>31.55<br>ED+FE203+T1<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>CA<br>M PLAGIOCLA<br>N 8ASALT TE                                                                                                                               | AL203/TIC<br>12.18<br>02 _ MG0<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>7.37<br>2.62<br>70.12<br>39.27<br>8.45<br>SE - OLIVIN<br>TRAHEDRON 1<br>28.20                                                                                                   | 02 FE0#/1<br>8.5<br>MG<br>AL<br>2FE<br>AL<br>15 84.05                                                              | 102 CAD/TI<br>2 .95<br>PLAGIOCLASE<br>ALBITE<br>47.28<br>16.13<br>15.96<br>40.94<br>59.63<br>PYROXENE                                                               | 02 NA2(<br>3+<br>93+32<br>93+92<br>SI<br>NG -<br>SI /5<br>NA +K<br>QUARTZ 0<br>NT<br>PLAC                               | 45.35<br>81.25<br>13.92<br>19.79<br>31.92<br>1N MOLS                                                                       | K2D/TIO                               | 2                           | 2 64                                          |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAC/AL203<br>.0696 .08<br>JENSEN CATION AL203 - PI<br>SO.39 - PI<br>CUARTZ - FELDSPAR RATIOS<br>OUARTZ .00<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEORON<br>CILMORYAOYENE PRODECTION                                                                                                                                                                                                                        | SI02/T102<br>ED+f=203+T1<br>CA<br>CA<br>SI<br>CA<br>CA<br>SI<br>2MG<br>CA<br>M 2LAGIOCLA<br>N 8ASALT TE<br>OL                                                                                                                            | AL203/TIC<br>12.18<br>02GO<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>HOCLASE 5.<br>7.37<br>2.62<br>70.12<br>39.27<br>3.45<br>SE - OLIVIN<br>TRAHEDRON 1<br>28.20<br>28.20                                                                                | 2 FEOX/1<br>8-9<br>908<br>FE<br>MG<br>AL<br>2FE<br>AL<br>15 84-05<br>CPX                                           | 102 CAD/TI<br>2 . 95<br>PLAGIOCLASE<br>ALBITE<br>47.28<br>16.13<br>15.96<br>40.94<br>59.63<br>PYROXENE<br>MULE PERCE<br>-00                                         | 02 NA 2(<br>3+<br>93-92<br>46<br>51<br>NG<br>51/5<br>NA +K<br>QUAR TZ<br>0<br>NT<br>PLAG                                | 45.35<br>81.25<br>13.92<br>19.79<br>31.92<br>1N XOLS<br>69.22                                                              | K2D/TIO                               | 2<br>T }<br>QT Z            | 2.58                                          |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAC/AL203<br>.6696 .08<br>JENSEN CATION AL203 - FI<br>SO.39 - FI<br>QUARTZ - FELDSPAR RATIOS<br>OUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEORON<br>CLINOPYROXENE PROJECTION<br>OUARTZ PROJECTION                                                                                                                                                                                     | SI02/T102<br>ED+FE203+T1<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLA<br>N 8ASALT TE<br>OL                                                                                                                                                | AL203/TIC<br>12.18<br>02 _ MGC<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>HOCLASE 5.<br>7.37<br>2.62<br>70.12<br>39.27<br>8.45<br>SE - OLIVIN<br>TRAHEDRON 1<br>28.20<br>28.20<br>28.95                                                                   | 02 FE0#/1<br>8.0<br>FE<br>MG<br>AL<br>2FE<br>AL<br>S 84.05<br>C2X                                                  | 102 CAD/TI<br>2 .95<br>PLAGIOCLASE<br>ALBITE<br>47.28<br>16.13<br>15.96<br>40.94<br>59.63<br>PYROXENE<br>MULE PERCE<br>.00<br>0.0                                   | 02 NA 29<br>3+<br>94+51<br>93-92<br>MG<br>SI<br>NG<br>SI/5<br>NA +K<br>QUAR TZ<br>ONT<br>PLAG                           | 45.35<br>81.25<br>13.92<br>19.79<br>31.92<br>1N MOLS<br>69.22<br>69.22<br>71.05                                            | K2D/TIO                               | 2<br>T )<br>QT Z            | 2.58<br>2.5ā                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAC/AL203<br>-6696 -08<br>JENSEN CATION AL203 - FI<br>SO-39 - FELDSPAR RATIOS<br>OUARTZ - FELDSPAR RATIOS<br>OUARTZ - FELDSPAR RATIOS<br>OUARTZ - FELDSPAR RATIOS<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>PLAGIOCIASE PROJECTION                                                                                                                                       | SI02/T102<br>ED+FE203+T1<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>M PLAGIOCLA<br>N BASALT TE<br>OL                                                                                                                                        | AL203/TIC<br>12.18<br>02 _ MGC<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>HOCLASE 5.<br>7.37<br>2.62<br>70.12<br>39.27<br>8.45<br>SE - OLIVIN<br>TRAHEDRON 1<br>28.20<br>28.20<br>28.95<br>91.63                                                          | 02 FE0#/1<br>8.9<br>MG<br>AL<br>2FE<br>AL<br>15 84.05<br>CPX                                                       | 102 CAD/TI<br>2 .95<br>PLAGIOCLASE<br>ALBITE<br>4.017<br>16.13<br>15.96<br>40.94<br>59.63<br>PYROXENE -<br>MULE PERCE<br>.00<br>0.0<br>.00<br>.00                   | 02 NA2(<br>3+<br>94-51<br>93-92<br>51<br>NG -<br>51/5<br>NA+K<br>QUARTZ 0<br>NT<br>PLAG                                 | 45.35<br>81.25<br>13.92<br>19.79<br>31.92<br>1N XOLS<br>69.22<br>71.05<br>0.0                                              | KZD/TIO                               | 2<br>7 }<br>QT Z            | 2.58<br>2.5ã<br>0.0<br>8.37                   |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAC/AL203<br>.6696 .08<br>JENSEN CATION AL203 - FI<br>SO.39 - FI<br>QUARTZ - FELDSPAR RATIOS<br>OUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTION<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEORON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                               | SI02/T102<br>ED+FE203+T1<br>CA<br>CA<br>SI<br>2MG<br>CA<br>M PLAGIOCLA<br>N BASALT TE<br>OL                                                                                                                                              | AL203/TIC<br>12.18<br>02GC<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>T.37<br>2.62<br>70.12<br>39.27<br>8.45<br>SE - OLIVIN<br>TRAHEDRON 1<br>28.20<br>28.20<br>29.95<br>91.63<br>0.0                                                                     | 02 FE0#/1<br>8.9<br>608<br>FE<br>MG<br>AL<br>2FE<br>AL<br>15 84.05<br>CPX                                          | PLAGIOCLASE<br>ALBITE<br>47-28<br>16-13<br>15-96<br>40-94<br>59-63<br>PTROXENE -<br>MULE PERCE<br>.00<br>0.0<br>.00<br>.00                                          | 02 NA 29<br>3+<br>94+51<br>93+92<br>SI<br>NG -<br>SI/5<br>NA +K<br>GU AR TZ 0<br>NT<br>PL AG                            | 45.35<br>81.25<br>13.92<br>19.79<br>31.92<br>1N MOLS<br>69.22<br>71.05<br>0.0<br>37.03                                     | K 20 / T 10.<br>• 346<br>PER CEN      | 2<br>T }<br>QT Z            | 2.58<br>2.53<br>0.0<br>9.37<br>12.97          |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGO) CAC/AL203<br>.6696 .08<br>JENSEN CATION AL203 - FI<br>SO.39<br>CUARTZ FELDSPAR RATIOS<br>OUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEORON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CMAS PROJECTIONS                                                                                                                                              | SI02/T102<br>ED+f=203+T1<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA | AL203/TIC<br>12.18<br>02 _ MGO<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>HOCLASE 5.<br>7.37<br>2.62<br>70.12<br>39.27<br>8.45<br>SE - OLIVIN<br>TRAHEDRON 1<br>28.20<br>28.20<br>28.95<br>91.63<br>0.0                                                   | 02 FE0#/1<br>8.5<br>908<br>FE<br>MG<br>AL<br>2FE<br>AL<br>(S 84.05<br>C2X                                          | 102 CAD/TI<br>202 CAD/TI<br>95<br>PLAGTOCLASE<br>47.28<br>16.13<br>15.96<br>40.94<br>59.63<br>PYROXENE -<br>MULE PERCE<br>.00<br>0.0<br>.00<br>.00<br>.00           | 02 NA 2(<br>3+<br>93+51<br>93+72<br>SI<br>NG<br>SI/5<br>NA +K<br>GUAR TZ O<br>NT<br>PLAG                                | 45.35<br>81.25<br>13.92<br>19.79<br>31.92<br>1 N MOLS<br>69.22<br>7 1.05<br>0.0<br>37.03                                   | K20/TIO.<br>-346<br>PERCEN<br>0P X+(4 | 2<br>T)<br>QTZ<br>QTZ)      | 2.58<br>2.5ã<br>0.0<br>9.37<br>12.97          |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6696 .08<br>JENSEN CATION AL203 - FI<br>SO.39 - FI<br>QUARTZ - FELDSPAR RATIOS<br>OUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEORON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEORON COORDINATES                                                                                                            | SI02/T102<br>ED+FE203+T1<br>CA<br>CA<br>SI<br>2MG<br>CA<br>M 2LAGIOCLA<br>N 8ASALT TE<br>OL                                                                                                                                              | AL203/TIC<br>12.18<br>02GC<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>HOCLASE 5.<br>7.37<br>2.62<br>70.12<br>39.27<br>8.45<br>SE - OLIVIN<br>TRAHEDRON 1<br>28.20<br>28.20<br>28.20<br>29.95<br>91.63<br>0.0<br>15.06                                     | 02 FE0#/1<br>8.0<br>FE<br>MG<br>AL<br>2FE<br>AL<br>(5 84.05<br>C2X                                                 | PLAGIOCLASE<br>ALBITE<br>47-28<br>16-13<br>15-96<br>40.94<br>59-63<br>PYROXENE -<br>MULE PERCE<br>.00<br>0.0<br>.00<br>.00<br>.00<br>.00                            | 02 NA 29<br>3+<br>93+ 92<br>SI<br>NG -<br>SI /5<br>NA +K<br>QUAR TZ O<br>NT<br>PLAG                                     | 45.35<br>81.25<br>13.92<br>19.79<br>31.92<br>1N MOLS<br>69.22<br>71.05<br>0.0<br>37.03<br>22.01                            | K 20 / T 10.<br>• 346<br>PER CEN      | 2<br>T)<br>QTZ<br>QTZ)<br>S | 2.58<br>2.5ā<br>0.0<br>8.37<br>12.97<br>42.43 |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAC/AL203<br>.6696 .08<br>JENSEN CATION AL203 - FI<br>SO.39 - FI<br>QUARTZ - FELDSPAR RATIOS<br>OUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CLINOPYROXENE PROJECTION<br>QUART2 PROJECTION<br>PLAGIOCLASE PROJECTION<br>CMAS PROJECTIONS<br>TETRAMEDRON COCRDINATES<br>DIOPSIDE PROJECTION                                                                                                                         | SI02/T102<br>ED+FE203+T1<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>M PLAGIOCLA<br>N 8ASALT TE<br>OL                                                                                                                                        | AL203/TIC<br>12.18<br>02GC<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>HOCLASE 5.<br>7.37<br>2.62<br>70.12<br>39.27<br>9.45<br>SE - OLIVIN<br>TRAHEDRON 1<br>28.20<br>28.20<br>29.95<br>91.63<br>0.0<br>15.06<br>33.96                                     | 02 FE0#/1<br>8.9<br>MG<br>AL<br>2FE<br>AL<br>15 84.05<br>CPX<br>M                                                  | PLAGIOCLASE<br>ALBITE<br>40.17<br>16.13<br>15.96<br>40.94<br>59.63<br>PTROXENE -<br>MULE PERCE<br>.00<br>0.0<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00              | 02 NA29<br>94.51<br>93.92<br>SI<br>NG SI/5<br>NA+K<br>QUARTZ 0<br>NT<br>PLAG                                            | 45.35<br>81.25<br>13.92<br>19.79<br>31.92<br>1N MOLS<br>69.22<br>71.05<br>0.0<br>37.03<br>22.01<br>49.58                   | K 20 / T 10.                          | 2<br>T)<br>QTZ<br>QTZ)<br>S | 2.58<br>2.53<br>0.0<br>9.37<br>12.97<br>42.43 |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAC/AL203<br>.6696 .08<br>JENSEN CATION AL203 - FI<br>SO.39 - FI<br>QUARTZ - FELDSPAR RATIOS<br>OUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>QUARTZ PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIOE PROJECTION<br>QLIVINE PROJECTION                    | SI02/T102<br>ED+FE203+T1<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>M PLAGIOCLA<br>N 8ASALT TE<br>OL<br>C<br>C<br>C<br>C<br>C<br>A<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                         | AL203/TIC<br>12.18<br>02 _ MGO<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>HOCLASE 5.<br>7.37<br>2.62<br>70.12<br>39.27<br>3.45<br>SE - OLIVIN<br>TRAHEDRON 1<br>28.20<br>28.20<br>28.20<br>28.95<br>91.63<br>0.0<br>15.06<br>33.98<br>23.50               | 02 FE0±/1<br>8.9<br>MG<br>AL<br>2FE<br>AL<br>15 84.05<br>C2X<br>M<br>M<br>M                                        | PLAGIOCLASE<br>ALBITE<br>413ITE<br>16.13<br>15.96<br>40.94<br>59.63<br>PYROXENE<br>MULE PERCE<br>.00<br>0.0<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00        | 02 NA2(<br>3+<br>93+ 51<br>93+ 72<br>SI<br>NG -<br>SI /5<br>NA +K<br>QUAR TZ O<br>NT<br>PLAG<br>A<br>S<br>S             | 45.35<br>81.25<br>13.92<br>19.79<br>31.92<br>19.79<br>31.92<br>19.79<br>31.92<br>19.79<br>31.92<br>2.01<br>49.58<br>30.13  | K 20 / T 10.<br>• 346<br>PER CEN      | 2<br>T)<br>QTZ<br>QTZ)      | 2.58<br>2.53<br>0.0<br>8.37<br>12.97<br>42.43 |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAC/AL203<br>.0696<br>JENSEN CATION AL203 - FI<br>SO.39<br>CUARTZ - FELDSPAR RATIOS<br>OUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTION<br>BASALT TETRAHEORON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>QUARTZ PROJECTION<br>QUARTZ PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEORON COCRDINATES<br>DIOPSIOE PROJECTION<br>QLIVINE PROJECTION<br>CLIVINE PROJECTION<br>CLIVINE PROJECTION     | SI02/T102<br>ED+f=203+T1<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>M PLAGIOCLA<br>N 8ASALT TE<br>OL<br>C<br>C3A<br>CS<br>M25                                                                                                               | AL203/TIC<br>12.18<br>02 _ MGO<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>HOCLASE 5.<br>12.62<br>70.12<br>39.27<br>8.45<br>SE - OLIVIN<br>TRAHEDRON 1<br>28.20<br>28.20<br>28.20<br>28.20<br>29.95<br>91.63<br>0.0<br>15.06<br>33.98<br>23.50<br>42.36    | 02 FE0#/1<br>8.5<br>MG<br>AL<br>2FE<br>AL<br>15 84.05<br>C2X<br>M<br>M<br>M<br>M<br>C2S3                           | 102 CAD/TI<br>202 CAD/TI<br>102 CAD/TI<br>102 .95<br>1015.96<br>40.94<br>59.63<br>PYROXENE - 1<br>MULE PERCE<br>.00<br>0.0<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0 | 02 NA 2(<br>3+<br>93+ 51<br>93+ 92<br>SI<br>NG -<br>SI /5<br>NA +K<br>QU AR TZ O<br>NT<br>PL AG<br>A<br>S<br>S<br>AZ S3 | 45.35<br>81.25<br>13.92<br>19.79<br>31.92<br>1N MOLS<br>69.22<br>71.05<br>0.0<br>37.03<br>22.01<br>49.58<br>30.13<br>37.90 | K 20 / T 10.                          | 2<br>T)<br>QTZ<br>QTZ)<br>S | 2.58<br>2.5ã<br>0.0<br>3.37<br>12.97<br>42.43 |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6696 .08<br>JENSEN CATION AL203 - FI<br>SO.39 - FI<br>QUARTZ - FELDSPAR RATIOS<br>OUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEORON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>QLIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEORON COORDINATES<br>DIOPSIDE PROJECTION<br>QUARTZ PROJECTION<br>CLIVINE PROJECTION<br>CMAS PROJECTION | SI02/T102<br>ED+f=203+T1<br>CA<br>CA<br>SI<br>2MG<br>CA<br>CA<br>SI<br>2MG<br>CA<br>M 2LAGIOCLA<br>N 8ASALT TE<br>OL<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                           | AL203/TIC<br>12.18<br>02GC<br>21.97<br>HOCLASE 5.<br>HOCLASE 5.<br>HOCLASE 5.<br>7.37<br>2.62<br>70.12<br>39.27<br>8.45<br>SE - OLIVIN<br>TRAHEDRON 1<br>28.20<br>28.20<br>28.20<br>28.20<br>29.95<br>91.63<br>0.0<br>15.06<br>33.98<br>23.50<br>42.36 | D2 FE0#/1<br>8.9<br>608<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>3 84.05<br>C2X<br>M<br>M<br>M<br>C2S3<br>MS | PLAGIOCLASE<br>ALBITE<br>47.28<br>16.13<br>15.96<br>40.94<br>59.63<br>PYROXENE -<br>MULE PERCE<br>.00<br>0.0<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0 | 02 NA 2(<br>3+<br>93-92<br>SI<br>NG<br>SI/5<br>NA +K<br>GU AR TZ<br>PL AG<br>A<br>S<br>S<br>AZ S3<br>CM S2              | 45.35<br>81.25<br>13.92<br>19.79<br>31.92<br>1N MOLS<br>69.22<br>71.05<br>0.0<br>37.03<br>22.01<br>49.58<br>30.13<br>37.90 | K 20 / T 10.<br>• 346<br>PER CEN      | 2<br>T)<br>QTZ<br>QTZ)<br>S | 2.58<br>2.5ā<br>0.0<br>8.37<br>12.97<br>42.43 |

SAMPLE NUMBER 86 147

MN D • Q B

WEIGHT PERCENT OXIDES RECALCULATED TO 100 PERCENT SIO2 AL2D3 FE203 FE0 MNO MGO CAO 50-19 19-38 2.51 11-29 -09 6-68 1-51

MGD CAO 5.50 1.51 N420 5-94

NA20 5.94 \$20 •25

K20

Г 102 1.59

T 102

ORIGINAL WEIGHT PERCENT OXIDES SIO2 AL203 FE203 FE0 \$0.16 19.37 2.51 11.28 269

TOTAL 99.94

P 20 5 CR 20 3

P205 CR203 TOTAL

| SAMPLE NUMBER BG 152                                                                                                                                                                                                                    |                                                                                         |                                                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                  | 270                        | •                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------|-------------------------------|
| ORIGINAL WEIGHT PERCENT OX<br>SID2 AL203 FE203                                                                                                                                                                                          | IDES<br>FED MN                                                                          | 0 860                                                           | CAD                              | NA2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K 20                                         | 7102                             | P205 CR203                 | TOTAL                         |
| 57.26 14.53 2.83 7<br>WEIGHT PERCENT OXIDES RECA                                                                                                                                                                                        | LOULATED T                                                                              | 3 4.94<br>0 100 perce                                           | 4.68<br>NT                       | 5,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.20                                         | .97                              | .20                        | 99.43                         |
| 5102 AL203 FE203<br>57.59 14.51 2.85 7                                                                                                                                                                                                  | FED HN                                                                                  | 0 HGO<br>3 4.97                                                 | CAD<br>4.71                      | NA20<br>5.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K20<br>1.69                                  | TIO2<br>.96                      | P205 CR203                 | 100.00                        |
| CATION PROPORTIONS IN ANAL<br>SI AL FE(3)<br>53.07 15.87 1.98 5<br>Cipw Norm                                                                                                                                                            | YSIS<br>FE(2) MN<br>5.49 .1                                                             | MG<br>6.82                                                      | CA<br>4,65 ,                     | NA<br>9,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | к<br>1.99                                    | 71<br>, 68                       | P CR<br>.16 .80            | l                             |
| QTZ<br>WEIGHT PERCENT 2,204<br>MOLE PERCENT 8,417<br>CATION PERCENT 2,031                                                                                                                                                               | COR<br>.000<br>.000<br>.000                                                             | DR<br>9,984<br>10,032<br>9,932                                  | AB<br>43.558<br>38.111<br>45.995 | 11,<br>9.<br>11,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AN<br>770<br>706<br>713                      | LC<br>.000<br>.000<br>.000       | NE<br>,000<br>,000<br>,000 | KP<br>.000<br>.000<br>.000    |
| AC A                                                                                                                                                                                                | NS<br>.000<br>.000<br>.000                                                              | , 800<br>, 800<br>, 900                                         | DI<br>8,416<br>8,466<br>8,173    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000<br>000<br>000<br>000                     | HY<br>17,606<br>18,046<br>17,420 | 0L<br>.000<br>.000<br>.800 | C8<br>.000<br>.000<br>.000    |
| NT<br>WEIGHT PERCENT 4.133<br>MOLE PERCENT 4.095<br>CATION PERCENT 2.965                                                                                                                                                                | CM<br>.000<br>.000<br>.000                                                              | 1L<br>1.053<br>2.001<br>1.352                                   | HM<br>,000<br>,000<br>,000       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TN<br>000<br>000<br>000                      | РГ<br>, 000<br>, 000<br>, 000    | RU<br>.000<br>.000<br>.000 | AP<br>. 476<br>. 325<br>. 418 |
| MAFIC INDEX = 32.485<br>Norm Total = 100.001                                                                                                                                                                                            |                                                                                         |                                                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                  |                            |                               |
| OLIVINE COMPOSITION<br>Forsterite .000                                                                                                                                                                                                  | FATAL                                                                                   | ITE .O                                                          | 00                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                  |                            |                               |
| ORTHOPYROXENE COMPOSITION<br>ENGTATITE 56.927                                                                                                                                                                                           | FERRO                                                                                   | 5ILITE 43,0                                                     | 73                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                  |                            |                               |
| CLINOPYROXENE COMPOSITION                                                                                                                                                                                                               | ENSTA                                                                                   | TITE 27.9                                                       | 34                               | FERROSIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ITE 21.                                      | 136                              |                            |                               |
| FELDSPAR COMPOSITION<br>ORTHOCLASE 15,287                                                                                                                                                                                               | ALBIT                                                                                   | E 66.6                                                          | 93                               | ANORTHIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E 18.                                        | 021                              |                            |                               |
| PLAGIOCLASE COMPOSITI<br>THORNTON AND TUTTLE DIFFER                                                                                                                                                                                     | ON (PERC A<br>ENTIATION                                                                 | N) 21.2<br>INDEX                                                | 72                               | = 55.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47                                           |                                  |                            |                               |
| SOLIDIFICATION INDEX (100*<br>CRYSTALLIZATION INDEX (AN*<br>LARSEN INDEX (1/3SI+K)-(CA<br>ALBITE RATIO (100*(AB+AB E<br>IRON RATIO (100*(AB+AB E<br>IRON RATIO (FE2=HN)*100/<br>MG NUMBER AS CATIONS MG/CA<br>DXIDATION RATIO ACCURDING | MGO/(MGO+F<br>MG,DI+FQ+F<br>MG)<br>GIV IN NE)<br>FE2+MN+MG)<br>TIONS (FE+<br>TO LE MAIT | EO+FE2O3+NA<br>G EQIV OF E<br>/Plag)<br>/<br>Mg)<br>Re_(FE0/FE0 | 20+K20))<br>N)                   | = 22.8<br>= 23.8<br>= | 07<br>45<br>45<br>07<br>45<br>07<br>45<br>57 |                                  |                            |                               |
| DENSITY OF DRY LIQUID OF T<br>AFM RATIO<br>TOTAL ALKALIS 31.81                                                                                                                                                                          | HIS COMPOS<br>Tota                                                                      | ITION (AT 1<br>L FE 45.0                                        | 050 DEG)<br>8                    | = 2.5<br>KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i <b>64</b><br>23.                           | 11                               |                            |                               |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAU/AL203<br>.6611 .32                                                                                                                                                                            | <b>SIO</b> 2/TIO2<br>59.03                                                              | AL203/TI02<br>14.98                                             | 9.5                              | 102 CAU<br>3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0/T102<br>0.82                               | NA20/T102<br>5.278               | K20/1102<br>1,732          |                               |
| JENSEN CATION AL203 - FEC<br>31.47                                                                                                                                                                                                      | 0+FE203+TI0<br>26.41                                                                    | 2 - MGD<br>22.12                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                  |                            |                               |
| QUARTZ - FELDSPAR RATIOS<br>QUARTZ 3,26<br>QUARTZ 3,95<br>CATION PROPORTIONS                                                                                                                                                            | ÖRTH<br>Orth<br>Cá 2                                                                    | DCLASE 14.7<br>DCLASE 17.9<br>5.89                              | 9<br>1<br>FE                     | PLAGIOCL<br>ALBITE<br>36.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .ASE 91.<br>70.<br>MG                        | 95<br>14<br>38.02                |                            |                               |
|                                                                                                                                                                                                                                         | CA                                                                                      | 7.20                                                            | MG                               | 10.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SI                                           | 82,23                            |                            |                               |
|                                                                                                                                                                                                                                         | SI 7<br>2MG 3                                                                           | 8.24<br>6.67                                                    | AL<br>2FE                        | 11,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HG<br>SI                                     | 10,04<br>/5 26,52                |                            |                               |
|                                                                                                                                                                                                                                         | CA 2                                                                                    | 5.57                                                            | AL                               | 43,66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                           | +K 30.77                         | •                          |                               |
| COORDINATES IN THE SYSTEM                                                                                                                                                                                                               | PLAGIOCLAS                                                                              | E - OLIVINE                                                     | - CLING                          | PYROXENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - QUAR                                       | TZ (IN HOL                       | E PERCENT)                 |                               |
| PROPORTION OF ANALYSIS IN                                                                                                                                                                                                               | BASALT TET                                                                              | RAHEDRON IS                                                     | 85.33                            | HOLE PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RCENT                                        |                                  |                            |                               |
| BASALT TETRAHEDRON                                                                                                                                                                                                                      | OL 1                                                                                    | 5. <b>31</b>                                                    | СРХ                              | 9.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PL                                           | AG 67,63                         | QTZ                        | 7.48                          |
| QUARTZ PROJECTION                                                                                                                                                                                                                       | 1                                                                                       | 6.55                                                            |                                  | 10,35-*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              | 73.10                            |                            | 0.0                           |
| PLAGIOCLASE PROJECTION                                                                                                                                                                                                                  | 4                                                                                       | 7.30                                                            |                                  | 29.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | 0.0                              |                            | 23.12                         |
| OLIVINE PROJECTION                                                                                                                                                                                                                      |                                                                                         | 0.0                                                             |                                  | 8.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | 63.12                            | 0PX+(4QTZ)                 | 27.94                         |
| CHAS PROJECTIONS                                                                                                                                                                                                                        | _                                                                                       |                                                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                            |                                  | _                          |                               |
| TETRAHEDRON COORDINATES                                                                                                                                                                                                                 |                                                                                         | 8.45                                                            | M                                | 13.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A                                            | 18.00                            | 5                          | 49.63                         |
| OLIVINE PROJECTION                                                                                                                                                                                                                      | CS 2                                                                                    | 4.24                                                            | H                                | 55.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | э<br>5                                       | 20.75                            | ì                          |                               |
| ENSTATITE PROJECTION                                                                                                                                                                                                                    | M25 3                                                                                   | 0.24                                                            | C253                             | 30.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -<br>A2                                      | 53 39.15                         | )                          |                               |
| QUARTZ PROJECTION                                                                                                                                                                                                                       | CAS2 7                                                                                  | 7.56                                                            | MS                               | 20.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CH                                           | 52 1.51                          |                            |                               |

NDIKWE FORMATION VOLCANICS

.

| CATION PROPORTIONS IN ANAL<br>SI AL FE(3)<br>67.96 9.52 1.47 3                                                                                                                                                                                                                                                                                                                                                                                                            | .YSIS<br>FE(2) MN<br>5.28 .0                                                                                                                                                                                                           | HG<br>8 10.16                                                                                                                                                                                      | CA<br>4.67                                                                                                | NA 1<br>1.80                                                                                                                                                                | , 82                                                                                                  | 71<br>,20                                                                                                                                       | .02 CR .00                                     |                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| GIPW NURM<br>QTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COR                                                                                                                                                                                                                                    | <b>OR</b>                                                                                                                                                                                          | AB                                                                                                        | AN                                                                                                                                                                          |                                                                                                       | LC                                                                                                                                              | NE                                             | KP                                               |
| WEIGHT PERCENT 41.466<br>MOLE PERCENT 73.673<br>CATION PERCENT 39.418                                                                                                                                                                                                                                                                                                                                                                                                     | .000<br>.000<br>.000                                                                                                                                                                                                                   | 4, <b>B14</b><br>1, <b>877</b><br>4, 119                                                                                                                                                           | 8,281<br>3,371<br>9,020                                                                                   | 16.794<br>6.444<br>17.241                                                                                                                                                   |                                                                                                       | 000                                                                                                                                             |                                                | , 000<br>, 000<br>, 000                          |
| WEIGHT PERCENT .000<br>Mole Percent .000<br>Cation Percent .000                                                                                                                                                                                                                                                                                                                                                                                                           | NS<br>. 000<br>. 000<br>. 000                                                                                                                                                                                                          | KS<br>.000<br>.000<br>.000                                                                                                                                                                         | DI<br>4.605<br>2.208<br>4.726                                                                             | ыс<br>• 000<br>• 000<br>• 000                                                                                                                                               | 21<br>10<br>22                                                                                        | HY<br>.250<br>.454<br>.801                                                                                                                      | 0 L<br>. 0 0 0<br>. 0 0 0<br>. 0 0 0           | CS<br>, 880<br>, 000<br>. 000                    |
| NT<br>WEIGHT PERCENT 2,989<br>MOLE PERCENT 1,378<br>CATION PERCENT 2,212                                                                                                                                                                                                                                                                                                                                                                                                  | CM<br>.000<br>.000<br>.000                                                                                                                                                                                                             | .531<br>,374<br>,400                                                                                                                                                                               | HM<br>. 000<br>. 000<br>. 000                                                                             | TN<br>, 000<br>, 600<br>, 600                                                                                                                                               |                                                                                                       | PF<br>.000<br>.000<br>.000                                                                                                                      | RU<br>.000<br>.000<br>.000                     | AP<br>.071<br>.023<br>.064                       |
| MAFIC INDEX = 29,446                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                    |                                                                                                           |                                                                                                                                                                             |                                                                                                       |                                                                                                                                                 |                                                |                                                  |
| OLIVINE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FAYAI                                                                                                                                                                                                                                  | 77E 40                                                                                                                                                                                             | 0                                                                                                         |                                                                                                                                                                             |                                                                                                       |                                                                                                                                                 |                                                |                                                  |
| ORTHOPYROXENE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FE000                                                                                                                                                                                                                                  | CILITE OT DT                                                                                                                                                                                       | 2                                                                                                         |                                                                                                                                                                             |                                                                                                       |                                                                                                                                                 |                                                |                                                  |
| CLINOPYROXENE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FERRU                                                                                                                                                                                                                                  | 51L118 23.83                                                                                                                                                                                       |                                                                                                           |                                                                                                                                                                             |                                                                                                       |                                                                                                                                                 |                                                |                                                  |
| WOLLASTONITE 52,178                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ENSTA                                                                                                                                                                                                                                  | TITE 36.42                                                                                                                                                                                         | :3 F                                                                                                      | ERROSILITE                                                                                                                                                                  | 11,399                                                                                                | •                                                                                                                                               |                                                |                                                  |
| DATHOCLASE 13,798<br>PLACIOCLASE COMPOSITI                                                                                                                                                                                                                                                                                                                                                                                                                                | ALBIT                                                                                                                                                                                                                                  | E 28,46<br>N) 66,97                                                                                                                                                                                | 7 A                                                                                                       | NORTHITE                                                                                                                                                                    | 57.734                                                                                                | •                                                                                                                                               |                                                |                                                  |
| THORNTON AND TUTTLE DIFFER<br>SOLIDIFICATION INDEX (100<br>CRYSTALLIZATION INDEX (AN4<br>LARSEN INDEX (1/381+K)-(CA<br>ALBITE RATIO (1/381+K)-(CA<br>IRON RATIO ((FE2=MN)*100/<br>MG NUHBER AS CATIONS MG/CA<br>OXIDATION RATIO ACCORDING<br>DENSITY_OF DRY LIQUID OF 1                                                                                                                                                                                                   | ENTIATION<br>MG.DI(MGO+F<br>MG.DIFO+F<br>A+MG)<br>Eqiv in Ne)<br>(FE2+MN+HG)<br>Ations (FE+<br>To Le Mait<br>FO Le Mait<br>FMIS COMPOS                                                                                                 | INDEX<br>EOFFE2DJ+NA2<br>Q EQIV OF EN<br>/}<br>/<br>MG)<br>RE (FEO/FEO+<br>ITION (AT 10                                                                                                            | 6+K20))                                                                                                   | = 53,761<br>= 47.770<br>= 31.775<br>= 8.838<br>= 33.024<br>= 43.140<br>= 75,611<br>= .8633<br>= 2.485                                                                       |                                                                                                       |                                                                                                                                                 |                                                |                                                  |
| AFM RATIO<br>TOTAL ALKALIS 11.20                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTA                                                                                                                                                                                                                                   | L FE 40.37                                                                                                                                                                                         | ' н                                                                                                       | G                                                                                                                                                                           | 48.44                                                                                                 |                                                                                                                                                 |                                                |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                        |                                                                                                                                                                                                    |                                                                                                           |                                                                                                                                                                             |                                                                                                       |                                                                                                                                                 |                                                |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGD) CAO/AL2O3<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>30.66 - FEO                                                                                                                                                                                                                                                                                                                                                                  | SIQ2/TIQ2<br>255.41<br>)+FE203+TIQ<br>20.10                                                                                                                                                                                            | AL203/TI02<br>30.39<br>2 - MCO<br>41.24                                                                                                                                                            | FE0*/11<br>21.37                                                                                          | 02 CAO/TI<br>16.39                                                                                                                                                          | 02 NA2<br>3                                                                                           | 20/TID2<br>500 2                                                                                                                                | K20/T102<br>,429                               |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGD) CAO/AL2O3<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>JENSEN CATION AL203 - FEO<br>JENSEN CATION AL203 - FEO<br>JENSEN CATION AL203 - FEO<br>JENSEN CATION FEOPORTIONS                                                                                                                                                                                                                                                             | SI02/TI02<br>255.61<br>0+FE203+TI0<br>20.10<br>ORTH<br>ORTH<br>CA 2                                                                                                                                                                    | AL203/1102<br>30.39<br>2 - MG0<br>41.24<br>OCLASE 5.69<br>OCLASE 5.69<br>OCLASE 7.47                                                                                                               | FE0*/TI<br>21.37<br>FE 2                                                                                  | 02 CAO/TI<br>16.39<br>LAGIOCLASE<br>LBITE<br>1.30                                                                                                                           | 02 NA2<br>35.54<br>15.40<br>Mg                                                                        | 0/TID2<br>500 2                                                                                                                                 | K20/T102<br>,429                               |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGD) CAO/AL203<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>38.66 - FELDSPAR RATIOS<br>QUARTZ 50.77<br>QUARTZ 77.13<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                | SI02/TI02<br>255.61<br>0+FE203+TI0<br>08TH<br>CA 2<br>CA                                                                                                                                                                               | AL203/T102<br>30.39<br>2 - MC0<br>41.24<br>0CLASE 5.69<br>0CLASE 7.47<br>4.78<br>5.64                                                                                                              | FE0*/11<br>21.37<br>FE 2<br>MG 1                                                                          | 02 CAO/TI<br>16.39<br>LAGIOCLASE<br>LBITE<br>1.30<br>2.27                                                                                                                   | 02 NA2<br>35.54<br>15.40<br>Mg<br>SI                                                                  | 20/TID2<br>500 2<br>53.92<br>82.09                                                                                                              | K20/TIO2<br>,429                               |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGD) CAO/AL2O3<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>30.66<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 50.77<br>GUARTZ 77,13<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                      | SI02/TI02<br>255.61<br>D+FE203+TI0<br>20.10<br>ORTH<br>CA<br>CA<br>SI 8                                                                                                                                                                | AL203/1102<br>30.39<br>2 - NGO<br>41.24<br>0CLASE 5.69<br>0CLASE 7.47<br>5.64<br>1.99                                                                                                              | FE0*/TI<br>21.37<br>FE 2<br>MG 1<br>AL                                                                    | 02 CA0/TI<br>16.39<br>LAGIOCLASE<br>LBITE<br>1.30<br>2.27<br>5.74                                                                                                           | 02 NA3<br>35.54<br>15.40<br>NG<br>SI<br>MG                                                            | 53.92<br>82.09<br>12.26                                                                                                                         | K20/T102<br>.429                               |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGD) CAO/AL203<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>38.66 - FELDSPAR RATIOS<br>QUARTZ 58.77<br>QUARTZ 58.77<br>GUARTZ 77.13<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                | SI02/TI02<br>255.61<br>D+FE203+TIO<br>20.10<br>OR TH<br>CA<br>CA<br>SI B<br>2MG A<br>CA A                                                                                                                                              | AL203/TI02<br>30.39<br>2 - MC0<br>41.24<br>OCLASE 5.69<br>OCLASE 7.47<br>5.64<br>1.99<br>8.45<br>3.46                                                                                              | FE0*/TI<br>21.37<br>P<br>FE 2<br>MG 1<br>AL<br>2FE 1                                                      | 02 CA0/TI<br>16.39<br>LAGIOCLASE<br>LBITE<br>1.30<br>2.27<br>5.74<br>9.14<br>4.32                                                                                           | 02 NA2<br>35.54<br>15.40<br>Mg<br>SI/5<br>NA+K                                                        | 53.92<br>520<br>53.92<br>82.09<br>12.26<br>32.41<br>12.23                                                                                       | K20/TIO2<br>,429                               |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>JUARTZ - FELDSPAR RATIOS<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 59.77<br>GUARTZ 77,13<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                   | SI02/TI02<br>255.61<br>0+FE203+TI0<br>0RTH<br>CA 2<br>CA<br>SI 8<br>2MG 4<br>CA 4                                                                                                                                                      | AL203/1102<br>30.39<br>2 - MCO<br>41.24<br>0CLASE 5.69<br>0CLASE 7.47<br>5.64<br>1.99<br>8.45<br>3.46                                                                                              | FE0*/TI<br>21.37<br>FE 2<br>MG 1<br>AL<br>2FE 1<br>AL 4                                                   | 02 CA0/TI<br>16.39<br>LAGIOCLASE<br>LBITE<br>1.30<br>2.27<br>5.74<br>9.14<br>4.32                                                                                           | 02 NA2<br>35.54<br>15.40<br>MG<br>SI/5<br>NA+K                                                        | 53.92<br>52.99<br>12.26<br>32.41<br>12.23                                                                                                       | K20/TI02<br>,429                               |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGO) CAO/AL2O3<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 56.77<br>QUARTZ 77.13<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN                                                                                                                                                                                                                                     | SI02/TI02<br>255.61<br>D+FE203+TID<br>20.10<br>ORTH<br>CA<br>CA<br>SI 8<br>2MG 4<br>CA 4<br>PLAGIOCLAS<br>BASALT TET                                                                                                                   | AL203/TI02<br>30.39<br>2 - MC0<br>41.24<br>0CLASE 5.69<br>0CLASE 7.47<br>5.64<br>1.99<br>8.45<br>3.46<br>E - OLIVINE<br>RAHEDRON IS                                                                | FE0*/TI<br>21.37<br>FE 2<br>MG 1<br>AL<br>2FE 1<br>AL 4<br>- CLINOP<br>93.21                              | 02 CA0/TI<br>16.39<br>LAGIOCLASE<br>LBITE<br>1.30<br>2.27<br>5.74<br>9.14<br>4.32<br>YROXENE -<br>MOLE PERCE                                                                | 02 NA2<br>35.54<br>15.40<br>MG<br>SI<br>SI/5<br>NA+K<br>QUARTZ<br>NT                                  | 53.92<br>500<br>12.26<br>32.41<br>12.23<br>(IN HOLE                                                                                             | K20/T102<br>, 429                              |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 59.77<br>GUARTZ 77,13<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAMEDRON                                                                                                                                                                                   | SIQ2/TIQ2<br>255.61<br>D+FE203+TIQ<br>ORTH<br>CA 2<br>CA<br>SI 8<br>2MG 4<br>CA 4<br>PLAGIOCLAS<br>BASALT TET<br>OL (1                                                                                                                 | AL203/1102<br>30.39<br>2 - MCO<br>41.24<br>0CLASE 5.69<br>0CLASE 7.47<br>5.64<br>1.99<br>8.45<br>3.46<br>E - OLIVINE<br>RAHEDROM IS<br>8.35                                                        | FE0*/TI<br>21.37<br>FE 2<br>MG 1<br>AL<br>2FE 1<br>AL 4<br>- CLINOP<br>93.21<br>CPX                       | 02 CA0/TI<br>16.39<br>16.39<br>1.46<br>1.30<br>2.27<br>5.74<br>9.14<br>4.32<br>YROXENE -<br>MOLE PERCE<br>5.07                                                              | 02 NA2<br>35.54<br>15.40<br>NG<br>SI<br>SI/5<br>NA+K<br>QUARTZ<br>NT<br>PLAG                          | 53.92<br>52.99<br>12.26<br>32.41<br>12.23<br>(IN HOLE<br>28.19                                                                                  | K20/TIO2<br>,429<br>Percent)<br>qtz            | 48.41                                            |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGD) CAO/AL203<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 50.77<br>QUARTZ 77.13<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION                                                                                                                                                                                   | SIO2/TIO2<br>255.61<br>D+FE203+TIO<br>ORTH<br>CA<br>CA<br>SI 8<br>2MG 4<br>CA<br>CA<br>PLAGIOCLAS<br>BASALT TET<br>OL , 1                                                                                                              | AL203/TI02<br>30.39<br>2 - MCO<br>41.24<br>OCLASE 5.69<br>OCLASE 7.47<br>5.64<br>1.99<br>8.45<br>3.46<br>E - OLIVINE<br>RAHEDRON IS<br>8.35<br>9.33                                                | FE0*/11<br>21.37<br>FE 2<br>MG 1<br>AL<br>2FE 1<br>AL 4<br>- CLINOP<br>93.21<br>CPX                       | 02 CA0/TI<br>16.39<br>16.39<br>1.30<br>2.27<br>5.74<br>9.14<br>4.32<br>YROXENE -<br>MOLE PERCE<br>5.07<br>0.0                                                               | 02 NA2<br>35.54<br>15.40<br>MG<br>SI<br>SI/5<br>NA+K<br>QUARTZ<br>NT<br>PLAG                          | 53.92<br>520<br>82.09<br>12.26<br>32.41<br>12.23<br>(IN HOLE<br>28.19<br>29.69                                                                  | 429/TIO2<br>, 429<br>PERCENT)<br>QTZ           | 48.41<br>50.99                                   |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL2O3<br>.4546 .54<br>JENSEN CATION AL2O3 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 59.77<br>QUARTZ 77,13<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION                                                                                                                                                              | SIO2/TIO2<br>255.61<br>D+FE203+TIO<br>ORTH<br>CA<br>CA<br>SI 8<br>2MG 4<br>CA<br>CA<br>PLAGIOCLAS<br>BASALT TET<br>OL , 1<br>1                                                                                                         | AL203/1102<br>30,39<br>2 - MCO<br>41.24<br>OCLASE 5.69<br>OCLASE 7.47<br>5.64<br>1.99<br>8.45<br>3.46<br>E - OLIVINE<br>RAHEDRON IS<br>8.35<br>9.33<br>5.56                                        | FE0*/TI<br>21.37<br>FE 2<br>MG 1<br>AL<br>2FE 1<br>AL 4<br>- CLINOP<br>93.21<br>CPX                       | 02 CA0/TI<br>16.39<br>16.39<br>1.30<br>2.27<br>5.74<br>9.14<br>4.32<br>YROXENE -<br>MOLE PERCE<br>5.07<br>0.0<br>8.83                                                       | 02 NA2<br>35.54<br>13.40<br>NG<br>SI<br>MG<br>SI/5<br>NA+K<br>QUARTZ<br>NT<br>PLAG                    | 53.92<br>520<br>53.92<br>82.09<br>12.26<br>32.41<br>12.23<br>(IN HOLE<br>28.10<br>29.69<br>54.61                                                | 420/TIO2<br>. 429<br>PERCENT )<br>QTZ          | 48.41<br>50.99<br>9.0                            |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 59.77<br>QUARTZ 77.13<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION                                                                                                                                                              | SIO2/TIO2<br>255.61<br>D+FE203+TIO<br>ORTH<br>CA<br>CA<br>SI 8<br>2MG 4<br>CA<br>CA<br>4<br>PLAGIOCLAS<br>BASALT TET<br>OL , 1<br>1<br>3<br>2                                                                                          | AL203/TI02<br>30.39<br>2 - MCO<br>41.24<br>0CLASE 5.69<br>0CLASE 7.47<br>5.64<br>1.99<br>8.45<br>3.46<br>E - OLIVINE<br>RAHEDRON IS<br>8.35<br>9.33<br>5.56<br>5.54                                | FE0*/11<br>21.37<br>FE 2<br>MG 1<br>AL 2<br>FE 1<br>AL 4<br>- CLINOP<br>93.21<br>CPX                      | 02 CA0/TI<br>16.39<br>16.39<br>1.30<br>2.27<br>5.74<br>9.14<br>4.32<br>YROXENE -<br>MOLE PERCE<br>5.07<br>0.0<br>2.83<br>7.06                                               | 02 NA2<br>35.54<br>15.40<br>MG<br>SI/5<br>NA+K<br>QUARTZ<br>NT<br>PLAG                                | 20/TI02 2<br>500 02 2<br>82.09<br>12.26<br>32.41<br>12.23<br>(IN HOLE<br>28.19<br>29.69<br>54.61<br>0.0                                         | K20/TI02<br>,429<br>PERCENT)<br>QTZ            | 48.41<br>50.99<br>0.0<br>67.40                   |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 59.77<br>GUARTZ 77,13<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                                                    | SI02/TI02<br>255.61<br>D+FE203+TIO<br>ORTH<br>CA<br>CA<br>SI 8<br>2MG 4<br>CA<br>PLAGIOCLAS<br>BASALT TET<br>OL , 1<br>1<br>3<br>2<br>2                                                                                                | AL203/1102<br>30.39<br>2 - MCO<br>41.24<br>OCLASE 5.69<br>OCLASE 7.47<br>5.64<br>1.99<br>8.45<br>3.46<br>E - OLIVINE<br>RAHEDRON IS<br>8.35<br>9.33<br>5.56<br>5.54<br>0.0                         | FE0*/TI<br>21.37<br>FE 2<br>MG 1<br>AL<br>2FE 1<br>AL 4<br>- CLINOP<br>93.21<br>CPX                       | 02 CA0/TI<br>16.39<br>16.39<br>1.40<br>1.30<br>2.27<br>5.74<br>9.14<br>4.32<br>YROXENE -<br>MOLE PERCE<br>5.07<br>0.0<br>8.83<br>7.06<br>2.23                               | 02 NA2<br>35.54<br>15.40<br>NG<br>SI<br>SI/5<br>NA+K<br>QUARTZ<br>NT<br>PLAG                          | 20/TID2 2<br>509 2<br>53.92<br>82.09<br>12.26<br>32.41<br>12.23<br>(IN HOLE<br>28.19<br>29.69<br>54.61<br>0.0<br>12.42                          | PERCENT)<br>QTZ                                | 48.41<br>50.99<br>9.0<br>67.40<br>85.35          |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGD) CAO/AL203<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 50.77<br>QUARTZ 50.77<br>QUARTZ 77.13<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>OLIVINE PROJECTION                                                                                              | SIO2/TIO2<br>255.61<br>D+FE203+TIO<br>ORTH<br>CA<br>CA<br>SI 8<br>2MG 4<br>CA<br>CA<br>PLAGIOCLAS<br>BASALT TET<br>OL , 1<br>1<br>3<br>2                                                                                               | AL203/TI02<br>30.39<br>2 - MCO<br>41.24<br>0CLASE 5.69<br>0CLASE 7.47<br>5.64<br>1.99<br>8.45<br>3.46<br>E - OLIVINE<br>RAHEDRON IS<br>8.35<br>9.33<br>5.56<br>5.54<br>0.0                         | FE0*/11<br>21.37<br>FE 2<br>MG 1<br>AL<br>2FE 1<br>AL 4<br>- CLINOP<br>93.21<br>CPX                       | 02 CA0/TI<br>16.39<br>16.39<br>1.30<br>2.27<br>5.74<br>9.14<br>4.32<br>YROXENE -<br>MOLE PERCE<br>5.07<br>0.0<br>2.83<br>7.06<br>2.23                                       | 02 NA2<br>35.54<br>15.40<br>MG<br>SI/5<br>NA+K<br>QUARTZ<br>NT<br>PLAG                                | 20/TI02 2<br>500 02 2<br>82.09<br>12.26<br>32.41<br>12.23<br>(IN HOLE<br>28.10<br>29.60<br>54.61<br>0.0<br>12.42                                | PERCENT)<br>QTZ                                | 48.41<br>50.99<br>0.0<br>67.40<br>85.35          |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL2O3<br>.4546 .54<br>JENSEN CATION AL2O3 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ - S9.77<br>QUARTZ 77.13<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>OLIVINE PROJECTION<br>CHAS PROJECTIONS<br>TETRAHEDRON COORDINATES                                                             | SIQ2/TIQ2<br>255.61<br>D+FE203+TIQ<br>ORTH<br>CA<br>CA<br>SI 8<br>2MG 4<br>CA<br>PLAGIOCLAS<br>BASALT TET<br>OL , 1<br>1<br>3<br>2<br>2<br>C                                                                                           | AL203/1102<br>30.39<br>2 - MCO<br>41.24<br>OCLASE 5.69<br>OCLASE 7.47<br>5.64<br>1.99<br>8.45<br>3.46<br>E - OLIVINE<br>RAHEDRON IS<br>8.35<br>9.33<br>5.56<br>5.54<br>0.0<br>7.81                 | FE0*/TI<br>21.37<br>FE 2<br>MG 1<br>AL 4<br>- CLINOP<br>93.21<br>CPX                                      | 02 CA0/TI<br>16.39<br>LAGIOCLASE<br>LBITE<br>1.30<br>2.27<br>5.74<br>9.14<br>4.32<br>YROXENE -<br>MOLE PERCE<br>5.07<br>0.0<br>2.83<br>7.06<br>2.23<br>4.33                 | 02 NA2<br>35.54<br>13.40<br>NG<br>SI<br>MG<br>SI/5<br>NA+K<br>QUARTZ<br>NT<br>PLAG                    | 20/TID2 2<br>509 2<br>53.92<br>82.09<br>12.26<br>32.41<br>12.23<br>(IN HOLE<br>28.19<br>29.69<br>54.61<br>0.0<br>12.42<br>7.55                  | PERCENT)<br>QTZ<br>0PX+(4QTZ)                  | 48.41<br>50.99<br>9.0<br>67.40<br>85.35<br>70.31 |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 59.77<br>QUARTZ 77.13<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>OLIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION                                        | SI02/TI02<br>255.61<br>0+FE203+TIO<br>OR TH<br>CA<br>CA<br>SI 8<br>2MG 4<br>CA<br>CA<br>4<br>PLAGIOCLAS<br>BASALT TET<br>OL , 1<br>1<br>3<br>2<br>C<br>C<br>C3A 2                                                                      | AL203/TI02<br>30.39<br>2 - MCO<br>41.24<br>0CLASE 5.69<br>0CLASE 7.47<br>5.64<br>1.99<br>8.45<br>3.46<br>E - OLIVINE<br>RAHEDRON IS<br>8.35<br>9.33<br>5.56<br>5.54<br>0.0<br>7.01<br>2.11         | FE0*/11<br>21.37<br>FE 2<br>MG 1<br>AL 4<br>- CLINOP<br>93.21<br>CPX<br>M 1<br>M 1                        | 02 CA0/TI<br>16.39<br>LAGIOCLASE<br>LBITE<br>1.30<br>2.27<br>5.74<br>9.14<br>4.32<br>YROXENE -<br>MOLE PERCE<br>5.07<br>0.0<br>2.23<br>4.33<br>2.75<br>2.75                 | 02 NA2<br>35.54<br>15.40<br>MG<br>SI/5<br>NA+K<br>QUARTZ<br>NT<br>PLAG                                | 20/TI02 2<br>509 2<br>53.92<br>82.09<br>12.26<br>32.41<br>12.23<br>(IN MOLE<br>28.19<br>29.69<br>54.61<br>0.0<br>12.42<br>7.55<br>65.14         | R20/T102<br>PERCENT)<br>QTZ<br>OPX+(4QTZ)<br>S | 48.41<br>50.99<br>9.0<br>67,40<br>85.35<br>70.31 |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 50.77<br>QUARTZ 77.13<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>OLIVINE PROJECTION<br>CHAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>OLIVINE PROJECTION                  | SI02/TI02<br>255.61<br>0+FE203+TI0<br>ORTH<br>CA<br>CA<br>SI 8<br>2MG 4<br>CA<br>CA<br>BASALT TET<br>OL 1<br>1<br>3<br>2<br>C<br>C<br>C3A 2<br>C5<br>C3A 2<br>C5                                                                       | AL203/TI02<br>30.39<br>2 - MCO<br>41.24<br>0CLASE 5.69<br>0CLASE 7.47<br>5.64<br>1.99<br>8.45<br>3.46<br>E - OLIVINE<br>RAHEDRON IS<br>8.35<br>9.33<br>5.56<br>5.54<br>0.0<br>7.61<br>2.11<br>7.09 | FE0*/11<br>21.37<br>FE 2<br>MG 1<br>AL 2<br>FE 1<br>AL 4<br>- CLINOP<br>93.21<br>CPX<br>M 1<br>M 1<br>M 8 | 02 CA0/TI<br>16.39<br>LAGIOCLASE<br>LBITE<br>1.30<br>2.27<br>5.74<br>9.14<br>4.32<br>YROXENE -<br>MOLE PERCE<br>5.07<br>0.0<br>2.23<br>4.33<br>2.75<br>4.89<br>4.34         | 02 NA2<br>35.54<br>15.40<br>MG<br>SI/5<br>NA+K<br>QUARTZ<br>NT<br>PLAG                                | 20/TI02 2<br>53.92<br>82.09<br>12.26<br>32.41<br>12.23<br>(IN HOLE<br>28.19<br>29.69<br>54.61<br>0.0<br>12.42<br>7.55<br>65.14<br>6.02          | PERCENT)<br>QTZ<br>OPX+(4QTZ)<br>S             | 48.41<br>50.99<br>9.0<br>67.40<br>85.35<br>70.31 |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>.4546 .54<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 59.77<br>GUARTZ 77.13<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>QUARTZ PROJECTION<br>CLIVINE PROJECTION<br>CHAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>OLIVINE PROJECTION<br>CLIVINE PROJECTION | SI02/TI02<br>255.61<br>0+FE203+TIO<br>ORTH<br>CA<br>CA<br>SI 8<br>2MG 4<br>CA<br>CA<br>CA<br>PLAGIOCLAS<br>BASALT TET<br>OL 1<br>1<br>3<br>2<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | AL203/TI02<br>30.39<br>2 - MC0<br>41.24<br>0CLASE 5.69<br>0CLASE 7.47<br>5.64<br>1.99<br>8.45<br>3.46<br>E - OLIVINE<br>RAHEDRON IS<br>8.35<br>9.33<br>5.56<br>5.54<br>0.0<br>7.01<br>2.11<br>7.09 | FE0*/TI<br>21.37<br>P<br>FE 2<br>MG 1<br>AL 4<br>- CLINOP<br>93.21<br>CPX<br>M 1<br>M 1<br>M 8<br>C253 *  | 02 CA0/TI<br>16.39<br>LAGIOCLASE<br>LBITE<br>1.30<br>2.27<br>5.74<br>9.14<br>4.32<br>YROXENE -<br>MOLE PERCE<br>5.07<br>0.0<br>2.23<br>4.33<br>2.75<br>4.89<br>****<br>9.58 | 02 NA2<br>35.54<br>15.40<br>NG<br>SI/5<br>NA+K<br>QUARTZ<br>NT<br>PLAG<br>A<br>S<br>S<br>A2S3<br>CN57 | 20/TID2 2<br>509 2<br>82.09<br>12.26<br>32.41<br>12.23<br>(IN HOLE<br>28.19<br>29.69<br>54.61<br>0.0<br>12.42<br>7.55<br>65.14<br>6.02<br>***** | PERCENT)<br>QTZ<br>0PX+(4QTZ)                  | 48.41<br>50.99<br>0.0<br>67.40<br>85.35<br>70.31 |

SAMPLE NUMBER BG 238 ORIGINAL WEIGHT PERCENT OXIDES SIO2 AL203 FE203 FE0 MNO MGO CAO NA20 71,57 8,51 2,06 4,13 ,10 7,18 4,59 ,98

 WEIGHT
 PERCENT
 OXIDES
 RECALCULATED
 TO
 100
 PERCENT

 SIO2
 AL203
 FE203
 FE0
 HNO
 HGO
 CAO

 71,49
 9,50
 2.06
 4.12
 .10
 7.17
 4.58

271

P205 CR203

TIO2 P205 CR203

TOTAL 100,11

TOTAL

T102 .28

K 20 . 68

K 20

NA20 .90

| SAMPLE NUMBER BG 237                                                                                                                                                                                                                                                                                |                                                                                                                                                         |                                                                                     |                                                 |                                                      |                                                   | 27                              | 72                         |               |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------|----------------------------|---------------|------------------------------------|
| ORIGINAL WEIGHT PERCENT 0)<br>SIO2 AL203 FE203<br>74.04 8.76 1.07 2                                                                                                                                                                                                                                 | (IDES<br>FEO MNO<br>2,15 ,07                                                                                                                            | _ MGQ<br>5 , 38                                                                     | CA0<br>3.53                                     | NA20<br>3.39                                         | K 20<br>. 99                                      | 1102<br>.34                     | P205                       | CR203         | TOTAL<br>99.65                     |
| WEICHT PERCENT OXIDES REC/<br>SIO2 AL203 FE203<br>74.30 8.79 1.08                                                                                                                                                                                                                                   | ALCULATED TO<br>Fed MNO<br>2.16 .07                                                                                                                     | 100 PERCE<br>MGO<br>5.40                                                            | ENT<br>CAU<br>3.54                              | NA20<br>3.40                                         | K20<br>.90                                        | TIO2<br>.34                     | P205<br>.00                | CR203<br>, 02 | TOTAL<br>1 60.00                   |
| CATION PROPORTIONS IN ANAL<br>SI AL FE(3)<br>69.31 9.67 .76                                                                                                                                                                                                                                         | - Y819<br>FE(2) MN<br>1, <b>68</b> .04                                                                                                                  | MG<br>7.51                                                                          | CA<br>3.54                                      | NA<br>6.15                                           | K<br>1.07                                         | TI<br>,24                       | P<br>.00                   | CR , 01       |                                    |
| CIPW NORM<br>QTZ                                                                                                                                                                                                                                                                                    | COR                                                                                                                                                     | DR                                                                                  | AB                                              | Ai                                                   | N ·                                               | LC                              | NE                         |               | KP                                 |
| WEIGHT PERCENT 36.717<br>MULE PERCENT 69.064<br>CATION PERCENT 34.253                                                                                                                                                                                                                               | .000<br>.000<br>.000                                                                                                                                    | 5.337<br>2.672<br>5.374                                                             | 28,776<br>12,546<br>30,761                      | 6.0<br>2.4<br>6.0                                    | 49<br>86<br>94                                    | .000<br>.000<br>.000            | .000<br>.000<br>.000       | 0<br>0        | .000<br>.000<br>.000               |
| AC<br>Weight Percent .000<br>Mole Percent .000<br>Cation Percent .000                                                                                                                                                                                                                               | NS<br>,000<br>,000<br>,000                                                                                                                              | KS<br>.000<br>.000<br>.000                                                          | DI<br>9.1 <b>39</b><br>4.735<br>9.287           | الل)<br>0 ,<br>0 .<br>0 .                            | 0<br>0<br>0<br>0<br>0<br>0<br>0                   | HY<br>11,736<br>6.422<br>12,394 | OL<br>.000<br>.000<br>.000 | ()<br>)<br>0  | CS<br>.000<br>.000<br>.000         |
| HT<br>WEIGHT PERCENT 1.563<br>Hole Percent .772<br>Cation Percent 1.135                                                                                                                                                                                                                             | CM<br>.030<br>.015<br>.022                                                                                                                              | IL<br>. 448<br>. 488<br>. 488<br>. 479                                              | HM<br>. 000<br>. 000<br>. 000                   | . 0<br>. 0<br>. 0<br>. 0                             | N<br>0 0<br>0 0<br>0 0                            | PF<br>.000<br>.000<br>.000      | RU<br>,001<br>,000<br>,000 | 0<br>)<br>0   | AP<br>.000<br>.000<br>.000<br>.000 |
| MAFIC INDEX = 23.116<br>NORM TOTAL = 99.994                                                                                                                                                                                                                                                         |                                                                                                                                                         |                                                                                     |                                                 |                                                      |                                                   |                                 |                            |               |                                    |
| OLIVINE COMPOSITION                                                                                                                                                                                                                                                                                 | EAVAL T                                                                                                                                                 |                                                                                     | 0 A A                                           |                                                      |                                                   |                                 |                            |               |                                    |
| ORTHOP YRDXENE_COMPOSITION                                                                                                                                                                                                                                                                          | CC0000                                                                                                                                                  |                                                                                     |                                                 |                                                      |                                                   |                                 |                            |               |                                    |
| ENSTATITE 83.701<br>CLINOPYROXENE COMPOSITION                                                                                                                                                                                                                                                       | FERRUS                                                                                                                                                  | ILITE 18.3                                                                          | 299                                             |                                                      |                                                   |                                 |                            |               |                                    |
| WOLLASTONITE 52.650                                                                                                                                                                                                                                                                                 | ENSTAT                                                                                                                                                  | ITE 39.0                                                                            | 63 <b>3</b> I                                   | FERROSILI                                            | TE 7.2                                            | 717                             |                            |               |                                    |
| DRTHOCLASE 13.280<br>PLAGIOCLASE COMPOSIT                                                                                                                                                                                                                                                           | ALBITE<br>Ion (perc an                                                                                                                                  | <b>71</b><br>17                                                                     | 651<br>369                                      | NORTHITE                                             | 15.0                                              | 061                             |                            |               |                                    |
| THORNTON AND TUTTLE DIFFE<br>SOLIDIFICATION INDEX (100)<br>CRYSTALLIZATION INDEX (AN-<br>LARSEN INDEX (1/381+K)-(C<br>ALBITE RATIO (100*(AB+AB (<br>IRON RATIO (100*(AB+AB (<br>NUMBER AS CATIONS MG/C<br>DXIDATION RATIO ACCORDING<br>DENSITY OF DRY LIQUID OF<br>AFM RATIO<br>TOTAL ALKALIS 33.55 | RENTIATION I<br>HGQ/(HGQ+FE)<br>HGQ/IFO<br>A+HG)<br>Egiv in Ne)/<br>(Fe2+HN+HG))<br>(Fe2+HN+HG)<br>Ations (Fe+H<br>TO LE MAITR<br>THIS COMPOSI<br>TOTAL | NDEX<br>D+FE203+NA<br>EQIV OF 1<br>PLAG)<br>G)<br>E (FE0/FE)<br>TION (AT<br>FE 24.7 | A20+K2D))<br>EN)<br>D+FE2O3)<br>1050 DEG)<br>37 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 9<br>8<br>5<br>1<br>1<br>2<br>1<br>3<br>9<br>42,1 | 08                              |                            |               |                                    |
| KOMATIITE PARAMETERS<br>FED/(FED+MGB) CA0/AL203<br>.3667 .40                                                                                                                                                                                                                                        | SI02/TI02<br>217.76                                                                                                                                     | AL203/TID<br>25.76                                                                  | 2 FED*/T<br>9.1                                 | 102 CAO/<br>5 10,                                    | 1102 )<br><b>38</b>                               | 4620/1102<br>9.971              | K20/TI(<br>2,647           | 02            | ·                                  |
| 48.69                                                                                                                                                                                                                                                                                               | 13.49                                                                                                                                                   | 37.81                                                                               |                                                 |                                                      |                                                   |                                 |                            |               |                                    |
| QUARTZ - FELDSPAR RATIOS<br>QUARTZ 47.76<br>QUARTZ 51.84<br>CATION PROPORTIONS                                                                                                                                                                                                                      | ORTHO<br>ORTHO<br>CA 27                                                                                                                                 | CLASE 6.<br>CLASE 7.<br>.01                                                         | 94<br>53<br>FE                                  | PLAGIOCLA<br>ALBITE<br>15.72                         | SE 45.3<br>40,0<br>MG                             | 30<br>53<br>57.27               |                            |               |                                    |
| •                                                                                                                                                                                                                                                                                                   | CA 4                                                                                                                                                    | . 41                                                                                | KG                                              | 9.34                                                 | 51                                                | 86.25                           |                            |               |                                    |
|                                                                                                                                                                                                                                                                                                     | SI 94<br>2MC 45                                                                                                                                         | . B9<br>50                                                                          | AL<br>266                                       | 5,92                                                 | MG<br>97.                                         | 9739<br>/5 42.01                |                            |               |                                    |
|                                                                                                                                                                                                                                                                                                     | CA 27                                                                                                                                                   | . 54                                                                                | AL .                                            | 40.32                                                | NA                                                | K 30.15                         |                            |               |                                    |
| COORDINATES IN THE SYSTEM                                                                                                                                                                                                                                                                           | PLAGIOCLASE                                                                                                                                             | - OLIVIN                                                                            | E - CLINO                                       | PYROXENE                                             |                                                   | TZ (IN HOL)                     | E PERCE                    | NT)           |                                    |
| PROPORTION OF ANALYSIS IN                                                                                                                                                                                                                                                                           | BASALT TETR                                                                                                                                             | AHEDRONTI                                                                           | \$ 92,99                                        | HOLE PER                                             | CENT                                              |                                 |                            |               |                                    |
| BASALT TETRAHEDRON                                                                                                                                                                                                                                                                                  | GL 10                                                                                                                                                   | .16                                                                                 | CPX                                             | 9,99                                                 | PLA                                               | AG 39.63                        |                            | QTZ           | 40,22                              |
| CLINOPYROXENE PROJECTION                                                                                                                                                                                                                                                                            | 11                                                                                                                                                      | , 29                                                                                |                                                 | 0.0                                                  |                                                   | 44.03                           |                            |               | 44.58                              |
| QUARTZ PROJECTION                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                      | , 99                                                                                |                                                 | 1-71                                                 |                                                   | 66.30                           |                            |               | 4.9                                |
| PLAGIOCLASE PROJECTION                                                                                                                                                                                                                                                                              | 16                                                                                                                                                      | .83                                                                                 |                                                 | 16.54                                                |                                                   | 0.0                             |                            |               | 66.63                              |
| ULIVINE PROJECTION                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                       | . 0                                                                                 |                                                 | 4.74                                                 |                                                   | 18.83                           | 0 <b>P</b> X+()            | 4QTZ>         | 76.43                              |
| CMAS PROJECTIONS                                                                                                                                                                                                                                                                                    |                                                                                                                                                         |                                                                                     |                                                 |                                                      |                                                   |                                 |                            |               |                                    |
| TETRAHEDRON CODRDINATES                                                                                                                                                                                                                                                                             | <b>Č</b> 11                                                                                                                                             | . 84                                                                                | M                                               | 9,90                                                 | A                                                 | 9.98                            |                            | 5             | <b>68</b> .28                      |
| DIOPSIDE PROJECTION                                                                                                                                                                                                                                                                                 | C3A 26                                                                                                                                                  | , 69                                                                                | n                                               | 11.17                                                | 5                                                 | 62,14                           |                            |               |                                    |

OLIVINE PROJECTION

QUARTZ PROJECTION

ENSTATITE PROJECTION

CS 10.80

CAS2 69,62

\*\*\*\*

M25

м

MS

81.21

20.24

۰.

C2S3 \*\*\*\*\*

S

A253 \*\*\*\*

CM82 10.14

7.99

| SAMPLE NUMBER BO                                                                                                                                                                                                                                       | G 266                                                                                                                                              |                                                                                                          |                                                                |                                                                                            |                                                                         | 273                             |                            |             |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------|----------------------------|-------------|----------------------------|
| ORIGINAL WEIGHT PER<br>SID2 AL203 FE2<br>55.28 15.97 4                                                                                                                                                                                                 | CENT OXIDES<br>203 FED<br>.03 10.08                                                                                                                | MND M<br>121 9.1                                                                                         | GU CAQ<br>39 1.05                                              | NA20<br>, 24                                                                               | K20<br>1,24                                                             | T102<br>1,69                    | P205                       | CR203       | 101A<br>99.4               |
| WEIGHT PERCENT 0X11<br>SI02 AL203 FE2<br>55.61 16.06 4                                                                                                                                                                                                 | DES RECALCULA<br>203 FEO<br>.04 10.14                                                                                                              | ATED TO 100 PU<br>MNO HO<br>,21 9.4                                                                      | ERCENT<br>50 CAO<br>45 1,06                                    | NA20<br>. 24                                                                               | K20<br>1.25                                                             | T102<br>1.70                    | P205<br>.23                | CR203       | 101A-                      |
| CATION PROPORTIONS<br>SI AL FE<br>52.96 18.03 2<br>CIPW NORM                                                                                                                                                                                           | IN ANALYSIS<br>(3) FE(2<br>.91 9.08                                                                                                                | ) MN M(<br>.17 13,                                                                                       | 5 CA<br>41 1.08                                                | NA<br>. 45                                                                                 | 1.52                                                                    | TI<br>1,22                      | ۹<br>.19                   | CR .00      |                            |
| WEIGHT PERCENT 27<br>MOLE PERCENT 54<br>CATION PERCENT 26                                                                                                                                                                                              | TZ         Ci           .889         12.           .048         14.           .561         14.                                                     | UR UR<br>951 7.37<br>289 3.257<br>539 7.57                                                               | AH<br>1 2.042<br>9 907<br>8 2.229                              | A)<br>3.2<br>1.5<br>3.8                                                                    | 20<br>20<br>28<br>28                                                    | LC<br>.000<br>.300<br>.000      | NE<br>.000<br>.000<br>.000 |             | KP<br>.000<br>.000<br>.000 |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                                                                                                       | AC 4                                                                                                                                               | NS KS<br>000 .00<br>000 .00<br>000 .00<br>000 .00                                                        | DI<br>.800<br>.800<br>.000<br>.000                             | ابلا<br>۵۵ (<br>۵۵ (<br>۵۵ (                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>2<br>0<br>0<br>0<br>2 | HY<br>56.376<br>9.313<br>37,966 | OL<br>.000<br>.000<br>.000 | 0<br>0<br>0 | CS<br>.000<br>.000<br>.000 |
| WEIGHT PERCENT 3<br>MOLE PERCENT 2<br>CATION PERCENT 4                                                                                                                                                                                                 | MT<br>.9800<br>.957<br>.360                                                                                                                        | CM IL<br>000 3,22<br>000 2,47<br>000 2,47<br>000 2,43                                                    | HM<br>9 .000<br>7 .000<br>5 .000                               | . 00<br>. 00<br>. 00<br>. 01                                                               | N<br>00<br>00<br>00                                                     | PF<br>.000<br>.000<br>.000      | ,000<br>,000<br>,000       | 0<br>0<br>0 | ар<br>.548<br>.190<br>.497 |
| MAFIC INDEX = 46.0<br>NORM TOTAL = 100.0                                                                                                                                                                                                               | 033<br>014                                                                                                                                         |                                                                                                          |                                                                |                                                                                            |                                                                         |                                 |                            |             |                            |
| OLIVINE COMPOSITION<br>FORSTERITE                                                                                                                                                                                                                      | . 040.                                                                                                                                             | FAYALITE                                                                                                 | . 0 0 0                                                        |                                                                                            |                                                                         |                                 |                            |             |                            |
| ORTHOPYROXENE COMPO<br>ENSTATITE                                                                                                                                                                                                                       | DSITION<br>54.669                                                                                                                                  | FERROSILITE                                                                                              | 35 / 331                                                       |                                                                                            |                                                                         |                                 |                            |             |                            |
| CLINOPYROXENE COMPO<br>WOLLASTONITE                                                                                                                                                                                                                    | OSITION<br>.000                                                                                                                                    | ENSTALITE                                                                                                | . 0 0 0                                                        | FERROSILI                                                                                  | TE .00                                                                  | 0                               |                            |             |                            |
| FELDSPAR COMPOSITI                                                                                                                                                                                                                                     | 0N<br>56.089                                                                                                                                       | ALBITE                                                                                                   | 15,541                                                         | ANORTHITE                                                                                  | 28.37                                                                   | 70                              |                            |             |                            |
| INDERIGN AND TUTIL<br>SOLIDIFICATION IND<br>CRYSTALLIZATION IND<br>CRYSTALLIZATION IN<br>LARSEN INDEX (1/38<br>ALBITE RATIO (100*<br>IKON RATIO (FE2=M<br>MG NUMBER AS CATIO<br>OXIDATION RATIO AC<br>DENSITY OF DRY LIQ<br>AFM RATIO<br>TOTAL ALKALIS | E DIFFERENTI<br>EX (100×MGO/<br>DEX (AN+MG,D<br>I+K)~(CA+MG)<br>(AB+AB EQIU<br>N)*100/(FE2+<br>NS MG/CATION<br>CORDING TO L<br>UID OF THIS<br>6,02 | (MGO+FED+FE2O<br>I+FO+FO EQIV<br>IN NE)/PLAG)<br>S (FE+MG)<br>E MAITRE (FEO<br>GUMPOSITION (<br>TOTAL FE | 3+NA20+K20))<br>OF EN)<br>/fe0+fe203)<br>AT 1050 Deg)<br>35.77 | = 37,31,<br>= 37,58<br>= 20,213<br>= 4,43<br>= 35,39<br>= 58,34<br>= 62,40<br>= 2,65<br>XG | 20<br>58<br>11<br>46<br>88<br>6<br>38.21                                | I                               |                            |             |                            |
| KOMATIITE PARAMETE<br>FEO/(FEO+HGO) CAO<br>.5935<br>JENSEN CATION AL2<br>41.                                                                                                                                                                           | RS<br>/AL203 SIO2<br>07 FE0+FE2<br>32 - FE0+FE2                                                                                                    | /TIO2 AL2O3/<br>2.71 9.<br>03+1102 - MGD<br>.96 30,72                                                    | 1102 FE0×/<br>45 8.1                                           | 102 CAO/<br>1 ,                                                                            | 1102 NA                                                                 | 20/1102<br>.142                 | K20/TI<br>,734             | 02          |                            |
| QUARTZ - FELDSPAR                                                                                                                                                                                                                                      | RATIOS                                                                                                                                             |                                                                                                          |                                                                |                                                                                            | <b>67 1 1 1</b>                                                         |                                 |                            |             |                            |
| QUARTZ<br>QUARTZ<br>CATION PROPORTIONS                                                                                                                                                                                                                 | 74.77<br>CA                                                                                                                                        | ORTHOCLASE                                                                                               | 17,76<br>19,76<br>FE                                           | ALBITE                                                                                     | 5.47<br>5.47<br>MG                                                      | ວ<br>7<br>55.84                 |                            |             |                            |
|                                                                                                                                                                                                                                                        | CA                                                                                                                                                 | 1.60                                                                                                     | MG                                                             | 19.88                                                                                      | SI                                                                      | 78.52                           |                            |             |                            |
|                                                                                                                                                                                                                                                        | SI                                                                                                                                                 | 20.25                                                                                                    | AL                                                             | 11.96                                                                                      | MG                                                                      | 17.79                           |                            |             |                            |
|                                                                                                                                                                                                                                                        | 2H<br>Ca                                                                                                                                           | ig 47,49<br>9,73                                                                                         | 2FE<br>AL                                                      | 33.75<br>81.41                                                                             | SI/:<br>NA+)                                                            | 5 18.76<br>( 8.85               |                            |             |                            |
| COORDINATES IN THE                                                                                                                                                                                                                                     | SYSTEM PLAG                                                                                                                                        | TOCLASE - OLI                                                                                            | VINE - CLIN                                                    | PYROXENE                                                                                   | - QUART                                                                 | Z (IN MOLE                      | E PERCE                    | (TM         |                            |
| PROPORTION OF ANAL                                                                                                                                                                                                                                     | YSIS IN BASA                                                                                                                                       | LI TETRAHEDRO                                                                                            | N IS 70.59                                                     | HOLE PER                                                                                   | CENT                                                                    |                                 |                            |             |                            |
| BASALT TETRAHEDRON                                                                                                                                                                                                                                     | . 0                                                                                                                                                | E 411,34                                                                                                 | CPX                                                            | .00                                                                                        | PLA                                                                     | 6 8.59                          |                            | QTZ         | 51.07                      |
| CLINOPYROXENE PROJ                                                                                                                                                                                                                                     | ECTION                                                                                                                                             | 40.34                                                                                                    |                                                                | Û. Û                                                                                       |                                                                         | 8.59                            |                            |             | 51.07                      |
| QUARTZ PROJECTION                                                                                                                                                                                                                                      |                                                                                                                                                    | 82.44                                                                                                    |                                                                | .00                                                                                        |                                                                         | 17.56                           |                            |             | 0,0                        |
| PLAGIOCLASE PROJEC                                                                                                                                                                                                                                     | TION                                                                                                                                               | 44.13                                                                                                    | ~~*                                                            | . 40                                                                                       |                                                                         | 0.0                             |                            |             | 55.87                      |
| QLIVINE PROJECTION                                                                                                                                                                                                                                     |                                                                                                                                                    | Ú. G                                                                                                     |                                                                | .00                                                                                        |                                                                         | 4,03                            | 0 <b>#</b> X+(             | 4QTZ)       | 95.97                      |
| CHAS PROJECTIONS                                                                                                                                                                                                                                       |                                                                                                                                                    |                                                                                                          |                                                                |                                                                                            |                                                                         |                                 |                            |             |                            |

14.59

56.30

13.96

\*\*\*\*

\*\*\*\*

A

S

S

A253

CMS2

S

58.74

23.54

17.31

82.51

\*\*\*\*

\*\*\*\*\*

Μ

m

м

C253

HS

TETRAHEDRON COORDINATES

DIOPSIDE PROJECTION

ENSTATITE PROJECTION

OLIVINE PROJECTION

QUARTZ PROJECTION

C

C3A

CS

M29

CAS2

3.14

26.38

3.43

\*\*\*

\*\*\*

|                                                                              | ·                                            |                                       |                            |                                 |             | 2                             | 274                        |          |                                       |
|------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|----------------------------|---------------------------------|-------------|-------------------------------|----------------------------|----------|---------------------------------------|
| ORIGINAL WEICHT PERCEN<br>5102 AL203 FE203<br>57.73 14.96 3.30               | FEO MN<br>FEO MN<br>B'45 .0                  | D MGD<br>4 11.95                      | CA0<br>.28                 | NA20                            | K 20        | TIQ2<br>1,55                  | P205 (                     | CR203    | - TOTAL<br>99,19                      |
| WEIGHT PERCENT OXIDES 4<br>SIO2 AL203 FE203<br>58.20 15.00 3.41              | RECALCULATED TO<br>FED MNO<br>8.51 .0        | 0 100 PERCENT<br>0 MG0<br>4 12.05     | r<br>CAÚ<br>,28            | NA20<br>, 06                    | K 20        | T102<br>1.56                  | P205 (                     | CR203    | TOTAL<br>100.00                       |
| CATION PROPORTIONS IN A<br>54.81 46.74 FE(3)<br>54.81 16.74 2.41             | NALYBIS<br>FE(2) MN<br>5.71 .0               | 3 16.91                               | CA<br>·2B                  | NA<br>.11                       | K.71        | 1.11                          | P.17                       | CR . 00  |                                       |
| CIPW NORM                                                                    |                                              |                                       |                            |                                 |             |                               |                            |          |                                       |
| QTZ<br>WEIGHT PERCENT 32.911<br>MOLE PERCENT 58.403<br>CATION PERCENT 30.995 | COR<br>14.332<br>15.007<br>15.910            | 0R<br>3.515<br>1.643<br>3,573         | AB<br>.512<br>.208<br>.552 | AN<br>.01<br>.01                | 7<br>7<br>7 | LC<br>. 000<br>. 000<br>. 000 | NE<br>.000<br>.000<br>.000 |          | KP<br>.000<br>.000<br>.000            |
| AC<br>WEIGHT PERCENT .000<br>MOLE PERCENT .000<br>CATION PERCENT .000        | NS<br>.000<br>.000<br>.000                   | KS<br>.000<br>.000<br>.000            | D1<br>.000<br>.000<br>.000 | WC<br>. 00<br>. 00<br>. 00      |             | HY<br>0,318<br>0.127<br>2.669 | 0L<br>.000<br>.000<br>.000 |          | CS<br>. 000<br>. 000<br>. 000         |
| NT<br>WEIGHT PERCENT 4.938<br>MOLE PERCENT 2.277<br>CATION PERCENT 3.620     | СМ<br>, 600<br>, 800<br>, 800                | IL<br>2,968<br>2,088<br>2,213         | HM<br>.000<br>.000<br>.000 | TN<br>. 00<br>. 40<br>. 40      | ŭ<br>0<br>0 | PF<br>.000<br>.000<br>.000    | RU<br>.000<br>.000<br>.000 |          | AP<br>. 501<br>. 159<br>. <b>45</b> 0 |
| MAFIC INDEX = 40.725<br>NORM TOTAL = 100.011                                 |                                              |                                       |                            |                                 |             |                               |                            |          |                                       |
| OLIVINE COMPOSITION<br>FORSTERITE .00                                        | 0 FAYAL                                      | ITE .00                               | 0                          |                                 |             |                               |                            |          |                                       |
| ORTHOPYROXENE COMPOSIT<br>ENSTATITE 74.4                                     | ION<br>16 FERRO                              | SILITE 25.58                          | 4                          |                                 |             |                               |                            |          |                                       |
| CLINOPYROXENE COMPOSIT                                                       | ION .<br>Iù Ensta                            | TITE .00                              | 0 f                        | ERROSILIT                       | E .00       | D                             |                            |          |                                       |
| FELDSPAR COMPOSITION<br>DRTHOCLASE 86.9<br>Plagioclase compo                 | 22 ALBIT<br>SITION (PERC A                   | E 12.65<br>N) 3.24                    | 4 4<br>6                   | NORTHITE                        | , 42        | 5                             |                            |          |                                       |
| THURNTON AND TUTTLE DI                                                       | FERENTIATION                                 | INDEX<br>ED+FE203+NA2                 | 0+K20))                    | = 36.937<br>= 48.927            | ,           |                               |                            |          |                                       |
| CRYSTALLIZATION INDEX<br>LARSEN INDEX (1/38I+K)<br>ALBITE RATIO (100*(AB+    | (AN+MG,DI+FO+F<br>-(CA+MG)<br>AB EQIV IN NE) | O EQIV OF EN<br>/PLAG)                | )                          | = 21.044<br>= 1.593<br>= 96.754 |             |                               |                            |          |                                       |
| IRON RATIO ((FE2=MN)+1)<br>MG NUMBER AS CATIONS M<br>OVIDATION PATTO ACCORD  | GOV(FE2+MN+MG)<br>G/CATIONS (FE+             | )<br>MG)<br>RF (FF0/FF0+1             | FF203)                     | # 47.706<br># 71.602            |             |                               |                            |          |                                       |
| DENSITY OF DRY LIQUID (<br>AFM RATIO                                         | OF THIS COMPOS                               | ITION (AT 10                          | 50 DEG)                    | = 2,632                         |             |                               |                            |          |                                       |
|                                                                              |                                              |                                       |                            |                                 |             |                               |                            |          |                                       |
|                                                                              |                                              |                                       |                            |                                 |             |                               |                            |          |                                       |
|                                                                              |                                              |                                       |                            |                                 |             |                               |                            |          |                                       |
| VANATITE BARANCTER                                                           |                                              |                                       |                            |                                 |             |                               |                            |          |                                       |
| FEO/(FEO+MGO) CAO/AL2<br>,4901 .0                                            | 3 \$102/1102<br>37,25                        | AL203/1102<br>9.65                    | FE0#/11<br>7,41            | 02 CAO/T                        | 102 NA      | 20/T102<br>.039               | K20/TIO<br>.381            | 2        |                                       |
| JENSEN CATION AL203 -<br>38.16                                               | FEO+FE203+TIO<br>23.31                       | 2 - MGO<br>38.54                      |                            |                                 |             |                               |                            |          |                                       |
| QUARTZ - FELDSPAR RATI                                                       | 05                                           | 00 485 9 51                           | ,                          | -                               | F 1 47      |                               |                            |          |                                       |
| QUARTZ 89<br>CATION PROPORTIONS                                              | :10 ORTH<br>CA                               | OCLASE 9.52                           | FE .                       | ALBITE<br>31,51                 | 1 39<br>MG  | 67.35                         |                            |          |                                       |
|                                                                              | CA                                           | . 40                                  | MG a                       | 23.48                           | SI          | 76.12                         |                            |          |                                       |
|                                                                              | SI 6                                         | 8.44                                  | AL                         | 0.45                            | NG          | 21.11                         |                            |          |                                       |
|                                                                              | 2MG 5                                        | 5,60<br>1,14                          | 2FE 1                      | 26.11                           | SI/5        | 18.09                         |                            |          |                                       |
|                                                                              |                                              | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                            |                                 | 0114677     |                               |                            | <b>.</b> |                                       |
| PROPORTION OF ANALYSIS                                                       | IN BASALT TET                                | RAHEDRON IS                           | - LLINU<br>74.23           | MOLE PERG                       | ENT         |                               | PERCEN                     | 1)       |                                       |
| BASALT TETRAHEDRON                                                           | 0L 4                                         | 3.11                                  | CPX                        | , 00                            | PLAG        | . 77                          |                            | arz      | 56.12                                 |
| CLINOPYROXENE PROJECTI                                                       | DN 4                                         | 3.11                                  |                            | 0.0                             |             | , 77                          |                            |          | 56.12                                 |
| QUARTZ PROJECTION                                                            | 9                                            | 8.25                                  |                            | . 0.0                           |             | 1.75                          |                            |          | 0.0                                   |
| PLAGIOCLASE PROJECTION<br>BLIVINE PROJECTION                                 | 4                                            | 3.44<br>U.D                           |                            | . U 0<br>. 0 0                  |             | 0.0                           | 0PX+(4                     | QTZ)     | 56,56<br>99.66                        |
| CHAS PROJECTIONS                                                             |                                              |                                       |                            |                                 |             |                               |                            |          |                                       |
| TETRAHEDRON COORDINATE                                                       | S C                                          | .94                                   | M :                        | 25 , 48                         | A           | 12,54                         |                            | 5        | 61.04                                 |
| DIOPSIDE PROJECTION                                                          | C3A 2                                        | 4.26                                  | M :                        | 7.94                            | S           | 57 . 81                       |                            |          |                                       |
| OLIVINE PROJECTION                                                           | CS                                           | 1.00                                  | M i                        | 37 . 27                         | S           | 11.73                         |                            |          |                                       |
| ENSTATITE PROJECTION                                                         | M25 *                                        | 法法条件                                  | C253                       | *****                           | A253        | ****                          |                            |          |                                       |
| QUARTZ PROJECTION                                                            | CA52 *                                       | ***                                   | m5 +                       | ****                            | CM52        | *****                         |                            |          |                                       |

SAMPLE NUNBER

BG 267

| CRIGINAL WEIGHT<br>STO2 AL 203<br>55.79 12.54             | PERCENT<br>F=203<br>3.31         | 0x1055<br>FE0<br>7.45                    | MNO<br>.15 1                       | MGO CA                       | 0 NA20                  | K20                        | T 102                              | P205                 | CR 202  | 101AL<br>00-08       |
|-----------------------------------------------------------|----------------------------------|------------------------------------------|------------------------------------|------------------------------|-------------------------|----------------------------|------------------------------------|----------------------|---------|----------------------|
| WEIGHT PERCENT (<br>SIDZ AL203<br>60+73 12-53             | X1085 P<br>F2203<br>3.31         | ECALCULATE<br>Fec<br>7.44                | 0 10 07 00<br>NC<br>15 1           | PERCENT<br>MGO CA<br>107 3.1 | C NA20<br>7 3-93        | K20                        | T132                               | P 20 5<br>• 5 0      | CR 203  | TOTAL<br>00.90       |
| CATEON PROPORTED                                          | NS 1N 4                          | NALYS (3)                                | MN                                 | MG CA                        | NA NA                   | κ                          | т1                                 | Ρ                    | CR      |                      |
| 63+76 14+16<br>CIPH NORM                                  | 2.39                             | 5.95                                     | •12 1                              | •53 3•2                      | .= 7.30                 | •20                        | .73                                | - 4 2                | -90     |                      |
|                                                           | OTZ                              | CCR                                      | ç                                  | IR .                         | 40                      | AN                         | LÇ                                 | NE                   | ĸ       | P                    |
| ADLE GERCENT<br>CATION PERCENT                            | 31.770<br>65.727<br>32.643       | 1.335                                    | • •                                | 13 15<br>78 36               | 219 1<br>676<br>485 1   | 2.450<br>5.544<br>.2.887   | • 00 0<br>• 00 0<br>• 00 0         | .000<br>.000<br>.000 | • 0     | 000                  |
| WEIGHT PERCENT<br>WGLE PERCENT<br>CATION PERCENT          | •000<br>•000                     | - 000<br>- 000<br>- 000                  | ••••                               |                              | 000<br>000<br>000       | .000<br>.000<br>.000       | 12.187<br>5.115<br>11.371          | .000<br>.000<br>.000 | - CO    | 000<br>000           |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent          | MT<br>4.796<br>2.565<br>3.575    | CM<br>• 000<br>• 000                     | I<br>1.9<br>1.5                    | L<br>35<br>90<br>•69         | 4H<br>000<br>000<br>000 | TN<br>•000<br>•000<br>•000 | • 000<br>• 000<br>• 000            | RU<br>•000<br>•000   |         | 9<br>33<br>36<br>31  |
| NAFIC INDEX = 2                                           | 0-102                            |                                          |                                    |                              |                         |                            |                                    |                      |         |                      |
| DLIVINE COMPOSIT                                          | 100017                           | 0 FA                                     | YAL ITF                            | . 000                        |                         |                            |                                    |                      |         |                      |
| CRTOPYLOX ENE CO                                          | HPCSTT                           | 0 N = F                                  | 290511175                          | 78.150                       |                         |                            |                                    |                      |         |                      |
| CLINGPASOXEME CO                                          | 4005 1T 1                        | ยัง<br>2 ค                               | *******                            | 74.13.1                      |                         |                            |                                    |                      |         |                      |
| HOLLASTONIT<br>                                           | 15 .000<br>TION                  | 0 SN                                     | STATITE                            | -000                         | EEYS-72                 | ILITE                      | .000                               |                      |         |                      |
| PLAGICCLASE                                               | 2.02<br>COMPCS                   | TION (PER                                | SITE<br>C AN)                      | 71.265<br>27.261             | ANCRTH                  | 1TE 26                     | . 703                              |                      |         |                      |
| THERNISH AND TUI<br>Solidification (<br>Crystallization   | TLE DIF<br>NOEX (1)<br>INDEX (1) | FERENTIATI<br>00##60/(46<br>0 N+ 46+01+F | JN INDEX<br>3+F50+F52<br>9+F0 521V | 03+NA20+K2                   | 0)) ≠ 56<br>= 14        | •133<br>•723<br>•315       |                                    |                      |         |                      |
| LASEN INDEX (1)<br>ALSITE RATIO (10                       | 35 [+K)-<br>C=(AB+A              | (CA +AG)<br>A ČCIV IN                    | NE) /PLAG)                         | ••••••                       | = 13<br>= 72            | - 754<br>- 739             |                                    |                      |         |                      |
| MG NUMBER AS CAT                                          | ILNS IG                          | ACATIONS (                               | FE+HG)<br>AITRE (FE                | 0/520+6220                   | = 20                    | .388                       |                                    |                      |         |                      |
| DENSITY OF DRY L<br>AFM RATIO                             |                                  | F THIS COM<br>25 T                       | POSITION                           | (AT 1050 0                   | EG) = 2<br>×G           | • 500                      | . 47                               |                      |         |                      |
| XQMAT(1TE PARAME<br>F63/(F20+MGQ) C                       | TERS                             | 3 51 32 / 7 1                            | 02 AL203                           | /T102 FEU                    | ≠/T102 C                | A0/ T102                   | NA23/T [JZ                         | K 2G / T 10          | 2       |                      |
| • 90 6 4                                                  | .25                              | 65.4                                     | 12                                 | •29 1                        | 0+22                    | 3.11                       | 3 • 8 53                           | .157                 |         |                      |
| JENSEN CATION A<br>S                                      | 1253 - 1<br>7.16                 | +E3+F42C3+<br>36.08                      | TTO2 - 4G<br>0+1                   | 7                            |                         |                            |                                    |                      |         |                      |
| OUARTZ - FELOSPA                                          | R RATIC                          | S .                                      |                                    |                              | 34 4 5 1 6              |                            | • •                                |                      |         |                      |
| SULATIZ<br>SULATIZ<br>CATION PROPERTIO                    | 48<br>48                         | 34 0<br>34 0                             | RTHECLASE<br>27.25                 | 1.43<br>FE                   | AL3175<br>39.95         | CLASE 50<br>30             | • 11<br>G 12.9                     | 2                    |         |                      |
|                                                           | •                                | CA                                       | 4.73                               | <b>4</b> G                   | 2.22                    | \$                         | 1 93.0                             | ō                    |         |                      |
|                                                           |                                  | 12                                       | 89.14                              | <b>۵</b> ۲                   | 9.75                    | 14                         | G 2.14                             | )                    |         |                      |
|                                                           |                                  | 245                                      | 10.13                              | 2f E                         | 47.45                   | S                          | 1/5 42.4                           | 2                    |         |                      |
|                                                           |                                  | ĻΔ                                       | 23.11                              | 2L                           | 59+23                   | N                          | A+K 25.5                           | L                    |         |                      |
| COORDINATES IN T<br>PROPORTION OF AN                      | HE SYSTE<br>ALYSIS               | EM PLAGIOC<br>In Basalt                  | LASE ~ OL<br>Tetrahedr             | IVINE - CL<br>ON 15 91.      | INCFYROXE<br>39 Muli    | NE - QUA<br>PERCENT        | ATZ LIN ACI                        | E PERCENT            | Γ)      |                      |
| BASALT FETRAHEOR                                          | QN                               | OL                                       | 9.33                               | CPX                          | . 00                    | ρ                          | LAG 54.0                           | 3 (                  | NTZ 36. | 64                   |
| CLINDPYROXENE PR                                          | OUECTIO                          | N                                        | 9.33                               |                              | 2.0                     |                            | 54.0                               | 3                    | 36.     | 64                   |
| QUARTE PPOJECTIO                                          | N                                |                                          | 14.73                              |                              | .00                     |                            | 35.2                               | 7                    | 0.      | .0                   |
| PLAGIOCLASE PROJ                                          | ECTION                           |                                          | 20.30                              |                              | •00                     |                            | 0.0                                |                      | 79.     |                      |
| ULIVINE PRUJECTI                                          | CN                               |                                          | 0.0                                |                              | • 00                    |                            | 26.3                               | 5 UP X+{4/           | 2(2) 73 | . 70                 |
| CHAS PROJECTIONS                                          |                                  |                                          |                                    |                              |                         |                            |                                    |                      |         | . 70<br>. 07         |
|                                                           |                                  | c                                        | 12 63                              | -                            | 7.44                    |                            |                                    | <b>_</b>             | • • •   | . 70                 |
| DIOPSIDE PROJECT                                          | DINATES                          | C<br>C3 A                                | 11.69                              | M                            | 7.98<br>12.14           | 4                          | 14•3)<br>58-20                     | o :                  | 5 55    | . 70<br>. 07<br>. 53 |
| DIOPSIDE PROJECT<br>GLIVINE PROJECTI                      | DI NA TES<br>ION<br>ON           | C<br>A E C<br>2 C                        | 11-69<br>29.60<br>10.54            | M<br>14<br>M                 | 7.98<br>12.14<br>77.74  | ۵<br>۲<br>۲                | 14+3(<br>59+2)<br>11-7             | 5 5<br>5<br>1        | 5 5,    | . 70<br>. 07<br>. 53 |
| DIOPSIDE PROJECTI<br>DLIVINE PROJECTI<br>ENSTATITE PROJEC | DINATES<br>ION<br>CN<br>TION     | C<br>C3 A<br>CS<br>142 S                 | 11.67<br>29.60<br>10.54<br>29.60   | M<br>M<br>C2S3               | 7.98<br>12.14<br>77.74  | 4<br>2<br>2<br>4           | 14.3(<br>59.2)<br>11.7<br>253 4888 | D :                  | 5 5,    | . 70<br>. 07<br>. 53 |

SAMPLE NUMBER 30 156

ē

T

SAMPLE NUMBER ag 157

| 02 1611<br>2012<br>53.29                                                                      | 41 71<br>41 71<br>16 - J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 147 PER(<br>Fézi<br>1 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4NT OX 1<br>3 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 255<br>53<br>99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M&C<br>+20                                                                                                 | 460<br>2.73                                        | CA0<br>5.12                   | NA23<br>3+34                                                        | K20<br>•36                                                         | T 122<br>1.30                    | P205<br>•43      | CR 203         | TOTAL<br>100.47               |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|------------------|----------------|-------------------------------|
| че IGHT<br>SIU2<br>51-04                                                                      | PERCEN<br>AL 201<br>15.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T GXIDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S RECAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CULATE)<br>Di<br>Diz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T5 10<br>MN9<br>.20                                                                                        | 10 96R(<br>MGJ<br>2.77                             | CAD<br>CAD<br>5+10            | NA20<br>3.32                                                        | ×20<br>•36                                                         | T 102-<br>1 - 29                 | P2C5<br>••3      | CR 203         | TOTAL<br>100.00               |
| CATION<br>SI<br>SJ-94                                                                         | 9209089<br>AL<br>13.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FE(3<br>3-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N ANALY<br>1) Fi<br>4 ID-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 513<br>512)<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mn<br>• 1 6                                                                                                | 4G<br>3.95                                         | ۲۵<br>۲۰۰۵ خ                  | NA<br>5-19                                                          | X<br>•44                                                           | ⊺1<br>• <del>3</del> 3           | ,<br>.il         | CR             |                               |
| CIPW NO                                                                                       | 3R.#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                    |                               |                                                                     |                                                                    |                                  |                  |                |                               |
| WEIGHT<br>HOLE P<br>CATION                                                                    | PERCEI<br>RCENT<br>PERCE!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01<br>10.4<br>32.4<br>10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>09<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COR<br>2.305<br>4.133<br>2.609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | GR<br>1 117<br>1 764<br>1 1 75                     | 48<br>19.12<br>19.70<br>30.94 | 2 21<br>3 13<br>5 21                                                | AN<br>•194<br>•989<br>•970                                         | 10<br>600<br>001<br>600          | .00<br>.00       | 000            | KP<br>• 000<br>• 000<br>• 000 |
| WEIGHT<br>Pole Pi<br>Cation                                                                   | PERCEN<br>PERCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IT -0<br>IT -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NS<br>• 000<br>• 030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            | •000<br>•000<br>•000                               | •020<br>•020<br>•020          |                                                                     | WA<br>• 0A0<br>• 5A0<br>• 5A0                                      | HY<br>25.452<br>19.228<br>24.137 | 00<br>•00<br>•00 |                | C200<br>- 000<br>- 000        |
| NEIGHT<br>MULE PS<br>CATION                                                                   | PER CZN<br>ERCENT<br>PER CZN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47 0 4<br>4 - 1<br>4 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17<br>296<br>996<br>707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CM<br>• 000<br>• 000<br>• 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                                                                         | 1L<br>+453<br>+975<br>+359                         | - 00<br>- 00<br>- 00<br>- 00  |                                                                     | TN<br>•000<br>•000<br>•000                                         | 9)F<br>- 000<br>- 000<br>- 000   | RU<br>•00<br>•00 | 10<br>10<br>10 | AP<br>1.435<br>.312<br>1.300  |
| MAFIC INCRMIT                                                                                 | NDEX =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                    |                               |                                                                     |                                                                    |                                  |                  |                |                               |
| CLIVING                                                                                       | T COMP(<br>DRSTER!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NLITI20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ALITE                                                                                                      | •                                                  | .000                          |                                                                     |                                                                    |                                  |                  |                |                               |
| OR THOP                                                                                       | NOXENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C3MP05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ITION<br>-076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 805ILI                                                                                                     | TE 72.                                             | 924                           |                                                                     | -                                                                  |                                  |                  |                |                               |
| CLINCPY                                                                                       | ROXENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COMPOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1TI2N<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ยาง                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TATITE                                                                                                     |                                                    | .000                          | FERRUSI                                                             | LITE .                                                             | 000                              |                  |                |                               |
| #870261<br>31<br>51                                                                           | ik Com<br>Rthucli<br>Lag13Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASE COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118<br>• 118<br>• CSI TI DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALE<br>PERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1T5<br>AN)                                                                                                 | 34<br>42,                                          | 687<br>305                    | ANDRTHE                                                             | Tê 41.                                                             | 196 -                            |                  |                |                               |
| THERNTE<br>SELLOIT<br>CAYSTAN<br>LARSEN<br>ALBITE<br>IRON AN<br>MG NUMB<br>OXIDATI<br>DENS IT | CN AND<br>LICATIO<br>LICATIO<br>RATIO<br>RATIO<br>LICATIO<br>RATIO<br>LICATIO<br>LICATIO<br>LICATIO<br>LICATIO<br>LICATIO<br>LICATIO<br>LICATIO<br>LICATIO<br>LICATIO<br>RATIO<br>LICATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RATIO<br>RAT | TUTTLE<br>IN INDE<br>IGN INDE<br>(1/1514<br>(1/1514<br>(1/1514<br>(1/1514<br>(1/1514<br>(1/1514<br>(1/1514<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1514)<br>(1/1 | DIFFEREN<br>( 1100744<br>( 140444<br>( 140444<br>( 140644)<br>( 140644) | NTIATIL<br>50/(MSC<br>161<br>17 IN 4<br>22+MN+4<br>10NS (F<br>10NS (F<br>10NS (F<br>10NS (F<br>10NS (F<br>10NS (F<br>10NS (F<br>10NS (F<br>10NS (F)<br>10NS (F)<br>10 | N IND2<br>++=C =v<br>()/PLA<br>())<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() | 17 34<br>17 34<br>19 34<br>19 34<br>19 34<br>19 19 | 1055 DE3                      | = 40.<br>= 11.<br>= 25.<br>= 27.<br>= 57.<br>= 57.<br>= 27.<br>= 2. | 843<br>313<br>313<br>313<br>13<br>32<br>313<br>13<br>32<br>35<br>7 |                                  |                  |                |                               |
|                                                                                               | TAL AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KALIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TAL SE                                                                                                     | 72.                                                | . 41                          | MG                                                                  | 11.                                                                | 33                               |                  |                | -                             |

KOMATIETE PARAMETERS

F50/(F60+NJ0) CAU/AL203 S102/T102 AL203/T102 F604/T102 CA0/T102 NA20/T102 K20/T102 3595 - 32 - 40.99 12.11 - 13.09 - 3.94 - 2.569 - 277

JENSEN CATION AL203 - FED+FE203+T132 - 460 49.36 39.79 10.84

CUARTZ - FELDSPAR RATIOS 204872 17.10 204872 23.97 CATION PPOPORTIONS 3.41 5.18 Ft CRTHECLASE ORTHECLASE 24.70 PLAGICCLASE 79.43 ALGITE 63.34 56.65 45 CA CA <u>4.72</u> ⊌رے 6.59 51 51 79.70 4∟ 14.13 ĦG 14.79 275 24G 57.05 \$1/3 24.16

18.55 34.70 6.20

CA 29.84 4L 51.29 1:4+K 18.80

CODRDINATES IN THE SYSTEM PLAGIDCLASE - DLEVIDE - CLINCPYRCKENE - GUARTZ (IN NOLE PERCENT)

PROPORTION OF ANALYSIS IN BASALT TETRAPLORON IS 37.25 MOLE PERCENT. BASALT TETRAHECRON θL 20.75 CP X - 00 PL AG 50.54 STS 1 4. 60 CLINDPYROXENE PROJECTION 20.76 1.0 60.64 19.60 25.51 74.47 DUARTS PROJECTION +00 0.0 PLAGICCLASE PROJECTION 52.75 0.0 •00 47.25 OLIVINE PROJECTION .00 9.0 44.91 GPX+(49T2) 55.39 CHAS POULECTIONS C TETRAHEDRON CODROLNATES 13.15 M 16.28 Δ 17.64 \$ 52.37 DIOPCIDE PROJECTION C3A 31.82 м 15-09 S **53.0**9 . OLIVING PROJECTION 20 15.79 65. 55 S 19.65 C2 53 29.77 E2 54 ENSTATITE PROJECTION 1425 20.32 50.85 QUARTL PROJECTION CASZ 70384 ٩W \*\*\*\*\* CASE ÷112\$2

| SAMPLE MUN9ER BG 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               | 277                                                          |                                 |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------|-------------------------------------------------------------|
| ORIGINAL WEIGHT PERCENT<br>SIO2 AL 203 FE203<br>65.51 12.42 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0X 1DES<br>FEQ<br>7+67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MNC 4                                                                                                                                                                                                                       | 460 CAO<br>•13 5•09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA20<br>3.75                                                                                                                                                                                                     | K2C<br>•40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T 102                                                                                                                                         | P205                                                         | CR 203                          | TOTAL<br>101.13                                             |
| WEIGHT PERCENT DX10ES R<br>SID2 AL 203 FE203<br>64478 12.28 3.37                                                                                                                                                                                                                                                                                                                                                                                                                                             | ECALCULATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TU 100 (<br>MNC 1<br>18 1                                                                                                                                                                                                   | PERCENT<br>NGO CAQ<br>12 5.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA20<br>3.71                                                                                                                                                                                                     | K20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T 102                                                                                                                                         | P 205                                                        | CR 203                          | TOTAL<br>100.00                                             |
| CATION PROPORTIONS IN A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                             | 4¢ ¢.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>T f</b>                                                                                                                                    | ••••                                                         | <u> </u>                        |                                                             |
| 62.13 13.89 2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -14 1                                                                                                                                                                                                                       | .60 5.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6-9                                                                                                                                                                                                              | •48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .75                                                                                                                                           | ۰ <b>4</b> 2                                                 | -00                             |                                                             |
| CIPH NORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                                              |                                 |                                                             |
| WEIGHT PERCENT 27.530<br>HOLE PERCENT 61.613                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CDR<br>+010<br>+900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3                                                                                                                                                                                                                         | 4 A<br>37 31.3<br>76 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  | N<br>97<br>387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • 000<br>• 000                                                                                                                                | NE<br>•00                                                    | 0                               | . 00 0                                                      |
| CATION PERCENT 26.408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 2.4                                                                                                                                                                                                                       | 20 34.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76 16.2                                                                                                                                                                                                          | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -050                                                                                                                                          | -00                                                          | ō                               | .000                                                        |
| MEIGHT PERCENT .000<br>Mole percent .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •000<br>•000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •00                                                                                                                                                                                                                         | 00 5±0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.922<br>5.409                                                                                                                                | .00<br>.00                                                   | 0                               | .000                                                        |
| CATION PERCENT .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .ð(                                                                                                                                                                                                                         | 00 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99 .C                                                                                                                                                                                                            | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.273                                                                                                                                         | .00                                                          | Ŏ                               | 000                                                         |
| HEIGHT PERCENT 4.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9                                                                                                                                                                                                                         | 72 .0<br>+7 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  | 200-<br>200-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 000                                                                                                                                         | •00<br>•00                                                   | 0                               | 1.218<br>.487                                               |
| CATION PERCENT 3.651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1+44                                                                                                                                                                                                                        | 98 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •00 •0                                                                                                                                                                                                           | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .000                                                                                                                                          | +00                                                          | Õ                               | 1.114                                                       |
| NORM TOTAL = 100.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                                              |                                 |                                                             |
| OLIVINE COMPOSITION<br>FORSTERITE .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q FAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALITE                                                                                                                                                                                                                       | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                                              |                                 |                                                             |
| OR THOPYRCX ENE COMPOSITI<br>ENSTATITE 22-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ON<br>17 FER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROSILITE                                                                                                                                                                                                                    | 77.813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                                              |                                 |                                                             |
| CLINOPYROX ENE COMPOSITI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UN ENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TA TI TE                                                                                                                                                                                                                    | 11 426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                  | TE 40 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71                                                                                                                                            |                                                              |                                 |                                                             |
| SELDSPAR COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74 EM3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                             | 11++20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F=K403171                                                                                                                                                                                                        | 16 4010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                                                                                                                            |                                                              |                                 |                                                             |
| PLASIDCLASE 4.73<br>PLASIDCLASE COMPOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALA<br>ALA ALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ITE<br>AN)                                                                                                                                                                                                                  | 63.494<br>33.353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANORTHITE                                                                                                                                                                                                        | 31.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                            |                                                              |                                 |                                                             |
| THORNTON AND TUTTLE DIF<br>Solidification index (1                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FERENTIATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N INCEX<br>+FED+FE29                                                                                                                                                                                                        | 3+NA20+K20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 61.23                                                                                                                                                                                                          | 34<br>)5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                               |                                                              |                                 |                                                             |
| CAYSTALLIZATION INDEX (<br>LARSEN INDEX (1/351+K)-                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AN+MG+DI+FO<br>(CA+MG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +FO EQIV                                                                                                                                                                                                                    | CF EN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 18.49<br>= 16.12                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                               |                                                              |                                 |                                                             |
| IRON RATIO ((FE2=MN)#10<br>#G NUMBER 43 CATIONS #G                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0/(FE2+MN+A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6))<br>6))<br>E+MG)                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 99.99                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                               |                                                              |                                 |                                                             |
| DENSITY OF DRY LIQUED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NG TO LE NA<br>IF THIS COMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÎTRÊ (FEC<br>Ostition (                                                                                                                                                                                                     | 7/FE0+FE203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) = .83<br>G) = 2.52                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                               |                                                              |                                 |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                                              |                                 |                                                             |
| AFM QATIO<br>Total Alkalis 25-                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CT 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TAL FE                                                                                                                                                                                                                      | 67.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MG                                                                                                                                                                                                               | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                             |                                                              |                                 |                                                             |
| AFM GATIO<br>TOTAL ALKALIS 25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CT 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAL FE                                                                                                                                                                                                                      | 67.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MG                                                                                                                                                                                                               | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>5</b>                                                                                                                                      |                                                              |                                 |                                                             |
| KOMATIITE PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CT 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAL FE<br>2 Al203/                                                                                                                                                                                                          | 67.04<br>/T102 FED#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MG<br>/T102 CA0/                                                                                                                                                                                                 | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                             | K20/T1                                                       |                                 |                                                             |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAU/AL20<br>49043 41                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CT 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAL FE<br>2 Al203/<br>11/                                                                                                                                                                                                   | 67.04<br>(T102 FED#<br>83 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MG<br>/TIO2 CAO/<br>.23 4.                                                                                                                                                                                       | 7.0<br>1102 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5<br>120/T 102<br>1.571                                                                                                                       | K20/711<br>• 38 1                                            |                                 |                                                             |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAU/AL20<br>.9043 .41<br>JENSEN CATION AL203 -<br>56.10                                                                                                                                                                                                                                                                                                                                                                                                                | 90 TO<br>3 SIO2/TIO<br>62.39<br>FEU+FE203+T<br>37.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TAL FE<br>2 AL203/<br>11.<br>102 - MG<br>6-45                                                                                                                                                                               | 67.04<br>(T102 FED<br>83 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MG<br>/T102 CA0/<br>.23 4.                                                                                                                                                                                       | 7.0<br>7.0<br>85 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>120/1102<br>3 • 5 71                                                                                                                     | K20/71/<br>•381                                              |                                 |                                                             |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAU/AL20<br>.9043 .41<br>JENSEN CATION AL203 -<br>56.10<br>QUARTZ - FELOSPAR RATIO                                                                                                                                                                                                                                                                                                                                                                                     | 90 T3<br>3 S102/T10<br>62.39<br>FE0+FE203+T<br>37.45<br>S<br>9 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAL FE<br>2 AL203/<br>11<br>102 - MG1<br>6-45<br>THOCLASE                                                                                                                                                                   | 67.04<br>(TIOZ FED#<br>83 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MG<br>/TIO2 CAO/<br>.23 4.                                                                                                                                                                                       | 7.0<br>1102 N/<br>85 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120/T 102<br>1.571                                                                                                                            | K 20/T I<br>• 38 1                                           | 52                              |                                                             |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAU/AL20<br>.9043 .41<br>JENSEN CATION AL203 -<br>56.10<br>QUARTZ FELOSPAR RATIO<br>QUARTZ 35.<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                                   | 90 T)<br>3 SID2/T10<br>62.39<br>FE0+FE203+T<br>37.45<br>S<br>79 OR<br>96 CA OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAL FE<br>2 AL203/<br>11<br>102 - MGC<br>6-45<br>THOCLASE<br>THOCLASE<br>36-75                                                                                                                                              | 47.04<br>47.04<br>47.04<br>47.04<br>53.04<br>3.04<br>3.82<br>FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MG<br>/T102 CA0/<br>.23 4.<br>PLAGIOCLA<br>AL3IT3<br>51.89                                                                                                                                                       | 7.0<br>85 3<br>SE 61.18<br>51.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>120/T 102<br>1.571                                                                                                                       | K20/71/<br>• 381                                             | D2                              |                                                             |
| KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAU/AL20<br>.9044 .41<br>JENSEN CATION AL203 -<br>56.10<br>QUARTZ 56.10<br>QUARTZ 35.<br>GUAPTZ 44.<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                              | 90 T)<br>3 S102/T10<br>62.39<br>FE0+FE203+T<br>37.45<br>S79 DR<br>96 CA<br>CA<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAL FE<br>2 AL203/<br>11<br>102 - MG<br>6-45<br>THOCLASE<br>THOCLASE<br>36.76<br>7-51                                                                                                                                       | 67.04<br>67.04<br>83 10<br>3.04<br>3.82<br>Fa<br>MG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MG<br>/TIO2 CAO/<br>.23 4.<br>PLAGIOCLA<br>ALJIT<br>51.89<br>2.32                                                                                                                                                | 7.0<br>7.0<br>5<br>5<br>5<br>5<br>1.22<br>MG<br>SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120/T 102<br>3.571<br>11.35<br>90.16                                                                                                          | K 20/T I<br>• 38 1                                           | 52                              |                                                             |
| AFM QATIO<br>TOTAL ALKALIS 25-<br>KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAU/AL20<br>.9043 .41<br>JENSEN CATION AL203 -<br>56-10<br>QUARTZ 56-10<br>QUARTZ 35.<br>GUAPTZ 44.<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                            | 00 T)<br>3 SID2/T10<br>62.39<br>FE0+FE203+T<br>37.45<br>ST<br>96<br>CA<br>CA<br>SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TAL FE<br>2 AL203/<br>11<br>102 - MG<br>6.45<br>THOCLASE<br>THOCLASE<br>36.76<br>7.51<br>87.92                                                                                                                              | 67.04<br>(T102 FED<br>83 10<br>3.04<br>3.82<br>FE<br>MG<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MG<br>/TIO2 CAO/<br>.23 4.<br>PLAGIOCLA<br>ALBITS<br>51.89<br>2.32<br>9.82                                                                                                                                       | 7.0<br>7.0<br>85 1.12<br>SE 61.12<br>SI<br>MG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>120/T 102<br>3.571<br>11.35<br>90.16<br>2.26                                                                                             | K 20/714<br>• 381                                            | D2                              |                                                             |
| AFM QATIO<br>TOTAL ALKALIS 25-<br>KOMATIITE PARAMETERS<br>FED/(FED+MGO) CAU/AL20<br>.9043 .41<br>JENSEN CATION AL203 -<br>56-10<br>QUARTZ 56-10<br>QUARTZ 35-<br>GUAPTZ 44-<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                            | 90 T)<br>3 SI02/TI0<br>62.39<br>FE0+FE203+T<br>37.45<br>ST<br>96 CA<br>CA<br>SI<br>2HG<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TAL FE<br>2 AL203/<br>11<br>102 - MG<br>5-45<br>THOCLASE<br>THOCLASE<br>36.76<br>7.51<br>87.92<br>10.57<br>2.27                                                                                                             | 67.04<br>67.04<br>83 10<br>3.04<br>3.82<br>Fa<br>MG<br>AL<br>2FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MG<br>/TIO2 CAO/<br>.23 4.<br>PLAGIOCLA<br>ALJITE<br>51.89<br>2.32<br>9.82<br>49.32<br>(1.07)                                                                                                                    | 7.0<br>50 NJ<br>85 2<br>SE 61.18<br>51.22<br>MG<br>SI /5<br>NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120/T 102<br>3.571<br>90.18<br>2.26<br>41.11                                                                                                  | K20/TI<br>•381                                               | 22                              |                                                             |
| AFM QATIO<br>TOTAL ALKALIS 25-<br>KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAU/AL20<br>.9043 .41<br>JENSEN CATION AL203 -<br>56-10<br>QUARTZ 56-10<br>QUARTZ 35.<br>GUAPTZ 44.<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                            | 90 T)<br>3 SID2/T10<br>62.39<br>FED+FE2D3+T<br>37.45<br>S<br>79<br>96<br>CA<br>0R<br>CA<br>SI<br>2HG<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAL FE<br>2 AL203/<br>11<br>102 - MG<br>0-45<br>THOCLASE<br>THOCLASE<br>7-51<br>87-92<br>10-57<br>32-73                                                                                                                     | 67.04<br>(T102 FED<br>83 10<br>3.04<br>3.82<br>FE<br>MG<br>AL<br>2FE<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MG<br>/TIO2 CAO/<br>.23 4.<br>PLAGIOCLA<br>ALBITS<br>51.89<br>2.32<br>9.82<br>49.32<br>43.72                                                                                                                     | 7.0<br>7.0<br>51.18<br>51.22<br>51.5<br>MG<br>SI<br>NA+K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5<br>11.35<br>90.16<br>2.26<br>41.11<br>4 23.35                                                                                               | K 20/714<br>• 381                                            | D2                              |                                                             |
| AFM QATIO<br>TOTAL ALKALIS 25-<br>KOMATIITE PARAMETERS<br>FED/(FED+MGO) CAU/AL20<br>.9044 .41<br>JENSEN CATION AL203 -<br>56-10<br>QUARTZ 56-10<br>QUARTZ 35-<br>CUAPTZ 44-<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                            | 90 T)<br>3 SI02/TI0<br>62.39<br>FE0+FE203+T<br>37.45<br>ST<br>96 CA<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAL FE<br>2 AL203/<br>11<br>102 - MG<br>5 45<br>THOCLASE<br>THOCLASE<br>36-76<br>7-51<br>87-92<br>10-57<br>32-73<br>ASE - OL1                                                                                               | 67.04<br>(TIOZ FED<br>83 10<br>3.04<br>3.82<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MG<br>PLAGIOCLA<br>ALJIT<br>51.89<br>2.32<br>9.82<br>48.32<br>43.72<br>NCP YR OXENE                                                                                                                              | 7.0<br>51.22<br>MG<br>SI<br>MG<br>SI/5<br>NA+H<br>- QUART2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>11.35<br>90.16<br>2.26<br>41.11<br>23.35<br>1 (IN MOL)                                                                                   | K20/TJ<br>•381                                               | -<br>                           |                                                             |
| AFM QATIO<br>TOTAL ALKALIS 25-<br>KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAU/AL20<br>.9043 .41<br>JENSEN CATION AL203 -<br>56-10<br>QUARTZ 35-<br>GUAPTZ 44-<br>CATION PROPORTIONS<br>COORDINATES IN THE SYST<br>PROPORTION OF ANALYSIS<br>AASALT TETRAMEDICH                                                                                                                                                                                                                                                 | 90 T)<br>3 SID2/T10<br>62.39<br>FED+FE2D3+T<br>37.45<br>ST<br>96 CA<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>EM PLAGIGCL<br>IN BASALT T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TAL FE<br>2 AL203/<br>11<br>102 - MG<br>5 - 45<br>THOCLASE<br>THOCLASE<br>36-75<br>87-92<br>10-57<br>32-73<br>ASE - OL1<br>ETRAMEDRO                                                                                        | 67.04<br>(TIO2 FED<br>83 10<br>3.04<br>3.82<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MG<br>/TIO2 CAO/<br>·23 4.<br>PLAGIOCLA<br>AL3IT<br>51.89<br>2.32<br>9.82<br>49.32<br>43.72<br>NCP YR OX ENE<br>2 MOLE PER<br>5 34                                                                               | 7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>102 NA<br>85 2<br>102 NA<br>102 NA<br>10                                                                                                                                                                       | 5<br>11.35<br>90.16<br>2.26<br>41.11<br>23.35<br>1 (IN MQL)                                                                                   | K20/TI<br>• 381                                              |                                 | 31 4-                                                       |
| AFM QATIO<br>TOTAL ALKALIS 25-<br>TOTAL ALKALIS 25-<br>FED/(FED+MGD) CAD/AL20<br>.9044<br>JENSEN CATION AL203 -<br>56-10<br>QUARTZ 56-10<br>QUARTZ 35-<br>CUAPTZ 64-<br>CATION PROPORTIONS<br>COORDINATES IN THE SYST<br>PROPORTION OF ANALYSIS<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTIO                                                                                                                                                                                                             | 90 T)<br>90 T)<br>93 SI02/TIO<br>62.39<br>FE0+FE203+T<br>37.45<br>SI<br>200<br>CA<br>CA<br>SI<br>2NG<br>CA<br>EM PLAGIGCL<br>IN BASALT T<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAL FE<br>2 AL203/<br>11<br>102 - MG<br>5 45<br>THOCLASE<br>THOCLASE<br>36-76<br>7.51<br>87.92<br>10.57<br>32.73<br>ASE - OL1<br>ETRAHEORO<br>7.62<br>8.05                                                                  | 67.04<br>(TIOZ FED<br>83 10<br>3.04<br>3.82<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MG<br>PLAGIOCLA<br>ALAITE<br>51.89<br>2.32<br>9.82<br>49.32<br>43.72<br>NCP YR OXENE<br>2 MOLE PER<br>5.36<br>0.0                                                                                                | 7.0<br>51.02 NJ<br>85 21<br>15 21<br>15 22<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>9<br>NA+H<br>- QUART2<br>CENT<br>PLAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>11.35<br>11.35<br>90.16<br>2.26<br>41.11<br>23.35<br>1 ( IN MQL)<br>55.56<br>58.71                                                       | K20/TJ/<br>•381                                              | 92<br>97<br>97<br>2             | 31.40                                                       |
| AFM QATIO<br>TOTAL ALKALIS 25-<br>TOTAL ALKALIS 25-<br>FED/(FED+MGD) CAU/AL20<br>.9043 .41<br>JENSEN CATION AL203 -<br>56-10<br>QUARTZ 56-10<br>QUARTZ 35-<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS                                                                                                                                                                                                                                     | 90 T)<br>3 SID2/T10<br>62.39<br>FED+FE2D3+T<br>37.45<br>ST<br>96 CA<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>FEM PLAGIGCL<br>IN BASALT T<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TAL FE<br>2 AL203/<br>11<br>102 - MG<br>0.45<br>THOCLASE<br>THOCLASE<br>7.51<br>87.92<br>10.57<br>32.73<br>ASE - OL1<br>ETRAMEDRO<br>7.62<br>8.05<br>11.11                                                                  | 67.04<br>(T102 FED<br>83 10<br>3.04<br>3.82<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MG<br>/TIO2 CAO/<br>·23 4.<br>PLAGIOCLA<br>AL3IT3<br>51-89<br>2.32<br>9.82<br>49.32<br>43.32<br>43.32<br>NCP YR OX ENE<br>2 MOLE P ER<br>5.36<br>0.0<br>7.83                                                     | 7.0<br>7.0<br>51.1<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51 | 5<br>11.35<br>90.16<br>2.26<br>41.11<br>23.35<br>1 ( IN MOL)<br>55.56<br>58.71<br>81.06                                                       | K20/714<br>• 381                                             | ο<br>22<br>ΝΤΣ                  | 31.40<br>33.24<br>C+0                                       |
| AFM QATIO<br>TOTAL ALKALIS 25-<br>TOTAL ALKALIS 25-<br>FED/(FED+MGD) CAD/AL20<br>.9044<br>JENSEN CATION AL203 -<br>56-10<br>QUARTZ 56-10<br>QUARTZ 35-<br>CUAPTZ 64-<br>CATION PROPORTIONS<br>COORDINATES IN THE SYST<br>PROPORTION OF ANALYSIS<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTIO<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                                                                              | 90 T)<br>3 SI02/TIO<br>62.39<br>FE0+FE203+T<br>37.45<br>ST<br>0R<br>CA<br>CA<br>SI<br>2HG<br>CA<br>EM PLAGIGCL<br>IN 9ASALT T<br>0L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAL FE<br>2 AL203/<br>102 - MG<br>6-45<br>THOCLASE<br>THOCLASE<br>36-76<br>7-51<br>87-92<br>10-57<br>32-73<br>ASE - OL1<br>ETRAHEORO<br>7.62<br>8.05<br>11-11<br>17-14                                                      | 67.04<br>(TIOZ FED<br>3.04<br>3.82<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MG<br>PLAGIOCLA<br>ALAITE<br>51-89<br>2.32<br>9.82<br>49.32<br>43.72<br>NCP VR OXENE<br>2 MOLE PER<br>5.36<br>0.0<br>7.83<br>12.07                                                                               | 7.0<br>TIO2 NA<br>85 2<br>SI<br>MG<br>SI /5<br>NA+H<br>- QUART2<br>CENT<br>PLAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5<br>11.35<br>11.35<br>90.16<br>2.26<br>41.11<br>23.35<br>1 ( IN MQL)<br>55.56<br>58.71<br>81.06<br>0.0                                       | K20/TI<br>•381                                               | 92<br>97<br>97<br>2             | 3 1. 45<br>3 3. 24<br>C. 0<br>7 9. 79                       |
| AFM QATIO<br>TOTAL ALKALIS 25-<br>TOTAL ALKALIS 25-<br>FED/(FED+MGD) CAU/AL2O<br>.9043 .41<br>JENSEN CATION AL2O3 -<br>56-10<br>QUARTZ 35-<br>CUARTZ 35-<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTION<br>CLINOPYROXENE PROJECTION<br>PLAGIOCLASE PROJECTION<br>OLIVINE PROJECTION                                                                                                                                                            | 90 T)<br>3 SID2/T10<br>62.39<br>FED+FE2D3+T<br>37.45<br>S<br>79 OR<br>79 OR<br>70                                                                                                                                                                                                                                                                                                                                                                                                                 | TAL FE<br>2 AL203/<br>11<br>102 - MG<br>0.45<br>THOCLASE<br>THOCLASE<br>7.51<br>87.92<br>10.57<br>32.73<br>ASE - OL1<br>ETRAMEDRO<br>7.62<br>8.05<br>11.11<br>17.14<br>0.0                                                  | 67.04<br>(T102 FED<br>83 10<br>3.04<br>3.82<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MG<br>PLAGIOCLA<br>ALSITE<br>2.32<br>9.82<br>43.72<br>NCP YR OX ENE<br>2 MULE P ER<br>5.36<br>0.0<br>7.83<br>12.07<br>2.87                                                                                       | 7.0<br>7.0<br>51.1<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51 | 5<br>11.35<br>90.16<br>2.26<br>41.11<br>23.35<br>1 ( IN MOL)<br>55.56<br>58.71<br>81.06<br>0.0<br>29.75                                       | K 20/714<br>• 381<br>E PERCE                                 | NT)<br>QTZ<br>40TZ)             | 31.40<br>33.24<br>C.0<br>79.79<br>57.38                     |
| AFM QATIO<br>TOTAL ALKALIS 25-<br>TOTAL ALKALIS 25-<br>FED/(FED+MGD) CAD/AL2O<br>+904d -41<br>JENSEN CATION AL2O3 -<br>56-10<br>QUARTZ 56-10<br>QUARTZ 35-<br>CUAPTZ 64-<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>GASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTIO<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>OLIVINE PROJECTION<br>CHAS PROJECTIONS                                                                                                                                               | 90 T)<br>3 SI02/TIO<br>62.39<br>FE0+FE203+T<br>37.45<br>ST<br>0R<br>CA<br>CA<br>SI<br>2HG<br>CA<br>CA<br>SI<br>2HG<br>CA<br>TM<br>CA<br>SI<br>2HG<br>CA<br>IN<br>SASALT T<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAL FE<br>2 AL203/<br>102 - MG<br>6-45<br>THOCLASE<br>THOCLASE<br>36.76<br>7.51<br>87.92<br>10.57<br>32.73<br>ASE - OL1<br>ETRAHEORO<br>7.62<br>8.05<br>11.11<br>17.14<br>0.0                                               | 67.04<br>3.04<br>3.04<br>3.82<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>CPX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MG<br>PLAGIOCLA<br>ALAITE<br>51-89<br>2.32<br>9.82<br>49.32<br>43.72<br>NGP YR OXENE<br>2 MOLE PER<br>5.36<br>0.0<br>7.83<br>12.07<br>2.87                                                                       | 7.0<br>TIO2 NA<br>85 1.12<br>MG<br>SI<br>MG<br>SI/9<br>NA+H<br>- QUARTZ<br>CENT<br>PLAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>120/T 102<br>3.571<br>90.18<br>2.26<br>41.11<br>23.35<br>2 (IN MOL)<br>5 5.56<br>5 8.71<br>8 1.06<br>0.0<br>2 9.75                       | K 20/T II<br>• 38 1<br>• • • • • • • • • • • • • • • • • • • | NT)<br>QTZ<br>4QTZ)             | 3 1. 45<br>3 3. 24<br>C. 0<br>7 9. 79<br>5 7. 38            |
| AFM QATIO<br>TOTAL ALKALIS 25-<br>TOTAL ALKALIS 25-<br>FED/(FED+MGD) CAU/AL2O<br>.9043 .41<br>JENSEN CATION AL2O3 -<br>56-10<br>QUARTZ 35-<br>GUARTZ 35-<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>GASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>PLAGIOCLASE PROJECTION<br>DLIVINE PROJECTION<br>CHAS PROJECTIONS<br>TETRAHEDRON COORDINATES                                                                                                            | 90 T)<br>3 SID2/T10<br>62.39<br>FED+FC203+T<br>37.45<br>ST<br>96 CA<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>SI<br>SI<br>2MG<br>CA<br>SI<br>SI<br>SI<br>SI<br>SI<br>SI<br>SI<br>SI<br>SI<br>SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TAL FE<br>2 AL203/<br>102 - MG7<br>0.45<br>THOCLASE<br>THOCLASE<br>THOCLASE<br>10.57<br>32.73<br>ASE - OL1<br>ETRAMEDRO<br>7.62<br>8.05<br>11.11<br>17.14<br>0.0<br>13.74                                                   | 67.04<br>(T102 FED<br>83 04<br>3.04<br>3.82<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>MG<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MG<br>PLAGIOCLA<br>ALSIT:<br>2.32<br>9.82<br>43.32<br>43.32<br>NCP YR OXENE<br>2 MOLE P ER<br>5.36<br>0.0<br>7.83<br>12.07<br>2.87<br>8.20                                                                       | 7.0<br>7.0<br>51<br>5<br>1/5<br>1/5<br>1/5<br>NA+K<br>- QUARTI<br>CENT<br>PLAC<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>11.35<br>11.35<br>90.16<br>2.26<br>41.11<br>23.35<br>1 (IN MOL)<br>5 5.56<br>5 8.71<br>8 1.06<br>0.0<br>29.75<br>14.60                   | K 20/714<br>• 381<br>E PERCEA                                | 02<br>(17)<br>QTZ<br>(0TZ)<br>S | 31.40<br>33.24<br>C.0<br>79.79<br>57.38<br>63.46            |
| AFM QATIO<br>TOTAL ALKALIS 25-<br>TOTAL ALKALIS 25-<br>KOMATIITE PARAMETERS<br>FED/(FED+MGD) CAD/AL2O<br>.904d .41<br>JENSEN CATION AL2O3 -<br>S6-10<br>QUARTZ 56-10<br>QUARTZ 35-<br>CUAPTZ 64-<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>CLINOPYROXENE PROJECTION<br>DLIVINE PROJECTION<br>CHAS PROJECTIONS<br>TETRAMEDRON COORDINATES<br>DIOPSIDE PROJECTION                                            | 90 T)<br>90 T)<br>93 SI02/TIO<br>62.39<br>FE3+FE203+T<br>37.45<br>ST<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>2NG<br>CA<br>SI<br>3N SALT T<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAL FE<br>2 AL203/<br>102 - M65<br>5 - 45<br>THOCLASE<br>THOCLASE<br>36.76<br>7.51<br>87.92<br>10.57<br>32.73<br>ASE - OL1<br>ETRAHEORO<br>7.62<br>8.05<br>11.11<br>17.14<br>0.0<br>13.74<br>30.55<br>1.2                   | 47.04<br>(TIO2 FED<br>3.04<br>3.82<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>A | MG<br>/TIO2 CAO/<br>·23 CAO/<br>·23 4.<br>PLAGIOCLA<br>ALAIT:<br>51.89<br>2.32<br>9.82<br>49.32<br>49.32<br>43.72<br>NCP VR OXENE<br>2 MULE PER<br>5.36<br>0.0<br>7.83<br>12.07<br>2.87<br>8.20<br>11.94<br>7.01 | 7.0<br>TIO2 NA<br>85 2<br>SI<br>MG<br>SI/5<br>NA+H<br>- QUART2<br>CENT<br>PLAC<br>A<br>S<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>11.35<br>11.35<br>90.18<br>2.26<br>41.11<br>23.35<br>(IN MQL)<br>55.56<br>58.71<br>81.06<br>0.0<br>29.75<br>14.60<br>57.51               | K 20/T II<br>• 38 1                                          | 22<br>47)<br>472<br>4072<br>2   | 3 1. 40<br>3 3. 24<br>C. 0<br>7 9. 79<br>5 7. 38<br>6 3. 46 |
| AFM QATIO<br>TOTAL ALKALIS 25-<br>TOTAL ALKALIS 25-<br>FED/(FED+MGD) CAU/AL2O<br>.9043 .41<br>JENSEN CATION AL2O3 -<br>S6.10<br>QUARTZ 35.<br>QUARTZ 35.<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTION<br>CLINOPYROXENE PROJECTION<br>CLINOPYROXENE PROJECTION<br>DLIVINE PROJECTION<br>CHAS PROJECTIONS<br>CHAS PROJECTION<br>CHAS PROJECTION<br>CHAS PROJECTION<br>CHAS PROJECTION<br>CHAS PROJECTION<br>CHAS PROJECTION<br>CHAS PROJECTION | CT 09<br>SID2/T10<br>62.39<br>FED+FC203+T<br>37.45<br>SI<br>246<br>CA<br>CA<br>SI<br>246<br>CA<br>CA<br>SI<br>246<br>CA<br>CA<br>SI<br>246<br>CA<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>245<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>247<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>246<br>CA<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>SI<br>SI<br>25<br>SI<br>25<br>SI<br>25<br>S | TAL FE<br>2 AL203/<br>11<br>102 - MG<br>0.45<br>THOCLASE<br>THOCLASE<br>THOCLASE<br>7.51<br>87.92<br>10.57<br>32.73<br>ASE - OL1<br>ETRAHEDRO<br>7.62<br>8.05<br>11.11<br>17.14<br>0.0<br>13.74<br>30.55<br>13.04<br>****** | 67.04<br>(T102 FED<br>83 04<br>3.04<br>3.82<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>2FE<br>AL<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MG<br>PLAGIOCLA<br>ALSITE<br>SI-89<br>Z-32<br>9-82<br>49-82<br>49-82<br>43-72<br>NCP YR OXENE<br>2 MGLE P ER<br>5-36<br>0.0<br>7-83<br>12.07<br>Z-87<br>8-20<br>11.94<br>74-81<br>39949                          | 7.0<br>7.0<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51.2<br>51 | 5<br>11.35<br>11.35<br>90.16<br>2.26<br>41.11<br>23.35<br>11.12<br>55.56<br>58.71<br>81.06<br>0.0<br>29.75<br>14.60<br>57.51<br>12.15<br>3.55 | K 20/714<br>• 381<br>E PERCE                                 | 17)<br>QTZ<br>40TZ)<br>S        | 31.40<br>33.24<br>C.0<br>79.79<br>57.38<br>63.46            |

SAMPLE MUNSER

8G 159

•

| SAMPLE NUMBER BG                                                                                                                                                                     | 140                                                                                                                                  |                                                                                         |                              |                                                                                     |                         | 2                             | 78                         |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------|-------------------------|-------------------------------|----------------------------|--------------------------|
| ORIGINAL WEIGHT PER                                                                                                                                                                  | CENT OX LOES                                                                                                                         |                                                                                         |                              |                                                                                     |                         |                               |                            |                          |
| SIUZ AL203 FEZ<br>71.49 15.52 2.                                                                                                                                                     | 63 FEO<br>40 4.31                                                                                                                    | MNO 460<br>+11 1.12                                                                     | 25<br>•25                    | N425<br>• 19                                                                        | K20<br>4+42             | 1.03                          | +05 CF                     | .00 100.88               |
| SIU2 AL203 FE2<br>70-37 15-38 2.                                                                                                                                                     | 23 FEU<br>38 4.27                                                                                                                    | -11 1.11                                                                                | CAQ<br>-25                   | NA21<br>-19                                                                         | K20<br>4+38             | T 102<br>1.02                 | P205 CA<br>• 0 5           | 203 TOTAL<br>.00 100.00  |
| CATION PROPORTIONS<br>SI AL FEL<br>63.72 17.59 1.                                                                                                                                    | IN ANALYSIS<br>3) Fe(2)<br>73 3.47                                                                                                   | MN MG<br>109 1.60                                                                       | CA<br>+26                    | NA<br>•34                                                                           | к<br>5•42               | T I<br>74                     | P CF                       |                          |
| CIPW NORM                                                                                                                                                                            |                                                                                                                                      |                                                                                         |                              |                                                                                     | /                       |                               |                            |                          |
| Q<br>WEIGHT PERCENT 49.<br>Mole Percent 74.<br>Cation Percent 47.                                                                                                                    | TZ COR<br>012 10-017<br>508 9-97<br>327 11-449                                                                                       | 08<br>25-891<br>10-357<br>27-102                                                        | 48<br>1.509<br>.526<br>1.677 |                                                                                     | N<br>906<br>297<br>948  | LC<br>• 000<br>• 000<br>• 000 | NE<br>-000<br>-000<br>-000 | - 000<br>- 000           |
| WEIGHT PERCENT<br>MULE PERCENT<br>CATION PERCENT                                                                                                                                     | 20 20 24<br>300-000<br>300-000<br>300-000                                                                                            | KS<br>•000<br>•000<br>•000                                                              | 01<br>•000<br>•000           |                                                                                     | 10<br>200<br>200<br>200 | HY<br>7•158<br>2•782<br>7•099 | 000<br>1000<br>1000        | 22<br>000<br>000         |
| MEIJHT PERCENT 3.<br>MGLE PERCENT 1.<br>CATION PERCENT 2.                                                                                                                            | MT CM<br>444 .000<br>358 .000<br>600 .000                                                                                            | IL<br>1.939<br>1.167<br>1.439                                                           | HM<br>.000<br>.000           |                                                                                     | FN<br>200<br>200<br>200 | PF<br>- 000<br>- 000<br>- 000 | RU<br>-000<br>-000<br>-000 | AP<br>117<br>032<br>-109 |
| MAFIC INDEX = 12.6<br>NGRM TOTAL = 100.0                                                                                                                                             | 67<br>04                                                                                                                             |                                                                                         |                              |                                                                                     |                         |                               |                            |                          |
| OLIVINE COMPOSITION                                                                                                                                                                  | .000 F4                                                                                                                              | YALITE                                                                                  | . 000                        |                                                                                     |                         |                               |                            |                          |
| CR THOPYROX ENE COMPO<br>ENSTATITE 3                                                                                                                                                 | STTION<br>6.575 FE                                                                                                                   | ROSILITE 61                                                                             | .425                         |                                                                                     |                         |                               |                            |                          |
| CLINDPYROXENE COMPO<br>WOLLASTONITE                                                                                                                                                  | SITION<br>2000 ÉM                                                                                                                    | STATITE                                                                                 | .000                         | FERROSIL                                                                            | LTE .00                 | 0                             |                            |                          |
| FELDSPAR COMPOSITION<br>DRTMOCLASE 9<br>Plagioclase com                                                                                                                              | N<br>1.468<br>MPUSITION (PER                                                                                                         | aite 5<br>C AN) 37                                                                      | 332<br>• 4 9 9               | ANORTHITS                                                                           | 3.14                    | 99                            |                            |                          |
| THORNTON AND TUTTLE<br>SOLIDIFICATION IND<br>CRYSTALLIZATION IND<br>LARSEN INDEX (1/351<br>4191TE XATIG (1000()<br>IRCN RATIG (1FE2=MM<br>MG NUMBER AS CATION<br>OXIDATION RATIO ACC | DIFFERENTIAT<br>x (1000MG3/(MG<br>Ex (40+MG)(MG)<br>AB+A3 E01Y IN<br>3=100/(FE2+4N)<br>x 40/(FE2+4N)<br>x 40/(CT10N)<br>x 40/(CT10N) | ON INOEX<br>0+660+64203+<br>6+60 EQIV CF<br>NE)/PLAG)<br>MG)/<br>FF+MG)<br>AITRE (FEC/F | NA20+K20))<br>EN)            | a     75.09       a     27.15       a     27.15       a     27.15       a     31.66 |                         |                               |                            |                          |
| TOTAL ALKALIS                                                                                                                                                                        | 37.74 1                                                                                                                              | GTAL FE 53                                                                              | • 07                         | MG                                                                                  | 9.1:                    | •                             |                            |                          |
| FEC/(FEO+MGC) CAD/                                                                                                                                                                   | -<br>4L2C3 S102/T1<br>-J2 59-4                                                                                                       | 02 AL203/T [                                                                            | )2 FEO*/1<br>6.2             | 102 CAG                                                                             | T102 NA                 | 20/T102                       | K2D/T102<br>4.291          |                          |
| JENSEN CATION AL20<br>69.9                                                                                                                                                           | 3 - FEC+FE203+<br>7 23+65                                                                                                            | TIO2 - MGO<br>5+39                                                                      |                              |                                                                                     |                         |                               |                            |                          |
| GUARTZ - FELOSPAR RA<br>QUARTZ<br>QUARTZ                                                                                                                                             | 41105<br>63.39<br>64.14                                                                                                              | RTHCLLASE 33                                                                            | .49<br>• 38                  | PLAGICCLA                                                                           | ASE 3.12                | 25.00                         |                            |                          |
|                                                                                                                                                                                      | CA<br>CA                                                                                                                             | .30                                                                                     | HG                           | 2.27                                                                                | 51                      | 97.36                         |                            |                          |
|                                                                                                                                                                                      | S I                                                                                                                                  | 36.38                                                                                   | AL                           | 11-11                                                                               | MG                      | 2.03                          |                            |                          |
|                                                                                                                                                                                      | 2MG<br>(^ _                                                                                                                          | 12.53<br>2.1v                                                                           | 25E<br>Al                    | 33.82                                                                               | 51/3<br>NA +4           | 53 <b>.</b> 65                |                            |                          |
|                                                                                                                                                                                      |                                                                                                                                      |                                                                                         |                              |                                                                                     |                         |                               |                            | 1                        |
| PROPORTION OF ANALYS                                                                                                                                                                 | SYS:EM PLAGIDU<br>Sis in Basalt                                                                                                      | TETRAHEDRON                                                                             | IS 57.25                     | MOLE PER                                                                            | - QUARIZ                | . CIN MULS                    | PERCENT]                   |                          |
| BASALT TETRAHEDRON                                                                                                                                                                   | DL                                                                                                                                   | 9.30                                                                                    | CPX                          | .00                                                                                 | የዚ ልር                   | 4.59                          | ro                         | 72 36.11                 |
| CLINOPAROXENE PROJEC                                                                                                                                                                 | CTION                                                                                                                                | 9.30                                                                                    |                              | 0.0                                                                                 |                         | 4.59                          |                            | 86.11                    |
| QUARTZ PROJECTION                                                                                                                                                                    |                                                                                                                                      | 56.97                                                                                   |                              | - 00                                                                                |                         | 33.03                         |                            | 0.0                      |
| PLAGIOCLASE PROJECTI                                                                                                                                                                 | 1 GN                                                                                                                                 | 9.75                                                                                    |                              | .00                                                                                 |                         | 0.0                           |                            | 90.25                    |
| OLIVINE PROJECTION                                                                                                                                                                   |                                                                                                                                      | 0.0                                                                                     |                              | • 00                                                                                |                         | 1.31                          | CP X+ ( 4 01               | 2) 98.69                 |
| CHAS PROJECTIONS                                                                                                                                                                     | AT#5 C                                                                                                                               | 6-86                                                                                    | н                            | 5.10                                                                                | ٨                       | 14 33                         | ¢                          | 12.70                    |
| DIDPSIDE PROJECTION                                                                                                                                                                  | C3A                                                                                                                                  | 27.62                                                                                   | M                            | 11.89                                                                               | s                       | 40-49                         | 2                          | 12010                    |
| OLIVINE PROJECTION                                                                                                                                                                   | CS                                                                                                                                   | 5.29                                                                                    | 34                           | 84.34                                                                               | s                       | 10.37                         |                            |                          |
| ENSTATITE PROJECTION                                                                                                                                                                 | N #25                                                                                                                                | ****                                                                                    | C253                         | *****                                                                               | AZSE                    | *****                         |                            |                          |
| QUARTZ PROJECTION                                                                                                                                                                    | CASL                                                                                                                                 | *****                                                                                   | MS                           | *****                                                                               | CMS                     | *****                         |                            |                          |

| SID2 AL 203 FE 203<br>61.60 14.73 2.46                                                                                                                                                                                                                                                                                                                                                                                                                   | XIDES<br>FEO M<br>5.52 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO MGO<br>13 3.47                                                                                                                                                                                                           | . CAD<br>6.67                                                                                                 | N420<br>2+43 2                                                                                                                                                                             | K20 1                                                                                                                          | 102                                                                                                                       | PZ05<br>+20                                   | CR203                                                                    | TOTAL<br>100+48                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------|
| WEIGHT PERCENT GXIDES REC.<br>SIG2 AL203 FE203<br>61.31 14.66 2.64                                                                                                                                                                                                                                                                                                                                                                                       | ALCULATED<br>FEO m<br>5.50 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TO 100 PERCE<br>NO MGO<br>13 3.45                                                                                                                                                                                           | NT<br>CAO<br>6.64                                                                                             | NAZO<br>2.42 2                                                                                                                                                                             | K20 1                                                                                                                          | 102                                                                                                                       | P205<br>•20                                   | CR 203                                                                   | TOTAL<br>190.00                                  |
| CATION PROPORTIONS IN ANA<br>SI AL FE(3)<br>57.83 16.30 1.74<br>CIPW NORM                                                                                                                                                                                                                                                                                                                                                                                | LYSIS<br>FE(2) M<br>4.34 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N MG<br>10 4.86                                                                                                                                                                                                             | 6.71                                                                                                          | NA<br>4+42 - 3                                                                                                                                                                             | K 1<br>•01                                                                                                                     | 1<br>•54                                                                                                                  | P.16                                          | CR .00                                                                   |                                                  |
| QTZ<br>WEIGHT PERCENT 17.784<br>HOLE PERCENT 46.952<br>CATION PERCENT 16.776                                                                                                                                                                                                                                                                                                                                                                             | COR<br>.000<br>.000<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OR<br>14+761<br>10+255<br>15+032                                                                                                                                                                                            | AB<br>20.457<br>12.375<br>22.113                                                                              | AN<br>21.767<br>12.411<br>22.176                                                                                                                                                           |                                                                                                                                | LC<br>000<br>000                                                                                                          | NE<br>-000<br>-000                            | 2                                                                        | KP<br>• 000<br>• 000<br>• 000                    |
| WEIGHT PERCENT .000<br>MGLE PERCENT .000<br>Cation Percent .000                                                                                                                                                                                                                                                                                                                                                                                          | • 000<br>• 000<br>• 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KS<br>•000<br>•000                                                                                                                                                                                                          | 8.108<br>5.624<br>8.038                                                                                       | • 000<br>• 000                                                                                                                                                                             | 11<br>- 9.<br>11-                                                                                                              | 679<br>231<br>765                                                                                                         | - 000<br>- 000<br>- 000                       | 2                                                                        | • 000<br>• 000<br>• 000                          |
| MT<br>WEIGHT PERCENT 3.544<br>MOLE PERCENT 2.428<br>CATION PERCENT 2.602                                                                                                                                                                                                                                                                                                                                                                                 | CM<br>• 000<br>• 000<br>• 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1L<br>1+437<br>1-502<br>1+073                                                                                                                                                                                               | HM<br>-000<br>-000<br>-000                                                                                    | TN<br>-000<br>-000<br>-000                                                                                                                                                                 |                                                                                                                                | PF<br>000<br>000                                                                                                          | RU<br>•00(<br>•00(                            |                                                                          | AP<br>• 47 1<br>• 22 2<br>• 42 4                 |
| MAFIC INDEX = 25.238<br>NGRM TOTAL = 100.007<br>OLIVINE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                            |                                                                                                                                |                                                                                                                           |                                               |                                                                          |                                                  |
| ANTROPADATENE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                | FAYA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LITE .0                                                                                                                                                                                                                     | 100                                                                                                           |                                                                                                                                                                                            |                                                                                                                                |                                                                                                                           |                                               |                                                                          |                                                  |
| CLINOPYZOXENE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                | FERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OSILITE 45.1                                                                                                                                                                                                                | .06                                                                                                           |                                                                                                                                                                                            |                                                                                                                                |                                                                                                                           |                                               |                                                                          |                                                  |
| ABLLASTONITE 50.794                                                                                                                                                                                                                                                                                                                                                                                                                                      | ENST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATITE 27.0                                                                                                                                                                                                                  | 11                                                                                                            | FERROSILITE                                                                                                                                                                                | 22.195                                                                                                                         |                                                                                                                           |                                               |                                                                          |                                                  |
| DRTHOCLASE 25.903<br>PLAGIOCLASE COMPOSIT                                                                                                                                                                                                                                                                                                                                                                                                                | ALSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TE 35.9<br>AN) 51.5                                                                                                                                                                                                         | 99                                                                                                            | ANGRTHITE                                                                                                                                                                                  | 38.197                                                                                                                         |                                                                                                                           |                                               |                                                                          |                                                  |
| THORNTON AND TUTTLE DIFFE<br>SOLIDIFICATION INDEX (100)<br>CRYSTALIZATION INDEX (144)<br>LARSEN INDEX (1/331+K)-(C)<br>ALBITE RATIO (100*(18+AB)<br>(RON RATIO (1FE2=MN)=100/)<br>MG NUMBER AS CATIONS MG/C,<br>OXICATION RATIO ACORDING                                                                                                                                                                                                                 | RENTIATION<br>MGD/(MGO+<br>MGD(FFG+<br>A+MGJ<br>EGIV IN NE<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE2+MN+MG<br>IFE3+MN+MG<br>IFE3+MN+MG<br>IFE3+MN+MO<br>IFE3+MN+MO<br>IFE3+MN+MN+MN+MN+MN+MN+MN+MN+MN+MN+MN+MN+MN+ | INDEX<br>FEC+FE203+NA<br>FC EQIV OF E<br>}/plag)<br>}<br>tmg)<br>tre (fe0/feg                                                                                                                                               | 2C+K2O))<br>N)                                                                                                | ± 53.002<br>± 21.172<br>= 30.983<br>= 10-571<br>± 48.449<br>± 67.741<br>= 52.816<br>± 807                                                                                                  |                                                                                                                                |                                                                                                                           |                                               |                                                                          |                                                  |
| AFH RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMPO SIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SITION (AT 1                                                                                                                                                                                                                | 050 DEG)                                                                                                      | = 2.530                                                                                                                                                                                    |                                                                                                                                |                                                                                                                           |                                               |                                                                          |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                            |                                                                                                                                |                                                                                                                           |                                               |                                                                          |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEC+MGC) CAD/AL203<br>-6903 -45<br>JENSEN CATION <u>AL203</u> - FEC                                                                                                                                                                                                                                                                                                                                                         | S102/T102<br>31-05<br>D+f 5203+T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AL 203/T 102                                                                                                                                                                                                                | FE0⇒/T<br>10-1                                                                                                | 102 CAO/T1<br>9 9.78                                                                                                                                                                       | 02 NA20<br>3+1                                                                                                                 | 97 S                                                                                                                      | K 20/710<br>• 303                             | 12                                                                       |                                                  |
| KOMATILITE PARAMETERS<br>FEO/(FEC+MGC) CAD/AL203<br>-6903 -45<br>JENSEN CATION AL203 - FEC<br>S8-71 - FELDSPAR RATIOS                                                                                                                                                                                                                                                                                                                                    | S102/T102<br>31-05<br>D+fe203+T1<br>23-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AL 203/T 102<br>19.38<br>02 - MGQ<br>17.49                                                                                                                                                                                  | FE0⇒/↑<br>10-1                                                                                                | 102 CAO/T1<br>9 9.78                                                                                                                                                                       | 02 NA20<br>3+1                                                                                                                 | 67 <sup>102</sup> 3                                                                                                       | K 20 / T 10<br>• 30 3                         | 12                                                                       |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEC+MGC) CAD/AL203<br>-6903 -45<br>JENSEN CATION AL203 - FEC<br>S8-71<br>QUARTZ - FELDSPAR RATIOS<br>                                                                                                                                                                                                                                                                                                                       | SIO2/T102<br>31-05<br>D+fe203+T1<br>Z3-80<br>ORT<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AL203/T102<br>19.38<br>02 - MGO<br>17.49<br>HOCLASE 19.7<br>HOCLASE 27.8<br>40.01                                                                                                                                           | FE0⇒/T<br>10-1<br>5<br>FE                                                                                     | 102 CAO/TI<br>8 9-78<br>PLAGIOCLASE<br>ALBITE<br>31-04                                                                                                                                     | 02 NA 20<br>3 • 1<br>5 6 • 47<br>3 8 • 60<br>MG                                                                                | 28 <b>-</b> 96                                                                                                            | K 20 / T 10<br>• 30 3                         | 12                                                                       |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FED+MGD) CAD/AL203<br>+45<br>JENSEN CATION AL203 - FEO<br>S8-71<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 23-79<br>QUARTZ 23-79<br>QUARTZ 23-55<br>CATION PROPORTIONS                                                                                                                                                                                                                                                           | SI02/TI02<br>31-05<br>D+f = 203+TI<br>23-80<br>D+f = 203+TI<br>CA<br>GR T<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AL 203/TI02<br>19.38<br>02 - MG0<br>17.49<br>HOCLASE 19.7<br>HOCLASE 27.8<br>40.01<br>9.67                                                                                                                                  | FE0⇒/T<br>10-1<br>5<br>FE<br><b>MG</b>                                                                        | 102 CAO/TI<br>9-78<br>9-78<br>PLAGIOCLASE<br>ALBITE<br>31-04<br>7.00                                                                                                                       | 02 NA 20<br>3 - 1<br>5 6 - 47<br>3 8 - 60<br>S 1                                                                               | 28.96<br>83.34                                                                                                            | K 20/710<br>• 303                             | 12                                                                       |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEC+MGC) CAD/AL203<br>-6903 -45<br>JENSEN CATION AL203 - FEC<br>S3-71<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 23-79<br>QUARTZ 33-55<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                     | S102/T102<br>31-05<br>D+f=203+T1<br>Z3-80<br>ORT<br>CA<br>CA<br>S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AL 203/T 102<br>19.38<br>02 - MGQ<br>17.49<br>MOCLASE 19.7<br>HOCLASE 27.8<br>9.67<br>81.64                                                                                                                                 | FE0⇒/T<br>10-1<br>5<br>FE<br>4G<br>AL                                                                         | 102 CAO/TI<br>8 9.78<br>PLAGIOCLASE<br>ALBITE<br>31-04<br>7.00<br>11.50                                                                                                                    | 02 NA 20<br>3 • 1<br>56 • 47<br>38 • 60<br>51<br>MG                                                                            | 28.96<br>83.34<br>6.85                                                                                                    | K 20∕710<br>•303                              | 12                                                                       |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FED+MGD) CAD/AL203<br>.6903 .45<br>JENSEN CATION AL203 - FEO<br>S8-71<br>QUARTZ - FELDSPAR RATIOS<br>.0487Z 23.79<br>.0487Z 33.55<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                     | SI02/TI02<br>31-05<br>0+fe203+TI<br>23-80<br>ORT<br>CA<br>CA<br>SI<br>2MG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AL203/T102<br>I9.38<br>02 - MG0<br>17.49<br>MOCLASE 19.7<br>HOCLASE 27.8<br>40.01<br>9.67<br>81.64<br>30.65                                                                                                                 | FE0⇒/T<br>10-1<br>5<br>FE<br>MG<br>AL<br>2FE                                                                  | 102 CAO/TI<br>8 9-78<br>PLAGIOCLASE<br>ALBITE<br>31-04<br>7.00<br>11.50<br>32.85                                                                                                           | 02 NA 20<br>3 • 1<br>5 6 • 47<br>3 8 • 60<br>S 1<br>MG<br>S 1 / 5                                                              | 28.96<br>83.34<br>6.85<br>3 6.50                                                                                          | K 20 / T 10<br>• 30 3                         | 12                                                                       |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEC+MGD) CAD/AL203<br>.6903 .45<br>JENSEN CATION AL203 - FEC<br>S8-71<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 23.79<br>QUARTZ 33.55<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                     | SI02/T102<br>31-05<br>D+f 2203+T1<br>CA<br>GA<br>SI<br>2MG<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AL 203/TI02<br>19.38<br>02 - MGO<br>17.49<br>HOCLASE 19.7<br>HOCLASE 27.8<br>9.67<br>B1.64<br>30.65<br>36.12                                                                                                                | FE0⇒/T<br>10-1<br>FE<br>MG<br>AL<br>2FE<br>AL                                                                 | 102 CAO/TI<br>9 9.78<br>PLAGIOCLASE<br>AL311E<br>31.04<br>7.00<br>11.50<br>32.85<br>43.38                                                                                                  | 02 NA 20<br>3+1<br>56-47<br>38-60<br>S1<br>MG<br>S1 /5<br>NA+K                                                                 | 28.96<br>83.34<br>6.85<br>36.50<br>20.00                                                                                  | K 20 / T 10<br>• 30 3                         | 12                                                                       |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEC+MGC) CAD/AL203<br>.6903 .45<br>JENSEN CATION AL203 - FEC<br>S3-71<br>QUARTZ - FELOSPAR RATIOS<br>OUARTZ 23.79<br>OUARTZ 33.55<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN                                                                                                                                                                                                           | SIO2/TIO2<br>31-05<br>0+f = 203+TI<br>23-80<br>0RT<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLA:<br>BASALT TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AL 203/TI02<br>I9.38<br>02 - MGO<br>17.49<br>HOCLASE 19.7<br>HOCLASE 27.8<br>40.01<br>9.67<br>81.64<br>30.65<br>36.12<br>SE - OLIVINE<br>TRAHEDRON 15                                                                       | FE0☆/T<br>10-1<br>5<br>FE<br>MG<br>AL<br>2FE<br>AL<br>- CLINO<br>80-87                                        | 102 CAO/TI<br>8 9.78<br>PLAGIOCLASE<br>ALBITE<br>31-04<br>7.00<br>11.50<br>32.85<br>43.38<br>PYROXENE - 1<br>MOLE PERCE                                                                    | 02 NA 20<br>3+1<br>56-47<br>38-60<br>51<br>MG<br>51/5<br>NA+K<br>QUARTZ (                                                      | 28.96<br>83.34<br>6.85<br>36.50<br>20.00<br>IN 40LE                                                                       | K 20 / T 10<br>• 30 3<br>PERCEN               | 12                                                                       |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FED+MGD) CAD/AL203<br>.6903 .45<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 23.79<br>QUARTZ 33.55<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON                                                                                                                                                                                              | SIO2/TIO2<br>31-05<br>0+f = 203+TI<br>0RT<br>CA<br>CA<br>SI<br>2HG<br>CA<br>PLAGIOCLA<br>BASALT TE<br>DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AL 203/TI02<br>I9.38<br>02 - MG0<br>17.49<br>MOCLASE 19.7<br>HOCLASE 27.8<br>40.01<br>9.67<br>81.64<br>30.65<br>36.12<br>SE - OLIVINE<br>TRAHEDRON IS<br>10.91                                                              | FE0⇒/T<br>10-1<br>FE<br>MG<br>AL<br>2FE<br>AL<br>- CLINO<br>80.87<br>CPX                                      | 102 CAO/T1<br>8 9-78<br>PLAGIOCLASE<br>ALBITE<br>31-04<br>7.00<br>11.50<br>32.85<br>43.38<br>PYROXENE - 1<br>MOLE PERCEI<br>9.94                                                           | 02 NA 20<br>3.1<br>56-47<br>38-60<br>SI<br>MG<br>SI/5<br>NA+K<br>QUARTZ (<br>NT<br>PLAG                                        | 28.96<br>83.34<br>6.85<br>36.50<br>20.00<br>IN 40LE<br>54.77                                                              | K 20/7 10<br>• 303                            | 12<br>(T)<br>QTZ                                                         | 24.38                                            |
| KOMATIITE PARAMETERS<br>FEO/(FEC+MGG) CAD/AL203<br>.6903 .45<br>JENSEN CATION AL203 - FEC<br>QUARTZ - FELOSPAR RATIOS<br>QUARTZ 23.79<br>QUARTZ 23.79<br>QUARTZ 33.55<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAMEDRON<br>CLINOPYROXENE PROJECTION                                                                                                                                                  | SI02/T102<br>31-05<br>0+f=203+T1<br>23-80<br>ORT<br>CA<br>GA<br>SI<br>24G<br>CA<br>PLAGIOCLA<br>BASALT TE<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AL 203/TI02<br>19.38<br>02 - MG0<br>17.49<br>MOCLASE 19.7<br>HOCLASE 27.8<br>9.67<br>81.64<br>30.65<br>36.12<br>SE - OLIVINE<br>TRAHEDRON IS<br>10.91<br>12.12                                                              | FE0\$/T<br>10-1<br>FE<br>MG<br>AL<br>2FE<br>AL<br>- CLINO<br>80-87<br>CPX                                     | 102 CAO/T1<br>8 9.78<br>PLAGIOCLASE<br>ALBITE<br>31-04<br>7.00<br>11.50<br>32.85<br>43.38<br>PYROXENE - 1<br>MOLE PERCE<br>9.94<br>0.0                                                     | 02 NA 20<br>3+1<br>56-47<br>38-60<br>SI<br>MG<br>SI/5<br>NA+K<br>QUARTZ (<br>NT<br>PLAG                                        | 28.96<br>83.34<br>6.85<br>36.50<br>20.00<br>IN AOLE<br>54.77<br>60.81                                                     | K 20/7 10<br>• 303<br>PERCEN                  | 12<br>(T)<br>QTZ                                                         | 24.38<br>27.07                                   |
| KOMATIITE PARAMETERS<br>FEO/(FEC+MGC) CAD/AL203<br>.6903 .45<br>JENSEN CATION AL203 - FEC<br>S3.71<br>QUARTZ - FELDSPAR RATIOS<br>OUARTZ 23.79<br>OUARTZ 33.55<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION                                                                                                                                    | SI02/T102<br>31-05<br>0+f=203+T1<br>Z3-80<br>ORT<br>CA<br>CA<br>CA<br>S1<br>2MG<br>CA<br>PLAGIOCLA<br>BASALT TE<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AL 203/TI02<br>I9.38<br>02 - MG0<br>17.49<br>HOCLASE 19.7<br>HOCLASE 27.8<br>9.67<br>81.64<br>30.65<br>36.12<br>SE - OLIVINE<br>TRAHEDRON IS<br>10.91<br>12.12<br>14.43                                                     | FE0*/T<br>10-1<br>FE<br>MG<br>AL<br>2FE<br>AL<br>- CLINO<br>80.87<br>CPX                                      | 102 CAO/TI<br>8 9.78<br>PLAGIOCLASE<br>ALBITE<br>31-04<br>7.00<br>11.50<br>32.85<br>43.98<br>PYROXENE -<br>MOLE PERCEI<br>9.94<br>0.0<br>13.14                                             | 02 NA 20<br>3+1<br>56-47<br>38-60<br>51<br>NG<br>51/5<br>NA+K<br>QUARTZ (<br>NT<br>PLAG                                        | 28.96<br>83.34<br>6.85<br>36.50<br>20.00<br>IN ADLE<br>54.77<br>60.81<br>72.43                                            | K 20/7 10<br>• 303<br>PERCEN                  | 12<br>(T)<br>QTZ                                                         | 24.38<br>27.07<br>0.0                            |
| KOMATIITE PARAMETERS<br>FEO/(FED+MGD) CAD/AL203<br>.6903 .45<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 23.79<br>.04ATZ 33.55<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                                   | SIO2/TIO2<br>31-05<br>0+f = 203+TI<br>23-80<br>0RT<br>CA<br>CA<br>SI<br>2HC<br>CA<br>SI<br>2HC<br>CA<br>PLAGIOCLA:<br>BASALT TE<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AL 203/TI02<br>I9.38<br>02 - MG0<br>17.49<br>HOCLASE 19.7<br>HOCLASE 27.8<br>40.01<br>9.67<br>B1.64<br>30.65<br>36.12<br>SE - OLIVINE<br>TRAHEDRON IS<br>10.91<br>12.12<br>14.43<br>24.12                                   | FE0*/7<br>10-1<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 102 CAO/T1<br>8 - 78<br>PLAGIOCLASE<br>ALBITE<br>31-04<br>7.00<br>11.50<br>32.85<br>43.38<br>PYROXENE - 1<br>MOLE PERCEN<br>9.94<br>0.0<br>13.14<br>21.97                                  | 02 NA 20<br>3 . 1<br>3 8 . 60<br>S1<br>MG<br>S1 /5<br>NA +K<br>QUAR TZ (<br>NT<br>PL AG                                        | 28.96<br>83.34<br>6.85<br>36.50<br>20.00<br>IN 40LE<br>54.77<br>60.81<br>72.43<br>0.0                                     | K 20/T 10<br>• 303<br>PERCEN                  | 12<br>(T)<br>QTZ                                                         | 24.38<br>27.07<br>0.0<br>53.90                   |
| KOMATIITE PARAMETERS<br>FEO/(FED+MGD) CAD/AL203<br>.6903 .45<br>JENSEN CATION AL203 - FEO<br>SB-TI<br>QUARTZ - FELOSPAR RATIOS<br>QUARTZ 23.79<br>QUARTZ 33.55<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>GLIVINE PROJECTION                                                                                    | SI02/TI02<br>31-05<br>0+FE203+TI<br>23-80<br>ORT<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLA<br>BASALT TE<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AL 203/T102<br>I 9.38<br>02 - MG0<br>17.49<br>MOCLASE 19.7<br>HOCLASE 27.8<br>9.67<br>81.64<br>30.65<br>36.12<br>SE - OLIVINE<br>TRAHEDRON IS<br>10.91<br>12.12<br>14.43<br>24.12<br>0.0                                    | FE0*/T<br>10-1<br>5<br>FE<br>MG<br>AL<br>2FE<br>AL<br>- CLINO<br>80-87<br>CPX                                 | 102 CAO/TI<br>8 9-78<br>9 LAGIOCLASE<br>11-04<br>7.00<br>11.50<br>32.85<br>43.38<br>PYROXENE - 1<br>MOLE PERCE<br>9.94<br>0.0<br>13.14<br>21.97<br>6.13                                    | 02 NA 20<br>3+1<br>56-47<br>38-60<br>S1<br>MG<br>S1/5<br>NA+K<br>QUARTZ (<br>NT<br>PLAG                                        | 28.96<br>83.34<br>6.85<br>36.50<br>20.00<br>IN AOLE<br>54.77<br>60.81<br>72.43<br>0.0<br>33.76                            | K 20 / T 10<br>- 30 3<br>PERCEN<br>DP X + { 4 | 12<br>(T)<br>QTZ                                                         | 24.38<br>27.07<br>0.0<br>53.90<br>60.12          |
| KOMATILITE PARAMETERS<br>FEO/(FED+MGD) CAD/AL203<br>.6903 .45<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 23.79<br>QUARTZ 23.79<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>PLAGIOCLASE PROJECTION<br>DLIVINE PROJECTION<br>CMAS PROJECTIONS                                                                       | SI02/TI02<br>31-05<br>D+FE203+TI<br>ORT<br>CA<br>CA<br>SI<br>2HG<br>CA<br>PLAGIOCLA<br>BASALT TE<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AL 203/TI02<br>I9.38<br>02 - MG0<br>17.49<br>MOCLASE 19.7<br>HOCLASE 27.8<br>40.01<br>9.67<br>81.64<br>30.65<br>36.12<br>SE - OLIVINE<br>TRAHEDRON IS<br>10.91<br>12.12<br>14.43<br>24.12<br>0.0                            | FE0*/T<br>10-1<br>FE<br>MG<br>AL<br>2FE<br>AL<br>- CLINO<br>80.87<br>CPX                                      | 102 CAO/T1<br>8 9.78<br>9.78<br>PLAGIOCLASE<br>ALBITE<br>31-04<br>7.00<br>11.50<br>32.85<br>43.38<br>PYROXENE - 1<br>MOLE PERCEI<br>9.94<br>0.0<br>13.14<br>21.97<br>6.13                  | 02 NA 20<br>3.1<br>56-47<br>38-60<br>SI<br>MG<br>SI/5<br>NA+K<br>QUARTZ (<br>NT<br>PLAG                                        | 28.96<br>83.34<br>6.85<br>36.50<br>20.00<br>IN AOLE<br>54.77<br>60.81<br>72.43<br>0.0<br>33.76                            | K 20 / T 10<br>• 30 3<br>PERCEN<br>OP X+ (4   | )2<br>(T)<br>qTZ<br>(qTZ)                                                | 24.38<br>27.07<br>0.0<br>53.90<br>60.12          |
| KOMATIITE PARAMETERS<br>FEO/(FEC+MGC) CAD/AL203<br>.6903 .45<br>JENSEN CATION AL203 - FEC<br>QUARTZ - FELOSPAR RATIOS<br>.048TZ 23.79<br>.048TZ 23.79<br>.048TZ 33.55<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>DLIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COURDINATES                              | SI02/T102<br>31-05<br>0+f = 203+T1<br>Z3-80<br>ORT<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLA<br>BASALT TE<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AL 203/T102<br>19.38<br>02 - MG0<br>17.49<br>HOCLASE 19.7<br>HOCLASE 27.8<br>9.67<br>81.64<br>30.65<br>36.12<br>SE - OLIVINE<br>TRAHEDRON IS<br>10.91<br>12.12<br>14.43<br>24.12<br>0.0<br>16.07                            | FE0*/T<br>10-1<br>FE<br>MG<br>AL<br>2FE<br>AL<br>- CLINO<br>80.87<br>CPX                                      | 102 CAO/TI<br>8 9.78<br>9.78<br>9.78<br>9.78<br>9.78<br>7.00<br>11.50<br>32.85<br>43.38<br>PYROXENE -<br>MOLE PERCEI<br>9.94<br>0.0<br>13.14<br>21.97<br>6.13<br>10.15                     | 02 NA 20<br>3+1<br>56-47<br>38-60<br>51<br>NG<br>51/5<br>NA+K<br>QUARTZ (<br>NT<br>PLAG                                        | 28.96<br>83.34<br>6.85<br>36.50<br>20.00<br>IN AOLE<br>54.77<br>60.81<br>72.43<br>0.0<br>33.76<br>15.37                   | K 20 / T 10<br>• 30 3<br>PERCEN<br>3P X + { 4 | 12<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T) | 24.38<br>27.07<br>0.0<br>53.90<br>60.12<br>58.40 |
| KOMATIITE PARAMETERS<br>FEO/(FED+MGD) CAD/AL203<br>.6903 .45<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELOSPAR RATIOS<br>QUARTZ 23.79<br>QUARTZ 33.55<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>QUARTZ PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION   | SI02/TI02<br>31-05<br>0+FE203+TI<br>CA<br>CA<br>SI<br>2HG<br>CA<br>PLAGIOCLA<br>BASALT TE<br>OL<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AL 203/T102<br>I 9.38<br>02 - MG0<br>17.49<br>MOCLASE 19.7<br>HOCLASE 27.8<br>9.67<br>81.64<br>30.65<br>36.12<br>SE - OLIVINE<br>TRAHEDRON IS<br>10.91<br>12.12<br>14.43<br>24.12<br>0.0<br>16.07<br>32.21                  | FE0*/T<br>10-1<br>6<br>FE<br>MG<br>AL<br>2FE<br>AL<br>- CLINO<br>80.87<br>CPX                                 | 102 CAO/TI<br>8 9.78<br>PLAGIOCLASE<br>ALBITE<br>31-04<br>7.00<br>11.50<br>32.85<br>43.38<br>PYROXENE - 1<br>MOLE PERCE<br>9.94<br>0.0<br>13.14<br>21.97<br>6.13<br>10.15<br>12.57         | 02 NA 20<br>3+1<br>56-47<br>38-60<br>S1<br>MG<br>S1/5<br>NA+K<br>QUARTZ (<br>NT<br>PLAG<br>A<br>S                              | 28.96<br>83.34<br>6.85<br>36.50<br>20.00<br>IN AOLE<br>54.77<br>60.81<br>72.43<br>0.0<br>33.76<br>15.37<br>55.22          | K 20 / T 10<br>- 30 3<br>PERCEN<br>DP X + { 4 | 12<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T) | 24.38<br>27.07<br>0.0<br>53.90<br>60.12<br>58.40 |
| KOMATIITE PARAMETERS<br>FEO/(FED+MGD) CAD/AL203<br>.6903 .45<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 23.79<br>QUARTZ 33.55<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>DLIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COURDINATES<br>DIOPSIDE PROJECTION<br>OLIVINE PROJECTION | SI02/TI02<br>D+f = 203+TI<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLA<br>BASALT TE<br>OL<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AL 203/TI02<br>I9.38<br>02 - MG0<br>17.49<br>HOCLASE 19.7<br>HOCLASE 27.8<br>40.01<br>9.67<br>B1.64<br>30.65<br>36.12<br>SE - OLIVINE<br>TRAHEDRON IS<br>10.91<br>12.12<br>14.43<br>24.12<br>0.0<br>16.07<br>32.21<br>17.11 | FE0*/7<br>10-1<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 102 CAO/T1<br>8-78<br>PLAGIOCLASE<br>ALBITE<br>31-04<br>7.00<br>11.50<br>32.85<br>43.38<br>PYROXENE - 1<br>MOLE PERCEN<br>9.94<br>0.0<br>13.14<br>21.97<br>6.13<br>10.15<br>12.57<br>68.54 | 02 NA 20<br>3 8 60<br>SI<br>MG<br>SI /5<br>NA +K<br>QUAR TZ (<br>PL AG<br>A<br>S<br>S                                          | 28.96<br>83.34<br>6.85<br>36.50<br>20.00<br>IN 40LE<br>54.77<br>60.81<br>72.43<br>0.0<br>33.76<br>15.37<br>55.22<br>14.36 | K 20 / T 10<br>• 30 3<br>PERCEN<br>JP X+ (4   | 12<br>4T)<br>4TZ<br>5                                                    | 24.38<br>27.07<br>0.0<br>53.90<br>60.12<br>58.40 |
| KOMATIITE PARAMETERS<br>FEO/(FEC+MGD) CAD/AL203<br>.6903 .45<br>JENSEN CATION AL203 - FEO<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 23.79<br>QUARTZ 23.79<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>DLIVINE PROJECTION<br>OLIVINE PROJECTION<br>OLIVINE PROJECTION<br>OLIVINE PROJECTION                                                               | SI02/TI02<br>31-05<br>D+FE203+TI<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLA<br>BASALT TE<br>OL<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AL 203/TI02<br>I 9.38<br>02 - MG0<br>17.49<br>MOCLASE 19.7<br>HOCLASE 27.8<br>9.67<br>81.64<br>30.65<br>36.12<br>SE - OLIVINE<br>TRAHEDRON IS<br>10.91<br>12.12<br>14.43<br>24.12<br>0.0<br>16.07<br>32.21<br>17.11<br>GDDD | FE0*/T<br>10-1<br>FE<br>MG<br>AL<br>2FE<br>AL<br>- CLINO<br>80-87<br>CPX<br>M<br>M<br>M<br>C2S3               | 102 CAO/TI<br>8 9.78<br>9.78<br>9.78<br>9.78<br>9.78<br>7.00<br>11.50<br>32.85<br>43.38<br>PYROXENE -<br>MOLE PERCEN<br>9.94<br>0.0<br>13.14<br>21.97<br>6.13<br>10.15<br>12.57<br>68.54   | 02 NA 20<br>3 * 3<br>5 6 * 47<br>3 MG<br>5 1<br>MG<br>5 1 /5<br>NA + K<br>QUAR TZ {<br>PL AG<br>PL AG<br>A<br>S<br>S<br>A2 S 3 | 28.96<br>83.34<br>6.85<br>36.50<br>20.00<br>IN AOLE<br>54.77<br>60.81<br>72.43<br>0.0<br>33.76<br>15.37<br>55.22<br>14.36 | K 20 / T 10<br>• 30 3<br>PERCEN<br>OP X+{4    | 12<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T)<br>(T) | 24.38<br>27.07<br>0.0<br>53.90<br>60.12<br>58.40 |

SAMPLE NUMBER BG 183

| SAMPLE NUMBER BG 184                                                                                                                                                                                                                     |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                     |                                                                                              |                                 | 200                        |                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------|----------------------------|-------------------------------|
| ORIGINAL WEIGHT PERCENT OX                                                                                                                                                                                                               | ID <del>E</del> S<br>FEO                                               | HŃČ TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | NAZO .                                                              | ĸžŌ                                                                                          | T LOZ                           | P205 CR203                 | TOTAL                         |
| 02-34 13-03 2-30 5<br>WEIGHT PERCENT OXIDES RECA<br>\$102 41203 FE203                                                                                                                                                                    | -JC<br>LCULATEC<br>FEO                                                 | TC 100 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PERCENT                                | NAZQ                                                                | .×20                                                                                         | r 102                           | PZQ5 CR203                 | TOTAL                         |
| CATION PROPORTIONS IN ANAL<br>SI AL Feig)<br>57.91 16.46 1.65 4                                                                                                                                                                          | YSIS<br>FE(2)<br>•13                                                   | MN 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IG CA<br>157 5.63                      | NA<br>2 • 5 3                                                       | x<br>2.03                                                                                    | T 1<br>•54                      | P.15 CR.00                 | 100100                        |
| CIPW NORM<br>STZ<br>WEIGHT_PERCENT 17.296                                                                                                                                                                                                | C ŪR<br>▲ 00 0                                                         | 09<br>9•99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AE<br>9 27.12                          | 1 21.                                                               | AN<br>193                                                                                    | LC<br>• 00 g                    | NE<br>.000                 | кр<br>- СОО                   |
| HOLE PERCENT 40.328<br>CATION PERCENT 16.227                                                                                                                                                                                             | - 000                                                                  | 7.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | 3 21.                                                               | 266                                                                                          | - 00 0                          | .000                       | :000                          |
| AC<br>VEIGHT PERCENT .000<br>MOLE PERCENT .GOO<br>CATION PERCENT .000                                                                                                                                                                    | 20<br>000<br>000<br>000                                                | •00<br>•00<br>•00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                                                     | WD<br>000<br>000                                                                             | HY<br>10-656<br>7.625<br>10.683 | 0L<br>•000<br>•000         | - 000<br>- 000                |
| MT<br>WEIGHT 283CENT 3.393<br>MDLE PERCENT 2.359<br>Cation PErcent 2.479                                                                                                                                                                 | - 000<br>- 000<br>- 000                                                | 11<br>1.44<br>1.55<br>1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                     | TN<br>000<br>000<br>000                                                                      | • 000<br>• 000<br>• 000         | RU<br>•000<br>•000<br>•000 | 44 <u>5</u><br>• 213<br>• 398 |
| ₩4FIC INOEX = 24.404<br>Norm Total = 100.005                                                                                                                                                                                             |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                     |                                                                                              |                                 |                            |                               |
| OLIVINE COMPOSITION<br>FORSTERITE .000                                                                                                                                                                                                   | <del>F</del> 4 Y                                                       | ALITÉ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                                   |                                                                     |                                                                                              |                                 |                            |                               |
| CRTHOPYROXENE COMPOSITION<br>ENSTATITE 54.912                                                                                                                                                                                            | FER                                                                    | ROSILITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.089                                 |                                                                     |                                                                                              |                                 |                            |                               |
| CLINOPYROXENE COMPOSITION<br>WOLLASTONITE 50.795                                                                                                                                                                                         | ENS                                                                    | TATITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27-019                                 | FERROSIL                                                            | 176 22.1                                                                                     | 86                              |                            |                               |
| FELDSPAR COMPOSITION<br>ORTHOCLASE 17.147<br>PLACIOCLASE COMPOSITI                                                                                                                                                                       | DN LPERG                                                               | ITE<br>AN}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.569<br>43.845                       | ANDRTHIT                                                            | e 36.3                                                                                       | 43                              |                            |                               |
| THERNIGN AND TUTTLE DIFFER<br>SOLIDIFICATION INDEX (109<br>CRYSTALLIZATION INDEX (109<br>LARSEN INDEX (1/3SI+K)-(CA<br>ALSITE RATIO (100*(42+48<br>IRON RATIO (1FE2=NN)=100/(<br>MG NUMSER AS CATIONS MG/CA<br>OXIDATION RATIO ACCO?DING | ENTIATIO<br>MG.DI+FJ<br>+AG) IN N<br>712 MN+H<br>712 MN+H<br>TIO LE MA | N INDEX<br>+ ED + FE20<br>+ FC EQIV<br>IE) / P LAG<br>IG) / P LAG<br>IG) / C LAG | )3+NA29+K20)<br>OF EN)<br>)/FE0+FE203) | = 54.40 $= 20.71$ $= 30.22$ $= 10.44$ $= 56.12$ $= 67.95$ $= 67.95$ | 07<br>11<br>15<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35 |                                 |                            |                               |
| DENSITY 7F DRY LIQUID OF T<br>AFN RATIO<br>TOTAL ANKALIS 31.54                                                                                                                                                                           | 9803-219<br>Dt                                                         | GSTTIÓN (<br>TAL SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AT 1050 DEG                            | () = 2.52                                                           | 23                                                                                           | 12                              | •                          |                               |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGD) CAD/AL203<br>46929 44                                                                                                                                                                              | 5152/T10<br>79•92                                                      | 2 AL203/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TIG2 FEC*                              | 1192 CAQ                                                            | 1192 N                                                                                       | A 23 /T 102<br>4 • 1 54         | K2C/T102                   |                               |
| JENSEN CATION AL203 - FEU<br>00.15                                                                                                                                                                                                       | +FE203+T<br>23+14                                                      | 102 - 460<br>16.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                                     |                                                                                              |                                 |                            |                               |
| CUARTZ - FELDSPAR RATIOS<br>CUARTZ Z2.87<br>CUARTZ 31.77<br>CATION PROPORTIONS                                                                                                                                                           | SR<br>DR                                                               | THOCLASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.23<br>18.38                         | PLAGICCLA<br>ALAITE                                                 | ASE 63.9<br>49.9                                                                             | )L<br>15<br>20,20               |                            |                               |
|                                                                                                                                                                                                                                          | CA                                                                     | 9.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MG                                     | 6.61                                                                | 51                                                                                           | 83.80                           |                            |                               |
|                                                                                                                                                                                                                                          | \$1                                                                    | 81.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                                     | 11.64                                                               | MG                                                                                           | 6.46                            |                            |                               |
|                                                                                                                                                                                                                                          | ZMG<br>CA                                                              | 25.83<br>35.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2F 8                                   | 32.37<br>43.79                                                      | NA+                                                                                          | 5 37.8J<br>K 20.92              |                            |                               |
| COORDINATES IN THE SYSTEM                                                                                                                                                                                                                | PLAGTOCI                                                               | ASE - 01 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VINE - CLIN                            | ICP YR CX EN F                                                      |                                                                                              | 7 ( IN HOLE                     | F PERCENT)                 |                               |
| PROPORTION OF ANALYSIS IN                                                                                                                                                                                                                | BASALT T                                                               | ETRAHEDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IN IS 85.90                            | NCLE PER                                                            | CENT                                                                                         |                                 |                            |                               |
| SASALT TETRAHEDRON                                                                                                                                                                                                                       | Q1                                                                     | 9.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CPX                                    | 9.70                                                                | 2 L A                                                                                        | G 58.97                         | 572                        | 22.00                         |
| CLINCPYROXENE PROJECTION                                                                                                                                                                                                                 |                                                                        | 10.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | 0.0                                                                 |                                                                                              | 65.31<br>75.61                  |                            | 24.36                         |
| PLAGIGCLASE PROJECTION                                                                                                                                                                                                                   |                                                                        | 22.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | 23.64                                                               |                                                                                              | 0.0                             |                            | 53.62                         |
| OLIVINE PROJECTION                                                                                                                                                                                                                       |                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | 6-19                                                                |                                                                                              | 37.64                           | 0PX+(40TZ)                 | 56.17                         |
| CMAS PROJECTIONS                                                                                                                                                                                                                         |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                     |                                                                                              |                                 |                            |                               |
| TETRAHEDRON COORDINATES                                                                                                                                                                                                                  | c                                                                      | 1 4- 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ж                                      | 9.59                                                                | A                                                                                            | 15.72                           | 2                          | 58.15                         |
| DIOPSIDE PROJECTION                                                                                                                                                                                                                      | C3 A                                                                   | 32.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                      | 12.43                                                               | S                                                                                            | 55.01                           |                            |                               |
| SLIVINE PROJECTION<br>Enstatte degiestion                                                                                                                                                                                                | H36                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E 2 5 2                                | 0 / × / 2<br>2 2 2 2 2                                              | 5                                                                                            | 19.63<br>3 <b>2000</b> 0        |                            |                               |
| GUARTZ PROJECTION                                                                                                                                                                                                                        | CASZ                                                                   | 80.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MS                                     | 15.19                                                               | CMS                                                                                          | 2 3.30                          |                            |                               |
|                                                                                                                                                                                                                                          |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                      | _                                                                   |                                                                                              |                                 |                            |                               |

.
| -                                                        |                   |                                         |          |                 |          |               |            |          |
|----------------------------------------------------------|-------------------|-----------------------------------------|----------|-----------------|----------|---------------|------------|----------|
|                                                          |                   |                                         |          |                 |          |               |            |          |
| KOMATIITE PARAMETERS                                     |                   |                                         |          |                 |          |               |            |          |
| FEG/(FEO+MGQ) CA0/AL203                                  | \$102/110         | 2 41203/1102                            | fEû¢∕    |                 | 12 NA 20 | 1/1102        | K 20/1102  |          |
| .6921 .41                                                | 65.50             | 16-52                                   | 11.      | 78 6.82         | 3.9      | 1             | 920        |          |
| JENSEN CATION AL203 - FEO<br>31-41                       | +FE203+3<br>27.99 | 192 - HGO<br>20-61                      |          |                 |          | 3             |            |          |
| QUARTZ - FELDSPAR RATIDS<br>QUARTZ 13-85<br>DUARTZ 19-19 | OR<br>CR          | THOCLASE 14.60                          |          | PLAGIOCLASE     | 71.47    |               |            |          |
| CATION PROPORTIONS                                       | CA CA             | 31.01                                   | FE       | 35.84           | MG       | 33.15         |            |          |
|                                                          | CA                | 9.04                                    | MG       | 9.69            | 12       | 81.25         |            |          |
|                                                          | 51                | 78.87                                   | AL       | 11.72           | HG       | 9 <b>. 40</b> |            |          |
|                                                          | ZNG               | 34.25                                   | 29 E     | 37.03           | SI/5     | 2 8. 73       |            |          |
|                                                          | CA                | 33.00                                   | ÁL.      | 43.99           | NA +K    | 23.00         |            |          |
| COORDINATES IN THE SYSTEM                                | PLAG TOCL         | ASE - OLIVINE                           | - CLIN   | OP VR CXENE - C |          | IN HOLE       | PERCENTI   |          |
| PROPORTION OF ANALYSIS IN                                | BASALT T          | ETRAHEDRON IS                           | 84.50    | MOLE PERCEN     | T        |               |            |          |
| SASALT TETRAHEDRON                                       | 01                | 15.60                                   | CPX      | 8.38            | PLAG     | 60.37         | <b>GTZ</b> | 15.65    |
| CLINOPYROXENE PROJECTION                                 |                   | 17.03                                   |          | 0.0             |          | 65.89         |            | 17.08    |
| QUARTZ PROJECTION                                        |                   | 18.50                                   |          | 9.93            |          | 71.57         |            | 0.0      |
| PLAGIDCLASE PROJECTION                                   |                   | 39.37                                   |          | 21.14           |          | 0.0           |            | 39.49    |
| OLIVINE PROJECTION                                       |                   | Q. 0                                    |          | 6.38            |          | 45.97         | OPX+(4QTZ) | 47.65    |
|                                                          |                   |                                         |          |                 |          |               |            |          |
| CHAS PROJECTIONS                                         |                   | 14 40                                   | <b>_</b> |                 |          | • • • •       | ~          | 63 . e   |
| TETRANEDRUN CUCKDINATES                                  | с<br>сп.          |                                         |          | 13.74           | -        | 10.41         | 2          | 3 3 + 43 |
| DIUPSIDE PROJECTIUN                                      |                   | 52, 92                                  |          | 13+94           | 5        | 53+14         |            |          |
| ULIVINE PROJECTION                                       | C2                | 19.17                                   | <b>F</b> | 02+88           | 5        | 17.36         |            |          |
| CRAININE PRUJECILUN                                      | M25               | 19.42                                   | C253     | 34+81           | 625A     | 45.17         |            |          |
| QUARTZ PROJECTION                                        | CASZ              | 1111 11 11 11 11 11 11 11 11 11 11 11 1 | MS       | 529 <u>4</u> 5  | CMSZ     | ****          |            |          |
|                                                          |                   |                                         |          |                 |          |               |            |          |

| CR IG INAL WEIGHT<br>SIO2 AL 203<br>57.64 14.54                                                                                                                          | PERCENT 0X1<br>FE203 P<br>3+29 7                                                                                                                | 055<br>50 mnd<br>40 .13                                                                                              | ИG0<br>4+61                                                                    | CA0<br>00+0                       | NA20<br>3-51 I                                                             | K20 T102                         | P205                          | CR203 TOTAL<br>+00 100+01     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|----------------------------------|-------------------------------|-------------------------------|
| WEIGHT PERCENT<br>SIO2 AL 203<br>57.63 14.54                                                                                                                             | 0X10ES RECAL<br>Fe203 F<br>3-29 7.                                                                                                              | CULATED TO<br>EO HNO<br>40 -13                                                                                       | 100 PERCEN<br>Mg0<br>4+01                                                      | T<br>CAO<br>60.0                  | NAZO<br>3.51 1                                                             | K20 T 102                        | P205<br>+32                   | CR 203 TOTAL<br>+00 100+00    |
| CATION PROPORTI<br>SI AL<br>54-00 16-05                                                                                                                                  | ONS IN ANALY<br>FE(3) F<br>2+32 S.                                                                                                              | SIS<br>E(2) MN<br>80 10                                                                                              | MG<br>6 • 44                                                                   | CA<br>6-02                        | ₩A<br>6•37 2                                                               | K TI<br>-02 -62                  | P.25                          | CR00                          |
| CIPW NORM                                                                                                                                                                |                                                                                                                                                 |                                                                                                                      |                                                                                |                                   |                                                                            |                                  |                               |                               |
| WEIGHT PERCENT<br>Mole PERCENT<br>Cation Percent                                                                                                                         | 9.421<br>29.860<br>8.827                                                                                                                        | COR<br>- 000<br>- 000<br>- 000                                                                                       | 0R<br>9.985<br>8.327<br>10.099                                                 | A8<br>29.687<br>21.558<br>31.871  | AN<br>18-924<br>12-953<br>19-148                                           | LC<br>• 000<br>• 000<br>• 000    | NE<br>•000<br>•000<br>•000    | - 00 0<br>- 00 0<br>- 00 0    |
| WEIGHT PERCENT<br>Hole Percent<br>Cation Percent                                                                                                                         | .000<br>.000<br>.000                                                                                                                            | NS<br>• 000<br>• 000<br>• 000                                                                                        | 2X<br>2000<br>2000                                                             | DI<br>7.195<br>5.986<br>7.079     | - 000<br>- 000<br>- 000<br>- 000                                           | HY<br>17.590<br>14.866<br>17.580 | 01<br>- 000<br>- 000<br>- 000 | - 000<br>- 000<br>- 000       |
| WEIGHT PERCENT<br>MOLE PERCENT<br>CATION PERCENT                                                                                                                         | MT<br>4.771<br>3.924<br>3.480                                                                                                                   | CM<br>- 000<br>- 000<br>- 000                                                                                        | IL<br>1.671<br>2.097<br>1.240                                                  | HM<br>• 000<br>• 000              | TN<br>-000<br>-000<br>-000                                                 | PF<br>- 000<br>- 000<br>- 000    | RU<br>•000<br>•000<br>•000    | AP<br>• 758<br>• 429<br>• 677 |
| NAFIC INPEX = 1                                                                                                                                                          | 31.994<br>00.011                                                                                                                                |                                                                                                                      |                                                                                |                                   |                                                                            |                                  |                               |                               |
| CLIVINE COMPOSI<br>FORSTERITE                                                                                                                                            | NCIT                                                                                                                                            | FAYALI                                                                                                               | re .00                                                                         | o                                 | -*                                                                         |                                  |                               | •                             |
| ORTHOPYROXENE C                                                                                                                                                          | 0MP 15 1 T 10 N<br>54 • 299                                                                                                                     | FERROS                                                                                                               | LITE 45.70                                                                     | 1                                 |                                                                            |                                  |                               |                               |
| CLINOPYROXENE C<br>WOLLASTONI                                                                                                                                            | DAPOSITION<br>Te 50.754                                                                                                                         | ENSTAT                                                                                                               | LTE 26.74                                                                      | 0 F                               | ERROSILITE                                                                 | 22.506                           |                               |                               |
| FELDSPAR CONPOS<br>ORTHUCLASE<br>PLAGIOCLAS                                                                                                                              | 1710N<br>17.040<br>E COMPOSITIO                                                                                                                 | ALƏITE<br>N {PERC AN                                                                                                 | 50.66<br>38.93                                                                 | 4 A                               | NORTHITE                                                                   | 32.296                           |                               |                               |
| THORNTON AND TU<br>SULIDIFICATION<br>CRYSTALLIZATION<br>LARSEN INDEX (1)<br>ALBITE RATIO (1)<br>IRON XATIO (1)FE<br>MG NUMBER AS CA<br>OXIDATION RATIO<br>DENSITY OF DRY | TTLE 01 FF FRE<br>INDEX (100°M<br>INDEX (AN+M<br>/35 I+K)-(CA<br>00° (A3+A8 E0<br>2=HN)*100/(F<br>T IONS MG/CAT<br>ACCORDING TH<br>LIQUID OF TH | NTIATION 1<br>GD/(MGO+FE<br>G+O[+FO+FO<br>MG)<br>IV [N NE]/I<br>E2+MN+MG))<br>IONS (FE+M<br>O LS MAITR<br>IS COMPOSI | NOEX<br>D+FE203+NA2<br>EQIV OF EN<br>PLAG)<br>5)<br>6 (FE0/FE0+<br>10N (AT 10) | 0+K20))<br>)<br>FE203)<br>50 DEG) | +9.093<br>22.483<br>29.771<br>7.574<br>61.070<br>41.070<br>52.598<br>7.579 |                                  |                               |                               |
| APS RATIU<br>TOTAL ALKA                                                                                                                                                  | LIS 25.77                                                                                                                                       | TOTAL                                                                                                                | FE 51.37                                                                       | н                                 | 5                                                                          | 22.85                            |                               |                               |

SAMPLE NUMBER NK81-1 BR82

| SAMPLE NUMBER                                                                                                                                                                             | NK81-2 BR8                                                                                                            | 2                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                        |                                          |                                | * 282                      |                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------|------------------------------------------|--------------------------------|----------------------------|----------------------------------|
| OR 1G INAL WEIGHT I<br>SIOZ AL 203 (<br>55+39 15+11                                                                                                                                       | PERCENT 0X<br>FE203<br>3.50 7                                                                                         | 10 <b>8</b> 5<br>FEO<br>• 87                                                                               | 110 MGC<br>17 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CA0<br>5+63                   | NA20<br>3-23                                           | K20<br>2.39                              | T 102                          | P205 CR20                  | 3 TOTAL<br>99.83                 |
| WEIGHT PERCENT 0)<br>SID2 AL 203 F<br>55.49 15.14                                                                                                                                         | KIDES RECA<br>12203<br>3.50 7                                                                                         | LCULATED<br>FEO<br>- 88                                                                                    | TO 100 PER<br>100 MGC<br>17 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CENT<br>CAO<br>5.04           | NA20<br>3-24                                           | K20<br>2.59                              | T 102                          | P205 CR20                  | 100.00                           |
| CATION PROPORTION<br>SI AL E<br>51-89 16-68<br>C1PW NORM                                                                                                                                  | NS IN ANAL<br>FE(3)<br>2.47 6                                                                                         | YS1S<br>FE(2)<br>•16                                                                                       | 4N 4G<br>•13 7•22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CA<br>5.05                    | NA<br>5-86                                             | ×<br>3-10                                | T 1<br>•68                     | P CR .00                   | 2                                |
| WEIGHT PERCENT<br>NOLE PERCENT<br>CATION PERCENT                                                                                                                                          | 072<br>4.444<br>15.860<br>4.157                                                                                       | C OR<br>•000<br>•000<br>•000                                                                               | GR<br>15.331<br>14.392<br>15.475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45<br>27.37<br>22.37<br>29.32 | 0 19.<br>2 14.<br>5 19.                                | AN<br>114<br>726<br>302                  | LC<br>• 000<br>• 000<br>• 000  | NE<br>-000<br>-000         | KP<br>• 000<br>• 000             |
| WEIGHT PERCENT<br>NOLE PERCENT<br>CATION PERCENT                                                                                                                                          | .000<br>.000                                                                                                          | • 000<br>• 000                                                                                             | •000<br>•000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.20<br>5.82<br>6.10          | 4 .                                                    | 000<br>000<br>000                        | 20- 140<br>19- 21 8<br>20- 150 | • 000<br>• 000<br>• 000    | • 00 0<br>• 00 0                 |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                                          | AT<br>5.081<br>4.704<br>3.699                                                                                         | CM<br>•000<br>•000<br>•000                                                                                 | [1<br>1.845<br>2.606<br>1.367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HH<br>•00<br>•00<br>•00       |                                                        | TN<br>000<br>000<br>000                  | • 000<br>• 000                 | RU<br>•000<br>•000<br>•000 | ΔΡ<br>• 47 5<br>• 30 3<br>• 42 3 |
| MAFIC INDEX = 33<br>NORM TOTAL = 100                                                                                                                                                      | 3.746                                                                                                                 |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                        |                                          |                                |                            |                                  |
| OLIVINE COMPOSITI<br>FORSTERITE                                                                                                                                                           | ION<br>+000                                                                                                           | FAY                                                                                                        | LITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .000                          |                                                        |                                          |                                |                            |                                  |
| OR THOP YROX ENE COU<br>ENSTATITE                                                                                                                                                         | POS 1T 10N<br>55-619                                                                                                  | FER                                                                                                        | ROSILITE 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .381                          |                                                        |                                          |                                |                            |                                  |
| CLINDPYROXENE COM<br>WOLLASTONITE                                                                                                                                                         | POSITION<br>50.842                                                                                                    | ENS                                                                                                        | FATITE 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .341                          | FERROSIL                                               | ITE 21.4                                 | 917                            |                            |                                  |
| FELDSPAR COMPOSI<br>URTHOCLASE<br>PLAGIOCLASE                                                                                                                                             | TION<br>24.002<br>COMPOSITI                                                                                           | ALS<br>DN (PERC                                                                                            | ITE 44<br>AN) 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 277                         | ANORTHIT                                               | E 30.9                                   | 721                            |                            |                                  |
| THORNTON AND TUTY<br>SOLIDIFICATION IN<br>CRYSTALLIZATION IN<br>LARSEN INDEX (1/2<br>ALGITE RATIO (100<br>IRON RATIO (FE2-<br>MG NUMBER AS CAT)<br>OXIDATION RATIO (<br>DENSITY OF ORY L) | LE DIFFER<br>NOEX (100<br>NOEX (AN+<br>351+K)-(CA<br>36(A8+A8 E<br>MN)*100/(1<br>10NS MG/CA<br>10CRDING<br>10UID OF T | ENTIATIO<br>MG0/(MG0-<br>MG.DI+F0-<br>+MG)<br>01V IN NI<br>FE2+MN+H(<br>TIONS (FE<br>TO LE MA<br>HIS COMPI | N INDEX<br>FEU+FE203+<br>FEU = DIV DF<br>)/PLAG}<br>)/PLAG}<br>)/PLAG}<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG<br>)/PLAG | NA20+K20)<br>EN)<br>E0+f=203) | $ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 46<br>223<br>58<br>50<br>121<br>30<br>98 |                                |                            |                                  |
| AFT RATIC<br>TOTAL ALKALI                                                                                                                                                                 | 15 26.45                                                                                                              | 101 COMPT<br>101                                                                                           | TAL FE 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .06                           | MG                                                     | 23.4                                     | 49                             |                            |                                  |
| KOMATIITE PARAMET                                                                                                                                                                         | Ters                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                        |                                          |                                |                            |                                  |
| FEO/(FED+MGO) CA<br>.6806                                                                                                                                                                 | •37                                                                                                                   | 57.10                                                                                                      | 2 AL203/TI<br>15.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02 FEO\$/                     | TIO2 CAO<br>36 5.                                      | 1102 N<br>.80                            | 1420/1102<br>3.330             | K20/T102<br>2.670          |                                  |
| JENSEN CATION AL                                                                                                                                                                          | 203 - FEO<br>223                                                                                                      | FE203+T1<br>28+04                                                                                          | 02 - MGO<br>21.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                                        |                                          |                                |                            |                                  |
| QUARTZ - FELOSPAR<br>GUARTZ<br>QUARTZ<br>CATION PROPORTION                                                                                                                                | RATIOS<br>6.71<br>9.43                                                                                                | OR 1<br>OR 1<br>CA                                                                                         | HOCLASE 23<br>HOCLASE 32<br>27.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -14<br>-52<br>FE              | PLAGIOCLA<br>ALBITE<br>36.50                           | ASE 70.1<br>58.0<br>MG                   | 5<br>)5<br>35•62               |                            |                                  |
|                                                                                                                                                                                           |                                                                                                                       | CA                                                                                                         | 8+73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MG                            | 11.15                                                  | 12                                       | 80.13                          |                            |                                  |
|                                                                                                                                                                                           |                                                                                                                       | \$1<br>2×C                                                                                                 | 76.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AL                            | 12.37                                                  | MG                                       | 10.70                          |                            |                                  |
|                                                                                                                                                                                           |                                                                                                                       | CA                                                                                                         | 30.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2FE<br>4L                     | 45.15                                                  | SI/<br>NA+                               | ·K 24.26                       |                            |                                  |
| CONSTRATES IN TH                                                                                                                                                                          | E CYCTEM 1                                                                                                            |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                        | - 011401                                 | 7 ( 1 1 1 10)                  | E DEDESNEL                 |                                  |
| PROPORTION OF ANA                                                                                                                                                                         | LYSIS IN !                                                                                                            | BASALT TO                                                                                                  | TRAHEDRON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 79.04                      | MOLE PER                                               | CENT                                     |                                | E PERGENIJ                 |                                  |
| SASALT TETRAHEDRO                                                                                                                                                                         | 3N                                                                                                                    | OL                                                                                                         | 19.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CPX                           | 7.72                                                   | <u> የኒ</u> ል                             | G 61.52                        | QTZ                        | 11.63                            |
| CLINOPYROXENE PRO                                                                                                                                                                         | DJECTION                                                                                                              |                                                                                                            | 20.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | 0.0                                                    |                                          | 66.67                          |                            | 12.61                            |
| QUARTZ PROJECTION                                                                                                                                                                         | 1<br>                                                                                                                 |                                                                                                            | 21.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | 8.74                                                   |                                          | 69.62                          |                            | 0.0                              |
| OLIVINE PROJECTIC                                                                                                                                                                         |                                                                                                                       |                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 5.67                                                   |                                          | 53.14                          | OP X+(4QT Z)               | 40.19                            |
| CHAS PROJECTIONS                                                                                                                                                                          |                                                                                                                       |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                        |                                          |                                |                            |                                  |
| TETRAHEDRON COORE                                                                                                                                                                         | INATES                                                                                                                | с                                                                                                          | 16.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M                             | 15.13                                                  | A                                        | 17.37                          | S                          | 50.59                            |
| DIOPSIDE PROJECTI                                                                                                                                                                         | NON                                                                                                                   | C3 A                                                                                                       | 33.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | м                             | 14.50                                                  | s                                        | 51.96                          |                            |                                  |
| OLIVINE PROJECTIC                                                                                                                                                                         | N                                                                                                                     | 22                                                                                                         | 21.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H                             | 58.41                                                  | S                                        | 19.72                          |                            |                                  |
| ENSTATITE PROJECT                                                                                                                                                                         | ION                                                                                                                   | MZS                                                                                                        | 27.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C2S3                          | 30.70                                                  | A25                                      | 3 41.43                        |                            |                                  |
| CHAPTE OPS ISCTICA                                                                                                                                                                        | 4                                                                                                                     | CAS2                                                                                                       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MS.                           | 82323                                                  | EMS                                      | 2 20003                        |                            |                                  |

| SAMPLE NUMBER N                                                                                                                                                                                                       | K81-6 8882                                                                                                                                                      |                                                                                                                      |                                                                                                             |                                      |                                                      |                    |                                  |                        | 283            |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|--------------------|----------------------------------|------------------------|----------------|----------------------------------|
| ORIGINAL WEIGHT P<br>S102 AL2C3 F<br>57.62 15.14                                                                                                                                                                      | ERCENT 0X11<br>5203 F(<br>2+69 6+1                                                                                                                              | DES<br>EQ M<br>05 4                                                                                                  | NO MGO<br>14 6.10                                                                                           | 043<br>98+6                          | NA20<br>3.72                                         | K20<br>-78         | T 102                            | P205                   | CR 20 3<br>•00 | TOTAL<br>100.02                  |
| WEIGHT PERCENT UX<br>SIO2 AL203 F<br>57-61 15-14                                                                                                                                                                      | 1DES RECALO<br>E203 FO<br>2.09 6.0                                                                                                                              | CULATED<br>ED Hi<br>95 •                                                                                             | TO 100 PERCE<br>NO MGO<br>14 6.10                                                                           | NT<br>640<br>6489                    | NA20<br>3.72                                         | K20<br>•78         | T 102                            | P205                   | CR 203         | 100.00                           |
| CATION PROPORTION<br>SI AL F<br>53-33 16-52<br>CIPH NORM                                                                                                                                                              | S IN ANALY:<br>E(3) F(<br>1.87 4.4                                                                                                                              | SIS<br>E(2) M<br>69 +                                                                                                | N MG<br>11 8.41                                                                                             | 43<br>5•43                           | NA<br>6-67                                           | K<br>•92           | TI<br>•41                        | °.23                   | CR .00         |                                  |
| WEIGHT PERCENT<br>POLE PERCENT 2<br>CATION PERCENT                                                                                                                                                                    | 972<br>8 • 392<br>7 • 340<br>7 • 768                                                                                                                            | COR<br>•000<br>•000<br>•000                                                                                          | 0R<br>4+608<br>3+951<br>4+605                                                                               | AB<br>31.463<br>23.487<br>33.374     | AN<br>22-30<br>15-69<br>22-29                        | 5                  | LC<br>• 000<br>• 000             | NI<br>- 01<br>- 01     | 20<br>20<br>20 | KP<br>• 000<br>• 000             |
| WEIGHT PEACENT<br>MULE PERCENT<br>CATION PERCENT                                                                                                                                                                      | AC<br>•070<br>•000<br>•000                                                                                                                                      | NS<br>• 000<br>• 000                                                                                                 | K S<br>• 000<br>• 000                                                                                       | D1<br>8.093<br>7.015<br>7.97         | 00<br>- 000<br>- 000                                 | 2                  | HY<br>19•439<br>17•366<br>19•737 | 01<br>• 01<br>• 01     |                | CS<br>• 00 0<br>• 00 0<br>• 00 0 |
| WEIGHT PERCENT<br>MULE PERCENT<br>CATION PERCENT                                                                                                                                                                      | HT<br>3•902<br>3•299<br>2•812                                                                                                                                   | CM<br>• 000<br>• 000                                                                                                 | IL<br>1.120<br>1.445<br>.821                                                                                | HA<br>• 000<br>• 000                 | TN<br>-000<br>-001<br>-000                           |                    | PF<br>• 000<br>• 000             | R (<br>- 0)<br>- 0)    | )<br>00<br>00  | AP<br>• 687<br>• 400<br>• 606    |
| MAFIC INDEX = 33<br>NORM TOTAL = 100                                                                                                                                                                                  | - 24 1                                                                                                                                                          |                                                                                                                      |                                                                                                             |                                      |                                                      |                    |                                  |                        |                |                                  |
| OLIVINE COMPOSITI<br>FORSTERITE                                                                                                                                                                                       | 000 .                                                                                                                                                           | FAYA                                                                                                                 | LITE .0                                                                                                     | 00                                   |                                                      |                    |                                  |                        |                |                                  |
| OR THOP YROX ENE COM<br>ENSTATITE                                                                                                                                                                                     | POSITION<br>65.004                                                                                                                                              | FERR                                                                                                                 | -<br>DSILITE 34.9                                                                                           | 96                                   |                                                      |                    |                                  |                        |                |                                  |
| CLINOPYROXENE COM                                                                                                                                                                                                     | POSITION<br>51.462                                                                                                                                              | ENST                                                                                                                 | ATITE 31.5                                                                                                  | 52                                   | FERRASILIT                                           | = 16-9             | 86                               |                        |                |                                  |
| FELOSPAR COMPOSIT<br>ORTHUCLASE<br>PLAGIOCLASE                                                                                                                                                                        | 10N<br>7.894<br>Compositio                                                                                                                                      | ALAI<br>V (PERC)                                                                                                     | TE 53.8<br>AN) 41.4                                                                                         | 96<br>84                             | ANORTHITE                                            | 38.2               | 10                               |                        |                |                                  |
| THERNTON AND JUTT<br>SOLIDIFICATION IN<br>CRYSTALLIZATION I<br>LARSEN INDEX (1/3<br>ALGITE RATID (100<br>IRON TATID (1622<br>MG AUMBER AS CATI<br>UXIDATION RATID A<br>DENSITY OF DRY LI<br>AFM RATIO<br>TOTAL ALKALI | LE DIFFERE/<br>DEX (100=M<br>NDEX (100=M<br>NDEX (100=M<br>NDEX (100=M<br>(40=4)<br>(40=4)<br>(40=4)<br>NDEX (100=<br>NDEX (100=<br>NDEX (100=<br>N)<br>S 23.59 | NTIATION<br>GOV(HGD+<br>GOV(HGD+<br>HG)<br>IV IN NE<br>E2+MN+AG<br>IONS (FE<br>IONS (FE<br>MAI'<br>IS COMP9:<br>TDT. | INDEX<br>FO FE203+NA<br>FO EQIV OF EF<br>)/PLAG}<br>)<br>HG)<br>TRE (FED/FE0<br>SITION (AT 10<br>AL FE 44.4 | 20+K20))<br>*FE203)<br>050 DEG)<br>3 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 31.9               | 8                                |                        |                |                                  |
| KOMATIITE PARAMET<br>FEO/(FEO+MGO) CA<br>.5915                                                                                                                                                                        | ERS<br>0/AL203 53                                                                                                                                               | 102/T102<br>97.66                                                                                                    | AL203/T102<br>25-66                                                                                         | FE0#/1<br>14.3                       | 102 CAO/T                                            | 102 N              | ▲20/T 102<br>6+305               | K 20 / T 1<br>1 + 32 2 | 102            |                                  |
| JENSEN CATION AL                                                                                                                                                                                                      | 203 - FEO+6<br>•77                                                                                                                                              | E203+110<br>21.85                                                                                                    | 12 - MGD<br>26.37                                                                                           |                                      |                                                      |                    |                                  |                        |                |                                  |
| QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION                                                                                                                                                            | RATIOS<br>12.57<br>18.87<br>S                                                                                                                                   | OR TI<br>OR TI<br>CA                                                                                                 | 10CLASE 6.9<br>10CLASE 10.3<br>32.74                                                                        | 0<br>6<br>FE                         | PLAGIOCLASI<br>ALBITE<br>26.94                       | 80.5<br>70.7<br>MG | 3<br>6<br>40.32                  |                        |                |                                  |
|                                                                                                                                                                                                                       |                                                                                                                                                                 | CA                                                                                                                   | 9•96<br>74 13                                                                                               | MG                                   | 12-27                                                | 5 I<br>MG          | 17.07                            |                        |                |                                  |
|                                                                                                                                                                                                                       |                                                                                                                                                                 | ZMG ·                                                                                                                | 43.44                                                                                                       | ZFE                                  | 29.03                                                | \$17               | 5 27.53                          |                        |                |                                  |
|                                                                                                                                                                                                                       |                                                                                                                                                                 | CA                                                                                                                   | 36+17                                                                                                       | AL                                   | 43.72                                                | NA+                | K 20-11                          |                        |                |                                  |
| COORDINATES IN TH                                                                                                                                                                                                     | E SYSTEM PI                                                                                                                                                     | AG IBCLA                                                                                                             | SE - OLIVINE                                                                                                | - CLINC                              | PYROXENE ~                                           | QUAR T.            | Z CIN MOL                        | E PERCE                | INT)           |                                  |
| PROPORTION OF ANA                                                                                                                                                                                                     | LYSIS IN BA                                                                                                                                                     | ASALT TE                                                                                                             | TRAHEORON IS                                                                                                | 91.16                                | MOLE PERCE                                           | INT                |                                  |                        |                |                                  |
| BASALT TETRAHEDRO                                                                                                                                                                                                     |                                                                                                                                                                 | 01                                                                                                                   | 16.24                                                                                                       | CPX                                  | 8.75                                                 | PLA                | G 61.07                          |                        | QTZ            | 13.93                            |
| QUARTE PROJECTION                                                                                                                                                                                                     | 35C) TOM                                                                                                                                                        |                                                                                                                      | 18.37                                                                                                       |                                      | 10-17                                                |                    | 70.96                            |                        |                | 0.0                              |
| PLAGIOCLASE PROJE                                                                                                                                                                                                     | CTION                                                                                                                                                           |                                                                                                                      | 41.72                                                                                                       |                                      | 22.48                                                |                    | 0+0                              |                        |                | 3 5+ 80                          |
| OLIVINE PROJECTIO                                                                                                                                                                                                     | N                                                                                                                                                               |                                                                                                                      | 0.0                                                                                                         |                                      | 6.97                                                 |                    | 48-64                            | OP X+                  | (4QTZ)         | 44.39                            |
| CMAS PROJECTIONS                                                                                                                                                                                                      |                                                                                                                                                                 |                                                                                                                      |                                                                                                             |                                      |                                                      |                    |                                  |                        |                |                                  |
| TETRAHEDRON COORD                                                                                                                                                                                                     | I NA TE S                                                                                                                                                       | C                                                                                                                    | 14.34                                                                                                       | <b>M</b>                             | 14.89                                                | <b>A</b>           | 15.59                            | , <b>`</b>             | S              | 53.19                            |
| DIOPSIDE PROJECTI                                                                                                                                                                                                     |                                                                                                                                                                 | C3A :                                                                                                                | 32.67                                                                                                       | *                                    | 14+17                                                | S                  | 53.16                            |                        |                |                                  |
| ULIVINE PROJECTIO                                                                                                                                                                                                     | ก<br>โป๊ม                                                                                                                                                       | 65 A                                                                                                                 | 20.04                                                                                                       | e<br>6253                            | 92.07<br>35.49                                       | 2                  | 16+92<br>3 44-47                 |                        |                |                                  |
| angenering PRUGULI                                                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                      |                                                                                                             |                                      | 7                                                    | ~~ .               |                                  |                        |                |                                  |

CAS2 73.27 MS 23.98

CHS2 2.75

QUARTZ PROJECTION

| TUNN INGT (<br>SAMPLE | NUMBER                          | NZ 7-4Th                   | 181                        |                           |                         |                   |               |                 |                     | 2          | 284     |                |
|-----------------------|---------------------------------|----------------------------|----------------------------|---------------------------|-------------------------|-------------------|---------------|-----------------|---------------------|------------|---------|----------------|
| CR 1G INA<br>S 1C 2   | AL WEIGHT<br>AL 203             | PERCENT<br>FE203           | 2301 XD                    | MNO                       | MGO                     | CAO               | NAZC          | K20             | T 102               | P205       | CR 20 3 | TUTAL          |
| 56-07                 | 13.69                           | 3.66                       | 8+24                       | -20                       | 4.1Ž                    | 7.11              | 3-34          | •22             | .99                 | .43        |         | 100-03         |
| S102<br>56.03         | AL 203                          | 0X1DE5 RE<br>FE203<br>3.66 | ECALCULATEL<br>FEO<br>8+24 | 0 TO 1:<br>MNO<br>120     | DO PERCE<br>MGD<br>4+12 | NT<br>CAC<br>7.10 | NA20<br>3+34  | K20<br>•22      | T 102               | P205       | CR203   | LOUTAL         |
| CATION                | AL                              | ONS IN AN<br>FE(3)         | FE(2)                      | MN                        | MG                      | CA                | NÁ            | ĸ               | TI                  | P          | CR      |                |
| 52-58                 | 15+13                           | 2.59                       | 6.47                       | -16                       | 8.55                    | 7.14              | 6.07          | •26             | .70                 | .34        | -00     |                |
| LIP# NL               |                                 | <b>AT 7</b>                | C (1)                      |                           | <b>NP</b>               | εx                |               | A NJ            |                     |            |         | <b>7</b> D     |
| WEIGHT                | PERCENT                         | 10.034                     | - 000                      | 1                         | 1.299                   | 28.231            | 21.           | 695<br>633      | - 000               | •00        | 0       | - 000          |
| CATION                | PERCENT                         | 9.417                      | .000                       | j                         | 1-316                   | 30.361            | 21.           | 990<br>990      | . 000               | -00        | ä       | .000           |
| WEIGHT                | PERCENT                         | •000                       | - 000                      |                           | KS<br>•000              | 8.789             | •             | 000<br>000      | HY 21.754           | - 00       | 0       | .000           |
| CATION                | PERCENT                         | .000                       | - 000                      |                           | •000                    | 8.709             | •             | 000<br>000      | 22.020              | •00        | 0       | .000           |
| WEIGHT                | PERCENT                         | HT<br>5.310                | CM                         | ,                         | IL<br>179               | HH<br>• 000       |               | TN<br>000       | PF                  | RU         | ia.     | AP<br>1 - 01 8 |
| AULS PE               | PERCENT                         | 4.303                      | .000                       | 1                         | .323                    | .000              |               | 000             | 000                 | .00        | ŏ       | - 568<br>- 910 |
| MAFIC                 | INCEX -                         | 38.759                     |                            |                           |                         |                   |               |                 |                     |            |         |                |
|                       | LUZNOUST                        | 00+018<br>T104             |                            |                           |                         |                   |               |                 |                     |            |         |                |
| F                     | DASTERITE                       | +000                       | FA1                        | ALITE                     | •0                      | 00                |               |                 |                     |            |         |                |
| OR THOP'              | ROXENE CI<br>NSTATITE           | 00051710<br>58.424         | N FEF                      | ROSILI                    | TE 41.5                 | 76                |               |                 |                     |            |         |                |
| CL INCPY              | ROXENE C                        |                            | N                          |                           |                         |                   |               |                 | <b>7</b> / <b>A</b> |            |         |                |
| 561.0504              | N COMPOS                        | 15 71.023<br>1710N         | - EN3                      |                           | 2 2 8 4 9               | 11                | FERRUSIL      | 112 204         | 300                 |            |         |                |
| PL                    | AGIOCLASE                       | 2 530<br>E COMPOSI         | TION OPERA                 | C AN)                     | 55.1<br>43.4            | 12<br>54          | NORTHIT       | E 42.           | 352                 |            |         |                |
| SOLIDIA               | ICATION                         | TTLE DIFF<br>INDEX (10     | ERENTIATIO                 | IN INDE                   | EZO3+NA                 | 20+K20))          | = 39.5        | <b>64</b><br>48 |                     |            |         |                |
| LARSEN                | INDEX (1.                       | 1NDEX (A<br>/3\$1+K)-(     | CA +MG : DI +FE            | 1+ <b>PU EQ</b>           | SIA OL E                | N )               | = 36.0        | 30<br>34<br>66  |                     |            |         |                |
| IRON IA               | ATID ((FE)                      | 2=MN)⇒100<br>Ticns MG/     | CATIONS (                  | NE)/PL#<br>4G})<br>€€+MC\ |                         |                   | = 54.0        | 95<br>95        |                     |            |         |                |
| OXIDAT                | DN RATIO                        | ACCORDIN                   | G TO LE MA                 | ATTRE (                   | FEO/FEO                 | +FE203)           | = .8<br>≡ 2.6 | 26              |                     |            |         |                |
| AFM RAT               | TID ALKA                        | LIS 16.7                   | 18 TC                      | TAL FE                    | 54.3                    | 9                 | 4G            | 28.             | 84                  |            |         |                |
|                       |                                 |                            |                            |                           |                         |                   |               |                 |                     |            |         |                |
|                       |                                 |                            |                            |                           |                         |                   |               |                 |                     |            |         |                |
|                       |                                 |                            |                            |                           |                         |                   |               |                 |                     |            |         |                |
|                       |                                 |                            |                            |                           |                         |                   |               |                 |                     |            |         |                |
| KOMATII               | TE GARAM                        |                            |                            |                           |                         |                   |               |                 |                     |            |         |                |
| FED/LEEC              | . с сакало<br>А≠ <b>м</b> бл) ( | EIEKJ<br>CAR/AJ 203        | \$102711                   | 12 412                    | 03/1102                 | EF0#/T            | 102 CAO       | 1102            | NA 20 /T 10.2       | K 20 / T 1 | 02      |                |
| .653                  | 5                               | •52                        | 54.64                      |                           | 13.83                   | 11.6              | 7             | 18              | 3.374               | •222       | 02      |                |
| JENSEN                | CATION                          | 41203 - F<br>45.26         | ED+FE203+1<br>29+16        | 102 -25                   | MGD<br>• 58             |                   |               |                 |                     |            |         |                |
| 01142 77              |                                 |                            |                            |                           |                         |                   |               |                 |                     |            |         |                |
| 3U<br>2U              | JARTZ<br>JARTZ                  | 16-3                       | 8 OR<br>6 03               | THOCLA                    | SE 2.1                  | 2 1               | LAGIOCL       | ASE 81.         | 50<br>36            |            |         |                |
| CATION                | PRUPORTIO                       | ONS                        | CA -                       | 30-45                     |                         | FE                | 3.08          | MG              | 36.47               |            |         |                |
|                       |                                 |                            | CA<br>CA                   | 10.46                     |                         | MG :              | 12.53         | SI              | 77.01               |            |         |                |
|                       |                                 |                            | 21                         | 10.04                     | •                       | AL .              |               | MG              | 12.45               |            |         |                |
|                       |                                 |                            | 271G<br>CA                 | 39.96                     |                         |                   | 2. 12         | 31.<br>NA :     | +K 17.72            |            |         |                |
|                       |                                 |                            |                            |                           |                         |                   |               |                 |                     |            |         |                |
| COORDIN               | ATES IN                         | THE SYSTE                  | M PLAGIOCL                 | ASE -                     | DLIVINE                 | - CLINO           | YROXENE       | - QUAR          | TZ (IN MOLE         | PERCE      | NT)     |                |
| PROPORT               | TION OF A                       | NALYSIS I                  | N BASALT T                 | TETRAHE                   | DRON 15                 | 92.50             | MOLE PER      | RCENT           |                     |            |         | - /            |
| BASALT                | IEIRAHED                        | KUN<br>20 (60710)          | ΟL                         | 10.70                     |                         | 67 X              | 9.42          | PL              | AG 56.60            |            | urz     | 10.13          |
| CLINUPY               | PROJECT 1                       | CUJECTION<br>GN            |                            | 21,29                     |                         |                   | 1.23          |                 | 67-48<br>67-4я      |            |         | 0-0            |
| PLAGION               | LASE PER                        | JECTION                    |                            | 41.14                     |                         |                   | 1.69          |                 | 0_0                 |            |         | 37.17          |
| OLIVINE               | PROJECT                         | ION                        |                            | 0.0                       |                         |                   | 7.21          |                 | 43.35               | 0P X+ (    | 4972)   | 49.43          |
| CHAC 00               |                                 | 5                          |                            |                           |                         |                   |               |                 |                     |            |         |                |
| TETDAUS               | NAON CON                        |                            | r                          | 14,05                     |                         |                   | 6-77          |                 | 14.73               |            | ¢       | 53. CE         |
| 0100510               | E PROJECT                       | TION                       | C3 A                       | 31.67                     | •                       | M 1               | 4.76          | s               | 53-57               |            |         | 554 55         |
| OLIVINE               | PROJECT                         | ION                        | CS                         | 18.44                     | •                       | M                 | 5.20          | s               | 16.14               |            |         |                |
| ENSTATI               | TE PROJE                        | TION                       | NZS                        | 17.84                     | •                       | C253 2            | 5.80          | A2              | \$3 46.35           |            |         |                |
| QUARTZ                | PROJECTI                        | 0 N                        | CAS2                       | 70.58                     | 1                       | MS 2              | 28.62         | CM              | 52 .80              |            |         |                |
|                       |                                 |                            | /                          |                           |                         |                   |               |                 |                     |            |         |                |

| TUNNINGTON 1 981                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                           |                                                                                                  |                                              |                                                                                                   |                                         |                                  |                   |             |                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|-------------------|-------------|----------------------------------|
| SAMPLE NUMBER                                                                                                                                                                                            | NZ 7-57N81                                                                                                                                                                   |                                                                                                                           |                                                                                                  |                                              |                                                                                                   |                                         |                                  |                   | 285         |                                  |
| ORIGINAL WEIGHT<br>SIO2 AL203<br>59-65 13-06                                                                                                                                                             | PERCENT DX<br>FE203<br>3.28 7                                                                                                                                                | 10E5<br>PEO MN<br>.39 .1                                                                                                  | 0 MGO<br>8 5+01                                                                                  | CA0<br>5-22                                  | NA20<br>2.92                                                                                      | K20<br>2.00                             | T 102                            | P205<br>+40       | CR 203      | TOTAL<br>100.05                  |
| WEIGHT PERCENT C<br>SICZ AL 203<br>59.62 13.45                                                                                                                                                           | XIDES RECA<br>FE2D3<br>3+28 7                                                                                                                                                | LCULATED T<br>Feo Mn<br>• 39 • 1                                                                                          | 0 100 PERCE<br>0 MG0<br>8 5.01                                                                   | NT<br>CAD<br>5+22                            | NA20<br>2.92                                                                                      | K20<br>2.00                             | T 102                            | P205              | CR 203      | TOTAL<br>100.00                  |
| CATION PROPORTIO<br>SI AL<br>56+19 14+50                                                                                                                                                                 | NS IN ANAL<br>FE(3)<br>2.33 5                                                                                                                                                | YSIS<br>FE(2) XN<br>•82 •1                                                                                                | HG<br>4 7.03                                                                                     | CA<br>5 • 27                                 | NA<br>5.33                                                                                        | к<br>2•40                               | T 1<br>-67                       | P<br>•32          | CR_00       |                                  |
| CIPW NORM                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                           |                                                                                                  |                                              |                                                                                                   |                                         |                                  |                   |             |                                  |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                                                         | 14.533<br>40.777<br>13.696                                                                                                                                                   | - 000<br>- 000                                                                                                            | 11.812<br>8.721<br>12.017                                                                        | 24.687<br>15.872<br>26.660                   | 16.0<br>10.0                                                                                      | 612<br>066<br>908                       | • 00 0<br>• 00 0                 | .00<br>.00<br>.00 | 0<br>0<br>0 | - 000<br>- 000<br>- 000          |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                                                         | AC<br>•000<br>•000<br>•000                                                                                                                                                   | 20<br>000<br>000<br>000                                                                                                   | KS<br>•000<br>•000                                                                               | 01<br>5.461<br>4.034<br>5.420                | •0                                                                                                | 40<br>000<br>000                        | HY<br>19.420<br>14.607<br>19.625 | 0L<br>•00<br>•00  | 0           | • 000<br>• 000<br>• 000          |
| WEIGHT PERCENT<br>MOLE PERCENT<br>CATION PERCENT                                                                                                                                                         | MT<br>4.760<br>3.466<br>3.492                                                                                                                                                | CM<br>- 000<br>- 000<br>- 000                                                                                             | 11.<br>1.784<br>1.982<br>1.332                                                                   | HM<br>•000<br>•000<br>•000                   |                                                                                                   | N<br>200<br>200                         | .000<br>.000<br>.000             | RU<br>•00<br>•00  | 0           | AP<br>• 94 7<br>• 47 5<br>• 85 1 |
| MAFIC INDEX = 3<br>NORM TOTAL = 10                                                                                                                                                                       | 2.373                                                                                                                                                                        |                                                                                                                           |                                                                                                  |                                              |                                                                                                   |                                         |                                  |                   |             |                                  |
| OLIVINE COMPOSIT                                                                                                                                                                                         | 10N                                                                                                                                                                          | EAVA                                                                                                                      | 176 0                                                                                            | 0.0                                          |                                                                                                   |                                         |                                  |                   |             |                                  |
| OR THOP YROXENE_CO                                                                                                                                                                                       | POSITION                                                                                                                                                                     | PATAL                                                                                                                     |                                                                                                  | -                                            |                                                                                                   |                                         |                                  |                   |             |                                  |
| ENSTATITE<br>CLINOPYROXENE CO                                                                                                                                                                            | 56+424<br>MPOSITION                                                                                                                                                          | FERRO                                                                                                                     | SILITE 43.5                                                                                      | 76                                           |                                                                                                   |                                         |                                  |                   |             |                                  |
| FELDSPAR COMPOSI                                                                                                                                                                                         | E 50.896<br>TION                                                                                                                                                             | ENSTA                                                                                                                     | TITE 27.7                                                                                        | 06 F                                         | ERROSILI                                                                                          | TE 21-3                                 | 96                               |                   |             |                                  |
| PLAGIOCLASE                                                                                                                                                                                              | 22-240<br>COMPOSITIO                                                                                                                                                         | ALBIT                                                                                                                     | E 46.4<br>N) 40.2                                                                                | 82 A<br>24                                   | NORTHITE                                                                                          | 31.2                                    | 78                               |                   |             |                                  |
| THORNTON AND TUT<br>SOLIDIFICATION I<br>CRYSTALLIZATION<br>LARSEN INDEX (1/<br>ALBITE RATIO (10<br>IRON ATIO (FE2<br>MG NUMBER AS CAT<br>GXIDATION RATIO<br>DENSITY OF DRY L<br>AFM RATIO<br>TOTAL ALKAL | TLE DIFFER<br>NUEX (100)<br>TNDEX (AN)<br>35 I+K )+(CA)<br>00 (AB+AB E)<br>40 (AB+AB E)<br>10 NS MG/CA<br>ACCORDING<br>10 NS MG/CA<br>40 CORDING<br>10 UID OF TH<br>15 24.27 | ENTIATION<br>MG0/(MG0+F<br>MG0)+F0+F<br>+MG)<br>11V IN NE1<br>E2+MN+FG)<br>TIONS (FE+<br>F0 LE MAIT<br>HIS COMPOS<br>TOTA | INDEX<br>E0 +FE203+NA<br>0 =GIV 0F =<br>/PLAG)<br>MG)<br>RE (FE0/FE0<br>ITION (AT 1<br>L FE 51.0 | 20+K20))<br>N)<br>+FE203)<br>050 DEG)<br>2 M | = 51.03<br>= 24.31<br>= 27.31<br>= 27.31<br>= 59.77<br>= 66.06<br>= 54.71<br>= .80<br>= 2.56<br>G | 2<br>6<br>3<br>7<br>5<br>1<br>9<br>24.7 | 1                                |                   |             |                                  |
| KOMATIITE PARAME<br>FED/(FED+MGD) C<br>-6737                                                                                                                                                             | TERS<br>A0/AL203                                                                                                                                                             | \$102/T102<br>\$3.46                                                                                                      | AL203/T 102                                                                                      | FE0*/TI<br>11.01                             | 02 CAQ/                                                                                           | 7102 N                                  | A20/1102<br>3-106                | K20/T1            | 02          |                                  |
| JENSEN CATION 4                                                                                                                                                                                          | L203 - FED4                                                                                                                                                                  | FE203+110                                                                                                                 | 2 - MGC<br>23-17                                                                                 |                                              |                                                                                                   |                                         |                                  |                   |             |                                  |
| QUARTZ - FELOSPA<br>QUARTZ<br>QUARTZ<br>CATION PROPORTIO                                                                                                                                                 | R RATIOS<br>21.40<br>28.48                                                                                                                                                   | OR TH<br>OR TH                                                                                                            | OCLASE 17.4<br>OCLASE 23.1                                                                       | 6 P<br>5 A                                   | LAG10CLA<br>L3175                                                                                 | SE 61.0<br>48.3                         | 5<br>8<br>36-47                  |                   |             |                                  |
|                                                                                                                                                                                                          |                                                                                                                                                                              | CA                                                                                                                        | 7.69                                                                                             | MG 1                                         | 0.27                                                                                              | 51                                      | 82.04                            |                   |             |                                  |
|                                                                                                                                                                                                          |                                                                                                                                                                              | SI 7                                                                                                                      | 9.73                                                                                             | AL 1                                         | 0.29                                                                                              | ₩G                                      | 9.98                             |                   |             |                                  |
|                                                                                                                                                                                                          |                                                                                                                                                                              | 2MG 3                                                                                                                     | 5.82                                                                                             | ZFE 3                                        | 5.57                                                                                              | 51/                                     | 5 28.61                          |                   |             |                                  |
|                                                                                                                                                                                                          |                                                                                                                                                                              | CA 3                                                                                                                      | 2.15                                                                                             | AL 4                                         | 4.24                                                                                              | N <b>A</b> +                            | K 23.61                          |                   |             |                                  |
| COORDINATES IN T                                                                                                                                                                                         | ME SYSTEM P                                                                                                                                                                  | PLAGIECLAS                                                                                                                | E - OLIVINE                                                                                      | - CLINGP                                     | YROXENE                                                                                           | - QUART                                 | Z (IN MOLE                       | PERCE             | NT)         |                                  |
| PROPORTION OF AN                                                                                                                                                                                         | ALYSIS IN E                                                                                                                                                                  | ASALT TET                                                                                                                 | RAHEORON IS                                                                                      | 82.31                                        | HOLE PER                                                                                          | CENT                                    |                                  |                   |             |                                  |
| BASALT TETRAHEDR                                                                                                                                                                                         | ON COTTON                                                                                                                                                                    |                                                                                                                           | 7.88                                                                                             | СРХ                                          | 6.58                                                                                              | PLA                                     | 6 52.93                          |                   | QTZ         | 22.60                            |
| CLINDPYROXENE PR                                                                                                                                                                                         | N                                                                                                                                                                            | 1                                                                                                                         | 9•14<br>3.10                                                                                     |                                              | 0.0<br>8.5)                                                                                       |                                         | 50.66                            |                   |             | 24.19                            |
|                                                                                                                                                                                                          | ECTION                                                                                                                                                                       | 3                                                                                                                         | 7.99                                                                                             | ,                                            | 3.99                                                                                              |                                         | 0-0                              |                   | •           | 48.02                            |
| OLIVINE PROJECTI                                                                                                                                                                                         | ON                                                                                                                                                                           |                                                                                                                           | 0.0                                                                                              |                                              | 4.39                                                                                              |                                         | 35.31                            | 0P X + {-         | 40TZ)       | 60.30                            |
| CHAS PROJECTIONS                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                           |                                                                                                  |                                              |                                                                                                   |                                         |                                  |                   |             |                                  |
| TETRAHEDRON COOR                                                                                                                                                                                         | OI NA TE S                                                                                                                                                                   | C 1                                                                                                                       | 4.47                                                                                             | N 1                                          | 4.31                                                                                              | A                                       | 15.02                            |                   | s           | 56.21                            |
| DIOPSIDE PROJECT                                                                                                                                                                                         | ION                                                                                                                                                                          | C3A 3                                                                                                                     | 1.41                                                                                             | H L                                          | 4.01                                                                                              | s                                       | 54.59                            |                   |             |                                  |
| OLIVINE PROJECTI                                                                                                                                                                                         | 0 N                                                                                                                                                                          | 1 23                                                                                                                      | 6.55                                                                                             | M 6                                          | 8.38                                                                                              | \$                                      | 15+07                            |                   |             |                                  |
| ENSTATITE PROJEC                                                                                                                                                                                         | TION                                                                                                                                                                         | M2S                                                                                                                       | 6.15                                                                                             | C2S3 3                                       | 9.71                                                                                              | 425                                     | 3 54.15                          |                   |             |                                  |
| QUARTZ PROJECTIO                                                                                                                                                                                         | N.                                                                                                                                                                           | CAS2 .                                                                                                                    | ***                                                                                              | #S *                                         | ****                                                                                              | CHS                                     | 2                                |                   |             |                                  |

| TUNNINGTON1981                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                       |                 |                                  |                       |                                  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|-----------------|----------------------------------|-----------------------|----------------------------------|
| SAMPLE NUMBER NZ                                                | r-7 <b>t</b> n81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                       |                 |                                  | 286                   |                                  |
| ORIGINAL WEIGHT PER(<br>S102 AL203 FE2(<br>56-88 15-55 3-4      | CENT OXIDES<br>13 FED<br>16 7.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MNO MGO<br>+15 3+80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CA0<br>7.32                                       | NA20<br>2.83          | K20<br>•79      | T 102<br>1.04                    | P205 CR20<br>+45 +0   | 3 TOTAL<br>0 100.06              |
| WEIGHT PERCENT CX106<br>S102 AL203 FE20<br>56-85 15+54 3-4      | S RECALCULATE<br>13 FED<br>16 7.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TO 100 PERC<br>MNO MGD<br>+15 3+80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ENT<br>CAO<br>7.32                                | NA20<br>2+83          | K20<br>•79      | T 102                            | P205 CR20             | 3 TOTAL<br>0 100.00              |
| CATION PROPORTIONS  <br>SI AL Feiz<br>53-86 17-35 2-4           | (N AN4LYSIS<br>3) FEIZ)<br>57 6.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MN MG<br>•12 5•36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CA<br>7.43                                        | NA<br>5+19            | K<br>• 95       | T1<br>+74                        | P CR -0               | 0                                |
| CIPW NORM                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>e</b> n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                       | 4               |                                  | NE                    | *0                               |
| WEIGHT PERCENT 14-0<br>Molé Percent 40-4<br>Cation Percent 13-3 | 50 .000<br>95 .000<br>11 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.4660<br>3.538<br>4.771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.926<br>15.800<br>25.973                        | 27.3<br>17.0<br>28.01 | 78<br>40<br>10  | - 000<br>- 000<br>- 000          | .000<br>.000          | • 00 0<br>• 00 0                 |
| WEIGHT PERCENT .C<br>Mole Percent .C<br>Cation Percent .C       | NC NS<br>000 000<br>000 000<br>000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KS<br>•000<br>•000<br>•000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DI<br>4.954<br>3.720<br>4.892                     | -00<br>-00<br>-00     | 20<br>20<br>20  | HY<br>16.991<br>12.854<br>16.901 | 000<br>• 000<br>• 000 | CS<br>• 00 0<br>• 00 0<br>• 00 0 |
| MEIGHT PERCENT 5.0<br>Mule Percent 3.1<br>Cation Percent 3.4    | T CM<br>15 .000<br>51 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [L<br>1.974<br>2.253<br>1.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HM<br>• 000<br>• 000                              | T)<br>• 00            | N<br>20<br>20   | PF<br>000<br>000                 | RU<br>.000<br>.000    | AP<br>1.065<br>.549              |
| MAFIC INDEX = 30.00                                             | lo<br>lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                       |                 |                                  |                       | • 792                            |
| OLIVINE COMPOSITION                                             | .,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                       |                 |                                  |                       |                                  |
| OR THOP YR OX ENE COMPOS                                        | ITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000                                               |                       |                 |                                  |                       |                                  |
| ENSTATITE 46                                                    | 1.631 FER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROSILITE 51.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 369                                               |                       |                 |                                  |                       |                                  |
| WOLLASTON ITE 50                                                | .371 ENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STATITE 24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135 F                                             | ERROSILII             | TE 25.4         | 94                               |                       |                                  |
| PELDSPAR COMPOSITION<br>URTHOCLASE<br>PLAGIOCLASE COM           | ALE ALE ALE ALE ALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANI 53.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 748 A<br>364                                      | NORTHLITE             | 48.9            | 16                               |                       |                                  |
| ALL ALL ALLA<br>ALL ALLA ALLA<br>ALLA ALLA A                    | 0) FERENCIIAL<br>(1) OFFERENTIAL<br>(1) OFFERENCIIAL<br>(1) OFFERENCIIAL | NF E0 F5203+N<br>+F0 EQIV OF<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/PLAG)<br>HE}/P | A20+K20))<br>EN]<br>0+FE203)<br>1050 DEG]<br>50 P |                       | 20.7            | 4                                |                       |                                  |
| KDMATIITE PARAMETERS<br>FEU/(FED+MGG) CAD/A<br>-7415            | L203 S102/T10<br>•47 54•6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02 AL203/TIO<br>14.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 FEU#/T]<br>10.48                                | 02 CA0/1              | 102 N           | A 20 /T 102<br>2 • 7 21          | K 20/T102<br>• 760    |                                  |
| JENSEN CATION ALZOS<br>54.08                                    | - FED+FE203+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 102 - MGO<br>16+71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                       |                 |                                  |                       |                                  |
| QUARTZ - FELDSPAR RA<br>QUARTZ<br>QUARTZ<br>CATION PROPORTIONS  | 1105<br>20.07 OR<br>32.95 CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THOCLASE 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66 P<br>94 A<br>F# 3                              | LAGIOCLAS             | SE 73.2<br>56.1 | 7                                |                       |                                  |
|                                                                 | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MG                                                | 8.05                  | \$1             | 80.81                            |                       |                                  |
|                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AL 1                                              | 2.78                  | MG              | 7.90                             |                       |                                  |
|                                                                 | ZHG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2FE 4                                             | 0.76                  | \$17            | 5 29.68                          |                       |                                  |
|                                                                 | C <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Δί 4                                              | 5.24                  | NA +1           | K 16.03                          |                       |                                  |
| COORDINATES IN THE S                                            | YSTEM PLAGIOCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASE - OLIVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E - CLINOP                                        | YROXENE -             | QUART           | Z (IN MOLE                       | PERCENT)              |                                  |
| PROPORTION OF ANALYS                                            | IS IN BASALT T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ETRAHEDRON I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 89.09<br>Cov                                    | HOLE PERC             | ENT             | c 40.40                          | AT 2                  | 10 (1)                           |
| CLINDPYROXENE PROJEC                                            | TION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UF A                                              | 0.0                   | PEA             | 64-12                            | 412                   | 20-83                            |
| QUARTZ PROJECTION                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | 6.84                  |                 | 75.45                            |                       | 0.0                              |
| PLAGIOCLASE PROJECTI                                            | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                 | 3.93                  |                 | 0.0                              |                       | 49.96                            |
| OLIVINE PROJECTION                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | 3.79                  |                 | 41.84                            | OP X+ (4 QT Z)        | 54+37                            |
| CHAS PROJECTIONS                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                       |                 |                                  |                       |                                  |
| TETRAHEDRON COORDINA                                            | TES C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H 1                                               | 2.78                  |                 | 16.09                            | 2                     | 55.92                            |
| DIOPSIDE PROJECTION                                             | €3▲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M 1                                               | 3.60                  | 2               | 54.21                            |                       |                                  |
| OLIVINE PROJECTION                                              | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M 6                                               | 6.93                  | 5               | 15.92                            |                       |                                  |
| ENSTATITE PROJECTION                                            | #25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C2S3 3                                            | 8.02                  | A2 S            | 3 52.83                          |                       |                                  |
| QUARTZ PROJECTION                                               | CAS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>非主政</b> 政政                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MS #                                              | 1 动态等级                | CHS             | Z 34444                          |                       |                                  |

.

| SAMPLE NUMBER                                                                                                                                              | N27-9 TN81                                                                                                                                 |                                                                                                                                         |                                                                       |                                                                                                     |                                                                                    |                   |                                  | 287                  |        |                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------|----------------------------------|----------------------|--------|-------------------------------|
| OR1GINAL WEIGH<br>SIG2 AL203<br>53.52 14.96                                                                                                                | T PERCENT OX<br>Fé203<br>2.79 8                                                                                                            | 10ES<br>FED MNO<br>198 18                                                                                                               | MGD<br>6.65                                                           | 640<br>6-55                                                                                         | N≜20<br>3+79                                                                       | K20<br>-28        | T 102                            | P205                 | CR 203 | TOTAL<br>99.47                |
| WEIGHT PERCENT<br>SIO2 AL203<br>53-81 15-04                                                                                                                | 0X1085 RECA<br>F6203<br>3.01 9                                                                                                             | FEO MNO<br>+02 +18                                                                                                                      | 100 PERCENT<br>MGQ<br>6-69                                            | CAD<br>0+58                                                                                         | NAZ 0<br>3.80                                                                      | K20<br>- 28       | T 102<br>1.11                    | P205                 | CR 203 | 1074L                         |
| CATION PROPORT<br>SI AL<br>50-J6 16+49                                                                                                                     | IONS IN ANAL<br>FEI3)<br>2.11 7                                                                                                            | YSTS<br>FE(2) MN<br>.02 .14                                                                                                             | MG<br>9.27                                                            | CA<br>0 • 56                                                                                        | NA<br>6.33                                                                         | K<br>•33          | f 1<br>.77                       | P.38                 | CR .00 |                               |
| CIPW NORM                                                                                                                                                  |                                                                                                                                            |                                                                                                                                         |                                                                       |                                                                                                     |                                                                                    |                   |                                  |                      |        |                               |
| WEIGHT PERCENT<br>HOLE PERCENT<br>CATION PERCENT                                                                                                           | QTZ<br>3.553<br>13.131<br>3.306                                                                                                            | COR<br>• 000<br>• 000<br>• 000                                                                                                          | 0R<br>1.663<br>1.617<br>1.671                                         | AB<br>32.146<br>27.218<br>34.270                                                                    | AN<br>23-148<br>18-473<br>23-258                                                   |                   | LC<br>.000<br>.000<br>.000       | NE<br>•000<br>•000   |        | KP<br>• 000<br>• 000<br>• 000 |
| WEIGHT PERCENT<br>MOLE PERCENT<br>CATTON PERCENT                                                                                                           | AC<br>.000<br>.000<br>.000                                                                                                                 | 20<br>000<br>000<br>000                                                                                                                 | KS<br>- 300<br>- 000<br>- 000                                         | 01<br>5.219<br>5.000<br>5.117                                                                       | .000<br>.000<br>.000                                                               | 2 6<br>2 6<br>2 6 | HY<br>5-684<br>5-657             | .000<br>.000         |        | • 000<br>• 000<br>• 000       |
| WEIGHT PERCENT<br>Molé percent<br>Cation percent                                                                                                           | MT<br>4.363<br>4.183<br>3.160                                                                                                              | CH<br>- 000<br>- 000<br>- 000                                                                                                           | IL<br>2.100<br>3.073<br>1.548                                         | ЧМ<br>•000<br>•000<br>•000                                                                          | TN<br>•000<br>•000                                                                 |                   | ₽ <del>F</del><br>• 000<br>• 000 | RU<br>- 000<br>- 000 |        | 4P<br>1-143<br>-755<br>1-014  |
| MAFIC INDEX =<br>NORM TOTAL =                                                                                                                              | 39.509                                                                                                                                     |                                                                                                                                         |                                                                       |                                                                                                     |                                                                                    |                   |                                  |                      |        |                               |
| OLIVINE COMPOS<br>Forsterit                                                                                                                                | ITI3N<br>E +000                                                                                                                            | FAYALIT                                                                                                                                 | .000                                                                  | )                                                                                                   |                                                                                    |                   |                                  |                      |        |                               |
| OR THOP YROX ENE<br>ENSTATITE                                                                                                                              | COMPOSITION<br>56.933                                                                                                                      | FERROSI                                                                                                                                 | LITE 43.061                                                           | T                                                                                                   |                                                                                    |                   |                                  |                      |        |                               |
| CLINOPYROXENE<br>WOLLASTON                                                                                                                                 | COMPOSITION<br>ITE 50.930                                                                                                                  | ENSTATI                                                                                                                                 | TE 27.93                                                              | 7 F8                                                                                                | AROSILITE                                                                          | 21.133            | 3                                |                      |        |                               |
| FELDSPAR COMPO<br>ORTHUCLAS<br>PLAGIOCLA                                                                                                                   | SITION<br>E COMPOSITI                                                                                                                      | ALAITE<br>DN (PERC AN)                                                                                                                  | 56.439<br>41.864                                                      | 9 AN                                                                                                | ORTHITE                                                                            | 40.641            | L                                |                      |        |                               |
| THURNTON AND T<br>SOLIDIFICATION<br>CRYSTALLIZATIO<br>LARSEN INDEX (<br>ALGITE RAIIO (<br>IRON RATIO (<br>MG NUMBER AS<br>OXIDATION RATI<br>DENSITY OF DRY | UTTLE DIFFER<br>INDEX (1007<br>N INDEX (1007<br>1/351+K)-(CA<br>1000(A8+AB E<br>E27MN)=100/(<br>ATIJNS MG/CA<br>0 ACCORDING<br>LIQUID OF T | ENTIATION IN<br>MGD/(MG3+FEG)<br>MG,DI+FD+FD  <br>+MG}<br>GIV IN NE)/PI<br>FE2+MN+MGJ)<br>TIDNS (FE+MG<br>TC LE MAITRE<br>HIS COMPOSIT) | DEX<br>+FE203+NA2(<br>Eqtv df en<br>LAG)<br>(fe0/fe0+f<br>Ign (At 105 | )+K201) =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>= | 37.362<br>29.321<br>36.940<br>1.173<br>58.136<br>63.958<br>54.899<br>.812<br>2.647 |                   |                                  |                      |        |                               |
| TOTAL ALK                                                                                                                                                  | ALIS 18.14                                                                                                                                 | TOTAL P                                                                                                                                 | =E 52.14                                                              | MG                                                                                                  |                                                                                    | 29.71             |                                  |                      |        |                               |
|                                                                                                                                                            |                                                                                                                                            |                                                                                                                                         |                                                                       |                                                                                                     |                                                                                    |                   |                                  |                      |        |                               |
| KOMATIITE PARA                                                                                                                                             | METERS                                                                                                                                     |                                                                                                                                         |                                                                       |                                                                                                     |                                                                                    |                   |                                  |                      |        |                               |
| FED/(FEO+MGD)<br>+6370                                                                                                                                     | CAD/AL203                                                                                                                                  | \$102/T102 AI<br>48.65                                                                                                                  | 203/T102<br>13+90                                                     | FE0#/TID<br>10.61                                                                                   | 2 CAO/TI                                                                           | 02 NA 2<br>3-     | 20 /T 102<br>4 36                | ×20/T10<br>•255      | 2      |                               |
| JENSEN CATION                                                                                                                                              | AL203 - FED<br>46.24                                                                                                                       | +f=203+T102<br>27.76                                                                                                                    | - MG1)<br>25 • 99                                                     |                                                                                                     |                                                                                    |                   |                                  |                      |        |                               |

| QUARTZ FELDSPAR RATIOS<br>QUARTZ 5-3<br>CATION PROPORTIONS | CA         | OR THOCLASE<br>OR THOCLASE<br>27.45 | 2.75<br>4.45<br>Fé | PLAGIDCLASE<br>ALBITE<br>33.77 | 91.38<br>86-04<br>MG | 38.78 |
|------------------------------------------------------------|------------|-------------------------------------|--------------------|--------------------------------|----------------------|-------|
|                                                            | CA         | 9.96                                | MG                 | 14.07                          | S I                  | 75.97 |
|                                                            | <b>S I</b> | 74.08                               | AL                 | 12.20                          | ' MG                 | 13.72 |
|                                                            | 2mG        | 41.48                               | ZFE                | 36.12                          | \$1/5                | 22.40 |
|                                                            | CA         | 35.67                               | AL                 | 44.80                          | NA +K                | 19.53 |

Т

COORDINATES IN THE SYSTEM PLAGIOCLASE - OLIVINE - CLINOPYROXENE - QUARTZ (IN MOLE PERCENT) PROPORTION OF ANALYSIS IN BASALT TETRAMEDRON IS 92.61 MOLE PERCENT

|                          |      |          | • • • • • • |                |       |       |            |       |
|--------------------------|------|----------|-------------|----------------|-------|-------|------------|-------|
| BASALT TETRAHEDRON       | 31   | 21.59    | C P X       | 5.53           | PLAG  | 62.12 | OTZ        | 10.77 |
| CLINOPYROXENE PROJECTION |      | 22.85    |             | 0.0            |       | 65.75 |            | 11.40 |
| QUARTZ PROJECTION        |      | 24.19    |             | 6.19           |       | 69.62 |            | 0.0   |
| PLASIOCLASE PROJECTION   |      | 56.99    |             | 14.59          |       | 0.0   |            | 28.42 |
| OLIVINE PROJECTION       |      | 0.0      |             | 4.99           |       | 56.11 | OPX+(4QTZ) | 38.90 |
| CHAS PROJECTIONS         |      |          |             |                |       |       |            |       |
| TETRAHEORON COORDINATES  | C    | 15.38    | Ħ           | 18.36          | A     | 16.02 | 2          | 50-25 |
| DIOPSIDE PROJECTION      | C3 A | 32.44    | M           | 15.43          | S     | 52.11 |            |       |
| OLIVINE PROJECTION       | cs   | 20.82    | м           | 60.15          | S     | 19.03 |            |       |
| ENSTATITE PROJECTION     | MZS  | 2 8 . 66 | C253        | 30.12          | AZ S3 | 41.22 |            |       |
| QUARTZ PROJECTION        | CASZ | *****    | MS          | 立章 <b>李</b> 章章 | CMS2  | ***** |            |       |
|                          |      |          |             |                |       |       |            |       |

|                           | 0.4         | ,.,.           |        | 1.00.0     | ~~       | 74.74    |            |       |
|---------------------------|-------------|----------------|--------|------------|----------|----------|------------|-------|
|                           | SI          | 74.90          | AL     | 11.97      | MG       | 13.13    |            |       |
|                           | 2MG         | 41.70          | 2FE    | 34.52      | 51/5     | 23.78    |            |       |
|                           | CA          | 36,24          | AL     | 45.60      | NA+K     | 18.17    |            |       |
| COURDINATES IN THE SYSTEM | PLAGIO      | LASE - OLIVINE | - CLIN | IOPYROXENE | - QUARTZ | (IN MOLE | PERCENT)   |       |
| PROPORTION OF ANALYSIS IN | BASALT      | TETRAHEDRON IS | 93.62  | MOLE PER   | CENT     |          |            |       |
| BASALT TETRAHEDRON        | 0ኒ.         | 21.02          | CPX    | 4.03       | PLAG     | 60.51    | QTZ        | 14.44 |
| CLINOPYROXENE PROJECTION  |             | 21.91          |        | 0,0        |          | 63.05    |            | 15.04 |
| QUARIZ PROJECTION         |             | 24.57          |        | 4.71       |          | 70,72    |            | Q.3   |
| PLAGIOCLASE PROJECTION    |             | 53,24          |        | 18,20      |          | ð.ů      |            | 36.56 |
| OLIVINE PROJECTION        |             | 0.0            |        | 3,29       |          | 49,49    | 0PX+(4QTZ) | 47,22 |
| CMAS PROJECTIONS          |             |                |        |            |          |          |            |       |
| TETRAHEDRON COORDINATES   | C           | 14.56          | н      | 17,45      | A        | 15.46    | S          | 52.54 |
| DIOPSIDE PROJECTION       | C3A         | 31,78          | Μ      | 15,11      | S        | 53.11    |            |       |
| OLIVINE PROJECTION        | CS          | 18.50          | м      | 64.27      | 5        | 17.23    |            |       |
| ENSTATITE PROJECTION      | <b>n</b> 25 | 21.52          | C253   | 32.78      | A253     | 45.71    |            |       |
| QUARTZ PROJECTION         | CAS2        | ***            | MS     | ****       | CMS2     | ****     |            |       |
|                           |             |                |        |            |          |          |            |       |

QUARTZ - FELDSPAR RATIOS QUARTZ 11.65 QUARTZ 19.49 CATION PROPORTIONS 
 ORTHOCLASE
 1.61
 PLAGIOCLASE
 86,53

 ORTHOCLASE
 2.65
 ALBITE
 77.87

 CA
 20.38
 FE
 32.43
 MG
 39.18

 CA
 9.75
 MG
 13.46
 SI
 76.78

JENSEN CATION AL203 - FE0+FE203+1102 - MG0 47.40 26.48 26.04

KOMATIITE PARAMETERS FEO/(FEO+MGD) CAO/AL203 SI02/T102 AL203/T102 FED\*/T102 CAO/T102 NA20/T102 K20/T102 .6227 .44 47.26 12.82 9.10 5.60 3.009 .147

| 5102 AL<br>54.82 14                                                                                                                         | 203 Fi<br>1.97                                                                                                     | E203<br>2.52                                                                                                                   | FÉD<br>B.38                                                                                     | HN0<br>.14                                                                                       | MG0<br>6.45                                   | CA0<br>6.50                      | NA20<br>3.49                                                                           | K20 TIO                             | 26 |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|-------------------------------------|----|
| WEICHT PER<br>5102 AL<br>55.37 15                                                                                                           | CENT 0X<br>203 Fi<br>5.02                                                                                          | IDES REC<br>2203<br>2,54                                                                                                       | ALCULATED<br>Fed<br>B,47                                                                        | TO 100<br>MNO<br>,16                                                                             | PERCENT<br>MGO<br>6.31                        | CAB<br>6.57                      | NA20<br>3.52                                                                           | K20 110                             | 27 |
| CATION PRO<br>SI AL<br>51.60 10                                                                                                             | DPORTION:<br>Fi<br>5.50                                                                                            | S IN ANA<br>E(3)<br>1.78                                                                                                       | _YSIS<br>FE(2)<br>6.60                                                                          | MN<br>. 13                                                                                       | MG<br>9.05                                    | CA<br>6.56                       | NA<br>6.37                                                                             | K TI<br>,20 ,8                      | 12 |
| CIPW NORM                                                                                                                                   |                                                                                                                    |                                                                                                                                |                                                                                                 |                                                                                                  |                                               |                                  |                                                                                        |                                     |    |
| WEIGHT PEI<br>Mole Perce<br>Cation Pei                                                                                                      | RCENT 2<br>NT 2<br>RCENT 2                                                                                         | QTZ<br>7.462<br>4.888<br>6.954                                                                                                 | CDR<br>.000<br>.000<br>.000                                                                     | 1.<br>1.                                                                                         | ur<br>015<br>891<br>021                       | AB<br>29,818<br>22,788<br>31,843 | AN<br>24,65<br>17,75<br>24,81                                                          | LC<br>0,00<br>6,00<br>1,00          | 0  |
| WEIGHT PER<br>Mole Perce<br>Cation Pei                                                                                                      | RCENT<br>ENT<br>RCENT                                                                                              | AC<br>.000<br>.000<br>.000                                                                                                     | NS<br>.000<br>.000<br>.000                                                                      | <i>,</i><br>,                                                                                    | KS<br>000<br>000<br>000                       | DI<br>3.835<br>3.374<br>3.771    | 04<br>00.<br>00.<br>04.                                                                | HY<br>0 26,16<br>0 23,47<br>0 26,24 | 9  |
| WEIGHT PER<br>Mole Perce<br>Cation Pei                                                                                                      | RCENT<br>ENT<br>RCENT                                                                                              | MT<br>3,683<br>3.180<br>2.672                                                                                                  | CM<br>.000<br>.000<br>,000                                                                      | 221                                                                                              | 11<br>225<br>938<br>642                       | HM<br>. 000<br>. 000<br>, 000    | TN<br>.00<br>.00<br>.00                                                                | PF<br>0 .00<br>0 .00<br>0 .00       | 0  |
| NORM TOTAL                                                                                                                                  | EX = 37<br>- * 100                                                                                                 | ,076<br>.020                                                                                                                   |                                                                                                 |                                                                                                  |                                               |                                  |                                                                                        |                                     |    |
| OLIVINE CO<br>Forsi                                                                                                                         | DMPOSITI<br>FERITE                                                                                                 | 000, <b>MO</b>                                                                                                                 | FAY                                                                                             | ALITE                                                                                            | . 0 0 0                                       | I                                |                                                                                        |                                     |    |
| OR THOP YRD)<br>ENSTA                                                                                                                       | (ENE COMI<br>ATITE                                                                                                 | POSITION<br>57.863                                                                                                             | FER                                                                                             | RÖSILIT                                                                                          | E 42.137                                      | •                                |                                                                                        |                                     |    |
| CLINOPYRO)<br>WOLL/                                                                                                                         | COMINSTONITE                                                                                                       | POSITION<br>50.992                                                                                                             | ENS                                                                                             | TATITE                                                                                           | 28.358                                        | ) 6                              | FERROSILIT                                                                             | E 20.651                            |    |
| FELDSPAR (<br>DRTHO<br>Plag)                                                                                                                | COMPOSIT<br>CLASE<br>COCLASE                                                                                       | ION<br>1,829<br>COMPOSIT:                                                                                                      | ALE<br>ION (PERC                                                                                | ITE<br>AN)                                                                                       | 53.242<br>45.257                              |                                  | ANOR THITE                                                                             | 44.429                              |    |
| THORNTON &<br>SOLIDIFIC<br>CRYSTALLIZ<br>LARSEN IM<br>ALBITE RAT<br>IRON RATIO<br>MG NUMBER<br>OXIDATION<br>DENSITY OF<br>AFM RATIO<br>TOTA | AND TUTTI<br>ATION IN<br>LATION 1/3<br>FIO (1/3<br>FIO (1/3)<br>O ((FE2=<br>AS CATI<br>RATIO A<br>DRY LI<br>ALKALT | LE DIFFE<br>DEX (100<br>NDEX (AN<br>SI+K)-(C<br>*(AB+AB)<br>*(AB+AB)<br>NN *100/<br>CCORDING<br>CCORDING<br>QUID OF<br>S 17.43 | RENTIATIO<br>#MG0/(MG0<br>#MG0)<br>EQIV IN N<br>(FE2+MN+h<br>ATIONS (F<br>TO LE MA<br>THIS COMP | IN INDEX<br>J+FEQ+FE<br>J+FO EQI<br>(C)/PLAG<br>(C)/<br>FE+MG)<br>AITRE (F<br>OSITION<br>(TAL FF | 203+NA20<br>V OF EN)<br>)<br>(AT 102<br>51-29 | D+K20))<br>E203)<br>50 DEG)      | = 38.294 $= 30.702$ $= 37.605$ $= 1.944$ $= 54.743$ $= 43.040$ $= 57.823$ $= 2.630$ 10 | 31.07                               |    |
|                                                                                                                                             |                                                                                                                    | //                                                                                                                             | -                                                                                               | • • • •                                                                                          |                                               | -                                |                                                                                        |                                     |    |

SAMPLE NUMBER NZ 7-10TN81

ORIGINAL WEIGHT PERCENT OXIDES

P205 CR203 TOTAL

P205 CR203 TOTAL

кр . 000 . 000 . 000

CS .000 .000 .000

AP 1.172 ,699 1.041

P.39 CR.00

NE .000 .000 .000

0L .000 ,000 .000

RU .000 .000 .000

|                           | CA      | 40.26          | ÀL.    | 42.24        | NA+K        | 17.51   |                |       |
|---------------------------|---------|----------------|--------|--------------|-------------|---------|----------------|-------|
| COORDINATES IN THE SYSTEM | PLAGICO | LASE - OLIVINE | - CLIN | ICP YR UX EN | IE - QUARTZ | IN HOLS | PERCENT)       |       |
| PROPORTION OF ANALYSIS IN | 8ASALT  | TETRAHEDRON IS | 93.34  | MOLE P       | ERCENT      |         |                |       |
| BASALI TETRAHEORON        | a.      | 13.93          | СРХ    | 9.73         | PLAG        | 58.78   | QTZ            | 17.56 |
| CLINOPYROXENE PROJECTION  |         | 15.44          |        | 0.0          |             | 65.11   |                | 19.45 |
| QUARTZ PROJECTION         |         | 16.90          |        | 11.90        |             | 71.30   |                | 0.0   |
| PLAGIOCLASE PROJECTION    |         | 33.80          |        | 23.60        |             | 0.0     |                | 42.59 |
| OLIVINE PROJECTION        |         | 0.0            |        | 7.01         |             | 42.37   | OP X+ ( 4QTZ } | 50-62 |
| CHAS PROJECTIONS          |         |                |        |              |             |         |                |       |
| TETRAHEDRON COORDINATES   | c       | 15.58          | м      | 14.06        | *           | 15.11   | 5              | 55.25 |
| NDITISTOR PROJECTION      | C3 A    | 32.04          | м      | 13.86        | S           | 54-11   |                |       |
| OLIVINE PROJECTION        | cs      | 18.27          | H      | 66.18        | S           | 15.55   |                |       |
| ENSTATITE PROJECTION      | MZS     | 11.62          | C2 S3  | 38.86        | A253        | 49.52   |                |       |
| QUARTZ PROJECTION         | CASZ    | 74.15          | MS     | 24.07        | CMS2        | 1.78    |                |       |

MG

AL

2FE

PLAGIOCLASE 79.36 ALBITE 68.50 32.33 MG

35.85 SI/5

**S I** 

MG

10.13

11.43

32.52

78.92

10.07

23.09

JENSEN CALION AL203 - FED+FE203+T(02 - MG0 50-05 - 27-89 - 22-06

QUARTZ - FELDSPAR RATIOS QUARTZ 19•48 QUARTZ 29•72 CATION PROPURTIONS

> ORTHOCLASE 1-16 ORTHOCLASE 1-78 CA 35-15 FE

> > 10-95

78.50

36.06

CA

51

ZMG

| SAMPLE NUMBER                                                                                                                                                                           | NZ 7-117N81                                                                                                                                                                             |                                                                                                                                                         |                                                       | 289                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------|
| ORIGINAL WEIGHT<br>SIO2 AL 203<br>57-60 14-23                                                                                                                                           | PERCENT OXIDES<br>FE2U3 FE0<br>3.26 7.33                                                                                                                                                | MN <b>O</b> MGO<br>•16 4•96                                                                                                                             | CAO NA20<br>7.46 3.90                                 | K20 [102<br>-13 1.02                   |
| WE 1GHT PERCENT<br>\$102 AL 203<br>\$7.54 14.21                                                                                                                                         | 0X1DES RECALCUL<br>FE203 FE0<br>3.25 7.32                                                                                                                                               | ATED TO 100 PERCEN<br>MNO MGC<br>14 4.95                                                                                                                | T<br>CAO NAZO<br>7.45 3.50                            | K20 1102                               |
| CATION PROPORTIE<br>SI AL<br>54+04 15+74                                                                                                                                                | ONS IN ANALYSIS<br>FE(3) FE(2<br>2.30 5.75                                                                                                                                              | ) mn mg<br>•13 0•94                                                                                                                                     | CA NA<br>7.50 6.37                                    | K T1<br>•16 •72                        |
| CIPW NORM                                                                                                                                                                               |                                                                                                                                                                                         |                                                                                                                                                         |                                                       |                                        |
| WEIGHT PERCENT<br>Pole percent<br>Cation percent                                                                                                                                        | QTZ C<br>12.832 .<br>37.813 .<br>12.053 .                                                                                                                                               | GR GR<br>000 •767<br>000 •595<br>000 •778                                                                                                               | AB AN<br>29.573 22.70<br>19.968 14.45<br>31.829 23.03 | LC<br>8 .000<br>1 .000<br>4 .000       |
| WEIGHT PERCENT<br>Mole percent<br>Cation percent                                                                                                                                        | AC<br>•000 •<br>•000 •                                                                                                                                                                  | 2X 20<br>000-000<br>000-000                                                                                                                             | DI HO<br>9.176 .00<br>7.122 .00<br>9.081 .00          | HY<br>0 17.199<br>0 13.602<br>0 17.342 |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                                        | MT<br>4.717<br>3.606<br>3.449                                                                                                                                                           | CM IL<br>000 1.935<br>000 2.258<br>000 2.439                                                                                                            | HM TN<br>.000 .00<br>.000 .00<br>.000 .00             | 94<br>000<br>000<br>000<br>000         |
| MAFIC INDEX = 1<br>NORM TOTAL = 1                                                                                                                                                       | 86:133                                                                                                                                                                                  |                                                                                                                                                         |                                                       |                                        |
| OLIVINE COMPOSI<br>FORSTERITE                                                                                                                                                           | -000                                                                                                                                                                                    | FAYALITE .00                                                                                                                                            | 0                                                     |                                        |
| CRTHOPYROXENE C                                                                                                                                                                         | OMPOSITION<br>56.856                                                                                                                                                                    | FERROSILITE 43.14                                                                                                                                       | 4                                                     |                                        |
| CLINOPYROXENE CO<br>HOLLASTONI                                                                                                                                                          | DMPOSITION<br>TE 50.925                                                                                                                                                                 | ENSTATITE 27.90                                                                                                                                         | 2 FERROSILIT                                          | E 21.173                               |
| FELDSPAR COMPOS<br>ORTHOCLASE<br>PLAGIOCLAS                                                                                                                                             | ITION<br>1.446<br>E COMPOSITION ()                                                                                                                                                      | ALBITE 55.74<br>PERC AN) 43.43                                                                                                                          | 8 ANDRTHITE                                           | 42.805                                 |
| THORNTÓN AND TU'<br>SOLIDIFICATION<br>CRYSTALLIZATION<br>LARSEN INDEX (1)<br>ALBITE RATIO (1)<br>IRON RATIO (16)<br>MG NUMBER AS CA<br>OXIDATION RATIO<br>DENSITY OF DRY N<br>AFM RATIO | TTLE DIFFERENTI<br>INDEX (100#MGD/<br>INDEX (100#MGD/<br>INDEX (100#MGD/<br>0351+K)-(CAMMG)<br>00#(A8+A8 E9IV<br>2=MN)#100/(FE2+<br>11DNS MG/CATION<br>ACCORDING TO L<br>LIQUIC OF THIS | ATION INDEX<br>(MGD+FED+FE203+NA2<br>I+FD+FD EQIV OF EN<br>IN NE)/PLAG)<br>MN+MG)<br>5 (FE+MG)<br>5 (FE+MG)<br>5 MAITRE (FE0/FED+<br>CAMPOSITION (AT 10 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |                                        |
| TOTAL ALKA                                                                                                                                                                              | LIS 19+26                                                                                                                                                                               | TUTAL PE 54.42                                                                                                                                          | MG                                                    | 26.32                                  |

P205 CR203 TATAL

CR 203

TOTAL

KP • 000 • 000

.000 .000 .000

AP 1.112 .586 .994

P205

P.37 CR.00

NE -000 -000

0L •000 •000

RU •000 •000

| N                                                                                                                                                                          |                                                                                                 |                                                                                        |                                                                     |                                         |                               |                                                               |                      |                               |                      |               |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|-------------------------------|---------------------------------------------------------------|----------------------|-------------------------------|----------------------|---------------|-----------------------------|
| TUNNINGTON1981<br>Sample Number N                                                                                                                                          | 7 7-12TNA                                                                                       | .1                                                                                     |                                                                     |                                         |                               |                                                               |                      |                               | 200                  |               |                             |
|                                                                                                                                                                            |                                                                                                 |                                                                                        |                                                                     |                                         |                               |                                                               |                      |                               | 230                  |               |                             |
| SIO2 AL203 F                                                                                                                                                               | E203<br>3.46 7                                                                                  | FEG                                                                                    | MNO 4                                                               | GG 7                                    | CAO<br>•08                    | NA20<br>3+35                                                  | KZQ<br>•43           | t 102<br>1 •00                | P205<br>•46          | CR 203<br>=00 | 1014L<br>99.79              |
| VEIGHT PERCENT OX<br>SID2 AL203 F<br>55-85 14-77                                                                                                                           | 1065 RECA<br>5203<br>3.47 1                                                                     | FEO<br>FEO<br>+81                                                                      | TO 100 /                                                            | PERCENT<br>160<br>.07 7                 | -10                           | NA20<br>3.86                                                  | €20<br>•43           | T 102                         | P205                 | CR 203        | TOTAL<br>100.00             |
| CATION PROPORTION<br>SI AL F<br>52.25 16.29                                                                                                                                | S [N ANAL<br>E(3)<br>2.44 6                                                                     | YSIS<br>FE(2)<br>+11                                                                   | 410 i<br>14 7                                                       | 1G<br>07 T                              | CA<br>•11                     | NA<br>7.00                                                    | K<br>•51             | ₹1<br>•71                     | P.37                 | CR .00        |                             |
|                                                                                                                                                                            | ATZ.                                                                                            | COR                                                                                    | 01                                                                  | ι                                       | 48                            | AN                                                            |                      | ις                            | NE                   |               | KP                          |
| WEIGHT PERCENT<br>Molg Percent 2<br>Cation Percent                                                                                                                         | 7.940<br>6.245<br>7.428                                                                         | •000<br>•000<br>•000                                                                   | 2.5                                                                 |                                         | 2.437<br>4.718<br>4.988       | 21.714<br>15.500<br>21.939                                    |                      | • 000<br>• 000<br>• 000       | -00<br>-00<br>-00    | 0             | •000<br>•000<br>•000        |
| WEIGHT PERCENT<br>POLE PERCENT<br>CATION PERCENT                                                                                                                           | AC<br>•000<br>•000                                                                              | • 000<br>• 000                                                                         | .00<br>.00                                                          |                                         | DI<br>8+402<br>7.475<br>8.464 | -000<br>-000<br>-000                                          |                      | HY<br>3.550<br>393<br>9.560   | - 00<br>- 00<br>- 00 | 0             | - 000<br>- 000<br>- 000     |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                           | MT<br>5.033<br>4.317<br>3.666                                                                   | CM<br>- 000<br>- 000<br>- 000                                                          | 1.99<br>2.49<br>1.41                                                | 3                                       | нн<br>•000<br>•000<br>•000    | TN<br>• 000<br>• 600<br>• 900                                 |                      | ₽₩<br>• 000<br>• 000<br>• 000 | RU<br>•00<br>•00     |               | AP<br>1+092<br>•645<br>•974 |
| MAFIC INDEX = 35<br>NORM TOTAL = 100                                                                                                                                       |                                                                                                 |                                                                                        |                                                                     |                                         | -                             |                                                               |                      |                               |                      |               |                             |
| OLIVINE COMPOSITI                                                                                                                                                          | DN 000                                                                                          | EAU                                                                                    |                                                                     |                                         |                               |                                                               |                      |                               |                      |               |                             |
| ORTHOPYROXENE COM                                                                                                                                                          | POSITION                                                                                        | PAT                                                                                    |                                                                     | .000                                    |                               |                                                               |                      |                               |                      |               |                             |
| ENSTATITE                                                                                                                                                                  | 55.440                                                                                          | FERI                                                                                   | OSILITE                                                             | 44.560                                  |                               |                                                               |                      |                               |                      |               |                             |
| HOLLASTON ITE                                                                                                                                                              | 50.430                                                                                          | ENS                                                                                    | TATITE                                                              | 27+260                                  | FE                            | AROSILITE                                                     | 21.910               | 2                             |                      |               |                             |
| PLAGIOCLASE                                                                                                                                                                | COMPOSITI                                                                                       | CN (PERC                                                                               | AN)                                                                 | 57.361<br>39.951                        | AN                            | ORTHITE                                                       | 38+163               | 5                             |                      |               |                             |
| CRYSTALLIZATION I<br>LARSEN INDEX 11/3<br>ALBITE RATIO (190<br>IRON RATIO (197<br>MG NUMBER AS CATI<br>DXIDATION RATIO A<br>DENSITY OF ORY LI<br>AFM GATIO<br>TOTAL ALKALI | NDEX (AN+<br>SI+K)-{CA<br>#(A8+A8<br>MN)=100/(<br>DNS MG/CA<br>CCORDING<br>QUID OF T<br>S 21-14 | MG+DI+FD<br>+HG<br>DIV IN NE<br>FE2+MN+HG<br>TIONS (FE<br>TO LE MA)<br>HIS COMP(<br>TO | FO EQIV<br>)/PLAG)<br>)/<br>HG)<br>ITRE (FEC<br>)SITION (<br>FAL FE | QF EN)<br>(FEO+FE)<br>(AT 1050<br>53.87 | 2031 =<br>DEG } =<br>NG       | 33.976<br>4.028<br>60.049<br>67.001<br>53.644<br>814<br>2.611 | 24.99                |                               |                      |               |                             |
| KOMATIITE PARAMET<br>FED/(FEO+MGD) CA<br>+6831                                                                                                                             | ERS<br>D/AL203<br>_48                                                                           | \$102/T102<br>53.73                                                                    | 2 4L203/<br>14-                                                     | 7102 F                                  | 60#/110<br>10.91              | 2 CAQ/TI<br>7.08                                              | 02 NA2<br>3.         | 0./T102<br>850                | K20/TI<br>+430       | 02            |                             |
| JENSEN CATION AL 49                                                                                                                                                        | 203 - FEC                                                                                       | +FE203+T1<br>28+39                                                                     | 102 - MGC<br>21.68                                                  | <b>}</b> .                              |                               |                                                               |                      |                               |                      |               |                             |
| QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION                                                                                                                 | RATIOS<br>12.25<br>18.41                                                                        | ÚR 1<br>OR 1<br>CA                                                                     | HOCLASE<br>HOCLASE<br>33.06                                         | 3.93<br>5.90<br>#ē                      | РЦ.<br>41<br>34               | AGIOCLASE<br>BITE<br>•08                                      | 83.83<br>75.68<br>MG | 32.87                         |                      |               |                             |
|                                                                                                                                                                            |                                                                                                 | CA                                                                                     | 10.70                                                               | ЯG                                      | 10                            | • 64                                                          | 51                   | 78.65                         |                      |               |                             |
|                                                                                                                                                                            |                                                                                                 | \$1                                                                                    | 77.45                                                               | ۸Ľ                                      | 12                            | . 07                                                          | MG                   | 10.48                         |                      |               |                             |
|                                                                                                                                                                            |                                                                                                 | ZMG                                                                                    | 36.03                                                               | 251                                     | E 37                          | • 35                                                          | SI/5                 | 26.62                         |                      |               |                             |
|                                                                                                                                                                            |                                                                                                 | <b>UA</b>                                                                              | 2 / • • <b>F</b>                                                    | ~~                                      | ••                            | • • • •                                                       |                      | 1 78 16                       |                      |               |                             |
| COORDINATES IN TH                                                                                                                                                          | E SYSTEM                                                                                        | PLAGIOCL                                                                               | ASE - OLI                                                           | VINE - (                                |                               | ROXENE - (                                                    | QUARTZ               | IN MOLE                       | PERCE                | NTI           |                             |
| PROPORTION OF ANA                                                                                                                                                          | LYSIS IN                                                                                        | BASALT TE                                                                              | TRAMEDRO                                                            | CP3<br>00 12 91                         | l+38 ™<br>r q                 | DLE PERCE                                                     | NT<br>PLAG           | 62.30                         |                      | 017           | 1 2 . 21                    |
| CLINOPYROXENE PRO                                                                                                                                                          | JECTION                                                                                         | 02                                                                                     | 16.79                                                               | <b>U</b> F /                            | , ,                           | • • • •                                                       | FEAS                 | 68.66                         |                      | 412           | 14.55                       |
| QUARTE PROJECTION                                                                                                                                                          |                                                                                                 |                                                                                        | 17.55                                                               |                                         | 10                            | •67                                                           |                      | 71.78                         |                      |               | 0_0                         |
| PLAGIDCLASE PROJE                                                                                                                                                          | CTION                                                                                           |                                                                                        | 40.40                                                               |                                         | 24                            | • 57                                                          |                      | 0.0                           |                      |               | 35.03                       |
| OLIVINE PROJECTION                                                                                                                                                         | N                                                                                               |                                                                                        | 0.0                                                                 | _                                       | 7                             | • 45                                                          |                      | 50.09                         | 0P X+ (              | 4QTZ)         | 42.47                       |
| CHAS PROJECTIONS                                                                                                                                                           |                                                                                                 |                                                                                        |                                                                     |                                         |                               |                                                               |                      |                               |                      |               |                             |
| TETRAHEDRON COCRD.                                                                                                                                                         | INATES                                                                                          | c                                                                                      | 16.45                                                               | н                                       | 14                            | .81                                                           | A                    | 16.23                         |                      | S             | 52.51                       |
| DIOPSIDE PROJECTI                                                                                                                                                          | м                                                                                               | C3 A                                                                                   | 32.94                                                               | н                                       | 14                            | • 25                                                          | S                    | 52.81                         |                      |               |                             |
| OLIVINE PROJECTION                                                                                                                                                         | N                                                                                               | ĊS                                                                                     | 20.50                                                               | М                                       | 51                            | • 75                                                          | 2                    | 17.75                         |                      |               |                             |
| ENSTATITE PROJECT                                                                                                                                                          | ION .                                                                                           | H25                                                                                    | 22.38                                                               | C25                                     | 3 33                          | .81                                                           | A253                 | 43.81                         |                      |               |                             |
| QUARTZ PROJECTION                                                                                                                                                          |                                                                                                 | CAS2                                                                                   | 74.90                                                               | MS                                      | 24                            | • 30                                                          | CHS2                 | • 80                          |                      |               |                             |

| TUNNINGTONI981                                  | M7 7)3TM                    | . 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                  |              | 20                       | 1          |          |                 |
|-------------------------------------------------|-----------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|------------------|--------------|--------------------------|------------|----------|-----------------|
| JANELE MONOLK                                   |                             | ••                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                  |              |                          | · •        |          |                 |
| ORIGINAL WEIGHT<br>S102 AL203<br>57.30 14.44    | PERCENT D<br>FE2D3<br>3.23  | (1DES<br>PEO<br>7.25     | MN0<br>•14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MG0<br>4.35            | CA0<br>7.49         | NA20<br>3-77     | K20<br>•27   | T 102<br>1.00            | P205       | CR 203   | TOTAL<br>99.90  |
| HEIGHT PERCENT 0<br>SIO2 AL203 1<br>57.36 14.45 | X1DES REC/<br>FE203<br>3.23 | ALCULATES<br>FED<br>1.26 | TO 100<br>MNO<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) PERCE<br>Mg0<br>4.55 | NT<br>CAO<br>7.50   | NA20<br>3.77     | K20<br>•27   | Ť 102<br>1.00            | P205       | CR203    | TOTAL<br>100.00 |
| CATION PROPORTION                               | NS IN ANAL                  | YSIS                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                  |              |                          | _          |          |                 |
| 51 AL<br>53.79 1598                             | 2+28 9                      | 5.70                     | •13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6-37                   | 7.53                | NA<br>6.86       | ×<br>•32     | •71                      | °-35       | CR .00   |                 |
| CIPW NORM                                       |                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                  |              |                          |            |          |                 |
| WEIGHT PERCENT                                  | QTZ<br>11.248               | €08<br>•000              | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0R<br>397              | 31.922              | 21.              | AN<br>702    | • 000                    | N1<br>• 01 | E<br>Da  | . 000           |
| MOLE PERCENT<br>CATION PERCENT                  | 34.397<br>10.547            | -000<br>-000             | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 285                    | 22.368<br>34.301    | 14               | ,333<br>,978 | • 000<br>• 000           | •0(        | 00<br>00 | •000<br>•000    |
| WEIGHT PERCENT                                  | AC                          | 2N<br>000                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K S                    | 01<br>10.368        |                  | <b>WG</b>    | HY<br>15,554             | 0          | L<br>Do  | 22              |
| MOLE PERCENT<br>CATION PERCENT                  | .000                        | .000                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000                    | 8.330               |                  | 000          | 12.699                   | -0         | 00       | .000            |
| NETTHE OF ACAT                                  | HT                          | CH                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                     | HM                  |                  | TN           | ۶F                       | R          | U<br>N   | AP              |
| MOLE PERCENT<br>CATION PERCENT                  | 3.714                       |                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 302                    | -000                |                  | 000          | • 000<br>• 000           | -01        |          | 1.043           |
| MAFIC INDEX = 3                                 | 3.547                       |                          | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                     | •                |              | • • • •                  | •••        |          | • / 2 6         |
| NORM TOTAL = 10                                 | 0.017                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                  |              |                          |            |          |                 |
| FORSTERITE                                      | 10N +300                    | FAY                      | ALITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0                     | 00                  |                  |              |                          |            |          |                 |
| OR THOP YROXENE COL<br>ENSTATITE                | MP 05 ITION<br>54+917       | FER                      | ROSILII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E 45.0                 | 83                  |                  |              |                          |            |          |                 |
| CLINOPYROXENE CON<br>HOLLASTONIT                | MP 05 1 T 10 N<br>E 50-795  | ENS                      | TATITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.0                   | 22                  | FERROSIL         | .178 22.     | 183                      |            |          |                 |
| FELDSPAR COMPOSI<br>DRTHOCLASE<br>PLACIDCLASE   | TION<br>2.392<br>COMPOSITI  | ALB                      | TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57.8                   | 08                  | ANDRTHIT         | Е 39.        | 300                      |            |          |                 |
| THERMIN AND THE                                 |                             | FNTIATIO                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + <b>u</b> ++          | • •                 | z 44.7           | 67           |                          |            |          |                 |
| SOLIDIFICATION II<br>CRYSTALLIZATION            | NDĒX (100<br>INDEX (AN      | MGJ/ (NGJ                | +F 0 +F 0 +F 0 +F 0 +F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 - F 0 | 203+NA                 | 20+K201)<br>N)      | = 23.0           | 159<br>132   |                          |            |          |                 |
| LARSEN INDEX (1/3<br>ALBITE RATID (10)          | 35I+K}-(CA<br>0≠(A8+A8 6    | (+HG)<br>OIV IN N        | E)/PLAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                     | = 4.8<br>= 59.5  | 13           |                          |            |          |                 |
| AG NUMBER AS CAT                                | =MN) =100/(<br>10NS_MG/CA   | FE2+MN+M                 | G))<br>E+#G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                     | ≤ 67.7<br>= 52.7 | 77           |                          |            |          |                 |
| OXIDATION RATIO<br>DENSITY OF DRY L             | ACCORDING<br>IQUID OF 1     | TO LE MA<br>THIS COMP    | ITRE (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FEO/FEO<br>1 (AT 1     | +FE203)<br>050 Degi | = .8<br>= 2.5    | 122          |                          |            |          |                 |
| AFM RATIO<br>TOTAL ALKALI                       | 15 21.55                    | та                       | TAL FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.1                   | а                   | MG               | 24.          | 27                       |            |          |                 |
|                                                 |                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                  |              |                          |            |          |                 |
|                                                 |                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                  |              |                          |            |          |                 |
|                                                 |                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                  |              |                          |            |          |                 |
|                                                 |                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                  |              |                          |            |          |                 |
|                                                 |                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                  |              |                          |            |          |                 |
| KOMATIITE PARAMET                               | reas                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                  |              |                          |            |          |                 |
| FEO/(FEO+MGD) C/<br>+6906                       | 40/AL203                    | 57.30                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-44                   | FEC#/1<br>10.1      | 102 CAO<br>6 7   | •49          | NA 20 /T 102<br>3 - 7 70 | *20/TI     | [02      |                 |
| JENSEN CATION A                                 | ĻZQ3 - FEG                  | +FĘ <u>2</u> 03+T        | 102 - *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iço                    |                     |                  |              |                          |            |          |                 |
| ٦.                                              | 1-20                        | 21.95                    | 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52                     |                     |                  |              |                          |            |          |                 |
| QUARTZ - FELDSPA                                | R RATIOS                    | OR                       | THOCLAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E 2.4                  | 0                   | PLAGIOCL         | ASE 80.      | 68                       |            |          |                 |
| QUARTZ<br>CATION PROPORTIO                      | 25.13<br>NS .               | ŬR<br>CA                 | THOCLAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E 3.5                  | 7<br><b></b> €E     | ALATTE           | 71.<br>MG    | 31<br>30.71              |            |          |                 |
|                                                 |                             | CA                       | 11.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | MG                  | 9.40             | 51           | 79.47                    |            |          |                 |
| ,                                               |                             | 51                       | 78.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | AL                  | 11.72            | MG           | 9.34                     |            |          |                 |
|                                                 |                             | ZMG                      | 34.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | ZFE                 | 36.78            | \$1          | /5 28.95                 |            |          |                 |
|                                                 |                             | CA                       | 39.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | AL                  | 41.79            | NA           | +K 18+80                 |            |          |                 |
| COORDINATES IN T                                | HE SYSTEM                   | PLAGIGCE                 | ASE - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | - CLINO             | PYROXENE         |              | TZ (IN MOL               | E PERCE    | ENT)     |                 |
| PROPORTION OF AN                                | ALYSIS IN                   | BASALT T                 | ETRAHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RON IS                 | 92.62               | MOLE PE          | RCENT        |                          |            |          |                 |
| SASALT TETRAHEOR                                | DN                          | <u>OL</u>                | 12.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | CPX                 | 11.03            | PL.          | AG 60.76                 |            | 072      | 15.59           |
| CLINOP YROXENE PRO                              | DJECTION                    |                          | 14-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                     | 0.0              |              | 68-30                    |            |          | 17.53           |
| QUARTZ PROJECTION                               | N                           |                          | 14-94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                     | 13.07            |              | 71,99                    |            |          | 0. 0            |
| PLAGIOCLASE PROJ                                | ECTION                      |                          | 32.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                     | 29.12            |              | 0-0                      |            |          | 39.74           |
| OLIVINE PROJECTI                                | ÛN                          |                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                     | 8.22             |              | 45.29                    | 09 X+ (    | 44TZ)    | 46.49           |
| CMAS PROJECTIONS                                |                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                  |              |                          |            |          |                 |
| TETRAHEDRON COORI                               | DINATES                     | c                        | 16.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | н                   | 13.41            | A            | 15.67                    |            | s        | 54.42           |
| DIOPSIDE PROJECT                                | ION                         | C3 A                     | 32.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | м                   | 13.68            | s            | 53.60                    |            |          | -               |
| OLIVINE PROJECTIO                               | 2N                          | CS                       | 19.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | м                   | 64.07            | 5            | 16.33                    |            |          |                 |
| ENSTATITE PROJECT                               | TION                        | M2S                      | 15.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | C2S3                | 37.44            | A2           | 53 46.71                 |            |          |                 |
| QUARTZ PROJECTIO                                | N                           | CAS2                     | 75.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | MS                  | 21.76            | CH           | SZ 3.09                  |            |          |                 |

.

| 12.84                                                                      | 24.9   | 4 62.22                           |                  |                                |                      |          |            |       |
|----------------------------------------------------------------------------|--------|-----------------------------------|------------------|--------------------------------|----------------------|----------|------------|-------|
| QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS | CA     | DRTHOCLASE<br>DRTHOCLASE<br>21.77 | .00<br>.00<br>fe | PLAGIOCLASE<br>ALBITE<br>21.11 | *****<br>*****<br>MG | 57.13    |            |       |
|                                                                            | CA     | . 12.11                           | MG               | 31.79                          | SI                   | 56.10    |            |       |
|                                                                            | SI     | 61.54                             | AL.              | 3.60                           | MG                   | 34.87    |            |       |
|                                                                            | 2MG    | 64.68                             | 2FE              | 23.90                          | SI/5                 | 11.42    |            |       |
|                                                                            | CA     | 77.19                             | AL               | 20,90                          | NA+K                 | 1,91     |            |       |
| COORDINATES IN THE SYSTEM                                                  | PLAGIO | CLASE - OLIV                      | INE - CLIN       | IOPYROXENE - I                 | QUARTZ               | (IN MOLE | PERCENT)   |       |
| PROPORTION OF ANALYSIS IN                                                  | BASALT | TETRAHEDRON                       | IS 97.70         | HOLE PERCE                     | ТИ                   |          |            |       |
| BASALT TETRAHEDRON                                                         | OL     | 42.38                             | CPX              | 30.64                          | PLAG                 | 15.24    | QTZ        | 11.74 |
| CLINOPYROXENE PROJECTION                                                   |        | 61,10                             |                  | 0.0                            |                      | 21.99    |            | 16.92 |
| QUARTZ PROJECTION                                                          |        | 48.01                             |                  | 34.72                          |                      | 17.27    |            | 0.0   |
| PLAGIOCLASE PROJECTION                                                     |        | 50.00                             |                  | 36.15                          |                      | 0.0      |            | 13.85 |
| OLIVINE PROJECTION                                                         |        | 0 . C                             |                  | 33.01                          |                      | 16.42    | 0PX+(4Q[Z) | 50.57 |
| CHAS PROJECTIONS                                                           |        |                                   |                  |                                |                      |          |            |       |
| TETRAHEDRON COORDINATES                                                    | С      | 10.90                             | н                | 37.03                          | A                    | 3.96     | S          | 48.11 |
| DIOPSIDE PROJECTION                                                        | C3A    | 17.07                             | н                | 27.30                          | S                    | 53,62    |            |       |
| OLIVINE PROJECTION                                                         | CS     | 23.33                             | H                | 69.22                          | S                    | 7.44     |            |       |
| ENSTATITE PROJECTION                                                       | M25    | 40.11                             | C2S3             | 40.53                          | A253                 | 19.36    |            |       |
| QUARTZ PROJECTION                                                          | CAS2   | 19.59                             | MS               | 53.71                          | CMS2                 | 26.70    |            |       |
|                                                                            |        |                                   |                  |                                |                      |          |            |       |

JENSEN CATION AL203 - FED+FE203+TI02 - MC0 12.84 24.94 62.22 .

KOMATIITE PARAMETERS FE0/(FE0+MG0) CA0/AL203 SI02/T102 AL203/T102 FE0\*/T102 CA0/T102 NA20/T102 K20/T102 4083 2.03 97.54 9.67 25.58 19.65 .538 .000

| CIPW NORM                                                                                                                                                      |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |                                                     |                                                                                    |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------|------------------------|
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                               | QTZ<br>.000<br>.000<br>.000                                                                                                                            | COR<br>,000<br>,000<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900<br>000.<br>000.<br>000.                                                | AB<br>2.374<br>1.989<br>2.498                       | AN<br>12,497<br>9,866<br>12,395                                                    | L<br>. Q<br>. Q        |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                               | AC<br>.000<br>.000<br>.000                                                                                                                             | NS<br>. 000<br>. 000<br>. 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KS<br>,000<br>,000<br>,000                                                 | DI<br>30,422<br>29,789<br>29,936                    | HO<br>.000<br>.000<br>.000                                                         | 44.9<br>45.4<br>45.8   |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                               | HT<br>1,953<br>1,653<br>1,396                                                                                                                          | CM<br>.000<br>.000<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IL<br>, 990<br>1 , 433<br>, 720                                            | HH<br>.000<br>.000<br>.000                          | NT<br>.000<br>.000<br>.000                                                         | P<br>. 0<br>. 0<br>. 0 |
| MAFIC INDEX =<br>NORM FOTAL =                                                                                                                                  | 85.136<br>100.004                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |                                                     |                                                                                    |                        |
| OLIVINE COMPOS<br>FORSTERIT                                                                                                                                    | ITION<br>E 67.911                                                                                                                                      | FAYALI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TE 32.0                                                                    | 89                                                  |                                                                                    |                        |
| OR THOP YROXENE<br>ENSTATITE                                                                                                                                   | COMPOSITION<br>69.991                                                                                                                                  | FERROS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ILITE 30.0                                                                 | 109                                                 |                                                                                    |                        |
| CLINOPYROXENE<br>WOLLASTON                                                                                                                                     | COMPOSITION<br>ITE 51.784                                                                                                                              | ENSTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ITE 33.7                                                                   | 47 FEI                                              | ROSILITE                                                                           | 14.469                 |
| FELDSPAR COMPO<br>ORTHOCLAS<br>PLAGIOCLA                                                                                                                       | SITION<br>E .000<br>SE COMPOSITIO                                                                                                                      | ALBITE<br>N (PERC AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.9<br>) 84.0                                                             | 65 AN(<br>35                                        | DRTHITE                                                                            | 84.035                 |
| THURNTON AND T<br>SOLIDIFICATION<br>CRYSTALLIZATIO<br>LARSEN INDEX (<br>ALBITE RATIO (<br>IRON RATIO (F<br>MG NUMBER AS C.<br>OXIDATION RATI<br>DENSITY OF DRY | UTTLE DIFFERE<br>INDEX (100*M)<br>NINDEX (AN+M)<br>1/351+K)-(CA+<br>100*(AB+AB EQ<br>E2=MN)*100/(F)<br>ATIONS MG/CAT<br>0 ACCORDING T<br>LIQUID OF TH: | NTIATION I<br>GO/(MGO+FE<br>G,DI+FO<br>G)<br>IV IN NE)/<br>IV IN NE)/ | NDEX<br>D+FE203+NA<br>Eqiv of E<br>Plag)<br>G)<br>E (FE0/FE0<br>Tion (At 1 | 20+K20)) =<br>N) =<br>±<br>D+FE203) =<br>050 DEG) = | 2,374<br>58,431<br>61,177<br>-21,725<br>15,945<br>45,086<br>73,966<br>843<br>2,843 |                        |
| TOTAL ALK                                                                                                                                                      | ALIS .85                                                                                                                                               | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FE 40.4                                                                    | 18 MG                                               |                                                                                    | 58.67                  |

| SAMPLE                      | NUMBER                       | BG 116                             |                                          |                  |                              |                                  |                     |                                 |                                  | 292                          |               |                            |
|-----------------------------|------------------------------|------------------------------------|------------------------------------------|------------------|------------------------------|----------------------------------|---------------------|---------------------------------|----------------------------------|------------------------------|---------------|----------------------------|
| ORIGINA<br>SIO2<br>50.72    | AL WEIGHT<br>AL 203<br>5.03  | PERCENT<br>FE203<br>1,34           | OXIDES<br>FEO<br>12.09                   | MNO<br>19        | HGO<br>19.28                 | CAU<br>10.22                     | NA20<br>.29         | K20                             | T102<br>,52                      | P205<br>.09                  | CR203<br>.00  | TOTAL<br>99.77             |
| WEIGHT<br>SID2<br>50.84     | PERCENT<br>AL203<br>5.04     | OXIDES R<br>FE203<br>1,35          | ECALCULATED<br>FEO<br>12.12              | ТО<br>ММО<br>.19 | 100 PERCEI<br>MCD<br>19,33   | NT<br>CAO<br>10-24               | NA20<br>.28         | K20                             | 1102<br>.52                      | P 205<br>. 09                | CR203         | TOTAL<br>100.00            |
| CATION<br>SI<br>46.69       | PROPORTI<br>AL<br>5.46       | DNS IN A<br>FE(3)<br>.93           | NALYSIS<br>FE(2)<br>9.31                 | MIN<br>.15       | нс<br>26.45                  | CA<br>10.08                      | NA<br>, 53          | κ, 90<br>κ                      | TI<br>,36                        | ۴<br>.07                     | CR .00        |                            |
| CIPW NO                     | <b>DRM</b>                   |                                    |                                          |                  |                              |                                  |                     |                                 |                                  |                              |               |                            |
| WEIGHT<br>MOLE PE<br>CATION | PERCENT<br>ERCENT<br>PERCENT | QTZ<br>•000<br>•000<br>•000        | C 0R<br>, 000<br>, 000<br>, 000<br>, 000 |                  | 500<br>1000<br>1000<br>1000  | AR<br>2.374<br>1.989<br>2.498    | 12.4<br>9.8<br>12.3 | N<br>197<br>166<br>195          | LC<br>.000<br>.000<br>.000       | NE<br>.00<br>.00<br>.00      |               | KP<br>000<br>000           |
| HEIGHT<br>HOLE PE<br>CATION | PERCENT<br>IRCENT<br>PERCENT | AC<br>.000<br>.000<br>.000<br>.000 | 20<br>000<br>000<br>000                  |                  | KS<br>,000<br>,000<br>,000   | DI<br>30.422<br>29.789<br>29.936 | .0<br>.0<br>.0      | 0<br>0<br>0<br>0<br>0<br>0<br>0 | HY<br>44.950<br>45.644<br>45.868 | 0L<br>• 6.60<br>9.28<br>7.00 | 6<br>18<br>10 | CS<br>,000<br>,000<br>,000 |
| WEIGHT<br>MOLE PE<br>CATION | PERCENT<br>RCENT<br>PERCENT  | HT<br>1,953<br>1,853<br>1,396      | CM<br>. 000<br>. 000<br>. 000            |                  | IL<br>.990<br>1 .433<br>.720 | .000<br>.000<br>.000<br>.000     | ד<br>ט.<br>ט.<br>ט. | N<br>00<br>00                   | .000<br>.000<br>.000             | RL<br>•00<br>•00             |               | ар<br>.214<br>.140<br>.187 |
| MAFIC I<br>Norm fo          | NDEX =                       | 95.136<br>00.002                   |                                          |                  |                              |                                  |                     |                                 |                                  |                              |               |                            |
| OLIVINE<br>FO               | COMPOSI<br>Insterite         | TION<br>67.91                      | 1 FAY                                    | ALIT             | E 32.08                      | 39                               |                     |                                 |                                  |                              |               |                            |
| OR THOP Y<br>EN             | ROXENE C                     | 0HP051T1<br>69.99                  | ON<br>1 FER                              | ROSI             | LITE 30.00                   | )9                               |                     |                                 |                                  |                              |               |                            |
| CLINOPY                     | ROXENE C                     | OMPOSITI<br>TE 51.78               | ON<br>4 Ens                              | TATI             | TE 33.74                     | 17 F                             | ERROSILI            | TE 14.                          | 469                              |                              |               |                            |

|                           | SI      | 58.50          | AL    | 3.28      | MG         | 38.21   |            |       |
|---------------------------|---------|----------------|-------|-----------|------------|---------|------------|-------|
|                           | 2MG     | 68.34          | 2FE   | 21.20     | SI/5       | 10.46   |            |       |
|                           | CA      | 77.37          | AL    | 22.63     | NA+K       | .00     |            |       |
| COORDINATES IN THE SYSTEM | PLAGIOC | LASE - OLIVINE | - CLI | NOPYROXEN | E - QUARTZ | IN MOLE | PERCENT    |       |
| PROPORTION OF ANALYSIS IN | BASALT  | TETRAHEDRON IS | 97.3  | 2 HOLE PE | ERCENT     |         |            |       |
| BASALT TETRAHEDRON        | OL      | 48.96          | CPX   | 25.07     | PLAG       | 13,17   | <b>QTZ</b> | 12.80 |
| CLINOPYROXENE PROJECTION  |         | 65.34          |       | 0,8       |            | 17.58   |            | 17.08 |
| QUARTZ PROJECTION         |         | 56.15          |       | 28.75     |            | 15.10   |            | 0.9   |
| PLACIOCLASE PROJECTION    |         | 56.39          |       | 28.87     |            | 0.0     |            | 14.74 |
| OLIVINE PROJECTION        |         | 0.0            |       | 28.03     |            | 14.73   | OPX+(4QTZ) | 57.24 |
| CHAS PROJECTIONS          |         |                |       |           |            |         |            |       |
| TETRAHEDRON COORDINATES   | С       | 8.99           | н     | 40.90     | A          | 3.41    | S          | 47.39 |
| DIOPSIDE PROJECTION       | CJA     | 17.03          | н     | 29.43     | S          | 53.55   |            |       |
| OLIVINE PROJECTION        | CS      | 20.45          | н     | 72,34     | S          | 7.21    |            |       |
| ENSTATITE PROJECTION      | H25     | 44.66          | C253  | 36.22     | A253       | 19.12   |            |       |
| QUARTZ PROJECTION         | CAS2    | 17.80          | MS    | 61.58     | CMS2       | 20.62   |            |       |

PLAGIOCLASE \*\*\*\*\* ALBITE .00 19.34 MG

**\$**1

35.40

62.34

54.20

JENSEN CATION AL203 - FE0+FE203+TI02 - MG0 -

QUARTZ - FELDSPAR RATIOS Quartz .00 Quartz .00 Cation Proportions

 KOMATIITE PARAMETERS

 FE0/(FE0+HGO)
 CA0/AL203
 SI02/TI02
 AL203/TI02
 FE0\*/TI02
 CA0/TI02
 NA20/TI02
 K20/TI02

 .3668
 1.88
 143.37
 13.66
 36.40
 25.69
 .000
 .000

.00 .00 FE

MG

ORTHOCLASE ORTHOCLASE 18.32

10.40

CA

ĊA

| CIPW                                                                 | NOR                                                          | M                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                                               |                                                                                            |                                                                  |                                                       |                                        |                |                               |                                        |                                                                   |                   |
|----------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------|----------------|-------------------------------|----------------------------------------|-------------------------------------------------------------------|-------------------|
| WEIG<br>Mole<br>Cati                                                 | NT P<br>Per<br>On P                                          | ERCE<br>CENT<br>ERCE                        | ENT<br>ENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QTZ<br>.000<br>.000<br>.000                                                                                                                                        |                                                                                               | CO<br>.0<br>.0                                                                             | 20<br>00<br>00                                                   | . 0                                                   | )R<br>) 0 0<br>) 0 0<br>) 0 0          |                | AR<br>.000<br>.000<br>.000    |                                        | AN<br>13,031<br>10.054<br>12.817                                  | L<br>. (          |
| WEIG<br>MÜLE<br>CATI                                                 | HT P<br>Per<br>On P                                          | ERCE                                        | ENT<br>ENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC<br>.000<br>.000                                                                                                                                                 |                                                                                               | N<br>2<br>2<br>1<br>0<br>1<br>0                                                            | 5<br>0<br>0<br>0<br>0<br>0                                       | . 0<br>. 1<br>. 1                                     | (S<br>) 0 0<br>) 0 0<br>) 0 0          | 24<br>23<br>24 | DI<br>,880<br>,921<br>,396    |                                        | MO<br>.000<br>.000<br>.000                                        | 48.<br>48.<br>49. |
| WEIG<br>MOLE<br>CATI                                                 | HT P<br>Per<br>On P                                          | ERCE                                        | TH<br>INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MT<br>1.86<br>1.729<br>1.322                                                                                                                                       | 5                                                                                             | Ci<br>9                                                                                    | 1<br>71<br>31<br>12                                              | 1                                                     | L<br>564<br>39<br>479                  |                | HM<br>. 000<br>. 000<br>. 000 |                                        | TN<br>.000<br>.000<br>.000                                        |                   |
| MAFI<br>Norm                                                         | C IN<br>TOT                                                  | DEX<br>AL                                   | = 86<br>= 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 976                                                                                                                                                                |                                                                                               |                                                                                            |                                                                  |                                                       |                                        | •              |                               |                                        |                                                                   |                   |
| OLIV                                                                 | INE<br>FOR:                                                  | COMP<br>STER                                | OSITI<br>ITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ION<br>71.9                                                                                                                                                        | 18                                                                                            | f                                                                                          | AYALI                                                            | TE                                                    | 28.                                    | 082            |                               |                                        |                                                                   |                   |
| DR TH                                                                | OP YR                                                        |                                             | E COI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1P0511<br>73.8                                                                                                                                                     | 10N<br>338                                                                                    | I                                                                                          | FERROS                                                           | ILITE                                                 | 26.                                    | 162            |                               |                                        |                                                                   |                   |
| CLIN                                                                 | OPYR(<br>WOL)                                                | UXEN                                        | E CON<br>ONITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1POSI1                                                                                                                                                             | 10N<br>30                                                                                     | I                                                                                          | ENSTAT                                                           | ITE                                                   | 35.                                    | 420            |                               | FERRO                                  | SILITE                                                            | 12,550            |
| FELD                                                                 | SPAR<br>OR TI<br>PLA                                         | 402<br>100H                                 | IPOSII<br>ASE<br>LASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COMPC                                                                                                                                                              | 00<br>151710N                                                                                 | (P                                                                                         | ALBITE<br>ERC AN                                                 | )                                                     | ***                                    | 000            |                               | ANORT                                  | HITE                                                              | *****             |
| THOR<br>SOLI<br>CRYS<br>LARS<br>ALBI<br>IRON<br>MG N<br>OXID<br>DENS | NTON<br>DIFI<br>TALL<br>EN I<br>RATE<br>RATE<br>UMBE<br>ATIO | ANI<br>IZAT<br>NDE<br>ATIC<br>R AS<br>N RAS | TUT<br>ION II<br>ION I<br>( (1/3<br>( (1/3<br>( (FE2:<br>CAT)<br>)<br>( (FE2:<br>CAT)<br>)<br>( (FE2:<br>CAT)<br>)<br>( (FE2:<br>CAT)<br>)<br>( ( )<br>( )<br>( )<br>)<br>( )<br>)<br>( )<br>)<br>( )<br>)<br>( )<br>)<br>( )<br>)<br>)<br>( )<br>)<br>)<br>( )<br>)<br>( )<br>)<br>( )<br>)<br>)<br>( )<br>)<br>( )<br>)<br>)<br>( )<br>)<br>( )<br>)<br>)<br>( )<br>)<br>)<br>( )<br>)<br>)<br>( )<br>)<br>)<br>( )<br>)<br>)<br>( )<br>)<br>)<br>( )<br>)<br>( )<br>)<br>)<br>( )<br>)<br>( ))<br>())<br>( | LE DI<br>NDEX<br>NDEX<br>SSI+K<br>SSI+K<br>SSI+K<br>SSI+K<br>SSI+K<br>SSI+K<br>SSI+K<br>SSI+K<br>SSI<br>SSI<br>SSI<br>SSI<br>SSI<br>SSI<br>SSI<br>SSI<br>SSI<br>SS | (FFEREN<br>(100*HG<br>(AN+HG<br>)-(CA+HG<br>AB EQI<br>L00/(FE<br>16/CATI<br>)ING TO<br>OF THI | TIA<br>0/(1<br>0)<br>01<br>0)<br>01<br>0<br>10<br>0<br>10<br>0<br>10<br>0<br>10<br>0<br>10 | TION I<br>MGO+FE<br>+FO+FO<br>N NE)/<br>N+MG))<br>(FE+M<br>HAITR | NDEX<br>D+FEX<br>EQIV<br>PLAG)<br>G)<br>E (F8<br>TION | 203+N<br>/ OF<br>0<br>0<br>/ FE<br>(AT | 1020+K         | 20))<br>03)<br>DEG)           | ************************************** | .000<br>3.083<br>4.211<br>4.160<br>.000<br>7.187<br>.838<br>2.852 |                   |
| AFN                                                                  | RATI<br>TOT                                                  | Ō<br>AL ¢                                   | LKAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IS                                                                                                                                                                 | .00                                                                                           |                                                                                            | TOTAL                                                            | FE                                                    | 36                                     | 68             | /                             | MG                                     |                                                                   | 63.32             |

ORIGINAL WEIGHT PERCENT OXIDES SIO2 AL203 FE203 FE0 50.18 4.78 1.29 11,58 MNO MGO .19 21.99 CA0 NA20 X 20 T102 P205 CR203 TOTAL .08 .66 100.05 WEIGHT PERCENT OXIDES RECALCULATED TO 100 PERCENT SIO2 AL203 FE203 FE0 MNO MGO CAO 50.14 4.78 1.29 11.57 .19 21.97 8.98 TI02 .35 NA20 K20 .00 P205 CR203 TOTAL CATION PROPORTIONS IN ANALYSIS SI AL FE(3) FE(2) 45.66 S.13 .00 B.91 MN .15 MG 29,82 8.77 NA ,00 к. а о TI .24 P.06 CR.47 LC 000 000 000 NE .000 .000 КР . 000 . 000 . 000 0L 9.653 13.446 10.284 CS ,000 .000 NY 753 859 825 PF 000 000 000 AP 189 121 164 RU .000 .000 .000

SAMPLE NUMBER BG 121

| SAMPLE                                                                                       | NUMBER                                                                                                  | BG 122                                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                                                                           |                                                 |                                  |                         |                        |                            |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|-------------------------|------------------------|----------------------------|
| OR 161N<br>5102<br>50.79                                                                     | AL WEIGHT<br>AL 203<br>5.69                                                                             | PERCENT<br>FE203<br>1.25                                                                                         | DXIDES<br>FEO M<br>11.23                                                                                                                                    | NO NG<br>27 20,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 CAO<br>4 9.92                                   | NA20                                                                      | K20                                             | T102                             | P205                    | CR203                  | TOTAL<br>100.93            |
| WEIGHT<br>5102<br>50.32                                                                      | PERCENT<br>AL203<br>5.64                                                                                | OXIDES RE<br>FE203<br>1.24                                                                                       | CALCULATED<br>FEO M<br>11.12                                                                                                                                | TO 100 PE<br>NO MG<br>27 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RCENT<br>D CAO<br>D 9,83                          | NA20<br>.00                                                               | K20                                             | TIO2<br>, 60                     | P205<br>.49             | CR203                  | TOTAL<br>198,00            |
| CATION<br>SI<br>46.03                                                                        | PROPORTI<br>AL<br>6.08                                                                                  | DNS IN AN<br>FE(3)<br>.85                                                                                        | ALYSIS<br>FE(2) M<br>8.51 ,                                                                                                                                 | N MG<br>21 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Б<br>В 9,63                                       | NA<br>.00                                                                 | K.02                                            | TI<br>.42                        | ۶.07                    | CR , 30                |                            |
| CIPW NO                                                                                      | JRM                                                                                                     |                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                                                                           |                                                 |                                  |                         |                        |                            |
| WEIGHT<br>MOLE PE<br>CATION                                                                  | PERCENT<br>ERCENT<br>PERCENT                                                                            | QTZ<br>.000<br>.000<br>.000                                                                                      | COR<br>.000<br>.300<br>.000                                                                                                                                 | OR<br>117<br>112<br>116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AB<br>,000<br>.000<br>,000                        | 15.1<br>12.0<br>15.1                                                      | AN<br>324<br>047<br>138                         | LC<br>.000<br>.000<br>.000       | N8<br>.01<br>.01        |                        | KP<br>.000<br>.000<br>.000 |
| WEIGHT<br>MOLE PE<br>CATION                                                                  | PERCENT<br>ERCENT<br>PERCENT                                                                            | AC<br>.000<br>.000<br>.000                                                                                       | NS<br>.000<br>.900<br>.000                                                                                                                                  | KS<br>.000<br>.000<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01<br>26,300<br>25,926<br>25,960                  | ا<br>1 ، 1<br>• (                                                         | HO<br>D D O<br>D D O<br>D D O<br>D D O<br>D D O | HY<br>48.279<br>49.230<br>49.484 | 01<br>6.1<br>8,2<br>6,5 | 432<br>59              | CS<br>.000<br>.000<br>.000 |
| WEIGHT<br>MOLE PE<br>CATION                                                                  | PERCENT<br>ERCENT<br>PERCENT                                                                            | нт<br>1.793<br>1.693<br>1.276                                                                                    | CH<br>613<br>599<br>.451                                                                                                                                    | IL<br>1,149<br>1,654<br>,632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HM<br>,000<br>,000<br>,000                        | , i<br>, i                                                                | TN<br>000<br>000<br>000                         | PF<br>. 000<br>. 000<br>. 000    | R(<br>, 0)<br>, 0)      | 1<br>0 0<br>0 0<br>0 0 | AP<br>,211<br>,137<br>,184 |
| MAFIC I<br>Norm to                                                                           | INDEX =<br>DTAL = 1                                                                                     | 84.566<br>00,008                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                                                                           |                                                 |                                  |                         |                        |                            |
| OLIVINE<br>FC                                                                                | E COMPOSI<br>DRSTERITE                                                                                  | TION<br>71.367                                                                                                   | FAYA                                                                                                                                                        | LITE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.633                                             |                                                                           |                                                 |                                  |                         |                        |                            |
| ORTHOP'<br>EX                                                                                | YROXENE C<br>ISTATITE                                                                                   | OMPOSITIO<br>73.311                                                                                              | N<br>FERR                                                                                                                                                   | OSILITE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.689                                             |                                                                           |                                                 |                                  |                         |                        |                            |
| CLINOP'                                                                                      | YROXENE C<br>DLLASTONI                                                                                  | OMPOSITIO<br>TE 51.997                                                                                           | N ENST                                                                                                                                                      | ATITE 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S.191                                             | FERROSIL                                                                  | ITE 12.                                         | 812                              |                         |                        |                            |
| FELDSP/<br>Or<br>Pi                                                                          | AR COMPOS<br>THOCLASE<br>LAGIOCLAS                                                                      | ITION<br>758<br>E COMPOSI                                                                                        | ALBI                                                                                                                                                        | TE<br>AN) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 1) () ()<br>** * **                             | ANORTHITE                                                                 | E 99.                                           | 242                              |                         |                        |                            |
| THORNTO<br>SOLIDIT<br>CRYSTAL<br>LARSEN<br>ALBITE<br>IRON RH<br>OXIDAT<br>DENSITY<br>AFN RAT | DN AND TU<br>FICATION<br>LIZATION<br>RATIO (1<br>RATIO (FE<br>SER AS CA<br>ION RATIO<br>Y OF DRY<br>TIO | TTLE DIFF<br>INDEX (10<br>INDEX (10<br>/3SI+K)-(<br>00*(AB+AB<br>2=MN)*100<br>TIONS MG/<br>ACCORDIN<br>LIQUID OF | ERENTIATION<br>0%HGD/(MGO+<br>N+HG,DI+FO+<br>(CA+HG)<br>(FE2+HN+HG<br>CATIONS (FE<br>CATIONS (FE<br>CATIONS (FE<br>CATIONS (FE<br>CATIONS (FE<br>THIS COMPO | INDEX<br>FEO+FE203<br>FO EQIV O<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/PLAG)<br>()/P | +NA20+K20))<br>F EN)<br>FEO+FE203)<br>T 1050 DEG) | = .11<br>= .2.25<br>= .23.00<br>= .23.00<br>= .41.7<br>= .2.84<br>= .2.84 | 17<br>91<br>38<br>00<br>89<br>14<br>44<br>40    |                                  |                         |                        |                            |
| TC                                                                                           | TAL ALKA                                                                                                | LIS ,0                                                                                                           | 6 TOT                                                                                                                                                       | AL FE 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,41                                              | HG                                                                        | 62.                                             | 53                               |                         |                        |                            |

KOMATIITE PARAMETERS

FEO/(FEO+MGD) CAO/AL203 SI02/TI02 AL203/TI02 FE0\*/TI02 CAO/TI02 NA20/TI02 K20/TI02 3744 1,74 83.26 9.33 20.25 16.26 000 .033

JENSEN CATION AL 203 - FED+FE203+TI02 - MGD 13.90 22.36 63.75

| QUARTZ - FELDSPAR RATIOS |     | ORTHOCLASE | .76  | PLAGIOCLA | SE 99,24 |       |  |
|--------------------------|-----|------------|------|-----------|----------|-------|--|
| CATION PROPORTIONS       | CA  | 20.74      | FE   | 19.23     | MĠ       | 60.03 |  |
|                          | CA  | 11.53      | ' MG | 33.37     | SI       | 55.10 |  |
|                          | SI  | 59.82      | AL   | 3.95      | MG       | 36.23 |  |
|                          | 2MG | 67.32      | 2FE  | 21.57     | SI/5     | 11.11 |  |
|                          | CA  | 75,95      | AL   | 23,96     | NA+K     | . 09  |  |

COORDINATES IN THE SYSTEM PLAGIOCLASE - OLIVINE - CLINOPYROXENE - QUARTZ (IN MOLE PERCENT) PROPORTION OF ANALYSIS IN BASALI TETRAHEDRON IS 97.14 HOLE PERCENT

| THE ONLIGHT OF MARCHOLD IN |      | 1 C TRANCEDRO |      |       |      |       |            |       |
|----------------------------|------|---------------|------|-------|------|-------|------------|-------|
| BASALT TETRAHEDRON         | , OL | 44.96         | CPX  | 26.72 | PLAG | 15.58 | QTZ        | 12.74 |
| CLINGPYROXENE PROJECTION   |      | 61.35         |      | 0.D   |      | 21,27 |            | 17.38 |
| QUARTZ PROJECTION          |      | 51.52         |      | 30.62 |      | 17.86 |            | 4.0   |
| PLAGIDCLASE PROJECTION     |      | 53.26         |      | 31.66 |      | 0,0   |            | 15.09 |
| OLIVINE PROJECTION         |      | 0.0           |      | 28.66 |      | 16.71 | 0PX+(4072) | 54.63 |
| CMAS PROJECTIONS           |      |               |      |       |      |       |            |       |
| TETRAHEDRON COORDINATES    | С    | 9.96          | H    | 37.78 | A    | 4.22  | 5          | 49.04 |
| DIOPSIDE PROJECTION        | C3A  | 19.06         | м    | 27.27 | 5    | 53.67 |            |       |
| OLIVINE PROJECTION         | CS   | 21.27         | н    | 70.83 | 5    | 7,91  |            |       |
| ENSTATITE PROJECTION       | M2S  | 40.60         | C253 | 38.16 | A293 | 21.24 |            |       |
| QUARTZ PROJECTION          | CAS2 | 20.94         | MS   | 57.09 | CMS2 | 22.07 |            |       |

SAMPLE NUMBER BG 123 ORIGINAL WEIGHT PERCENT OXIDES SIO2 AL203 FE203 FE0 44.94 9.37 1.45 13.01 CR203 ны 23 MGD 22.60 K 20 CA0 NA20 TIO2 P205 TOTAL 99.40 WEIGHT PERCENT OXIDES SID2 AL203 FE203 45.40 9.47 1.46 RECALCULATED TO 100 PERCENT FEO HNO HGO 13.14 .23 22.83 ( 6,71 NAZO K20 TIQ2 P205 CR203 TOTAL CATION PROPORTIONS IN ANALYSIS SI AL FE(3) FE(2) 40,90 10.05 .99 9.90 CR , 00 MN 18 MG 30.66 CA 6.48 NA .51 K 101 TI 127 ۴.05 CIPW NORK QTZ .000 .000 0R AB 2,478 1,903 2,558 KP 000 COR LC .000 .010 .000 NE .000 .000 WEIGHT PERCENT MOLE PERCENT CATION PERCENT .000 .040 .053 .058 . 481 724 . 821 ñññ ññű ñ ñ ñ AC 000 000 000 NS .000 .000 .000 KS , 800 .000 .000 .000 0L 33.846 43.868 35.368 DI 6,705 6,032 6,485 HY 29.403 27.484 29.547 CS . 000 WEIGHT PERCENT Mole Percent Cation Percent .000 000 CM .000 .000 .000 IL .748 .993 .534 TN . 000 . 000 . 000 RU .000 .000 .000 MI HM .000 .000 .000 WEIGHT PERCENT MOLE PERCENT CATION PERCENT 2,118 1,842 1,485 , 000 , 000 , 000 .167 MAFIC INDEX = 72.987 NORM TOTAL = 100.006 OLIVINE COMPOSITION FORSTERITE 69.441 FAYALITE 30.559 ORTHOPYROXENE COMPOSITION ENSTATITE 71.463 FERROSILITE 28.537 CLINOPYROXENE COMPOSITION WOLLASTONITE 51.879 ENSTATITE 34.389 FERROSILITE 13.733 FELDSPAR COMPOSITION ORTHOCLASE ,221 ALBITE PLAGIDCLASE COMPOSITION (PERC AN) ANORTHITE 90.408 9.171 90.808 THORNTON AND TUTTLE DIFFERENTIATION (MEACHAR) SOLIDIFICATION INDEX (100\*MGO/(MGO+FED+FE2O3+NA2O+K2O)) = CRYSTALLIZATION INDEX (1/35I+K)-(CA+MG) LARSEN INDEX (1/35I+K)-(CA+MG) ALBITE RATIO (100\*(AB+AB EGIU IN NE)/PLAG) IRON RATIO ((FE2=MN)\*100/(FE2+MN+MG)) MG NUMBER AS CATIONS MC/CATIONS (FE+MG) OXIDATION RATIO ACCORDING TO LE MAITRE (FED/FE0+FE2O3) = DENSITY OF DRY LIQUID OF THIS COMPOSITION (AT 1050 DEG) = AFM RATIO TOTAL ALKALIS .81 TOTAL FE 38.46 MG 2.538 60.500 67.683 -24.942 9.192 43.020 75.584 827 2.897 60.74

KOMATIITE PARAMETERS

FE0/(FE0+HG0)

AL203 ~ FE0+FE203+TI02 - MG0 19.38 21,52 59.10 JENSEN CATION

QUARTZ - FELDSPAR RATIOS QUARTZ .00 QUARTZ .00 ORTHOCLASE ORTHOCLASE 13.62 PLAGIDCLASE 99,78 ALBITE 97.45 21.87 MG 2:35 CATION PROPORTIONS CA FE 64.50 CA 8,30 MG 39,29 SI 52.42 53,41 51 Δł 6.56 MC 40.03 2MG 67.91 2FE 23.03 SI/5 9.06 55.05 42.73 2.22 CA AL. NA+K

COURDINATES IN THE SYSTEM PLAGIOCLASE - OLIVINE - CLINOPYROXENE - QUARTZ (IN MOLE PERCENT)

| PROPORTION OF ANALYSIS IN | BASALT | TETRAHEDRON I | \$ 97.78 | MOLE PERCE | NТ   |       |            |       |
|---------------------------|--------|---------------|----------|------------|------|-------|------------|-------|
| BASALT TETRAHEORON        | ٥L     | 58.84         | CPX      | 6.63       | PLAG | 26.98 | QTZ        | 7,55  |
| CLINOPYROXENE PROJECTION  |        | 63,01         |          | 8.0        |      | 28.89 |            | 8.09  |
| QUARTZ PROJECTION         |        | 63.64         |          | 7.17       |      | 29.18 |            | 0.0   |
| PLAGIOCLASE PROJECTION    |        | 80.57         |          | 9.89       |      | 0.0   |            | 10.35 |
| OLIVINE PROJECTION        |        | 0.0           |          | 10.39      |      | 42.27 | 0PX+(40TZ) | 47,34 |
| CHAS PROJECTIONS          |        |               |          |            |      |       |            |       |
| TETRAHEDRON COORDINATES   | C      | 7.36          | м        | 43,14      | A    | 6,45  | 5          | 43.05 |
| DIOPSIDE PROJECTION       | C3A    | 21.80         | н        | 27.81      | S    | 50.39 |            |       |
| OLIVINE PROJECTION        | CS     | 19.68         | M        | 65.19      | 5    | 15,12 |            |       |
| ENSTATITE PROJECTION      | M2S    | 55.85         | C293     | 20.53      | A253 | 23.62 |            |       |
| QUARTZ PROJECTION         | CAS2   | 28.78         | HS       | 68.03      | CMS2 | 3.18  |            |       |

| 0 L E | E NU | MBER | BG | 124 |
|-------|------|------|----|-----|
|       |      |      |    |     |

F

| .GIN<br>02<br>.14                                                                                 | AL WEIGHI<br>AL203<br>6.59                                                                             | FE203<br>1,42                                                                                                  | IZ.75                                                                                                                              | MN0<br>.18                                                          | MG0<br>21,36                                                                                | 8,37                                   | 05AN<br>80,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | к20<br>.00                                                                                                                                                                                                                                                                                                                                                         | т <b>і</b> 02<br>, 51            | P205<br>709                   | CR203                       | TOTAL<br>99.93              |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------|-----------------------------|-----------------------------|
| (681)<br>(02<br>(17                                                                               | PERCENT<br>AL203<br>6.59                                                                               | DXIDES R<br>FE203<br>1.42                                                                                      | ECALCULATE                                                                                                                         | D TO<br>MNO<br>.18                                                  | 100 PERCE<br>HGO<br>21.37                                                                   | NT<br>CAO<br>B.38                      | NA20<br>.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | К 20<br>. 00                                                                                                                                                                                                                                                                                                                                                       | τ1 <u>02</u><br>.51              | P205                          | CR203                       | 100.00                      |
| TION<br>1<br>.94                                                                                  | PROPORTI<br>AL<br>7,09                                                                                 | FE(3)<br>FE(3)<br>.97                                                                                          | NALYSIS<br>FE(2)<br>9.74                                                                                                           | MN<br>, 14                                                          | MG<br>29,16                                                                                 | CA<br>8.19                             | NA<br>.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>к</sup> . 00                                                                                                                                                                                                                                                                                                                                                  | , TI<br>, 35                     | ۶<br>.07                      | CR .32                      |                             |
| PW NO                                                                                             | )RH                                                                                                    |                                                                                                                |                                                                                                                                    |                                                                     |                                                                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                    |                                  |                               |                             |                             |
| LIGHT                                                                                             | PERCENT<br>ERCENT<br>PERCENT                                                                           | QTZ<br>.000<br>.000<br>.000                                                                                    | COR<br>.000<br>.000<br>.000                                                                                                        |                                                                     | 0R<br>. 888<br>. 888<br>. 888<br>. 888                                                      | AS<br>677<br>546<br>708                | 17.4<br>13.4<br>17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AN<br>634<br>406<br>370                                                                                                                                                                                                                                                                                                                                            | LC<br>.000<br>.000<br>.000       | NE<br>.0(<br>.0(              | 0<br>0<br>0                 | KP<br>.000<br>.000.<br>.000 |
| EIGHT<br>JLE PE<br>Ation                                                                          | PERCENT<br>ERCENT<br>PERCENT                                                                           | AC<br>.000<br>.000<br>.000                                                                                     | NS<br>. 000<br>. 000<br>. 000                                                                                                      |                                                                     | KS<br>.000<br>.000<br>.000                                                                  | DI<br>18.227<br>17.734<br>18.382       | ۵<br>ب (<br>ب (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10<br>30<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                                                                                   | HY<br>42,113<br>41,322<br>42,828 | 01<br>16.91<br>23.01<br>17.89 | 8<br>6<br>70                | CS<br>.000<br>.000<br>.000  |
| EIGHT<br>ULE PU<br>ATION                                                                          | PERCENT<br>ERCENT<br>PERCENT                                                                           | HT<br>2,057<br>1,879<br>1,460                                                                                  | СМ<br>.64В<br>.613<br>.476                                                                                                         |                                                                     | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | HM<br>,000<br>,000<br>,000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FN4<br>D D D D<br>D D D D<br>D D D<br>D D D<br>D D D<br>D                                                                                                                                                                                                                                                                                                          | PF<br>.000<br>.000<br>.000       | RL<br>.0(<br>.0(              | )<br>)<br>)<br>)<br>()<br>) | AP<br>.213<br>.134<br>.185  |
| IAFIC<br>Iorm ti                                                                                  | INDEX =<br>GTAL = 1                                                                                    | 81,696<br>100,007                                                                                              |                                                                                                                                    |                                                                     |                                                                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                    |                                  |                               |                             |                             |
| ILIVINI<br>F                                                                                      | E COMPOSI<br>DRSTERITE                                                                                 | TION<br>69.32                                                                                                  | 26 FA                                                                                                                              | YALIT                                                               | E 30.6                                                                                      | 74                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                    |                                  |                               |                             |                             |
| SR THOP'<br>E)                                                                                    | YROXENE C<br>NSTATITE                                                                                  | COMPOSITI<br>71.35                                                                                             | 10N<br>52 FE                                                                                                                       | RROSI                                                               | LITE 29.6                                                                                   | 48                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                    |                                  |                               |                             |                             |
| CLINOP<br>W                                                                                       | YROXENE (<br>)LLASTONI                                                                                 | COMPOSITI                                                                                                      | 10N<br>72 EN                                                                                                                       | STATI                                                               | TE 34,3                                                                                     | 41 F                                   | ERROSIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ITE 13.                                                                                                                                                                                                                                                                                                                                                            | 788                              |                               |                             |                             |
| FELDSP/<br>OF<br>Pi                                                                               | AR COMPOS<br>RTHOCLASE<br>LAGIOCLAS                                                                    | SITION<br>Se compos                                                                                            | )<br>SITION (PER                                                                                                                   | BITE<br>C AN)                                                       | 3.6<br>96.3                                                                                 | 98 A                                   | NORTHITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E 96.                                                                                                                                                                                                                                                                                                                                                              | 302                              |                               |                             |                             |
| THORNTO<br>SOLIDII<br>CRYSTAL<br>LARSEN<br>ALBITE<br>IRON<br>MG NUM<br>OXIDAT<br>DENSIT<br>AFM RA | DN AND TL<br>FICATION<br>INDEX (1<br>RATIO (1<br>ATIO (FE<br>BER AS CA<br>ION RATIC<br>Y OF DRY<br>TIO | JTTLE DIF<br>INDEX (1<br>INDEX (1<br>I/3SI+K)-<br>LOO*(AB+A<br>E2=MN)*1(<br>ATIONS MO<br>ATIONS MO<br>LIQUID ( | FERENTIATI<br>100*MGD/(MS<br>(AN+MG,DI+F<br>-(CA+MG)<br>ABEQIU<br>NBEQIU<br>NCFE2+MH+<br>S/CATIONS (<br>ING TO LE M<br>OF THIS COM | ON IN<br>O+FEO<br>O+FO<br>NE)/P<br>NE)/P<br>FE+MG<br>AITRE<br>POSIT | DEX<br>+FE203+NA<br>EQIV OF E<br>LAG)<br>(FE0/FEC<br>ION (AT 1                              | 20+K20))<br>N)<br>0+FE203)<br>050 DEG) | =       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - | 77<br>80<br>31<br>1<br>7<br>8<br>4<br>3<br>1<br>8<br>3<br>1<br>8<br>4<br>3<br>1<br>8<br>4<br>3<br>1<br>8<br>4<br>3<br>1<br>8<br>4<br>3<br>1<br>8<br>4<br>3<br>1<br>8<br>4<br>3<br>1<br>8<br>4<br>3<br>1<br>8<br>4<br>3<br>1<br>8<br>4<br>3<br>1<br>8<br>4<br>3<br>1<br>8<br>4<br>8<br>4<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 |                                  |                               |                             |                             |
| Τi                                                                                                | ITAL ALKA                                                                                              | ALIS .                                                                                                         | .23 T                                                                                                                              | OTAL                                                                | FE 39,5                                                                                     | 15 M                                   | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60,                                                                                                                                                                                                                                                                                                                                                                | 22                               |                               |                             |                             |

KOMATIITE PARAMETERS

FED/(FEO+HGD) CAO/AL203 SI02/TI02 AL203/TI02 FEO\*/TI02 CAO/TI02 NA20/TI02 K20/TI02 .3964 1.27 94.39 12.92 27.51 16.41 .157 .000

2FE

AŁ

CPX

H

MS

M

COORDINATES IN THE SYSTEM PLAGIOCLASE - OLIVINE - CLINOPYROXENE - QUARTZ (IN MOLE PERCENT)

23.40

30,04

0,0

21.26

23,24

23,10

40.53

28.13

63.01

H 67.68 C233 27.58

QUARTZ - FELDSPAR RATIDS QUARTZ .00 QUARTZ .00 CATION PROPORTIONS .00 ,00 FE MG ORTHOCLASE ORTHOCLASE CA 17.24 PLAGIOCLASE \*\*\*\* ALBITE \*\*\*\*\* 21,53 MG 61.22 35.79 SI 54,12 CA 10.013 . AL MG SI 57.41 4.63 37,96

2MG 66.54

PROPORTION OF ANALYSIS IN BASALT TETRAHEDRON IS 97.18 HOLE PERCENT

C 8.62

C3A 19.67

CAS2 23.01

69.36

51.46

63.47

57.84

63.23

θ.υ

29.31

48.60

CA

OL

CS

M2S

BASALT TETRAHEDRON

QUARTZ PROJECTION

OLIVINE PROJECTION CHAS PROJECTIONS

DIOPSIDE PROJECTION

OLIVINE PROJECTION

QUARTZ PROJECTION

ENSTATITE PROJECTION

CLINOPYROXENE PROJECTION

PLAGIOCLASE PROJECTION

TETRAHEDRON COORDINATES

JENSEN CATION AL203 - FE0+FE203+TI02 - MGD 15.02 23.43 61.35

SI/5 10.06

. 60

22.94

20.91

0.0

4,84

52.21

10.01

QTZ

22.80 OPX+(4QTZ) 54.02

S

11.02

13.59

0.0

13.54

46.01

NA+K

A

A253 21.82

CHS2 13.98

S

S

18.92 PLAG 18.60

| -                         | 2MG     | 68.01 '         | ZFE    | 20.98     | SI/5       | 11.01    |            |        |
|---------------------------|---------|-----------------|--------|-----------|------------|----------|------------|--------|
|                           | CA      | 73.90           | AL     | 25.44     | NA+K       | •71      |            |        |
| COCRDINATES IN THE SYSTEM | PLAGICO | CLASE - CLIVINE | - CLIN | ICPYRČXEN | E - QUARTZ | (IN MOLE | PERCENTI   |        |
| PROPERTIEN OF ANALYSIS IN | BAŠALT  | TETRAHEDRON IS  | 97.00  | POLE P    | ERCENT     |          |            |        |
| BASALT TETRAHECRCN        | ĢL      | 45.84           | CPX    | 24.71     | PLAG       | 16.83    | CT Z       | 12.6Z  |
| CLINOPYROXENE PROJECTION  |         | 66.89           |        | 0.0       |            | 22.35    |            | 16.76  |
| CUARTZ PROJECTION         |         | 52.46           |        | 29.28     |            | 19.26    |            | C. 0   |
| PLAGIOCLASE PROJECTION    |         | 55.11           |        | 29.71     |            | 0.C      |            | 14.17  |
| OLIVINE PROJECTION        |         | C • 0           | •      | 26.85     |            | 18-29    | CPX+(4GTZ) | 54. 8o |
| CHAS PROJECTIONS          |         |                 |        |           |            |          |            |        |
| TETRAHEDRON COCREINATES   | c       | <b>4.7</b> 1    | M      | 37.92     | ۵          | 4.57     | 5          | 47.80  |
| DICPSIDE PROJECTION       | C3 A    | 19.67           | M      | 26.92     | S          | 53-41    |            |        |
| CLIVINE PROJECTION        | CS      | 20.75           | H.     | 79.48     | 2          | e+ 57    |            |        |
| ENSTATITE PROJECTION      | H2S     | ÷1.42           | C2S3   | 36.19     | A253       | 22.38    |            |        |
| CUARTZ PROJECTION         | CAS2    | 22.40           | ۳S     | 58.00     | CMS2       | 19.60    |            |        |

JENSEN CATION AL203 - FED+FE2C3+TT02 - MGD 14.33 21.89 63.73

CUARTZ ~ FELCSPAR RATIOS OUARTZ • OC QUARTZ • OC CATION PROPORTIONS

SAMPLE NUMBER BG 158

KOMATIITE PARAMETERS FEO/(FEC+MGC) CAU/AL203 S102/T102 AL203/T102 FEO#/T102 CAC/T102 NA20/T102 K20/T102 3655 1.60 60.65 7.14 14.48 11.41 120 COC

CRTHCCLASE CRTHCCLASE 19.95

11.ca

59.27

C.A.

CA

SI

•00 •00 FE

MG

4L

PLAGICCLASE #009# ALBITE #009# 18.27 #G

33.96

4-11

51 •

۲G

61.18

54.96

36.62

|                    |                |                  | φı.          | •                                 |             |                      |              |                 |            |                |           | -               |                                                                                                  |          |   |                   |         |                            |                |              |                          |             |       |                                 |          |          |     |     |                    |                     |    |            |    |                |                |                         |   |     |     |                |  |
|--------------------|----------------|------------------|--------------|-----------------------------------|-------------|----------------------|--------------|-----------------|------------|----------------|-----------|-----------------|--------------------------------------------------------------------------------------------------|----------|---|-------------------|---------|----------------------------|----------------|--------------|--------------------------|-------------|-------|---------------------------------|----------|----------|-----|-----|--------------------|---------------------|----|------------|----|----------------|----------------|-------------------------|---|-----|-----|----------------|--|
| WE T<br>FOL<br>CAT | G-<br>E<br>1 ( | 1T<br>P (<br>)N  | P<br>ER<br>P | E 8<br>C 5<br>E 8                 | C<br>0      | EN'<br>T<br>En'      | r<br>r       |                 |            | 100            |           |                 |                                                                                                  |          |   | ί C<br>• C<br>• C | R<br>10 | 0000                       |                |              |                          | •           |       | 2<br>0<br>0<br>0<br>0<br>0<br>0 |          |          |     | ,   | A<br>8<br>8        | 5<br>43<br>39<br>41 |    |            |    | 15<br>12<br>15 |                | AN<br>634<br>246<br>450 | • |     |     | •              |  |
| NE I<br>Vol<br>Cat | ٥٢<br>         | HT<br>Pí         | p<br>R<br>P  | E A Z R                           | C.<br>K     | EN'<br>T<br>EN       | T<br>T       |                 |            | A(<br>0)<br>0) |           |                 |                                                                                                  |          |   | • • • •           | 50000   | C 00                       |                |              |                          | •           | K 400 | 50<br>00<br>00<br>00            |          |          | 222 | 4 - | 0<br>44<br>7<br>49 |                     |    |            |    |                |                | 10<br>500<br>500        |   |     | 444 | 7.<br>8.<br>9. |  |
| 561<br>790<br>CAT  | 51<br>1<br>1   | IT<br>Pi<br>IN   | P<br>R<br>P  | E 2<br>2<br>2<br>2<br>2<br>2<br>2 | C<br>N<br>C | ENT<br>Ent           | r<br>r       |                 | 1          | M1<br>75<br>64 | 50<br>47  |                 |                                                                                                  |          |   | -44               | M 543   | 524                        |                |              | :                        | 1.          | 11    | 12<br>50<br>33                  |          |          |     |     | H                  |                     |    |            |    |                | ••••           | FN<br>200<br>200        |   |     |     | •              |  |
| MAP<br>NCR         | 10<br>M        | т                | 1 N<br>2 T   | CE<br>Al                          | X           | 3                    | 1            | 83<br>0 C       | • 4<br>• C | 81             | 1         |                 |                                                                                                  |          |   |                   |         |                            |                |              |                          |             |       |                                 |          |          |     |     |                    |                     |    |            |    |                |                |                         |   |     |     |                |  |
| CL I               | V I            | NI<br>F(         | 5<br>5       | C C<br>S T                        | P           | PC:<br>A I           | 5 1'<br>T E  | τJ              | C 1        | 2.             | .6        | 09              |                                                                                                  |          |   |                   | F.      | AY                         | ٩٢             | . 11         | TE                       |             |       | 2                               | 7.       | 39       | 2   |     |                    |                     |    |            |    |                |                |                         |   |     |     |                |  |
| CRT                | нс             | IP \<br>Eł       | YR<br>NS     | CX<br>TA                          | Ei<br>T     | VE<br>I TI           | E            | 9 4 6           | Р (<br>7   | <b>S</b><br>4  | IT<br>• 4 | 10<br>98        | N                                                                                                |          |   |                   | F       | ER                         | RC             | 35           | 12                       | 11          | Έ     | Z                               | 5.       | 50       | 2   |     |                    |                     |    |            |    |                |                |                         |   |     |     |                |  |
|                    | NC             | )P 1<br>WC       | 7R<br>DL     |                                   | Ē           | N E<br>I ĈI          | vĨ           | MC<br>TE        | PÇ         | SI             | T<br>Q    | 10<br>72        | N                                                                                                |          |   |                   | E       | NS                         | Ť۵             | T            | IT                       | E           |       | 3                               | 5.       | 70       | Ĕ   |     |                    |                     | FE | a          | 20 | S 1            | L)             | TE                      | 1 | 2.  | 22  | 3              |  |
| FEL                | 05             | р /<br>СР<br>Р 1 |              | с<br>но<br>G 1                    |             | ир(<br>L 43<br>С L 4 | S E<br>A S I | 1 <b>7</b><br>É | 10<br>C0   | IN<br>MÉ       | 8         | 00<br>S I       | 71                                                                                               | 0N       | 4 | ( 9               | A       | L ô<br>ł C                 | 1 T<br>4       | E<br>N       | )                        |             |       | 9                               | 5.<br>4. | 1J<br>29 | 37  |     |                    |                     | AN | 101        | ₹T | ⊨ I            | T              | •                       | 9 | 14. | E9  | 7              |  |
| THC<br>SCL<br>CAY  |                |                  | N            |                                   | NI          |                      |              |                 |            | x<br>2)        | ų<br>L    | FF<br>10<br>( A | 6<br>2<br>2<br>2<br>2<br>3<br>2<br>3<br>2<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | EN<br>MG | T |                   | T<br>M( | IO<br>GO<br>FD             | N<br>+F<br>+F  |              | 2<br>2<br>10<br>10<br>10 |             | Z?    | 33                              | +N<br>F  | EN       | 0+  | ĸ   | 20                 | ) )                 |    |            | 6  | 3.             | 84<br>04<br>64 |                         |   |     | -   |                |  |
| ALB<br>IZO<br>MG   |                | ERIM             |              | AT<br>IU<br>R                     | 1           |                      |              |                 | 3 ( MN     |                |           | A B<br>00<br>G/ |                                                                                                  | C I      |   | 1<br>NS           | N       | 4<br>4<br>4<br>4<br>4<br>5 | E)<br>G)<br>E• | /<br>)<br>#( | )<br>; )                 | AG          | )     |                                 |          |          |     | _   |                    |                     | 1  | <br>!<br>! | 4  | 5.             | 1072           |                         |   |     |     |                |  |
| CXI<br>CEN<br>AFM  | S 1<br>R       |                  |              | N<br>OF                           | R           | DR1                  |              | L I             |            | 1              | 20        | IN<br>OF        | G<br>T                                                                                           | TC<br>H  | S | Č                 | ם       | MP<br>MP                   |                |              | T                        | ( 14<br>0 N | E     |                                 | ₩E<br>T  | 10       | FE  | Z   | 33<br>95(          | ,<br>;;             |    |            |    | 2.             | 84             | 5 C<br>3 S              |   | _   | •   |                |  |
|                    |                | 10               | . 1          | AL                                | •           | a L J                | ( )(         |                 | S          |                |           | •3              | C                                                                                                |          |   |                   |         | 10                         | 5              | L            | 163                      | C           |       | 3                               | Ô.       | 44       | •   |     |                    |                     | МG | ,          |    |                |                |                         | 6 | 34  | 26  | ,              |  |

CRIGINAL WEIGHT PERCENT CXIDES SID2 AL2C3 FEZO3 FED 50+34 5+93 1-21 10+93 MNC •2C NAZC TIC2 P205 MG C 20.87 CAC 9.47 \*36 CR2C3 TCTAL HEIGHT PERCENT OXICES RECALCULATED TO 100 PERCENT SIDS AL203 FE203 FE0 PAC MGC 50.19 3.31 1.21 10.35 .20 20.81 9 CAC ¥2C . 100.00 NA2C T 102 P205 CR 207 CATION PROPORTIONS IN ANALYSIS SI AL FE(3) FE(2) 45.73 6.36 .33 8.31 MN AIS 9.23 к •ЭС T1 •57 P CR .22 NA +1 f 28.29 CIPH NORM КР • СОО • СОО 1C COC COC COC NE .0CD .0CJ FY 734 \$54 COC 0L 7.240 10.230 7.742 . 2500 .000 F 600 600 600 600 AP • 26 C • 16 8 • 226 85 000 000 000

| QTZ<br>HEIGHT PERCENT .000<br>HOLE PERCENT .000<br>CATION PERCENT .000                                                                                                                                                                                                                                                                                                                                                                                            | COR<br>.000<br>.000<br>.000                                                                                                                                                                                                                                     | 0R<br>119<br>106<br>115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AB<br>2.049<br>1.591<br>2.092                                                                                                                                            | AN<br>21,586<br>15,792<br>20,766                                                                                                                             | L1<br>/ 0<br>. 0 /                                                                                                                                 | 00<br>00<br>00                                                                                                                                                                                                                                              | .000<br>.000<br>.000                                    | . 000<br>. 000                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------|
| AC AC AC                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NS<br>000                                                                                                                                                                                                                                                       | KS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.708                                                                                                                                                                   | ΨC)                                                                                                                                                          | H<br>33.8                                                                                                                                          | Y<br>95                                                                                                                                                                                                                                                     | 0L<br>25.877                                            | CS<br>. J Å Å                        |
| NOLE PERCENT .000<br>CATION PERCENT .000                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 | . 0 0 0<br>. 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.483<br>14.183                                                                                                                                                         | . 000<br>. 000                                                                                                                                               | 32,5<br>34,2                                                                                                                                       |                                                                                                                                                                                                                                                             | 34.728<br>27.395                                        | . 00                                 |
| WEIGHT PERCENT 1.533<br>HOLE PERCENT 1.347<br>CATION PERCENT 1.063                                                                                                                                                                                                                                                                                                                                                                                                | CM<br>. 000<br>. 000<br>. 000                                                                                                                                                                                                                                   | IL<br>.403<br>.540<br>.284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HM<br>. 0 0 0<br>. 0 0 0<br>. 0 0 0                                                                                                                                      | TN<br>, 000<br>, 000<br>, 000                                                                                                                                | P1<br>2 0<br>2 0<br>2 0                                                                                                                            | F<br>0 0<br>0 0<br>0 0                                                                                                                                                                                                                                      | RU<br>.000<br>.000<br>.000                              | AP<br>.07<br>.04<br>.04              |
| MAFIC INDEX = 76.489<br>NORM TOTAL = 100.004                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                                                                                                                             |                                                         |                                      |
| OLIVINE COMPOSITION<br>FORSTERITE 76,664                                                                                                                                                                                                                                                                                                                                                                                                                          | FAYA                                                                                                                                                                                                                                                            | .ITE 23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 336                                                                                                                                                                      |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                                                                                                                             |                                                         |                                      |
| ORTHOPYROXENE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                         | FFPR                                                                                                                                                                                                                                                            | 1911 ITE 21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 643                                                                                                                                                                      |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                                                                                                                             |                                                         |                                      |
| CLINDPYROXENE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                         | FNRT                                                                                                                                                                                                                                                            | NTITE 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.4 666                                                                                                                                                                 |                                                                                                                                                              | 10 728                                                                                                                                             |                                                                                                                                                                                                                                                             |                                                         |                                      |
| FELDSPAR COMPOSITION<br>ORTHOCLASE - 507<br>PLACIOCLASE COMPOSIT                                                                                                                                                                                                                                                                                                                                                                                                  | ALRI<br>ALRI<br>TON (PERC 4                                                                                                                                                                                                                                     | TE 8.<br>AN) 91.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 715 ANG                                                                                                                                                                  | DRTHITE                                                                                                                                                      | 91,792                                                                                                                                             |                                                                                                                                                                                                                                                             |                                                         |                                      |
| THORNTON AND TUTTLE DIFFE                                                                                                                                                                                                                                                                                                                                                                                                                                         | RENTIATION                                                                                                                                                                                                                                                      | INDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                          | 1.930                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                                                                                             |                                                         |                                      |
| CRYSTALLIZATION INDEX (AN<br>LARSEN INDEX (1/351+K)-(C                                                                                                                                                                                                                                                                                                                                                                                                            | +MG,DI+FO+6<br>A+MG)                                                                                                                                                                                                                                            | O EQIV OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EN) =                                                                                                                                                                    | 71.892<br>-26.971                                                                                                                                            |                                                                                                                                                    |                                                                                                                                                                                                                                                             |                                                         |                                      |
| IRON RATIO ((FE2=MN)*100/<br>MG NUMBER AS CATIONS MG/C                                                                                                                                                                                                                                                                                                                                                                                                            | (FE2+MN+NG)<br>ATIONS (FE4                                                                                                                                                                                                                                      | )///LAG)<br>\///LAG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          | 34.128<br>81.952                                                                                                                                             |                                                                                                                                                    |                                                                                                                                                                                                                                                             |                                                         |                                      |
| OXIDATION RATIO ACCORDING<br>DENSITY OF DRY LIQUID OF                                                                                                                                                                                                                                                                                                                                                                                                             | TO LE MAIT<br>This compos                                                                                                                                                                                                                                       | TRE (FEO/FE<br>BITION (AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0+FE203) =<br>10 <b>50</b> DEG) =                                                                                                                                        | ,823<br>2,846                                                                                                                                                |                                                                                                                                                    |                                                                                                                                                                                                                                                             |                                                         |                                      |
| TOTAL ALKALIS .64                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOT                                                                                                                                                                                                                                                             | AL FE 29.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96 MG                                                                                                                                                                    |                                                                                                                                                              | 69.40                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                         |                                      |
| KOMATIITE PARAMETERS<br>E0/(FE0+HGD) CAO/AL203<br>.3015 .98                                                                                                                                                                                                                                                                                                                                                                                                       | SI02/TI02<br>226.90                                                                                                                                                                                                                                             | AL203/TIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 FEO*/TIO<br>49.36                                                                                                                                                      | 2 CAO/TIO<br>38.24                                                                                                                                           | 02 NA20/<br>1.14                                                                                                                                   | 1102 -                                                                                                                                                                                                                                                      | K 20/TIO2<br>,095                                       |                                      |
| KOMATIITE PARAMETERS<br>E0/(FEO+MGD) CAO/AL203<br>.3015<br>JENSEN CATION AL203 - FEI<br>17.83                                                                                                                                                                                                                                                                                                                                                                     | SIG2/TIG2<br>226.90<br>0+FE203+TIC<br>16.26                                                                                                                                                                                                                     | AL203/TIO<br>39.10<br>45.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 FEG%/TIO<br>49.36                                                                                                                                                      | 2 CAO/TIO<br>38.24                                                                                                                                           | 92 NA20/<br>1.14                                                                                                                                   | <u>102</u>                                                                                                                                                                                                                                                  | K20/TIO2<br>.075                                        |                                      |
| KOMATIITE PARAMETERS<br>E0/(FE0+MGD) CA0/AL203<br>.3015<br>JENSEN CATION AL203 - FE<br>17.83<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00                                                                                                                                                                                                                                                                                                                            | SI02/TI02<br>226.90<br>0+FE203+TI0<br>16.26<br>ORTH<br>ORTH                                                                                                                                                                                                     | AL203/TIO<br>39.10<br>12 - MGO<br>65.92<br>HOCLASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 FEOW/TIO<br>49.36                                                                                                                                                      | 2 CAQ/TIO<br>38.24                                                                                                                                           | 82 NA20/<br>1.14                                                                                                                                   | <u>1</u> 102 -                                                                                                                                                                                                                                              | K20/TI02<br>/095                                        |                                      |
| KOMATIITE PARAMETERS<br>E0/(FEO+HGD) CAO/AL203<br>.3015<br>JENSEN CATION AL203 - FEI<br>17.83<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                     | SI02/TI02<br>226.90<br>0+FE203+TI0<br>16.26                                                                                                                                                                                                                     | AL 203/TIO<br>39.10<br>12 - HGO<br>45.92<br>HOCLASE -6.<br>16.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 FEO*/TIO<br>49.36<br>51 PL/<br>18 ALI<br>FE 15<br>20 75                                                                                                                | 2 CAO/TIO<br>38.24<br>AGIOCLASE<br>FILE<br>71                                                                                                                | 12 NA20/<br>1,14<br>*****<br>MG                                                                                                                    | 1102 -<br>3<br>67,95                                                                                                                                                                                                                                        | ×20/TI02<br>∕075                                        |                                      |
| KOMATIITE PARAMETERS<br>E0/(FE0+MGD) CAO/AL203<br>.3015 .98<br>JENSEN CATION AL203 - FE<br>17.83 - FELDSPAR RATIOS<br>QUARTZ 00<br>MUARTZ 00<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                | SI02/TI02<br>226.90<br>0+FE203+TI0<br>16.26                                                                                                                                                                                                                     | AL203/TIO<br>39.10<br>12 - MGO<br>65.92<br>HOCLASE<br>HOCLASE<br>16.34<br>9.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 FEG#/TIO<br>49.36<br>51 PL4<br>18 ALI<br>FE 15<br>MG 38                                                                                                                | 2 CAO/TIO<br>38.24<br>AGIDCLASE<br>BITE<br>71<br>.08                                                                                                         | 82 NA20/<br>1.14<br>*****<br>MG<br>SI<br>MG                                                                                                        | TID2                                                                                                                                                                                                                                                        | K 20/TIO2<br>/ 095                                      |                                      |
| KOMATIITE PARAMETERS<br>EO/(FEO+MGO) CAO/AL203<br>.3015 .78<br>JENSEN CATION AL203 - FE<br>17.83<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                  | SI02/TI02<br>226,90<br>0+FE203+TI0<br>16,26<br>ORTI<br>CA<br>SI<br>SI<br>2MG                                                                                                                                                                                    | AL 203/TIO<br>39.10<br>12 - HGO<br>45.92<br>HOCLASE<br>HOCLASE -6.<br>16.34<br>9.35<br>53.98<br>73.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 FEO*/TIO<br>49.36<br>51 PL<br>18 AL<br>FE 15<br>MG 38<br>AL 5<br>2FE 16                                                                                                | 2 CAO/TIO<br>38.24<br>AGIOCLASE<br>011E<br>71<br>.08<br>.48<br>.74                                                                                           | 82 NA20/<br>1.14<br>*****<br>MC<br>SI<br>MC<br>SI<br>SI/5                                                                                          | 57.95<br>51.77<br>40.54<br>9.76                                                                                                                                                                                                                             | K20/T102<br>.095                                        |                                      |
| KOMATIITE PARAMETERS<br>E0/(FEO+MGO) CAO/AL2O3<br>.3015 .79<br>JENSEN CATION AL2O3 - FEI<br>JENSEN CATION AL2O3 - FEI<br>JENSEN CATION AL2O3 - FEI<br>UARTZ - FELDSPAR RATIOS<br>QUARTZ .00<br>CATION PROPORTIONS                                                                                                                                                                                                                                                 | SI02/TI02<br>226.90<br>0+FE203+TI0<br>16.26<br>ORTH<br>ORTH<br>CA<br>SI<br>SI<br>2MG<br>CA                                                                                                                                                                      | AL 203/TIO<br>39.10<br>12 - HGO<br>65.92<br>10CLASE<br>10CLASE<br>16.34<br>9.35<br>53.98<br>73.30<br>52.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 FEO*/TIO<br>49.36<br>51 PL<br>18 AL<br>FE 15<br>MG 38<br>AL 5<br>2FE 16<br>AL 35                                                                                       | 2 CAO/TIO<br>38.24<br>AGIDCLASE<br>BITE<br>71<br>.08<br>.48<br>.94                                                                                           | 82 NA20/<br>1.14<br>*****<br>MG<br>SI<br>MG<br>SI/5<br>NA+K                                                                                        | 1102                                                                                                                                                                                                                                                        | K 20/TIO2<br>/ 095                                      |                                      |
| KOMATIITE PARAMETERS<br>E0/(FEO+MGO) CAO/AL203<br>.3015 .98<br>JENSEN CATION AL203 - FE<br>17.83 - FELDSPAR RATIOS<br>QUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM                                                                                                                                                                                                                                                                 | SI02/TI02<br>226,90<br>0+FE203+TI0<br>16.26<br>ORTH<br>ORTH<br>CA<br>SI<br>SI<br>2MG<br>CA<br>CA<br>PLAGIOCLAS                                                                                                                                                  | AL 203/TIO<br>39.10<br>12 - HGO<br>45.92<br>HOCLASE<br>HOCLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE<br>10CLASE - | 2 FEG*/TIO<br>49.36<br>51 2L4<br>18 AL1<br>FE 15<br>MG 38<br>AL 5<br>2FE 16<br>AL 35<br>E - CLINOPYF                                                                     | 2 CAQ/TIQ<br>38.24<br>AGIOCLASE<br>971<br>.08<br>.48<br>.74<br>.41<br>ROXENE - Q                                                                             | 2 NA20/<br>1.14<br>*****<br>MG<br>SI<br>SI<br>SI/5<br>NA+K                                                                                         | TID2                                                                                                                                                                                                                                                        | K20/TI02<br>.095<br>Percent)                            |                                      |
| KOMATIITE PARAMETERS<br>E0/(FEO+MGO) CAO/AL203<br>.3015<br>JENSEN CATION AL203 - FEI<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 00<br>QUARTZ 00<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                  | SI02/TI02<br>226.90<br>0+FE203+TI0<br>16.26<br>ORTH<br>CA<br>SI<br>CA<br>SI<br>CA<br>PLAGIOCLAS<br>BASALT TE                                                                                                                                                    | AL203/TIO<br>39.10<br>12 - MGO<br>45.92<br>10CLASE<br>10CLASE<br>16.34<br>9.35<br>53.98<br>73.30<br>52.98<br>55 - OLIVIN<br>TRAHEDRON I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 FEO*/TIO<br>49.36<br>51 PL/<br>18 FE 15<br>MG 38<br>AL 5<br>2FE 16<br>AL 35<br>E - CLINUPYF<br>S 90.71 MC                                                              | 2 CAO/TIO<br>38.24<br>AGIOCLASE<br>BITE<br>71<br>.08<br>.48<br>.94<br>.49<br>.94<br>.41<br>ROXENE - Q<br>DLE PERCEN                                          | 02 NA20/<br>1.14<br>*****<br>MG<br>SI<br>SI<br>SI/5<br>NA+K<br>WARTZ (I)                                                                           | TIO2                                                                                                                                                                                                                                                        | K20/TI02<br>.095<br>PERCENT)                            |                                      |
| KOMATIITE PARAMETERS<br>EO/(FEO+MGO) CAO/AL203<br>.3015 .98<br>JENSEN CATION AL203 - FEI<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 00<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON                                                                                                                                                                                                                           | SI02/TI02<br>226.90<br>0+FE203+TI0<br>16.26<br>ORTI<br>CA<br>SI<br>SI<br>2MG<br>CA<br>PLAGIOCLAS<br>BASALT TET<br>OL                                                                                                                                            | AL 203/TIO<br>39.10<br>45.92<br>40CLASE<br>40CLASE<br>40CLASE6.<br>16.34<br>9.35<br>53.98<br>73.30<br>52.98<br>52.98<br>55 - OLIVIN<br>TRAHEDRON I<br>53.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 FEO*/TIO<br>49.36<br>51 PL/<br>18 AL<br>18 FE 15<br>MG 38<br>AL 5<br>2FE 16<br>AL 35<br>E - CLINOPYE<br>S 90.71 MC<br>CPX 14                                           | 2 CAO/TIO<br>38.24<br>38.24<br>AGIOCLASE<br>71<br>.08<br>.48<br>.49<br>.49<br>.41<br>ROXENE - Q<br>DLE PERCEN<br>.37                                         | 2 NA20/<br>1,14<br>*****<br>MG<br>SI<br>SI/5<br>NA+K<br>UARTZ (I)<br>IT<br>PLAG                                                                    | <b>1102</b><br><b>57.95</b><br><b>51.77</b><br><b>40.54</b><br><b>9.76</b><br><b>1.61</b><br><b>N</b> HOLE<br><b>23.16</b>                                                                                                                                  | PERCENT)                                                | 8.                                   |
| KOMATIITE PARAMETERS<br>E0/(FEO+MGD) CAO/AL203<br>.3015 .98<br>JENSEN CATION AL203 - FEI<br>17.03 - FELDSPAR RATIOS<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION                                                                                                                                                                   | SI02/TI02<br>226.90<br>0+FE203+TI0<br>16.26<br>ORTI<br>CA<br>SI<br>2MG<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLAS<br>BASALT TE<br>OL                                                                                                                                | AL 203/TIO<br>39.10<br>12 - MGO<br>45.92<br>40CLASE<br>HOCLASE<br>16.34<br>9.35<br>53.98<br>73.30<br>52.98<br>55 - OLIVIN<br>TRAHEDRON I<br>53.79<br>52.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 FEG*/TIO<br>49.36<br>51 PL4<br>18 FE 15<br>MG 38<br>AL 5<br>2FE 16<br>AL 35<br>E - CLINUPYF<br>S 90.71 MC<br>CPX 14<br>0                                               | 2 CAO/TIO<br>38.24<br>AGIOCLASE<br>974<br>.48<br>.94<br>.41<br>ROXENE - Q<br>DLE PERCEN<br>.37<br>.0                                                         | 2 NA20/<br>1.14<br>*****<br>MG<br>SI<br>SI/5<br>NA+K<br>WARTZ (I)<br>IT<br>PLAG                                                                    | TID2                                                                                                                                                                                                                                                        | PERCENT)                                                | e.,<br>10.                           |
| KOMATIITE PARAMETERS<br>E0/(FEO+MGD) CAO/AL203<br>.3015 CAO/AL203<br>JENSEN CATION AL203 - FEI<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 00<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION                                                                                                                                                                    | SI02/TI02<br>226.90<br>0+FE203+TI0<br>16.26<br>ORTH<br>CA<br>SI<br>CA<br>SI<br>CA<br>PLAGIOCLAS<br>BASALT TE<br>OL                                                                                                                                              | AL203/TIO<br>39.10<br>32 - MGO<br>65.92<br>40CLASE<br>40CLASE<br>16.34<br>9.35<br>53.98<br>73.30<br>52.98<br>55 - OLIVIN<br>TRAHEDRON I<br>53.79<br>52.82<br>58.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 FEOW/TIO<br>49.36<br>18 AL<br>FE 15<br>MG 38<br>AL 5<br>2FE 16<br>AL 35<br>E - CLINOPYF<br>S 90.71 MC<br>CPX 14<br>0<br>15                                             | 2 CAO/TIO<br>38.24<br>AGIDCLASE<br>BITE<br>71<br>.08<br>.48<br>.94<br>.43<br>ROXENE - Q<br>DLE PERCEN<br>.37<br>.0<br>.73                                    | 2 NA20/<br>1.14<br>*****<br>MG<br>SI<br>MG<br>SI/5<br>NA+K<br>WARTZ (I)<br>IT<br>PLAG                                                              | <b>J</b> 102       1         67.95       51.77         51.77       9.76         1.61       1.61         N HOLE       23.16         27.04       25.36                                                                                                        | K 20/TIO2<br>2095<br>PERCENT)<br>                       | e.<br>10.<br>v <i>.</i>              |
| KOMATIITE PARAMETERS<br>EO/(FEO+MGO) CAO/AL203<br>.3015 CAO/AL203<br>JENSEN CATION AL203 - FEI<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 00<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                                                          | SI02/TI02<br>226.90<br>0+FE203+TI1<br>16.26<br>ORTI<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLAS<br>BASALT TE<br>OL<br>S                                                                                                                                              | AL 203/TIO<br>39.10<br>12 - HGO<br>45.92<br>10CLASE<br>10CLASE<br>10CLASE<br>16.34<br>9.35<br>53.98<br>73.30<br>52.98<br>55 - OLIVIN<br>TRAHEDRON I<br>53.79<br>52.82<br>58.91<br>70.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 FEO*/TIO<br>49.36<br>51 PL/<br>18 AL<br>75<br>MG 38<br>AL 5<br>2FE 16<br>AL 35<br>E - CLINUPYF<br>S 90.71 MU<br>CPX 14<br>0<br>15<br>18                                | 2 CAO/TIO<br>38.24<br>AGIOCLASE<br>DITE<br>71<br>.08<br>.48<br>.94<br>.43<br>ROXENE - Q<br>DLE PERCEN<br>.37<br>.0<br>.73<br>.70                             | 2 NA20/<br>1.14<br>*****<br>MG<br>SI<br>SI/5<br>NA+K<br>WARTZ (I)<br>IT<br>PLAG                                                                    | <b>5</b> 102<br><b>5</b> 7.95<br><b>5</b> 1.77<br><b>4</b> 0,54<br><b>9.76</b><br><b>1.61</b><br><b>N</b> HOLE<br><b>23.16</b><br><b>27.04</b><br><b>25.36</b><br><b>0.0</b>                                                                                | K20/TI02<br>/095<br>PERCENT)                            | e.<br>10.<br>11.                     |
| KOMATIITE PARAMETERS<br>E0/(FE0+MGD) CAO/AL203<br>.3015 CAO/AL203<br>JENSEN CATION AL203 - FEI<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 00<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                                                          | SI02/TI02<br>226.90<br>0+FE203+TI0<br>16.26<br>ORTH<br>CA<br>SI<br>CA<br>SI<br>CA<br>PLAGIOCLAS<br>BASALT TE<br>OL<br>S                                                                                                                                         | AL 203/TIO<br>39.10<br>32 - HGO<br>45.92<br>40CLASE - 6.<br>40CLASE - 6.<br>40CLASE - 6.<br>9.35<br>53.98<br>73.30<br>52.98<br>SE - OLIVIN<br>TRAHEDRON I<br>53.79<br>52.82<br>58.91<br>70.01<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 FEGW/TIO<br>49.36<br>18 AL<br>FE 15<br>MG 38<br>AL 5<br>2FE 16<br>AL 35<br>E - CLINOPYF<br>S 99.71 MC<br>CPX 14<br>15<br>18<br>19                                      | 2 CAO/TIO<br>38.24<br>AGIDCLASE<br>BITE<br>71<br>.08<br>.48<br>.94<br>.43<br>ROXENE - Q<br>DLE PERCEN<br>.37<br>.0<br>.73<br>.73<br>.78                      | 2 NA20/<br>1.14<br>*****<br>MG<br>SI<br>MG<br>SI/5<br>NA+K<br>WARTZ (I)<br>IT<br>PLAG                                                              | <b>J</b> 102       1         67.95       51.77       40.54         9.76       1.61       1.61         N       HOLE       23.16         27.04       25.36       0.0         32.05       10.0                                                                 | 420/TI02<br>995<br>PERCENT)<br>QTZ                      | 8.<br>10.<br>0.<br>11.<br>48.        |
| KOMATIITE PARAMETERS<br>E0/(FE0+MGO) CAO/AL203<br>.3015 CAO/AL203<br>JENSEN CATION AL203 - FEI<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 00<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>OLIVINE PROJECTION                                                                        | SI02/TI02<br>226.90<br>0+FE203+TI0<br>0RTI<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLAS<br>BASALT TET<br>0L<br>S                                                                                                                                                | AL 203/TIO<br>39.10<br>22 - MGO<br>45.92<br>40CLASE<br>40CLASE<br>40CLASE<br>16.34<br>9.35<br>53.98<br>73.30<br>52.98<br>SE - OLIVIN<br>TRAHEDRON I<br>53.79<br>52.82<br>58.91<br>70.01<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 FEO*/TIO<br>49.36<br>51 PL/<br>18 AL<br>5<br>AL 5<br>2FE 16<br>AL 35<br>E - CLINOPYF<br>S 90.71 MC<br>CPX 14<br>15<br>18<br>19                                         | 2 CAO/TIO<br>38.24<br>AGIOCLASE<br>BITE<br>71<br>.08<br>.48<br>.74<br>.43<br>ROXENE - Q<br>DLE PERCEN<br>.37<br>.0<br>.73<br>.70<br>.89                      | 2 NA20/<br>1.14<br>*****<br>MG<br>SI<br>SI/5<br>NA+K<br>UARTZ (I)<br>IT<br>PLAG                                                                    | <b>J102</b><br><b>57.95</b><br><b>51.77</b><br><b>40.54</b><br><b>9.76</b><br><b>1.61</b><br><b>N HOLE</b><br><b>23.16</b><br><b>27.04</b><br><b>25.36</b><br><b>0.0</b><br><b>32.05</b>                                                                    | K20/TIO2<br>195<br>PERCENT)<br>QTZ<br>OPX+(4QTZ)        | 8.<br>10.<br>0.<br>11.<br>48.        |
| KOMATIITE PARAMETERS<br>EO/(FEO+MGO) CAO/AL203<br>3015 CAO/AL203<br>JENSEN CATION AL203 - FEI<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 00<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CHAS PROJECTIONS<br>TETRAHEDRON COURDINATES                                                | SI02/TI02<br>226.90<br>0+FE203+TI0<br>16.26<br>0RTI<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLAS<br>BASALT TE<br>OL<br>3<br>3<br>3<br>3<br>4<br>4<br>4<br>4<br>5<br>5<br>5<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>6<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7 | AL 203/TIO<br>39.10<br>32 - HGO<br>45.92<br>HOCLASE<br>HOCLASE<br>HOCLASE<br>16.34<br>9.35<br>53.98<br>73.30<br>52.98<br>55.91<br>76.01<br>0.0<br>8.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 FEON/TIO:<br>49.36<br>51 PL/<br>18 FE 15<br>MG 38<br>AL 35<br>2FE 16<br>AL 35<br>E - CLINUPYF<br>S 90.71 MC<br>CPX 14<br>15<br>18<br>18<br>19                          | 2 CAO/TIO<br>38.24<br>AGIOCLASE<br>DITE<br>.08<br>.48<br>.94<br>.41<br>ROXENE - Q<br>DLE PERCEN<br>.37<br>.0<br>.73<br>.70<br>.89                            | 2 NA20/<br>1.14<br>*****<br>MG<br>SI<br>SI/5<br>NA+K<br>WARTZ (I)<br>IT<br>PLAG                                                                    | 102         51,75         51,77         40,54         9,76         1.61         N HOLE         23,16         27,04         25,36         0.0         32.05         5,32                                                                                     | FERCENT)<br>QFX+(4QTZ)<br>S                             | 8.<br>10.<br>0.<br>11.<br>48.        |
| KOMATIITE PARAMETERS<br>E0/(FE0+MGD) CAO/AL203<br>.3015 CAO/AL203<br>JENSEN CATION AL203 - FE<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 00<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTION<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>OLIVINE PROJECTION<br>CHAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION                                        | SI02/TI02<br>226,90<br>0+FE203+TI0<br>16.26<br>ORTH<br>CA<br>SI<br>2MG<br>CA<br>CA<br>PLAGIOCLAN<br>BASALT TE<br>OL<br>C<br>C<br>C3A                                                                                                                            | AL 203/TIO<br>39.10<br>32 - MGO<br>45.92<br>40CLASE<br>HOCLASE<br>16.34<br>9.35<br>53.78<br>73.30<br>52.98<br>SE - OLIVIN<br>TRAHEDRON I<br>53.79<br>52.82<br>58.91<br>70.01<br>0.0<br>8.53<br>20.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 FEG*/TIO<br>49.36<br>51 PL/<br>18 FE 15<br>MG 38<br>AL 5<br>2FE 16<br>AL 35<br>E - CLINOPYF<br>S 90.71 MC<br>CPX 14<br>15<br>18<br>19<br>19                            | 2 CAO/TIO<br>38.24<br>AGIOCLASE<br>71<br>.08<br>.48<br>.74<br>.43<br>ROXENE - Q<br>DLE PERCEN<br>.37<br>.0<br>.73<br>.70<br>.99<br>.41<br>.18                | A<br>SI<br>SI<br>SI/S<br>NA+K                                                                                                                      | TID2<br>57.75<br>51.77<br>40.54<br>9.76<br>1.61<br>N HOLE<br>23.16<br>23.16<br>23.36<br>0.0<br>32.05<br>5.32<br>51.25                                                                                                                                       | x 20/TIO2<br>/995<br>PERCENT)<br>QTZ<br>OPX+(4QTZ)<br>S | 8.<br>10.<br>0.<br>11,<br>48.<br>44. |
| KOMATIITE PARAMETERS<br>E0/(FE0+MGD) CAO/AL203<br>.3015 CAO/AL203<br>JENSEN CATION AL203 - FEI<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 00<br>CATION PROPORTIONS 00<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CHAS PROJECTIONS<br>TETRAHEDRON COURDINATES<br>DIOPSIDE PROJECTION                                                                                | SI02/TI02<br>226.90<br>0+FE203+TI0<br>16.26<br>ORTH<br>CA<br>SI<br>CA<br>SI<br>CA<br>PLAGIOCLAS<br>BASALT TE<br>OL<br>C<br>C<br>C3A<br>CS<br>CS                                                                                                                 | AL 203/TIO<br>12 - HGO<br>45.92<br>10CLASE - 6.<br>10CLASE - 6.<br>9.35<br>53.98<br>73.30<br>52.98<br>SE - OLIVIN<br>TRAHEDRON I<br>53.79<br>52.82<br>58.91<br>70.01<br>0.0<br>8.53<br>20.56<br>21.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 FEGW/TIO<br>49.36<br>18 FE 15<br>MG 38<br>AL 5<br>2FE 16<br>AL 35<br>E - CLINOPYF<br>S 99.71 MC<br>CPX 14<br>15<br>18<br>19<br>19<br>M 41<br>M 28<br>M 67              | 2 CAO/TIO<br>38.24<br>AGIDCLASE<br>BITE<br>71<br>.08<br>.48<br>.94<br>.43<br>ROXENE - Q<br>DLE PERCEN<br>.37<br>.0<br>.73<br>.70<br>.99<br>.41<br>.18<br>.91 | A<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                   | <b>J</b> 102<br><b>5</b> 7.95<br><b>5</b> 1.77<br><b>4</b> 0.54<br><b>9.76</b><br><b>1.61</b><br><b>N</b> HOLE<br><b>23.16</b><br><b>27.04</b><br><b>25.36</b><br><b>0.0</b><br><b>32.05</b><br><b>5.32</b><br><b>51.25</b><br><b>11.66</b>                 | PERCENT)<br>QTZ<br>OPX+(4QTZ)<br>S                      | e.<br>10.<br>0.<br>11.<br>48.<br>44. |
| KOMATIITE PARAMETERS<br>E0/(FE0+MGD) CAO/AL203<br>.3015 CAO/AL203<br>JENSEN CATION AL203 - FEI<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 00<br>QUARTZ 00<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CLIVINE PROJECTION<br>CHAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>GLIVINE PROJECTION<br>ENSTATITE PROJECTION | SI02/TI02<br>226.90<br>0+FE203+TI0<br>16.26<br>ORTH<br>CA<br>SI<br>CA<br>SI<br>CA<br>PLAGIOCLAS<br>BASALT TE<br>OL<br>S<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA                                                           | AL 203/TIO<br>39.10<br>12 - HGO<br>45.92<br>10CLASE<br>10CLASE<br>10CLASE<br>16.34<br>9.35<br>53.78<br>73.30<br>62.98<br>55 - OLIVIN<br>TRAHEDRON I<br>53.79<br>52.82<br>58.91<br>70.01<br>0.0<br>8.53<br>20.56<br>21.33<br>51.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 FEOW/TIO<br>49.36<br>18 AL 5<br>FE 15<br>MG 38<br>AL 5<br>2FE 16<br>AL 35<br>E - CLINOPYF<br>S 90.71 MC<br>CPX 14<br>0<br>15<br>18<br>18<br>19<br>19<br>19<br>10<br>19 | 2 CAO/TIO<br>38.24<br>AGIOCLASE<br>BITE<br>71<br>.08<br>.48<br>.94<br>.48<br>.94<br>.41<br>.00<br>.73<br>.70<br>.89<br>.41<br>.18<br>.01<br>.41              | A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>S<br>A<br>2<br>S<br>S<br>A<br>2<br>S<br>S<br>A<br>2<br>S<br>S<br>S<br>A<br>2<br>S<br>S<br>S<br>S | <b>J</b> 102<br><b>5</b> 7.95<br><b>5</b> 1.77<br><b>4</b> 0.54<br><b>9.76</b><br><b>1.61</b><br><b>N</b> HOLE<br><b>23.16</b><br><b>27.04</b><br><b>25.36</b><br><b>0.0</b><br><b>32.05</b><br><b>5.32</b><br><b>51.25</b><br><b>11.66</b><br><b>21.62</b> | PERCENT)<br>QTZ<br>QPX+(4QTZ)<br>S                      | 3.<br>10.<br>0.<br>11,<br>48.<br>44. |

CIPW NORH

SAMPLE NUMBER BG 173

 ORIGINAL
 WEIGHT
 PERCENT
 OXIDES

 SIO2
 AL203
 FE203
 FE0

 47.65
 8.21
 1.05
 9.42

HNO MGO .23 24.01

CATION PROPORTIONS IN ANALYSIS SI AL FE(3) FE(2) MN MG CA NA K TI P CR 42.85 8.70 .71 7.09 .18 32.18 7.74 .42 -.02 .14 .02 .00

WEIGHT PERCENT OXIDES RECALCULATED TO 100 PERCENT SIO2 AL203 FE203 FE0 MNG MGO CAQ 48.10 8.29 1.06 9.51 .23 24.24 8.11

298

K20 TIO2 P205 CR203 TOTAL -02 .21 .03 .00 100.00

TI02 .21

CAO NA20 K20 8.03 .24 -.02

NA20 .24

P205 CR203 TOTAL ,03 ,00 99.06

r

| SAMPLE NUMBER BG 175                                                                                                                                                                                                                                                        |                                                                                                                                                   |                                                                    |                                                                                                |                                        | 299                            |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------|----------------------------|
| ORIGINAL WEIGHT PERCENT O<br>SID2 AL203 FE203<br>51.04 7.45 .99                                                                                                                                                                                                             | XIDES<br>FEO MNO<br>8.92 .16                                                                                                                      | HGO (<br>25,95 4                                                   | CAO NA20                                                                                       | K20 TI02                               | P205 CR203                     | TOTAL<br>99.85             |
| WEIGHT PERCENT OXIDES REC<br>SIG2 AL203 FE203<br>51.12 7.46 .99                                                                                                                                                                                                             | ALCULATED TO 1<br>FEO MNO<br>8.93 .16                                                                                                             | 00 PERCENT<br>MGD 4<br>25,99 4                                     | CAQ NA20                                                                                       | K20 TIO2                               | P205 CR203                     | TOTAL<br>100.00            |
| CATION PROPORTIONS IN ANA<br>SI AL FE(3)<br>45.46 7.82 .66                                                                                                                                                                                                                  | LYSIS<br>FE(2) MN<br>6,64 ,12                                                                                                                     | MG<br>34.45 4                                                      | CA NA<br>14 .00                                                                                | K TI<br>13                             | P.03 CR,54                     |                            |
| CIPU NORM                                                                                                                                                                                                                                                                   |                                                                                                                                                   |                                                                    |                                                                                                |                                        |                                |                            |
| WEIGHT PERCENT .000<br>Mole Percent .000<br>Cation Percent .000                                                                                                                                                                                                             | COR<br>000<br>000<br>.000                                                                                                                         | DR<br>, 999<br>, 999<br>, 999<br>, 999                             | AB AN<br>.000 20.35<br>.000 15.64<br>.000 19.55                                                | E .000<br>8 .000<br>3 .000             | NE<br>,000<br>,000<br>,000     | KP<br>.000<br>.000<br>.000 |
| WEIGHT PERCENT .000<br>Mole Percent .000<br>Cation Percent .000                                                                                                                                                                                                             | NS<br>, 000<br>, 000<br>, 000                                                                                                                     | KS<br>.000<br>.000<br>.200                                         | bi         ui           .749         .00           .724         .00           .724         .00 | HY<br>0 67.376<br>0 68.549<br>0 68.513 | 01<br>8,489<br>12.094<br>9,045 | C3<br>.000<br>.000<br>.000 |
| MT<br>WEIGHT PERCENT 1.439<br>Mole Percent 1.329<br>Cation Percent .996                                                                                                                                                                                                     | CM<br>1.136<br>1.085<br>.813                                                                                                                      | 1L<br>.361<br>.509<br>.255                                         | HM TN<br>.000 .00<br>.000 .00<br>.000 .00                                                      | 0 ,000<br>0 ,000<br>0 ,000             | RU<br>,000<br>,000<br>,000     | AP<br>.095<br>.040<br>.080 |
| MAFIC INDEX = 79,646                                                                                                                                                                                                                                                        |                                                                                                                                                   |                                                                    |                                                                                                |                                        |                                |                            |
| OLIVINE COMPOSITION                                                                                                                                                                                                                                                         |                                                                                                                                                   |                                                                    |                                                                                                |                                        |                                |                            |
| ORTHOPYROXENE_COMPOSITION                                                                                                                                                                                                                                                   | FATALITE                                                                                                                                          | 20,229                                                             |                                                                                                |                                        |                                |                            |
| ENSTATITE 81.294<br>CLINOPYROXENE COMPOSITION                                                                                                                                                                                                                               | FERROSIL                                                                                                                                          | ITE 18,706.                                                        |                                                                                                |                                        |                                |                            |
| VOLLASTONITE 52.500<br>FELDSPAR COMPOSITION                                                                                                                                                                                                                                 | ENSTATI1                                                                                                                                          | E 38.614                                                           | FERROSILIT                                                                                     | E 8.885                                |                                |                            |
| ORTHOCLASE .000<br>PLAGIOCLASE COMPOSIT                                                                                                                                                                                                                                     | ION (PERC AN)                                                                                                                                     | 809.<br>******                                                     | ANORTHITE                                                                                      | 这家名客非规                                 |                                |                            |
| THORNTON AND TUTTLE DIFFE<br>SOLIDIFICATION INDEX (10)<br>CRYSTALLIZATION INDEX (AN<br>LARSEN INDEX (1/3SI+K)-(C<br>ALBITE RATIO (100*(AB+AB<br>IRON RATIO (FE2=MN)*100/<br>MG NUMBER AS CATIONS MG/C<br>DXIDATION RATIO ACCORDING<br>DENSITY OF DRY LIQUID OF<br>AFM PATTO | RENTIATION INI<br>*HGO/(MGO+FEO+<br>+HG,DI+FO+FO E<br>A+MG)<br>EQIV IN NE)/PL<br>(FE2+HN+HG))<br>ATIONS (FE+HG)<br>TO LE MAITRE<br>THIS COMPOSITI | EX<br>FE203+NA20+<br>QIV OF EN<br>AG<br>(FED/FED+FE<br>ON (AT 1050 | x20)) = 72,366<br>= 66,141<br>= -24,549<br>= 31.070<br>= 83,832<br>203) = 2.800                | 5                                      |                                |                            |
| TOTAL ALKALIS .00                                                                                                                                                                                                                                                           | TOTAL F                                                                                                                                           | E 27.43                                                            | ĦG                                                                                             | 72,5 <b>7</b>                          |                                |                            |
| KOMATIITE PARAMETERS                                                                                                                                                                                                                                                        |                                                                                                                                                   |                                                                    |                                                                                                |                                        |                                |                            |
| FE0/(FE0+HG0) CA0/AL203<br>.2743 .58                                                                                                                                                                                                                                        | SI02/T102 AL<br>268.63                                                                                                                            | 203/TID2 FI<br>37.21                                               | E0*/TI02 CAD/T<br>51.63 22.8                                                                   | 102 NA20/TIO2                          | K20/T102<br>.000               |                            |
| JENSEN CATION AL203 - FE<br>15.74                                                                                                                                                                                                                                           | 0+FE203+TI02 -<br>14.96 4                                                                                                                         | MG0<br>9,31                                                        |                                                                                                |                                        |                                |                            |
| QUARTZ - FELDSPAR RATIOS                                                                                                                                                                                                                                                    | ORTHOCL                                                                                                                                           | ASE .00                                                            | PLAGIDCLAS                                                                                     | E #%%%#                                |                                |                            |
| CATION PROPORTIONS                                                                                                                                                                                                                                                          | CA 7.0                                                                                                                                            | ASE .00<br>FE                                                      | ALBITE<br>15.31                                                                                | HG 75.60                               |                                |                            |
|                                                                                                                                                                                                                                                                             | CA 4.9                                                                                                                                            | 73 MG                                                              | 40.99                                                                                          | SI 54,09                               |                                |                            |
|                                                                                                                                                                                                                                                                             | SI 54,2                                                                                                                                           | 24 AL                                                              | 4.66                                                                                           | MG 41,10                               |                                |                            |
|                                                                                                                                                                                                                                                                             | ZMU 74,5<br>CA 51,4                                                                                                                               | 2 <b>-1</b> 2Fi                                                    | E 15,17<br>48,54                                                                               | 51/5 9.39<br>NA+K 40                   |                                |                            |
|                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                                                    |                                                                                                |                                        |                                |                            |
| COORDINATES IN THE SYSTEM                                                                                                                                                                                                                                                   | PLAGIDCLASE -                                                                                                                                     | CLIVINE - (                                                        | CLINOPYROXENE -                                                                                | QUARTZ (IN MOL                         | E PERCENT)                     |                            |
| BASALT TETRAHEDRON                                                                                                                                                                                                                                                          | CL 61.7                                                                                                                                           | יפיז 15 9°<br>יפיז 17                                              |                                                                                                | PLAG 10 00                             | 017                            | 17.50                      |
| CLINOPYROXENE PROJECTION                                                                                                                                                                                                                                                    | 62,2                                                                                                                                              | . CF.                                                              | 0,0                                                                                            | 20.13                                  | 94 J Z                         | 17.63                      |
|                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                                                    |                                                                                                |                                        |                                |                            |

| PROPERTY IS IN AN EDITOR | 0L   | 01/// | UFX  | ./-   | L PO | 17,70 | G 1 Z      | 1.1.20 |
|--------------------------|------|-------|------|-------|------|-------|------------|--------|
| CLINOPYROXENE PROJECTION |      | 62,24 |      | 0.0   |      | 20.13 |            | 17.53  |
| QUARTZ PROJECTION        |      | 74.88 |      | , 90  |      | 24.22 |            | 0.0    |
| PLAGIOCLASE PROJECTION   |      | 77.20 |      | . 92  |      | 0.0   |            | 21.87  |
| DLIVINE PROJECTION       |      | 0.0   |      | .82   |      | 22.02 | 0PX+(4QTZ) | 77.16  |
| CHAS PROJECTIONS         |      |       |      |       |      |       |            |        |
| TETRAHEDRON COORDINATES  | С    | 4.29  | н    | 43.12 | A    | 4.87  | S          | 47,71  |
| DIOPSIDE PROJECTION      | C3A  | 17.37 | н    | 28.43 | S    | 54,20 |            |        |
| OLIVINE PROJECTION       | CS   | 9.26  | Ħ    | 81.52 | 5    | 9.22  |            |        |
| ENSTATITE PROJECTION     | M28  | 45.18 | C293 | 22.02 | A253 | 32,81 |            |        |
| QUARTZ PROJECTION        | CAS2 | 关外保持  | MS   | ****  | CMS2 | ****  |            |        |
|                          |      |       |      |       |      |       |            |        |

| HLAGOTHI COMPLEX<br>Sample Number BG 192                                                                                                                                                                                                            | 2                                                                                                                                                    |                                                                                    |                                                                              |                                                                      | 30                                  | 0                          |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------|----------------------------|----------------------------|
| ORIGINAL WEIGHT PERCENT<br>SID2 AL203 FE203<br>53.49 15.64 .71                                                                                                                                                                                      | OXIDES<br>FEO MNO<br>6.39 .15                                                                                                                        | MGO<br>8.97 11                                                                     | CAQ NA20                                                                     | K20<br>.93                                                           | TIO2 P<br>134                       | 205 CR203                  | TOTAL<br>100,03            |
| WEIGHT PERCENT OXIDES R<br>SIO2 AL203 FERD3<br>53.47 15.63 .71                                                                                                                                                                                      | ECALCULATED TO<br>FED AND<br>6.39 .15                                                                                                                | 100 PERCENT<br>MCD<br>B.97 11                                                      | CAD NA20                                                                     | K 20<br>. 83                                                         | <b>TIO2</b> P                       | 205 CR203                  | TOTAL<br>100.00            |
| CATION PROPORTIONS IN A<br>SI AL FE(3)<br>49,25 16,97 (49                                                                                                                                                                                           | NALYSIS<br>Fe(2) MN<br>4.92 .12                                                                                                                      | MG '<br>12,31 11                                                                   | CA NA<br>.53 3.14                                                            | K<br>. 98                                                            | TI P<br>,24                         | .05 CR.00                  |                            |
| CIPU NORH                                                                                                                                                                                                                                           |                                                                                                                                                      |                                                                                    |                                                                              |                                                                      |                                     |                            |                            |
| QTZ<br>WEIGHT PERCENT 2.338<br>MOLE PERCENT 8.841<br>CATION PERCENT 2.154                                                                                                                                                                           | CDR<br>,000<br>,000<br>,000                                                                                                                          | UR<br>4,903 1<br>4.878 1<br>4.875 1                                                | AB<br>4.683 32<br>2.893 26<br>5.708 32                                       | AN<br>,312<br>,383<br>,141                                           | LC<br>. 0 0 0<br>. 0 0 0<br>. 0 0 0 | NE<br>.000<br>.000<br>.000 | ,000<br>,000<br>,000<br>Kb |
| AC<br>Weight Percent .000<br>Mole Percent .000<br>Cation Percent .000                                                                                                                                                                               | 24<br>000<br>000<br>000                                                                                                                              | KS<br>.000 2<br>.000 2<br>.000 2                                                   | D[<br>20.443<br>20.631<br>20.106                                             | WO<br>.000 23<br>.000 24<br>.000 23                                  | HY<br>305<br>302<br>682             | 0L<br>.000<br>.000<br>.000 | CS<br>.00U<br>.000<br>.000 |
| MT<br>WEIGHT PERCENT 1.030<br>MOLE PERCENT 1.010<br>CATION PERCENT .738                                                                                                                                                                             | СМ<br>, 000<br>, 000<br>, 000                                                                                                                        | IL<br>1646<br>1966<br>1471                                                         | H#<br>.000<br>.000<br>.000                                                   | TN<br>.000<br>.000<br>.000                                           | PF<br>.000<br>.000<br>.000          | RU<br>.000<br>.000<br>.000 | ар<br>.142<br>.096<br>.125 |
| MAFIC INDEX = 43.565                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                                    |                                                                              |                                                                      |                                     |                            |                            |
| NURM IUJAL = 100.001                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                                    |                                                                              |                                                                      |                                     |                            |                            |
| FORSTERITE .00                                                                                                                                                                                                                                      | IO FAYALI                                                                                                                                            | FE .000                                                                            |                                                                              |                                                                      |                                     |                            |                            |
| URTHOPYROXENE COMPOSITI<br>ENSTATITE 67.27                                                                                                                                                                                                          | ON<br>72 FERROS                                                                                                                                      | LITE 32,728                                                                        |                                                                              |                                                                      |                                     |                            |                            |
| CLINOPYROXENE CONPOSITI<br>WOLLASTONITE 51,60                                                                                                                                                                                                       | ION<br>19 ENSTAT                                                                                                                                     | ITE 32,554                                                                         | FERROSI                                                                      | -<br>LITE 15.837                                                     |                                     |                            |                            |
| FELDSPAR COMPOSITION<br>ORTHUCLASE 9.41<br>Plagioclase compos                                                                                                                                                                                       | 1 ALBITE<br>Bition (Perc An                                                                                                                          | 28.567<br>68.465                                                                   | ANORTHI                                                                      | TE 62.023                                                            |                                     |                            |                            |
| SOLIDIFICATION INDEX (1<br>CRYSTALLIZATION INDEX (<br>LARSEN INDEX (1/3SI+K)-<br>ALBITE RATIO (100*(ABHA<br>IRON RATIO (CF2=HN)*1<br>MG NUMBER AS CATIONS MG<br>DXIDATION RATIO ACCORD<br>DXIDATION RATIO<br>CATO<br>AFM RATIO<br>TOTAL ALKALIS 13/ | 00*HCO/(HCO+FE<br>AN+HC,DI+FO+FO<br>(CA+HC)<br>B EQIV IN NE)/1<br>0/(FE2+MN+HG))<br>0/CATIONS (FE+HK<br>NC TO LE MAITR<br>F THIS COMPOSI<br>93 TOTAL | D+FE203+NA204<br>EQIV OF EN)<br>PLAG)<br>C(FE0/FE0+FE<br>FION (AT 1050<br>FE 37.82 | H(20)) = 48.<br>= 57.<br>= 31.<br>= 48.<br>= 48.<br>= 71.<br>DEG) = 2.<br>MG | 023<br>654<br>778<br>535<br>453<br>453<br>835<br>835<br>654<br>48.25 |                                     |                            |                            |
| KUHATIITE PARAMETERS<br>FED/(FE0+hC0) CA0/AL20<br>.4394 .75                                                                                                                                                                                         | 13 SI02/TI02                                                                                                                                         | AL203/TID2 F<br>46,00                                                              | °EO*∕T102 CA<br>20.68 3                                                      | D/FID2 NA2<br>4.38 5.                                                | 0/T102 K<br>176 2,                  | 20/T102<br>441             |                            |
| JENSEN CATION AL203 -<br>48.59                                                                                                                                                                                                                      | FE0+FE203+1102<br>16.17                                                                                                                              | - MGU<br>35.24                                                                     |                                                                              |                                                                      |                                     |                            |                            |
| QUARTZ - FELDSPAR RATIC<br>Quartz 4,<br>Quartz 10<br>Cation proportions                                                                                                                                                                             | 05<br>30 ORTHO<br>57 ORTHO<br>CA 39                                                                                                                  | CLASE 9.01<br>CLASE 22.16<br>.75 FE                                                | PLAGIOCI<br>Albite<br>17,81                                                  | LASE 86.70<br>67.27<br>MG                                            | 42.43                               |                            |                            |
|                                                                                                                                                                                                                                                     | CA 15                                                                                                                                                | .78 hQ                                                                             | 16.84                                                                        | SI                                                                   | 67.38                               |                            |                            |
|                                                                                                                                                                                                                                                     | 91 7U                                                                                                                                                | .31 AL                                                                             | . 12.11                                                                      | MG                                                                   | 17.57                               |                            |                            |
|                                                                                                                                                                                                                                                     | 2MG 54                                                                                                                                               | . 95 2F                                                                            | E 23.07                                                                      | ŝI/5                                                                 | 21,98                               |                            |                            |
|                                                                                                                                                                                                                                                     | CA 52                                                                                                                                                | .24 AL                                                                             | . 38.44                                                                      | NA+K                                                                 | 9.32                                |                            |                            |
| COORDINATES IN THE SYST                                                                                                                                                                                                                             | TH PLAGIDCLASE                                                                                                                                       | - OLIVINE -                                                                        | CLINOPYROXEN                                                                 | E - QUARTZ                                                           | (IN HOLE                            | PERCENT)                   |                            |
| RACALT TETSANERODU                                                                                                                                                                                                                                  |                                                                                                                                                      | ל בנ מטאעבתיי<br>סא הט                                                             | יסייד חענב או<br>איז אא                                                      | 0) A (*                                                              | 51 A.D                              | <b>67</b>                  | 9 4                        |
| NINAPPONENE BRAIERTTE                                                                                                                                                                                                                               | UL 18<br>IN 34                                                                                                                                       | ຸ່ງ-ງ ພະ<br>(1                                                                     | ⊼ <u>μ</u> ι,••••<br>∩                                                       | FLAG                                                                 | 51 . UE                             | щı 4                       | 0,01<br>10 04              |
|                                                                                                                                                                                                                                                     | n 24                                                                                                                                                 | 70                                                                                 | U/7 <b>-4/</b>                                                               |                                                                      | 87.74<br>55 07                      |                            | 101.40                     |
| NUMRIA FRUJELIJUN                                                                                                                                                                                                                                   | 20                                                                                                                                                   |                                                                                    | <u>4</u> 3.40                                                                |                                                                      | 20,04<br>A A                        |                            | 0.0<br>170 EG              |
| OLIVINE PROJECTION                                                                                                                                                                                                                                  | 53C<br>N                                                                                                                                             | , u                                                                                | 43,78<br>28,86                                                               | 4                                                                    | 47.73                               | 0PX+(40TZ)                 | 32.22                      |
|                                                                                                                                                                                                                                                     | U                                                                                                                                                    | • •                                                                                | ~ · · · · ·                                                                  |                                                                      |                                     |                            | ur na r fastas             |

CMAS PRBJECTIONS TETRAHEDRON COORDINATES 17.53 12.41 C м 19.26 Α DIOPSIDE PROJECTION 15.18 52.40 C3A 32.41 ទ м OLIVINE PROJECTION 25.29 15.72 CS. Ħ 58.99 S ENSTATITE PROJECTION n25 27.55 0293 37.54 A253 34.92 QUARTZ PROJECTION CAS2 57.73 MS 23.75 CMS2 18.52

50.80

S

.

| SHIPLE NONDER DG 175                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          |                                                                                                     |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>J</b> 01                         |                                  |                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|--------------------------------------------------|
| ORIGINAL WEIGHT PERCENT O<br>SIO2 AL203 FE203<br>S0.06 7.00 1.09                                                                                                                                                                                                                                                                                                                                                                                              | NTIDES<br>FEO MN(<br>7.00 ,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) MCO<br>) 25.51                                                                                                                                                                                                         | CA0<br>5.38                                                                                         | NA20<br>. 68                                                                                                                                                                                      | K20<br>,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P205<br>.05                         | CR203                            | TOTAL<br>100.79                                  |
| WEIGHT PERCENT OXIDES REC<br>SIO2 AL203 FE203<br>49.67 6.95 1.08                                                                                                                                                                                                                                                                                                                                                                                              | CALCULATED TO<br>FED HNO<br>9,72 ,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) 100 PERCE<br>  MGD<br>) 25.31                                                                                                                                                                                          | NT<br>CAU<br>5.34                                                                                   | NA20<br>. 67                                                                                                                                                                                      | K 20<br>. 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T102<br>.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P205<br>.05                         | CR203<br>.55                     | 100,00                                           |
| CATION PROPORTIONS IN ANA<br>SI AL FE(3)<br>44.09 7.27 .72<br>CIPW NORM                                                                                                                                                                                                                                                                                                                                                                                       | LYSIS<br>FE(2) MN<br>7.22 ,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MC<br>533,48                                                                                                                                                                                                             | CA<br>5,08                                                                                          | NA<br>1.16                                                                                                                                                                                        | к<br>. 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11<br>,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | р<br>.04                            | <sup>CR</sup> . 38               |                                                  |
| QTZ<br>WEIGHT PERCENT .000<br>MOLE PERCENT .000<br>CATION PERCENT .000                                                                                                                                                                                                                                                                                                                                                                                        | C ()R<br>. 000<br>. 000<br>. 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OR<br>1.407<br>1.252<br>1.348                                                                                                                                                                                            | AB<br>5,707<br>4,422<br>5,804                                                                       | AN<br>15,219<br>11,313<br>14,586                                                                                                                                                                  | 2<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LC<br>. 000<br>. 000<br>. 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NE<br>.00<br>.01<br>.00             | 1)<br>U<br>U                     | KP<br>,000<br>,000<br>,000                       |
| HEIGHT PERCENT AC<br>Male Percent ,000<br>Cation Percent ,000                                                                                                                                                                                                                                                                                                                                                                                                 | NS<br>.000<br>.080<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KS<br>.000<br>.000<br>.000                                                                                                                                                                                               | 0[<br>8.719<br>7.987<br>8.387                                                                       | 40<br>.00<br>.00<br>.00                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HY<br>42,553<br>48.922<br>42.968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0L<br>23,47<br>31,55<br>24,84       | 7<br>0<br>4                      | CS<br>,000<br>,000<br>,000                       |
| WEIGHT PERCENT 1,567<br>HOLE PERCENT 1,375<br>CATION PERCENT 1,083                                                                                                                                                                                                                                                                                                                                                                                            | CM<br>1804<br>1729<br>1574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11<br>, 433<br>, 580<br>, 305                                                                                                                                                                                            | HM<br>,000<br>,000<br>,000                                                                          | TN<br>. DD<br>. QD<br>. QD<br>. QD                                                                                                                                                                | )<br>]<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PF<br>.000<br>.000<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 81)<br>200<br>200<br>200<br>200     | 0<br>0<br>0                      | AP<br>,118<br>,071<br>,099                       |
| MAFIC_INDEX = 77,671<br>NORM TOTAL = 100,004                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          |                                                                                                     |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                  |                                                  |
| OLIVINE COMPOSITION<br>FORSTERITE 77.634                                                                                                                                                                                                                                                                                                                                                                                                                      | FAYAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ITE 22.3                                                                                                                                                                                                                 | 66                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                  |                                                  |
| ORTHOPYROXENE COMPOSITION<br>ENSTATITE 79.275                                                                                                                                                                                                                                                                                                                                                                                                                 | FERROS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SILITE 20.7                                                                                                                                                                                                              | 25                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                  |                                                  |
| ULINOPYROXENE COMPOSITION<br>WOLLASTONITE 52.374                                                                                                                                                                                                                                                                                                                                                                                                              | ENSTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TITE 37.7                                                                                                                                                                                                                | 56                                                                                                  | FERROSILIT                                                                                                                                                                                        | E 9.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                                  |                                                  |
| FELDSPAR COMPOSITION<br>ORTHOCLASE 6.301<br>Plagioclase composit                                                                                                                                                                                                                                                                                                                                                                                              | ALBITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E 25.5<br>N) 72.7                                                                                                                                                                                                        | 55<br>27                                                                                            | ANORTHITE                                                                                                                                                                                         | 68.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                                  |                                                  |
| THORNTON AND TUITLE DIFFE<br>SOLIDIFICATION INDEX (100<br>CRYSTALIZATION INDEX (AN<br>LARSEN INDEX (1/3SI+K)-(<br>ALBITE RATIO (100*(AB+AB<br>IRON RATIO (FE2=MN)*100/<br>MC NUMBER AS CATIONS MC/C<br>OXIDATION RATIO ACCORDING<br>DENSITY OF DRY LIQUID OF                                                                                                                                                                                                  | ERENTIATION<br>D*MGG/(MGO+F<br>H+MG,DI+FO+FO<br>CA+MG)<br>EQIV IN NE),<br>(FE2+MN+MG)<br>CATIONS (FE+I<br>TO LE MAIT<br>THIS COMPOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INDEX<br>CD+FE203+NA<br>CD+FE203+NA<br>CPLAG)<br>(PLAG)<br>(PLAG)<br>(PLAG)<br>(FE0/FE0<br>(TION (AT 1                                                                                                                   | 020+K20))<br>N)<br>0+FE203)<br>050 DEC)                                                             | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                  |                                                  |
| AFH RATIO<br>TOTAL ALKALIS 2.47                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 TOTAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .FE 28.9                                                                                                                                                                                                                 | 7                                                                                                   | MG                                                                                                                                                                                                | 68,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                  |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          |                                                                                                     |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                  |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGO) CAO/AL203<br>.2971 .77                                                                                                                                                                                                                                                                                                                                                                                                  | \$102/f[02<br>217.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AL203/TI02<br>30.43                                                                                                                                                                                                      | 9 FED×∕T<br>46.8                                                                                    | 102 CAQ/I<br>23.3                                                                                                                                                                                 | 102 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20/1102<br>2,957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K20/FI<br>1, 43                     | 02                               |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGO) CAO/AL203<br>.2971<br>JENSEN CATION AL203 - FE<br>14.80                                                                                                                                                                                                                                                                                                                                                                 | 5102/f102<br>217.55<br>ED+FE203+f10<br>16.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AL203/TI02<br>30.43<br>2 - MG0<br>68.55                                                                                                                                                                                  | : FEO*/T<br>46.8                                                                                    | 102 CAQ/[<br>7 23.3                                                                                                                                                                               | 102 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 420/TID2<br>2,957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K20/71<br>1.043                     | 02                               |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>14.80<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00                                                                                                                                                                                                                                                                                                                   | S102/f[02<br>217.55<br>ED+FE203+fI0<br>16.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AL203/TID2<br>30.43<br>2 - MGD<br>68.55<br>0CLASE 6.3                                                                                                                                                                    | : FEO×∕T<br>46.8<br>8                                                                               | 102 CAQ/T<br>7 23.3<br>23.3                                                                                                                                                                       | 102 N<br>9 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20/TI02<br>2.957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K20∕FI<br>1.043                     | 02                               |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>14.80<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                               | S102/T102<br>217.65<br>20+FE203+T10<br>16.57<br>0 0RTH<br>0 0RTH<br>0 0RTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AL203/TI02<br>30.43<br>2 - MC0<br>68.55<br>0CLASE 6.3<br>DCLASE 6.3<br>DCLASE 19.7                                                                                                                                       | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9         | 102 CAQ/T<br>7 23.3<br>PLAGIOCLAS<br>ALBITE<br>16.42                                                                                                                                              | E 93.71<br>9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20/TI02<br>2.957<br>92.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K20∕FI<br>1,043                     | 02                               |                                                  |
| KOMATTITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>14.80<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00<br>QUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                 | S102/f102<br>217.55<br>ED+FE203+f10<br>16.57<br>) ORTH<br>CA 1<br>CA 1<br>CA 1<br>51 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AL203/TI02<br>30,43<br>2 - MG0<br>68,55<br>0CLASE 6.3<br>0CLASE 6.3<br>0CLASE 19,7<br>1,00<br>5,14                                                                                                                       | 9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                     | 102 CAQ/T<br>7 23.3<br>PLAG[OCLAS<br>ALBITE<br>16.42<br>40.52<br>4.47                                                                                                                             | 102 N<br>9 5<br>9 8<br>9 8<br>9 8<br>9 8<br>9 8<br>9 8<br>9 8<br>9 8<br>9 8<br>9 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20/TI02<br>2,957<br>2<br>22,57<br>53,34<br>41,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K20∕7I<br>1.043                     | 02                               |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>14.80<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                               | S102/T102<br>217.65<br>20+FE203+T10<br>16.57<br>0 0RTH<br>0 0RTH<br>0 0RTH<br>0 0RTH<br>16.57<br>0 0RTH<br>16.57<br>0 0RTH<br>16.57<br>0 0RTH<br>0 0RTH<br>16.57<br>0 0RTH<br>17.57<br>0 0RTH<br>16.57<br>0 0RTH<br>17.57<br>0 0RTH<br>17.57<br>0 0RTH<br>17.57<br>0 0RTH<br>17.57<br>0 0RTH<br>17.57<br>0 0RTH<br>17.57<br>0 0RTH<br>17.57<br>0 0RTH<br>17.57<br>0 0RTH<br>17.57<br>0 0RTH 17.57<br>0 0RTH 15.57<br>0 0RTH 17.57<br>0 0RTH | AL203/TI02<br>30.43<br>2 - MG0<br>68.55<br>0CLASE 6.3<br>0CLASE 6.3<br>0CLASE 19.7<br>1.00<br>5.14<br>4.29<br>3.64                                                                                                       | 9 FE0×/T<br>46.8<br>FE<br>MG<br>AL<br>2FE                                                           | 102 CAQ/T<br>7 23.3<br>PLAGIOCLAS<br>ALBITE<br>16.42<br>40.52<br>4.47<br>16.66                                                                                                                    | E 93.71<br>90.2<br>ng<br>st<br>mg<br>st/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20/TI02<br>2.957<br>72.57<br>53.34<br>41.24<br>5 9.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K20∕71<br>1,043                     | 02                               |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>14.80<br>QUARTZ .00<br>QUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                             | S162/TI02<br>217.55<br>E0+FE203+TI0<br>16.57<br>CA 1<br>CA 1<br>CA 1<br>CA 5<br>2MG 73<br>CA 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AL203/TID2<br>30,43<br>2 68,55<br>0CLASE 6.3<br>0CLASE 19,7<br>0.14<br>4.29<br>3.64<br>3.86                                                                                                                              | FED×/T<br>46.8<br>B<br>FE<br>MG<br>AL<br>2FE<br>AL                                                  | 102 CAQ/T<br>7 23.3<br>PLAGIOCLAS<br>ALBITE<br>16.42<br>40.52<br>4.47<br>16.66<br>38.55                                                                                                           | 102 N<br>93.7<br>90.2<br>nG<br>SI<br>MG<br>SI<br>NA+6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A20/TI02<br>2,957<br>72.57<br>53.34<br>41.24<br>5 9.78<br>( 7.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K20∕7I<br>1.043                     | 02                               |                                                  |
| KOMATIITE PARAMETERS<br>FED/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ - O<br>QUARTZ - O<br>QUARTZ - O<br>QUARTZ - O<br>CATION PROPORTIONS                                                                                                                                                                                                                                                            | S102/TI02<br>217.65<br>ED+FE203+TI0<br>16.57<br>CA 1<br>CA 1<br>CA 1<br>SI 5<br>2MG 7<br>CA 5<br>A PLAGIOCLAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AL203/TI02<br>30.43<br>2 - MGO<br>48.55<br>0CLASE 6.3<br>0CLASE 6.3<br>0CLASE 19.7<br>1.00<br>5.14<br>4.29<br>3.64<br>3.86<br>5.96                                                                                       | FED×/T<br>46.8<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2 - CLINO                                          | 102 CAQ/[<br>7 23.3<br>PLAGIOCLASS<br>ALBITE<br>16.42<br>40.52<br>4.47<br>16.66<br>38.55<br>PYROXENE -                                                                                            | 102 N<br>203.71<br>203.2<br>30,2<br>30,2<br>30,2<br>30,2<br>31<br>51<br>51<br>51<br>51/3<br>81/3<br>81/3<br>81/3<br>81/3<br>81/3<br>81/3<br>81/3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20/TID2<br>2.957<br>53.34<br>41.24<br>5 9.78<br>( 7.59<br>2 (IN MOLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K20/71<br>1.043                     | .02<br>(NT)                      |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>14.80<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>MACALE TE GOMMENDON                                                                                                                                                                                              | S162/T102<br>217.65<br>ED+FE203+T10<br>16.57<br>ORTH<br>CA 1<br>CA 1<br>CA 5<br>2MG 7<br>CA 5<br>M PLAGIOCLAS<br>N BASALT TET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AL203/TID2<br>30.43<br>2 60.55<br>0CLASE 6.3<br>0CLASE 19.7<br>0.00<br>0.14<br>4.29<br>3.64<br>3.86<br>E - OLIVINE<br>RAHEDRON IS                                                                                        | FE0*/T<br>46.8<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2 - CLINO<br>5 96.59                               | 102 CAQ/T<br>7 23.3<br>PLAGIOCLASS<br>ALBITE<br>16.42<br>40.52<br>4.47<br>16.66<br>38.55<br>PYROXENE -<br>MOLE PERCS                                                                              | E 93.7<br>90.2<br>00.2<br>05<br>51<br>51<br>51<br>NA+6<br>QUARTZ<br>ENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20/TI02<br>2.957<br>53.34<br>41.24<br>5 9.78<br>5 7.59<br>2 (IN MOLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K20/FI<br>1.043                     | .02<br>:NF)                      |                                                  |
| KONATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00<br>QUARTZ .00<br>QUARTZ .00<br>CODRDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TE TRAHEDRON<br>(LINDRYROYENE PROJECTION                                                                                                                                                                                   | S102/f102<br>217.55<br>ED+FE203+f10<br>16.57<br>CA 1<br>CA 1<br>CA 1<br>CA 5<br>CA 5<br>CA 5<br>D PLAGIOCLAS<br>N BASALT TETI<br>OL 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AL203/TID2<br>30.43<br>2 - MGD<br>68.55<br>OCLASE 6.3<br>OCLASE 19.7<br>5.14<br>4.29<br>3.64<br>3.86<br>E - OLIVINE<br>RAHEDRON IS<br>2.08<br>4.70                                                                       | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9         | 102 CAQ/T<br>7 23.3<br>PLAGIOCLASS<br>ALBITE<br>16.42<br>40.52<br>4.47<br>16.66<br>38.55<br>PYROXENE -<br>MOLE PERCI<br>B.48                                                                      | 102 N.<br>9 3.7<br>80.2<br>MG<br>SI<br>MG<br>SI/<br>NA+H<br>QUARTZ<br>ENT<br>PLAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20/TID2<br>2.957<br>53.34<br>41.24<br>5 9.70<br>6 7.59<br>2 (IN MOLI<br>5 21.11<br>27.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K20/TI<br>1.043                     | .02<br>Эмг)<br>Q12               | 11,12                                            |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 00<br>QUARTZ 00<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION                                                                                                                                                         | S162/TI02<br>217.65<br>E0+FE203+TID<br>16.57<br>CA 1<br>CA 1<br>CA 1<br>CA 5<br>2MG 7<br>CA 5<br>CA 5<br>CA 5<br>MBASALT TETT<br>0L 5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AL203/TID2<br>30.43<br>2 - MG0<br>68.55<br>0CLASE 6.3<br>0CLASE 19.7<br>1.00<br>5.14<br>4.29<br>3.64<br>3.86<br>E - OLIVINE<br>RAHEDRON IS<br>9.08<br>4.70<br>5.48                                                       | FE0*/T<br>46.8<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2 - CLINO<br>5 96.59<br>CPX                        | 102 CAQ/[<br>7 23.3<br>PLAG[OCLASS<br>ALBITE<br>16.42<br>40.52<br>4.47<br>16.66<br>38.55<br>PYROXENE -<br>MOLE PERCI<br>B.48<br>U.44<br>9.77                                                      | E 93.7<br>9 0.2<br>00.2<br>00.2<br>00.2<br>00.2<br>00.2<br>00.2<br>00.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20/TID2<br>2.957<br>53.34<br>41.24<br>5 9.70<br>5 7.59<br>2 (IN MOLI<br>5 21.11<br>23.12<br>23.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K20/FI<br>1.043                     | .02<br>:NT)<br>QTZ               | 11.12<br>12.18<br>0.0                            |
| KONATIITE PARAMETERS<br>FEO/(FEO+NGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>14.80<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ .00<br>QUARTZ .00<br>QUARTZ .00<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>PLAGTOCLASE PROJECTION                                                                                                                                                   | S102/TID2<br>217.55<br>ED+FE203+TID<br>16.57<br>CA 1<br>CA 1<br>CA 1<br>CA 5<br>2MG 7<br>CA 5<br>M BASALT TETI<br>0L 5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AL203/TID2<br>30,43<br>2 68,55<br>0CLASE 6.3<br>0CLASE 19,7<br>5,14<br>4,29<br>3,64<br>3,86<br>E - OLIVINE<br>RAHEDRON IS<br>9,00<br>4,70<br>5,48<br>4,90                                                                | E FEO*/T<br>46.8<br>FE<br>MG<br>2FE<br>AL<br>2FE<br>AL<br>2 - CLINO<br>5 96.59<br>CPX               | 102 CAQ/T<br>7 23.3<br>PLAGIOCLASS<br>ALBITE<br>16.42<br>40.52<br>4.47<br>16.66<br>38.55<br>PYROXENE -<br>MOLE PERCS<br>B.48<br>0.4<br>9.77<br>11.01                                              | 102 N<br>9 3.7<br>9 0.2<br>9 0.2  | 220/TI02<br>2,957<br>53,34<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012<br>5,012,012<br>5,012<br>5,012<br>5,012,000<br>5,000000000000000000000000000000 | K20∕7I<br>1.043<br>E PERCE          | .02<br>Эмг)<br>Q12               | 11.12<br>12.18<br>0.0<br>14.10                   |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 00<br>QUARTZ 00<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGTOCLASE PROJECTION                                                                                                                               | S162/T102<br>217.65<br>ED+FE203+T10<br>16.57<br>ORTH<br>CA 1<br>CA 1<br>CA 5<br>2MG 7<br>CA 5<br>M PLAGIOCLAS<br>M BASALT TET<br>OL 5<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AL203/TID2<br>30.43<br>2 - MGD<br>60.55<br>0CLASE 6.3<br>0CLASE 19.7<br>1.00<br>5.14<br>4.29<br>3.64<br>3.86<br>E - OLIVINE<br>RAHEDRON IS<br>9.08<br>4.70<br>5.48<br>4.90<br>0.0                                        | FE0x/T<br>46.8<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2 - CLINO<br>5 96.59<br>CPX                        | 102 CAQ/I<br>7 23.3<br>PLAGIOCLASS<br>ALBITE<br>16.42<br>40.52<br>4.47<br>16.66<br>38.55<br>PYROXENE -<br>MOLE PERCI<br>B.48<br>0.4<br>9.77<br>11.01<br>1.01                                      | 102 N<br>9 93.7<br>9 93.7<br>9 9,2<br>9 9,2<br>9 9<br>5 1<br>5 1<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A2D/TID2<br>2.957<br>72.57<br>53.34<br>41.24<br>5 9.78<br>41.24<br>5 9.78<br>41.24<br>5 9.78<br>41.24<br>5 9.78<br>41.24<br>5 9.78<br>41.24<br>5 9.78<br>41.24<br>5 9.78<br>41.24<br>5 9.78<br>41.24<br>5 9.78<br>7.59<br>2 (IN MOLI<br>23.12<br>23.75<br>0.0<br>28.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K20/FI<br>1.043<br>E PERCE<br>DPX+( | 02<br>NT)<br>QTZ<br>4QTZ)        | 11.12<br>12.18<br>0.0<br>14.10<br>59.89          |
| KOMATTITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>14.80<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ .00<br>QUARTZ .00<br>QUARTZ .00<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGTOCLASE PROJECTION<br>OLIVINE PROJECTION                                                                                                        | S102/FI02<br>217.55<br>ED+FE203+TID:<br>16.57<br>CA 1<br>CA 1<br>CA 1<br>CA 5<br>2MG 7:<br>CA 5<br>M BASALT TETI<br>0L 5<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AL203/TID2<br>30.43<br>2 60.55<br>0CLASE 6.3<br>0CLASE 19.7<br>5.14<br>4.29<br>3.64<br>3.86<br>E - OLIVINE<br>RAHEDRON IS<br>9.08<br>4.70<br>5.48<br>4.90<br>0.0                                                         | FE0*/T<br>46.8<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2 - CLINO<br>5 96.59<br>CPX                        | 102 CAQ/T<br>7 23.3<br>PLAGIOCLASS<br>ALBITE<br>16.42<br>40.52<br>4.47<br>16.66<br>38.55<br>PYROXENE -<br>MOLE PERCS<br>B.68<br>0.4<br>9.77<br>11.01<br>11.69                                     | 102 N<br>9 93.7<br>90.2<br>MG<br>SI<br>MG<br>SI/<br>NA+6<br>QUART<br>ENT<br>PLAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A20/TI02<br>2,957<br>53,34<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>41,24<br>5,9,78<br>4,7,59<br>2,111<br>23,12<br>23,75<br>0,0<br>28,42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K20∕71<br>1.043<br>E PERCE<br>OPX+( | .02<br>ГNГ)<br>QTZ<br>4QTZ)      | 11.12<br>12.18<br>0.0<br>14.10<br>59.89          |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>CODRDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGTOCLASE PROJECTION<br>OLIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COORDINATES                                                        | S102/f102<br>217.55<br>ED+FE203+f10<br>16.57<br>ORTH<br>CA 1<br>CA 1<br>CA 5<br>2MG 7<br>CA 5<br>M PLAGIOCLAS<br>M BASAL f TETT<br>OL 5<br>6<br>7<br>CA 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AL203/TI02<br>30.43<br>2 - MG0<br>68.55<br>0CLASE 6.3<br>0CLASE 19.7<br>1.00<br>5.14<br>4.29<br>3.64<br>3.86<br>E - OLIVINE<br>RAHEDRON IS<br>7.00<br>4.70<br>5.48<br>4.90<br>0.0                                        | FE0*/T<br>46.8<br>FE<br>MG<br>AL<br>2FE<br>AL<br>5 96.59<br>CPX                                     | 102 CAQ/T<br>7 23.3<br>PLAGIOCLASS<br>ALBITE<br>16.42<br>40.52<br>4.47<br>16.66<br>38.55<br>PYROXENE -<br>MOLE PERCE<br>B.48<br>0.4<br>9.77<br>11.01<br>11.69                                     | 102 N<br>9 3.71<br>80,2<br>40,2<br>40<br>51<br>51<br>51<br>817<br>817<br>817<br>817<br>817<br>817<br>817<br>817<br>817<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20/TID2<br>2.957<br>72.57<br>53.34<br>41.24<br>5 9.78<br>( 7.59<br>Z (IN MOLI<br>23.12<br>23.75<br>0.0<br>28.42<br>5.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K20/FI<br>1.043<br>E PERCE<br>OPX+( | 02<br>(NT)<br>QTZ<br>4QTZ)<br>S  | 11.12<br>12.18<br>0.0<br>14.10<br>59.89<br>44.97 |
| KOMATTITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>14.80<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ .00<br>QUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGTOCLASE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION | S162/TI02<br>217.65<br>E0+FE203+TI0<br>CA 0<br>SI 5<br>2MG 73<br>CA 5<br>M PLAGIOCLAS<br>N BASALT TET<br>OL 5<br>6<br>7<br>CA 7<br>CA 5<br>7<br>CA 5<br>7<br>CA 5<br>7<br>CA 5<br>6<br>7<br>CA 5<br>7<br>CA 5<br>6<br>C 1<br>C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AL203/TID2<br>30.43<br>2 68.55<br>0CLASE 19.7<br>5.14<br>4.29<br>3.64<br>3.86<br>E - OLIVINE<br>RAHEDRON IS<br>9.08<br>4.70<br>5.48<br>4.90<br>0.0                                                                       | FE0*/T<br>46.8<br>FE<br>MG<br>AL<br>2FE<br>AL<br>5 96.59<br>CPX<br>M<br>H                           | 102 CAQ/T<br>7 23.3<br>PLAGIOCLASS<br>ALBITE<br>16.42<br>40.52<br>4.47<br>16.66<br>38.55<br>PYROXENE -<br>MOLE PERCS<br>B.48<br>0.4<br>9.77<br>11.01<br>11.69<br>42.91<br>28.59                   | 102 N<br>93,7<br>90,2<br>NG<br>SI<br>NA+H<br>QUART<br>PLAU<br>A<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20/TI02<br>2.957<br>53.34<br>41.24<br>5 9.78<br>5 7.59<br>2 (IN MOLI<br>23.12<br>23.75<br>0.0<br>28.42<br>5.33<br>51.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K20/TI<br>1.043<br>E PERCE<br>OPX+( | 02<br>NT)<br>QTZ<br>4QTZ)<br>S   | 11,12<br>12,18<br>0,0<br>14,10<br>59,89<br>44,97 |
| KOMATTITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ .00<br>QUARTZ .00<br>QUARTZ .00<br>COURDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGTOCLASE PROJECTION<br>CLIVINE PROJECTION<br>CHAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>OLIVINE PROJECTION                     | S102/TID2<br>217.55<br>ED+FE203+TID<br>TA 1<br>CA 1<br>CA 1<br>CA 5<br>SI 5<br>2MG 7<br>CA 5<br>BASALT TET<br>0L 5<br>6<br>CA 5<br>CA 5<br>CA 5<br>CA 5<br>CA 5<br>CA 5<br>CA 5<br>CA 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AL203/TID2<br>30,43<br>2 68,55<br>0CLASE 6.3<br>0CLASE 19.7<br>5.14<br>4.29<br>3.64<br>3.64<br>3.64<br>3.64<br>3.64<br>3.86<br>E - OLIVINE<br>RAHEDRON IS<br>9.08<br>4.70<br>5.48<br>4.90<br>0.0<br>5.79<br>9.59<br>5.83 | FE0*/T<br>46.8<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2 - CLINO<br>5 96.59<br>CPX<br>M<br>M              | 102 CAQ/T<br>7 23.3<br>PLAGIOCLASS<br>ALBITE<br>16.42<br>40.52<br>4.47<br>16.66<br>38.55<br>PYROXENE -<br>MOLE PERCS<br>B.68<br>0.4<br>9.77<br>11.01<br>11.69<br>42.91<br>28.59<br>71.60          | 102 N<br>9 93.7<br>9 93.7<br>9 0.7<br>9 0. | A20/TI02<br>2,957<br>53,34<br>41,24<br>59,78<br>(7,59<br>2 (IN MOLI<br>23,12<br>23,75<br>0,0<br>28,42<br>5,33<br>51,82<br>11,58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K20∕TI<br>1.043<br>E PERCE<br>OPX+( | 02<br>(NT)<br>QTZ<br>4QTZ)<br>S  | 11,12<br>12,18<br>0.0<br>14,10<br>59,89<br>44,97 |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.2971 .77<br>JENSEN CATION AL203 - FE<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00<br>QUARTZ .00<br>QUARTZ .00<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>OLIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>OLIVINE PROJECTION<br>CLIVINE PROJECTION           | S102/f102<br>217.55<br>E0+FE203+f10<br>0RTH<br>CA 1<br>CA 1<br>CA 5<br>2MG 7<br>CA 5<br>M PLAGIOCLAS<br>M BASAL f TET<br>0L 5<br>6<br>6<br>6<br>7<br>CA 1<br>CA 1<br>CA 1<br>CA 1<br>CA 1<br>CA 1<br>CA 1<br>CA 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AL203/TID2<br>30.43<br>2 - MGD<br>68.55<br>0CLASE 6.3<br>0CLASE 19.7<br>1.00<br>5.14<br>4.29<br>3.64<br>3.86<br>E - OLIVINE<br>RAHEDRON IS<br>9.00<br>4.70<br>5.48<br>4.90<br>0.0<br>5.79<br>2.59<br>5.83<br>2.94        | FE0*/T<br>46.8<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2 - CLINO<br>5 96.59<br>CPX<br>M<br>M<br>M<br>C2S3 | 102 CAQ/1<br>7 23.3<br>PLAGIOCLASS<br>ALBITE<br>16.42<br>40.52<br>4.47<br>16.66<br>38.55<br>PYROXENE -<br>MOLE PERCI<br>B.48<br>0.4<br>9.77<br>11.01<br>11.69<br>42.91<br>28.59<br>71.60<br>23.10 | 102 N<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20/TID2<br>2.957<br>53.34<br>41.24<br>59.70<br>52.57<br>53.34<br>41.24<br>59.70<br>52.59<br>2 (IN MOLI<br>23.12<br>23.75<br>0.0<br>20.42<br>5.33<br>51.82<br>11.58<br>3.23.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K20/FI<br>1.043<br>E PERCE<br>OPX+( | .02<br>(NT)<br>QTZ<br>4QTZ)<br>S | 11.12<br>12.18<br>0.0<br>14.10<br>59.89<br>44.97 |

301

HLAGOTHI COMPLEX

| HLAGOTHI COMPLEX                                                                                                                                                         | 0 104                                             |                       |                                                                   |                  |                        |                                                                    |                   |                                                       | 302                   |                    |                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|-------------------------------------------------------------------|------------------|------------------------|--------------------------------------------------------------------|-------------------|-------------------------------------------------------|-----------------------|--------------------|-----------------------------------------------|
| SANFLE NUMBER 1                                                                                                                                                          | 56 179                                            |                       |                                                                   |                  |                        |                                                                    |                   |                                                       |                       |                    |                                               |
| DRIGINAL WEIGHT PE                                                                                                                                                       | RCENT OX                                          | DES                   | мий                                                               | мср              | -CÝÖ                   | NASÖ                                                               | кġġ               | TIQ2                                                  | P205                  | CR203              | TOTAL                                         |
| 47.76 6.74 3<br>WEICHT PERCENT (141                                                                                                                                      | 14 10<br>DES RECAL                                | , 25<br>CULATEI       | ,20 2.<br>D TO 180                                                | PERCENT          | ລ.13<br>r              | 1.12                                                               | ا د ،             | . 27                                                  |                       | . 6 4              | 101.21                                        |
| 5102 AL203 FE                                                                                                                                                            | 203 F                                             | Ê0<br>12              | MNO<br>20 21                                                      | MG0<br>.24       | 5,07                   | NA20<br>1.11                                                       | K 20              | TID2<br>29                                            | P205                  | CR203              | 108.00                                        |
| CATION PROPORTION                                                                                                                                                        | IN ANAL                                           | SIS.                  | MN                                                                | **               | CA                     | NA                                                                 |                   | **                                                    | Ð                     | CP                 |                                               |
| 41.45 6.89                                                                                                                                                               | .74 7                                             | 44                    | .15 35                                                            | пс<br>5.66       | 4.77                   | 1.88                                                               | . 34              | 19                                                    | ້. 055                | <sup>LR</sup> , 44 |                                               |
| CIPW NORH                                                                                                                                                                |                                                   |                       |                                                                   |                  |                        |                                                                    |                   |                                                       |                       | -                  |                                               |
| WEIGHT PERCENT                                                                                                                                                           | 000                                               | . 000                 | 1.<br>1.                                                          | 18<br>310<br>502 | 9.360                  | 12.2                                                               |                   | . 000                                                 | . U                   | 00                 | . 380                                         |
| CATION PERCENT                                                                                                                                                           | . 000                                             | . 000                 | <b>i</b> .3                                                       | 215              | 9.421                  | 11.5                                                               | 56                | . 000                                                 | . ŭ                   | 00                 | . 000                                         |
| WEIGHT PERCENT                                                                                                                                                           | . 000                                             | . 000                 | <b>.</b>                                                          | (S)<br>100       | 9.872                  | . 0 i                                                              | 0                 | HY<br>21.347                                          | 42,0                  | L<br>46            | .000                                          |
| CATION PERCENT                                                                                                                                                           | . 0 0 0<br>. 0 <b>0 0</b>                         |                       | , (<br>, 1                                                        |                  | 9.442<br>9.404         | . 0                                                                |                   | 19.103                                                | 52.U<br>44.1          | 37                 | , 0 0 0<br>, <b>0 0 0</b>                     |
| WEIGHT PERCENT                                                                                                                                                           | MT<br>.631                                        | .931                  |                                                                   | 1.<br>544        | . 808                  | . Q                                                                | 10                | PF<br>.000                                            | . 0                   | 1.1<br>1.0         | АР<br>.164                                    |
| MOLE PERCENT                                                                                                                                                             | .335                                              | .788<br>.459          | . 4                                                               | 10<br>179        | . 460<br>. 9 <b>60</b> | . 0                                                                | 30<br>3 <b>0</b>  | . 0 0 0                                               | . <b>0</b>            | 00                 | 192<br>137                                    |
| MAFIC INDEX = 76                                                                                                                                                         | 535                                               |                       |                                                                   |                  |                        |                                                                    |                   |                                                       |                       |                    |                                               |
| ALIVINE COMPOSITI                                                                                                                                                        | . UQ-7<br>INi                                     |                       |                                                                   |                  |                        |                                                                    |                   |                                                       |                       |                    |                                               |
| FORSTERITE                                                                                                                                                               | 78.358                                            | FA                    | YALITE                                                            | 21.642           | 2                      |                                                                    |                   |                                                       |                       |                    |                                               |
| ORTHOPYROXENE COM                                                                                                                                                        | 79.960                                            | FEI                   | ROSILITE                                                          | E 20.040         | 0                      |                                                                    |                   |                                                       |                       |                    |                                               |
| CLINOPYROXENE COM                                                                                                                                                        | OSITION                                           | FN                    | STATITE                                                           | 38.043           | 7                      | FERROSILI                                                          | TE 9.9            | 536                                                   |                       |                    |                                               |
| FELDSPAR COMPOSIT                                                                                                                                                        | 01.417                                            | 2.00                  |                                                                   | 50.04/           |                        |                                                                    |                   |                                                       |                       |                    |                                               |
| PLAGIOCLASE                                                                                                                                                              | 7,712<br>COMPOSITIO                               | ALI<br>ALI            | BITE<br>C AN)                                                     | 39.88<br>56.70   | 52                     | ANORTHITE                                                          | 52.4              | 403                                                   |                       |                    |                                               |
| THURNTON AND TUTT                                                                                                                                                        | EDIFFER                                           | ENTIATIO              | ON INDEX                                                          |                  | 0+62033                | = 11.17<br>= 58 26                                                 | 0                 |                                                       |                       |                    |                                               |
| CRYSTALLIZATION IN<br>LARSEN INDEX (1/3                                                                                                                                  | DEX (AN+)                                         | 16,DI+F               | 0+FO EQI                                                          | OF EN            | )                      | = 65,30                                                            | ý                 |                                                       |                       |                    |                                               |
| ALBITE RATIO (100)                                                                                                                                                       | (AR+AB E                                          | E2+HN+                | NE)/PLAG:<br>MG))                                                 | •                |                        | = 43.21                                                            | e<br>e            |                                                       |                       |                    |                                               |
| MG NUMBER AS CATIO                                                                                                                                                       | DNS MG/CA                                         | TO LE M               | FE+MC)<br>Altre_(FI                                               | E0/FE0+          | FE203)                 | = 82,74;                                                           | 5                 |                                                       |                       |                    |                                               |
| DENSITY OF DRY LI                                                                                                                                                        | UID OF TH                                         | HIS COM               | POSITION                                                          | (AT 10           | 50 DEG)                | = 2.85                                                             | 4                 |                                                       |                       |                    |                                               |
| TOTAL ALKALIS                                                                                                                                                            | 5 3.55                                            | T                     | OTAL FE                                                           | 27.99            |                        | MG                                                                 | 68.               | 46                                                    |                       |                    |                                               |
|                                                                                                                                                                          |                                                   |                       |                                                                   |                  |                        |                                                                    |                   |                                                       |                       |                    |                                               |
|                                                                                                                                                                          |                                                   |                       |                                                                   | ·                |                        |                                                                    |                   |                                                       |                       |                    |                                               |
|                                                                                                                                                                          |                                                   |                       |                                                                   |                  |                        |                                                                    |                   |                                                       |                       |                    |                                               |
| XOMATTITE PARAMET                                                                                                                                                        | 285                                               |                       |                                                                   |                  |                        |                                                                    |                   |                                                       |                       |                    |                                               |
| EO/(FEO+HGO) CA                                                                                                                                                          |                                                   | 5102/11               | 02 AL20;                                                          | 3/[102           | FEQAT                  | 102 CAQ/                                                           | 7102              | NA20/T102                                             | _K20/T                | 102                |                                               |
| , 2902                                                                                                                                                                   | . 76                                              | 164.6                 | 9 23                                                              | 3.24             | 38.8                   | 6 17.                                                              | 69                | 3.842                                                 | 1.069                 |                    |                                               |
| JENSEN CATION AL                                                                                                                                                         | 203 - FEO                                         | FE203+                | 1102 - M                                                          | 10<br>13         |                        |                                                                    |                   |                                                       |                       |                    |                                               |
| 15                                                                                                                                                                       |                                                   | 101.44                | , , , ,                                                           |                  |                        |                                                                    |                   |                                                       |                       |                    |                                               |
| QUARTZ - FELDSPAR                                                                                                                                                        | RATIOS                                            | ġ                     | RTHOCLAS                                                          | 7.71             |                        | PLAGIOCLA                                                          | SE 92.1           | 29                                                    |                       |                    |                                               |
| QUARTZ<br>CATION PROPORTIONS                                                                                                                                             | .00                                               | CA                    | 81HOCLASI<br>9.89                                                 | E 16.20          | FE                     | ALBITE<br>16,18                                                    | 83.<br>Mg         | 80<br>73,9                                            | 3                     |                    |                                               |
|                                                                                                                                                                          |                                                   | CA                    | 5,03                                                              | ı                | MG                     | 43.55                                                              | 51                | 50.4                                                  | 2                     |                    |                                               |
|                                                                                                                                                                          |                                                   | \$1                   | 51.45                                                             |                  | AL                     | 4.28                                                               | MG                | 44.2                                                  | 7                     |                    |                                               |
|                                                                                                                                                                          |                                                   | 2MG                   | 74.98                                                             | :                | 2FE                    | 16.40                                                              | SI.               | /5 8.7                                                | 1                     |                    |                                               |
|                                                                                                                                                                          |                                                   | CA                    | 51.12                                                             | 6                | AL                     | 36.94                                                              | NA                | FK 11.9                                               | 4                     |                    |                                               |
| COORDINATES IN THE                                                                                                                                                       | E SYSTEM                                          | PLAGIOC               | LASE - 00                                                         | IVINE            | - CLINO                | PYROXENE                                                           | - QUAR            | TZ (IN MO                                             | LE PERC               | ENT)               |                                               |
| PROPORTION OF ANAL                                                                                                                                                       | YSIS IN                                           | BASALT                | TETRAHED                                                          | NON IS           | 95.99                  | MOLE PER                                                           | CENT              |                                                       |                       |                    |                                               |
| BASALT TETRAHEDRO                                                                                                                                                        | 4                                                 | OL                    | 62.57                                                             | (                | CPX                    | 9.80                                                               | ዖኒ                | AG 21.9                                               | 7                     | <b>GT</b> Z        |                                               |
| CLINOPYROXENE PRO.                                                                                                                                                       |                                                   |                       |                                                                   |                  |                        |                                                                    |                   | 24 1                                                  | 5                     |                    | 5.56                                          |
|                                                                                                                                                                          | TECTION                                           |                       | 57.48                                                             |                  |                        | 0,4                                                                |                   | F419                                                  | -                     |                    | 5.56<br>6.17                                  |
| WUARTZ PROJECTION                                                                                                                                                        | TECTION                                           |                       | 66,37                                                             |                  |                        | 0,4<br>10,37                                                       |                   | 23.2                                                  | 5                     |                    | 5.56<br>6.17<br>0.0                           |
| QUARTZ PROJECTION                                                                                                                                                        | TECTION                                           |                       | 66,37<br>80,31                                                    |                  |                        | 0,44<br>10,37<br>12,55                                             |                   | 23.2                                                  | 5                     |                    | 5.56<br>6.17<br>0.0<br>7.13                   |
| QUARTZ PROJECTION<br>Plagioclase projec<br>Olivine projection                                                                                                            | IECTION<br>CTION                                  |                       | 69,48<br>66,37<br>80,31<br>0,0                                    |                  |                        | 0,4<br>10,37<br>12.55<br>18.13                                     |                   | 23.2<br>8.0<br>40.6                                   | -<br>6 00X+           | (4072)             | 5.56<br>6.17<br>0.0<br>7.13<br>41.20          |
| QUARTZ PROJECTION<br>PLAGIOCLASE PROJEC<br>OLIVINE PROJECTION<br>CMAS PROJECTIONS                                                                                        | TECTION<br>CTION                                  |                       | 87.48<br>66,37<br>80,31<br>0,0                                    |                  |                        | 0,4<br>10,37<br>12,55<br>18,13                                     |                   | 23.2<br>8.0<br>40.6                                   | -<br>6 OPX+           | (4QTZ)             | 5.56<br>6.17<br>0.0<br>7.13<br>41.20          |
| QUARTZ PROJECTION<br>PLAGIOCLASE PROJEC<br>OLIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COORD                                                                   | IECTION<br>CTION<br>N<br>INATES                   | С                     | 89.48<br>66.37<br>80.31<br>0.0<br>7.31                            |                  | м                      | 0.4<br>10.37<br>12.55<br>18.13<br>45.55                            | A                 | 23.2<br>8.0<br>40.6                                   | 5<br>5                | (40TZ)<br>S        | 5.56<br>6.17<br>0.0<br>7.13<br>41.20<br>41.49 |
| QUARTZ PROJECTION<br>PLAGIOCLASE PROJEC<br>OLIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COURD<br>DIOPSIDE PROJECTION                                            | IECTION<br>CTION<br>N<br>INATES<br>DN             | C<br>(38              | 89.48<br>66,37<br>80.31<br>0.0<br>7,31<br>20.62                   | 1                | n                      | 0.4<br>10.37<br>12.55<br>18.13<br>45.55<br>30.05                   | A<br>S            | 23.2<br>8.0<br>40.6<br>5.6<br>49.3                    | 5<br>5<br>3           | (40TZ)<br>S        | 5.56<br>6.17<br>0.0<br>7.13<br>41.20<br>41.49 |
| QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>OLIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COURD<br>DIOPSIDE PROJECTION                                        | IECTION<br>CTION<br>V<br>INATES<br>DN             | C<br>C3a<br>Cs        | 89.48<br>66.37<br>80.31<br>0.0<br>7.31<br>20.62<br>22.86          | 1                | M<br>M                 | 0.4<br>10.37<br>12.55<br>18.13<br>45.55<br>30.05<br>61.64          | A<br>9<br>5       | 23.2<br>8.0<br>40.6<br>5.6<br>49.3                    | 5<br>5<br>3<br>4      | (40TZ)<br>S        | 5.56<br>6.17<br>0.0<br>7.13<br>41.20<br>41.49 |
| QUARTZ PROJECTION<br>PLAGIOCLASE PROJEC<br>OLIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COURD<br>DIOPSIDE PROJECTION<br>OLIVINE PROJECTION<br>ENSTATITE PROJECT | IECTION<br>CTION<br>N<br>INATES<br>DN<br>N<br>ION | C<br>C3A<br>CS<br>H25 | 89.48<br>66,37<br>80.31<br>0.0<br>7,31<br>20.62<br>22.86<br>60.55 |                  | M<br>M<br>M<br>C253    | 0.4<br>10.37<br>12.55<br>18.13<br>45.55<br>30.05<br>61.64<br>19.58 | A<br>S<br>S<br>A2 | 23.2<br>0.0<br>40.6<br>5.6<br>49.3<br>15.3<br>53 19.8 | 5<br>5<br>3<br>9<br>7 | 5                  | 5.56<br>6.17<br>0.6<br>7.13<br>41.20          |

-

•

;

|                                                                                                                                                                                                                                                                                                                                                                                                                                           | BG 212                                                                                                                                                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 505                      |                                   |                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------|---------------------------------------------|
| DRIGINAL WEIGHT P<br>Sigz AL203 F                                                                                                                                                                                                                                                                                                                                                                                                         | ERCENT D                                                                                                                                                                                                                               | (IDES<br>FEQ                                                                                                                                                                           | мид                                                                                                                                                                                                           | HCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _CAD_                                                                                                                                          | NA20                                                                                                                                                                                         | к 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P205                     | CR203                             | ŗo                                          |
| 48,34 7.00<br>WEICHI PERCENT DX<br>SIO2 AL203 F                                                                                                                                                                                                                                                                                                                                                                                           | 1.08<br>(IDES REC4<br>(203                                                                                                                                                                                                             | ₩.69<br>NLCULATE<br>LFEQ                                                                                                                                                               | י 17<br>ס דם<br>אַאַא                                                                                                                                                                                         | 27.02<br>100 PERCE<br>MGQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.98<br>NF<br>_CAO                                                                                                                             | NAZQ                                                                                                                                                                                         | кзб<br>'3à                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TIQ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , 05<br>P205             | .57<br>CR203                      | 100                                         |
| 48,02 6.95<br>CATTON PROPORTION                                                                                                                                                                                                                                                                                                                                                                                                           | 1.07 9<br>15 (N ANAL                                                                                                                                                                                                                   | 7.62<br>YS(S                                                                                                                                                                           | . 19                                                                                                                                                                                                          | 25.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.94                                                                                                                                           | , 08                                                                                                                                                                                         | . 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | . 57                              | 100                                         |
| 51 AL F<br>42.52 7.26<br>CIPW NORM                                                                                                                                                                                                                                                                                                                                                                                                        | Ē(3)<br>.71                                                                                                                                                                                                                            | FĒ(2)<br>7.12                                                                                                                                                                          | нн<br>.14                                                                                                                                                                                                     | MG<br>35,42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | СА<br>5.64                                                                                                                                     | NA<br>,14                                                                                                                                                                                    | к<br>, 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Р<br>.04                 | CR , 40                           |                                             |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                                                                                                                                                                                                                                                                                          | QT2<br>,000<br>,000<br>,000                                                                                                                                                                                                            | CI)R<br>.000<br>.000<br>.000                                                                                                                                                           |                                                                                                                                                                                                               | 08<br>2,289<br>1,986<br>2,189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AB<br>- 672<br>- 508<br>- 682                                                                                                                  | 17.4<br>12.4<br>16.7                                                                                                                                                                         | N<br>172<br>138<br>704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LC<br>, 000<br>, 000<br>, 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N<br>. 0<br>. 0<br>. 0   | E<br>00<br>00<br>00<br>00         | КР<br>. 000<br>. 000<br>. 000               |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                                                                                                                                                                                                                                                                                          | AC<br>. 000<br>. 000<br>. 000                                                                                                                                                                                                          | NS<br>, 000<br>, 000<br>, 000                                                                                                                                                          |                                                                                                                                                                                                               | KS<br>,000<br>,000<br>,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DI<br>9.291<br>8.309<br>8.928                                                                                                                  | ام<br>ب 1<br>ب 1<br>ب 1                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HY<br>38,783<br>36,475<br>37,187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28,4<br>37,4<br>30,1     | L<br>49<br>37<br>64               | CS<br>.000<br>.000<br>.000                  |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                                                                                                                                                                                                                                                                                          | MT<br>1.550<br>1.326<br>1.068                                                                                                                                                                                                          | CM<br>, 834<br>, 738<br>, 595                                                                                                                                                          |                                                                                                                                                                                                               | 11.<br>.547<br>.714<br>.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HM<br>. 000<br>. 008<br>. 000                                                                                                                  | 1<br>- 0<br>- 0<br>- 0                                                                                                                                                                       | [N<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>PF</b><br>.000<br>.000<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R<br>0<br>0<br>0         | L]<br>0 D<br>0 Q<br>0 Q<br>0 Q    | AP<br>116<br>069<br>.099                    |
| MAFIC INDEX = 79<br>NORM TOTAL = 100                                                                                                                                                                                                                                                                                                                                                                                                      | .571<br>.005                                                                                                                                                                                                                           |                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                   |                                             |
| OLIVINE COMPOSITI                                                                                                                                                                                                                                                                                                                                                                                                                         | ON                                                                                                                                                                                                                                     | FA                                                                                                                                                                                     | VA1 TT                                                                                                                                                                                                        | 5 91 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | **7                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                   |                                             |
| ORTHOPYROXENE_COM                                                                                                                                                                                                                                                                                                                                                                                                                         | PUSITION                                                                                                                                                                                                                               |                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                   |                                             |
| CLINOPYROXENE COM                                                                                                                                                                                                                                                                                                                                                                                                                         | 80,532<br>NOSITION                                                                                                                                                                                                                     |                                                                                                                                                                                        | RRUSI                                                                                                                                                                                                         | LIFE 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63                                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                   |                                             |
| WOLLASTONITE<br>FELDSPAR COMPUSIT<br>URTHOCLASE                                                                                                                                                                                                                                                                                                                                                                                           | 10N                                                                                                                                                                                                                                    | EN                                                                                                                                                                                     | STATI <sup>.</sup><br>Bitf                                                                                                                                                                                    | TE 38.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 191 F                                                                                                                                          | FERROSILI<br>ANORTHITE                                                                                                                                                                       | ITE 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                   |                                             |
| PLAGIOCLASE                                                                                                                                                                                                                                                                                                                                                                                                                               | COMPOSITI                                                                                                                                                                                                                              | CON (PER                                                                                                                                                                               | C AN)                                                                                                                                                                                                         | 96.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95                                                                                                                                             |                                                                                                                                                                                              | _ 00,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                   |                                             |
| TOTAL ALKALI                                                                                                                                                                                                                                                                                                                                                                                                                              | S 1.23                                                                                                                                                                                                                                 | ľ                                                                                                                                                                                      | OTAL                                                                                                                                                                                                          | E 27.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                              | 16                                                                                                                                                                                           | 70,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                   |                                             |
| KOHATIITE PARAMET                                                                                                                                                                                                                                                                                                                                                                                                                         | ERS                                                                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                   |                                             |
| KOHATIITE PARAMET<br>FEO/(FEO+MGD) CA<br>.2827<br>JENSEN CATION AL                                                                                                                                                                                                                                                                                                                                                                        | ERS<br>10/AL203<br>.85<br>.203 - FE(                                                                                                                                                                                                   | 5102/f1<br>166.6                                                                                                                                                                       | 02 A                                                                                                                                                                                                          | -203/1102<br>24.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 FEO*/T<br>36.7                                                                                                                               | 102 CAO<br>202 20                                                                                                                                                                            | / [102<br>. 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA20/T102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K20∕T<br>1,345           | 102                               |                                             |
| KOHATIITE PARAMET<br>FEO/(FEO+MGO) CA<br>.2827<br>JENSEN CATION AL<br>14                                                                                                                                                                                                                                                                                                                                                                  | ERS<br>10/AL203<br>.85<br>.85<br>.85<br>.85<br>.85<br>.85<br>.85                                                                                                                                                                       | SI02/TI<br>166.6<br>D+FE203+<br>15.83                                                                                                                                                  | 92 AI<br>7<br>T102 -                                                                                                                                                                                          | -203/TI02<br>24.14<br>59.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 FEO*/T<br>36.7                                                                                                                               | 105 C80                                                                                                                                                                                      | /T102<br>.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA20/T102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ĸ20∕†<br>1,345           | 102                               |                                             |
| KOHATIITE PARAMET<br>E0/(FEO+MGO) CA<br>.2827<br>JENSEN CATION AL<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION                                                                                                                                                                                                                                                                                                           | TERS<br>10/AL203<br>.85<br>1.31 - FE(<br>1.31 - FE(<br>1.31<br>RATIOS<br>.00<br>IS                                                                                                                                                     | SI02/TI<br>166.6<br>D+FE203+<br>15.83<br>0<br>CA                                                                                                                                       | 02 A<br>7<br>TI02 (<br>RTHOC)<br>RTHOC)<br>11 (                                                                                                                                                               | -203/TI02<br>24.14<br>59.85<br>-ASE 11.2<br>-ASE 77.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 FEO*/T<br>36.7<br>20 f<br>50 FE                                                                                                              | 102 CA0<br>2 20<br>PLAGIOCL4<br>ALBITE<br>15.41                                                                                                                                              | /1102<br>.62<br>ASE 88.<br>22<br>MG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA20/TIO2<br>.276<br>.276<br>.276<br>.276<br>.276<br>.276<br>.20<br>.20<br>.72.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×20∕7<br>1,345           | 102                               |                                             |
| KOHATIITE PARAMET<br>120/(FEO+MGO) CA<br>2027<br>JENSEN CATION AL<br>14<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION                                                                                                                                                                                                                                                                                           | ERS<br>10/AL203<br>.85<br>.203 - FE(<br>.31 - FE(<br>.31<br>.00<br>.00<br>.00                                                                                                                                                          | SI02/FI<br>166.6<br>D+FE203+<br>15.83<br>0<br>CA<br>CA                                                                                                                                 | 02 Al<br>7<br>TIO2 -<br>RTHOC<br>RTHOC<br>11 -<br>6 -                                                                                                                                                         | -203/TI02<br>24.14<br>- MG0<br>59.85<br>-ASE 11.2<br>ASE 77.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 FEO*/T<br>36.7<br>36.7<br>50 f<br>FE<br>hg                                                                                                   | 102 CA0<br>2 20<br>PLAG100L4<br>ALBITE<br>15.41<br>42.38                                                                                                                                     | /T102<br>.52<br>ASE 88.<br>22.<br>MG<br>SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA20/TIO2<br>.276<br>.276<br>.276<br>.276<br>.276<br>.276<br>.276<br>.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K20/T<br>1,345           | 102                               |                                             |
| KOHATIITE PARAMET<br>FEO/(FEO+HGD) CA<br>2027<br>JENSEN CATION AL<br>14<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION                                                                                                                                                                                                                                                                                           | TERS<br>10/AL203<br>185<br>1.31<br>203 - FE<br>1.31<br>2 RATIOS<br>100<br>15                                                                                                                                                           | SI02/FI<br>166.6<br>D+FE203+<br>15.83<br>0<br>CA<br>CA<br>SI<br>SI                                                                                                                     | 02 Al<br>9<br>1102 (<br>RTHOCI<br>RTHOCI<br>11.0<br>52.                                                                                                                                                       | -203/1102<br>24.14<br>59.85<br>-ASE 11.2<br>-ASE 77.3<br>-51<br>74<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 FEO*/T<br>36.7<br>50 FE<br>50 FE<br>AL                                                                                                       | 102 CA0<br>2 20<br>PLACIOCL4<br>ALBITE<br>15.41<br>42.38<br>4.45                                                                                                                             | ASE 88.<br>MG<br>SI<br>MG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA20/TIO2<br>.276<br>70<br>72.98<br>50.87<br>43,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K20∕T<br>1,345           | 102                               |                                             |
| KOHATIITE PARAMET<br>EO/(FEO+MGO) CA<br>.2827<br>JENSEN CATION AL<br>14<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION                                                                                                                                                                                                                                                                                           | TERS<br>00/AL203<br>.85<br>.31 - FE(<br>.31 - FE(<br>.85<br>.00<br>.00                                                                                                                                                                 | SI02/FI<br>166.6<br>D+FE203+<br>15.83<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA                                                                                                             | 02 Al<br>7<br>7<br>8<br>7<br>102<br>8<br>1<br>102<br>11<br>4<br>52<br>7<br>5<br>7<br>5<br>9                                                                                                                   | -203/TI02<br>24.14<br>59.85<br>-ASE 11.2<br>51<br>74<br>13<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 FE0×/T<br>36.7<br>36.7<br>50 ff<br>Ff<br>AL<br>2FE                                                                                           | IO2 CAO<br>2 20<br>PLAGIOCL4<br>ALBITE<br>15.41<br>42.38<br>4.45<br>15.96<br>37.99                                                                                                           | ASE 88.<br>ASE 88 | NA20/TIO2<br>.276<br>70<br>70<br>50.99<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ¥20/T<br>1,345           | 102                               |                                             |
| KOHATIITE PARAMET<br>EO/(FEO+MGD) CA<br>2827<br>JENSEN CATION AL<br>14<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>GATION PROPORTION                                                                                                                                                                                                                                                                                                      | ERS<br>10/AL203<br>185<br>203 - FE(<br>131 - FE(<br>131 - FE(<br>100<br>100<br>100                                                                                                                                                     | SI02/FI<br>166.6<br>D+FE203+<br>15.83<br>CA<br>CA<br>SI<br>2MG<br>CA                                                                                                                   | 02 Al<br>7<br>1102 (<br>8 THOC<br>11 (<br>11 (<br>52 (<br>75 (<br>59 (                                                                                                                                        | -203/TI02<br>- MG0<br>59.85<br>- ASE 11.2<br>- ASE 77.3<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 FEO*/T<br>36.7<br>36.7<br>50<br>FE<br>hG<br>AL<br>2FE<br>AL<br>2FE                                                                           | 102 CAO<br>20<br>PLACIDCLA<br>ALBITE<br>15.41<br>42.38<br>4.45<br>15.86<br>37.99                                                                                                             | ASE 88.<br>ASE 88.<br>ASE 88.<br>ASE 88.<br>ASE 88.<br>ASE<br>SI<br>MC<br>SI<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA20/TIO2<br>.276<br>70<br>70<br>50.99<br>50.97<br>50.97<br>50.97<br>5.43,43<br>5/5 9.02<br>5+K 3.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K20/T<br>1,345           | 102                               |                                             |
| KOHATIITE PARAMET<br>TEO/(FEO+MGD) CA<br>2027<br>JENSEN CATION AL<br>14<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION<br>COORDINATES IN TH<br>PROPORTION OF ANA                                                                                                                                                                                                                                                           | ERS<br>00/AL203<br>.05<br>.203 - FE<br>.203 - FE<br>.00<br>.00<br>IS<br>.00<br>IS                                                                                                                                                      | SI02/TI<br>166.6<br>]+FE203+<br>15.83<br>0<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIDC<br>BASALT                                                                                   | 02 A<br>7<br>TIO2<br>8<br>THOCO<br>11.4<br>52.<br>75.<br>59.<br>LASE<br>TETRAI                                                                                                                                | -203/TI02<br>-24.14<br>-9.85<br>-24.14<br>-24.14<br>-24.14<br>-25<br>-24<br>-24<br>-24<br>-24<br>-21<br>-21<br>-21<br>-21<br>-21<br>-21<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-24.14<br>-20<br>-24.14<br>-20<br>-24.14<br>-20<br>-24.14<br>-20<br>-24.14<br>-20<br>-24.14<br>-20<br>-24.14<br>-20<br>-24.14<br>-20<br>-24.14<br>-20<br>-24.14<br>-20<br>-24.14<br>-20<br>-24.14<br>-20<br>-24.14<br>-20<br>-24.14<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 FEO*/T<br>36.7<br>36.7<br>50<br>FE<br>AL<br>2FE<br>AL<br>2FE<br>5 75.67                                                                      | IO2 CA0<br>20<br>PLAGIOCLA<br>ALBITE<br>15.41<br>42.38<br>4.45<br>15.86<br>37.99<br>PYROXENE<br>MOLE PEN                                                                                     | ASE 88.<br>ASE 88.<br>ASE 88.<br>ASE 88.<br>ASE<br>SI<br>MG<br>SI<br>NA<br>CENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA20/TIO2<br>.276<br>70<br>70<br>50.87<br>50.87<br>5.43.43<br>75 9.02<br>5.43.01<br>72 (IN MOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K20/T<br>1.345<br>E PERC | 102<br>Ent)                       |                                             |
| KOHATIITE PARAMET<br>EO/(FEO+MGD) CA<br>2827<br>JENSEN CATION AL<br>14<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION<br>COORDINATES IN TH<br>PROPORTION OF ANA<br>BASALT TETRAHEDRO                                                                                                                                                                                                                                       | ERS<br>0/AL203<br>.85<br>.203 - FE(<br>.31 - FE(<br>.85<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0                             | SI02/FI<br>166.6<br>D+FE203+<br>15.83<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIDC<br>BASALT<br>0L                                                                                        | 02 Al<br>7 102 7<br>8 THOC<br>8 1 HOC<br>11 7<br>52 7<br>59 7<br>59 7<br>LASE 7<br>TETRAI<br>62 7                                                                                                             | -203/1102<br>- MG0<br>59.85<br>- ASE 77.3<br>- ASE 77.3<br>- 0110 [NE<br>MEDRON [2<br>- 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 FEG*/T<br>36.7<br>36.7<br>50<br>FE<br>hg<br>AL<br>2FE<br>AL<br>2FE<br>5 CLINO<br>5 95.67<br>CPX                                              | 102 CAO<br>20<br>PLACIDCLA<br>ALBITE<br>15.41<br>42.38<br>4.45<br>15.96<br>37.99<br>PYROXENE<br>MOLE PER<br>9.33                                                                             | ASE 88.<br>ASE 88.<br>ASE 88.<br>ASE 88.<br>ASE<br>SI<br>MO<br>SI<br>NA<br>CENT<br>PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA20/TIO2<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K20/T<br>1.345<br>E PERC | 102<br>Ent)<br>Qtz                | 10.2                                        |
| KOHATIITE PARAMET<br>EO/(FEO+HGO) CA<br>.2027<br>JENSEN CATION AL<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION<br>EDORDINATES IN TH<br>PROPORTION OF ANA<br>BASALT TETRAHEDRO<br>CLINOPYROXENE PRO                                                                                                                                                                                                                       | ERS<br>00/AL203<br>.85<br>.203 - FE<br>RATIOS<br>.00<br>IS<br>IE SYSTEM<br>LYSIS IN<br>IN<br>DJECTION                                                                                                                                  | SI02/TI<br>166.6<br>D+FE203+<br>15.83<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIDC<br>BASALT<br>OL                                                                                  | 02 Al<br>7<br>TIO2<br>8<br>THOCI<br>11.4<br>52.<br>59.<br>LASE<br>TETRAI<br>60.4                                                                                                                              | -203/TI02<br>-24.14<br>-9.85<br>-9.85<br>-0.11.2<br>-0.17.2<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.17.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0. | 2 FE0*/T<br>36.7<br>36.7<br>2<br>50<br>FE<br>AL<br>2<br>FE<br>AL<br>2<br>FE<br>3<br>4<br>2<br>7<br>5.67<br>5.67<br>5<br>2<br>7<br>5.67         | IO2 CAO<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                       | ASE 88.<br>ASE 88.<br>22.<br>MG<br>SI<br>MG<br>SI<br>NA<br>CENT<br>PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA20/TIO2<br>.276<br>.276<br>.70<br>.70<br>.70<br>.70<br>.70<br>.72.99<br>.43.43<br>.75<br>.43.43<br>.75<br>.9.02<br>.43.43<br>.75<br>.9.02<br>.45<br>.10.16<br>.10.16<br>.20.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K20/T<br>1,345<br>E PERC | 102<br>Ent)<br>QTZ                | 10.2                                        |
| KOHATIITE PARAMET<br>EO/(FEO+MGD) CA<br>2027<br>JENSEN CATION AL<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>GUARTZ<br>CATION PROPORTION<br>FROPORTION OF ANA<br>BASALT TETRAHEDRO<br>CLINOPYROXENE PRO<br>QUARTZ PROJECTION                                                                                                                                                                                                              | ERS<br>00/AL203<br>.85<br>.203 - FE<br>RATIOS<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0                                                                               | SI02/TI<br>166.6<br>D+FE203+<br>15.83<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIDC<br>BASALT<br>0L                                                                                  | 02 A<br>7 1102<br>8 THOCC<br>11 A<br>52<br>75<br>59<br>LASE<br>TE TRAI<br>60<br>69<br>                                                                                                                        | -203/1102<br>- MG0<br>59.85<br>- ASE 77.3<br>74<br>13<br>12<br>91<br>- OLIVINE<br>MEDRON 19<br>25<br>56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 FEG*/T<br>36.7<br>36.7<br>80<br>FE<br>hg<br>4L<br>2FE<br>5 7<br>CLINOF<br>5 95.67<br>CPX                                                     | 202 CAO<br>20<br>PLACIDCLA<br>ALBITE<br>15.41<br>42.38<br>4.45<br>15.96<br>37.99<br>PYROXENE<br>MOLE PEN<br>9.33<br>0.0 ~**                                                                  | ASE 88.<br>ASE 88.<br>22.<br>MG<br>SI<br>MG<br>SI<br>NA<br>- QUAR<br>CENT<br>PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA20/TIO2<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K20/T<br>1,345<br>E PERC | 102<br>Ent)<br>QTZ                | 10.2<br>11.2<br>0.4                         |
| KOHATIITE PARAMET<br>TEO/(FEO+HGO) CA<br>2027<br>JENSEN CATION AL<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION<br>PROPORTION OF ANA<br>BASALT TETRAHEDRO<br>CLINOPYROXENE PRO<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJE                                                                                                                                                                                                  | TERS                                                                                                                                                                                                                                   | SI02/TI<br>166.6<br>)+FE203+<br>15.83<br>0<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIDC<br>BASALT<br>0L                                                                             | 02 A<br>7<br>TIO2<br>RTHOCC<br>111.4<br>52.<br>75.<br>59.<br>TETRAL<br>62.1<br>68.6<br>69.7<br>59.<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                           | -203/TI02<br>-203/TI02<br>-968<br>-988<br>-988<br>-058<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170<br>-0170                                                                                                                                                                                                                                                                                                                                                                                                             | 2 FEO*/T<br>36.7<br>80 FE<br>hG<br>AL<br>2FE<br>AL<br>5 75.67<br>CPX                                                                           | IO2 CAO<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                       | ASE 88.<br>ASE 88.<br>ASE 88.<br>ASE 22.<br>MG<br>SI<br>MG<br>SI<br>NA<br>CENT<br>PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA20/TIO2<br>.276<br>70<br>70<br>72.98<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>50.97<br>500 | K20/T<br>1.345<br>E PERC | IU2<br>ENT)<br>QTZ                | 10.2<br>11.2<br>0.4<br>72.5                 |
| KOHATIITE PARAMET<br>EO/(FEO+MGO) CA<br>.2827<br>JENSEN CATION AL<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION<br>PROPORTION OF ANA<br>BASALT TETRAHEORO<br>CLINOPYROXENE PRO<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJE<br>OLIVINE PROJECTIO                                                                                                                                                                             | ERS<br>00/AL203<br>.85<br>203 - FE(<br>.31 - FE(<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0                                                                                                                                | SI02/TI<br>166.6<br>D+FE203+<br>15.83<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIDC<br>BASALT<br>0L                                                                                        | 02 Al<br>7<br>TIO2<br>RTHOCI<br>RTHOCI<br>11.7<br>52.<br>75.<br>59.<br>LASE<br>TETRAI<br>62.3<br>68.6<br>69.2<br>76.1<br>0.1                                                                                  | -203/TI02<br>24.14<br>59.85<br>-ASE 11.2<br>51<br>74<br>13<br>12<br>11<br>- OLIVINE<br>WEDRON IS<br>25<br>56<br>35<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 FE0*/T<br>36.7<br>36.7<br>50<br>FE<br>AL<br>2FE<br>AL<br>5 75.67<br>CPX                                                                      | 202 CA0<br>20<br>PLACIOCLA<br>ALBITE<br>15.41<br>42.38<br>4.45<br>15.96<br>37.99<br>PYROXENE<br>MOLE PEN<br>9.33<br>0.0<br>40<br>10.40<br>11.41<br>13.63                                     | ASE 88.<br>22,62<br>ASE 88.<br>22,6<br>MG<br>SI<br>MG<br>SI<br>NA<br>- QUAR<br>CENT<br>PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA20/TIO2<br>.276<br>70<br>72.98<br>50.87<br>5.43.43<br>75 9.02<br>5.43.43<br>75 9.02<br>5.43.43<br>75 9.02<br>5.43.43<br>7.5 9.02<br>5.43.43<br>7.5 9.02<br>5.43.43<br>7.0<br>7.2.98<br>5.0.87<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.0.97<br>5.00<br>5.0.97<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K20/T<br>1,345<br>E PERC | IU2<br>ENT)<br>QTZ<br>(4QTZ)      | 10.2<br>11.2<br>0.0<br>72.5<br>59.8         |
| KOHATIITE PARAMET<br>EO/(FEO+MGD) CA<br>2027<br>JENSEN CATION AL<br>14<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION<br>CATION PROPORTION<br>CASSALT TETRAHEDRO<br>CLINOPYROXENE PRO<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CLASS PROJECTIONS<br>16TRAHEDROM COORD                                                                                                                                             | TERS                                                                                                                                                                                                                                   | SI02/FI<br>166.6<br>]+FE203+<br>15.83<br>0<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIDC<br>BASALT<br>0L                                                                                   | 82 A<br>7<br>TI02<br>RTHOCC<br>111.<br>52.<br>75.<br>59.<br>LASE<br>TETRAI<br>62.<br>64.<br>69.<br>76.<br>0.1<br>0.1                                                                                          | -203/TI02<br>24.14<br>59.85<br>-ASE 11.2<br>ASE 77.3<br>51<br>- 0LIV [NE<br>MEDRON [9<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 FEO*/T<br>36.7<br>36.7<br>2 FE<br>AL<br>2 FE<br>AL<br>2 FE<br>AL<br>5 75.67<br>CPX                                                           | IO2 CA0<br>22<br>PLACIDCLA<br>ALBITE<br>15.41<br>42.38<br>4.45<br>15.96<br>37.99<br>PYROXENE<br>MOLE PEN<br>9.33<br>0.0<br>10.40<br>11.41<br>13.53                                           | ASE 88.<br>ASE 88.<br>MG<br>SI<br>MG<br>SI<br>NA<br>- QUAR<br>CENT<br>PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA20/TIO2<br>.276<br>70<br>72.98<br>50.97<br>5.43.43<br>75 9.02<br>.+K 3.01<br>72 (IN MOL<br>AG 18,16<br>20.05<br>20.25<br>0.0<br>26.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K20/T<br>1,345<br>E PERC | 102<br>ENT)<br>QTZ<br>(4QTZ)      | 10.2<br>11.2<br>0.0<br>72.5<br>55.8         |
| KOHATIITE PARAMET<br>EO/(FEO+MGD) CA<br>2027<br>JENSEN CATION AL<br>14<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION<br>CATION PROPORTION<br>CATION PROPORTION<br>CATION PROPORTION<br>CATION PROPORTION<br>CATION PROPORTION<br>CATION PROPORTION<br>CATION PROPORTION<br>CATION PROPORTION<br>CATION PROPORTION<br>CAS PROJECTIONS<br>TETRAHEDRON COORD<br>DIOPSIDE PROJECTI                                            | TERS                                                                                                                                                                                                                                   | SI02/TI<br>166.6<br>D+FE203+<br>15.83<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIDC<br>BASALT<br>OL<br>C                                                                                   | 02 Al<br>7<br>TIO2 7<br>RTHOCI<br>RTHOCI<br>11.7<br>52.7<br>59.7<br>LASE 7<br>TETRAI<br>62.7<br>64.0<br>0.1<br>0.1                                                                                            | -203/TI02<br>24.14<br>59.85<br>-ASE 11.2<br>ASE 77.3<br>74<br>13<br>12<br>01<br>- OLIVINE<br>MEDRON [9<br>25<br>56<br>35<br>99<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 FE0*/T<br>36.7<br>36.7<br>50 f<br>FE<br>AL<br>2FE<br>AL<br>2FE<br>5 75.67<br>CPX<br>1<br>5<br>5<br>4<br>5<br>5<br>75.67<br>CPX               | 202 CAO<br>20<br>ALAGIOCLA<br>ALBITE<br>15.41<br>42.38<br>4.45<br>15.86<br>37.99<br>PYROXENE<br>MOLE PEN<br>9.33<br>0.0 ~**<br>10.40<br>11.41<br>13.53<br>44.61                              | ASE 88<br>ASE 88<br>ASE 88<br>ASE 88<br>AG<br>SI<br>MG<br>SI<br>NA<br>A<br>QUAR<br>PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA20/TIO2<br>276<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K20/T<br>1.345<br>E PERC | 102<br>Ent)<br>QTZ<br>(4QTZ)<br>S | 10.2<br>11.2<br>0.9<br>72.5<br>59.6<br>44.0 |
| KOHATIITE PARAMET<br>TEO/(FEO+HGO) CA<br>2027<br>JENSEN CATION AL<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION<br>CATION PROPORTION<br>PROPORTION OF ANA<br>BASALT TETRAHEDRO<br>CLINOPYROXENE PRO<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJEC<br>CHAS PROJECTIONS<br>TETRAHEDRON COORD<br>DIOPSIDE PROJECTIO                                                                                                             | ERS<br>00/AL203<br>.85<br>.203 - FE<br>RATIOS<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>IS<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0 | SI02/TI<br>166.6<br>D+FE203+<br>15.83<br>CA<br>CA<br>CA<br>PLAGIDC<br>BASALT<br>OL<br>C<br>C<br>C<br>C<br>C<br>C<br>A<br>C<br>S<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 02 Al<br>7<br>TIO2<br>RTHOCI<br>11.4<br>52.<br>75.<br>59.<br>LASE<br>TETRAI<br>60.4<br>69.<br>76.1<br>0.1<br>0.1<br>18.4<br>17.                                                                               | -203/TI02<br>-203/TI02<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 FE0x/T<br>36.7<br>36.7<br>50<br>FE<br>AL<br>2FE<br>AL<br>5 95.67<br>CPX                                                                      | 202 CA0<br>202 CA0<br>201<br>201<br>201<br>201<br>201<br>201<br>201<br>20                                                                                                                    | ASE 88.<br>ASE 88.<br>ASE 88.<br>ASE 88.<br>ANG<br>SI<br>NA<br>CENT<br>PL<br>A<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA20/TIO2<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K20/T<br>1,345<br>E PERC | IU2<br>ENT)<br>QTZ<br>(4QTZ)<br>S | 10.2<br>11.2<br>0.0<br>12.5<br>59.8<br>44.0 |
| KOHATIITE PARAMET<br>EO/(FEO+MGD) CA<br>2027<br>JENSEN CATION AL<br>QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>QUARTZ<br>CATION PROPORTION<br>COORDINATES IN TH<br>PROPORTION OF ANA<br>BASALT TETRAHEDRO<br>CLINOPYROXENE PRO<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>DIOPSIDE PROJECTION<br>DIOPSIDE PROJECTION<br>EITRAHEDRON COORD<br>DIOPSIDE PROJECTION<br>EITRAHEDRON COORD<br>DIOPSIDE PROJECTION<br>ENSTATITE PROJECTION | TERS                                                                                                                                                                                                                                   | SI02/FI<br>166.6<br>)+FE203+<br>15.83<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIDC<br>BASALT<br>OL<br>C<br>C<br>C<br>C<br>3A<br>CS<br>M25                                           | 82 A<br>7<br>TI02<br>RTHOCC<br>111.<br>52.<br>75.<br>59.<br>LASE<br>TETRAI<br>62.<br>64.<br>0.<br>18.<br>17.<br>56.<br>17.<br>56.<br>17.<br>56.<br>17.<br>10.<br>10.<br>11.<br>11.<br>11.<br>11.<br>11.<br>11 | -203/TI02<br>-203/TI02<br>-24.14<br>-59.85<br>-255<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-25<br>-24<br>-25<br>-24<br>-25<br>-24<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 FEG*/T<br>36.7<br>36.7<br>2<br>50 FE<br>AL<br>2FE<br>AL<br>2FE<br>5 7 CLINOF<br>5 75.67<br>CPX<br>1<br>5<br>4<br>4<br>5<br>5<br>75.67<br>CPX | 202 CAO<br>22 20<br>PLACIDCLA<br>ALBITE<br>15.41<br>42.38<br>4.45<br>15.96<br>37.99<br>PYROXENE<br>MOLE PEN<br>9.33<br>0.0 ~*<br>10.40<br>11.41<br>13.53<br>44.61<br>30.05<br>71.07<br>21.64 | ASE 09.<br>ASE 09.<br>ASE 09.<br>AG<br>SI<br>MG<br>SI<br>NA<br>CENT<br>PL<br>CENT<br>PL<br>S<br>S<br>A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA20/TIO2<br>276<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K20/T<br>1,345           | 102<br>ENT)<br>QTZ<br>(4QTZ)<br>S | 10.2<br>11.2<br>0.9<br>72.5<br>59.8<br>44.0 |

| HLAGOTHI COMPLEX                                               | 86 916                                     |                               |                                |                               |                                                                                      |                         |                                  | 304                     |             |                                    |
|----------------------------------------------------------------|--------------------------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------------------------------------------------------------|-------------------------|----------------------------------|-------------------------|-------------|------------------------------------|
| SHIFLE NUMBER I                                                | 10 210<br>Toarwy ovytu                     | - •                           |                                |                               |                                                                                      |                         |                                  |                         |             |                                    |
| SID2 AL203 FE                                                  | 203 FE                                     |                               | 1N0 H0<br>, 22 23 . 4          | 0 CAO<br>12 8.04              | NA20<br>.37                                                                          | K 20<br>. 02            | T102<br>35                       | P205<br>.06             | CR203       | 10101<br>25.001                    |
| WEIGHT PERCENT OXI<br>SIO2 AL2O3 FE<br>47,47 8,62              | IDES RECALCI<br>203 FEC<br>1.10 9.8        | LATED                         | TU 100 PE<br>1NU MG<br>22 23.3 | RCENT<br>O CAO<br>6 B.12      | NA20<br>.37                                                                          | K 20<br>, 02            | TIQ2<br>.33                      | P205<br>.04             | CR203       | 100 - 00                           |
| CATION PROPORTIONS<br>SI AL FE<br>42.46 9.09                   | 3 IN ANALYS<br>(3) FE<br>(74 7.3           | (2) )<br>7                    | in ho<br>.17 31.1              | LA<br>7.69                    | NA<br>, 64                                                                           | , 03<br>K               | 11<br>.23                        | P.05                    | CR . 40     |                                    |
| CIPW NORM                                                      | 07.7                                       | 000                           | 0.0                            | . r                           |                                                                                      | <b>A M</b>              |                                  |                         |             | K D                                |
| WEIGHT PERCENT<br>MOLE PERCENT<br>CATION PERCENT               | . 000<br>. 000<br>. 000                    | .000<br>.000                  | .118<br>.118<br>.115<br>.114   | 3.12<br>2.42<br>3.2(          | $   \begin{array}{cccc}     2 & 21, \\     7 & 15, \\     0 & 21, \\   \end{array} $ | 798<br>983<br>458       | . 100<br>. 000<br>. 000          | . 90<br>. 90<br>. 00    | 0<br>0<br>0 | ,000<br>,000<br>,000               |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent               | AC<br>. D                                  | NS<br>. 000<br>. 000<br>. 000 | KS<br>,000<br>,000<br>,000     | 01<br>14.04<br>12.91<br>13.55 | 18<br>15                                                                             | WC<br>000<br>000<br>000 | HY<br>31.609<br>30.418<br>32.054 | 26.08<br>35,02<br>27,67 | 070         | CS<br>,000<br>,000<br>,000<br>,000 |
| WEIGHT PERCENT                                                 | NT<br>1.580<br>1.399                       | см<br>. 837<br>. 763          | IL<br>463<br>491               | H۲<br>۵۱<br>۵۱                | t<br>10 - 1<br>10 - 2                                                                | TN<br>000<br>000        | PF<br>. 000<br>. 000             | RU<br>00<br>00          | 0<br>0      | AP<br>,142<br>.086                 |
| CATION PERCENT<br>MAFIC INDEX = 74                             | 1 106<br>.968                              | . 603                         | . 47(                          | i 104                         | Jäj,                                                                                 | . Õ O Ú                 | .000                             | .00                     | ÷O          | .121                               |
| NORM TOTAL = 100                                               | . 005<br>MI                                |                               |                                |                               |                                                                                      |                         |                                  |                         |             |                                    |
| FORSTERITE                                                     | 76.154                                     | FAY                           | ALITE 2                        | 23.846                        |                                                                                      |                         |                                  |                         |             |                                    |
| URTHOPYROXENE COMP<br>ENSTATITE                                | 051110N<br>77.873                          | FERF                          | ROSILITE 2                     | 2.127                         |                                                                                      |                         |                                  |                         |             |                                    |
| CLINOPYROXENE COMP<br>HOLLASTONITE                             | 051710N<br>52.286                          | ENS                           | TATITE 3                       | 156                           | FERROSIL                                                                             | ITE 10.                 | 58                               |                         |             |                                    |
| FELDSPAR COMPOSITI<br>ORTHOCLASE<br>Plagioclase (              | ION<br>471<br>Compusition                  | ALB:<br>(PERC                 | (TE 1<br>AN)                   | 2,468<br>97,473               | ANORTHIT                                                                             | E 87.0                  | )61 .                            |                         |             |                                    |
| THORN TON AND TUTT<br>SOLIDIFICATION IN                        | E DIFFEREN                                 | TIATIO<br>2/(MGO·             | N INDEX                        | 3+NA20+K20                    | = 3.2                                                                                | 240<br>318              |                                  |                         |             |                                    |
| CRYSTALLIZATION IN<br>LARSEN INDEX (1/38<br>ALBITE PATIO (1003 | NDEX (AN+MG<br>5I+K)~(CA+M<br>#(AN+AR FQ1) | רם,<br>גע<br>או אז נ          | FO EQIV (<br>F)/PLAG)          | OF EN)                        | = 70.1<br>= -26.0<br>= 12.5                                                          | 169<br>192<br>127       |                                  |                         |             |                                    |
| IRON RATIO ((FE2=)<br>HC_NUMBER AS_CATI                        | N) #100/(FE.                               | 2+MN+M                        | E+HG)                          |                               | - 35.7<br>= 80.8                                                                     | 220<br>155              |                                  |                         |             |                                    |
| DENSITY OF DRY LIC                                             | CORDING TO<br>NUID OF THIS                 | LE MAI                        | ITRE (FED)<br>DSITION (A       | /FEO+FE203<br>AT 1050 DE(     | 8, = ,8<br>2,8 = (1                                                                  | 123<br>143              |                                  |                         |             |                                    |
| TOTAL ALKALIS                                                  | 5 1.12                                     | 70                            | TAL FE                         | 81.34                         | MG                                                                                   | 67.5                    | 53                               |                         |             |                                    |
|                                                                |                                            |                               |                                |                               |                                                                                      |                         |                                  |                         |             |                                    |
|                                                                |                                            |                               |                                |                               |                                                                                      |                         |                                  |                         |             |                                    |
|                                                                |                                            |                               |                                |                               |                                                                                      |                         |                                  |                         |             |                                    |
| VORATITE BARAMET                                               | -De                                        |                               |                                |                               |                                                                                      |                         |                                  |                         |             |                                    |
| EO/(FEO+HGO) CA(<br>,3170                                      | )/AL203 51                                 | )2/TIU<br>135.97              | 2 AL203/1<br>24.0              | 1102 FEO*/<br>59 31           | (1102 CAC<br>.06 23                                                                  | )/TIO2 +<br>2.47        | 1.057                            | K20/f1<br>.057          | 82          |                                    |
| JENSEN CATION AL2<br>18                                        | 203 - FEO+FI<br>71                         | 203+T<br>17,18                | 102 - MGO<br>64.11             |                               |                                                                                      |                         |                                  |                         |             |                                    |
| QUARTZ - FELDSPAR<br>QUARTZ<br>QUARTZ<br>CONTZ                 | RATIOS<br>, 80<br>, 00                     |                               | THOCLASE                       | .47<br>3.64                   | PLAGIOCL                                                                             | ASE 99.5                | 53<br>36<br>46 00                |                         |             |                                    |
| CHILGH FRUFURIIUN                                              | - I                                        | A.                            | 9,45                           | MC                            | 39,31                                                                                | nc<br>SI                | 52.23                            |                         |             |                                    |
|                                                                | 9                                          | BI                            | 54.33                          | AL                            | 5.81                                                                                 | MG                      | 39.85                            |                         |             |                                    |
|                                                                | ä                                          | PHG                           | 72.21                          | 2FE                           | 17,95                                                                                | 112                     | /5 9,84                          |                         |             |                                    |
|                                                                | (                                          | CA                            | 61.19                          | AL                            | 36.17                                                                                | NAT                     | -K 2.64                          |                         |             |                                    |
| COORDINATES IN THE                                             | E SYSTEM PL                                | AGIOCL                        | ASE - ULIV                     | VINE - CLII                   | IUPYROXENE                                                                           | E - QUART               | TZ (IN MOLE                      | PERCE                   | (TM         |                                    |
| PROPORTION OF ANAL                                             | YSIS IN BA                                 | SALT TE                       | ETRAHEDRON                     | 1 15 97.59                    | HOLE PE                                                                              | RCENT                   |                                  |                         |             |                                    |
| BASALT TETRAHEDRON                                             | V<br>IERTIAN                               | טר                            | 53,00                          | CPX                           | 13.93                                                                                | PLA                     | AG 24.86                         |                         | urz         | 0.21                               |
| QUARTZ PROJECTION                                              |                                            |                               | 57.74                          |                               | 15,18                                                                                |                         | 27.08                            |                         |             | 7.J4<br>0.0                        |
| PLAGIOCLASE PROJE                                              | CTION                                      |                               | 70.53                          |                               | 18.54                                                                                |                         | Ű, Ö                             |                         |             | 10.93                              |
| OLIVINE PROJECTION                                             | 4                                          |                               | <b>Q</b> . U                   |                               | 19,45                                                                                |                         | 34.70                            | 0PX+(                   | 4QTZ)       | 45.85                              |
| CHAS PROJECTIONS                                               |                                            |                               |                                |                               |                                                                                      |                         |                                  |                         |             |                                    |
| TETRAHEDRON COORD                                              | INA TES (                                  | 2                             | 8.78                           | н                             | 40.82                                                                                | A                       | 6.03                             |                         | S           | 44,37                              |
| DIOPSIDE PROJECTIO                                             | א אכ                                       | 03A                           | 21.91                          | M                             | 27,10                                                                                | 9                       | 50,91                            |                         |             |                                    |
| ULIVINE PROJECTIO                                              | N                                          | 25<br>126                     | 21.78<br>51.91                 | M                             | 65,10<br>25 7+                                                                       | 5                       | 13.12                            |                         |             |                                    |
| QUARTZ PROJECTION                                              | - LIM (                                    | CAS2                          | 27.51                          | L253<br>MS                    | 62,70                                                                                | A29<br>CM9              | 52 9.78                          |                         |             |                                    |
|                                                                |                                            |                               |                                |                               |                                                                                      |                         |                                  |                         |             |                                    |

İ

| CATION PROPORTIONS IN ANA<br>SI AL FE(3)<br>S2,20 16.14 .65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4LYSIS<br>FE(2)<br>6.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ни м <u>G</u><br>.13 9,08                                                                                                                                                                               | 6<br>8.29                                                                                                                                                                                                                                                                                                     | NA<br>6,65                                                                                                                                                                                                           | K<br>. 77                                                                                                | TI<br>. 45                                                                                                                           | P.10 CR.00                                             |                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|
| LIFW NORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>0</b> 0                                                                                                                                                                                              | <b>A</b> 13                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                          |                                                                                                                                      | NC                                                     | V P                                             |
| WEIGHT PERCENT 3.754<br>Mole Percent 13.844<br>Cation Percent 3.477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 000<br>. 000<br>. 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,844<br>3,731<br>3,844                                                                                                                                                                                 | 31 . 35<br>26 . 49<br>33 . 27                                                                                                                                                                                                                                                                                 | 0 21.785<br>3 17.352<br>7 21.794                                                                                                                                                                                     |                                                                                                          | . 9 9 9<br>. 9 7 9<br>. 0 0 0                                                                                                        | . 000<br>. 000<br>. 000                                | . 000<br>. 000<br>. 000                         |
| AC A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .000<br>.000<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .000<br>.000<br>.000                                                                                                                                                                                    | D1<br>15.52<br>14.96<br>15.04                                                                                                                                                                                                                                                                                 | ₩0<br>7 .000<br>9 .000<br>0 .000                                                                                                                                                                                     | 20<br>20<br>20                                                                                           | HY<br>.863<br>.333<br>.428                                                                                                           | 01<br>.000<br>.000<br>.000                             | CS<br>.000<br>.000<br>.000                      |
| MT<br>WEIGHT PERCENT 1.359<br>Mole Percent 1.300<br>Cation Percent .980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CM<br>. 000<br>. 000<br>. 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IL<br>1,217<br>1,777<br>,893                                                                                                                                                                            | HH<br>00<br>00<br>00                                                                                                                                                                                                                                                                                          | 000<br>000<br>000<br>000<br>000                                                                                                                                                                                      |                                                                                                          | PF<br>000<br>000<br>.000                                                                                                             | RU<br>.400<br>.000<br>.000                             | AP<br>, 304<br>, 200<br>, 248                   |
| MAFIC INDEX ≈ 39.269<br>NORM TOTAL = 100.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                          |                                                                                                                                      |                                                        |                                                 |
| OLIVINE COMPOSITION<br>FORSTERITE .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALITE                                                                                                                                                                                                   | , 0 a o                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                      |                                                                                                          |                                                                                                                                      |                                                        |                                                 |
| ORTHOPYROXENE COMPOSITION<br>ENSTATITE 51.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N FER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ROSILITE 48                                                                                                                                                                                             | .914                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                      |                                                                                                          |                                                                                                                                      |                                                        |                                                 |
| CLINOPYROXENE COMPOSITION<br>HOLLASTONITE 58,537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N ENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TATITE 25                                                                                                                                                                                               | ).26 <b>0</b>                                                                                                                                                                                                                                                                                                 | FERROSILITE                                                                                                                                                                                                          | 24.194                                                                                                   | l                                                                                                                                    |                                                        |                                                 |
| FELDSPAR COMPOSITION<br>ORTHOCLASE 6.747<br>PLAGIOCLASE COMPOSIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ITE 55<br>AN) 40                                                                                                                                                                                        | ,020<br>.999                                                                                                                                                                                                                                                                                                  | ANORTHITE                                                                                                                                                                                                            | 30.233                                                                                                   | i                                                                                                                                    |                                                        |                                                 |
| THORNTON AND TUTTLE DIFFIC<br>SOLIDIFICATION INDEX (10)<br>CRYSTALLIZATION INDEX (40)<br>LARSEN INDEX (1/3SI+K)~(1)<br>ALBITE RATIO (100%(AB+AB<br>IRON RATIO (FE2=MM)*100,<br>MG NUMBER AS CATIONS MG/(<br>OXIDATION RATIO ACCORDINI<br>DENSITY_OF DRY LIQUID OF                                                                                                                                                                                                                                                                                                         | ERENTIATIO<br>0*MGD/(MGD<br>4+MG,DI+FO<br>CA+MG)<br>EQIV IN N<br>/(FE2+MN+N<br>CATIONS (FG<br>TOLE MA<br>TWIS COMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N INDEX<br>+FEO+FE203+<br>+FO EQIV OF<br>E)/PLAG)<br>G))<br>E+HG)<br>ITRE (FED/F<br>USITION (AT                                                                                                         | NA20+K20)<br>EN)<br>E0+FE203)<br>1050 DEG                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 |                                                                                                          |                                                                                                                                      |                                                        |                                                 |
| AFH RATID<br>TOTAL ALKALIS 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 ТО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TAL FE 47                                                                                                                                                                                               | '. <b>4</b> û                                                                                                                                                                                                                                                                                                 | MG                                                                                                                                                                                                                   | 30.05                                                                                                    |                                                                                                                                      |                                                        |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                          |                                                                                                                                      |                                                        |                                                 |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>(6130) CAO/AL203 - FI<br>JENSEN CATION AL203 - FI<br>S0.67 - FELDSPAR RATIOS                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5102/110<br>8/.93<br>E0+F <u>23</u> .94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 AL203/TI<br>23.00<br>102 - MCO<br>23.37                                                                                                                                                               | 02 FEO*/<br>} 14.                                                                                                                                                                                                                                                                                             | 1102 CAQ/TT<br>48 13.13                                                                                                                                                                                              | 02 N§3                                                                                                   | 0/1102<br>78 <b>5</b> 1                                                                                                              | K20/TID2<br>1,015                                      |                                                 |
| KDHATIITE PARAMETERS<br>FED/(FEO+MGO) CAO/AL203<br>.6130<br>JENSEN CATION AL203 - FI<br>SU.67<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ - 6.11<br>QUARTZ 9.6<br>CATION PRUPORTIONS                                                                                                                                                                                                                                                                                                                                                                                            | SI02/110<br>87.93<br>E0+FE203+F<br>23.96<br>B<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 AL203/11<br>23.16<br>102                                                                                                                                                                              | 02 FE0*/<br>34.<br>34.<br>35.<br>37.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.                                                                                                                                                                                            | F102 CAQ/TT<br>48 13.03<br>PLAGIOCLASE<br>ALBITE<br>29.53                                                                                                                                                            | 02 NA2<br>5,<br>87.49<br>80.49<br>MG                                                                     | 0/7102<br>78 <b>5</b><br>34.80                                                                                                       | K20/TI02                                               |                                                 |
| KDMATIITE PARAMETERS<br>FED/(FE0+MGO) CAO/AL203<br>.6130<br>JENSEN CATION AL203 - FI<br>S0.67<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ - 6.11<br>QUARTZ 9.6<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                                                                            | 5102/110<br>E0+F2203+F<br>23.96<br>CA<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 AL203/TT<br>23.00<br>25.37<br>THOCLASE 5<br>35.67<br>12.00                                                                                                                                            | 02 FE0*/<br>14.<br>14.<br>14.<br>14.<br>14.<br>14.<br>14.<br>14.<br>14.                                                                                                                                                                                                                                       | F102 CA0/TT<br>48 13.13<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79                                                                                                                                                   | D2 NA2<br>5,<br>87,49<br>90,49<br>MG<br>51                                                               | 0/1102<br>78 <b>5</b><br>34.80<br>76.13                                                                                              | K20/TID2<br>1,015                                      |                                                 |
| KDMATIITE PARAMETERS<br>FED/(FEO+MGO) CAO/AL203<br>(6130 56<br>JENSEN CATION AL203 - FI<br>S0.67 FELDSPAR RATIOS<br>QUARTZ 6.11<br>QUARTZ 9.6<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                                                                                       | 5102/110<br>87.95<br>E0+FE203+F<br>23.96<br>B OR<br>4 OR<br>4 OR<br>4 OR<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 AL203/TI<br>23.00<br>102 - MC0<br>25.37<br>THOCLASE 6<br>35.67<br>12.00<br>76.37                                                                                                                      | 02 FE0*/<br>34.<br>33.<br>9.87<br>FE<br>MG<br>AL                                                                                                                                                                                                                                                              | F102 CA0/TI<br>48 13.13<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81                                                                                                                                          | D2 NA2<br>5<br>87,49<br>90,49<br>MG<br>SI<br>MG                                                          | 20/TI02<br>78 <b>5</b><br>34.80<br>76.13<br>11.83                                                                                    | K20/TID2                                               |                                                 |
| KDMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6130<br>JENSEN CATION AL203 - FI<br>S0.67<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 9.6<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                                                                                             | 5102/110<br>87.95<br>E0+FE203+F<br>23.96<br>CA<br>CA<br>SI<br>2ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 AL203/TI<br>23.06<br>102 - MC0<br>25.37<br>THOCLASE 6<br>35.67<br>12.00<br>76.37<br>40.09                                                                                                             | 02 FE0*/<br>33<br>.87<br>FE<br>MG<br>AL<br>2FE                                                                                                                                                                                                                                                                | F102 CAG/TI<br>48 13.03<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01                                                                                                                                 | 02 NA2<br>90.49<br>90.49<br>MG<br>SI<br>MG<br>SI/5                                                       | 34.80<br>76.13<br>11.83<br>25.89                                                                                                     | K20/TI02                                               |                                                 |
| KDMATIITE PARAMETERS<br>FED/(FE0+MGO) CAO/AL203<br>.6130<br>JENSEN CATION AL203 - FI<br>S0.67<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 9.6<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                                                                                             | 5102/110<br>50+F2203+F<br>23.96<br>CA<br>CA<br>CA<br>SI<br>2nG<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 AL203/TT<br>23.00<br>25.37<br>THOCLASE 5<br>35.67<br>12.00<br>76.37<br>40.09<br>41.29                                                                                                                 | 02 FE0*/<br>14.<br>14.<br>5.<br>87<br>FE<br>MG<br>AL<br>2FE<br>AL                                                                                                                                                                                                                                             | F102 CA0/TT<br>48 13.03<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01<br>40,22                                                                                                                        | D2 NA2<br>87,49<br>90,49<br>MG<br>SI<br>MG<br>SI/5<br>NA+K                                               | 34.80<br>76,13<br>11.83<br>25,99<br>18,50                                                                                            | K20/TID2<br>1,015                                      |                                                 |
| KDMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>(6130) CAO/AL203 - FI<br>SU.67<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ - 9.6<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                                                                           | 5102/110<br>87.95<br>E0+FE203+F<br>23.96<br>P<br>CA<br>CA<br>SI<br>2mG<br>CA<br>M PLAGIOCL<br>N BASALT T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 AL203/TT<br>23.00<br>102 - MC0<br>25.37<br>THOCLASE 6<br>35.67<br>12.00<br>76.37<br>40.09<br>41.29<br>ASE - DLIVI<br>ETRAHEDRON                                                                       | 02 FE0*/<br>34.<br>35.<br>87<br>FE<br>MG<br>AL<br>2FE<br>AL<br>3.<br>15 94.02                                                                                                                                                                                                                                 | FI02 CAG/TI<br>48 13.03<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01<br>40.22<br>OPYROXENE -<br>MULE PERCE                                                                                           | 02 NA2<br>87,49<br>90,49<br>90,49<br>51<br>MG<br>51/5<br>NA+K<br>QUARTZ<br>NT                            | 34.80<br>76.13<br>11.83<br>25.99<br>18.50<br>(IN HOLE                                                                                | K20/TI02                                               |                                                 |
| KDMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6130<br>JENSEN CATION AL203 - FI<br>S0.67<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 9.6<br>CATION PROPORTIONS<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                                                                       | 5102/110<br>87.95<br>E0+F2203*F<br>23.96<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>M PLAGIOCL<br>N BASALT T<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 AL203/TI<br>23.00<br>102 - MC0<br>25.37<br>THOCLASE 4<br>35.67<br>12.00<br>76.37<br>40.09<br>41.29<br>ASE - DLIVI<br>EFRAHEDRON<br>16.30                                                              | 02 FE0*/<br>33<br>87<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>15 94.02<br>CPX                                                                                                                                                                                                                           | T102 CA0/TI<br>48 13.03<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01<br>40.22<br>OPYROXENE -<br>MULE PERCE<br>16.00                                                                                  | 02 NA2<br>87,49<br>90,49<br>MG<br>SI<br>MG<br>SI/S<br>NA+K<br>QUARTZ<br>NT<br>PLAC                       | 34.80<br>76.13<br>11.83<br>25.89<br>18.50<br>(IN MOLE<br>58.58                                                                       | K20/TI02<br>,015                                       | 9.13                                            |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6130 CAO/AL203 - FI<br>S0.67 FI<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 9.6<br>CATION PRUPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALI TETRAHEDRON<br>CLINOPYROXENE PROJECTION                                                                                                                                                                                                                                                                                                           | 5102/110<br>87.95<br>E0+F2203+F<br>23.96<br>B OR<br>CA<br>CA<br>CA<br>SI<br>2nG<br>CA<br>CA<br>SI<br>2nG<br>CA<br>N BASALT T<br>DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 AL203/TT<br>23.00<br>102 - MC0<br>25.37<br>THOCLASE 6<br>100<br>35.67<br>12.00<br>76.37<br>40.09<br>41.29<br>ASE - OLIVI<br>ETRAHEDRON<br>16.30<br>19.40                                              | 02 FE0*/<br>14.<br>14.<br>14.<br>14.<br>14.<br>14.<br>14.<br>14.<br>14.<br>14.                                                                                                                                                                                                                                | F102 CA0/TT<br>48 13.13<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01<br>40.22<br>OPYROXENE -<br>MULE PERCE<br>16.00<br>0.0                                                                           | D2 NA2<br>87,49<br>90,49<br>51<br>MG<br>51/5<br>NA+K<br>QUARTZ<br>NT<br>PLAG                             | 34.80<br>76.13<br>11.83<br>25.89<br>18.50<br>(IN KOLE<br>58.58<br>69.73                                                              | K20/TI02<br>. 015                                      | 9.13<br>10.67                                   |
| KDMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6130 CAO/AL203 - FI<br>S0.67 FELDSPAR RATIOS<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ 9.6<br>CATION PRUPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALI TETRAMEDRON<br>CLINOPYROXENE PROJECTION<br>WUARTZ PROJECTION                                                                                                                                                                                                                                                                           | 5102/110<br>87.95<br>E0+F2203+F<br>23.96<br>B OR<br>4 OR<br>4 OR<br>51<br>2MG<br>CA<br>51<br>2MG<br>CA<br>6<br>N PLAGIOCL<br>N BASALT T<br>0L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 AL203/TT<br>23.00<br>102 - MC0<br>23.37<br>THOCLASE 6<br>35.67<br>12.00<br>76.37<br>40.09<br>41.29<br>ASE - DLIVI<br>EFRAMEDRON<br>16.30<br>19.40<br>17.93                                            | 02 FE0*/<br>33<br>9,87<br>FE<br>MG<br>AL<br>2FE<br>AL<br>IS 94.02<br>CPX                                                                                                                                                                                                                                      | F102 CA0/TI<br>48 13.03<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01<br>40.22<br>OPYROXENE -<br>MULE PERCE<br>16.00<br>0.0<br>17.60                                                                  | D2 NA2<br>87.49<br>90.49<br>MG<br>SI<br>MG<br>SI/5<br>NA+K<br>QUARTZ<br>NT<br>PLAC                       | 34.80<br>76.13<br>11.83<br>25.89<br>18.50<br>(IN MOLE<br>58.58<br>69.73<br>64.46                                                     | (2027102<br>                                           | 9.13<br>10.87<br>0.0                            |
| KDMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6130 CAO/AL203 - FI<br>SU.67 FELDSPAR RATIOS<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ 9.6<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION OF ANALYSIS IJ<br>BASALI TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                                                                                                                                                      | 5102/110<br>87.95<br>E0+FE203+F<br>23.96<br>B<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>M PLAGIOCL<br>N BASALT T<br>DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 AL203/TT<br>23.00<br>102 - MC0<br>25.37<br>THOCLASE 5<br>35.67<br>12.00<br>76.37<br>40.09<br>41.29<br>ASE - OLIVI<br>ETRAHEDRON<br>16.30<br>19.40<br>17.93<br>39.34                                   | 02 FE0*/<br>33<br>87<br>87<br>75<br>87<br>75<br>87<br>75<br>87<br>80<br>87<br>80<br>87<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                                                          | TID2 CAG/TI<br>48 13.03<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01<br>40,22<br>OPYROXENE -<br>MULE PERCE<br>16.00<br>0.0<br>17.60<br>38.62                                                         | 02 NA2<br>87,49<br>90,49<br>90,49<br>51<br>MG<br>51/5<br>NA+K<br>QUARTZ<br>NT<br>PLAG                    | 34.80<br>76.13<br>11.83<br>25.99<br>18.50<br>(IN HOLE<br>58.58<br>69.73<br>64.46<br>0.0                                              | K20/TI02<br>, 015                                      | 9.13<br>10.87<br>0.0<br>22.04                   |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6130 CAO/AL203 - FI<br>S0.67 FI<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 9.6<br>CATION PRUPORTIONS<br>CATION PRUPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALI TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                                                                                                                                                      | 5102/110<br>87.95<br>E0+F2203+F<br>23.96<br>B<br>CA<br>CA<br>CA<br>SI<br>2nG<br>CA<br>CA<br>SI<br>2nG<br>CA<br>M<br>PLAGIOCL<br>N BASALT T<br>DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 AL203/TT<br>23.00<br>102 - MC0<br>25.37<br>THOCLASE 6<br>12.00<br>76.37<br>40.09<br>41.29<br>ASE - OLIVI<br>ETRAHEDRON<br>16.30<br>19.40<br>17.93<br>39.34<br>0.0                                     | 33<br>53<br>55<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57                                                                                                                                                                                                                        | F102 CA0/TT<br>48 13.13<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01<br>40.22<br>OPYROXENE -<br>MULE PERCE<br>16.00<br>0.0<br>17.60<br>38.62<br>14.40                                                | 02 NA2<br>87.49<br>90.49<br>MG<br>51/5<br>NA+K<br>QUARTZ<br>NT<br>PLAC                                   | 34.80<br>76.13<br>11.83<br>25.89<br>18.50<br>(IN MOLE<br>58.56<br>69.73<br>64.46<br>0.0<br>52.73                                     | K20/TI02<br>. 015                                      | 9.13<br>10.87<br>0.0<br>22.04<br>32.67          |
| KDMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6130 CAO/AL203 - FI<br>S0.67 FELDSPAR RATIOS<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ 6.11<br>QUARTZ 9.6<br>CATION PRUPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALI TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>OLIVINE PROJECTION                                                                                                                                                                                                            | 5102/110<br>87.95<br>E0+F2203+F<br>23.96<br>B OR<br>4 CA<br>51<br>2nG<br>CA<br>51<br>2nG<br>CA<br>M PLAGIOCL<br>N BASALT T<br>0L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 AL203/TT<br>23.00<br>102 - MC0<br>25.37<br>THOCLASE 6<br>35.67<br>12.00<br>76.37<br>40.09<br>41.29<br>ASE - DLIVI<br>EFRAHEDRON<br>16.30<br>19.40<br>17.93<br>39.34<br>0.0                            | 33<br>33<br>37<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8                                                                                                                                                                                                                | F102 CA0/TI<br>48 13.03<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01<br>40.22<br>OPYROXENE -<br>MULE PERCE<br>16.00<br>0.0<br>17.60<br>38.62<br>14.40                                                | D2 NA2<br>87,49<br>90,49<br>MG<br>SI<br>MG<br>SI/S<br>NA+K<br>QUARTZ<br>NT<br>PLAC                       | 34.80<br>76.13<br>11.83<br>25.89<br>18.50<br>(IN MOLE<br>58.58<br>69.73<br>64.46<br>0.0<br>52.73                                     | (2027102<br>0015                                       | 9.13<br>10.87<br>0.0<br>22.04<br>32.87          |
| KDMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6130 CAO/AL203 - FI<br>S0.67 FELDSPAR RATIOS<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ 9.6<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CLIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COOPDINATES                                                                                                                                                                                                                | 5102/110<br>87.95<br>E0+FE203+F<br>23.96<br>B<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>M PLAGIOCL<br>N BASALT T<br>UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 AL203/TT<br>23.00<br>102 - MC0<br>23.37<br>THOCLASE 5<br>35.67<br>12.00<br>76.37<br>40.09<br>41.29<br>ASE - OLIVI<br>ETRAHEDRON<br>16.30<br>19.40<br>17.93<br>39.34<br>0.0                            | 02 FE0*/<br>33<br>87<br>87<br>75<br>87<br>75<br>87<br>75<br>80<br>80<br>87<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                                                                      | TID2 CAG/TI<br>48 13.03<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01<br>40,22<br>OPYROXENE -<br>MULE PERCE<br>16.00<br>0.0<br>17.60<br>38.62<br>14.40                                                | D2 NA2<br>87,49<br>90,49<br>90,49<br>51<br>MG<br>51/5<br>NA+K<br>QUARTZ<br>NT<br>PLAC                    | 34.80<br>76.13<br>11.83<br>25.99<br>18.50<br>(IN HOLE<br>58.58<br>69.73<br>64.46<br>0.0<br>52.73                                     | K20/TI02<br>(015<br>PERCENT)<br>QTZ<br>OPX+(4QTZ)      | 9.13<br>10.87<br>0.0<br>22.04<br>32.87          |
| KDMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6130 CAO/AL203 - FI<br>S0.67 FELDSPAR RATIOS<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 9.6<br>CATION PRUPORTIONS<br>CATION PRUPORTIONS<br>CATION PRUPORTIONS<br>CATION PRUPORTIONS<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CHAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIDESIDE PROJECTION                                                                                                                                                                                       | 5102/110<br>87.95<br>E0+FE203+F<br>23.96<br>P<br>CA<br>CA<br>SI<br>2MG<br>CA<br>M PLAGIOCL<br>N BASALT T<br>DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 AL203/TT<br>23.06<br>102 - MC0<br>23.37<br>THOCLASE 5<br>35.67<br>12.00<br>76.37<br>40.09<br>41.29<br>ASE - OLIVI<br>ETRAHEDRON<br>16.30<br>19.40<br>17.93<br>39.34<br>0.0                            | 02 FE0*/<br>33<br>B7<br>FE<br>MG<br>AL<br>2FE<br>AL<br>3FE<br>AL<br>3FE<br>AL<br>3FE<br>AL<br>3FE<br>AL<br>3FE<br>AL<br>3FE<br>AL<br>3FE<br>AL<br>3FE<br>AL<br>3FE<br>AL<br>3FE<br>AL<br>3FE<br>AL<br>3FE<br>4.02<br>3FE<br>3FE<br>4.02<br>3FE<br>3FE<br>3FE<br>3FE<br>3FE<br>3FE<br>3FE<br>3FE<br>3FE<br>3FE | TI02 CAQ/TI<br>48 13.03<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01<br>40,22<br>OPYROXENE -<br>MULE PERCE<br>16.00<br>0.0<br>17.60<br>38.62<br>14.40<br>16.40                                       | 02 NA2<br>87,49<br>90,49<br>NG<br>SI<br>NG<br>SI/5<br>NA+K<br>QUARTZ<br>NT<br>PLAC                       | 34.80<br>76.13<br>11.83<br>25.99<br>18.50<br>(IN MOLE<br>58.58<br>69.73<br>64.46<br>0.0<br>52.73<br>14.40<br>52.73                   | K20/TID2<br>(015<br>PERCENT)<br>QTZ<br>OPX+(4QTZ)<br>S | 9.13<br>10.87<br>0.0<br>22.04<br>32.87<br>51.36 |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6130 CAO/AL203<br>JENSEN CATION AL203 - FI<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 9.6<br>CATION PRUPORTIONS<br>CATION PRUPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALI TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>(LINTNE PROJECTION                                                                                                                               | SIO2/TIO<br>B7.95<br>E0+FE203+F<br>CA<br>CA<br>SI<br>2nG<br>CA<br>M PLAGIOCL<br>N BASALT T<br>OL<br>CC<br>C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 AL203/TI<br>23.00<br>102 - MC0<br>25.37<br>THOCLASE 4<br>35.67<br>12.00<br>76.37<br>40.09<br>41.29<br>ASE - OLIVI<br>EFRAHEDRON<br>16.30<br>19.40<br>17.93<br>39.34<br>0.0<br>17.83<br>33.23          | 02 FE0*/<br>33<br>B7<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>15 94.02<br>CPX                                                                                                                                                                                                                           | T102 CA0/TI<br>48 13.03<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01<br>40.22<br>GPYROXENE -<br>MULE PERCE<br>16.00<br>0.0<br>17.60<br>38.62<br>14.40<br>16.40<br>14.38<br>59.62                     | D2 NA2<br>87,49<br>90,49<br>SI<br>MG<br>SI/S<br>NA+K<br>QUARTZ<br>NT<br>PLAC                             | 34.80<br>785<br>34.80<br>76.13<br>11.83<br>25.89<br>18.50<br>(IN MOLE<br>58.58<br>69.73<br>64.46<br>0.0<br>52.73<br>14.40<br>52.39   | K20/TID2<br><br>E PERCENT)<br>QTZ<br>OPX+(4QTZ)<br>S   | 9.13<br>10.87<br>0.0<br>22.04<br>32.87<br>51.36 |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>(6130) CAO/AL203<br>JENSEN CATION AL203 - FI<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 6.11<br>QUARTZ 9.6<br>CATION PRUPORTIONS<br>CATION PRUPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALI TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>OLIVINE PROJECTION<br>CHAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>UNIVE PROJECTION<br>CHASTINE PROJECTION                                                                    | STO2/TIG<br>B7.95<br>E0+F2203+F<br>23.96<br>B OR<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 AL203/TT<br>23.00<br>102 - MC0<br>25.37<br>THOCLASE 6<br>35.67<br>12.00<br>76.37<br>40.09<br>41.29<br>ASE - OLIVI<br>EFRAHEDRON<br>16.30<br>19.40<br>17.93<br>39.34<br>0.0<br>17.83<br>33.23<br>24.01 | 33<br>33<br>37<br>37<br>37<br>37<br>37<br>4<br>37<br>4<br>4<br>37<br>5<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                       | F102 CA0/TT<br>48 13.03<br>PLAGIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01<br>40.22<br>OPYROXENE -<br>MULE PERCE<br>16.00<br>0.0-<br>17.60<br>38.62<br>14.40<br>16.40<br>14.38<br>58.97<br>75.82           | D2 NA2<br>87.49<br>90.49<br>MG<br>51/5<br>NA+K<br>QUARTZ<br>NT<br>PLAC                                   | 34.80<br>76.13<br>11.83<br>25.89<br>18.50<br>(IN MOLE<br>58.58<br>69.73<br>64.46<br>0.0<br>52.73<br>14.40<br>52.39<br>17.02          | (,015<br>PERCENT)<br>QTZ<br>OPX+(4QTZ)<br>S            | 9.13<br>10.87<br>0.0<br>22.04<br>32.87<br>51.36 |
| KDMATIITE PARAMETERS<br>FEO/(FEO+MGO) CAO/AL203<br>.6130 CAO/AL203<br>JENSEN CATION AL203 - FI<br>S0.67 FELDSPAR RATIOS<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ 9.6<br>CATION PRUPORTIONS<br>CATION PRUPORTIONS<br>CATION PRUPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>RASALI TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>CHAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>UNINE PROJECTION<br>UNINE PROJECTION<br>UNINE PROJECTION<br>UNINE PROJECTION | SI02/10<br>B7.95<br>E0+F2203+F<br>23.96<br>B OR<br>CA OR | 2 AL203/TT<br>23.00<br>102 - MC0<br>23.37<br>THOCLASE 6<br>35.67<br>12.00<br>76.37<br>40.09<br>41.29<br>ASE - OLIVI<br>EFRAMEDRON<br>16.30<br>17.93<br>39.34<br>0.0<br>17.83<br>33.23<br>24.01<br>25.96 | 02 FE0*/<br>33<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>CPX<br>M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                               | FI02 CA0/TI<br>48 13.03<br>PLACIOCLASE<br>ALBITE<br>29.53<br>11.79<br>11.81<br>34.01<br>40.22<br>OPYROXENE -<br>MULE PERCE<br>16.00<br>0.0 -<br>17.60<br>38.62<br>14.40<br>16.40<br>14.38<br>58.97<br>35.92<br>21.57 | D2 NA2<br>87,49<br>90,49<br>51<br>MG<br>51/5<br>NA+K<br>QUARTZ<br>NT<br>PLAC<br>A<br>5<br>5<br>5<br>4253 | 34.80<br>76.13<br>11.83<br>25.89<br>18.50<br>(IN MOLE<br>58.58<br>69.73<br>64.46<br>0.0<br>52.73<br>14.40<br>52.39<br>17.02<br>38.12 | (2027102<br><br>PERCENT)<br>QTZ<br>OPX+(4QTZ)<br>S     | 9.13<br>10.87<br>0.0<br>22.04<br>32.87<br>51.36 |

HLAGOTHI COMPLEX . Sample Number BG 220

.

! ! DRIGINAL WEIGHT PERCENT OXIDES 5102 AL203 FE203 FE0 57.17 15.00 .95 8.55

MNQ .17

WEIGHT PERCENT OXIDES RECALCULATED TO 100 PERCENT SIO2 AL203 FE203 FE0 MNO MGO CAO 56.35 14.78 .94 B.43 .17 5.85 8.35

5.94

CAU 8.47 NA20

yush

305

P205

P205

CR203

CR203

TOTAL 101.46

TOTAL 100.00

TI02

T102

K20 .66

K 20 - 65

| HLAGOTHI<br>SAMPLE                                                                            | COMPLEX<br>NUMBER                                                                       | <b>B</b> G222                                                                                                          |                                                                                                                                 |                                                                                        |                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                  | 3                       | 06                 |                               |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------|-------------------------|--------------------|-------------------------------|
| ur igina<br>Sio2<br>55,43                                                                     | L WEIGHT<br>AL203<br>15,03                                                              | FERCENT<br>FE203                                                                                                       | COXIDES<br>FEO<br>B.12                                                                                                          | MNQ<br>.16                                                                             | MGQ<br>6.65                                  | CA0<br>10,52                     | NA20<br>2.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K 20<br>.74                                               | TI02<br>/55                      | P205<br>.10             | CR203<br>, 40      | TOTAL<br>100,39               |
| WEIGHT<br>5102<br>55.21                                                                       | PERCENT<br>AL 203<br>14.97                                                              | OXIDES A                                                                                                               | RECALCULATE<br>FEQ<br>B.09                                                                                                      | 0 TO 100<br>MNO<br>.16                                                                 | PERCEN<br>MGD<br>6,62                        | T<br>CAO<br>10,49                | NA20<br>2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K20<br>.74                                                | TIQ2<br>,55                      | P205                    | CR203              | TOTAL<br>100.00               |
| CATION<br>SI<br>51,50                                                                         | PROPORTI<br>AL<br>16,46                                                                 | (ONS IN 6<br>FE(3)<br>.63                                                                                              | NALYSIS<br>FE(2)<br>6.31                                                                                                        | HN<br>- 13                                                                             | MG<br>9.21                                   | CA<br>10.47                      | NA<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K<br>K                                                    | TI<br>,38                        | Р<br>, 08               | CR , 00            |                               |
| CIPW NO                                                                                       | RM                                                                                      | <b>0</b> T7                                                                                                            | COP                                                                                                                             |                                                                                        | an                                           | ÅÅ                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AN                                                        | 10                               | N                       | -                  | V D                           |
| WEIGHT<br>MÜLE PE<br>Cation                                                                   | PERCENT<br>RCENT<br>PERCENT                                                             | 6,362<br>21.789<br>5.935                                                                                               | .000<br>.000<br>.000                                                                                                            | 4.<br>3.<br>4.                                                                         | 356<br>925<br>386                            | 18,453<br>14,480<br>19,724       | 20.<br>21.<br>29.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 881<br>360<br>975                                         | . 000<br>. 000<br>. 000          | . 0 . 0                 | ii u<br>6 0<br>0 8 | .000<br>.000<br>.000          |
| WEIGHT<br>MOLE PE<br>CATION                                                                   | PERCENT<br>RCENT<br>PERCENT                                                             | AC<br>.000<br>.000<br>.000                                                                                             | NS<br>.000<br>.000<br>.000                                                                                                      |                                                                                        | KS<br>000<br>000<br>000                      | DI<br>18.453<br>16.605<br>18.093 | ء<br>د<br>ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000<br>000<br>000                                         | HY<br>20.917<br>19,129<br>20,842 | 01<br>,01<br>,01        |                    | CS<br>.000<br>.900<br>.000    |
| WEIGHT<br>MOLE PE<br>CATION                                                                   | PERCENT<br>RCENT<br>PERCENT                                                             | HT<br>1.303<br>1.158<br>.946                                                                                           | СН<br>, 800<br>, 000<br>, 000                                                                                                   | 1 .<br>1 .                                                                             | 11<br>0 <b>41</b><br>411<br>76 <b>9</b>      | HM<br>, 000<br>, 800<br>, 000    | a<br>6<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TN<br>000<br>000<br>000<br>000                            | PF<br>.000<br>.000               | RU<br>. 0<br>. 0<br>. 0 | L)<br>D            | ар<br>. 236<br>. 144<br>. 210 |
| NAFIC I<br>Norm to                                                                            | NDEX =                                                                                  | 41,950                                                                                                                 |                                                                                                                                 |                                                                                        |                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                  |                         |                    |                               |
| OLIVINE                                                                                       |                                                                                         | TION                                                                                                                   | 1.11 F 4                                                                                                                        | YAL 7TF                                                                                | 0.6                                          | ñ                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                  |                         |                    |                               |
| DRTHOPY                                                                                       | ROXENE                                                                                  | COMPOSIT                                                                                                               | LON                                                                                                                             |                                                                                        |                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                  |                         |                    |                               |
|                                                                                               | STATITE                                                                                 | 54.99<br>החאפמנדי                                                                                                      | 79 FE                                                                                                                           | RROSILIT                                                                               | E 45.00                                      | 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                  |                         |                    |                               |
| WO                                                                                            | LLASTON                                                                                 | TE 50.8                                                                                                                | 01 EN                                                                                                                           | STATITE                                                                                | 27.05                                        | 9                                | FERROSIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1TE 22.                                                   | 140                              |                         |                    |                               |
| FELDBPA<br>OR<br>PL                                                                           | R COMPOS<br>THOCLASE<br>AGIDELAS                                                        | BITION<br>B.41<br>BE COMPOS                                                                                            | 27 AL<br>BITION (PER                                                                                                            | BITE<br>C AN)                                                                          | 35.69<br>61.01                               | 9<br>6                           | ANORTHIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E 55.                                                     | 874                              |                         |                    |                               |
| THORNTO<br>SOLIDIF<br>CRYSTAL<br>LARSEN<br>ALBITE<br>IRON RA<br>MG NUME<br>OXIDATI<br>DENSITY | N AND TI<br>ICATION<br>LIZATION<br>INDEX (<br>RATIO (<br>ER AS CA<br>DN RATIO<br>OF DRY | JTTLE DIA<br>INDEX (<br>NINDEX (<br>1/3SI+K)<br>100*(AB+)<br>22=MN)*1<br>22=MN)*1<br>ATIONS MO<br>D ACCORD<br>LIQUID ( | FFERENTIATI<br>100#MGQ/(MG<br>(AN+MG,DI+F<br>-(CA+MG)<br>AB EQIV IN<br>GO/(FE2+MN+<br>G/CATIONS (<br>ING TO LE )<br>DF THIS COM | ON INDEX<br>D+FED+FE<br>0+FO EQI<br>NE)/PLAG<br>NG))<br>FE+MG)<br>AITRE (F<br>POSITION | 203+NA2<br>V OF EN<br>)<br>E0/FEO+<br>(AT 10 | 0+K20))<br>)<br>50 DEG)          | = 29.17<br>35.77<br>35.77<br>35.77<br>35.477<br>361.45<br>59.38<br>59.38<br>59.38<br>59.38<br>59.38<br>59.38<br>59.38<br>59.38<br>59.38<br>59.38<br>59.38<br>59.38<br>59.38<br>59.38<br>59.45<br>59.38<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.45<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>59.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 | 21<br>50<br>132<br>904<br>904<br>938<br>938<br>938<br>938 |                                  |                         |                    |                               |
| KOHATII<br>FEU/(FEG<br>.573                                                                   | TE PARAM                                                                                | HETERS<br>CAD/AL2                                                                                                      | 03 SI02/TI<br>109,7                                                                                                             | 02 AL20                                                                                | 3/1102<br>7,33                               | <b>FEO*/T</b><br>16,2            | 102 CAQ<br>4 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0/1102<br>0/1102                                          | NA20/T102                        | K20/Ť<br>1.345          | 102                |                               |
| JENSEN                                                                                        | CATION                                                                                  | AL203 -<br>49.89                                                                                                       | FEQ+FE203+<br>22.20                                                                                                             | TIG2 - M<br>27.                                                                        | ço<br>1                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                  |                         |                    |                               |
| QUARTZ<br>QU<br>QU<br>QU<br>QU<br>QU<br>QU<br>QU<br>QU<br>QU<br>QU<br>QU<br>QU<br>QU          | - FELDSI<br>IARTZ<br>IARTZ                                                              | 248 RATI<br>10<br>21                                                                                                   | 05<br>.76 0<br>.81 0                                                                                                            | RTHOCLAS                                                                               | E 7.50<br>E 14.93                            | F.G.                             | PLAGIOCL<br>ALBITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ASE 81.                                                   | 54<br>26<br>75 01                |                         |                    |                               |
|                                                                                               |                                                                                         |                                                                                                                        | CA                                                                                                                              | 14.71                                                                                  |                                              | HG                               | 12.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                        | 72.35                            |                         |                    |                               |
|                                                                                               |                                                                                         |                                                                                                                        | SI                                                                                                                              | 74.71                                                                                  |                                              | AL                               | 11.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MG                                                        | 13,36                            |                         |                    |                               |
|                                                                                               |                                                                                         |                                                                                                                        | 2MG                                                                                                                             | 43,89                                                                                  |                                              | 2FE                              | 31.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SI                                                        | /5 24.55                         |                         |                    |                               |
|                                                                                               |                                                                                         |                                                                                                                        | CA                                                                                                                              | 49,60                                                                                  |                                              | AL                               | 38.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                        | +K 11,42                         |                         |                    |                               |
| COORDIN                                                                                       | ATES IN                                                                                 | THE SYS                                                                                                                | TEM PLAGIOC                                                                                                                     | LASE - Ö                                                                               | LIVINE                                       | - CLING                          | PYROXENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - QUAR                                                    | TZ (IN HOL                       | E PERC                  | ENT)               |                               |
| PROPORT                                                                                       | ION OF                                                                                  | ANALYSIS                                                                                                               | IN BASALT                                                                                                                       | TETRAHED                                                                               | RON IS                                       | 93.69                            | MOLE PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RCENT                                                     |                                  |                         | 0.57               |                               |
| BASAL I                                                                                       | TETRAHE                                                                                 | DRUN<br>BROITECTY                                                                                                      | ם <u>ו</u> ם<br>אר                                                                                                              | 159.68<br>30 413                                                                       |                                              | CPX                              | 19.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PL                                                        | AG 52,11<br>44 50                |                         | 412                | 11.94                         |
|                                                                                               | PROJECT                                                                                 | TUN                                                                                                                    | אר                                                                                                                              | - 20,00<br>161,94                                                                      |                                              |                                  | 91.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           | 59,14                            |                         |                    | 34174<br>8.8                  |
| PLAGIOC                                                                                       | LASE PRI                                                                                | UJECTION                                                                                                               |                                                                                                                                 | 34,84                                                                                  |                                              |                                  | 40.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           | 0.0                              |                         |                    | 24.84                         |
| ULIVINE                                                                                       | PKOJEC                                                                                  | NUIT                                                                                                                   |                                                                                                                                 | ΰ.ΰ                                                                                    |                                              |                                  | 16.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           | 43.79                            | 0PX+                    | (4QTZ)             | <b>39</b> .99                 |
| CHAS PR                                                                                       | OJECTIO                                                                                 | 8                                                                                                                      |                                                                                                                                 |                                                                                        |                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                  |                         |                    |                               |
| (ETRAHE                                                                                       | OR NORD                                                                                 | BRDINATE                                                                                                               | 5 C                                                                                                                             | 17.14                                                                                  |                                              | м                                | 17.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                         | 12.02                            |                         | 5                  | 52,78                         |
| 010PS11                                                                                       | E PROJE                                                                                 | CTION                                                                                                                  | CIA                                                                                                                             | 32,22                                                                                  |                                              | ห                                | 14.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                         | 53,32                            |                         |                    |                               |
| ULIVINE                                                                                       | PROJEC                                                                                  | TION                                                                                                                   | CS                                                                                                                              | 22.83                                                                                  |                                              | n                                | 62.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                                         | 14.98                            |                         |                    |                               |
| ENSTATI                                                                                       | TE PROJ                                                                                 | ECTION                                                                                                                 | M25                                                                                                                             | 21.06                                                                                  |                                              | 0253                             | 39.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A2                                                        | 53 <b>3</b> 9,12                 |                         |                    |                               |
| QUAR'TZ                                                                                       | PROJECT.                                                                                | INN                                                                                                                    | CAS2                                                                                                                            | 61.49                                                                                  |                                              | <b>n</b> 5                       | 22.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CM                                                        | 32 16.14                         |                         |                    |                               |

.

,

-----

| URIGINAL WEIGHT<br>8102 AL203<br>54,97 12,98                                                | PERCEN<br>FE203                                    | FOXIDES<br>FEO<br>7.47                                           | MN()<br>, 16                               | HGD<br>10,57                   | CA0<br>9.20                      | NA20                                                | K 20<br>, 95          | TI02<br>.46                      | P205<br>, 09      | CR203                                                                                            | TOTAL<br>100.35            |
|---------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|--------------------------------|----------------------------------|-----------------------------------------------------|-----------------------|----------------------------------|-------------------|--------------------------------------------------------------------------------------------------|----------------------------|
| WEIGHT PERCENT<br>SID2 AL203<br>54.70 12.93                                                 | OXIDES  <br>FE203<br>.83                           | RECALCULAT<br>FEO<br>7,45                                        | ED TO 1<br>MNO<br>,16                      | 00 PERCI<br>MGD<br>10.53       | ENT<br>CAO<br>9.17               | NA20<br>2.76                                        | K 20<br>785           | TI02<br>,46                      | P205<br>,09       | CR203                                                                                            | 107AL<br>100.00            |
| CATION PROPORTI<br>SI AL<br>50.08 13.94<br>CIPW NORM                                        | ONS IN<br>Fe(3)<br>.57                             | ANALYSIS<br>Fe(2)<br>5.69                                        | MN<br>.12                                  | MG<br>14.35                    | в. 9 <b>8</b>                    | NA<br>4,89                                          | к<br>. 99             | <sup>TI</sup> .32                | <sup>۴</sup> . ۵7 | CR . 00                                                                                          |                            |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                            | QTZ<br>.000<br>.000<br>.000                        | COR<br>.80<br>.00<br>.90                                         | 0                                          | 0R<br>5.005<br>5.244<br>4.948  | ав<br>23.349<br>21,304<br>24.460 | 20.4<br>17.5<br>20.1                                | N<br>101<br>144<br>42 | LC<br>.000<br>.300<br>.440       | N4<br>.0<br>.0    | 50<br>10<br>20                                                                                   | КР<br>.000<br>.000         |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                            | AC<br>. 000<br>. 000<br>. 000                      | NS<br>. 00<br>. 00<br>. 00                                       |                                            | KS<br>.000<br>.000<br>.000     | DI<br>19,805<br>21.062<br>19.344 | . 0<br>. 0<br>. 0                                   |                       | HY<br>29.099<br>31.993<br>29.382 |                   | 59<br>20<br>52                                                                                   | CS<br>.000<br>.000<br>.000 |
| WEIGHT PERCENT<br>MOLE PERCENT<br>CATION PERCENT                                            | 1,200<br>1,240<br>,854                             | , 80<br>, 80<br>, 80<br>, 80                                     |                                            | .871<br>1.373<br>.630          | ни<br>, 800<br>, 800<br>, 008    | , 0<br>, 0                                          |                       | PF<br>.090<br>.000<br>.000       | R<br>. 0<br>. 0   | )<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | AP<br>212<br>151<br>185    |
| NORM TOTAL = 1<br>OLIVINE COMPOSI                                                           | 00.001<br>TION                                     | 90 F                                                             | -                                          | 74                             | 480                              |                                                     |                       |                                  |                   |                                                                                                  |                            |
| OR THOPYROXENE_C                                                                            | OMPOSIT                                            |                                                                  |                                            |                                | *70                              |                                                     |                       |                                  |                   |                                                                                                  |                            |
| CLINOPYROXENE                                                                               | OMPOSIT                                            |                                                                  | CREUSIL                                    | 11E 32.                        | 32U                              |                                                     |                       | c                                |                   |                                                                                                  |                            |
| WOLLASTONI<br>FELDSPAR COMPOS                                                               | TE 51.6<br>STTION                                  | 35 E                                                             | INSTATIT                                   | Έ 32.                          | 733                              | FERROSILI                                           | TE 15.0               | 631                              |                   |                                                                                                  |                            |
| ORTHOCLASE<br>PLAGIOCLAS                                                                    | IU.2<br>E COMPO                                    | SITION (PE                                                       | RC AN)                                     | 47.1                           | 891<br>630                       | ANORTHITE                                           | 41.0                  | 843                              |                   |                                                                                                  |                            |
| THORNION AND TL<br>SOLIDIFICATION<br>CRYSTALLIZATION<br>LARGEN INDEX (1<br>ALBITE RAFID (1) | ITTLE DI<br>INDEX (<br>INDEX<br>/3SI+K)<br>00*(AB+ | FFERENTIAT<br>100*MGD/(F<br>(AN+MG,DI4<br>-(CA+MG)<br>AB EGIY IN | 10N INC<br>160+FE0+<br>F0+F0 E<br>[ NE)/PL | EX<br>FE203+N<br>QIV OF<br>AG) | A20+K20))<br>EN)                 | = 28,35<br>= 46,95<br>= 48,22<br>= -6,84<br>= 53,37 |                       |                                  |                   |                                                                                                  |                            |
| MG NUMBER AS CA<br>OXIDATION RATIO<br>DENSITY OF DRY                                        | TIONS M<br>ACCORD<br>LIQUID                        | G/CATIONS<br>ING TO LE<br>OF THIS CO                             | (FE+MG)<br>MAITRE<br>MPUSITI               | (FEO/FE                        | 0+FE203)<br>1050 DEG)            | = 71.59<br>= .80<br>= 2.65                          | 99<br>16<br>14        |                                  |                   |                                                                                                  |                            |
| AFN RATIO<br>TOTAL ALKA                                                                     | LIS 16                                             | . 15                                                             | TOTAL F                                    | E 36.                          | 68                               | MG                                                  | 47.                   | 17                               |                   |                                                                                                  |                            |
|                                                                                             |                                                    |                                                                  |                                            |                                |                                  |                                                     |                       |                                  |                   |                                                                                                  |                            |
| KOMATIITE PARAM<br>FEO/(FEO+MGO)<br>,4374                                                   | IETERS<br>CAO/AL2                                  | 03 \$102/1<br>1 119                                              | 102 AL                                     | 203/110<br>29.22               | 2 FEO*/1<br>17.6                 | 102 CAO/<br>17 20.                                  | (1102 )<br>.00        | NA20/TIO2<br>6.022               | K20/T<br>1.848    | 102                                                                                              |                            |
| JENSEN CATION                                                                               | AL 203 -<br>39,98                                  | FEO+FE203<br>18.8                                                | 5+TIQ2 -                                   | MG0                            |                                  |                                                     |                       |                                  |                   |                                                                                                  |                            |
| QUARTZ - FELDSF<br>QUARTZ<br>QUARTZ<br>CATION PROPERTI                                      | AR RATI                                            | 05<br>.00<br>.00                                                 | OR THOCL                                   | ASE 10.<br>ASE 17.             | 27<br>65                         | PLAGIOCLA<br>Albite<br>20.39                        | SE 89.1               | 73<br>35<br>48.9                 | 7                 |                                                                                                  |                            |
|                                                                                             |                                                    | CA                                                               | 12.2                                       | 23                             | nG                               | 19.55                                               | 51                    | 68,2                             | 2                 |                                                                                                  | -                          |
|                                                                                             |                                                    | SI                                                               | 79.1                                       | 4                              | AL                               | 9.76                                                | MG                    | 20.1                             | ũ                 |                                                                                                  |                            |
|                                                                                             |                                                    | 2MG                                                              | 58.6                                       | 5                              | 2FE                              | 23.59                                               | SI,                   | /5 19.7                          | 7                 |                                                                                                  |                            |
| • •                                                                                         |                                                    | LA                                                               | 4/.3                                       | 14                             | AL                               | 38.87                                               | NA.                   | *K 13.3                          | /                 |                                                                                                  |                            |
| COORDINATES IN<br>PROPORTION OF 2                                                           | THE SYS                                            | TEM PLAGIC                                                       | ICLASE -                                   | GLIVIN<br>GRONDA I             | E - CLINC<br>8 97.39             | HOLE PER                                            | - QUAR'               | TZ (IN MO                        | LE PERC           | ENT)                                                                                             |                            |
| BASAL T TETRAHED                                                                            | RON                                                | 01                                                               | 23.6                                       | 6                              | CPX                              | 20.71                                               | PL                    | AG 47.7                          | 6                 | QTZ                                                                                              | 7.87                       |
| CLINOPYROXENE P                                                                             | ROJECTI                                            | an                                                               | 29,8                                       | 14                             |                                  | 0 - <b>D</b>                                        |                       | 60.2                             | 4                 |                                                                                                  | 9.92                       |
| QUARTZ PROJECTI                                                                             | <b>ON</b>                                          |                                                                  | 25.6                                       | 0                              |                                  | 22.48                                               |                       | 51.8                             | 4                 |                                                                                                  | 0.0                        |
| PLACIOCLASE PRO                                                                             | JECTION                                            |                                                                  | 45.2                                       | 9                              |                                  | 39,65                                               |                       | 0.0                              | 0 0DV.            |                                                                                                  | 15.06                      |
| OFININE AKOJECI                                                                             | TUN                                                |                                                                  |                                            |                                |                                  | 20.73                                               |                       | 47,7                             | 7 UPX+            | (44[2)                                                                                           | 31.46                      |
| CHAS PROJECTION                                                                             | 15                                                 | 0                                                                | • • •                                      |                                |                                  | 00.00                                               |                       |                                  | •                 | 13                                                                                               | 40 40                      |
| DIDESTNE PROFES                                                                             |                                                    | 5 C<br>674                                                       | 15,5                                       | (1)<br>(1)                     | m<br>N                           | 16.43                                               | A<br>Ľ                | 11,7                             | ,<br>А            | 3                                                                                                | 47 / 47<br>-               |
| ULIVINE PROJECT                                                                             | TION                                               | es.                                                              | 25.4                                       | 4                              | 8                                | 58,48                                               | 5                     | 15.9                             | 7                 |                                                                                                  |                            |
| ENSTATITE PROJE                                                                             |                                                    | - 36                                                             |                                            |                                |                                  |                                                     |                       |                                  |                   |                                                                                                  |                            |
|                                                                                             | CITON                                              | n.23                                                             | د، اک                                      | E                              | C2\$3                            | 35.47                                               | A2:                   | 53 33.2                          | 1                 |                                                                                                  |                            |
| QUARTZ PROJECTI                                                                             | CON CON                                            | CAS                                                              | 31.3<br>2 54.6                             | 3                              | C2\$3<br>M5                      | 35.47<br>28.99                                      | A2:<br>CM:            | 53 33.2<br>52 16.9               | 6                 |                                                                                                  |                            |

HLAGUTHI COMPLEX SAMPLE NUMBER BG 223

HLAGOTHI COMPLEX

SAMPLE NUMBER BG 226

| 0RIGINAL WEIGHT PERCENT 0)<br>SIO2 AL203 FE203<br>46.26 5.83 1.10 10 | (IDES<br>FEO HNO<br>1.61 .19           | HG0<br>30,97               | CAU<br>3.85        | NA20 K                 | 20 TIC           | 2 P20             | 5 CR203              | TOTAL<br>100,07 |
|----------------------------------------------------------------------|----------------------------------------|----------------------------|--------------------|------------------------|------------------|-------------------|----------------------|-----------------|
| WEIGHT PERCENT OXIDES REC                                            | LCULATED TO                            | 100 PERCEN                 | r<br>_C <u>Ą</u> Q | NA20 K                 | ι <u>έ</u> δ ττά | )2 P2(            | 5 CR2Q3              | TOTAL           |
| CATION PROPORTIONS IN ANAL                                           | LYSIS                                  | 30,73                      | 3,63               |                        | . 13             | i <b>-</b> , (    |                      | 100,00          |
| SI AL FE(3)<br>40.46 6.01 .78                                        | FE(2) MN<br>7.76 .14                   | MG<br>40,37                | 3.61               | NA K<br>.00 .          | 15 TI            | 16 <sup>1</sup>   | 13 <sup>CR</sup> .53 |                 |
| CIPW NORM                                                            |                                        |                            |                    |                        |                  |                   |                      |                 |
| WEIGHT PERCENT ,000                                                  | COR<br>.000                            | 0R<br>. 768                | . 000              | 15.513                 | LŰ<br>,0(        | ig                | NE<br>,000           | КР<br>. 000     |
| CATION PERCENT ,000                                                  | .000                                   | . 725                      |                    | 14.664                 | ,00              | 0                 | .000                 | . 000           |
| WEICHT PERCENT , 900                                                 | NS<br>. 000                            | KS<br>.000                 | 2,634              | . 5 5 0                | 37, 5            | 4 3               | 9.754                | C5<br>.000      |
| CATION PERCENT .000                                                  | . 000                                  |                            | 2:504              |                        | 37:35            | 72 4              | 1:595                | . 600           |
| WEIGHT PERCENT 1,708                                                 | CM<br>1.133                            | 11.<br>, 456<br>5.4        | нм<br>, 600        | TN<br>.000             | PF<br>. 0 (      | -<br>10           | RU<br>.000           | AP<br>.095      |
| CATION PERCENT 1,164                                                 | .799                                   | . 316                      | . 000              |                        | : 01             | 50                |                      | 079             |
| MAFIC INDEX = 83.724<br>NORM TOTAL = 100.005                         |                                        |                            |                    |                        |                  |                   |                      |                 |
| OLIVINE COMPOSITION<br>FORSTERITE 79.730                             | FAYALI                                 | TE 20,27                   | ü                  |                        |                  |                   |                      |                 |
| UR THOPYROXENE_COMPOSITION                                           | rcn 8 4 5                              |                            | -                  |                        |                  |                   |                      |                 |
| CLINDPYROXENE COMPOSITION                                            | FERRUS,                                | LLIE 18.74                 | 6                  |                        |                  |                   |                      |                 |
| WOLLASTONITE 52,498                                                  | ENSTAT                                 | ITE 38.59                  | 9                  | FERROSILITE            | 8,905            |                   |                      |                 |
| FELDSPAR COMPOSITION<br>ORTHOCLASE 4.715<br>Plagioclase composit     | ALBITE<br>IDN (PERC AN                 | 00,<br>*****               | Ú<br>₩             | ANORTHITE              | 95.285           |                   |                      |                 |
| THORNTON AND TUTTLE DIFFE<br>SULIDIFICATION INDEX (100               | RENTIATION IN<br>*MGO/(MGO+FE          | NDEX<br>D+FE203+NA2        | 0+к20))            | = 72.211<br>■ 72.211   |                  |                   |                      |                 |
| LARSEN INDEX (1/351+K)-(C                                            | +MG,DI+FU+FU<br>A+MG)<br>Fotu IN NE)/4 | EGIV UP EN                 | )                  | = 71.009<br>= -31.608  |                  |                   |                      |                 |
| IRON RATIO ((FÉZ=MN)+100/<br>Mg Number as cations Mg/C               | (FE2+MN+MG))<br>ATIONS (FE+M           | C)                         |                    | = 31.00℃<br>= 83.876   |                  |                   |                      |                 |
| DENSITY OF DRY LIQUID OF                                             | TO LE MAITR<br>THIS COMPOSI            | E (FEO/FEO+<br>TION (AF 10 | FE203)<br>50 DEG)  | ≥ .797<br>= 2,898      |                  |                   |                      |                 |
| TOTAL ALKALIS ,30                                                    | TOTAL                                  | FE 27.29                   |                    | nG                     | 72,41            |                   |                      |                 |
|                                                                      |                                        |                            |                    |                        |                  |                   |                      |                 |
|                                                                      |                                        |                            |                    |                        |                  |                   |                      |                 |
|                                                                      |                                        |                            |                    |                        |                  |                   |                      |                 |
|                                                                      |                                        |                            |                    |                        |                  |                   |                      |                 |
| KOMATIITE PARAMETERS                                                 |                                        |                            |                    |                        |                  |                   |                      |                 |
| FEO/(FEO+MGO) CAO/AL203<br>2737 66                                   | \$102/T102<br>192.75                   | AL203/FI02<br>24.29        | FEO*/T<br>48.6     | 102 CAO/TIC<br>2 16.04 | 02 NA207         | Г102 К20<br>0 .54 | 0/1102<br>42         |                 |
| JENSEN CATION AL203 - FE                                             | 0+FE203+T102                           | – nG0                      |                    |                        |                  |                   |                      |                 |
| 10.91                                                                | 15.79                                  | 73.30                      |                    |                        |                  |                   |                      |                 |
| QUARTZ - FELDSPAR RATIDS                                             | ORTHO                                  | CLASE 4.72                 |                    | PLACTOCLASE            | 95.28            |                   |                      |                 |
| QUARÍZ .00<br>CATION PROPORTIONS                                     | CA DRIHD                               | CLASE *****<br>.92         | FE                 | ALBITE<br>15.63        | MG               | 77.45             |                      |                 |
|                                                                      | CA 4                                   | . 27                       | MC                 | 47.81                  | SI 4             | 7,92              |                      |                 |
|                                                                      | SI 48                                  | .26                        | AL                 | 3.58                   | ng -             | 48,16             |                      |                 |
|                                                                      | 2MG 75                                 | . 80                       | 2FE                | 15.50                  | 5.[/5            | 7,70              |                      |                 |
|                                                                      | CH 3.3                                 |                            |                    | 4 <b>4</b> ,70         | NATE             | 1.55              |                      |                 |
| COORDINATES IN THE SYSTEM                                            | PLAGIOCLASE                            | - OLIVINE                  | - CLINO            | PYROXENE - G           | WARTZ (1)        | N MOLE PI         | ERCENT)              |                 |
| PROPORTION OF ANALYSIS IN                                            | BASALT TETR                            | AHEDRON IS                 | 96.92<br>CBY       | MOLE PERCEN            | NT<br>DIAC 1     | 5 17              | <b>11 7</b>          | D 70            |
| CLINOPYROXENE PROJECTION                                             | 74                                     | , 49<br>. 41               |                    | 2.38<br>0.04           | FLAG             | 15.13             | Lij 1 Z              | 10.05           |
| QUARTZ PROJECTION                                                    | 84                                     | .34                        |                    | 2,86                   |                  | 16.77             |                      | 0.0             |
| PLAGTOCLASE PROJECTION                                               | 85                                     | .41                        |                    | 3.04                   |                  | ű.Q               |                      | 11.54           |
| OLIVINE PROJECTION                                                   | Ű                                      | . 0                        |                    | 4.54                   | 1                | 26.59 04          | PX+(4QTZ)            | 68,86           |
| CMAS PROJECTIONS                                                     |                                        |                            |                    |                        |                  |                   |                      |                 |
| TETRAHEDRON COORDINATES                                              | с з                                    | , 86                       | м                  | 50.11                  | A                | 4.05              | 5                    | 41.99           |
| DIOPSIDE PROJECTION                                                  | C3A 15                                 | . 71                       | h                  | 33,78                  | 9 5              | 50,51             |                      |                 |
| OLIVINE PROJECTION                                                   | CS 12                                  | . 85                       | M<br>C 167         | 75.31                  | 5 1              | 1,84              |                      |                 |
| WUARTZ PROJECTION                                                    | CAS2 ##                                | ./U<br>★★★                 | 0283<br>MS         | 13,3/<br>****          | CMS2 4           | ****              |                      |                 |
|                                                                      |                                        |                            | -                  |                        |                  |                   |                      |                 |

| SAMPLE NUMBER BG 227                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                              |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                         |                                     |                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------|--------------------------------------------------|
| ORIGINAL WEIGHT PERCENT ON<br>SIO2 AL203 FE203                                                                                                                                                                                                                                                                                                                                                                                                          | XIDES<br>FEQ A                                                                                                                                                               | NO THEO                                                                                                                                                                                                              | CAQ                                                                                          | NAŻŲ                                                                                                                                                                         | ĸzo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1103                                                                                                                                                                                                | P205                    | CR203                               | TOTAL                                            |
| WEIGHT PERCENT OXIDES REC                                                                                                                                                                                                                                                                                                                                                                                                                               | B.49<br>ALCULATED                                                                                                                                                            | .19 18.45<br>TO 100 PERC                                                                                                                                                                                             | 7.47<br>ENT                                                                                  | . 61<br>NA20                                                                                                                                                                 | ,U4<br>K20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , 35<br>TT02                                                                                                                                                                                        | . 86<br>8205            | 00,<br>00,007                       | 100,37<br>TOTAI                                  |
| 55,54 7.99 .94                                                                                                                                                                                                                                                                                                                                                                                                                                          | B.46                                                                                                                                                                         | 19 18.38                                                                                                                                                                                                             | 7,44                                                                                         | .61                                                                                                                                                                          | .04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.35                                                                                                                                                                                                | . 16                    | CR203                               | 100.00                                           |
| SI AL FE(3)<br>50,58 8,56 ,64                                                                                                                                                                                                                                                                                                                                                                                                                           | FE(2) 1<br>6,44                                                                                                                                                              | 1N MG<br>15 24.95                                                                                                                                                                                                    | CA<br>7.26                                                                                   | NA<br>1,07                                                                                                                                                                   | K<br>. 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TI<br>.24                                                                                                                                                                                           | P.05                    | CR .00                              |                                                  |
| CIPW NORK                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                              |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                         |                                     |                                                  |
| QTZ<br>WEIGHT_PERCENT 5,862                                                                                                                                                                                                                                                                                                                                                                                                                             | COR<br>.000                                                                                                                                                                  | . 235                                                                                                                                                                                                                | AB<br>5.141                                                                                  | 18.95                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .000                                                                                                                                                                                                | N1                      | อื่อ                                | KP<br>. 000                                      |
| HOLE PERCENT 19.069<br>CATION PERCENT 5.338                                                                                                                                                                                                                                                                                                                                                                                                             | ,000<br>.000                                                                                                                                                                 | .202                                                                                                                                                                                                                 | 3,832<br>5,364                                                                               |                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .000                                                                                                                                                                                                | : 0                     | 40<br>00                            | .000<br>.000                                     |
| WEIGHT PERCENT . 000                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS<br>.000                                                                                                                                                                   | , 00 u                                                                                                                                                                                                               | 14.066                                                                                       | ы<br>.00                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HY                                                                                                                                                                                                  | 0.<br>. 0               | õo                                  | .000                                             |
| MOLE PERCENT ,000<br>Cation Percent ,000                                                                                                                                                                                                                                                                                                                                                                                                                | ,040<br>.000                                                                                                                                                                 | , û D Q<br>, û D Û                                                                                                                                                                                                   | 12,344                                                                                       | .001                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49 149                                                                                                                                                                                              | .0                      | 0 0<br>0 0                          | .000<br>.000                                     |
| MT<br>WEIGHT_PERCENT 1.363                                                                                                                                                                                                                                                                                                                                                                                                                              | CM<br>. 0 0 0                                                                                                                                                                | . 662                                                                                                                                                                                                                | н <b>н</b><br>. 0 0 (                                                                        | , 00                                                                                                                                                                         | D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PF.880                                                                                                                                                                                              | R (                     | 00                                  | AP<br>.142                                       |
| CATION PERCENT . 966                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,000<br>,00B                                                                                                                                                                 | , 479                                                                                                                                                                                                                | . 000                                                                                        |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .000                                                                                                                                                                                                | . 0                     |                                     | .123                                             |
| MAFIC INDEX = 69.809<br>NORM TOTAL = 180.004                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                              |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                         |                                     |                                                  |
| OLIVINE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                     | FAY                                                                                                                                                                          |                                                                                                                                                                                                                      | 0.0.0                                                                                        |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                         |                                     |                                                  |
| ORTHOPYROXENE_COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                              |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                         |                                     |                                                  |
| CLINOPYROXENE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                               | FERI                                                                                                                                                                         | RUSILITE 24,                                                                                                                                                                                                         | 087                                                                                          |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                         |                                     |                                                  |
| WOLLASTONITE 52.162                                                                                                                                                                                                                                                                                                                                                                                                                                     | ENS                                                                                                                                                                          | TATITE 36.                                                                                                                                                                                                           | 315                                                                                          | FERROSILIT                                                                                                                                                                   | E 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                                                                                                                                                                                                  |                         |                                     |                                                  |
| PLAGIOCLASE 000005111                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALB<br>ION (PERC                                                                                                                                                             | (TE 21.<br>AN) 78.                                                                                                                                                                                                   | 128<br>66 <b>6</b>                                                                           | ANORTHITE                                                                                                                                                                    | 77.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05                                                                                                                                                                                                  |                         |                                     |                                                  |
| THORN FON AND TUTTLE DIFFE                                                                                                                                                                                                                                                                                                                                                                                                                              | RENTIATIO                                                                                                                                                                    | N INDEX                                                                                                                                                                                                              | A20+K20)                                                                                     | = 11.239<br>= 64.669                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                         |                                     |                                                  |
| CRYSTALLIZATION INDEX (AN<br>LARSEN INDEX (1/3SI+K)-(C                                                                                                                                                                                                                                                                                                                                                                                                  | +MG,DI+FD<br>A+MG)<br>Fotu IN N                                                                                                                                              | FO EQIV OF                                                                                                                                                                                                           | EN)                                                                                          | = 58,479<br>= -16.166                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                         |                                     |                                                  |
| IRON RATIO ((FE2=MN)*100/<br>MG NUMBER AS_CATIONS MG/C                                                                                                                                                                                                                                                                                                                                                                                                  | (FE2+MN+M<br>ATIONS (F                                                                                                                                                       | 5))<br>5+MG)                                                                                                                                                                                                         |                                                                                              | = 37.737<br>= 79.482                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                         |                                     |                                                  |
| DENSITY OF DRY LIQUID OF                                                                                                                                                                                                                                                                                                                                                                                                                                | THIS COMP                                                                                                                                                                    | TRE (FEO/FE<br>SITION (AT                                                                                                                                                                                            | 0+FE203)<br>1050 DEG                                                                         | = 2.726                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                         |                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101                                                                                                                                                                          | TAL 65 73                                                                                                                                                                                                            | <b>07</b>                                                                                    | MC                                                                                                                                                                           | 64.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>e</b>                                                                                                                                                                                            |                         |                                     |                                                  |
| 101 ML ALKALIS 2.29                                                                                                                                                                                                                                                                                                                                                                                                                                     | , 0                                                                                                                                                                          | INC FE 32.                                                                                                                                                                                                           | 63                                                                                           | ne                                                                                                                                                                           | 04.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |                         |                                     |                                                  |
| UTAL ALKALIS 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                           | ING FE 32,                                                                                                                                                                                                           | 63                                                                                           | 16                                                                                                                                                                           | 04.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |                         |                                     |                                                  |
| UTAL ALKALIS 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                           | INC FE SE                                                                                                                                                                                                            | 63                                                                                           | ne                                                                                                                                                                           | 54.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |                         |                                     |                                                  |
| UTAL ALKALIS 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                       | , 0                                                                                                                                                                          | INC FE JE,                                                                                                                                                                                                           | 5                                                                                            | ne                                                                                                                                                                           | 54,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |                         |                                     |                                                  |
| UTAL ALKALIS 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,5                                                                                                                                                                           | ING FE SE,                                                                                                                                                                                                           | 83                                                                                           |                                                                                                                                                                              | 54,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                   |                         |                                     |                                                  |
| KOMATIITE PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8102/110                                                                                                                                                                     | - AL 207/110                                                                                                                                                                                                         | B3 6506/1                                                                                    |                                                                                                                                                                              | 102 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>1<br>1<br>10<br>2                                                                                                                                                               | ¥20/1                   | 102                                 |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>.3360 .93                                                                                                                                                                                                                                                                                                                                                                                            | \$102/T10<br>159.29                                                                                                                                                          | 2 AL203/TIO<br>22.91                                                                                                                                                                                                 | 02 FEO*/1<br>26.0                                                                            | 102 CAO/1<br>21.3                                                                                                                                                            | 102 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A20/TI02<br>1.743                                                                                                                                                                                   | K20/T<br>.114           | 102                                 |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>JENSEN CATION AL203 - FE<br>21,00                                                                                                                                                                                                                                                                                                                                                                    | \$102/T10<br>159.29<br>0+FE203+F                                                                                                                                             | 2 AL203/TIO<br>22.91<br>102 - MGO<br>61.08                                                                                                                                                                           | 02 FEO*/1<br>26.0                                                                            | 102 CAO/1<br>57 21.3                                                                                                                                                         | 102 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 420/1102<br>1.743                                                                                                                                                                                   | K20/T<br>.114           | 102                                 |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>JENSEN CATION AL203 - FE<br>21,00                                                                                                                                                                                                                                                                                                                                                                    | 8102/T10<br>159.29<br>0+FE203+F<br>17.93                                                                                                                                     | 2 AL.203/TIO<br>22.91<br>102 - MGO<br>61.08                                                                                                                                                                          | 02 FEO*/1<br>26.0                                                                            | 102 CAO/1<br>57 21.3                                                                                                                                                         | 102 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A20/TIO2                                                                                                                                                                                            | K20/T<br>.114           | 102                                 |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>.3360 .93<br>JENSEN CATION AL203 - FE<br>21.00<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 52.10                                                                                                                                                                                                                                                                                                           | 8102/T10<br>159.29<br>0+FE203+F<br>17.93                                                                                                                                     | 2 AL203/TIO<br>22.91<br>102 - MGO<br>61.08<br>THOCLASE<br>THOCLASE 2.                                                                                                                                                | 78                                                                                           | FLAGIOCLAS                                                                                                                                                                   | 102 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A20/TIO2<br>1.743                                                                                                                                                                                   | K20/T<br>.114           | 102                                 |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>.3360 - 93<br>JENSEN CATION AL203 - FE<br>21.00 - FELDSPAR RATIOS<br>QUARTZ 19.41<br>QUARTZ 52.16<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                              | 8102/TID<br>155.29<br>0+FE203+1<br>17.93<br>CA                                                                                                                               | 2 AL.203/TIO<br>22.91<br>102 - MGO<br>61.08<br>THOCLASE<br>THOCLASE 2;<br>18.63                                                                                                                                      | 2 FE0*/1<br>26.0<br>78                                                                       | PLAGIOCLAS                                                                                                                                                                   | 102 N<br>45.7<br>MG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A20/TIO2<br>1.743                                                                                                                                                                                   | K20/T<br>.114           | 102                                 |                                                  |
| KOMATIIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>.3360 .93<br>JENSEN CATION AL203 - FE<br>21,00<br>QUARTZ 19.41<br>QUARTZ 52.16<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                | SI02/TI0<br>159.29<br>0+FE203+F<br>17.93<br>CA<br>CA<br>CA<br>ST                                                                                                             | 2 AL.203/TIO<br>22.91<br>102 - MGO<br>61.08<br>THOCLASE<br>100CLASE<br>100CLASE<br>10.63<br>9.77<br>53 77                                                                                                            | 2 FE0*/1<br>26.0<br>78<br>10<br>FE<br>MG                                                     | FLAGIOCLAS<br>ALBITE<br>17.35<br>30.14                                                                                                                                       | 102 N<br>4<br>4<br>5<br>5<br>102 N<br>4<br>5<br>5<br>1<br>102 N<br>5<br>1<br>102 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A20/TIO2<br>1.743<br>4<br>64.02<br>61.09                                                                                                                                                            | K20/T<br>.114           | 102                                 |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>.3360 -93<br>JENSEN CATION AL203 - FE<br>21,00<br>QUARTZ - EELDSPAR RATIOS<br>QUARTZ 19.41<br>QUARTZ 52.16<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                     | 8102/T10<br>155.29<br>0+FE203+F<br>17.93<br>CA<br>CA<br>SI<br>2MC                                                                                                            | 2 AL.203/TIO<br>22.91<br>102 - MGB<br>61.08<br>THOCLASE<br>10.43<br>9.77<br>63.37<br>57.86                                                                                                                           | 2 FE0*/1<br>26.1<br>78<br>10<br>FE<br>MG<br>AL<br>2FE                                        | PLAGIOCLAS<br>ALBITE<br>17.35<br>30.14<br>5.37<br>18.39                                                                                                                      | 102 N<br>42.8<br>45.7<br>NG<br>SI<br>MG<br>SI/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A20/TIO2<br>1.743<br>4<br>64.02<br>61.09<br>31.26<br>5 13.76                                                                                                                                        | K20/T<br>.114           | 102                                 |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>JENSEN CATION AL203 - FE<br>21,00<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 19.41<br>QUARTZ 52.16<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                  | SI02/TID<br>159.29<br>0+FE203+F<br>17.93<br>CA<br>CA<br>CA<br>SI<br>2MC<br>CA                                                                                                | 2 AL.203/TIO<br>22.91<br>102 - MGO<br>61.08<br>THOCLASE<br>18.63<br>9.77<br>63.37<br>57.86<br>59.97                                                                                                                  | 2 FE0*/1<br>26.0<br>FE<br>MG<br>AL<br>2FE<br>AL                                              | FLAGIOCLAS<br>ALBITE<br>17.35<br>30.14<br>5.37<br>18.39<br>35.41                                                                                                             | 102 N<br>4<br>4<br>5<br>5<br>1<br>102 N<br>4<br>5<br>1<br>102 N<br>102 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A20/TIO2<br>1.743<br>4 64,02<br>61.09<br>31.26<br>5 13.76<br>K 4.62                                                                                                                                 | K20/T<br>.114           | 102                                 |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>JENSEN CATION AL203 - FE<br>21,00<br>QUARTZ - EELDSPAR RATIOS<br>QUARTZ 52.16<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                  | SI02/TI0<br>159.29<br>0+FE203+F<br>17.93<br>CA<br>CA<br>SI<br>2MC<br>CA<br>SI<br>2MC<br>CA                                                                                   | 2 AL.203/TIO<br>22.91<br>102 - MGB<br>61.08<br>THOCLASE<br>10.43<br>9.77<br>63.37<br>57.86<br>59.97                                                                                                                  | 2 FE0*/1<br>26.1<br>78<br>10<br>FE<br>MG<br>AL<br>2FE<br>AL                                  | FLAGIOCLASI<br>ALBITE<br>17.35<br>30.14<br>5.37<br>18.39<br>35.41                                                                                                            | 102 N<br>42.2<br>45.7<br>NG<br>SI<br>MG<br>SI/<br>NA+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A20/TIO2<br>1.743<br>4 64.02<br>61.09<br>31.26<br>5 13.76<br>K 4.62<br>Z (IN MOL                                                                                                                    | K20/T<br>-114           | 102<br>En ( )                       |                                                  |
| KOMATIIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>JENSEN CATION AL203 - FE<br>21,00<br>QUARTZ 19.41<br>QUARTZ 52.16<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN                                                                                                                                                                                                                                                   | SI02/TID<br>159.29<br>0+FE203+F<br>17.93<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAG10CL<br>BASALT T                                                                        | 2 AL.203/TIO<br>22.91<br>102 - MGO<br>61.08<br>THOCLASE 2;<br>18.63<br>9.77<br>63.37<br>67.86<br>59.97<br>ASE - OLIVIN<br>ETRAMEDRON I                                                                               | 2 FE0*/1<br>78<br>10<br>FE<br>MG<br>AL<br>2FE<br>AL<br>85 98,20                              | PLAGIOCLAS<br>ALBITE<br>17.35<br>30.14<br>5.37<br>18.39<br>35.41<br>DPYROXENE -<br>MOLE PERCI                                                                                | 102 N<br>4<br>4<br>5<br>5<br>102 N<br>4<br>5<br>5<br>1<br>102 N<br>4<br>5<br>1<br>102 N<br>102 N<br>10<br>N<br>10<br>N<br>10<br>N<br>10<br>N<br>10<br>N<br>10<br>N<br>10<br>N<br>10 | A20/TIO2<br>1.743<br>4 64.02<br>61.09<br>31.26<br>5 13.76<br>K 4.62<br>Z (IN MOL                                                                                                                    | K20/T<br>.114           | 102<br>En ( )                       |                                                  |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>JENSEN CATION AL203 - FE<br>QUARTZ - EELDSPAR RATIOS<br>QUARTZ 19.41<br>QUARTZ 52.16<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAMEDRON                                                                                                                                                                                                           | BI02/TI0<br>159.29<br>0+FE203+f<br>27.93<br>0R<br>CA<br>CA<br>SI<br>2MC<br>CA<br>PLAGIOCL<br>BASALT T<br>0L                                                                  | 2 AL.203/TIO<br>22.91<br>102 - MG3<br>51.08<br>1HOCLASE<br>10.43<br>9.77<br>53.37<br>57.86<br>59.97<br>ASE - OLIVIN<br>EIRAMEDRON I<br>42.03                                                                         | 2 FE0*/1<br>26.1<br>78<br>10<br>FE<br>MG<br>AL<br>2FE<br>AL<br>8E 7 CLING<br>5 98.20<br>CPX  | PLAGIOCLASI<br>ALBITE<br>17.35<br>30.14<br>5.37<br>18.39<br>35.41<br>DPYROXENE -<br>MOLE PERCI<br>14.40                                                                      | ID2 N<br>E 79.8<br>45.7<br>SI<br>MG<br>SI/<br>NA+<br>QUART<br>ENT<br>PLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A20/TIO2<br>1.743<br>4 64.02<br>61.09<br>31.26<br>5 13.76<br>K 4.62<br>Z (IN MOL<br>G 24.45                                                                                                         | K20/T<br>.114           | 102<br>En ( )<br>QTZ                | 19,45                                            |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>3360 93<br>JENSEN CATION AL203 - FE<br>21.00<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ 52.16<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAMEDRON<br>CLINUPYROXENE PROJECTION                                                                                                                                                                             | SI02/TI0<br>159.29<br>0+FE203+F<br>17.93<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLI<br>BASALT T<br>0L                                                                 | 2 AL.203/TIO<br>22.91<br>102 - MG3<br>61.08<br>1HOCLASE<br>10.63<br>9.77<br>63.37<br>67.86<br>59.97<br>ASE - OLIVIN<br>ETRAMEORON I<br>42.03<br>48.92                                                                | 2 FE0*/1<br>78<br>70<br>FE<br>AL<br>2FE<br>AL<br>5 98,20<br>CPX                              | PLACIOCLAS<br>PLACIOCLAS<br>ALBITE<br>17.35<br>30.14<br>5.37<br>18.39<br>35.41<br>DPYROXENE -<br>MULE PERCO<br>14.00<br>0.0                                                  | 102 N<br>4<br>4<br>5<br>5<br>5<br>8<br>5<br>7<br>8<br>5<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A20/TIO2<br>1.743<br>4 64.02<br>61.09<br>31.26<br>5 13.76<br>K 4.62<br>2 (IN MOL<br>G 24.45<br>28.45                                                                                                | K20/T<br>.114           | 102<br>En ()<br>QTZ                 | 19.45<br>22.63                                   |
| KOMATIIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>JENSEN CATION AL203 - FE<br>21.00<br>QUARTZ 52.16<br>GUARTZ 52.16<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPURTION OF ANALYSIS IN<br>BASALT TETRAMEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION                                                                                                                                                                            | 8102/TID<br>159.29<br>0+FE203+F<br>17.93<br>CA<br>CA<br>CA<br>SI<br>2MC<br>CA<br>SI<br>2MC<br>CA<br>PLAGIOCLI<br>BASALT T<br>UL                                              | 2 AL203/TIO<br>22.91<br>102 - MGO<br>61.08<br>1HOCLASE 2,<br>18.63<br>9.77<br>63.37<br>57.86<br>59.97<br>ASE - OLIVIN<br>EIRAMEORON I<br>42.03<br>48.92<br>52.18                                                     | 2 FE0*/1<br>26.0<br>FE<br>MG<br>AL<br>2FE<br>AL<br>85 98,20<br>CPX                           | FID2 CAO/T<br>57 21.3<br>PLAGIOCLAS<br>ALBITE<br>17.35<br>30.14<br>5.37<br>18.39<br>35.41<br>DPYROXENE -<br>MDLE PERCI<br>14.00<br>0.0 -<br>17.48                            | IO2 N<br>E 29.8<br>42.2<br>NG<br>SI<br>MG<br>SI/<br>NA+<br>QUART<br>ENT<br>PLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A20/TIO2<br>1.743<br>4 64.02<br>61.09<br>31.26<br>5 13.76<br>K 4.62<br>2 (IN MOL<br>G 24.45<br>28.45<br>30.35                                                                                       | K20/T<br>.114           | 102<br>En()<br>QTZ                  | 19.45<br>22.63<br>0.0                            |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>3360 CAO/AL203 - FE<br>21,00 PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF AMALYSIS IN<br>BASALT TETRAMEDRON<br>CLINOPYROXENE PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                                                                                                                                       | 8102/T10<br>159.29<br>0+FE203+F<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCL<br>BASALT T<br>UL                                                                                 | 2 AL.203/TIO<br>22.91<br>102 - MGD<br>61.08<br>140CLASE 2;<br>18.63<br>8.77<br>53.37<br>57.86<br>59.97<br>ASE - OLIVIN<br>EIRAMEORON I<br>42.03<br>48.92<br>52.18<br>55.63                                           | 78<br>10<br>78<br>10<br>78<br>10<br>78<br>41<br>2FE<br>AL<br>2FE<br>AL<br>35<br>98,20<br>CPX | PLAGIOCLAS<br>ALBITE<br>17.35<br>30.14<br>5.37<br>18.39<br>35.41<br>DPYROXEME -<br>MULE PERCO<br>14.00<br>0.0 -<br>17.48<br>18.63                                            | 102 N<br>4<br>4<br>5<br>5<br>5<br>5<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>8<br>1<br>8<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A20/TIO2<br>1.743<br>64.02<br>61.09<br>31.26<br>5 13.76<br>K 4.62<br>2 (IN MOL<br>G 24.45<br>28.45<br>30.35<br>0.0                                                                                  | K20/T<br>.114           | 102<br>EN()<br>UTZ                  | 19.45<br>22.63<br>0.0<br>25.74                   |
| KOMATIIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>JENSEN CATION AL203 - FE<br>21.00<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ 52.16<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPURTION OF ANALYSIS IN<br>BASALT TETRAMEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                                                        | 8102/TID<br>159.29<br>0+FE203+F<br>17.93<br>CA<br>CA<br>CA<br>SI<br>2MC<br>CA<br>PLAGIOCLI<br>BASALT T<br>UL                                                                 | 2 AL 203/TIO<br>22.91<br>102 - MGO<br>61.08<br>THOCLASE 2;<br>10.63<br>9.77<br>63.37<br>67.86<br>59.97<br>ASE - OLIVIN<br>EIRAMEORON I<br>42.03<br>48.92<br>52.18<br>55.63<br>0.0                                    | 2 FE0*/1<br>78<br>10<br>FE<br>AL<br>2FE<br>AL<br>65 98,20<br>CPX                             | FID2 CAO/T<br>57 21.3<br>PLAGIOCLAS<br>ALBITE<br>17.35<br>30.14<br>5.37<br>18.39<br>35.41<br>DPYROXENE -<br>MDLE PERCI<br>14.00<br>0.0 -<br>17.48<br>18.63<br>12.10          | IO2 N<br>E 79.8<br>4<br>4<br>SI<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A20/TIO2<br>1.743<br>4 64.02<br>61.09<br>31.26<br>5 13.76<br>K 4.62<br>Z (IN MOL<br>G 24.45<br>28.45<br>30.35<br>0.0<br>21.02                                                                       | K20/T<br>.114<br>E PERC | 102<br>ENT)<br>QTZ<br>(4QTZ)        | 19,45<br>22.63<br>0.0<br>25.74<br>66.88          |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>JENSEN CATION AL203 - FE<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ S2.16<br>QUARTZ 52.16<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF AMALYSIS IN<br>BASALT TETRAMEDRON<br>CLINOPIROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CHAS PROJECTIONS                                                                                                                                  | 8102/TI0<br>159.29<br>0+FE203+F<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCL<br>BASALT T<br>UL                                                                                 | 2 AL.203/TIO<br>22.91<br>102 - MGD<br>61.08<br>THOCLASE 2;<br>18.63<br>8.77<br>53.37<br>57.86<br>59.97<br>ASE - OLIVIN<br>EIRAMEORON I<br>42.03<br>48.92<br>52.18<br>55.63<br>0.0                                    | 78<br>10<br>78<br>10<br>78<br>4L<br>2FE<br>AL<br>2FE<br>AL<br>5<br>98,20<br>CPX              | PLACIOCLAS<br>ALBITE<br>17.35<br>30.14<br>5.37<br>18.39<br>35.41<br>DPYROXEME -<br>MULE PERCO<br>14.00<br>0.0 -<br>17.48<br>18.63<br>12.10                                   | 102 N<br>4<br>4<br>5<br>5<br>5<br>5<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>8<br>8<br>1<br>8<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A20/TIO2<br>1.743<br>4<br>64.02<br>61.09<br>31.26<br>5 13.76<br>K 4.62<br>2 (IN MOL<br>G 24.45<br>20.35<br>0.0<br>21.02                                                                             | K20/T<br>.114<br>E PERC | 102<br>ENT)<br>QTZ<br>(4QTZ)        | 19.45<br>22.63<br>0.0<br>25.74<br>66.88          |
| KOMATILITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>JENSEN CATION AL203 - FE<br>21,00<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ 52.16<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAMEDRON<br>CLINUPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>ULIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>NOBCIDE DESCRIPTION                                            | SI02/TI0<br>159.29<br>0+FE203+F<br>17.93<br>CA<br>CA<br>SI<br>2MC<br>CA<br>PLAGIOCLI<br>BASALT T<br>UL                                                                       | 2 AL.203/TIO<br>22.91<br>102 - MGO<br>61.08<br>1HOCLASE 2;<br>1B.63<br>9.77<br>63.37<br>67.86<br>59.97<br>ASE - OLIVIN<br>EIRAMEORON I<br>42.03<br>48.92<br>52.18<br>55.63<br>0.0<br>8.79                            | 78<br>10<br>FE<br>MG<br>AL<br>2FE<br>AL<br>65<br>98,20<br>CPX                                | FLAGIOCLAS<br>ALBITE<br>17.35<br>30.14<br>5.37<br>18.39<br>35.41<br>DPYROXENE -<br>HOLE PERCI<br>14.08<br>0.0 -<br>17.48<br>18.63<br>12.10                                   | IO2 N<br>E 79.8<br>MG<br>SI<br>MG<br>SI/<br>NA+<br>QUART<br>PLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A20/TIO2<br>1.743<br>4 64,02<br>61.09<br>31.26<br>5 13.76<br>K 4.62<br>2 (IN MOL<br>G 24.45<br>20.45<br>30.35<br>0,0<br>21.02<br>5.72                                                               | K20/T<br>.114<br>E PERC | 102<br>ENT)<br>QTZ<br>(4QTZ)<br>S   | 19,45<br>22.63<br>0.0<br>25.74<br>66.88<br>52.36 |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>3360 CAO/AL203<br>JENSEN CATION AL203 - FE<br>QUARTZ - FELDSPAR RATIOS<br>QUARTZ 52.16<br>QUARTZ 52.16<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF AMALYSIS IN<br>BASALT TETRAMEDRON<br>CLINOPTROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>DI JUINE PROJECTION                                       | SI02/TI0<br>159.29<br>0+FE203+F<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLA<br>BASALT T<br>OL<br>C<br>CJA<br>C<br>C                                                          | 2 AL.203/110<br>2 AL.203/110<br>102 - MGB<br>61.08<br>1HOCLASE 2;<br>18.63<br>8.77<br>53.37<br>57.86<br>59.97<br>ASE - DLIVIN<br>EIRAMEORON I<br>42.03<br>48.92<br>52.18<br>55.63<br>0.0<br>8.79<br>20.90<br>14.57   | 78<br>10<br>78<br>10<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>05<br>98,20<br>CPX       | PLACIOCLAS<br>ALBITE<br>17.35<br>30.14<br>5.37<br>18.39<br>35.41<br>DPYROXENE -<br>MDLE PERCO<br>14.00<br>0.0 -<br>17.48<br>18.63<br>12.10<br>33.13<br>22.69<br>77.17        | 102 N<br>E 29.8<br>45.7<br>SI<br>MG<br>SI/<br>NA+<br>QUART<br>PLA<br>-<br>A<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A20/TI02<br>1.743<br>4 64.02<br>61.09<br>31.26<br>5 13.76<br>K 4.62<br>2 (IN MOL<br>G 24.45<br>20.35<br>0.0<br>21.02<br>5.72<br>56.33<br>6.72                                                       | K20/T<br>114            | 102<br>ENT)<br>QTZ<br>(4QTZ)<br>S   | 19.45<br>22.63<br>0.0<br>25.74<br>66.88<br>52.36 |
| KOMATIITE PARAMETERS<br>FEO/(FEO+MGD) CAO/AL203<br>JENSEN CATION AL203 - FE<br>21,00<br>QUARTZ FELDSPAR RATIOS<br>QUARTZ 52.16<br>CATION PROPORTIONS<br>COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAMEDRON<br>CLINUPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>ULIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>ULIVINE PROJECTION<br>ULIVINE PROJECTION | SI02/TID<br>SI02/TID<br>159.29<br>0+FE203+F<br>CA<br>CA<br>CA<br>SI<br>2MC<br>CA<br>PLAGIOCLA<br>BASALT TA<br>OR<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA<br>CA | 2 AL.203/TIO<br>22.91<br>102 - MG3<br>61.08<br>1HOCLASE 2;<br>18.63<br>9.77<br>63.37<br>67.86<br>59.97<br>ASE - OLIVIN<br>EIRAMEDRON I<br>42.03<br>48.92<br>52.18<br>55.63<br>0.0<br>8.79<br>20.98<br>14.53<br>13.04 | 2 FE0*/1<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78       | PLACIOCLAS<br>ALBITE<br>17.35<br>30.14<br>5.37<br>18.39<br>35.41<br>DPYRBXENE -<br>MDLE PERCI<br>14.08<br>0.0<br>17.48<br>10.63<br>12.10<br>33.13<br>22.69<br>77.17<br>46.86 | IO2 N<br>E 79.8<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>MG<br>SI<br>A<br>S<br>S<br>A<br>S<br>S<br>A<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A20/TIO2<br>1.743<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>6<br>1.743<br>1.76<br>5<br>13.76<br>K<br>4.62<br>2<br>(IN MOL<br>G<br>24.45<br>30.35<br>0.0<br>21.02<br>5.72<br>56.33<br>B.30<br>3<br>40.10 | K20/T<br>.114           | 102<br>EN [ )<br>QTZ<br>(4QTZ)<br>S | 19,45<br>22.63<br>0.0<br>25.74<br>64.88<br>52.36 |

HLAGOTHI COMPLEX

İ

| HLAGOTHI COMPLI<br>SAMPLE NUMBE                                                                                                                                      | EX<br>8 BG 228                                                                                                                           | )                                                                                                                                                       |                                                                                                         |                                           |                             |                                                                           | :                          | 310                          |              |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|---------------------------------------------------------------------------|----------------------------|------------------------------|--------------|--------------------------|
| DRICINAL WEI<br>SIDZ AL20<br>49.14 5.8                                                                                                                               | GHT PERCENT<br>5 FE203<br>5 1.16                                                                                                         | OXIDES<br>FEO F<br>10.40                                                                                                                                | INO MGO<br>20 26.22                                                                                     | CAQ<br>5.11                               | NA20<br>. 43                | K 20<br>. 36                                                              | T102<br>.31                | P205                         | CR203        | TOTAL<br>99,81           |
| WEIGHT PERCEN<br>5102 AL.203<br>49.24 5.8                                                                                                                            | NT OXIDES R<br>3 FE2O3<br>5 1.16                                                                                                         | ECALCULATED<br>FEO<br>10.42                                                                                                                             | TO 100 PER<br>INO MGO<br>20 26.27                                                                       | CENT<br>CAO<br>5.12                       | NA20<br>.43                 | K20<br>,36                                                                | T102<br>.31                | P205                         | CR203        | TOTAL<br>100.00          |
| CATION PROPOR<br>SI AL<br>43.74 6.14                                                                                                                                 | TIDNS IN A<br>FE(3)<br>4 .77                                                                                                             | NALYSIS<br>FE(2)<br>7.74                                                                                                                                | N MG<br>15 34.70                                                                                        | 4.87                                      | NA<br>.74                   | K<br>. 41                                                                 | 71<br>,21                  | P.05                         | CR . 39      |                          |
| CIPW NORM                                                                                                                                                            | <b>67</b> 7                                                                                                                              | COP                                                                                                                                                     | 0P                                                                                                      | 48                                        |                             | AN                                                                        | 10                         | NI                           |              | ۲P                       |
| WEIGHT PERCE<br>HOLE PERCENT<br>CATION PERCE                                                                                                                         | NT .000<br>.000<br>NT .000                                                                                                               |                                                                                                                                                         | 2,131<br>1,870<br>2,044                                                                                 | 3,64<br>2,78<br>3,71                      | 4 12.<br>5 9.<br>12.        | 994<br>358<br>464                                                         | .000<br>.000<br>.000       | . 00<br>. 00<br>. 00<br>. 00 | ))<br>D<br>D | . 000<br>. 000<br>. 000  |
| WEIGHT PERCE<br>Mole Percent<br>Cation Perce                                                                                                                         | NT .000<br>.000<br>.000<br>NT .000                                                                                                       | NS<br>.000<br>.000<br>.000                                                                                                                              | K3<br>. <b>000</b><br>. 000<br>. 000                                                                    | 529<br>8,504<br>9,168                     | 9 .<br>4 .<br>8 .           |                                                                           | 43.271<br>40.997<br>43.682 | 23.174<br>33.316<br>26.62    | 4<br>23      | .000<br>.000<br>.000     |
| WEIGHT PERCEN<br>HOLE PERCENT<br>CATION PERCE                                                                                                                        | HT<br>NT 1.679<br>1.453<br>NT 1.161                                                                                                      | CM<br>,626<br>,740<br>,591                                                                                                                              | IL<br>550<br>779<br>415                                                                                 | ММ<br>.000<br>.000<br>.000                |                             | TN<br>800<br>000<br>000                                                   | PF<br>.000<br>.000<br>.000 | RU<br>.000<br>.000<br>.000   | 0.<br>0      | AP<br>166<br>199<br>.141 |
| MAFIC INDEX :<br>NORM TOTAL                                                                                                                                          | = B1,236<br>= 100,005                                                                                                                    |                                                                                                                                                         |                                                                                                         |                                           |                             |                                                                           |                            |                              |              |                          |
| OLIVINE COMP<br>FORSTER                                                                                                                                              | DSTTION                                                                                                                                  | 95 FAY                                                                                                                                                  | ALITE 22                                                                                                | . 815                                     |                             |                                                                           |                            |                              |              |                          |
| OR THOPYROXEN                                                                                                                                                        | ECOMPOSITI                                                                                                                               |                                                                                                                                                         | 00571 TTE 21                                                                                            | 149                                       |                             |                                                                           |                            |                              |              |                          |
| CLINOPYROXEN                                                                                                                                                         | E COMPOSITE<br>DNITE 52,34                                                                                                               | ION<br>17 Ensi                                                                                                                                          | ATITE 37                                                                                                | .575                                      | FERROSIL                    | ITE 10.0                                                                  | 78                         |                              |              |                          |
| FELDSPAR COM<br>Orthocl<br>Plagioc                                                                                                                                   | POSITION<br>ASE 11,35<br>LAGE COMPOS                                                                                                     | 56 ALBI<br>SITION (PERC                                                                                                                                 | (TE 19<br>AN) 76                                                                                        | .417<br>.096                              | ANORTHIT                    | E 69.2                                                                    | 28                         |                              |              |                          |
| THORNTON AND<br>SOLIDIFICATI<br>CRYSTALLIZAT<br>LARSEN INDEX<br>ALBITE RATIO<br>IRON RATIO (<br>MG NUMBER AS<br>OXIDATION RA<br>DENBITY OF D<br>AFM RATIO<br>TOTAL A | TUTTLE DI<br>DN INDEX (<br>ION INDEX (<br>(1/JSI+K))<br>(100*(AB+/<br>(FE2=HN)*11<br>CATIONS MO<br>TIO ACCORD<br>RY LIQUID (<br>LKALIS 2 | FERENTIATION<br>SUD*MGD/(MGD/<br>(AN+MG,DI*FO<br>-(CA+HG)<br>AB EQIV IN NG<br>DD/(FE2+MN+MG<br>)/CATIONS (FG<br>ING TO LE MA<br>DF THIS COMP(<br>,05 TO | NINDEX<br>HEOLFE2203+<br>HEOLEQIV OF<br>)/PLAG)<br>))<br>HMG)<br>(TRE (FEO/F<br>STIIDN (AT<br>FAL FE 25 | NA20+K20)<br>EN)<br>EO+FE203)<br>1050 DEG |                             | 26<br>88<br>60<br>77<br>94<br>54<br>94<br>94<br>94<br>268,1<br>42<br>68,1 | 9                          |                              |              |                          |
| KOMATIITE PA<br>FEO/(FEO+MGD)<br>.3038                                                                                                                               | RAMETERS<br>CAO/AL2(<br>. B                                                                                                              | 03 5102/T10<br>2 158.52                                                                                                                                 | 2 AL203/11<br>18.87                                                                                     | 02 FEO*/<br>36.                           | TID2 CAQ<br>90 16           | 1/TIO2 1                                                                  | 4420/TIO2<br>1,387         | K20/TI<br>1,16)              | 02           |                          |
| JENSEN CATIO                                                                                                                                                         | N AL203 -<br>12.36                                                                                                                       | FED+FE203+7)<br>17.57                                                                                                                                   | 102 - MGO<br>70,06                                                                                      |                                           |                             |                                                                           |                            |                              |              |                          |
| QUARTZ - FEL<br>QUARTZ<br>QUARTZ<br>CATION PROPO                                                                                                                     | DSPAR RATIO                                                                                                                              | 05<br>.00 08<br>.00 08                                                                                                                                  | HOCLASE 11<br>HOCLASE 36                                                                                | .36<br>.90<br>FE                          | PLACIOCL<br>ALBITE<br>12.01 | ASE 88.8<br>63.1<br>Mg                                                    | 72.75                      | ,                            |              |                          |
|                                                                                                                                                                      |                                                                                                                                          | CA                                                                                                                                                      | 5.84                                                                                                    | HG                                        | 41 / 71                     | sı                                                                        | .52.45                     | ī                            |              |                          |
|                                                                                                                                                                      |                                                                                                                                          | SI                                                                                                                                                      | 53.61                                                                                                   | AL                                        | 3.76                        | HG                                                                        | 42.63                      | 5                            |              |                          |
|                                                                                                                                                                      |                                                                                                                                          | 2MG<br>Ca                                                                                                                                               | 73.55                                                                                                   | 2FE<br>AL                                 | 17.19<br>36.03              | SI/<br>NA1                                                                | ′5 9,25<br>•K 6,76         |                              |              |                          |
| COORDINATES                                                                                                                                                          | IN THE SYS                                                                                                                               | TEM PLAGIOCL                                                                                                                                            | ASE - OLIVI                                                                                             | NE - CLIN                                 | OPYROXENE                   |                                                                           | TZ (IN MOL                 | E PERCE                      | (16          |                          |
| BASALT TETRA                                                                                                                                                         | HEDRON                                                                                                                                   | ÜL                                                                                                                                                      | 62.09                                                                                                   | CPX                                       | 9.59                        | ድር ብር ትር ብር ትር ብር ትር ብር ትር            | AG 16.91                   | t                            | Qrz          | 11.42                    |
| CLINGPYRUXEN                                                                                                                                                         | E PROJECTIO                                                                                                                              | אנ                                                                                                                                                      | 68.67                                                                                                   |                                           | 0 -#                        |                                                                           | 18.70                      | )                            |              | 12.43                    |
| QUARTZ PROJE                                                                                                                                                         | NOTION                                                                                                                                   |                                                                                                                                                         | 70.09                                                                                                   |                                           | 10.82                       |                                                                           | 19.09                      | <b>,</b>                     |              | Û,Û                      |
| PLACIOCLASE<br>OLIVINE PROJ                                                                                                                                          | PROJECTION<br>ECTION                                                                                                                     |                                                                                                                                                         | 74.72<br>0.0                                                                                            |                                           | 11.54<br>13.28              |                                                                           | U.0<br>23.43               | 3 UPX+(-                     | 4QTZ)        | 13.74<br>63.28           |
| CHAS PROJECT                                                                                                                                                         | IONS                                                                                                                                     |                                                                                                                                                         |                                                                                                         |                                           |                             |                                                                           |                            |                              |              |                          |
| TETRAHEDRON                                                                                                                                                          | COORDINATE                                                                                                                               | 5 C                                                                                                                                                     | 6.22                                                                                                    | ы.                                        | 44.50                       | A                                                                         | 4.65                       | 5                            | 5            | 44.63                    |
| DIOPSIDE PRO                                                                                                                                                         | JECTION                                                                                                                                  | C3A                                                                                                                                                     | 10.01                                                                                                   | Ħ                                         | 30,20                       | s                                                                         | 51.79                      | >                            |              |                          |
| ULIVINE PRGJ                                                                                                                                                         | ECTION                                                                                                                                   | CS                                                                                                                                                      | 16.27                                                                                                   | ъ                                         | 73.06                       | S                                                                         | 10.67                      | 7                            |              |                          |
| ENSTATITE PR                                                                                                                                                         | OJECTION                                                                                                                                 | H2S                                                                                                                                                     | 55.81                                                                                                   | C2\$3                                     | 22.30                       | A29                                                                       | 53 21.89                   | 2                            |              |                          |
| UUARTZ PROJE                                                                                                                                                         | CTION                                                                                                                                    | CAS2                                                                                                                                                    | 21.75                                                                                                   | ns                                        | 72.52                       | CMS                                                                       | 52 5,73                    | 3                            |              |                          |

| HLAGDTHI COMPLEX<br>SAMPLE NUMBER DG 2                                                                                                                                                                  | 29                                                                                                                          |                                                                                 |                                               |                                                                             |                                          |                                  | 311               |                      |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|----------------------------------|-------------------|----------------------|----------------------------|
| ORIGINAL WEIGHT PERCE                                                                                                                                                                                   | NI OXIDES<br>FED<br>R.32                                                                                                    | MNO M                                                                           | GD CAO                                        | NAZU                                                                        | K 20                                     | 1102                             | P205              | CR203                | 101AL<br>99.43             |
| WEIGHT PERCENT OXIDES<br>SIO2 AL203 FE203<br>55.29 6.03 .93                                                                                                                                             | RECALCULATED                                                                                                                | TO 100 P<br>MNO M<br>.21 20.                                                    | ERCENT<br>60 CAO<br>87 6.66                   | NA20<br>. 32                                                                | K20                                      | T102                             | P205              | CR203                | TOTAL<br>100.00            |
| CATION PROPORTIONS IN<br>SI AL FE(3)<br>S0.57 7.29 43                                                                                                                                                   | ANALYSIS<br>FE(2)<br>6.33                                                                                                   | MN M<br>.16 27.                                                                 | G CA<br>12 5.47                               | NA . 56                                                                     | K<br>, 68                                | TI<br>.15                        | ۴.02              | CR , 00              |                            |
| CIPW NORM                                                                                                                                                                                               |                                                                                                                             |                                                                                 |                                               |                                                                             |                                          |                                  |                   | _                    |                            |
| QTZ<br>WEIGHT PERCENT 4.63<br>MOLE PERCENT 15.41<br>CATION PERCENT 4.22                                                                                                                                 | CDR<br>9 .000<br>4 .000<br>23 .000                                                                                          | 0R<br>3,49<br>3.04<br>3:42                                                      | AE<br>2.71<br>6 2.04<br>2.02<br>4 2.02        | 7 15.<br>6 11.<br>2 15.                                                     | AN<br>432<br>026<br>107                  | LC<br>.000<br>.000<br>.000       | , 0<br>, 0<br>, 0 |                      | .000<br>.000<br>.000       |
| AC<br>WEIGHT PERCENT .00<br>Hole Percent .00<br>Cation Percent .00                                                                                                                                      | NS<br>0 .000<br>0 .000<br>0 .000                                                                                            | KS<br>.00<br>.60<br>.00                                                         | D<br>0 13.92<br>0 12,45<br>0 13.65            | 9<br>5<br>1                                                                 | MC)<br>000<br>000<br>000                 | HY<br>57.932<br>54.253<br>59.460 | 0<br>.0<br>.0     | 00<br>00<br>00<br>00 | 23<br>.000<br>.010<br>.000 |
| MT<br>WEIGHT PERCENT 1.34<br>MOLE PERCENT 1.15<br>CATION PERCENT .94                                                                                                                                    | CM<br>5 .000<br>5 .000<br>9 .000                                                                                            | 11<br>41<br>54<br>30                                                            | 9 .01<br>9 .01<br>9 .00                       |                                                                             | TN<br>000<br>000<br>000                  | PF<br>.000<br>.000<br>.000       | 20<br>,0<br>,0    | U<br>0 û<br>0 0      | AP<br>.071<br>.042<br>.042 |
| MAFIC INDEX = 73.696<br>NORM TOTAL = 100.004                                                                                                                                                            |                                                                                                                             |                                                                                 |                                               |                                                                             |                                          |                                  |                   |                      |                            |
| ULIVINE COMPOSITION                                                                                                                                                                                     | 000 FAY                                                                                                                     | ALTTE                                                                           | . 8 A U                                       |                                                                             |                                          |                                  |                   |                      |                            |
| ORTHOPYROXENE COMPUSI                                                                                                                                                                                   |                                                                                                                             |                                                                                 | 22.587                                        |                                                                             |                                          |                                  |                   |                      |                            |
| CLINOPYROXENE COMPOSI                                                                                                                                                                                   | TION                                                                                                                        | STAFITE                                                                         | 14.959                                        | FERRASTL                                                                    | TTE 10.7                                 | 784                              |                   |                      |                            |
| FELDSPAR COMPOSITION<br>ORTHUCLASE 16.<br>PLAGIOCLASE CONP                                                                                                                                              | 164 ALE                                                                                                                     | ALTE<br>C AN)                                                                   | 12.550                                        | ANORTHIT                                                                    | E 71.2                                   | 285                              |                   |                      |                            |
| CRYSTALLIZATION INDEX<br>LARSEN INDEX (1/3SI+H<br>ALBITE RAFIO (100*(AB<br>IRON RATIO (FE2=MN)*<br>MG NUMBER AS CATIONS<br>OXIDATION RATIO ACCOR<br>DENSITY OF DRY LIQUID<br>AFM RATIO<br>TOTAL ALXALIS | ( (AN+MG DI+F(<br>))-(CA+MG)<br>+ABEQIUIN N<br>+100/(FE2+MN+<br>MG/CATIONS (F<br>DING TO LE MA<br>) OF THIS COMF<br>3.03 TO | )+FO EQIV<br>(G)/PLAG)<br>(G)/<br>FE+MG)<br>VITRE (FEC)<br>OSITION (<br>OTAL FE | OF EN)<br>D/FED+FE203<br>AT 1050 DE(<br>30.43 | = 57.9<br>= -17.1<br>= 14.9<br>= 35.4<br>= 01.0<br>} = .8<br>;) = 2.7<br>MG | 67<br>86<br>59<br>81<br>26<br>29<br>66.5 | 54                               |                   |                      |                            |
| FEO/(FEO+HGO) CAO/AL                                                                                                                                                                                    | 203 SIG2/TI                                                                                                                 | 12 AL203/                                                                       | (TID2 FEO*)<br>91 41                          | (1102 CAO<br>58 30                                                          | /1102 +                                  | A20/T102                         | K20/T             | 102                  |                            |
| JENSEN CATION AL203                                                                                                                                                                                     | - FEO+FE203+1<br>17.13                                                                                                      | FID2 - MGC<br>65.3                                                              |                                               |                                                                             |                                          |                                  |                   |                      |                            |
| QUARTZ - FELDSPAR RAT                                                                                                                                                                                   | 7.71 05                                                                                                                     | THOCLASE                                                                        | 1.3.30                                        | PLAGIOCL                                                                    | ASE 68.5                                 | 19                               |                   |                      |                            |
| QUARÍZ<br>CATION PROPORTIONS                                                                                                                                                                            | 12,84 01<br>Ca                                                                                                              | 14.49                                                                           | 32.10<br>FE                                   | ALBITE<br>16.51                                                             | = 24.9<br>MG                             | 79<br>67,40                      |                   |                      |                            |
|                                                                                                                                                                                                         | CA                                                                                                                          | 7.69                                                                            | мC                                            | 32.23                                                                       | SI                                       | 60.08                            | 1                 |                      |                            |
|                                                                                                                                                                                                         | SI                                                                                                                          | 62.17                                                                           | AL                                            | 4,4B                                                                        | nG                                       | 33.34                            | •                 |                      |                            |
|                                                                                                                                                                                                         | 246                                                                                                                         | 40 35                                                                           | 2FE                                           | 17,11                                                                       | 51/                                      | רכי איז<br>רכי איז (בי           |                   |                      |                            |
|                                                                                                                                                                                                         | 641                                                                                                                         | 64.25                                                                           | ML.                                           | 33, 7 <del>4</del>                                                          | NBN                                      | rk 3,61                          |                   |                      |                            |
| COORDINATES IN THE SY                                                                                                                                                                                   | STEM PLAGIOCI                                                                                                               | LASE - ULI                                                                      | WINE - CLI                                    | NOPYROXENE                                                                  | - QIJAR1                                 | Z (IN MOL                        | E PERC            | ÉNT)                 |                            |
| PROPURTION OF ANALYSI                                                                                                                                                                                   | S IN BASALT                                                                                                                 | TETRAHEDRO                                                                      | IS 95.2                                       | 5 MOLE PE                                                                   | RCENT                                    |                                  |                   | 0 <b></b>            |                            |
| CI INDEVENSE BENEER                                                                                                                                                                                     |                                                                                                                             | 46.01                                                                           | LFX                                           | 14,33                                                                       | P L F                                    | 16 18,82<br>01 97                |                   | 1412                 | 20.04                      |
| QUARTZ PROJECTION                                                                                                                                                                                       | IGN                                                                                                                         | 58.54                                                                           |                                               | 17.92                                                                       |                                          | 23.54                            |                   |                      | 0.0                        |
| PLAGIOCLASE PROJECTIO                                                                                                                                                                                   | м                                                                                                                           | 57.00                                                                           |                                               | 17.65                                                                       |                                          | u.0                              |                   |                      | 24,68                      |
| OLIVINE PROJECTION                                                                                                                                                                                      |                                                                                                                             | 0.0                                                                             |                                               | 12.65                                                                       |                                          | 10.61                            | OPX+              | (4QTZ)               | 78.74                      |
| CMAS PROJECTIONS                                                                                                                                                                                        |                                                                                                                             |                                                                                 |                                               |                                                                             |                                          |                                  |                   |                      |                            |
| TETRAHEDRON COORDINAT                                                                                                                                                                                   | res c                                                                                                                       | 8,87                                                                            | Ħ                                             | 35.15                                                                       | A                                        | 4.96                             | 3                 | S                    | 51.91                      |
| DIOPSIDE PROJECTION                                                                                                                                                                                     | C3A                                                                                                                         | 19.20                                                                           | ri -                                          | 24,28                                                                       | S                                        | 56.45                            | i                 |                      |                            |
| OLIVINE PROJECTION                                                                                                                                                                                      | CS                                                                                                                          | 14.00                                                                           | M                                             | 78,43                                                                       | S                                        | 7.57                             | •                 |                      |                            |
| ENSTATITE PROJECTION                                                                                                                                                                                    | H25                                                                                                                         | 16.09                                                                           | C283                                          | 46,36                                                                       | A29                                      | 53 37.55                         | i                 |                      |                            |
| QUARTZ PROJECTION                                                                                                                                                                                       | CAS2                                                                                                                        | 26.25                                                                           | MS                                            | 61.84                                                                       | ChS                                      | 12.71                            |                   |                      |                            |

| HLAGOTHI COMPLEX                                                                                                               |                                                                                                            |                                                                                               |                                       |                                  |                                                                                  |                                      |                                  | 312                           |                                  |                                    |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------------------------------------|--------------------------------------|----------------------------------|-------------------------------|----------------------------------|------------------------------------|
| SAMPLE NUMBER                                                                                                                  | BG 231                                                                                                     |                                                                                               |                                       |                                  |                                                                                  |                                      |                                  |                               |                                  |                                    |
| URIGINAL WEIGHT<br>SIO2 AL203<br>56.32 14.96                                                                                   | PERCENT OXI<br>FE203 F<br>.91 8.                                                                           | DES<br>EQ MNO<br>23 - 17                                                                      | 400<br>6.56                           | CAO<br>10.74                     | NA20<br>2.16                                                                     | K 20<br>178                          | T102                             | P205<br>,06                   | CR203                            | TOTAL<br>101.25                    |
| WEIGHT PERCENT<br>SID2 AL203<br>S5.62 14.77                                                                                    | OXIDES RECAL<br>FE2O3 F<br>/90 8,                                                                          | CULATED TO<br>EO MNO<br>12 ,17                                                                | 100 PERCE<br>MGO<br>6.48              | NT<br>EAO<br>10761               | NA20<br>2.13                                                                     | K 20<br>.77                          | T102<br>, 37                     | P205                          | CR203<br>, 00                    | TUTAL<br>100.00                    |
| CATION PROPORTI<br>SI AL<br>51.93 16.26                                                                                        | ONS IN ANALY<br>FE(3) F<br>.63 6.                                                                          | SIS<br>E(2) MN<br>34 .13                                                                      | MC<br>9.01                            | CA<br>10,61                      | NA<br>3,86                                                                       | к<br>. 92                            | TI<br>.26                        | ۴.05                          | CR,UQ                            |                                    |
| CIPN NORM                                                                                                                      |                                                                                                            |                                                                                               |                                       |                                  |                                                                                  |                                      |                                  |                               |                                  |                                    |
| WEIGHT PERCENT<br>Mole Percent<br>Catión Percent                                                                               | 012<br>6,862<br>23,233<br>6,406                                                                            | C (JR<br>, 000<br>, 000<br>, 000                                                              | 0R<br>4,552<br>4,055<br>4.587         | AB<br>18,044<br>13,998<br>19,303 | AN<br>28.46<br>20.81<br>28.69                                                    | 1<br>1<br>1<br>95                    | LL:<br>.000<br>.000<br>.000      | NE<br>. 0 (<br>. 0 (<br>. 0 ( |                                  | .000<br>.000<br>Kþ                 |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                               | AC<br>200<br>000<br>2000<br>2000                                                                           | NS<br>, 000<br>, 000<br>, 000                                                                 | K 5<br>.000<br>.000<br>.000<br>.000   | DI<br>19,566<br>17,370<br>19,169 | ավն<br>. 0 Հ<br>. 0 Հ<br>. 8 ն                                                   | )<br>)<br>)<br>)<br>)<br>)<br>)<br>) | HY<br>20.373<br>18.359<br>20.249 | 01<br>.00<br>.00<br>.00       |                                  | CS<br>,000<br>,000<br>,000<br>,000 |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                               | HT<br>1.309<br>1.150<br>.952                                                                               | См<br>. 000<br>. 000<br>. 000<br>. 000                                                        | 1L<br>.694<br>.938<br>.513            | HM<br>000<br>000<br>000          | TN<br>  0 G<br>  0 C<br>  0 C                                                    |                                      | PF<br>.000<br>.000<br>.000       | RI.<br>.0(<br>.0(             | <br>  ()<br>  ()<br>  ()<br>  () | AP<br>. 140<br>. 985<br>. 125      |
| MAFIC INDEX =<br>NORM 10TAL = 1                                                                                                | 42.082<br>00.001                                                                                           |                                                                                               |                                       |                                  |                                                                                  |                                      |                                  |                               |                                  |                                    |
| OLIVINE COMPOSI<br>FORSIERITE                                                                                                  | TION . 000                                                                                                 | FAYALIT                                                                                       | E .8                                  | Ú Û                              |                                                                                  |                                      |                                  |                               |                                  |                                    |
| ORTHOPYROXENE C<br>ENSTATITE                                                                                                   | 0000517100<br>53.753                                                                                       | FERROSI                                                                                       | LITE 46.2                             | 47                               |                                                                                  |                                      |                                  |                               |                                  |                                    |
| CLINOPYROXENE C<br>WOLLASTONI                                                                                                  | DAPOSITION<br>TE 50,717                                                                                    | ENSTATI                                                                                       | TE 26.4                               | 91 F                             | ERROSILII                                                                        | TE 22.                               | 792                              |                               |                                  |                                    |
| FELDSPAR COMPOS<br>ORTHOCLASE<br>PLAGIOCLAS                                                                                    | ITION<br>8,915<br>E COMPOSITIC                                                                             | ALBITE<br>IN (PERC AN)                                                                        | <b>35.3</b><br>61.2                   | 41 Al                            | NORTHITE                                                                         | 55.                                  | 744                              |                               |                                  |                                    |
| HURNTON AND TU<br>SOLIDIFICATION<br>URYSTALLIZATION<br>LARGEN INDEX (1<br>ALBITE RATIO (1<br>IRON RATIO (FE<br>MG_NUMBER AS_CA | TTLE DIFFERE<br>INDEX (100*<br>INDEX (AN+M<br>/351+K)-(CA+<br>00*(AB+AB EG<br>2=MN)*100/(F<br>TIQNS_MC/CA] | NTIATION IN<br>IGO/(MGO+FEO<br>IG,DI+FO+FO<br>MG)<br>IV IN NE)/P<br>E2+MN+MG))<br>IDNS (FE+MG | DEX<br>HFE2D3+NA<br>EQTV OF E<br>LAG) | 20+K20))<br>N)                   | = 29,457<br>= 29,457<br>= 47,316<br>= 47,316<br>= 38,800<br>= 38,800<br>= 58,800 | 205230<br>205230<br>20530            |                                  |                               |                                  |                                    |
| DENSITY OF DRY<br>AFM RATIO                                                                                                    | LIQUID OF TH                                                                                               | IS COMPOSIT                                                                                   | ION (AT 1                             | 4FE2U3)<br>USU DEG)              | = .83<br>= 2.642                                                                 | 2                                    |                                  |                               |                                  |                                    |
| TOTAL ALKA                                                                                                                     | LIS 15.85                                                                                                  | TOTAL                                                                                         | FE 48.7                               | 9 8                              | C                                                                                | 35.                                  | 36                               |                               |                                  |                                    |
|                                                                                                                                |                                                                                                            |                                                                                               |                                       |                                  |                                                                                  |                                      |                                  |                               |                                  |                                    |
|                                                                                                                                |                                                                                                            |                                                                                               |                                       |                                  |                                                                                  |                                      |                                  |                               |                                  |                                    |
|                                                                                                                                |                                                                                                            |                                                                                               |                                       |                                  |                                                                                  |                                      |                                  |                               |                                  |                                    |
|                                                                                                                                |                                                                                                            |                                                                                               |                                       |                                  |                                                                                  |                                      |                                  |                               |                                  |                                    |

KOMATIITE PARAMETERS

FE0/(FE0+MGD) CA0/AL203 SI02/TI02 AL203/TI02 FE0\*/TI02 CA0/TI02 NA20/TI02 K20/TI02 ,5798 .72 152.22 40.43 24.46 29.03 5.038 2.100

JENSEN CATION AL203 - FEO+FE203+TI02 - MC0 50,01 - 22.26 - 27.73

| QUARTZ - FELDSPAR RATIOS<br>QUARTZ 11.45<br>QUARTZ 23.29<br>CATION PROPORTIONS | úr<br>Or<br>Ca | THOCLASE<br>THOCLASE<br>40.36 | 7,86<br>15,45<br>FE | PLACINCLASE<br>ALBITE<br>25.34 | 80.29<br>61,25<br>MG | 34,30 |
|--------------------------------------------------------------------------------|----------------|-------------------------------|---------------------|--------------------------------|----------------------|-------|
|                                                                                | <b>EA</b>      | 14,63                         | нG                  | 12,60                          | SI                   | 72.57 |
|                                                                                | 51             | 75.18                         | AL                  | 11.77                          | MG                   | 13.05 |
|                                                                                | 2MC            | 43,20                         | 2FE                 | 31,92                          | SI/S                 | 24.88 |
|                                                                                | CA             | 50.22                         | AL                  | 38.47                          | NA+K                 | 11,31 |

COORDINATES IN THE SYSTEM PLAGIOCLASE - OLIVINE - CLINOPYROXENE - QUARTZ (IN MOLE PERCENT)

| PROPORTION OF ANALYSIS IN | BASALT | TETRAHEDRON | 15 93,82 | MOLE P            | PERCENT |       |            |       |
|---------------------------|--------|-------------|----------|-------------------|---------|-------|------------|-------|
| BASAL F TETRAHEDRON       | 0L     | 16-19       | CPX      | 20.43             | PLAG    | 51.16 | QTZ        | 12,22 |
| CLINOPYROXENE PROJECTION  |        | 20.34       |          | 0.0 <del>~~</del> |         | 64,29 |            | 15.36 |
| QUARTZ PROJECTION         |        | 13.44       |          | 23.28             |         | 58.28 |            | 0.0   |
| PLAGIOCLASE PROJECTION    |        | 33.14       |          | 41.83             |         | Û.Ú   |            | 25.03 |
| OLIVINE PROJECTION        |        | 0.0         |          | 16.96             | •       | 42.46 | 0PX+(4QTZ) | 40.58 |
| CHAS PROJECTIONS          |        |             |          |                   |         |       |            |       |
| TETRAHEDRON COORDINATES   | с      | 12.24       | м        | 17,15             | A       | 12.49 | 5          | 53.11 |
| DIOPSIDE PROJECTION       | C3A    | 32.13       | Ħ        | 14.35             | S       | 53.52 |            |       |
| OLIVINE PROJECTION        | 63     | 22.88       | M        | 62.58             | S       | 14.54 |            |       |
| ENSTATITE PROJECTION      | M25    | 17.84       | C263     | 41.07             | A253    | 39,09 |            |       |
| QUARTZ PROJECTION         | CAS2   | SU.44       | MS       | 21.67             | CM52    | 17.90 |            |       |
|                           |        |             |          |                   |         |       |            |       |

.

| HLAGOTHI COMPLEX<br>Sample number - Bg 232                                                                                                                                                                                                       |                                                                                                                          |                                                                           |                                  |                                                        |                              |                                  | 313                     |          |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------|------------------------------|----------------------------------|-------------------------|----------|-------------------------------|
| ORIGINAL WEICHT PERCENT OX<br>Side Al203 FE203<br>55.98 12.13 .96 8                                                                                                                                                                              | IDES<br>FEO MNO                                                                                                          | MC0<br>8.53                                                               | CA0<br>9.73                      | NA20<br>1.89                                           | K 20<br>1 - 35               | 1102                             | P205                    | CR203    | 101AL                         |
| WEIGHT PERCENT OXIDES RECA<br>S102 AL203 FE203<br>55.08 12.13 .96 8                                                                                                                                                                              | LCULATED TO 1<br>FED MNO<br>1.63 .17                                                                                     | LUO PERCENT<br>MGO<br>B. 52                                               | CA0                              | NA20<br>1.89                                           | K 20<br>1 - 35               | T102<br>.67                      | P205                    | CR203    | TOTAL<br>100.00               |
| CATION PROPORTIONS IN ANAL<br>SI AL FE(3)<br>52.07 13.32 .67 6                                                                                                                                                                                   | YSIS<br>FE(2) MN<br>.72 .13                                                                                              | MG<br>11,82                                                               | 9.70                             | NA<br>3.41                                             | К<br>1.50                    | TI<br>.47                        | ۴.08                    | CR .00   |                               |
| CIPW NORM<br>QTZ                                                                                                                                                                                                                                 | COR                                                                                                                      | 08                                                                        | AB                               | A                                                      | N                            | 20                               | NE                      | <u> </u> | КР                            |
| WEIGHT PERCENT 5.845<br>HOLE PERCENT 19.843<br>CATION PERCENT 5.446                                                                                                                                                                              | . 000<br>. 000<br>. 000                                                                                                  | 7,964<br>7,114<br>8.010                                                   | 15,960<br>12,414<br>17.040       | 20,6<br>15,1<br>20,7                                   | 46<br>36<br>75               | . 000<br>. 000<br>. 000          | . 0 0<br>. 0 0<br>. 0 0 | 0        | . 0 0 0<br>. 0 0 0<br>. 0 0 0 |
| AC<br>WEIGHT PERCENT .000<br>Mole Percent .000<br>Cation Percent .000                                                                                                                                                                            | NS<br>.000<br>.000<br>.000                                                                                               | KS<br>,000<br>,000                                                        | DI<br>21,961<br>19,712<br>21,643 | .0<br>.0                                               | C<br>0 ()<br>0 ()<br>0 ()    | HY<br>24.730<br>22.706<br>24.930 | 0L<br>.00<br>.00<br>.00 |          | .000<br>.000<br>.000          |
| MT<br>WEIGHT PERCENT 1.390<br>Mole Percent 1.224<br>Cation Percent 1.008                                                                                                                                                                         | СМ<br>.000<br>.006<br>.000                                                                                               | IL<br>1.270<br>1.707<br>.937                                              | HM<br>,000<br>,000<br>,000       | T<br>. 0<br>. 0<br>. 0                                 | N<br>90<br>00<br>00          | PF<br>.000<br>.200<br>.200       | 81.<br>.00<br>.00       |          | AP<br>236<br>143<br>210       |
| MAFIC [NDEX = 49.588                                                                                                                                                                                                                             |                                                                                                                          |                                                                           |                                  |                                                        |                              |                                  |                         |          |                               |
| OLIVINE COMPOSITION                                                                                                                                                                                                                              |                                                                                                                          |                                                                           |                                  |                                                        |                              |                                  |                         |          |                               |
| FORSTERITE . 400                                                                                                                                                                                                                                 | FAYALITH                                                                                                                 | E .000                                                                    | )                                |                                                        |                              |                                  |                         |          |                               |
| ENSTATITE 59.001                                                                                                                                                                                                                                 | FERROSI                                                                                                                  | ITE 40.199                                                                | <b>,</b>                         |                                                        |                              |                                  |                         |          |                               |
| CLINOPYROXENE COMPOSITION<br>WOLLASTONITE 51.120                                                                                                                                                                                                 | ENSTATI                                                                                                                  | TE 29.231                                                                 | F                                | ERROSILI                                               | TE 19.6                      | 49                               |                         |          |                               |
| FELDSPAR COMPOSITION<br>ORTHOCLASE 17.060<br>PLAGIOCLASE COMPOSITI                                                                                                                                                                               | ALBITE<br>ON (PERC AN)                                                                                                   | 35.809<br>56,400                                                          | ) A                              | NORTHITE                                               | 46.3                         | 23                               |                         |          |                               |
| CRYSTALLIZATION INDEX (AN+<br>LARSEN INDEX (1/38I+K)-(CA<br>ALRITE RAFIO (100+(AB+AB E<br>IRON RATID (FE2=MN)*100/(<br>MG NUMBER AS CATIONS MG/CA<br>OXIDATION RATIO ACCORDING<br>DENSITY OF DRY LIQUID OF T<br>AFM RATIO<br>TOTAL ALKALIS 15.23 | MG(DI+FU+FU)<br>(MG)<br>(JU IN NE)/P(<br>FE2+MN+MG))<br>(TIONS (FE+MG)<br>TO LE MAITRE<br>HIS COMPOSIT<br>(HIS COMPOSIT) | EQ <i>L</i> U OF EN:<br>LAG)<br>)<br>(FEO/FEO+<br>ION (AT 10:<br>FE 44.67 | )<br>50 DEG)<br>H                | $ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 790<br>00<br>23<br>7<br>40.1 | 0'                               |                         |          |                               |
| KOMATIITE PARAMETERS<br>FED/(FED+MGO) CAD/AL203<br>.5270 .80                                                                                                                                                                                     | SI02/TI02 AI<br>83.55                                                                                                    | 203/1102<br>19.13                                                         | FE0*/[]<br>14.18                 | 02 CAO/<br>14.                                         | 1102 N<br>22                 | A20/1102<br>2.821                | K20/T:<br>2.015         | 102      |                               |
| JENSEN CATION AL203 - FEC<br>40.36                                                                                                                                                                                                               | +FE203+T102<br>23,82                                                                                                     | - MCO<br>35,82                                                            |                                  |                                                        |                              |                                  |                         |          |                               |
| QUARTZ - FELDSPAR RATIDS<br>QUARTZ 11.59<br>QUARTZ 19.64<br>CATION PROPORTIONS                                                                                                                                                                   | ORTHOC<br>ORTHOC                                                                                                         | LASE 15.80<br>LASE 26.75<br>93                                            | р<br>Г<br>Е 2                    | LACIOCLA<br>LBITE<br>4.69 •                            | SE 72.6<br>53.6<br>MG        | 1<br>41,38                       |                         |          |                               |
|                                                                                                                                                                                                                                                  | CA 13.                                                                                                                   | 18 1                                                                      | 1G 1                             | 6.07                                                   | 51                           | 70.76                            |                         |          |                               |
|                                                                                                                                                                                                                                                  | SI 73.                                                                                                                   | B0 +                                                                      | ۹L<br>۱                          | 9.44                                                   | MG                           | 16.76                            | ,                       |          |                               |
|                                                                                                                                                                                                                                                  | 2116 472<br>CA 51.                                                                                                       | 41 1                                                                      | 2PE 2                            | 9,29<br>5.31                                           | 51/<br>NA+                   | 5 21.42<br>K 13.20               |                         |          |                               |
|                                                                                                                                                                                                                                                  |                                                                                                                          |                                                                           |                                  |                                                        |                              |                                  |                         |          |                               |
| COURDINATES IN THE SYSTEM                                                                                                                                                                                                                        | PLAGIUCLASE                                                                                                              | - ULIVINE -                                                               | + CLINOP                         | YRUXENE                                                | - QUART                      | Z (IN MOLE                       | PERCE                   | LNT)     |                               |
| BASALT TETRAHEDRON                                                                                                                                                                                                                               |                                                                                                                          |                                                                           | 137,65<br>CPX 2                  | HULE FER                                               | PLA                          | G 42.09                          |                         | QTZ      | 13.00                         |
| CLINOPYRDXENE PROJECTION                                                                                                                                                                                                                         | 27.                                                                                                                      | 42                                                                        |                                  | 0.0                                                    |                              | 55,45                            |                         |          | 17.13                         |
| QUARTZ PROJECTION                                                                                                                                                                                                                                | 23.                                                                                                                      | 92                                                                        | 3                                | 7 09                                                   |                              | 48.36                            |                         |          | <b>U.</b> D                   |
| PLAGIOCLASE PROJECTION                                                                                                                                                                                                                           | 35.                                                                                                                      | 74                                                                        | 4                                | 1.51                                                   |                              | Ü.Ű                              |                         |          | 22.45                         |
| OLIVINE PROJECTION                                                                                                                                                                                                                               | ο.                                                                                                                       | 0                                                                         | 3                                | 0.38                                                   | •                            | 35.62                            | ህዮ X +                  | (4QT2)   | 44,00                         |
| CMAS PROJECTIONS                                                                                                                                                                                                                                 |                                                                                                                          |                                                                           |                                  |                                                        |                              |                                  |                         |          |                               |
| TETRAHEDRON COORDINATES                                                                                                                                                                                                                          | C 16.                                                                                                                    | 23                                                                        | 1 3                              | 0.28                                                   | A                            | 11.10                            |                         | S        | 52.40                         |
| DIOPSIDE PROJECTION                                                                                                                                                                                                                              | C.3A 30                                                                                                                  | 90 1                                                                      | 1 1                              | 5.51                                                   | S                            | 53.58                            |                         |          |                               |
| ENSTATIC PROJECTION                                                                                                                                                                                                                              | LS 22,                                                                                                                   | 5) )<br>20 ,                                                              | 1 L                              | 41.<br>                                                | 5                            | 13.72                            |                         |          |                               |
| WANTZ PROJECTION                                                                                                                                                                                                                                 | CAS2 53.                                                                                                                 | 70 l<br>99 i                                                              | ,235 4<br>15 2                   | 6.59                                                   | CMS                          | 2 19.42                          |                         |          |                               |
|                                                                                                                                                                                                                                                  |                                                                                                                          |                                                                           | -                                |                                                        |                              |                                  |                         |          |                               |

| HLAGOTHI COMPLEX<br>Sample Number                                                                                                                                                     | BG 236                                                                                                                                                      |                                                                                                                                        |                                                                 |                                         |                                                                            |                |                               | 314              |             |                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------|----------------|-------------------------------|------------------|-------------|-------------------------------|
| ORIGINAL WEIGHT<br>SIO2 AL203<br>55.33 6.49                                                                                                                                           | PERCENT OXIDE<br>FE203 FEC<br>.94 8.30                                                                                                                      | S<br>) MNO<br>) .21                                                                                                                    | MG0<br>21.52                                                    | CA0<br>5. <b>63</b>                     | 05AN                                                                       | K20<br>.23     | T102 6                        | 205              | CR203       | 101AL<br>99.47                |
| WEIGHT PERCENT O<br>SIO2 AL203<br>55.51 6.51                                                                                                                                          | XIDES RECALCL<br>Fe203 Fe0<br>.95 B.52                                                                                                                      | ILATED TO 10<br>MNO<br>2 .21                                                                                                           | 0 PERCENT<br>Mgo<br>21.39                                       | CAU<br>5.65                             | NA20<br>. 63                                                               | K20 -          | r <b>102</b> F                | 205              | CR203       | TOTAL<br>100.00               |
| CATION PROPORTID<br>SI AL<br>49.96 6,91                                                                                                                                               | NS IN ANALYSI<br>FE(3) FE(<br>64 6.42                                                                                                                       | (9)<br>(2) MN<br>2 .16                                                                                                                 | MG<br>28.96                                                     | CA<br>5.45                              | NA<br>1.10                                                                 | K .<br>.26     | ri f<br>,12 f                 | . 02             | CR . 00     |                               |
| CIPW NORM                                                                                                                                                                             | 0T 7                                                                                                                                                        | COB                                                                                                                                    | <b>0</b> 0                                                      |                                         |                                                                            |                |                               | ME               |             | KD                            |
| WEIGHT PERCENT<br>Müle Percent<br>Cation Percent                                                                                                                                      | 9,851<br>2,851<br>9,839<br>2,564                                                                                                                            | .000 1<br>.000 1<br>.000 1                                                                                                             | .364<br>.238<br>.325                                            | 5.347<br>4.227<br>5.514                 | 14.248<br>10,618<br>13,849                                                 |                | . 000<br>. 000<br>. 000       | . 0 0            | 0<br>0<br>0 | . 000<br>. 000<br>. 000       |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                                      | AC<br>. 000<br>. 600<br>. 000                                                                                                                               | NS<br>.000<br>.000<br>.000                                                                                                             | ,000<br>,000<br>,000                                            | DI<br>10,890<br>10.146<br>10.608        | WC<br>, 000<br>, 000<br>, 000                                              | 63<br>62<br>64 | HY<br>.558<br>.209<br>.904    | 0L<br>.00<br>.00 | 0<br>6<br>0 | C3<br>, 400<br>, 000<br>, 000 |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                                      | HT<br>1.374<br>1.230<br>.962                                                                                                                                | CM<br>. 0 9 9<br>. 0 0 8<br>. 0 0 8                                                                                                    | IL<br>.324<br>.443<br>.231                                      | HM<br>. 000<br>. 000<br>. 000           | TN<br>.000<br>.000<br>.000                                                 | 1              | PF<br>. 000<br>. 000<br>. 000 | RU<br>.00<br>.00 | û<br>0<br>0 | AP<br>. 048<br>. 029<br>. 041 |
| MAFIC INDEX = 7<br>NORM TOTAL = 10                                                                                                                                                    | 6.193<br>0.002                                                                                                                                              |                                                                                                                                        |                                                                 |                                         |                                                                            |                |                               |                  |             |                               |
| DLIVINE COMPOSIT                                                                                                                                                                      | ION                                                                                                                                                         | EAVA: TTE                                                                                                                              | 0.0.0                                                           |                                         |                                                                            |                |                               |                  |             |                               |
| ORTHOPYROXENE_CO                                                                                                                                                                      | NPOSITION                                                                                                                                                   |                                                                                                                                        |                                                                 | -                                       |                                                                            |                |                               |                  |             |                               |
| ENSTATITE<br>CLINOPYROXENE CO                                                                                                                                                         | 78.213<br>MPOSITION                                                                                                                                         | FERROSILI                                                                                                                              | TE 21.787                                                       | /                                       |                                                                            |                |                               | -                |             |                               |
| WOLLASTONIT                                                                                                                                                                           | E 52.307                                                                                                                                                    | ENSTATITE                                                                                                                              | 37.302                                                          | 2 F(                                    | ERROSILITE                                                                 | 10,391         |                               |                  |             |                               |
| OR THOCLASE<br>PLAGIOCLASE                                                                                                                                                            | COMPOSITION                                                                                                                                                 | ALBITE<br>(PERC AN)                                                                                                                    | 25,511<br>72,71                                                 | 1 A                                     | NORTHITE                                                                   | 67.982         |                               |                  |             |                               |
| SOLIDIFICATION I<br>CRYSTALLIZATION<br>LARSEN INDEX (1/<br>ALBITE RATIO (10<br>IRON RATIO (FE2<br>MG NUMBER AS CAT<br>OXIDATION RATIO<br>DENSITY OF DRY L<br>AFM RATIO<br>TOTAL ALKAL | NDEX (100 HHG<br>INDEX (AN+HG<br>351+K)-(CA+HG<br>351+K)-(CA+HG<br>351+K)-(CA+HG<br>0*(AB+AB EQI<br>400 HA<br>1005 EQI<br>1005 HG<br>100 OF THIS<br>15 2,71 | J2/MCD+FEO+F<br>DI+FO+FO EQ<br>J<br>J N NE)/PLA<br>Z+MN+MEJ)/<br>JNS (FE+MG)<br>JNS (FE+MG)<br>LE MAITRE (<br>3 COMPOSITIO<br>TOTAL FE | Ë203+NA2(<br>IV OF EN)<br>G)<br>FEO/FED+ <br>N (AT 105<br>29,46 | 0+K20))<br>)<br>FE203)<br>50 DEG)<br>Mi | = 67,630<br>= 57.849<br>= -18.440<br>= 27.287<br>= 81.863<br>= 82.738<br>G | 67.83          |                               |                  |             |                               |
|                                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                        |                                                                 |                                         |                                                                            |                |                               |                  |             |                               |
| XOMATIITE PARAME<br>FEO/(FEO+MGO) C<br>.3028                                                                                                                                          | TERS<br>A0/AL203 SI<br>.07                                                                                                                                  | 02/TIO2 AL2<br>325,47                                                                                                                  | 03/1102<br>38.18                                                | FE0*/TI<br>54.98                        | 02 CAQ/TI<br>33.12                                                         | 02 NA2         | 0/TIO2  <br>7 <b>06</b> 1     | (20/TI<br>353    | 02          |                               |
| JENSEN CATION A                                                                                                                                                                       | L203 - FEO+FI<br>6.05                                                                                                                                       | E203+TIO2 -<br>16.67 67                                                                                                                | MC0<br>7.29                                                     |                                         |                                                                            |                |                               |                  |             |                               |
| QUARTZ - FELDSPA<br>QUARTZ<br>QUARTZ<br>CATION PROPORTIO                                                                                                                              | R RATIOS<br>11,98<br>29,82                                                                                                                                  | OR THOCLA<br>OR THOCLA                                                                                                                 | SE 5.73<br>SE 14.26                                             |                                         | LAGIOC <b>LASE</b><br>LBITE                                                | 82,30<br>55,92 | 74. 39                        |                  |             |                               |
|                                                                                                                                                                                       | (                                                                                                                                                           | CA 6,46                                                                                                                                | . 1                                                             | HG 3                                    | 4.33                                                                       | 51             | 59.22                         |                  |             |                               |
|                                                                                                                                                                                       | \$                                                                                                                                                          | 51 60.65                                                                                                                               | i <b>/</b>                                                      | AL                                      | 4.19                                                                       | мG             | 35.16                         |                  |             |                               |
|                                                                                                                                                                                       | :                                                                                                                                                           | 2MG 71.17                                                                                                                              |                                                                 | 2FE 1                                   | 6.55                                                                       | SI/5           | 12.20                         |                  |             |                               |
|                                                                                                                                                                                       | ſ                                                                                                                                                           | CA 56,83                                                                                                                               | i 4                                                             | AL 3                                    | 6.03                                                                       | NA+K           | 7,14                          |                  |             |                               |
| COORDINATES IN T                                                                                                                                                                      | HE SYSTEM PL                                                                                                                                                | AGIOCLASE -                                                                                                                            | OLIVINE .                                                       | - CLINOP                                | YROXENE -                                                                  | QUARTZ         | IN MOLE                       | PERCE            | NT>         |                               |
| BASALT TETRAMEDR                                                                                                                                                                      | ALISIS IN BA:<br>"On                                                                                                                                        | DL 49.96                                                                                                                               | DKON 12                                                         | 97.44 :<br>CPX 1                        | NULE PERCE<br>().89                                                        | PLAG           | 19.87                         |                  | üτz         | 19.29                         |
| CLINDPYROXENE PR                                                                                                                                                                      | DJECTION                                                                                                                                                    | 55.06                                                                                                                                  |                                                                 |                                         | 8,0+*                                                                      | . 2.75         | 22.30                         |                  |             | 21.64                         |
| QUARTZ PROJECTIC                                                                                                                                                                      | N                                                                                                                                                           | 61.89                                                                                                                                  | ,                                                               | 1                                       | 3.49                                                                       |                | 24.62                         |                  |             | 0.D                           |
| PLAGIOCLASE PROJ                                                                                                                                                                      | ECTION                                                                                                                                                      | 62.33                                                                                                                                  | ;                                                               | 1                                       | 3.59                                                                       |                | Ŭ, <b>Q</b>                   |                  |             | 24.07                         |
| OLIVINE PROJECTI                                                                                                                                                                      | ON                                                                                                                                                          | 0.4                                                                                                                                    |                                                                 | 1                                       | U,09                                                                       |                | 18.42                         | QP X+ (          | 4QTZ)       | 71,49                         |
| CHAS PROJECTIONS                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                        |                                                                 |                                         |                                                                            |                |                               |                  |             |                               |
| TETRAHEDRON COOR                                                                                                                                                                      | DINATES                                                                                                                                                     | 0 7.12                                                                                                                                 | *                                                               | H 3'                                    | 7.14                                                                       | A              | 4 . 79                        |                  | S           | 50.95                         |
| DIOPSIDE PROJECT                                                                                                                                                                      | ION C                                                                                                                                                       | C3A 18.45                                                                                                                              | 1                                                               | H 2                                     | 5.50                                                                       | 5              | 56.05                         |                  |             |                               |
| OLIVINE PROJECTI                                                                                                                                                                      |                                                                                                                                                             | CS 12.94                                                                                                                               |                                                                 | M 7                                     | 9.41                                                                       | S              | 7.63                          |                  |             |                               |
| ENSTATILE PROJEC                                                                                                                                                                      |                                                                                                                                                             | nas 22,55<br>Nas 25,55                                                                                                                 | , (                                                             | ಒ⊲ಡಿತೆ 4<br>ಟಣ ∠                        | 1.07                                                                       | 6763<br>6763   | 30.35                         |                  |             |                               |

| HLAGOTHI COMPLEX<br>Sample Number                                                                                                                                                                                         | BG 237                                                                                                                                                             |                                                                                                                           |                                                                                 |                                  |                                                                       |                                 |                                  | 315                        |                    |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------|---------------------------------|----------------------------------|----------------------------|--------------------|----------------------------|
| ORIGINAL WEIGHT P<br>SIO2 AL203 F<br>56.03 14.21                                                                                                                                                                          | ERCENT DXID<br>E203 Fe<br>1.05 9.4                                                                                                                                 | 165<br>10 MNO<br>19 .19                                                                                                   | - MGD<br>5.35                                                                   | CA0<br>10,74                     | NA20<br>2,15                                                          | K 20<br>. 58                    | T102<br>.45                      | P205<br>107                | CR203              | 100.31                     |
| WEIGHT PERCENT DX<br>SID2 AL203 F<br>S5.86 14.17                                                                                                                                                                          | IDES RECALC<br>E203 FE<br>1,05 9,4                                                                                                                                 | ULATED TO<br>D MNO<br>16 /19                                                                                              | 100 PERCE<br>MGD<br>5.33                                                        | CAO<br>10.71                     | NA20<br>2.14                                                          | K 20<br>- 58                    | TI02<br>,45                      | P205<br>,07                | CR203              | TOTAL<br>100.00            |
| CATION PROPORTION<br>SI AL F<br>52.63 15.73<br>CIPW NORM                                                                                                                                                                  | 8 IN ANALYS<br>E(3) FE<br>.75 7.4                                                                                                                                  | 18<br>(2) MN<br>15 .15                                                                                                    | HG<br>7 , 49                                                                    | CA<br>10.81                      | NA<br>3,91                                                            | K<br>.70                        | TI<br>.32                        | р<br>. 06                  | <sup>CR</sup> , 00 |                            |
| WEIGHT PERCENT<br>Mole Percent 2<br>Cation Percent                                                                                                                                                                        | QTZ<br>8.622<br>8.069<br>8.124                                                                                                                                     | COR<br>.000<br>.000<br>.000                                                                                               | 0R<br>3 417<br>2 927<br>3 475                                                   | AB<br>18.131<br>13.525<br>19.576 | 27,32<br>19,21<br>27,80                                               | 404                             | LC<br>.000<br>.000<br>.000       | NE<br>. 80<br>. 40<br>. 40 | 0<br>0             | KP<br>.000<br>.000         |
| WEIGHT PERCENT<br>Hole Percent<br>Cation Percent                                                                                                                                                                          | AC<br>. 000<br>. 000<br>. 000                                                                                                                                      | NS<br>, 000<br>, 000<br>. 000                                                                                             | KS<br>,000<br>,000                                                              | DI<br>21.098<br>17.012<br>20.623 | ան<br>. Ծն<br>. Շն<br>. Ծն                                            | )<br>)<br>)<br>)<br>)<br>)<br>) | HY<br>18,869<br>15,974<br>18,494 | .00<br>.00<br>.00<br>.00   | 0<br>0             | CS<br>.000<br>.000<br>.000 |
| WEIGHT PERCENT<br>MOLE PERCENT<br>CATION PERCENT                                                                                                                                                                          | NT<br>1.524<br>1.297<br>1.118                                                                                                                                      | CM<br>. 000<br>. 000<br>. 000                                                                                             | 1L<br>652<br>1,098<br>,63 <b>6</b>                                              | HM<br>.000<br>.000<br>.000       | TA<br>. D C<br>. Q U<br>. D C                                         |                                 | PF<br>.000<br>.000<br>.000       | RU<br>,00<br>,00<br>,00    | 0<br>0             | AP<br>165<br>1976<br>148   |
| MAFIC INDEX = 42<br>NORM TOTAL = 100                                                                                                                                                                                      | .508<br>.002                                                                                                                                                       |                                                                                                                           |                                                                                 |                                  |                                                                       |                                 |                                  |                            |                    |                            |
| OLIVINE COMPOSITI<br>FORSTERITE                                                                                                                                                                                           |                                                                                                                                                                    | FAYALI                                                                                                                    | TE .0                                                                           | 00                               |                                                                       |                                 |                                  |                            |                    |                            |
| ORTHOPYROXENE COM<br>ENSTATITE                                                                                                                                                                                            | PUSITION<br>45,198                                                                                                                                                 | FERROS                                                                                                                    | ILITE 54.8                                                                      | 102                              |                                                                       |                                 |                                  |                            |                    |                            |
| CLINOPYROXENE COM<br>WOLLASTONITE                                                                                                                                                                                         | POSITION<br>50.136                                                                                                                                                 | ENSTAT                                                                                                                    | ITE 22.5                                                                        | i38 F                            | FERROSILIT                                                            | TE 27.                          | 327                              |                            |                    |                            |
| FELDSPAR COMPOSIT<br>ORTHUCLASE<br>PLAGIOCLASE                                                                                                                                                                            | ION<br>6,991<br>Composition                                                                                                                                        | ALBITE<br>A (PERC AN                                                                                                      | 37.0<br>() 60.1                                                                 | 99 A                             | NORTHITE                                                              | 55,                             | 910                              |                            |                    |                            |
| 1HORNTON AND TUIT<br>SOLIDIFICATION IN<br>CRYSTALLIZATION I<br>LARSEN INDEX (1/3<br>ALBITE RATIO (100<br>IRON RATIO (100<br>IRON RATIO (1622=<br>MG NUMBER AS CATI<br>OXIDATION RATIO A<br>DENSITY OF DRY LI<br>AFH RATIO | LE DIFFEREN<br>DEX (100*MG<br>NDEX (AN+MG<br>SI+K)-(CA+HG<br>SI+K)-(CA+H<br>*(AB+AB EQ]<br>MN)*100/(FE<br>ONS MG/CATI<br>ONS MG/CATI<br>ONS MG/CATI<br>QUID OF THI | (TIATION I<br>GO/(MGD+FE<br>DI+FO+FO<br>G)<br>V IN NE)/<br>Z+HN+MG)/<br>CONS (FE+M<br>CONS (FE+M<br>LE MAITR<br>S COMPOSI | NDEX<br>0+FE203+NA<br>1 EQIV OF E<br>(PLAG)<br>1G)<br>1E (FE0/FE0<br>TION (AT 1 | 04FE203)<br>04FE203)<br>050 DEG) | = 30.169<br>28.733<br>43.555<br>39.897<br>39.997<br>50.127<br>= 2.653 | 933575783                       |                                  |                            |                    |                            |
| KOMATIITE PARAMET<br>FEO/(FEO+MGD) CA<br>.6610                                                                                                                                                                            | ERS<br>10/AL203 51                                                                                                                                                 | 102/T102<br>124,51                                                                                                        | AL203/T102<br>31,50                                                             | 2 FEQ*/1                         | 602 с <u>а</u> д/1                                                    | 1102<br>37                      | NA20/TI02<br>4.770 1             | K20/11                     | 02                 |                            |
| JENSEN CATION AL<br>49                                                                                                                                                                                                    | 203 - FEQ+F                                                                                                                                                        | FE203+TI02<br>26.83                                                                                                       | 2 - MGQ<br>23,60                                                                |                                  |                                                                       |                                 |                                  |                            |                    |                            |
| QUARTZ - FELDSPAR<br>Quartz<br>Quartz<br>Cation Proportion                                                                                                                                                                | RATIOS<br>15.00<br>20.58<br>IS                                                                                                                                     | ORTHO<br>ORTHO                                                                                                            | CLASE 5,9<br>CLASE 11.3                                                         | 74 FE                            | PLAGIOCLAS<br>Albite<br>29 - 95                                       | 3E 79.<br>50.<br>MC             | 05<br>10<br>29,57                |                            |                    |                            |
|                                                                                                                                                                                                                           |                                                                                                                                                                    | CA 15                                                                                                                     | 5.24                                                                            | MG                               | 10.56                                                                 | SI                              | 74.20                            |                            |                    |                            |
|                                                                                                                                                                                                                           |                                                                                                                                                                    | 2MG 36                                                                                                                    | s. 4ŭ                                                                           | 2FE                              | 301.82                                                                | 51                              | /5 25.58                         |                            |                    |                            |
|                                                                                                                                                                                                                           |                                                                                                                                                                    | CA 51                                                                                                                     | 52                                                                              | AL S                             | 37.49                                                                 | NA                              | +K 10,99                         |                            |                    |                            |
| COORDINATES IN TH                                                                                                                                                                                                         | IE SYSTEM PL                                                                                                                                                       | AGIOCLASE                                                                                                                 | E - OLIVINE                                                                     | - CLINO                          | YROXENE -                                                             | - QUAR                          | TZ (IN MOLE                      | PERCE                      | NF)                |                            |
| FRUPORTION OF ANA                                                                                                                                                                                                         | LYSIS IN BA                                                                                                                                                        | ASALT TEIR                                                                                                                | AHEDRON IS                                                                      | i 94,62                          | MOLE PERC                                                             | ENT                             |                                  |                            |                    | 17.10                      |
| CLINOPYROXENE PRO                                                                                                                                                                                                         | NJECTIÓN                                                                                                                                                           | UL 14                                                                                                                     | 1,53<br>1,74                                                                    | CPX :                            | 21.80<br>0.0 <sup></sup>                                              | PL                              | AG 50.87<br>54.83                |                            | u i z              | 13.47                      |
| QUARTZ PROJECTION                                                                                                                                                                                                         | l                                                                                                                                                                  | 16                                                                                                                        | 5.94                                                                            | 2                                | 25.19                                                                 |                                 | 57.87                            |                            |                    | 0.0                        |
| PLAGIOCLASE PROJE                                                                                                                                                                                                         | CTION                                                                                                                                                              | 25                                                                                                                        | 9.36                                                                            |                                  | 4J.66                                                                 |                                 | ۵.۵                              |                            |                    | 36,38                      |
| OLIVINE PROJECTIO                                                                                                                                                                                                         | N                                                                                                                                                                  | (                                                                                                                         | ),0                                                                             | 3                                | 17.33                                                                 |                                 | 39.92                            | 0PX+ (                     | (4QTZ)             | 42 . 35                    |
| CMAS PROJECTIONS                                                                                                                                                                                                          | TNATES                                                                                                                                                             | C 17                                                                                                                      | 7.33                                                                            |                                  | 15 60                                                                 | ۵                               | 10 31                            |                            | 5                  | 53 07                      |
| DIDPSIDE PROJECTI                                                                                                                                                                                                         | ON CON                                                                                                                                                             | C3A 31                                                                                                                    | ,95                                                                             | M 1                              | 14,06                                                                 | s                               | 53.99                            |                            | 3                  | 2(2177                     |
| ULIVINE PROJECTIO                                                                                                                                                                                                         | N                                                                                                                                                                  | CS 21                                                                                                                     | 2,34                                                                            | h d                              | 3.77                                                                  | 5                               | 13,89                            |                            |                    |                            |
| ENSTATITE PROJECT                                                                                                                                                                                                         | ION                                                                                                                                                                | M25 16                                                                                                                    | . 40                                                                            | C293 -                           | 43.29                                                                 | A2                              | 93 40,30                         |                            |                    |                            |
| MANTZ BROISCATON                                                                                                                                                                                                          |                                                                                                                                                                    | CAS2 60                                                                                                                   | 1,15                                                                            | MS 2                             | 20.61                                                                 | CH                              | 52 19.25                         |                            |                    |                            |

.

|

HLAGOTHI COMPLEX SAMPLE NUMBER BG 239

| ORIGIN<br>5102<br>54,69                                                                        | AL WEIGH1<br>AL203<br>11,92                                                                                  | FE203<br>,96                                                                                    | T OXIDES<br>FEO<br>8.60                                                                                                                    | MN0<br>.19                                                | 11GU<br>9.75                                                                   | CA0<br>9,25                      | NA20<br>2.46                                                                                                                                    | ¥20<br>.73           | TI02<br>.44                      | P205<br>.11             | CR203<br>,00              | TOTAL<br>27.29             |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|-------------------------|---------------------------|----------------------------|
| DEIGHT<br>5102<br>55.08                                                                        | PERCENT<br>AL 203<br>12.01                                                                                   | DXIDES<br>FE203<br>.96                                                                          | RECALCULATE<br>FED<br>8.66                                                                                                                 | D TO<br>MNQ<br>, 19                                       | 100 PERCEN<br>MGO<br>9.82                                                      | 17<br>CAO<br>9732                | NA20<br>2.48                                                                                                                                    | K 20<br>474          | T102                             | P205<br>,11             | CR203<br>, 00             | TOTAL<br>100,00            |
| CATION<br>SI<br>50.86                                                                          | PROPORTI<br>AL<br>13,07                                                                                      | IONS IN<br>FE(3)<br>.47                                                                         | ANALYSIS<br>Fé(2)<br>6.69                                                                                                                  | MN<br>.15                                                 | MG<br>13.51                                                                    | 9.22                             | NA<br>4.43                                                                                                                                      | K<br>. 87            | TI<br>.45                        | P<br>,09                | CR . 00                   |                            |
| CIPW NO                                                                                        | DRM                                                                                                          |                                                                                                 |                                                                                                                                            |                                                           |                                                                                |                                  |                                                                                                                                                 |                      |                                  |                         |                           |                            |
| WEIGHT<br>MOLE PE<br>CATION                                                                    | PERCENT<br>ERCENT<br>PERCENT                                                                                 | QTZ<br>2,640<br>9,746<br>2,438                                                                  | CDR<br>.000<br>.000<br>.000<br>.000                                                                                                        |                                                           | 0r<br>4.344<br>4.220<br>4.331                                                  | AB<br>20,950<br>17,729<br>22,176 | AN<br>19.46<br>15.51<br>19.41                                                                                                                   | 4<br>8<br>1          | LC<br>.000<br>.000<br>.000       | NE<br>.00<br>.00<br>.00 |                           | KP<br>.000<br>.000<br>.000 |
| WEIGHT<br>MÜLE PE<br>CATION                                                                    | PERCENT<br>RCENT<br>PERCENT                                                                                  | AC<br>, 000<br>, 1100<br>, 1000                                                                 | NS<br>.000<br>.000<br>.000                                                                                                                 |                                                           | K 9<br>, 000<br>, 000                                                          | DI<br>21.172<br>20.750<br>20.753 | 00<br>00<br>00<br>00                                                                                                                            | 0<br>0<br>0          | HY<br>28.543<br>28.738<br>28.734 | 0L<br>.00<br>.00<br>.00 |                           | C5<br>.000<br>.000<br>.000 |
| WEIGHT<br>MÜLE PE<br>CATION                                                                    | PERCENT<br>ERCENT<br>PERCENT                                                                                 | MT<br>1,395<br>1,336<br>1,003                                                                   | CM<br>,000<br>,000<br>,000                                                                                                                 |                                                           | IL<br>1.224<br>1.789<br>.895                                                   | HM<br>,000<br>,000<br>,000       | TN<br>. 00<br>. 04<br>. 08                                                                                                                      | ()<br>()<br>()<br>() | PF<br>.000<br>.000               | RL<br>.00<br>.00<br>.00 | )<br>1 ()<br>1 ()<br>1 () | AP<br>,262<br>,173<br>,231 |
| MAFIC I<br>NORM TO                                                                             | INDEX ₽<br>ITAL ₽ 1                                                                                          | 52,596<br>00,003                                                                                |                                                                                                                                            |                                                           |                                                                                |                                  |                                                                                                                                                 |                      |                                  |                         |                           |                            |
| OLIVING<br>FC                                                                                  | E COMPOSI<br>DRSTERITE                                                                                       | TION .O                                                                                         | 08 FA                                                                                                                                      | YALII                                                     | FE .00                                                                         | 0                                |                                                                                                                                                 |                      |                                  |                         |                           |                            |
| OR THOP Y                                                                                      | ROXENE C                                                                                                     | 0MP0SIT<br>62.9                                                                                 | ION<br>54 Fe                                                                                                                               | RROSI                                                     | LITE 37.04                                                                     | 6                                |                                                                                                                                                 |                      |                                  |                         |                           |                            |
| CLINOPY<br>WC                                                                                  | ROXENE C                                                                                                     | COMPOSIT                                                                                        | 10N<br>28 EN                                                                                                                               | STATI                                                     | ITE 30.64                                                                      | 51 F                             | ERROSILIT                                                                                                                                       | E 18,                | 631                              |                         |                           |                            |
| FELDSPA<br>Or<br>Pl                                                                            | AR COMPOS<br>THÚCLASE<br>AGIOCLAS                                                                            | ITION<br>E coméo                                                                                | 05 AL<br>Sition (Per                                                                                                                       | LE AND                                                    | 46.81<br>48.15                                                                 | 6 A                              | NORTHITE                                                                                                                                        | 43.                  | 480                              |                         |                           |                            |
| THORN TO<br>SOLIDIF<br>CRYSTAL<br>LARSEN<br>ALBITE<br>IRON RA<br>MG NUME<br>OXIDATI<br>DENSITY | IN AND TU<br>FICATION<br>LIZATION<br>INDEX (1<br>RATIO (1<br>ATIO ((FE<br>HER AS CA<br>CON RATIO<br>( OF DRY | JTTLE DI<br>INDEX (<br>INDEX (<br>JSSI+K)<br>(00*(AB+<br>2=mN)*1<br>TIONS M<br>ACCORD<br>LIQUID | FFERENTIATI<br>100*MGD/(MG<br>(AN+MG,DI+F<br>-(CA+MG)<br>AB EQIV IN<br>00/(FE2+MN+<br>G/CATIONS (<br>ING TO LE<br>ING TO LE<br>OF THIS COM | ON IN<br>D+FE(<br>O+FO<br>NE)/F<br>MG))<br>FE+MO<br>NITRE | NDEX<br>D+FE203+NA2<br>EQIV OF EN<br>PLAG)<br>E)<br>E (FE0/FE0+<br>FION (AT 10 | EE203)                           | $ \begin{array}{rrrr} = & 27,942 \\ = & 43,352 \\ = & 46,051 \\ = & -5,909 \\ = & 53,730 \\ = & 53,730 \\ = & 64,903 \\ = & 2,670 \end{array} $ | 2                    |                                  |                         |                           |                            |
| AFM RAI<br>TC                                                                                  | FIO<br>DTAL ALKA                                                                                             | LIS 14                                                                                          | ,24 T                                                                                                                                      | OTAL                                                      | FE 42.22                                                                       | 2 м                              | C                                                                                                                                               | 43.                  | 54                               |                         |                           |                            |

KOMATIITE PARAMETERS

FEO/(FEO+MGO) CAO/AL203 SI02/TI02 AL203/TI02 FEO\*/TI02 CAO/TI02 NA20/TI02 K20/TI02 (4923 78 95.45 18.62 14.77 14.45 3.844 1.141

JENSEN CATION AL203 - FED+FE203+TID2 - MG0

;

|                                                          | 30.00                             |                | 37,38                                  |                                        |                                |                      |       |
|----------------------------------------------------------|-----------------------------------|----------------|----------------------------------------|----------------------------------------|--------------------------------|----------------------|-------|
| QUARTZ - FELDSPA<br>QUARTZ<br>QUARTZ<br>CATION PROPORTIO | AR RATIOS<br>5,57<br>9,45<br>2005 | DR<br>DR<br>CA | THOCLASE 9.1<br>THOCLASE 15.5<br>30.90 | 6<br>5<br>FE                           | PLACIOCLASE<br>Albite<br>23,59 | 85.27<br>75.00<br>Mg | 45.43 |
|                                                          |                                   | CA             | 12.52                                  | MG                                     | 18.36                          | Sſ                   | 69.11 |
|                                                          |                                   | <b>S</b> I     | 71.73                                  | AL.                                    | 9.21                           | MG                   | 19.04 |
|                                                          |                                   |                | F/3 95                                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 07 70                          | PT / F               | 10 05 |

| N | PRUPURITUNS | <b>L</b> А | 30.70   | FC. |
|---|-------------|------------|---------|-----|
|   |             | CA         | 12.52   | MG  |
|   |             | SI         | 71,73   | AL  |
|   |             | 2MG        | 52 , 75 | 2F  |
|   |             |            |         |     |

| <b>Q</b> /1 |       |     |       |      |
|-------------|-------|-----|-------|------|
| SI          | 71.73 | AL  | 9.21  | MG   |
| 2MG         | 52.75 | 2FE | 27.39 | SI/5 |

| 21  | /1./4   | <b>н</b> ц. | 7.21  | riu - | 17400 |
|-----|---------|-------------|-------|-------|-------|
| 2MG | 52 , 75 | 2FE         | 27.39 | 51/5  | 19,85 |
| ~ . | 50 10   |             |       |       |       |

| 2MG | 52,75 | 2FE | 27.39 | SI/5 | 19,85 |
|-----|-------|-----|-------|------|-------|
| CA  | 50.09 | AL  | 35.50 | NA+K | 14,41 |

| 2110 |       |    | E7 137 | 0.170 | 17,00 |
|------|-------|----|--------|-------|-------|
| CA   | 50,09 | AL | 35,50  | NA+K  | 14,41 |

| CA | 50.09 | AL | 35,50 | NA+K | 14,41 |
|----|-------|----|-------|------|-------|
|    |       |    |       |      |       |

COORDINATES IN THE SYSTEM PLAGIOCLASE - OLIVINE CLINOPYROXENE - QUARTZ (IN MOLE PERCENT)

| PROPORTION OF ANALYSIS IN | BASALT | TETRAHEDRON | 15 93.54 | MOLE PE | RCENT |       |                     |       |
|---------------------------|--------|-------------|----------|---------|-------|-------|---------------------|-------|
| BASAL F TETRAHEDRON       | ÐĽ     | 23.05       | CPX      | 22.20   | PLAG  | 44,46 | <b>μ</b> τ <i>Ζ</i> | 10.29 |
| CLINOPYROXENE PROJECTION  |        | 29.63       |          | 0.0     |       | 57.14 |                     | 13.23 |
| QUARTZ PROJECTION         |        | 25,70       |          | 24.74   |       | 49.56 |                     | 0.0   |
| PLAGIOCLASE PROJECTION    |        | 41,51       |          | 39.96   |       | 0.0   |                     | 18.53 |
| OFTATUE BROTECTION        |        | 0.0         |          | 20.59   |       | 41.23 | 0PX+(40TZ)          | 38.18 |
| CHAS PROJECTIONS          |        |             |          |         |       |       |                     |       |
| TETRAHEDRON COORDINATES   | C      | 16.01       | м        | 22.16   | A     | 11.10 | S                   | 50.74 |
| DIOPSIDE PROJECTION       | C3A    | 30,86       | м        | 16.37   | 5     | 52,77 |                     |       |
| ULIVINE PROJECTION        | CS     | 24.02       | м        | 61.36   | 5     | 14,62 |                     |       |
| ENSTATITE PROJECTION      | H25    | 27.54       | 0263     | 37,92   | A263  | 34.54 |                     |       |
| QUARTZ PROJECTION         | CAS2   | 52,48       | hS       | 29.45   | CHS2  | 18.07 |                     |       |
| SAMPLE NUMBER BG 242                                                                                                                                                                                                                                                                              |                                                     |                                                                                                             |                                                                |                                                                                                            |                                       |                                                                                         |                  |                            |                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------|------------------|----------------------------|--------------------------------------------------|
| ORIGINAL WEICHT PERCENT O<br>S102 AL203 FE203<br>S4 75 11 54                                                                                                                                                                                                                                      | XIDES<br>FEO<br>8.84                                |                                                                                                             | CAD<br>9 30                                                    | NA20                                                                                                       | ĸąo                                   | 1102                                                                                    | P205             | CR203                      | ŢġŦęĻ                                            |
| WEIGHT PERCENT OXIDES REC.                                                                                                                                                                                                                                                                        | ALCULATED                                           | TO 100 PERC                                                                                                 | ENT CAU                                                        | NAŚĊ                                                                                                       | ĸşö                                   | T102                                                                                    | P205             | CR2Q3                      | TOTAL                                            |
| CATION PROPORTIONS IN ANAL                                                                                                                                                                                                                                                                        | LYSIS                                               |                                                                                                             | 7.38                                                           | <b>~</b> / <b>i</b> 1                                                                                      | .77                                   | . 07                                                                                    |                  | , 00                       | 400.00                                           |
| SI AL FE(3)<br>51.01 12.63 .49                                                                                                                                                                                                                                                                    | FE(2)<br>6,89                                       | MN MG<br>,14 13,90                                                                                          | 9.2B                                                           | NA<br>3,79 1                                                                                               | К<br>- 14                             | TI<br>.45                                                                               | Р<br>. 98        | <sup>CR</sup> . 00         |                                                  |
| CIPW NORM                                                                                                                                                                                                                                                                                         |                                                     |                                                                                                             |                                                                |                                                                                                            |                                       |                                                                                         |                  |                            |                                                  |
| QTZ<br>WEIGHT_PERCENT 3.322                                                                                                                                                                                                                                                                       | ៥២R<br>. ១០១                                        | 0R<br>5.709                                                                                                 | AB<br>17.876                                                   | AN<br>19,240                                                                                               | )                                     | , 0 0 0                                                                                 | , 0 C            | -<br>                      | КР<br>. 000                                      |
| CATION PERCENT 3.075                                                                                                                                                                                                                                                                              | , 0 0 Q                                             | 5.705                                                                                                       | 14.781                                                         | 14.992<br>19.23                                                                                            | 5                                     | .000                                                                                    | .00<br>.00       |                            | . 0 0 0<br>. 0 0 0                               |
| WEIGHT PERCENT .080                                                                                                                                                                                                                                                                               | NS<br>.000                                          | . K S<br>, 0 0 0                                                                                            | 21.586                                                         | ы<br>1006 с                                                                                                | . 2                                   | 9.372                                                                                   | 0L<br>. 0 (      | īa                         | CS<br>. 000                                      |
| MOLE PERCENT .000<br>Cation Percent .000                                                                                                                                                                                                                                                          | .000                                                | , 0 8 0<br>, 0 8 0                                                                                          | 20.678<br>21.221                                               | 5 .000<br>000                                                                                              | 273                                   | 8,901<br>9,660                                                                          | , 0 C<br>, 0 C   | ) ()<br>) ()               | .000<br>.000                                     |
| WEIGHT PERCENT 1,433                                                                                                                                                                                                                                                                              | CH<br>. 088                                         | 1,223                                                                                                       | . 000                                                          | אד<br>100. (                                                                                               | 1                                     | PF<br>.000                                                                              | . 0 I            | 10                         | ар<br>, 238                                      |
| MOLE PERCENT 1.342<br>CATION PERCENT 1.033                                                                                                                                                                                                                                                        | . 0 0 0<br>. 0 0 0                                  | 1,748<br>.897                                                                                               | .000<br>.044                                                   | ) 0 0 (<br>) 0 0 (                                                                                         | )                                     | . 000                                                                                   | .00<br>.01       | 10<br>10                   | .154<br>.210                                     |
| MAFIC INDEX = 53.854<br>NORM TOTAL = 100.003                                                                                                                                                                                                                                                      |                                                     |                                                                                                             |                                                                |                                                                                                            |                                       |                                                                                         |                  |                            |                                                  |
| OLIVINE COMPOSITION                                                                                                                                                                                                                                                                               |                                                     |                                                                                                             |                                                                |                                                                                                            |                                       |                                                                                         |                  |                            |                                                  |
| FORSTERITE .000                                                                                                                                                                                                                                                                                   | FAY                                                 | ALITE .                                                                                                     | 000                                                            |                                                                                                            |                                       |                                                                                         |                  |                            |                                                  |
| ENSTATITE 62.916                                                                                                                                                                                                                                                                                  | FER                                                 | ROSILITE 37.                                                                                                | 084                                                            |                                                                                                            |                                       |                                                                                         |                  |                            |                                                  |
| CLINDPYROXENE COMPOSITION<br>WOLLASTONITE 51.325                                                                                                                                                                                                                                                  | ENS                                                 | TATITE 30.                                                                                                  | 624                                                            | FERROSILITE                                                                                                | 18.05                                 | 1                                                                                       |                  |                            |                                                  |
| FELDSPAR COMPOSITION<br>ORTHOCLASE 13,331<br>PLAGIOCLASE COMPOSIT                                                                                                                                                                                                                                 | ALR<br>ION (PERC                                    | (TE 41,<br>AN) 31.                                                                                          | 745<br>834                                                     | ANORTHITE                                                                                                  | 44,92                                 | 4                                                                                       |                  |                            |                                                  |
| HORNTON AND TUTTLE DIFFE                                                                                                                                                                                                                                                                          | RENTIATIO                                           | N INDEX                                                                                                     | (420+420)                                                      | = 26.910                                                                                                   |                                       |                                                                                         |                  |                            |                                                  |
| CRYSTALLIZATION INDEX (100<br>CRYSTALLIZATION INDEX (AN<br>LARSEN INDEX (1/351+K)-(C                                                                                                                                                                                                              | *FIGU/(HGU<br>+MG,DI+FO<br>A+MG)                    | +FO EQIV OF                                                                                                 | EN)                                                            | = 46.451<br>= -6.175                                                                                       |                                       |                                                                                         |                  |                            |                                                  |
| ALBITE RATIO (100*(AB+AB<br>IRON RATIO ((FE2=MN)*100/                                                                                                                                                                                                                                             | EQTU IN N<br>(FE2+MN+M                              | E)/PLAG)<br>G))                                                                                             |                                                                | <pre># 48.166<br/>= 53.725</pre>                                                                           |                                       |                                                                                         |                  |                            |                                                  |
| MG NUMBER AS CATIONS MG/C                                                                                                                                                                                                                                                                         | ATIONS (F<br>TO LE MA                               | E+MG)<br>I1RE (FED/FE                                                                                       | 0+FE203)                                                       | = 66,669<br>= .820                                                                                         |                                       |                                                                                         |                  |                            |                                                  |
| AFM RATIO                                                                                                                                                                                                                                                                                         | 1815 CUAP<br>TA                                     | TALEE AG                                                                                                    | 1030 966.                                                      | ) ≕ 2,676<br>NC                                                                                            | AT 01                                 |                                                                                         |                  |                            |                                                  |
| KOMATIITE PARAMETERS                                                                                                                                                                                                                                                                              | 6102/T()                                            | 9 4) 203/TI                                                                                                 | 12 66967                                                       | T102 CAD/TI                                                                                                | 102 NA                                | 20/1102                                                                                 | K20/T            | 102                        |                                                  |
| .4927 .81                                                                                                                                                                                                                                                                                         | 85.55                                               | 17.97                                                                                                       | - 152                                                          | 19 14.53                                                                                                   |                                       | 1.281                                                                                   | 1ີເວັບິນ'່       |                            |                                                  |
| JENSEN CATION AL203 - FE<br>36.55                                                                                                                                                                                                                                                                 | 0+FE203+1<br>23.22                                  | 102 - MGU<br>40.23                                                                                          |                                                                |                                                                                                            |                                       |                                                                                         |                  |                            |                                                  |
| QUARTZ - FELDSPAR RATIOS                                                                                                                                                                                                                                                                          | ព័ទ្ធ                                               | INOCLASE 12                                                                                                 | 37                                                             | PLACIOCLASE                                                                                                | B0,43                                 |                                                                                         |                  |                            |                                                  |
| CATION PRUPORTIONS                                                                                                                                                                                                                                                                                | CA dr                                               | 30,52                                                                                                       | FE                                                             | 23,77                                                                                                      | 66,44<br>MC                           | 45.71                                                                                   |                  |                            |                                                  |
|                                                                                                                                                                                                                                                                                                   | CA                                                  | 12.51                                                                                                       | MG                                                             | 18.74                                                                                                      | 12                                    | 6 <b>8</b> .75                                                                          |                  |                            |                                                  |
|                                                                                                                                                                                                                                                                                                   | SI<br>avc                                           | 71.62                                                                                                       | AL.                                                            | 9.96                                                                                                       | HG                                    | 19,52                                                                                   |                  |                            |                                                  |
|                                                                                                                                                                                                                                                                                                   | 2716<br>(° 4                                        | 52.77<br>51 79                                                                                              | 2FE<br>Al                                                      | 27.06<br>34 95                                                                                             | 5.L75<br>NA+K                         | 17,40                                                                                   |                  |                            |                                                  |
|                                                                                                                                                                                                                                                                                                   | Ch                                                  |                                                                                                             |                                                                |                                                                                                            | 110.1                                 | 10,00                                                                                   |                  |                            |                                                  |
|                                                                                                                                                                                                                                                                                                   |                                                     |                                                                                                             |                                                                |                                                                                                            |                                       |                                                                                         |                  |                            |                                                  |
| COORDINATES IN THE SYSTEM                                                                                                                                                                                                                                                                         | PLAGIDCL                                            | ASE - OLIVIN                                                                                                | IÉT- ULIN                                                      | PYROXENE -                                                                                                 | QUARTZ                                | (IN MOLE                                                                                | E PERCE          | ENT)                       |                                                  |
| COORDINATES IN THE SYSTEM<br>PROPERTION OF ANALYSIS IN                                                                                                                                                                                                                                            | PLAGIDCL<br>BASALT 1                                | ASE - ULIVIN<br>ETRAHEDRON I                                                                                | иёт - СLIИ(<br>8 92.15                                         | DPYROXENE -<br>Mole Perce                                                                                  | QUARTZ                                | (IN MOLE                                                                                | E PERCE          | ENT)                       |                                                  |
| COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>MASALI TETRAHEDRON                                                                                                                                                                                                                      | PLAGIOCL<br>BASALT 1<br>OL                          | ASE - OLIVIN<br>ETRAHEDRON I<br>24.14<br>71 44                                                              | ИЁТ- СЦІМ(<br>8 92.15<br>СРХ                                   | DPYROXENE -<br>Mole Perce<br>23.03<br>0.044                                                                | QUARTZ<br>NT<br>PLAG                  | (IN MOLE<br>41,45                                                                       | E PERCE          | ENT)<br>QTZ                | 11.38                                            |
| COORDINATES IN THE SYSTEM<br>PROPERTION OF ANALYSIS IN<br>MASALI TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>BUARTZ PROJECTION                                                                                                                                                                     | PLAGIOCL<br>BASALT 1<br>DL                          | ASE - OLIVIN<br>EIRAHEDRON I<br>24.14<br>31.36<br>27.24                                                     | іё <sup>7</sup> – С∟ІМ<br>65 – 92,15<br>СРХ                    | DPYROXENE -<br>MOLE PERCE<br>23.03<br>0.0-4<br>25.98                                                       | QUARTZ<br>NT<br>PLAG                  | (IN MOLE<br>41,45<br>53.85<br>46,78                                                     | E PERCE          | ENT)<br>QTZ                | 11.38<br>14.79<br>0.0                            |
| COORDINATES IN THE SYSTEM<br>PROPURTION OF ANALYSIS IN<br>MASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                                                           | PLAGIDCL<br>BASALT 1<br>DL                          | ASE - ULIVIN<br>ETRAHEDRON J<br>24.14<br>31.36<br>27.24<br>41.23                                            | IÊ <sup>™</sup> – СLIN(<br>8 92.15<br>СРХ                      | DPYROXENE -<br>MOLE PERCE<br>23.03<br>0.0-4<br>25.90<br>39.33                                              | QUARTZ<br>NT<br>PLAG                  | (IN MOLE<br>41.45<br>53.85<br>46.78<br>0.8                                              | E PERCE          | ENT)<br>QTZ                | 11,38<br>14,79<br>0.0<br>19,44                   |
| COORDINATES IN THE SYSTEM<br>PROPURTION OF ANALYSIS IN<br>MASALI TETRAHEDRON<br>CLINOPYROXEME PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>ULIVINE PROJECTION                                                                                                                     | PLAGIDCL<br>BASALT 1<br>OL                          | ASE - ULIVIN<br>ETRAHEDRON I<br>24.14<br>31.36<br>27.24<br>41.23<br>0.0                                     | IÊ <sup>®</sup> - СLIN(<br>8 92.15<br>СРХ                      | DPYROXENE -<br>MOLE PERCE<br>23.03<br>0.0-4<br>25.98<br>39.33<br>20.93                                     | QUARTZ<br>INF<br>PLAG                 | (IN MOLE<br>41.45<br>53.85<br>46.78<br>0.8<br>37.68                                     | DPX+             | ENT)<br>QTZ<br>(4QTZ)      | 11.38<br>14.79<br>0.0<br>19.44<br>41.39          |
| COORDINATES IN THE SYSTEM<br>PROPERTION OF ANALYSIS IN<br>MASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIECLASE PROJECTION<br>ULIVINE PROJECTION<br>CMAS PROJECTIONS                                                                                                 | PLAGIDCL<br>BASALT 1<br>OL                          | ASE - ULIVIN<br>ETRAHEDRON I<br>24.14<br>31.36<br>27.24<br>41.23<br>U.U                                     | нё <sup>т</sup> – С∟Гн(<br>6 92,15<br>СРХ                      | DPYROXENE -<br>MOLE PERCE<br>23.03<br>0.0-4<br>25.98<br>39.33<br>20.93                                     | QUARTZ<br>NT<br>PLAG                  | (IN MOLE<br>41,45<br>53.85<br>46.78<br>0.8<br>37.68                                     | OPX++            | ENT)<br>QTZ<br>(4QTZ)      | 11,38<br>14,79<br>0,0<br>19,44<br>41,39          |
| COORDINATES IN THE SYSTEM<br>PROPERTION OF ANALYSIS IN<br>MASALI TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIECLASE PROJECTION<br>ULIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COORDINATES                                                                      | PLAGIDCL<br>BASALT 1<br>OL                          | ASE - ULIVIN<br>ETRAHEDRON I<br>24.14<br>31.36<br>27.24<br>41.23<br>0.0<br>15.61                            | нё <sup>т</sup> – С∟тн(<br>5 92.15<br>СРХ<br>М                 | DPYROXENE -<br>MOLE PERCE<br>23.03<br>0.0-4<br>25.98<br>39.33<br>20.93<br>20.93                            | QUARTZ<br>NT<br>PLAG                  | (IN MOLE<br>41,45<br>53.85<br>46.78<br>0.8<br>37,68                                     | E PERCE<br>OPX++ | ENT)<br>QTZ<br>(4QT2)<br>5 | 11.38<br>14.79<br>0.0<br>19.44<br>41.39<br>51.07 |
| COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>MASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>ULIVINE PROJECTION<br>CMAS PROJECTIONS<br>(ETRAHEDRON COORDINATES<br>DIOPSTDE PROJECTION                                               | PLAGIDCL<br>BASALT 1<br>OL<br>C<br>C3A              | ASE - ULIVIN<br>ETRAHEDRON J<br>24.14<br>31.36<br>27.24<br>41.23<br>0.0<br>15.61<br>30.33                   | НЁ <sup>т</sup> – С∟Гн(<br>срх<br>М<br>М                       | DPYROXENE -<br>MOLE PERCE<br>23.03<br>0.0-4<br>25.90<br>39.33<br>20.93<br>22.70<br>14.59                   | QUARTZ<br>INF<br>PLAG<br>A<br>S       | (IN MOLE<br>41.45<br>53.85<br>46.78<br>0.8<br>37.68<br>10.61<br>53.08                   | E PERCE<br>OPX++ | ENT)<br>QTZ<br>(4QT2)<br>S | 11.38<br>14.79<br>0.0<br>19.44<br>41.39<br>51.07 |
| COORDINATES IN THE SYSTEM<br>PROPERTION OF ANALYSIS IN<br>MASALI TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIECLASE PROJECTION<br>ULIVINE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COORDINATES<br>DIOPSTDE PROJECTION<br>OLIVINE PROJECTION                         | PLAGIDCL<br>BASALT 1<br>DL<br>C<br>C3A<br>CS        | ASE - ULIVIN<br>ETRAHEDRON J<br>24.14<br>31.36<br>27.24<br>41.23<br>0.0<br>15.61<br>30.33<br>23.44          | нё <sup>т</sup> – С∟тн(<br>5 92.15<br>СРХ<br>М<br>М<br>М       | DPYROXENE -<br>MOLE PERCE<br>23.03<br>0.0-4<br>25.98<br>39.33<br>20.93<br>22.70<br>14.59<br>62.58          | QUARTZ<br>PLAG<br>PLAG<br>S<br>S      | (IN MOLE<br>41,45<br>53.85<br>46.78<br>0.8<br>37.68<br>10,61<br>53.08<br>13.98          | 5 PERCE<br>0PX++ | ENT)<br>QTZ<br>(4QTZ)<br>S | 11,38<br>14,79<br>0.0<br>19,44<br>41,39<br>51,07 |
| COORDINATES IN THE SYSTEM<br>PROPORTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>ULIVINE PROJECTION<br>CMAS PROJECTIONS<br>IETRAHEDRON COORDINATES<br>DIOPSIDE PROJECTION<br>GLIVINE PROJECTION<br>ENSTATITE PROJECTION | PLAGIDOL<br>BASALT 1<br>OL<br>C<br>C3A<br>CS<br>M2S | ASE - OLIVIN<br>ETRAHEDRON I<br>24.14<br>31.36<br>27.24<br>41.23<br>0.0<br>15.61<br>30.33<br>23.44<br>26.31 | 1Ê <sup>-</sup> – С.Г.Н.<br>С.Р.Х<br>М<br>М<br>М<br>М<br>С.253 | DPYROXENE -<br>MOLE PERCE<br>23.03<br>0.0-4<br>25.90<br>39.33<br>20.93<br>22.70<br>14.59<br>62.58<br>30.93 | QUARTZ<br>PLAG<br>A<br>S<br>S<br>A2S3 | (IN MOLE<br>41,45<br>53.85<br>46.78<br>0.8<br>37.68<br>10,61<br>53.08<br>13.98<br>34.76 | E PERCE          | ENT)<br>QTZ<br>(4QTZ)<br>S | 11.38<br>14.79<br>0.0<br>19.44<br>41.39<br>51.07 |

HEAGUTHE COMPLEX

317

| CRIGINAL WEIGHT PERCENT CX<br>Siúz Al203 FE203<br>54.25 5.09 L.00 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10ES<br>FEO MNC<br>0.73 .15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MG 0<br>13+35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CAO<br>13.28                                                                                                                                                                                                                                      | NA20 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                  | T 102<br>+79                                                                                                                                                 | P205                               | CR 203                          | TCTAL<br>99.64                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------|--------------------------------------------------|
| WEIGHT PERCENT OXICES RECA<br>Stu2 ALZU3 FE203<br>54.46 5.11 1.09 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FEC PNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 PERCEN<br>MGC<br>13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAC<br>13.33                                                                                                                                                                                                                                      | NA20 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <2C                                                                                                                                                                 | T 102                                                                                                                                                        | P2C5                               | CR 203                          | TOTAL<br>10C.CU                                  |
| CATION PROPORTIONS IN ANAL<br>SI AL FE[3]<br>SU+49 3-58 -76 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | YSIS<br>FE(2) MN<br>1-97 -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MG<br>18•51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13424                                                                                                                                                                                                                                             | NA<br>2.3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27                                                                                                                                                                  | T I<br>•55                                                                                                                                                   | ₽<br>•09                           | CR .00                          |                                                  |
| QTZ<br>NETGHT PERCENT 1.758<br>PCLE PERCENT 6.379<br>CATION PERCENT 1.630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CCR<br>• C00<br>• C00<br>• C00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0R<br>1.364<br>1.302<br>1.365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A3<br>13.159<br>10.94C<br>13.98C                                                                                                                                                                                                                  | AN<br>6.274<br>4.917<br>6.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                     | LC<br>. COC<br>. COC<br>. COC                                                                                                                                | NÉ<br>.001<br>.001                 | 0                               | KP<br>• COC<br>• COC                             |
| MEIGHT PERCENT .000<br>FOLE PERCENT .000<br>CATION PERCENT .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NS<br>• 000<br>• 000<br>• 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KS<br>•000<br>•000<br>•000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D!<br>47.818<br>46.329<br>47.356                                                                                                                                                                                                                  | WC<br>• 0 0 0<br>• 0 0 0<br>• 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 222                                                                                                                                                                 | FY<br>6.309<br>6.346<br>6.528                                                                                                                                | 01.<br>00.<br>00.                  | 0                               | CS<br>•COO<br>•COO                               |
| NEIGHT PERCENT 1.573<br>Pole percent 1.401<br>Cation percent 1.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | СМ<br>СОС<br>СОС<br>СОС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11<br>1.487<br>2.136<br>1.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HH<br>•000<br>•000                                                                                                                                                                                                                                | TN<br>-000<br>-000<br>-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     | • COC<br>• COC<br>• COC                                                                                                                                      | 4U<br>• 0C<br>• 0C                 | 0<br>0                          | ΔΡ<br>• 261<br>• 170<br>• 231                    |
| PLFIC INDEX = 77.449<br>NOPM TOTAL = 100.005<br>CLIVINE COPPESITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                              |                                    |                                 |                                                  |
| FORSTERITE .000<br>CRTHOPYRCXENE COMPCSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FAYALI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TE .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                              |                                    |                                 |                                                  |
| ENSTATITE 67.490<br>CLINOPYROXENE COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FERROS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ILITE 32.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                              |                                    |                                 |                                                  |
| WOLLASTONITE 51.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ENSTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17ë 32.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 C 4                                                                                                                                                                                                                                             | FERRASILITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.72                                                                                                                                                               | 7                                                                                                                                                            |                                    |                                 |                                                  |
| PLAGICCLASE COMPOSITI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON (PERC AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 2<br>3 6                                                                                                                                                                                                                                        | ANDRTHITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.10                                                                                                                                                               | 9                                                                                                                                                            |                                    |                                 |                                                  |
| THCANTON AND TUTTLE DIFFER<br>Solidification index (100%<br>CRYSTALLIZATION INDEX (AA+<br>LARSEN INDEX (1/35I+K)-(CA<br>410ITE RATIO (100%(A&+AB E<br>IRON RATIO (1622=MN)*LOD/<br>MG NUMBER AS CATIONS MG/CA                                                                                                                                                                                                                                                                                                                                                                                        | ENTIATION 1<br>PG3/(MG0+FE<br>MG+DI+F0+F0<br>FG1V IN NE)/<br>FE2+MN+MG)/<br>TIONS (FE+M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NCEX<br>D+FE203+NA2<br>EQTV OF EN<br>PLAG}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2C+K20))<br>}}                                                                                                                                                                                                                                    | $ \begin{array}{c} 16.281 \\ 51.467 \\ 52.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -15.525 \\ -$ |                                                                                                                                                                     |                                                                                                                                                              |                                    |                                 |                                                  |
| CXIGATION RATIO ACCORDINE<br>CENSITY OF DRY LIQUIC OF T<br>AFM RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TO LE MAITR<br>HIS COMPOSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | É (FEQ/FEO<br>Tiùn (AT 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FE203)<br>50 DEG)                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                              |                                    |                                 |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                              |                                    |                                 |                                                  |
| NOWAT11TE BAGANETEDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                              |                                    |                                 |                                                  |
| KOMATIITE PARAPETERS<br>FEC/(FEC+PGC) CAO/AL203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2105/1105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ¥F503\1105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FEQUAT                                                                                                                                                                                                                                            | 102 CAÇ/TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 NA                                                                                                                                                               | 20 / 1 102                                                                                                                                                   | K 20 / T 10                        | 0 2                             |                                                  |
| KOMATIITE PARAPETERS<br>FEC/(FEC+PGC) CAO/AL2C3<br>2+61<br>JENSEN CATION AL2C3 - FEC<br>16+93 - FEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SIC2/TIO2<br>69.56<br>0+F52C3+TIO2<br>26.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AL203/T 102<br>6+53<br>- MG0<br>56+15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FEQ#/T<br>13.7                                                                                                                                                                                                                                    | 102 CAC/TIC<br>2 17.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 NA<br>1                                                                                                                                                          | 20 /T 10 2<br>•9 87                                                                                                                                          | K 20 / T 10<br>• 29 5              | 02                              |                                                  |
| KOMATIITE PARAPETERS<br>FEC/(FEC+PGC) CAO/AL2C3<br>.4449 2.01<br>JENSEN CATION AL2C3 - FEC<br>16.93<br>CUARTZ - FELCSFAR RATIOS<br>QUARTZ 10.8C<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                | SIC2/TIO2<br>69.56<br>0+F52C3+TIO2<br>26.91<br>CRTHC<br>CRTHC<br>CA 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AL203/T 102<br>6.53<br>56.15<br>56.15<br>CLASE 6.05<br>CLASE 8.35<br>.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FE0*/T<br>13.7<br>FE                                                                                                                                                                                                                              | 102 CAC/TIC<br>2 17.03<br>PLAGICCLASE<br>ALAITE<br>20.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02 NA<br>1<br>86.16<br>80.82<br>NG                                                                                                                                  | 20 /T 10 2<br>• 9 87<br>4 6 • 6 4                                                                                                                            | K 20 / T 18<br>• 29 5              | 0 2                             |                                                  |
| KOMATITITE PARAPETERS<br>FEO/(FEC+FGC) CAO/AL203<br>.4449 2.01<br>JENSEN CATION AL203 - FEO<br>16.93<br>CUARTZ - FELCSFAR RATIOS<br>OUARTZ 10.80<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                                                                                                               | SIC2/T102<br>69.56<br>9+F52C3+T102<br>26.91<br>CRTHC<br>CA 32<br>CA 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AL203/T 102<br>6-53<br>5 MGD<br>56-15<br>CLASE 6-05<br>CLASE 8-35<br>1-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FE0+/T<br>13.7<br>FE                                                                                                                                                                                                                              | 102 CAC/TIC<br>17.03<br>PLAGICCLASE<br>ALATTE<br>20.02<br>22.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02 NA<br>1<br>86.16<br>80.62<br>NG<br>SI                                                                                                                            | 20/TI02<br>•987<br>•6.64<br>61.39                                                                                                                            | × 20 / T 18<br>• 29 5              | D Z                             |                                                  |
| KOMATIITE PARAPETERS<br>FEC/(FEC+MGC) CAO/AL2C3<br>2.01<br>JENSEN CATION AL2C3 - FEC<br>16.93<br>CUARTZ - FELCSFAR RATIOS<br>OUARTZ 10.8C<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                      | SIC2/TIO2<br>69.56<br>+F.52C3+TIO2<br>20.91<br>CRTHC<br>CRTHC<br>CA 32<br>CA 16<br>SI 70<br>2MG 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AL203/T 102<br>6+53<br>2 - MGO<br>56+15<br>20LASE 6-05<br>20LASE 8-35<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FE000/T<br>13.7<br>FE<br>MG<br>4L<br>2FE                                                                                                                                                                                                          | 102 CAC/TIC<br>17.03<br>PLAGICCLASE<br>ALAITE<br>20.02<br>22.51<br>3.89<br>25.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 NA<br>1<br>86.16<br>80.42<br>MG<br>SI /5                                                                                                                         | 20/TI02<br>•987<br>46.64<br>61.39<br>25.79<br>16.02                                                                                                          | × 20 / T 10<br>• 29 5              | 02                              |                                                  |
| KOMATIITE PARAPETERS<br>FEC/(FEC+PGC) CAO/AL2C3<br>.4449 CAU<br>JENSEN CATION AL2C3 - FEC<br>16.93<br>CUARTZ - FELCSFAR RATIOS<br>OUARTZ 10.8C<br>CATION PROPORTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                 | SIC2/TIO2<br>69.56<br>0+F=2C3+TIO2<br>26.91<br>CRTHC<br>CA 32<br>CA 14<br>SI 70<br>2MG 58<br>CA 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AL203/T 102<br>6.53<br>56.15<br>CLASE 6.05<br>CLASE 8.35<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FE0077<br>13-77<br>FE<br>MG<br>2FE<br>AL                                                                                                                                                                                                          | 102 CAC/TIC<br>2 17.03<br>PLAGICCLASE<br>ALBITE<br>20.02<br>22.51<br>3.89<br>25.22<br>15.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12 NA<br>1<br>86.16<br>80.42<br>NG<br>SI<br>¥G<br>SI /5<br>NA+K                                                                                                     | 20/TIO2<br>•987<br>46.64<br>61.39<br>25.79<br>16.02<br>8.74                                                                                                  | K 20 / T 14<br>• 29 5              | 02                              |                                                  |
| KOMATIITE PARAMETERS<br>FEC/(FEC+MGC) CAO/AL2C3<br>+4449<br>JENSEN CATION AL2C3 - FEC<br>16+93<br>CUARTZ - FELCSFAR RATIOS<br>OUARTZ 10-8C<br>CATION PROPORTIONS<br>COCRCINATES IN THE SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                        | SIC2/TIO2<br>69.56<br>1+F=2C3+TIO2<br>28.91<br>CRTHC<br>CA 32<br>CA 16<br>SI 70<br>2MG 58<br>CA 75<br>PLAGIOCLASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AL203/T 102<br>6.53<br>56.15<br>CLASE 6.05<br>CLASE 8.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35<br>1.35 | FEQ#/T<br>13-7<br>FE<br>Mg<br>2FE<br>AL<br>2FE<br>AL                                                                                                                                                                                              | 102 CAC/TIC<br>17.03<br>PLAGICCLASE<br>ALBITE<br>20.02<br>22.51<br>3.89<br>25.22<br>15.83<br>PYRCXENE - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22 NA<br>1<br>86.16<br>80,82<br>NG<br>SI<br>90<br>SI/5<br>NA+K                                                                                                      | 20/TIO2<br>•987<br>46.64<br>61.39<br>25.79<br>16.02<br>8.74<br>(IN MCLE                                                                                      | K 20 / T 11<br>• 29 5<br>PERCE     | 02                              |                                                  |
| KOMATIIITE PARAPETERS<br>FEC/(FEC+MGC) CAO/AL2C3<br>2.61<br>JENSEN CATION AL2C3 - FEC<br>16.93<br>CUARTZ - FELCSFAR RATIOS<br>OUARTZ 10.8C<br>CATION PROPORTIONS<br>COCRCINATES IN THE SYSTEM<br>FRCPGRTION OF ANALYSIS IN                                                                                                                                                                                                                                                                                                                                                                           | SIC2/TIO2<br>69.56<br>0+F52C3+TIO2<br>28.91<br>CA 16<br>SI 70<br>2MG 58<br>CA 75<br>PLAGIOCLASE<br>BASALT TETR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AL203/T 102<br>- MG0<br>56-15<br>CLASE 6.09<br>CLASE 8.39<br>- 32<br>- 76<br>- 32<br>- 76<br>- 37<br>- CLIVINE<br>AFEDRON IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FE000/T<br>13.7<br>FE<br>MG<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>30.10                                                                                                                                                                | 102 CAC/TIC<br>17.03<br>PLAGICCLASE<br>ALATE<br>20.02<br>22.51<br>3.89<br>25.22<br>15.89<br>PYRCXENE - C<br>MULE PERCEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22 NA<br>1<br>86+16<br>86<br>86<br>82<br>85<br>85<br>85<br>85<br>85<br>85<br>84<br>84<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 | 20/TI02<br>•987<br>46.64<br>61.39<br>25.79<br>16.02<br>8.74<br>(IN MCLE                                                                                      | × 20 / T 11<br>• 29 5<br>PERCEI    | DZ<br>N7)                       |                                                  |
| KOMATIIITE PARAPETERS<br>FEC/(FEC+FGC) CAO/AL2C3<br>.4449 CAO/AL2C3<br>JENSEN CATION AL2C3 - FEC<br>16.93<br>CUARTZ - FELCSFAR RATIOS<br>QUARTZ 10.8C<br>CATION PROPORTIONS<br>COCRCINATES IN THE SYSTEM<br>FRCPGRTION OF ANALYSIS IN<br>BASALT TETRAMEDRON<br>CLINOPYZOXENE PROJECTION                                                                                                                                                                                                                                                                                                              | SIC2/TIO2<br>69.56<br>0+F=2C3+TIO2<br>CA 10<br>CA 10<br>CA 10<br>SI 70<br>2MG 58<br>CA 75<br>PLAGIOCLASE<br>BASALT TETE<br>GL 21<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AL203/T 102<br>6.53<br>- MGO<br>56.15<br>CLASE 6.09<br>CLASE 8.38<br>.35<br>.10<br>.32<br>.76<br>.27<br>- CLIVINE<br>AFEDRCN IS<br>.00<br>.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FE00/T<br>13-7<br>FE<br>MG<br>2FE<br>AL<br>2FE<br>AL<br>96.10<br>CPX                                                                                                                                                                              | 102 CAC/TIC<br>17.03<br>PLAGICCLASE<br>ALAITE<br>20.02<br>22.51<br>3.89<br>25.22<br>15.83<br>PYR CXENE - C<br>MULE PERCEN<br>49.24<br>C-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 NA<br>86.16<br>80.42<br>MG<br>SI<br>9G<br>SI/5<br>NA+K<br>CUARTZ<br>T<br>PLAG                                                                                    | 20/TIO2<br>•987<br>46.64<br>61.39<br>25.79<br>16.02<br>8.74<br>(IN MCLE<br>21.C7<br>41.50                                                                    | ¥ 20 / T 11<br>• 29 5<br>₽∈ R C 21 | DZ<br>NT)<br>CTZ                | 8.69                                             |
| KOMATIIITE PARAPETERS<br>FEC/(FEC+MGC) CAO/AL2C3<br>2.61<br>JENSEN CATION AL2C3 - FEC<br>16.93<br>CUARTZ - FELCSFAR RATIOS<br>OUARTZ 10.8C<br>CATION PROPORTIONS<br>COCRCINATES IN THE SYSTEM<br>FRCPGRTION OF ANALYSIS IN<br>BASALT TETRAMEDRCN<br>CLINOPYROXENE PROJECTION                                                                                                                                                                                                                                                                                                                         | SIC2/TIO2<br>69.56<br>0+F52C3+TIO2<br>28.91<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTHO<br>CRTO<br>CRTO<br>CRTHO<br>CRTO<br>CRTO<br>CRTO<br>CRTO<br>CRTO<br>CRTO<br>CRTO<br>CRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AL203/T 102<br>- MG0<br>56-15<br>CLASE 6-04<br>CLASE 8-34<br>- 35<br>- 32<br>- 76<br>- 32<br>- 76<br>- 27<br>- CLIVINE<br>AFEDRCN IS<br>- 00<br>- 37<br>- C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FE000/T<br>13.7<br>13.7<br>FE<br>MG<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>CPX                                                                                                                                                          | 102 CAC/TIC<br>17.03<br>PLAGICCLASE<br>ALATE<br>20.02<br>22.51<br>3.89<br>25.22<br>15.89<br>PYRCXENE - C<br>MULE PERCEN<br>49.24<br>C.0<br>53.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22 NA<br>1<br>86+16<br>80,92<br>90<br>51<br>90<br>81/5<br>NA+K<br>20ARTZ<br>7<br>PLAG                                                                               | 20/TI02<br>•987<br>•987<br>•1.39<br>25.79<br>16.02<br>8.74<br>(IN MCLE<br>21.07<br>41.50<br>23.07                                                            | ¥ 20 / T 11<br>29 5<br>PERCEI      | DZ<br>N7)<br>CTZ                | 8. 69<br>17. 13<br>C. O                          |
| KOMATIIITE PARAPETERS<br>FEC/(FEC+FGC) CAO/AL2C3<br>.4449 CAO/AL2C3<br>JENSEN CATION AL2C3 - FEC<br>16.93<br>CUARTZ - FELCSFAR RATIOS<br>OUARTZ 10.8C<br>CATION PROPORTIONS<br>COCRCINATES IN THE SYSTEM<br>FRCPGRTION OF ANALYSIS IN<br>BASALT TETRAMEDRON<br>CLINOPYROXENE PROJECTION<br>CUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                                                                                                                                                                               | SIC2/TIO2<br>69.56<br>0+F = 2 C3+TIO2<br>CA TAC<br>CA 33<br>CA 16<br>SI 70<br>2MG 58<br>CA 75<br>PLAGIOCLASE<br>BASALT TETE<br>GL 21<br>41<br>22<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AL203/T 102<br>6.53<br>- MGO<br>56.15<br>CLASE 6.09<br>CLASE 8.38<br>.35<br>.10<br>.32<br>.76<br>.27<br>- CLIVINE<br>AFEDRCN IS<br>.00<br>.37<br>.C0<br>.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FE00/T<br>13-7<br>FE<br>MG<br>2FE<br>AL<br>2FE<br>AL<br>96.10<br>CPX                                                                                                                                                                              | 102 CAC/TIC<br>17.03<br>PLAGICCLASE<br>ALAITE<br>20.02<br>22.51<br>3.89<br>25.22<br>15.89<br>PYR CX E.NE - C<br>MULE PERCEN<br>49.24<br>C.0<br>53.93<br>52.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 NA<br>86.16<br>80.92<br>MG<br>SI<br>9G<br>SI/5<br>NA+K<br>CUARTZ<br>T<br>PLAG                                                                                    | 20/TIO2<br>987<br>46.64<br>61.39<br>25.79<br>16.02<br>2.74<br>(IN MCLE<br>21.C7<br>41.50<br>23.C7<br>C.C                                                     | K 20 / T 11<br>• 29 5<br>₽∈ R C EI | DZ<br>NT)<br>CTZ                | 8.69<br>17.13<br>C.O<br>11.C2                    |
| KOMATIITE PARAMETERS<br>FEC/(FEC+MGC) CAO/AL2C3<br>.4449 CAO/AL2C3<br>JENSEN CATION AL2C3 - FEC<br>16.93<br>CUARTZ - FELCSFAR RATIOS<br>QUARTZ 10.8C<br>CATION PROPORTIONS<br>COCRCINATES IN THE SYSTEM<br>FRCPGRTION OF ANALYSIS IN<br>BASALT TETRAMEDRON<br>CLINOPYAOXENE PROJECTION<br>CUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CLIVINE PROJECTION                                                                                                                                                                                                                                          | SIC2/TIO2<br>69.56<br>0+F 52C3+TIO2<br>20.91<br>CR THO<br>CR THO<br>CR THO<br>CR THO<br>CR THO<br>CR THO<br>CR THO<br>CR THO<br>CR THO<br>SI 70<br>2MG 58<br>CA 75<br>PLAGIOCLASE<br>8ASALT TETR<br>GL 21<br>41<br>22<br>24<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AL203/T 102<br>6.53<br>CLASE 6.05<br>CLASE 8.35<br>1.3<br>3.32<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FE00/T<br>13-7<br>5<br>FE<br>NG<br>2FE<br>AL<br>2FE<br>AL<br>96.16<br>CPX                                                                                                                                                                         | 102 CAC/TIC<br>17.03<br>PLAGICCLASE<br>20.02<br>22.51<br>3.89<br>25.22<br>15.83<br>PYRCXENE - C<br>YULE PERCEN<br>49.24<br>G.O<br>53.93<br>52.38<br>46.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 NA<br>166.16<br>80.62<br>SI<br>90<br>SI /5<br>NA+K<br>CUARTZ<br>7<br>PLAG                                                                                        | 20/TI02<br>*987<br>6.987<br>25.79<br>16.02<br>2.74<br>(IN MCLE<br>21.C7<br>41.50<br>23.C7<br>C.C<br>20.05                                                    | K 20 / T 11<br>29 5<br>PERCEI      | D2<br>N7)<br>CT2<br>& CT2)      | 8. 69<br>17.13<br>C.O<br>11.C2<br>33.10          |
| KOMATIIITE PARAPETERS<br>FEC/(FEC+MGC) CAO/AL2C3<br>2.01<br>JENSEN CATION AL2C3 - FEC<br>16.93<br>CUARTZ - FELCSFAR RATIOS<br>OUARTZ 10.8C<br>CATION PROPORTIONS<br>COCRCINATES IN THE SYSTEM<br>FRCPGRTION OF ANALYSIS IN<br>BASALT TETRAMEDRON<br>CLINOPYAOXENE PROJECTION<br>CUARTZ PROJECTION<br>PLAGIDCLASE PROJECTION<br>CHAS PROJECTIONS                                                                                                                                                                                                                                                      | SIC2/TIO2<br>69.56<br>1+F.52C3+TIO2<br>CRTHC<br>CA 32<br>CA 16<br>SI 7C<br>2MG 58<br>CA 75<br>PLAGIOCLASE<br>BASALT TETR<br>GL 21<br>41<br>226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AL203/T 102<br>6.53<br>CLASE 6.04<br>CLASE 8.36<br>1.0<br>3.32<br>7.6<br>2.76<br>2.77<br>CLIVINE<br>CLIVINE<br>CLASE 8.36<br>3.10<br>3.32<br>3.76<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3.27<br>3   | FE000/T<br>13.72<br>FE<br>MG<br>AL<br>2FE<br>AL<br>- CLINCG<br>96.16<br>CPX                                                                                                                                                                       | 102 CAC/TIC<br>17.03<br>PLAGICCLASE<br>ALATE<br>20.02<br>22.51<br>3.89<br>25.22<br>15.87<br>PYRCXENE - C<br>MULE PERCEN<br>49.24<br>C-0<br>53.93<br>62.38<br>46.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22 NA<br>1<br>86-16<br>8C, 92<br>9<br>9<br>9<br>9<br>1/5<br>NA+K<br>20ARTZ<br>7<br>9LAG                                                                             | 20/TI02<br>•987<br>•987<br>•102<br>•987<br>•102<br>•987<br>•102<br>•1.39<br>25.79<br>16.02<br>•.74<br>(IN MCLE<br>21.07<br>•1.50<br>23.07<br>0.0<br>20.05    | 29 5<br>29 5<br>PERCEI             | 02<br>NT)<br>CT2<br>4 CT2)      | 8. 69<br>17. 13<br>C.O<br>11. C2<br>33. 10       |
| KOMATIIITE PARAMETERS<br>FEC/(FEC+MGC) CAO/AL2C3<br>.4449 CAO/AL2C3<br>JENSEN CATION AL2C3 - FEC<br>16.93<br>CUARTZ - FELCSFAR RATIOS<br>OUARTZ 10.8C<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>COCRCINATES IN THE SYSTEM<br>FRCPGRTION OF ANALYSIS IN<br>BASALT TETRAMEDRON<br>CLINOPYROXENE PROJECTION<br>CLARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CLIVINE PROJECTION<br>CHAS PROJECTIONS<br>TETRAMEDRON COCRCINATES<br>FROMENDER CAO                                                                                                                                                   | SIC2/TIO2<br>69.56<br>)+F 52C3+TIO2<br>CR THO<br>CR TO<br>CR T                         | AL203/T 102<br>6.53<br>CLASE 6.05<br>CLASE 8.35<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FE00/T<br>13-7<br>FE<br>MG<br>2FE<br>AL<br>2FE<br>AL<br>96.10<br>CPX                                                                                                                                                                              | 102 CAC/TIC<br>17.03<br>PLAGICCLASE<br>20.02<br>22.51<br>3.89<br>25.22<br>15.83<br>PYRCXENE - C<br>MULE PERCEN<br>49.24<br>C-0<br>53.93<br>52.38<br>46.96<br>27.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22 NA<br>86.16<br>80,62<br>SI<br>9G<br>SI/5<br>NA+K<br>CUARTZ<br>PLAG                                                                                               | 20/TI02<br>987<br>46.64<br>61.39<br>25.79<br>16.02<br>8.74<br>(IN MCLE<br>21.C7<br>41.50<br>23.C7<br>C.C<br>20.05<br>5.55<br>5.55                            | K 20 / T 11<br>29 5<br>PERCEI      | D2<br>(47)<br>(72<br>(72)<br>(5 | 8. 69<br>17.13<br>C.O<br>11.C2<br>33.10<br>50.17 |
| KOMATIIITE PARAPETERS<br>FEC/(FEC+MGC) CAO/AL2C3<br>.4449 C.O.<br>JENSEN CATION AL2C3 - FEC<br>16.93<br>CUARTZ - FELCSFAR RATIOS<br>OUARTZ 10.8C<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CLINOPYAOXENE PROJECTION<br>CLINOPYAOXENE PROJECTION<br>CLINOPYAOXENE PROJECTION<br>CLIVINE PROJECTION<br>CHAS PROJECTIONS<br>TETRAMEDRON COCRCINATES<br>CICPSIDE PROJECTION<br>CLIVINE PROJECTION                                                                                                                                                       | SIC2/TIO2<br>69.56<br>1+F.52C3+TIO2<br>CA 10<br>CA 10<br>SI 70<br>CA 10<br>SI 70<br>CA 10<br>SI 70<br>CA 10<br>SI 70<br>CA 10<br>CA 1 | AL203/T 102<br>6.53<br>CLASE 6.05<br>CLASE 8.35<br>10<br>35<br>10<br>32<br>76<br>27<br>- CLIVINE<br>CAFEDRCN IS<br>00<br>137<br>5-00<br>10<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FE00/T<br>13-7<br>13-7<br>FE<br>MG<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>36.10<br>CPX                                                                                                                                                               | 102 CAC/TIC<br>17.03<br>PLAGICCLASE<br>ALAITE<br>20.02<br>22.51<br>3.89<br>25.22<br>15.83<br>PYRCXE.4E - C<br>MULE PERCEN<br>49.24<br>C.0<br>53.93<br>62.38<br>46.96<br>27.17<br>19.45<br>AC. 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 NA<br>86.16<br>80.42<br>MG<br>SI<br>FG<br>SI<br>FG<br>SI<br>FC<br>A<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                             | 20/TI02<br>987<br>46.64<br>61.39<br>25.79<br>16.02<br>8.74<br>(IN MCLE<br>21.C7<br>41.50<br>23.C7<br>C.C<br>20.05<br>5.55<br>53.46<br>8.74                   | 29 5<br>29 5<br>PERCE              | DZ<br>NT)<br>CTZ<br>CTZ)<br>S   | 8. 69<br>17.13<br>C.O<br>11.C2<br>33.10<br>50.17 |
| KOMATIIITE PARAPETERS<br>FEC/(FEC+MGC) CAO/AL2C3<br>2.01<br>JENSEN CATION AL2C3 - FEC<br>10.93<br>CUARTZ - FELCSFAR RATIOS<br>OUARTZ 10.8C<br>CATION PROPORTIONS<br>COCRCINATES IN THE SYSTEM<br>FRCPGRTION OF ANALYSIS IN<br>BASALT TETRAHEDRON<br>CLINOPYROXENE PROJECTION<br>CLARTZ PROJECTION<br>CHAS PROJECTIONS<br>TETRAHEDRON COCRCINATES<br>CICPSIDE PROJECTION<br>CLIVINE PROJECTION<br>CLIVINE PROJECTION<br>CLIVINE PROJECTION                                                                                                                                                            | SIC2/TIO2<br>69.56<br>0+F52C3+TIO2<br>CRTHC<br>CA 32<br>CA 16<br>SI 70<br>2MG 58<br>CA 75<br>PLAGIOCLASE<br>BASALT TETR<br>GL 21<br>41<br>226<br>C 17<br>C3 27<br>CS 30<br>M2S 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AL203/T 102<br>- MG0<br>56-15<br>CLASE 6-06<br>CLASE 8-36<br>- 32<br>- 76<br>- 32<br>- 76<br>- 27<br>- CLIVINE<br>AFEDRCN IS<br>- 00<br>- 37<br>- CO<br>- 40<br>- 00<br>- 37<br>- 00<br>- 37<br>- 00<br>- 37<br>- 00<br>- 10<br>- 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FE000/T<br>13.72<br>FE<br>MG<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>4<br>4<br>7<br>6.10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                     | 102 CAC/TIC<br>17.03<br>PLAGICCLASE<br>20.02<br>22.51<br>3.89<br>25.22<br>15.87<br>PYRCXENE - C<br>MULE PERCEN<br>49.24<br>C.0<br>53.93<br>52.38<br>46.96<br>27.17<br>19.45<br>6C.52<br>48.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 NA<br>1<br>8<br>4<br>8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                           | 20/TI02<br>*987<br>46.64<br>61.39<br>25.79<br>16.02<br>8.74<br>(IN MCLE<br>21.C7<br>41.50<br>23.C7<br>C.C<br>20.05<br>5.55<br>53.46<br>8.76<br>20.87         | 295<br>295<br>PERCE                | 02<br>NT)<br>CT2<br>4 CT2)<br>S | 8.69<br>17.13<br>C.O<br>11.C2<br>33.10<br>50.17  |
| KOMATIIITE PARAPETERS<br>FEC/(FEC+PGC) CAO/AL2C3<br>.4449 C.O.<br>JENSEN CATION AL2C3 - FEC<br>16.93<br>CUARTZ - FELCSFAR RATIOS<br>QUARTZ 10.8C<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CATION PROPORTIONS<br>CLINOPYROXENE PROJECTION<br>CLINOPYROXENE PROJECTION<br>CLINOPYROXENE PROJECTION<br>CLIVINE PROJECTION | SIC2/TIO2<br>69.56<br>1+F = 2 C3+TIO2<br>CA 10<br>CA 10<br>SI 7C<br>CA 10<br>SI 7C<br>CA 10<br>SI 7C<br>CA 10<br>SI 7C<br>CA 10<br>SI 7C<br>CA 10<br>CA | AL203/T 102<br>6.53<br>CLASE 6.09<br>CLASE 8.39<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FE00/T<br>13-7<br>13-7<br>FE<br>MG<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>4L<br>2FE<br>2FE<br>20<br>7<br>6-10<br>CPX<br>2<br>4<br>C2S3<br>4<br>M<br>2<br>2<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 102 CAC/TIC<br>17.03<br>PLAGICCLASE<br>ALAITE<br>20.02<br>22.51<br>3.89<br>25.22<br>15.83<br>PYRCXE.4E - C<br>MULE PERCEN<br>49.24<br>C.0<br>53.93<br>52.38<br>46.96<br>27.17<br>19.45<br>56.52<br>48.51<br>27.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 NA<br>86.16<br>80.42<br>MG<br>SI /5<br>NA+K<br>CUARTZ<br>PLAG<br>A<br>S<br>S<br>A<br>S<br>CMS2                                                                   | 20/TI02<br>987<br>46.64<br>61.39<br>25.79<br>16.02<br>8.74<br>(IN MCLE<br>21.C7<br>41.50<br>23.C7<br>C.C<br>20.05<br>5.55<br>53.46<br>E.76<br>2C.87<br>44.54 | x 20 / T 11<br>• 29 5<br>PERCEI    | DZ<br>NT)<br>CTZ<br>CTZ)<br>S   | 8. 69<br>17.13<br>C.O<br>11.C2<br>33.10<br>50.17 |

318

SAFPLE NUMBER

6G 84

SAMPLE NUMBER BG 125

| ORIGIN<br>5102<br>52.00                                                                              | AL 20                                                                             | GHT                                                             | PERCEN<br>FE203<br>, 91                                                                    | IT OXIDES<br>Fed<br>8,20                                                                                     | / HND<br>, 17                                                                              | м <b>со</b><br>9,81                                         | CAO<br>10,73                              | NA20<br>1,81                                                                         | K20<br>1,02                | TID2<br>48                       | P205                          | CR203         | TOTAL<br>100.18               |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|----------------------------|----------------------------------|-------------------------------|---------------|-------------------------------|
| WEIGHT<br>SIO2<br>51.91                                                                              | PERCE<br>AL20<br>14.9                                                             | NT 0<br>3                                                       | XID <b>ES</b><br>FE203                                                                     | RECALCUL<br>FEO<br>8,18                                                                                      | ATED TO<br>MNO<br>.17                                                                      | 100 PERC<br>MGD<br>9.79                                     | ENT<br>CAO<br>10,71                       | NA20<br>1,81                                                                         | K20<br>1.02                | TI02<br>.48                      | P205                          | C#203<br>, 00 | TOTAL<br>100.00               |
| CATION<br>SI<br>47.84                                                                                | PROPC                                                                             | RTIÖ<br>23                                                      | NS IN<br>FE(3)<br>.63                                                                      | ANALYSIS<br>FE(2<br>6.31                                                                                     | ) MN<br>.13                                                                                | MG<br>13,45                                                 | 10.58                                     | NA<br>3,23                                                                           | K<br>1.20                  | TI<br>.33                        | P<br>.06                      | CR , 00       |                               |
| CIPW N                                                                                               | ORM                                                                               |                                                                 |                                                                                            |                                                                                                              |                                                                                            |                                                             |                                           |                                                                                      |                            |                                  |                               |               |                               |
| WEIGHT<br>NOLE P<br>CATION                                                                           | PERCE<br>ERCENT<br>PERCE                                                          | NT<br>NT                                                        | QTZ<br>.000<br>.000<br>.000                                                                |                                                                                                              | 0R<br>000<br>000<br>000                                                                    | DR<br>6.016<br>6.296<br>5.986                               | AB<br>15,283<br>13,927<br>16,141          | 27 , 6<br>25 , 4<br>29 , 5                                                           | N<br>56<br>70<br>19        | LC<br>,000<br>,000<br>,000       | NE<br>. 0 (<br>. 0 (<br>. 0 ( |               | KP<br>.000<br>.000<br>.000    |
| WEIGHT<br>HULE PI<br>CATION                                                                          | PERCE<br>ERCENT<br>PERCE                                                          | NT<br>NT                                                        | .000<br>.000<br>.000                                                                       | <br> <br> <br>                                                                                               | N9<br>000<br>000<br>000                                                                    | ,000<br>,000<br>,000                                        | 18.552<br>19.719<br>19.279                | រដ<br>, ច<br>, ច<br>, ច<br>, ច<br>, ច<br>, ច<br>, ច<br>, ច<br>, ច<br>, ច             | 0<br>0<br>0<br>0<br>0<br>0 | HY<br>24.935<br>27.110<br>25.132 | 3.04<br>4.55<br>3.16          | 3             | CS<br>.000<br>.000<br>.000    |
| WEIGHT<br>MOLE PI<br>CATION                                                                          | PERCE<br>ERCENT<br>PERCE                                                          | NT<br>NT                                                        | HT<br>1.319<br>1.361<br>.946                                                               |                                                                                                              | CM<br>000<br>000<br>000                                                                    | IL<br>.910<br>1.433<br>.664                                 | HM<br>.000<br>.000<br>.000                | 11<br>. D<br>. D<br>. D                                                              | N<br>00<br>00<br>00        | РҒ<br>,000<br>,000<br>,000       | RU<br>.00<br>.00<br>.00       |               | ар<br>. 189<br>. 134<br>. 166 |
| MAFIC<br>NORM T                                                                                      | INDEX<br>OTAL                                                                     | = 4<br>= 10                                                     | 9.847<br>0.002                                                                             |                                                                                                              |                                                                                            |                                                             |                                           |                                                                                      |                            |                                  |                               |               |                               |
| OLIVIN<br>Fi                                                                                         | E COMP<br>DRSTER                                                                  | OSIT<br>ITE                                                     | 10N<br>61.5                                                                                | 87                                                                                                           | FAYALI                                                                                     | E 38.                                                       | 411                                       |                                                                                      |                            |                                  |                               |               |                               |
| 90HTA0<br>Si                                                                                         | YRDXEN<br>NSTATI                                                                  | E CO<br>Te                                                      | MPOSIT<br>63.9                                                                             | 10N<br>60                                                                                                    | FERROSI                                                                                    | LITE 36.                                                    | 140                                       |                                                                                      |                            |                                  |                               |               |                               |
| CLINOP'                                                                                              | YROXEN                                                                            | е со<br>Окіта                                                   | MP08IT<br>E 51.3                                                                           | 10N<br>87                                                                                                    | ENSTAT                                                                                     | ITE 31.                                                     | 044 F                                     | ERROSILI                                                                             | TE 17.                     | 569                              |                               |               |                               |
| FELDSP<br>OF<br>PI                                                                                   | AR COM<br>RTHOCL<br>LAGIDO                                                        | POSI<br>ASE<br>LASE                                             | TION<br>11.8<br>Compo                                                                      | 07<br>Sition (1                                                                                              | ALBITE                                                                                     | 29.<br>65.                                                  | 993 A<br>991                              | NORTHITE                                                                             | 59.                        | 199                              |                               |               |                               |
| THORN I<br>SOLIDI<br>CRYSTAL<br>LARSEN<br>ALDITE<br>IRON RI<br>MC NUMI<br>OXIDAT<br>DENSIT<br>AFM RA | ON AND<br>FICATI<br>INDEX<br>RATIO<br>ATIO (<br>RER AS<br>ION RA<br>Y OF D<br>TIO | TUT<br>ON I<br>ION<br>(1/<br>(10)<br>(FE2<br>CAT<br>TIO<br>RY L | TLE DI<br>NDEX (<br>INDEX 351+K)<br>0*(AB+<br>=MN)*1<br>IONS M<br>ACCORD<br>IQUID<br>IQUID | FFERENTIA<br>100×MGD/<br>(AN+MG,D)<br>-(CA+MG)<br>AB EQIU<br>00/(FE2+<br>G/CATIONS<br>G/CATIONS<br>OF THIS ( | ATION IN<br>(MGO+FE(<br>I+FO+FO<br>IN NE)/f<br>MN+HG))<br>S (FE+MO<br>E MAITRE<br>COMPOSIT | NDEX<br>D+FE203+N<br>EQIV OF<br>LAG)<br>(FED/FE)<br>ION (AT | A20+K20))<br>EN)<br>D+FE203)<br>1050 DEG) | = 21.300<br>= 45.10<br>= 55.17<br>= 34.009<br>= 52.37<br>= 48.07<br>= .82<br>= 2.685 | 1<br>9<br>7<br>9<br>1<br>1 | 39                               |                               |               |                               |
|                                                                                                      | DINE H                                                                            |                                                                 | 70 13                                                                                      | 1 U Z                                                                                                        |                                                                                            | FG 91.0                                                     | 97 F                                      | •                                                                                    |                            | G.7                              |                               |               | -                             |

KOMATIITE PARAMETERS

FED/(FED+HGD) CA0/AL203 5102/T102 AL203/T102 FED\*/T102 CA0/T102 NA20/T102 K2D/T102 .4790 .72 108.33 31.19 18.79 22.35 3.771 2.125

JENSEN CATION AL203 - FEO+FE203+TI02 - MG0 43.93 19.68 36.40

| QUARTZ - FELDSPAR RATIOS<br>QUARTZ .00<br>Duartz .00<br>Cation proportions | CA  | ORTHOCLASE 1<br>ORTHOCLASE 2<br>34,50 | 1.91 .<br>29.25<br>Fe | PLAGIOCLAS<br>ALBITE<br>21,61 | NE 88.19<br>71.75<br>MG | 43,89         |
|----------------------------------------------------------------------------|-----|---------------------------------------|-----------------------|-------------------------------|-------------------------|---------------|
|                                                                            | CA  | 14.72                                 | MG                    | 18.72                         | SI                      | 66. <b>57</b> |
|                                                                            | SI  | 68,93                                 | AL                    | 11.69                         | MG                      | 19.38         |
|                                                                            | 2MG | 54.11                                 | 2FE                   | 26,64                         | SI/5                    | 19.24         |
|                                                                            | CA  | 50,59                                 | AL                    | 38.82                         | NA+K                    | 10.58         |

| CODRDINATES IN THE SYSTEM PLAGIOCLASE - OLIVINE | - CLINOPYROXENE - QUARTZ (IN MOLE PERCENT) |
|-------------------------------------------------|--------------------------------------------|
| PROPURTION OF ANALYSIS IN BASALT TETRAHEDRON IS | 92.24 HOLE PERCENT                         |

| BASALT TETRAHEDRON       | OL   | 23.87 | CPX           | 19.82 | PLAG | 49.50 | QT Z       | 6.81  |
|--------------------------|------|-------|---------------|-------|------|-------|------------|-------|
| CLINOPYROXENE PROJECTION |      | 29.77 |               | 0.0   |      | 61.74 |            | 8.50  |
| QUARTZ PROJECTION        |      | 25.61 |               | 21.27 |      | 53.12 | -          | 0.0   |
| PLAGIOCLASE PROJECTION   |      | 47.27 |               | 39.24 |      | 0.0   |            | 13,49 |
| OLIVINE PROJECTION       |      | 0.0   |               | 20.52 |      | 51,26 | OPX+(4QTZ) | 28.22 |
| CMAS PROJECTIONS         |      |       |               |       |      |       |            |       |
| TETRAHEDRON COORDINATES  | C    | 16.77 | м             | 22.82 | A    | 12.35 | S          | 48,86 |
| DIOPSIDE PROJECTION      | C3A  | 32.04 | м             | 16.37 | S    | 51.59 |            |       |
| OLIVINE PROJECTION       | CS   | 26.17 | м             | 56.91 | 8    | 16,92 |            |       |
| ENSTATITE PROJECTION     | H2S  | 32.93 | C2 <b>S</b> 3 | 34.08 | A253 | 32,99 |            |       |
| QUARTZ PROJECTION        | CAS2 | 55.79 | MS            | 28.69 | CMS2 | 15.52 |            |       |

319

SAMPLE NUMBER BG 126

| DRIGINAL WEIGH<br>SIO2 AL203<br>50.72 16.78                                                                               | IT PERCENT O<br>FE203<br>,78                                                                                         | XIDES<br>FED MND<br>6.99 .13                                                                                            | MGD<br>9,20                           | CAU<br>10.63                            | NA20<br>2,52                                                               | K20<br>1.14                | T102<br>/ 39                  | P205                          | CR203<br>, 00 | 10TAL<br>99.34             |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|----------------------------------------------------------------------------|----------------------------|-------------------------------|-------------------------------|---------------|----------------------------|
| WEIGHT PERCEN<br>SID2 AL203<br>51.06 16.89                                                                                | TOXIDES REC<br>FE203<br>178                                                                                          | ALCULATED TO<br>FEO MNO<br>7.03 .13                                                                                     | 100 PERCE<br>MGD<br>9.26              | NT<br>CAO<br>10.78                      | NA20<br>2.54                                                               | K20<br>1.15                | TI02<br>.39                   | P205<br>.07                   | CR203         | TOTAL<br>100.00            |
| CATION PROPORT<br>SI AL<br>46.61 10.17                                                                                    | IONS IN ANA<br>FE(3)<br>,54                                                                                          | LYSIS<br>FE(2) MN<br>5.37 .10                                                                                           | MG<br>12.60                           | CA<br>10,47                             | NA<br>4 . 49                                                               | К<br>1.34                  | 71,27                         | P. 05                         | CR .00        |                            |
| CIPN NORH                                                                                                                 |                                                                                                                      |                                                                                                                         |                                       |                                         |                                                                            |                            |                               |                               |               |                            |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                          | QTZ<br>.000<br>.000<br>.000                                                                                          | C OR<br>.000<br>.000<br>.000                                                                                            | 0R<br>6.781<br>6.867<br>6.682         | <b>AB</b><br>21.458<br>18.920<br>22.444 | A<br>31.3<br>26.0<br>30.8                                                  | N<br>13<br>23<br>68        | LC<br>,000<br>.000<br>.000    | NE<br>.00<br>.01<br>.01       | 0<br>0<br>0   | KP<br>.000<br>.000<br>.000 |
| WEIGHT PERCENT<br>MOLE PERCENT<br>CATION PERCENT                                                                          | AC<br>,000<br>,000<br>,000                                                                                           | NS<br>. 000<br>. 000<br>. 000                                                                                           | KS<br>.000<br>.000<br>.000            | DI<br>17.266<br>17,709<br>16,804        | ងរ<br>. 0<br>. 0<br>. 0                                                    | 0<br>0<br>0<br>0<br>0<br>0 | HY<br>6.842<br>7.239<br>6,868 | 0L<br>14,29<br>20,85<br>14,84 | 5<br>9<br>4   | CS<br>.000<br>.000<br>.000 |
| WEIGHT PERCENT<br>MOLE PERCENT<br>CATION PERCENT                                                                          | MT<br>1.133<br>1.132<br>.805                                                                                         | CH<br>, 200<br>, 000<br>, 000                                                                                           | IL<br>- 746<br>1 - 136<br>- 539       | HM<br>,000<br>.080<br>,080              | , 0<br>, 0<br>, 0                                                          | N<br>00<br>00<br>00        | PF<br>,000<br>,000<br>,000    | RU<br>.00<br>.00<br>.00       | 0<br>0        | AP<br>.167<br>.115<br>.145 |
| NAFIC INDEX =<br>NORM TOTAL =                                                                                             | 40.449<br>100,900                                                                                                    |                                                                                                                         |                                       |                                         |                                                                            |                            |                               |                               |               |                            |
| OLIVINE COMPOS<br>FORSTERIT                                                                                               | ITION<br>E 63.825                                                                                                    | FAYALII                                                                                                                 | E 36.1                                | 75                                      |                                                                            |                            |                               |                               |               |                            |
| ORTHOPYROXENE<br>ENSTATITE                                                                                                | COMPOSITION 66.037                                                                                                   | FERROSI                                                                                                                 | LITE 33.9                             | 63                                      |                                                                            |                            |                               |                               |               |                            |
| CLINOPYROXENE<br>WOLLASTON                                                                                                | COMPOSITION<br>TTE 51,529                                                                                            | ENSTAT                                                                                                                  | TE 32.0                               | 09 FE                                   | RROSILI                                                                    | TE 16.4                    | 62                            |                               |               |                            |
| FELDSPAR COMPO<br>Orthoclas<br>Plagiocla                                                                                  | SITION<br>E 11.307<br>SE COMPOSIT                                                                                    | ALBITE<br>Ion (Perc An)                                                                                                 | 36.0<br>59.3                          | 32 AN<br>37                             | IORTHITE                                                                   | 52,5                       | 581                           |                               |               |                            |
| THORNTON AND T<br>SOLIDIFICATION<br>CRYSTALLIZATIC<br>LARSEN INDEX (<br>ALBITE RATIO<br>MG NUMBER AS C<br>OXIDATION RATIO | UTTLE DIFFE<br>INDEX (100<br>N INDEX (AN<br>1/351+K)-(C<br>100*(AB+AB)<br>E2=#NN)*100/<br>ATIONS MG/C<br>0 ACCORDING | RENTIATION IX<br>*MG0/(MGO+FEL<br>+MG,DI+FO+FO<br>A+MG)<br>EQIV IN NE)/P<br>(FE2+MN+MG)<br>ATIONS (FE+MG<br>TO LE AMORT | DEX<br>HFE203+NA<br>EQIV OF E<br>LAG) | 20+K20))<br>N)<br>+FE203)               | 28,23<br>44,61<br>55,52<br>40,64<br>40,64<br>40,64<br>49,92<br>70,12<br>81 | 714331000                  |                               |                               |               |                            |
| AFM RATIO                                                                                                                 | ALIS 17.81                                                                                                           | TOTAL                                                                                                                   | TUN (AT 1)<br>FE 37.4                 | 1000 DEG) =<br>1 MG                     | - 2,001                                                                    | 3<br>44.7                  | 'a                            |                               |               |                            |
|                                                                                                                           |                                                                                                                      | 10112                                                                                                                   |                                       |                                         |                                                                            | ,                          |                               |                               |               |                            |
| <b>UGUATETTE</b> 6.255                                                                                                    | WETCHE                                                                                                               |                                                                                                                         |                                       |                                         |                                                                            |                            |                               |                               |               |                            |
| FED/(FED+MCD)                                                                                                             | CAD/AL 207                                                                                                           | ST02/T102 A                                                                                                             | 1 202/1103                            | 660×777                                 | 19 CAD / 1                                                                 | (709 M                     | 2011102                       | ለ 2017 ይታወ                    | 10            |                            |
| . 4551                                                                                                                    | .63                                                                                                                  | 130.05                                                                                                                  | 43.03                                 | 19.70                                   | 27.2                                                                       | 26<br>26                   | 6.462                         | 2.923                         | J 4_          |                            |
| JENSEN CATION                                                                                                             | AL203 - FEC                                                                                                          | 1+FE203+TI02<br>16.71                                                                                                   | - MGO<br>34.10                        |                                         |                                                                            |                            |                               |                               |               |                            |

| QUARTZ - FELDSPAR RATIOS<br>QUARTZ 00<br>QUARTZ 00<br>CATION PROPORTIONS | CA ( | RTHUCLASE<br>RTHUCLASE<br>36.46 | 11.39<br>24.01<br>FE | PLAGIOCLASE<br>ALBITE<br>19,64 | 88.61<br>75.99<br>MG | 43.90 |
|--------------------------------------------------------------------------|------|---------------------------------|----------------------|--------------------------------|----------------------|-------|
|                                                                          | CA   | 15.02                           | MG                   | 18.09                          | SI                   | 66,89 |
|                                                                          | SI   | 69.23                           | AL                   | 13.30                          | нg                   | 18.45 |
|                                                                          | 2MG  | 55.03                           | 2FE                  | 24.62                          | S1/5                 | 20.35 |
|                                                                          | ĈA   | 46,59                           | AL                   | 40,45                          | NA+K                 | 12.97 |

COORDINATES IN THE SYSTEM PLAGIDCLASE - OLIVINE - CLINOPYROXENE - QUARTZ (IN MOLE PERCENT) PROPURTION OF ANALYSIS IN BASALT TETRAHEDRON IS 91.83 MOLE PERCENT

| BASALT TETRAHEDRON       | ው    | 21.77 | CPX  | 18,30 | PLAG | 58.06 | QTZ        | 1,87  |
|--------------------------|------|-------|------|-------|------|-------|------------|-------|
| CLINOPYROXENE PROJECTION |      | 26.65 |      | 0,0   |      | 71.06 |            | 2.29  |
| QUARTZ PROJECTION        |      | 22.19 |      | 18,65 |      | 59.16 |            | 0,0   |
| PLAGIOCLASE PROJECTION   |      | 51,91 |      | 43.63 |      | θ.Ο   |            | 4.46  |
| OLIVINE PROJECTION       |      | 0,0   |      | 21.83 |      | 69.25 | 0PX+(4QTZ) | 8.92  |
| CMAS PROJECTIONS         |      |       |      |       |      |       |            |       |
| TETRAHEDRON COORDINATES  | С    | 18.53 | н    | 20,39 | A    | 14.36 | S          | 46.70 |
| DIOPSIDE PROJECTION      | C3A  | 33,90 | м    | 15,82 | s    | 50,29 |            |       |
| OLIVINE PROJECTION       | CS   | 29,83 | м    | 49,92 | S    | 20.26 |            |       |
| ENSTATITE PROJECTION     | M25  | 37.22 | C2S3 | 31.13 | A253 | 31,65 |            |       |
| QUARTZ PROJECTION        | CAS2 | 61.18 | HS   | 24.90 | CM52 | 13.92 |            |       |

320

| CUARTZ - FELDSPAR RATIOS          |             |                 |            | DI LETECTAS     |             |           |                |       |
|-----------------------------------|-------------|-----------------|------------|-----------------|-------------|-----------|----------------|-------|
| QUARTZ 4.41<br>CATION PROPORTIONS | CA          | CRTHCCLASE 80.6 | FE         | ALBITE<br>33.74 | 14.98<br>MG | 51.84     |                |       |
|                                   | CA          | 4.58            | MG         | 16.95           | 51          | 78.47     |                |       |
|                                   | <b>S I</b>  | 70.16           | AL         | 14.77           | . MG        | 15.04     |                |       |
|                                   | 2 <b>HG</b> | 47.24           | 285        | 30.75           | 51/5        | 22.01     |                |       |
|                                   | ÇA          | 16.71           | <b>۵</b> L | 58.94           | MA+K        | 24.35     |                |       |
| COCRDENATES IN THE SYSTEM         | 2L 4G 1G    | CLASE - CLIVINE | - 661      | NEPYREXENE -    | CUARTZ      | (IN MOLE  | PERCENT)       |       |
| PROPORTION OF ANALYSIS IN         | T JAZAS     | TETRAHEDRCN IS  | 54.9       | 3 MOLE PERCE    | NT          |           |                |       |
| SASALT TETRAFECRICN               | GL          | 44.25           | Cex        | .00             | PLAG        | 37.71     | CTZ            | 18.04 |
| CLINGPYROXENE PROJECTION          |             | 44.25           |            | e.c             |             | 37.71     |                | 13.04 |
| CUARTZ PRIJECTION                 |             | 52.99           |            | .00             |             | 46.01     |                | C. 0  |
| PLAGIGCLASE FREJECTION            |             | 71.04           |            | .00             |             | C.0       |                | 28.96 |
| OLIVINE PROJECTION                |             | 0-0             |            | .00             |             | 34.32     | EP X+ (4 CT Z) | 65.68 |
| CMAS PROJECTIONS                  |             |                 |            |                 |             |           |                |       |
| TETRAHEDRON COCRCINATES           | c           | 13.42           | H          | 19.67           | Δ           | 19.62     | S              | 48.28 |
| DIOPSIDE PROJECTION               | C3 A        | 32.38           | M          | 16.12           | s           | 51.50     |                |       |
| CLIVINE PROJECTION                | <b>č</b> s  | 18.38           | #          | 59.24           | S           | 22.38     |                |       |
| ENSTATITE PROJECTION              | MZŚ         | 33.08           | 6253       | 23.71           | A253        | 4 3. 21   |                |       |
| QUARTZ PROJECTION                 | CA 52       | ****            | ₽s         | 03483           | CHSZ        | 4\$\$\$\$ |                |       |

JENSEN CATION AL203 - FEC+F6203+T102 - MGC 52.86 20.19 20.95

KOMATIITE PARAMETERS FEU/(FEO+MGC) CAO/AL203 SIC2/TI02 AL2C3/TI02 FEO\*/TIC2 CAO/TI02 NA20/TI02 K20/TI02 -5496 -16 52.24 10.66 9.15 2.91 .772 5.550

| CRIGINAL WEIGHT<br>SIO2 AL203<br>52.76 12.85                                                                                                                              | PERCENT CXIDES<br>FE203 FEC<br>+93 8+40                                                                                                                                                                | MNC MGD<br>•20 7.60                                                                                                     | 2.94 NA20<br>2.94 .7                                                      | K2C 1102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NE IGHT PERCENT<br>S102 AL 203<br>52.96 18.92                                                                                                                             | UXIDES RECALCULATES<br>FE203 FEC<br>•94 8•43                                                                                                                                                           | D TE 100 PERCENT<br>MNC MGC<br>+2C 7.63                                                                                 | CAD NA2C<br>2.95 .75                                                      | K2C T102<br>6.03 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CATION PROPURTIN<br>SI AL<br>49-12 20-68                                                                                                                                  | UNS IN ANALYSIS<br>Fé(3) Fé(2)<br>+65 6+54                                                                                                                                                             | MN MG<br>•14 10•34                                                                                                      | 2.73 1.41                                                                 | K T!<br>7.14 .71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CIPW NCRM                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                         |                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WEIGHT PERCENT<br>Pole percent<br>Cation percent                                                                                                                          | CTZ         CCR           1.948         5.093           6.648         12.263           1.807         6.667                                                                                             | 08<br>35•046<br>32•011<br>35•688                                                                                        | AB<br>6.623 13.<br>5.179 10.<br>7.038 13.                                 | AN LC<br>655 .CDC<br>.C64 .COC<br>.678 .COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| WEIGHT PERCENT<br>Pole Percent<br>Cation Percent                                                                                                                          | AC<br>.000 .000<br>.000 .000<br>.000 .000                                                                                                                                                              | KS<br>•090<br>•390                                                                                                      | DI<br>.00C<br>.00C                                                        | HC         HY           5000         32.399           5000         25.814           5000         32.412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NEIGHT PERCENT<br>FOLE PERCENT<br>CATION PERCENT                                                                                                                          | HT CH<br>1.358 .000<br>1.203 .000<br>.981 .000                                                                                                                                                         | 11<br>1.925<br>2.501<br>1.414                                                                                           | HM<br>0000<br>0000                                                        | TN PF<br>.000 .COC<br>.000 .COC<br>.000 .COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PAFIC INCEX = 1<br>NORM FOTAL = 1                                                                                                                                         | 34.039<br>00.009                                                                                                                                                                                       |                                                                                                                         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CLIVINE COPPESI<br>FERSTERITE                                                                                                                                             | TION .000 FAY                                                                                                                                                                                          | ALITE .000                                                                                                              | )                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CATHOPYROXENE CO<br>ENSTATITE                                                                                                                                             | OPPESITION<br>58.638 FER                                                                                                                                                                               | RGSILITE 41.302                                                                                                         | 2                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CLINDPYROXENE CH<br>WOLLASTONI                                                                                                                                            | AMPOSITION<br>TE .000 ENS                                                                                                                                                                              | TATITE .000                                                                                                             | FERQOSIL                                                                  | 17E .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FELDSPAR CCMPGS<br>ORTHOCLASE<br>PLAGICCLASE                                                                                                                              | ITION<br>63.740 ALE<br>E COMPOSITION (PERC                                                                                                                                                             | TE 11.942<br>ANJ 67.341                                                                                                 | ANORTHI                                                                   | E 24.418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| THERNIEN AND TU<br>SOLIDIFICATION<br>CRYSTALLIZATION<br>LARSEN INDEX 11.<br>ALAITE RATIO (1<br>IRON RATIO (1FE<br>MG NUMBER AS CAT<br>EXIDATION RATIO<br>CENSITY OF DRY 1 | TTLE CIFFERENTIATIC<br>INDEX (10C#MGC/(MGC<br>INCEX (AN+MG+0I+FC<br>/35I+K)-(CA+MG)<br>0C#(AE+AB EGIV IN A<br>2#MN)#100/(FE2+MN+P<br>TIONS MG/CATIONS (F<br>ACCORDING TO LE MA<br>1 JOULD OF THIS COMP | IN INCEX<br>IFEG+FE203+NA2C<br>IFEC EQIV OF ENJ<br>IE)/PLAG)<br>IE)<br>ITRE (FEO/FEO+F<br>ITRE (FEO/FEO+F<br>IN AAT 100 | $(+K_{20}) = 32.6$<br>= 7.6<br>= 32.6<br>= 32.6<br>= 59.7<br>(E203) = 2.7 | 140<br>1470<br>13<br>13<br>13<br>13<br>13<br>13<br>14<br>15<br>13<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>15<br>15<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 |
| TCTAL ALKA                                                                                                                                                                | LIS 28.74 TC                                                                                                                                                                                           | TAL FE 39.09                                                                                                            | MG                                                                        | 32.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

SAPPLE NUMBER BG 141

į

321

P205

P 205

P.12 CR.0C

•000 •000 •000

01 000 000

RU •0CC •0CD

CR 203

CR 20 1

TCTAL 99.63

100.00

кр - СОС - СОС - СОС

23 003. 003.

AP • 357 • 217 • 315

| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                                                                                                                                                                      | AC<br>•070<br>•070<br>•070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28<br>000.<br>000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K S<br>000<br>000                                                                                                                                                                                                | CI<br>16.83<br>16.34<br>16.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WC<br>7 .000<br>6 .000<br>C .003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                 | FY<br>C73<br>C11<br>X61                                                                                                               | 01<br>•000<br>•000<br>•000                                             | CS<br>• COC<br>• COO<br>• COO                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------|
| WEIGHT PERCENT<br>Mole Percent<br>Cation Server                                                                                                                                                                                                                                                                       | MT<br>2+244<br>2+219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CM<br>• 000<br>• 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1L<br>3•365<br>5•333                                                                                                                                                                                             | HM<br>• 00<br>• 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | кт<br>600<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                  | PF<br>COC<br>COC                                                                                                                      | RU<br>•000<br>•000                                                     | 4P<br>• 565<br>• 28 1                           |
| MAFIC INCEX = 40                                                                                                                                                                                                                                                                                                      | 9.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.073                                                                                                                                                                                                            | •00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                  |                                                                                                                                       | .00                                                                    | • 1 2                                           |
| CLIVINE COMPESIT                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                  | • > •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |                                                                                                                                       |                                                                        |                                                 |
| CRTHOPYROXENE CO                                                                                                                                                                                                                                                                                                      | 000.<br>NGITI2094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FAYA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4112 •                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |                                                                                                                                       |                                                                        |                                                 |
| ENSTATITE                                                                                                                                                                                                                                                                                                             | 36.686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RUSILITE 63.                                                                                                                                                                                                     | 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |                                                                                                                                       |                                                                        |                                                 |
| WELLASTENIT                                                                                                                                                                                                                                                                                                           | E 49.543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TATUTE 18.9                                                                                                                                                                                                      | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PERROSILITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.946                                                                                                             |                                                                                                                                       |                                                                        |                                                 |
| FELDSPAR CCMPOSI<br>ORTHOCLASE<br>PLASICCLASE                                                                                                                                                                                                                                                                         | COMPOSITIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CN (PERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ITE 45.<br>ANJ 51.5                                                                                                                                                                                              | 316<br>359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANURTHITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43.817                                                                                                             |                                                                                                                                       |                                                                        |                                                 |
| SCITIFICATION I<br>CRYSTALLIZATION<br>LARSEN INDEX (1/<br>ALBITE RATIO (10<br>IRCN RATIO (1FE2-<br>MG NUMBER AS CAT<br>CXIDATION RATIC<br>CENSITY OF DRY L<br>AFM RATIO<br>TCTAL ALKAL                                                                                                                                | NEX (1104)<br>INCEX (1144)<br>351+KJ-(C4<br>MN)*1CD/(6<br>IDNS MG/C4<br>ACCORDING 1<br>ACCORDING 1<br>ICUIC OF TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PG0/(MG0)           MG.01+F0+           MG0           MG0           C1V           FE2+MN+M0           FE2+MN+M0 | +FÉD+FÊ203+N)<br>+FC EQIV DF (<br>E)/PLAG)<br>E+MG)<br>ITRE (FE0/FE(<br>CSITION (AT<br>TAL FE 65+4                                                                                                               | A2C+K2C)<br>EN)<br>D+FE2G3)<br>1050 deg<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{rcrr} & = & 21 \cdot 452 \\ & = & 36 \cdot 886 \\ & = & 140 \\ & = & 48 \cdot 141 \\ & = & 78 \cdot 353 \\ & = & 39 \cdot 264 \\ & = & 842 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.59                                                                                                              |                                                                                                                                       |                                                                        |                                                 |
|                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |                                                                                                                                       |                                                                        |                                                 |
| KOMATIITE PARAME<br>FEO/(FEC+HGO) C<br>•7520<br>JENSEN CATION AL<br>GUARTZ - FELCSPAL                                                                                                                                                                                                                                 | TERS<br>A0/AL203 S<br>L203 - FE3<br>L273 - FE3<br>RATIOS<br>S-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SI 02 /T 10<br>27.40<br>+FE203+T<br>38.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 AL203/T 10<br>7.11<br>102 - MG9<br>20.17<br>THCCLASE . 5.1                                                                                                                                                     | 2 FED≠/<br>8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIC2 CAC/TII<br>23<br>PLAGISCLASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52 NA 20<br>1+3                                                                                                    | 27 10 2<br>370                                                                                                                        | K20/TIC2<br>+254                                                       |                                                 |
| KOMATIITE PARAPE<br>FEO/(FEC+HGO) C<br>+7520<br>JENSEN CATION A<br>GUARTZ<br>GUARTZ<br>CUARTZ<br>CATION PROPORTION                                                                                                                                                                                                    | TERS<br>AD/AL203<br>-68<br>L203 - FE3<br>L203 - FE3<br>-76<br>RATIOS<br>-5.20<br>-68<br>-68<br>-68<br>-68<br>-68<br>-68<br>-68<br>-68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SI 02/T 102<br>27-40<br>+FE2C3+T<br>38-07<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 AL203/T 10<br>7-11<br>102 - MG0<br>20-17<br>THCCLASE 10-<br>32-90                                                                                                                                              | 2 F£Q∓/<br>8.<br>56<br>35<br>F€                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TIC2 CAC/TIC<br>23 4.84<br>PLAGICCLASE<br>ALBITE<br>41.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52 NA 20<br>1.3<br>89.24<br>79.97<br>#5                                                                            | 25. 61                                                                                                                                | K20/TIC2<br>• 254                                                      |                                                 |
| KOMATIITE PARAPE<br>FEO/(FEO+HGO) C<br>+7520<br>JENSEN CATION AI<br>GUARTZ - FELCSPAI<br>GUARTZ<br>GUARTZ<br>CATION PROPORTION                                                                                                                                                                                        | TERS<br>A0/AL203 S<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SI 02/T 10<br>27-40<br>+FE203+T<br>38-07<br>CA<br>CA<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 AL203/TIO<br>7.11<br>102 - MGO<br>20.17<br>THCCLASE 10.<br>32.90<br>14.14                                                                                                                                      | 2 FEQ≠/<br>8.<br>8.<br>55<br>FE<br>⊮G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TIC2 CAC/TII<br>23 4.84<br>PLAGICCLASE<br>ALBITE<br>41.59<br>11.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52 NA 20<br>1+3<br>89+24<br>79+97<br>MG<br>SI                                                                      | 25. 61<br>74. 81                                                                                                                      | K20/TIO2<br>•254                                                       |                                                 |
| KOMATIITE PARAPE<br>FEQ/(FEC+HGO) C<br>+7520<br>JENSEN CATION A<br>GUARTZ - FELCSPAN<br>QUARTZ<br>CATION PROPORTION                                                                                                                                                                                                   | TERS<br>AD/AL203<br>-68<br>L203 - FE3<br>L203 - FE3<br>RATIOS<br>5.20<br>9.88<br>NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SI 02/T 10<br>27-40<br>+FE203+T<br>38-07<br>CA<br>CA<br>CA<br>SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 AL203/T 10<br>7.11<br>102 - MG0<br>20.17<br>THCCLASE 10.1<br>32.90<br>14.14<br>76.90                                                                                                                           | 2 FED∓/<br>8-<br>35<br>F€<br>₽0<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TIC2 CAC/TIC<br>23 4.84<br>PLAGICCLASE<br>ALBITE<br>41.59<br>11.04<br>11.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52 NA 20<br>1.3<br>89.24<br>79.97<br>MG<br>51                                                                      | 25.61<br>74.81<br>11.35                                                                                                               | K20/TIC2<br>•254                                                       |                                                 |
| KOMATIITE PARAPE<br>FEO/(FEO+HGO) C<br>+7520<br>JENSEN CATION A<br>GUARTZ - FELCSPA<br>GUARTZ<br>GUARTZ<br>GUARTZ<br>CATION PROPORTION                                                                                                                                                                                | TERS<br>A0/AL203 S<br>+68<br>L203 - FE3<br>L203 - FE3<br>L203 - FE3<br>RATIOS<br>5.20<br>9.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SI 02/TI0<br>27-40<br>+FE203+T<br>38-07<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 AL203/TIO<br>7-11<br>102 - MG0<br>20-17<br>THCCLASE 5-<br>THCCLASE 10-1<br>32-80<br>14-14<br>76-90<br>3C-29<br>47-71                                                                                           | 2 FED;∓/<br>8.<br>55<br>FE<br>PG<br>AL<br>2FE<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIC2 CAC/TII<br>23 4.84<br>PLAGICCLASE<br>ALBITE<br>41.59<br>11.04<br>11.75<br>49.19<br>30.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52 NA 20<br>1+3<br>89+24<br>79+97<br>85<br>51<br>Mg<br>51/5<br>NA+K                                                | 25.61<br>74.81<br>11.35<br>20.52<br>13.73                                                                                             | K20/TIC2                                                               |                                                 |
| KOMATIITE PARAME<br>FEO/(FEO+HGO) C<br>+7520<br>JENSEN CATION A<br>GUARTZ - FELCSPAN<br>GUARTZ<br>GUARTZ<br>CATION PROPORTION                                                                                                                                                                                         | TERS<br>AD/AL203<br>-58<br>L203 - FED<br>RATIOS<br>9.58<br>VS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SI 02 /T 10<br>27-40<br>+FE2C3+T<br>38-07<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 AL203/T 102<br>102 - MG0<br>20.17<br>THCCLASE 10.<br>32.90<br>14.14<br>76.90<br>3C.29<br>47.71                                                                                                                 | 2 F ED ≠ /<br>8.<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>7<br>8.<br>7<br>8.<br>7<br>8.<br>7<br>8.<br>7<br>8.<br>8.<br>7<br>8.<br>7<br>8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIC2 CAC/TIC<br>23 4.84<br>PLAGICCLASE<br>ALBITE<br>41.59<br>11.04<br>11.75<br>49.19<br>38.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52 HA 20<br>1+3<br>89-24<br>75-97<br>MG<br>SI /5<br>HA+K                                                           | 25.61<br>74.81<br>11.35<br>20.52<br>13.73                                                                                             | K20/TIC2                                                               |                                                 |
| KOMATIITE PARAPE<br>FEO/(FED+HGO) C<br>+7520<br>JENSEN CATION AI<br>GUARTZ - FELCSPAI<br>GUARTZ<br>GUARTZ<br>CATION PROPORTION<br>COCRDINATES IN TI<br>FROPORTION OF AN                                                                                                                                               | TERS<br>AO/AL203 S<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SI 02/TI02<br>27.40<br>+FE203+T<br>38.07<br>CA<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 AL203/TIO<br>7-11<br>102 - MG0<br>20-17<br>THCCLASE 10-<br>32-80<br>14-14<br>76-90<br>3C-29<br>47-71<br>ASE - CLIVING<br>FTRAL=02CN 7                                                                          | 2 FED≠/<br>8.<br>56<br>35<br>FE<br>MG<br>AL<br>2FE<br>AL<br>E - CLIN<br>5 92.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TIC2 CAC/TII<br>23 4.84<br>PLAGICCLASE<br>ALBITE<br>41.59<br>11.04<br>11.75<br>49.19<br>38.56<br>GPYRCKENE - C<br>MGL 2 DERCEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52 NA 20<br>1+3<br>89+24<br>79+97<br>85<br>81<br>95<br>81/5<br>NA+K<br>2014RTZ 1                                   | 25.61<br>74.81<br>11.25<br>20.52<br>13.73<br>IN MCLE                                                                                  | KZO/TIO2<br>•254<br>PERCENT)                                           |                                                 |
| KOMATIITE PARAPE<br>FEO/(FEC+HGO) C<br>+7520<br>JENSEN CATION A<br>GUARTZ - FELCSPAN<br>GUARTZ<br>CATION PROPORTION<br>COCRDINATES IN TO<br>PROPORTION OF AN<br>BASALT TETRAFEOR                                                                                                                                      | TERS<br>AD/AL203 S<br>-58<br>L203 - FED<br>RATIOS<br>9.08<br>VS<br>-E SYSTEF F<br>ALYSTS IN 6<br>SN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SI 02/TI02<br>27.40<br>+FE203+T<br>38.07<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLA<br>BASALT TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 AL203/T 10<br>7.11<br>102 - MG0<br>20.17<br>THCCLASE 10.1<br>32.90<br>14.14<br>76.90<br>3C.29<br>47.71<br>ASE - GLIVINE<br>ETRAFEORCN 15<br>20.55                                                              | 2 FED∓/<br>8-<br>FE<br>PG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>35<br>2-21<br>5 92-21<br>5 22 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TIC2 CAC/TIC<br>TIC2 CAC/TIC<br>TIC2 4.84<br>PLAGICCLASE<br>ALBITE<br>41.59<br>11.04<br>11.75<br>49.19<br>38.56<br>GPYRCXENE - C<br>MGLE PERCEN<br>17.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22 NA 20<br>1 - 3<br>89 - 24<br>79 - 97<br>MG<br>SI /5<br>NA +K<br>CUARTZ C<br>T<br>PLAG                           | 25.61<br>74.81<br>11.35<br>20.52<br>13.73<br>1N MCLE<br>51.98                                                                         | K20/TIC2<br>•254<br>PERCENTS<br>GTZ                                    | 9.57                                            |
| KOMATIITE PARAME<br>FEO/(FEO+HGO) C<br>+7520<br>JENSEN CATION AI<br>GUARTZ<br>GUARTZ<br>GUARTZ<br>CATION PROPORTION<br>COCRDINATES IN TO<br>PROPORTION OF AN<br>BASALT TETRAFEORI<br>GLINOPYROXENE PRO                                                                                                                | TERS<br>AD/AL203 S<br>AD/AL203 S<br>S<br>AD/AL203 br>S<br>AD/AL20S<br>S<br>AD/AL20S<br>S<br>AD/AL20S<br>S<br>AD/AL20S<br>S<br>AD/AL20S<br>S<br>AD/AL20S<br>S<br>AD/AL20S<br>S<br>AD/AL20S<br>S<br>AD/AL20S<br>S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S<br>AD/AL20S                                                                                                                                       | SI 02 / T 10<br>27-40<br>+ FEZ 03 + T 1<br>38 + 0 7<br>CA<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAG 10CL/<br>BASALT TE<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 AL203/TIO<br>7.11<br>102 - MGO<br>20.17<br>THECLASE 5.<br>THECLASE 10.3<br>32.80<br>14.14<br>76.90<br>3C.29<br>47.71<br>ASE - OLIVINE<br>ETRAFEORCN IS<br>2C.55<br>25.03                                       | 2 FED≠/<br>8.<br>56<br>56<br>55<br>FE<br>₩G<br>4L<br>2FE<br>4L<br>2FE<br>4L<br>5 92.21<br>C>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIC2 CAC/TIN<br>23<br>PLAGICCLASE<br>ALBITE<br>41.59<br>11.04<br>11.75<br>49.19<br>38.56<br>GPYRCXENE - C<br>MGLÉ PERCÉN<br>17.90<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 ha20<br>1+3<br>89+24<br>75+97<br>65<br>51<br>46<br>51/5<br>ha+k<br>cuartz c<br>17<br>PLAG                        | 25.61<br>74.81<br>11.35<br>20.52<br>13.73<br>1N MCLE<br>51.98<br>63.31                                                                | KZO/TIO2<br>•254<br>PERCENT)<br>CTZ                                    | 5. <u>5</u> 7<br>11. 56                         |
| KOMATIITE PARAPE<br>FEO/(FEO+HGO) C<br>+7520<br>JENSEN CATION A<br>GUARTZ<br>GUARTZ<br>CATION PROPORTION<br>FROPORTION OF AN<br>BASALT TETRAFEORI<br>CLINOPYROXENE PRO<br>GUARTZ PROJECTION                                                                                                                           | TERS<br>AD/AL203 S<br>AD/AL203 S<br>L203 - FED<br>R RATIOS<br>S 200<br>S 200 | SI 02 / T 102<br>27.40<br>+ FEZ 03 + T 1<br>38.07<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAG 10CL /<br>BASALT TA<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 AL203/TIO<br>7.11<br>102 - MG0<br>20.17<br>THCCLASE 10.<br>32.90<br>14.14<br>76.90<br>3C.29<br>47.71<br>ASE - OLIVINE<br>ETRAFEORCN IS<br>2C.55<br>25.03<br>22.72                                              | 2 FED∓/<br>8.<br>56<br>35<br>FE<br>µG<br>AL<br>2FE<br>AL<br>5 92.21<br>CPX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIC2 CAC; TII<br>23<br>PLAGICCLASE<br>ALBITE<br>41.59<br>11.04<br>11.75<br>49.19<br>38.56<br>GPYRCXENE - C<br>HGLE PERCEN<br>17.90<br>0.0<br>19.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32 NA 20<br>1+3<br>89+24<br>79-97<br>85<br>81<br>96<br>81/5<br>NA+K<br>800ARTZ 0<br>17<br>PLAG                     | 25.61<br>74.81<br>11.25<br>20.52<br>13.73<br>1N MCLE<br>51.98<br>63.31<br>57.43                                                       | KZO/TIO2<br>•254<br>PERCENT)<br>CTZ                                    | 5.57<br>11.56<br>C.C                            |
| KOMATIITE PARAPE<br>FEO/(FEO+HGO) C<br>+7520<br>JENSEN CATION A<br>GUARTZ - FELCSPAN<br>QUARTZ<br>CATION PROPORTION<br>FROPORTION OF AN<br>BASALT TETRAFEORM<br>GLINDPYROXENE PRI<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJE                                                                                           | TERS<br>AD/AL203 S<br>-58<br>L203 - FED<br>RATIOS<br>9.08<br>VS<br>9.08<br>VS<br>9.08<br>VS<br>1.75 IN 8<br>SN<br>CJECTION<br>N<br>-<br>ECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SI 02/TI02<br>27.40<br>+FE203+T<br>38.07<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAGIOCLA<br>2ASALT TE<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 AL203/T 10<br>7.11<br>102 - MG0<br>20.17<br>THCCLASE 10.1<br>32.90<br>14.14<br>76.90<br>47.71<br>ASE - GLIVINE<br>ETRAFEORCN 15<br>20.55<br>25.03<br>22.72<br>42.78                                            | 2 FED∓/<br>8<br>56<br>35<br>FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>5 - CLIN<br>5 - 2.21<br>C2X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIC2 CAC/TIC<br>TIC2 CAC/TIC<br>ALBITE<br>ALBITE<br>41.59<br>11.04<br>11.75<br>49.19<br>38.56<br>GPYRCXENE - C<br>MGLÉ PERCEN<br>17.90<br>C.C<br>19.23<br>37.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52 NA 20<br>1+3<br>89+24<br>79+97<br>MG<br>SI /5<br>NA+K<br>QUARTZ 0<br>T<br>PL AG                                 | 25.61<br>74.81<br>11.35<br>20.52<br>13.73<br>1N MCLE<br>51.98<br>63.31<br>57.48<br>6.0                                                | K20/T IO 2<br>• 254<br>PERCENTS<br>CT 2                                | 9.57<br>11.56<br>C.C<br>19.93                   |
| KOMATIITE PARAPE<br>FEQ/(FED+HGO) C<br>+7520<br>JENSEN CATION AI<br>GUARTZ<br>GUARTZ<br>CATION PROPORTION<br>PROPORTION OF AN<br>BASALT TETRAFEORI<br>CLINOPYROXENE PRO<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION                                                                                                | TERS<br>AD/AL203 S<br>AD/AL203 S<br>L203 - FEO<br>RATIOS<br>S 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SI 02 / T 102<br>* FEZ 03 + T 1<br>38 - 0 7<br>CA<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAG 10CL<br>0L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 AL203/TIO<br>7.11<br>102 MGO<br>20.17<br>THECLASE 5.<br>THECLASE 10.<br>32.80<br>14.14<br>76.90<br>3C.29<br>47.71<br>ASE - GLIVINE<br>ETRAFEORCN IS<br>2C.55<br>25.03<br>22.72<br>42.78<br>0.0                 | 2 FED⇒/<br>8.<br>55<br>FE<br>MG<br>AL<br>2FE<br>AL<br>5 J2.2L<br>C2X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TIC2 CAC; TII<br>23<br>PLAGICCLASE<br>ALBITE<br>41.59<br>11.04<br>11.75<br>49.19<br>38.56<br>CPYRCXENE - C<br>MGLÉ PERCEN<br>17.90<br>0.0<br>19.20<br>37.23<br>16.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52 NA 20<br>1+3<br>89-24<br>79-97<br>85<br>81<br>96<br>81/5<br>NA+K<br>804RTZ 0<br>17<br>PLAG                      | 25.61<br>74.81<br>11.35<br>20.52<br>13.73<br>7 IN MCLE<br>51.98<br>62.31<br>57.43<br>6.0<br>48.05                                     | K20/TIC2<br>•254<br>PERCENT)<br>CTZ<br>CPX+{4CTZJ                      | 5.57<br>11.56<br>C.C<br>15.93<br>35.40          |
| KOMATIITE PARAPE<br>FEO/(FEC+HGO) C<br>+7520<br>JENSEN CATION A<br>GUARTZ - FELCSPAN<br>GUARTZ<br>GUARTZ<br>CATION PROPORTION<br>PROPORTION OF AN<br>BASALT TETRAFEORI<br>CLINOPYROXENE PRO<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CLIVINE PROJECTION                                                      | TERS<br>AD/AL203<br>-68<br>L2C3 - FED<br>RATIOS<br>S.2C<br>9.08<br>VS<br>9.08<br>VS<br>VS<br>VS<br>CLYSIS IN 8<br>CLYSIS IN 8<br>CLYSIS IN 8<br>CLECTION<br>CN<br>CLECTION<br>CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SI 02/T 102<br>+ F E2 03 + T 1<br>- GR<br>CA<br>CA<br>SI<br>2MG<br>- CA<br>PLAG IDCL/<br>BASALT TE<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 AL203/TIO<br>7.11<br>102 - MGO<br>20.17<br>THECLASE 10.<br>32.90<br>14.14<br>76.90<br>3C.29<br>47.71<br>ASE - OLIVINE<br>ETRAFEDREN IS<br>2C.55<br>25.03<br>22.72<br>42.78<br>0.0                              | 2 FED≠/<br>8.<br>56<br>35 FE<br>µG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TIC2 CAC/TIC<br>23<br>PLAGICCLASE<br>ALBITE<br>41.59<br>11.04<br>11.75<br>49.19<br>38.56<br>CPYRCXENE - C<br>MGLÉ PERCÉN<br>17.90<br>0.0<br>19.20<br>37.23<br>16.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52 ha 20<br>1 - 3<br>8 9 - 24<br>7 5 - 97<br>FG<br>SI<br>MG<br>SI / 5<br>ha + K<br>CUARTZ (<br>17<br>PL AG         | 25.61<br>74.81<br>11.35<br>20.52<br>13.73<br>7 N MCLE<br>51.98<br>62.31<br>57.48<br>6.0<br>48.05                                      | K20/TIC2<br>•254<br>PERCENT)<br>CTZ<br>CPX+(4CTZ)                      | 5.57<br>11.56<br>C.C<br>15.93<br>35.40          |
| KOMATIITE PARAME<br>FEO/(FEO+HGO) C<br>+7520<br>JENSEN CATION AI<br>GUARTZ<br>GUARTZ<br>GUARTZ<br>CATION PROPORTION<br>PROPORTION OF AN<br>BASALT TETRAFEORI<br>GUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>CMAS PROJECTIONS<br>TETRAHEDRON COCR                                                                   | TERS<br>AD/AL203<br>AD/AL203<br>L203 - FED<br>RATIOS<br>RATIOS<br>9.00<br>NS<br>PESTER R<br>ALYSTS IN A<br>CHATES<br>CINATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SI 02 /T 10<br>27.40<br>+FEZ 03+T<br>38.07<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAG IOCL<br>BASALT TE<br>OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 AL203/T107<br>102 - MG0<br>20.17<br>THECLASE 5.<br>THECLASE 10.3<br>32.80<br>14.14<br>76.90<br>3C.29<br>47.71<br>ASE - OLIVINE<br>ETRAFEORCN IS<br>2C.55<br>25.03<br>22.72<br>42.78<br>C.0<br>16.35            | 2 F E ] ≠ /<br>8.<br>56<br>55<br>F E<br>9G<br>AL<br>2F E<br>AL<br>2F E<br>AL<br>2F E<br>AL<br>2F E<br>AL<br>2F E<br>2F E<br>2F E<br>2F E<br>2F E<br>2F E<br>2F E<br>2F E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TIC2 CAC/TIN<br>23<br>PLAGICCLASE<br>ALBITE<br>41.59<br>11.04<br>11.75<br>49.19<br>30.56<br>CPYRCXENE - C<br>MGLE PERCEN<br>17.90<br>0.0<br>19.23<br>37.23<br>16.55<br>19.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 NA 20<br>1 - 3<br>8 9 - 24<br>7 5 - 97<br>8 5<br>NG<br>SI / 5<br>NA + K<br>CU AR TZ (<br>1<br>PL AG              | 25.61<br>74.81<br>11.35<br>20.52<br>13.73<br>7 IN MCLE<br>51.98<br>62.31<br>57.48<br>6.0<br>48.05<br>13.81                            | K20/TIC2<br>•254<br>PERCENT)<br>GTZ<br>CPX+(4 GTZ)<br>5                | 5.57<br>11.56<br>C.C<br>15.93<br>36.40<br>5C.C3 |
| KOMATIITE PARAPE<br>FEO/(FEO+HGO) C<br>+7520<br>JENSEN CATION A<br>GUARTZ<br>GUARTZ<br>CATION PROPORTION<br>FROPORTION OF ANN<br>BASALT TETRAFEORI<br>GLINDPYROXENE PROJECTION<br>PLAGIOCLASE PROJECTIONS<br>TETRAHEDRON COCA<br>GIGPSIDE PROJECT                                                                     | TERS<br>AD/AL203 S<br>L2C3 - FE3<br>RATIOS<br>RATIOS<br>9.08<br>NS<br>9.08<br>NS<br>SU<br>SU<br>SU<br>SU<br>SU<br>SU<br>SU<br>SU<br>SU<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SI 02 /T 102<br>+ F E Z 03 +T 1<br>CA<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAG IOCL /<br>BASALT TA<br>OL<br>C<br>C<br>C<br>C3 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 AL203/TIO<br>102 MGO<br>20-17<br>THECLASE 5.<br>THECLASE 10.<br>32.80<br>14.14<br>76.90<br>3C.29<br>47.71<br>ASE - GLIVINE<br>ETRAFEORCN (S<br>2C.55<br>25.03<br>22.72<br>42.78<br>0.0<br>16.35<br>32.28       | 2 F ED ⇒ /<br>8.<br>FE<br>MG<br>AL<br>2F E<br>AL<br>2 F E<br>AL<br>2 F E<br>AL<br>2 F E<br>2 F Z 2 L<br>C 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIC2 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>23 CAC; TII<br>24 CAC; TII<br>24 CAC; TII<br>25 CAC; TII<br>26 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 CAC; TII<br>27 | 52 NA 20<br>1+3<br>89-24<br>795<br>51<br>MG<br>51/5<br>NA+K<br>CUARTZ 0<br>17<br>PLAG                              | 25.61<br>74.81<br>11.25<br>20.52<br>13.73<br>7 IN MCLE<br>51.98<br>63.31<br>57.43<br>6.0<br>48.05<br>13.81<br>52.07                   | K20/TIC2<br>•254<br>PERCENT)<br>CTZ<br>CPX+(4CTZ)<br>5                 | 5.57<br>11.56<br>C.C<br>19.93<br>35.40<br>5C.C3 |
| KOMATIITE PARAPE<br>FEO/(FEO+HGO) C<br>+7520<br>JENSEN CATION A<br>GUARTZ - FELCSPAN<br>GUARTZ<br>CATION PROPORTION<br>ROPORTION OF AN<br>BASALT TETRAFEORI<br>GLINDPYROXENE PRI<br>GUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>TETRAHEDRON COCRI<br>GIGPSIDE PROJECTION                                           | TERS<br>AO/AL203 S<br>AO/AL203 S<br>L203 - FED<br>R RATIOS<br>9.08<br>VS<br>PESYSTEM<br>S<br>N<br>S<br>LYSTS IN 8<br>CN<br>CLYSTS IN 8<br>CN<br>CLYATES<br>ION<br>CN<br>CN<br>CN<br>CN<br>CN<br>CN<br>CN<br>CN<br>CN<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SI 02 /T 102<br>+ F E 2 03 +T 1<br>CA<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAG IOCLA<br>BASALT TA<br>OL<br>C<br>C3 A<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 AL203/T 10.<br>7.11<br>102 - MG0<br>20.17<br>THECLASE 10.<br>32.90<br>14.14<br>76.90<br>47.71<br>ASE - GLIVINE<br>ETRAFEORCN IS<br>20.55<br>25.03<br>22.72<br>42.76<br>0.0<br>16.35<br>32.28<br>23.51          | 2 FED.<br>56<br>35<br>FE<br>MG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>2FE<br>2FE<br>AL<br>2FE<br>2FE<br>AL<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE<br>2FE | TIC2 CAC/TII<br>23 4.84<br>PLAGICCLASE<br>ALBITS<br>11.04<br>11.75<br>49.19<br>38.56<br>CPYRCXENE - C<br>MGLÉ PERCÉN<br>17.90<br>0.0<br>19.20<br>37.23<br>16.55<br>19.61<br>15.65<br>59.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22 NA 20<br>1 + 3<br>8 9 • 2 4<br>7 9 • 97<br>MG<br>SI /5<br>NA + K<br>CUARTZ (<br>17<br>PL AG<br>S<br>S           | 25.61<br>74.81<br>11.35<br>20.52<br>13.73<br>7 IN MCLE<br>51.98<br>63.31<br>57.43<br>6.0<br>48.05<br>13.81<br>52.07<br>17.42          | K20/TIC2<br>•254<br>PERCENT)<br>CPX+{4CTZ}<br>5                        | 5.57<br>11.66<br>C.C<br>15.93<br>36.40<br>5C.C3 |
| KOMATIITE PARAPE<br>FEO/(FEC+HGO) C<br>+7520<br>JENSEN CATION A<br>GUARTZ - FELCSPAN<br>GUARTZ<br>CATION PROPORTION<br>ROPORTION OF AN<br>BASALT TETRAFEORI<br>CLINOPYROXENE PRI<br>QUARTZ PROJECTION<br>PLAGIOCLASE PROJECTION<br>STETRAHEDRON COCR<br>GIGPSIDE PROJECTION<br>CLIVINE PREJECTION<br>TETRAHEDRON COCR | TERS<br>AD/AL203<br>+68<br>L2C3 - FED<br>A RATIOS<br>-2C<br>9-88<br>VS<br>9-88<br>VS<br>9-88<br>VS<br>9-88<br>VS<br>10<br>CJECTION<br>V<br>CLECTION<br>CN<br>CLIVATES<br>ION<br>CN<br>TION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SI 02/T 102<br>+ F E2 03 + T 1<br>CA<br>CA<br>CA<br>SI<br>2MG<br>CA<br>PLAG IDCL/<br>2ASALT TE<br>OL<br>C<br>C3 A<br>CS<br>M2S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 AL203/T102<br>102 - MG0<br>20.17<br>THCCLASE 10.<br>32.90<br>14.14<br>76.90<br>3C.29<br>47.71<br>ASE - OLIVINE<br>ETRAFEDRCN IS<br>2C.55<br>25.03<br>22.72<br>42.78<br>0.0<br>16.35<br>32.28<br>23.51<br>25.55 | 2 FED≠/<br>8.<br>56<br>35 FE<br>µG<br>AL<br>2FE<br>AL<br>2FE<br>AL<br>C>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TIC2 CAC/TIC<br>23<br>PLAGICCLASE<br>ALBITE<br>41.59<br>11.04<br>11.75<br>49.19<br>38.56<br>CPYRCXENE - C<br>MGLÉ PERCÉN<br>17.90<br>0.0<br>19.30<br>37.23<br>16.55<br>19.41<br>15.45<br>59.07<br>33.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 ha 20<br>1 - 3<br>8 9 - 24<br>7 5 97<br>51<br>51 / 5<br>ha + k<br>CUARTZ 0<br>17<br>PL AG<br>A<br>S<br>S<br>A2S3 | 25.61<br>74.81<br>11.35<br>20.52<br>13.73<br>7 IN MCLE<br>51.98<br>62.31<br>57.48<br>6.0<br>48.05<br>13.81<br>52.07<br>17.42<br>37.06 | <pre>K20/TIC2<br/>*254<br/>PERCENT)<br/>GTZ<br/>CPX+{4GTZ}<br/>5</pre> | 9.57<br>11.66<br>C.C<br>19.93<br>35.40<br>5C.C3 |

SAPPLE NUMBER 66 164 322 CRIGINAL WEIGHT PERCENT CXIDES SI02 AL203 FE203 FE0 51.79 13.43 1.57 14.14 #NC #G0 •27 5•13 P205 •24 CA0 9+14 K2C NA2C 2.59 T 102 1.39 CR 203 •0C TCTAL 100.47 NEIGHT PERCENT DXIDES RECALCULATED TO 100 PERCENT \$102 AL203 F5203 FEG MNC MGO CAN \$1.44 13.34 1.56 14.05 .27 5.10 9.08 NA 2 C K2C T 102 P205 CA-ZO 3 107.11 00.00 CATION PPOPORTIONS IN ANALYSIS S1 AL FE(3) FE(2) 49.36 13.00 1.12 11.21 T 1 1 • 35 P.19 CR.0C MN MG •22 7•24 61 9+28 NA 4.76 к •59 CIPH NERM QTZ 2+634 9+949 2+512 CCA .COO .COO .COO AN 23.443 19.125 24.146 LC .COC .COC .COC 02 2.517 2.8C1 2.901 NE •0C0 •0C0 •0C0 .COC .COC .COC 40 21.762 12.836 23.733 NEIGHT PERCENT Pole Percent Cation Percent

|                           | 2MG     | 32.30          | 2FE     | 47.16             | SI/5       | 20.54    |            |       |
|---------------------------|---------|----------------|---------|-------------------|------------|----------|------------|-------|
|                           | CA      | 45,69          | AL      | 39.57             | NA+K       | 14.74    |            |       |
| COORDINATES IN THE SYSTEM | PLACTOC | LASE - OLIVIN  | 5 - CLI | OPYROXENE         | E - QUARTZ | (IN MOLE | PERCENT)   |       |
| PROPORTION OF ANALYSIS IN | BASALT  | TETRAHEDRON IS | 5 89.40 | I MOLE PE         | RCENT      |          |            |       |
| BASAL T TETRAHEDRON       | ŰL.     | 21,86          | CPX     | 17.40             | PLAG       | 52,55    | QTZ        | 8,18  |
| CLINDPYROXENE PROJECTION  |         | 26,47          |         | 0. <del>6</del> ~ |            | 63.62    |            | 9.91  |
| WUARTZ PROJECTION         |         | 23.81          |         | 18.95             |            | 57,23    |            | υ.υ   |
| PLAGIOCLASE PROJECTION    |         | 44.08          |         | 35.68             |            | 0.0      |            | 17.25 |
| OLIVINE PROJECTION        |         | Ú. Ú           |         | 16.95             | •          | 51.18    | OPX+(4QTZ) | 31.88 |
| CMAS PROJECTIONS          |         |                |         |                   |            |          |            |       |
| TETRAHEDRON COORDINATES   | С       | 10.09          | Ħ       | 19.98             | A          | 14.10    | 5          | 49.22 |
| DIDPSIDE PROJECTION       | C3A     | 32.61          | ы       | 15,73             | S          | 51.66    |            |       |
| OLIVINE PROJECTION        | CS      | 24,54          | м       | 57.27             | 5          | 18.19    |            |       |
| ENSTATITE PROJECTION      | M25     | 31.67          | C293    | 32.39             | A253       | 35,95    |            |       |
| QUARTZ PROJECTION         | CAS2    | 62.97          | MS      | 28.03             | CH52       | 9.00     |            |       |

 

 QUARTZ - FELDSPAR RATIOS QUARTZ 3.02
 ORTHOCLASE 12.21 ORTHOCLASE 22.65
 PLACIDCLASE 86.16 ALBITE 74.33

 QUARTZ 3.02
 ORTHOCLASE 22.65
 ALBITE 74.33

 QUARTZ 3.02
 CA 32.26
 FE
 40.20
 HG
 27.54

 CA 13.74
 MG
 11.72
 SI
 74.54

 SI
 75.94
 AL
 12.12
 MG
 11.94

 2MG
 32.30
 2FE
 47.16
 SI/5
 20.54

JENSEN CATION AL203 - FE0+FE203+TI02 - MG0 43.17 35.56 21.26

 KOMATTITE PARAMETERS

 FEO/(FE0+MGD)
 CAU/AL203
 SI02/TI02
 AL203/FI02
 FE0%/T102
 CAU/FID2
 NA20/TI02
 K20/TI02

 (7316
 .64
 33.54
 9.09
 9.65
 5.77
 1.599
 .697

| URICINAL WEIGHT<br>SIO2 AL203<br>50.98 13.81                                                                                                                                      | FE203 F<br>1.48 13.                                                                                                                          | DES<br>ED MNO<br>33 .25                                                                                                 | _ MG0<br>5.38                                                           | CAU<br>8,77                       | NA20<br>2,43                                          | K20<br>1.04                               | T102<br>1.52                     | P205<br>.14                | CR203          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------|-------------------------------------------|----------------------------------|----------------------------|----------------|
| WEIGHT PERCENT<br>SIO2 AL 203<br>51.40 13.92                                                                                                                                      | OXIDES RECAL<br>FE203 F<br>1,49 13.                                                                                                          | CULATED TO<br>ED MNO<br>44 .25                                                                                          | 100 PERCEN<br>MGD<br>5,42                                               | T<br>6.84<br>9.84                 | NA20<br>2.45                                          | K20<br>1.97                               | T102<br>1.53                     | P205                       | CR203          |
| CATION PROPORTI<br>SI AL<br>48.79 15.50                                                                                                                                           | CONS IN ANALY<br>FE(3) F<br>1,07 10,                                                                                                         | SIS<br>E(2) Ма<br>67 .20                                                                                                | HG<br>7.67                                                              | 8.99                              | NA<br>4,51                                            | 1,29                                      | TI 09                            | P.13                       | CR . 00        |
| CIPW NORM                                                                                                                                                                         |                                                                                                                                              |                                                                                                                         |                                                                         |                                   |                                                       |                                           |                                  |                            |                |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                                  | QTZ<br>,843<br>3,351<br>,800                                                                                                                 | C 1)R<br>, 000<br>, 000<br>, 000                                                                                        | 0r<br>6.316<br>6.609<br>6.471                                           | AB<br>20,726<br>18,885<br>22,541  | 23,8<br>20,4<br>24,4                                  | N<br>40<br>74<br>36                       | .000<br>.000<br>.000             | NË<br>. 40<br>. 40<br>. 40 | ()<br>()<br>() |
| WEIGHT PERCENT<br>Hole percent<br>Cation percent                                                                                                                                  | AC<br>,000<br>,000<br>,000                                                                                                                   | NS<br>.000<br>.000<br>.000                                                                                              | KS<br>,008<br>,000<br>,000                                              | DI<br>15.945<br>16.295<br>15.558  | نها<br>۲۰<br>۵۰<br>۵۰                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | HY<br>26.877<br>27.296<br>26.061 | 01_<br>.00<br>.00<br>.00   | ü<br>G<br>D    |
| WEIGHT PERCENT<br>Mole Percent<br>Cation Percent                                                                                                                                  | MT<br>2,166<br>2,235<br>1,601                                                                                                                | CM<br>.000<br>.000<br>.000                                                                                              | (L<br>2,91)<br>4,583<br>2,168                                           | HM<br>.000<br>.000<br>.000        | . 0<br>. 0<br>. 0                                     | N<br>0 0<br>0 0                           | .000<br>.000                     | RU<br>,00<br>,00           | ()<br>()<br>() |
| MAFIC INDEX =<br>NORM TOTAL = 1                                                                                                                                                   | 48,202<br>00.004                                                                                                                             |                                                                                                                         |                                                                         |                                   |                                                       |                                           |                                  |                            |                |
| OLIVINE COMPOSI<br>FORSTERITE                                                                                                                                                     | TION .000                                                                                                                                    | FAYALIT                                                                                                                 | E .00                                                                   | 0                                 |                                                       |                                           |                                  |                            |                |
| ORTHOPYROXENE COMPOSITION<br>ENSTATITE 38.712 FERROSILITE 61.280                                                                                                                  |                                                                                                                                              |                                                                                                                         |                                                                         |                                   |                                                       |                                           |                                  |                            |                |
| CLINOPYROXENE O<br>WOLLASTON                                                                                                                                                      | COMPOSITION<br>TE 49,686                                                                                                                     | ENSTATI                                                                                                                 | TE 19.47                                                                | 8 F                               | ERROSILI                                              | TE 30.                                    | 836                              |                            |                |
| FELDSPAR COMPOS<br>ORTHOCLASE<br>PLAGIOCLAS                                                                                                                                       | LTION<br>12,413<br>E COMPOSITIO                                                                                                              | ALBITE<br>DN (PERC AN)                                                                                                  | 40.73<br>53.49                                                          | 4 A<br>3 A                        | NORTHITE                                              | 46,                                       | 853                              |                            |                |
| THORNTON AND TU<br>SOLIDIFICATION<br>CRYSTALLIZATION<br>LARSEN INDEX (1<br>ALBITE RAFIG (1<br>IRON RATIO (FF<br>MG NUMBER AS CA<br>OXIDATION RATIO<br>DENSITY OF DRY<br>AFM RATIO | JITLE DIFFERE<br>INDEX (100*<br>INDEX (AN+H<br>/JSJI+K)-(CA+<br>00%(AB+AB EG<br>22=nN)*100/(F<br>JIUNS HG/CA<br>JATUNS HG/CA<br>LIQUID OF TH | NFIATION IN<br>GG DI+FO+FO<br>HC)<br>E2+FN+HC)<br>E2+FN+HC)<br>IU IN NE)/P<br>E2+FN+HC)<br>IIONS (FE+HC)<br>IS COMPOSIT | DEX<br>+FE203+NA2<br>EQIV OF EN<br>LAG)<br>><br>(FE0/FE0+<br>ION (AT 10 | 0+K20))<br>)<br>fe203)<br>50 deg) | = 27.88 $= 222.71$ $= 37.837.827$ $= 41.823$ $= 2.73$ | 551572802                                 | 24                               |                            |                |
| TUTAL ALKA                                                                                                                                                                        | 1613 14,83                                                                                                                                   | IDIAL                                                                                                                   | FE 52.31                                                                | n                                 | 9                                                     | ، کہ ک                                    |                                  |                            |                |

TOTAL 99,18

TOTAL

кр , 000 , 000 , 000

CS .000 .000 .000

AP . 382 . 272 . 346

## LITHOSTRATIGRAPHY

Undifferentiated Phanerozoic cover sequences



Ndikwe Formation

MAP 2



T

20

76

Ndikwe store

->>

LOUTOCH