UNIVERSITY OF KWAZULU-NATAL

THE EXTRACTIVES FROM SOPHORA VELUTINA AND CALPURNIA AUREA AND THEIR BIOLOGICAL ACTIVITY

2012

ERICK KIPKOECH KORIR

THE EXTRACTIVES FROM SOPHORA VELUTINA AND CALPURNIA AUREA AND THEIR BIOLOGICAL ACTIVITY

ERICK KIPKOECH KORIR

2012

A thesis submitted to the school of Chemistry, Faculty of Science and Agriculture, University of KwaZulu-Natal, Westville, for the degree of Doctor of Philosophy.

This Thesis has been prepared according to **Format 4** as outlined in the guidelines from the Faculty of Science and Agriculture which states:

This is a thesis in which chapters are written as a set of discrete research papers, with an overall introduction and final discussion. Where one (or all) of the chapters have already been published. Typically these chapters will have been published in internationally recognized, peer- reviewed journals.

As the candidate's supervisor, I have approved this thesis for submission.

Supervisor:

Signed: ----- Date: ----- Date: -----

Abstract

This work is an account of the phytochemistry and biological activity of two related plant species within the plant family the Fabaceae, *Sophora velutina* from the subtribe Sophoreae and *Calpurnia aurea* of the subtribe Podalyrieae. Members of this family are known to contain quinolizidine alkaloids and flavonoids, which are chemotaxonomic markers in the Fabaceae.

The phytochemical investigation of Sophora velutina resulted in the isolation of ten compounds, including five novel quinolizidine alkaloids, N-methylenehydroxycytisine (A-1), 7hydroxylupanine (A-2), 6.7-dihydroxylupanine (A-3) and 17-oxo-thermopsine (A-4) from the fruits and velutinine (A-5) from the bark along with the known quinolizidine alkaloids Nmethylcytisine (A-6) and cytisine (A-7), and a cinnamate ester, methyl-3-(3',4'dimethoxyphenyl)-2-propenoate (A-8) and triterpenoids lup-20(29)-ene-3\beta-ol (A-9) and 12oleanen-3-one (A-10). The isolated compounds were tested for their antibacterial activity against Enterococcus faecalis and Pseudomonas aeruginosa. P. aeruginosa showed resistance against eight of the ten samples tested with only the cinnamate ester and the steroid 12-oleanen-3-one (A-10) being slightly active at 200 and 175 μ g mL⁻¹, respectively. However, the quinolizidine alkaloid, N-methylcytisine (A-6) and 12-oleanen-3-one (A-10) showed good antibacterial activity against *E. faecalis*, with MIC values of 20.8 and 10.9 μ g mL⁻¹, respectively, with 17-oxo-thermopsine (A-4), another quinolizidine alkaloid, and the cinnamate ester showing moderate antibacterial activity against *E. faecalis* at concentrations of 125 μ g mL⁻¹ and 100 μ g mL⁻¹, respectively.

Calpurnia aurea yielded five isoflavones, 4',5,7-trihydroxyisoflavone (**B-1**), 7,3'-dihydroxy-5'methoxyisoflavone (**B-2**), 7-hydroxy-4',8-dimethoxyisoflavone (**B-3**), 7-acetoxy-4',8dimethoxyisoflavone (**B-4**) and 3',7-dihydroxy-4',8-dimethoxyisoflavone (**B-5**), a pterocarpan (3acetoxy-9-methoxypterocarpan) (**B-6**) and a quinolizidine alkaloid (calpurnine) (**B-7**) all of which were isolated from the stem and bark. These isoflavones were screened for *in vitro* anticancer activity against breast (MCF7), renal (TK10) and melanoma (UACC62) human cell lines, where 3',7-dihydroxy-4',8-dimethoxyisoflavone (**B-5**) was found to be the most active amongst all the compounds tested, followed by 3',7-dihydroxy-5'-methoxyisoflavone (**B-2**), also with a hydroxyl and methoxy group on the phenyl ring but in the 3' and 5' positions, respectively.

Elucidation of the compounds was done mainly by 1D and 2D NMR spectroscopy together with mass spectrometry, infrared, and ultraviolet spectroscopy. Antibacterial and anticancer assays were carried out using standard assays at the Centre for Scientific and Industrial Research (CSIR), Pretoria, South Africa.

Compounds isolated from Sophora velutina subsp. zimbabweensis

Compounds isolated from Calpurnia aurea

C₂₀H₂₇N₃O₄ Exact Mass: 373.2002

ABBREVIATIONS

¹³ C NMR	C-13 nuclear magnetic resonance spectroscopy
¹ H NMR	proton nuclear magnetic resonance spectroscopy
Ac	acetate
aq	aqueous
aq EtOH	aqueous ethanol
aq MeOH	aqueous methanol
br	broad resonance
с	concentration
сс	column chromatography
cGMP	cyclic guanosine monophosphate
CO	Cladosporium oxysporum
CD ₃ OD	deuterated methanol
CDCl ₃	deuterated chloroform
COSY	correlated spectroscopy
COX	cyclooxygenase
CSIR	Council for Scientific and Industrial Research
d	doublet
dd	double doublet
DEPT	distortionless enhancement by polarization transfer
DNA	deoxyribonucleic acid
DNP	dictionary of natural products
EIMS	electron impact mass spectroscopy
FO	Fusarium oxysporum
GI	growth inhibition
HMBC	heteronuclear multiple bond coherence
HPLC	high pressure liquid chromatography
HREIMS	high resolution electron impact mass spectroscopy
HSQC	heteronuclear single quantum coherence
IR	infrared
m	multiplet

MB	Marssonina brunnee
Me	methyl
MIC	minimum inhibitory concentrations
Мр	melting point
MS	mass spectroscopy
NOESY	nuclear overhauser effect spectroscopy
PDE-5	Phosphodiesterase type 5
RSA	radical scavenging activity
S	singlet
SRB	sulforhodamine
SS	Sphaeropsis sapinia
t	triplet
TCA	trichloroacetic acid
TGI	total growth inhibition
TLC	thin layer chromatography
UV	ultraviolet
VP	Valsa pini
MIC	minimum inhibitory concentration

DECLARATIONS

DECLARATION 1 – PLAGIARISM

I, Erick Kipkoech Korir declare that

- 1. The research reported in this thesis is my original research, except where otherwise indicated.
- 2. This thesis has not been submitted for any degree or examination at any other university.
- 3. This thesis does not contain other persons' data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons.
- 4. This thesis does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then:
 - a. Their words have been re-written but the general information attributed to them have been referenced
 - b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced.
- 5. This thesis does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the thesis and in the References sections.

Signed

DECLARATION 2-PUBLICATIONS

DETAILS OF CONTRIBUTION TO PUBLICATIONS that form part and/or include research presented in this thesis (include publications in preparation, submitted, *in press* and published and give details of the contributions of each author to the experimental work and writing of each publication)

Publication 1

Korir, E., Kiplimo, J.J., Crouch, N., Moodley, N., Koorbanally, N.A. **2012**. Quinolizidine Alkaloids from *Sophora velutina* subsp. *zimbabweensis* (Fabaceae: Sophoreae), *Natural Products Communications*, **7** (8), 999-1003.

Publication 2

Korir, E., Kiplimo, J.J., Crouch, N., Moodley, N., Koorbanally, N.A. **2012**. 7-Hydroxylupanine and 17-oxo-thermopsine from *Sophora velutina* subsp. *zimbabweensis*, submitted to *Natural Products Communications*.

Publication 3

Korir, E., Kiplimo, J.J., Crouch, N., Moodley, N., Koorbanally, N.A. Isoflavones from *Calpurnia aurea* Subsp. *aurea* and their anticancer activity, manuscript submitted to *Journal of Medicinal Plants Research*.

From all the above publications, my role included carrying out all the experimental work and contributing to the writing of the publications along with my supervisor. The other co-authors contribution was that of an editorial nature and checking on the scientific content and my correct interpretation. Based on their expertise, they have added minor parts to the manuscripts.

Signed:

ACKNOWLEDGEMENTS

I am greatly indepted to my mentor and supervisor Dr Neil Anthony Koorbanally for first accepting me into his great research group- Natural Products Research Group (NPRG) but also for facilitating a smooth running of my studies with his grant holders bursary. His kindness, humility and calmness provided a good learning and research environment and also motivated me to work harder day by day. To me you are special.

Appreciation also goes out to Dr Nivan Moodley for making it possible for me to run the biossays and HREIMS at the CSIR and to Prof. Neil Crouch and Dr R. Clark of Pretoria for facilitating access to plant material for research.

To my colleagues and members of the Natural Products Research Group, Dr Chantal Koorbanally, Dr Joseph Magadula (JJ), Dr Abdelhafeez Mohamed, Jil, Vusi Mchunu, Maya Makatini, Gugulethu Ndlovu, Dr Elizabeth Mwangi, Shiksha Dukhea, Ibrahim Hamisu, Edith Sebata, Damien Tshibangu and Kaalin Gopaul, you have made my stay memorable and I learned a lot by interacting with you in the lab. Many thanks go to Chantal, JJ, Abdel, Phil and Dulcie for giving me the best reception in the lab and guiding me through the best research practices. I will remember this forever.

I am also grateful to Dilip for inducting me to the NMR instrument and Pret Parel and Anita Naidoo for inducting me to the MS, UV and IR instruments. I am indeed grateful to the entire staff in the School of Chemistry for providing a good learning environment and making me feel at home.

I will not forget my Kenyan brothers in the School of chemistry, Waudo, Changamu, Kibe, Maingi, Musyoka, Mwangi and the rest as well as Isaac (Newlight international) for the good company away from home. I am also grateful to Cheplogoi, Langat and Rotich for being my best ambassadors and role models. To you I say Kongoi Nebo Sobon.

My deepest gratitude goes to my wife Beatrice. You are a gift to me from God and thanks for your kindness and humility. You have always been extremely supportive and patient with me apart from the many sacrifices you have made for the family. This is not in vain and God Bless you. To my children Kipngetich, Chepkemoi, Kiptoo and Kipngeno, thank you so much for your encouragement, best wishes and prayers. To my parents, thank you for your encouragement in all these years.

Most importantly, if it was not for your grace and favours Lord, I would not have made it this far. Thank you.

I am grateful to the National Research Foundation (NRF) of South Africa through the Thuthuka Programme for financial support and a grant holder's bursary.

TABLE OF CONTENTS

Chapter	1.	Introduction to the Fabaceae	l
1.1	Phy	logeny1	l
1.2	Ethr	nobotanical information of <i>Sophora</i> and <i>Calpurnia</i> 4	1
1.3	Biol	ogical activity of extracts from Sophora and Calpurnea	3
1.4	A pl	nytochemical review of the lupine alkaloids10)
1.4	.1	Classification of quinolizidine alkaloids10)
1.4	.2	Quinolizidine alkaloids isolated from Sophora and Calpurnia species	5
1.4	.3	Biosynthesis of quinolizidine alkaloids)
1.4	.4	Biological activity of the quinolizidine alkaloids from Sophora and Calpurnia 33	3
1.5	Aim	s and objectives of the study	7
1.6	Refe	erences	3
Chapter	2.	Quinolizidine alkaloids from Sophora velutina subsp. zimbabweensis (Fabaceae:	
Sophore	ae)		5
2.1	Intro	oduction	7
2.2	Res	ults and Discussion	3
2.3	Con	clusions69)
2.4	Exp	erimental section 69)
2.5	Refe	erences	7
Chapter	3.	Isoflavones from Calpurnea aurea subsp. aurea and their anticancer activity 80)
3.1	Intro	oduction	l
3.2	Res	ults and Discussion	1
3.3	Exp	erimental	3
3.4	Con	clusion	2
3.5	Refe	erences	2
Chapter	4.	CONCLUSION	3

LIST OF TABLES

Table 1	Species of <i>Calpurnia</i> and <i>Sophora</i> in traditional medicine	. 6
Table 2	Pharmacological activities of extracts from Sophora	. 9
Table 3	Lupine alkaloids from the Sophora species	27
Table 4	Lupine alkaloids from <i>Calpurnia</i> species	28
Table 5	Compounds isolated from Sophora and Calpurnia species and their bioactivity	34
Table 6	¹³ C NMR data of 7-hydroxylupanine (A-2), 6,7-dihydroxylupanine (A-3), and 17-	
	oxo-thermopsine (A-4)	66
Table 7	MIC values of the isolates from S. velutina subsp. zimbabweensis against E. faecalis	
	and P. aeruginosa	69
Table 8	Growth Inhibition values for compounds B-2-B-5 against TK-10, UACC-62 and MCI	7_
	7 cell lines.	87

LIST OF FIGURES

Figure 1	Structures of compounds isolated from Sophora velutina	59
Figure 2	Fragment representing the base peak in the MS of compound A-3	63
Figure 3	Compounds isolated from Calpurnia aurea	86

LIST OF SCHEMES

Scheme 1	Phylogeny of the Fabaceae	3
Scheme 2	The conversion of L-Lysine to Cadaverine (Herbert, 1978; 1980)	60
Scheme 3	Biosynthesis of lupinine (Dewick, 2006)	\$1
Scheme 4	Biosynthesis of lupanine, sparteine and cytisine (Golebiewski and Spenser, 1988) 3	32
Scheme 5	Biosynthesis of matrine (Leeper, et al., 1981)	32

Chapter 1. Introduction to the Fabaceae

1.1 Phylogeny

The Fabaceae is a member of the Angiospermae (flowering plants) and consists of about 750 genera with over 18,000 species (ILDIS, 2001).

The plants which are mainly trees, shrubs or climbers are grouped into the three subfamilies (Scheme 1) based on morphological characteristics using either the appearance of their flowers, pods or leaves. These genera are distributed between three subfamilies, the Papilionoideae, Mimosoideae and Caesalpinoideae.

In the Mimosoideae, the flowers within a whorl are radially symmetric with similar petals in shape and size and their leaves are bipinnate (having leaflets on each side of a common axis, which are further subdivided into smaller leaflets) and the flowers of the Caesalpinoideae and Papilionoideae are bilaterally symmetric with the size and the shape of the petals in a given whorl being different. The differences between the Caesalpinioideae and Papilionoideae are twofold: the sepals which are often separate in Caesalpinioideae are united at the base in the Papilionoideae and the radicles in the seeds are straight in Caesalpinioideae and curved in Papilionoideae (Germishuizen, 2000).

The species studied in this work belong to two tribes in the Papilionoideae subfamily, the Podalyrieae and Sophareae. Initially, the two plants were considered to belong to the same tribe Sophoreae but later studies have placed *Calpurnia* (Polhill, 1994) together with *Cadia* (van Wyk

and Shuttle, 1995) under the tribe Podalyrieae. The two tribes differ in that *Sophoreae* are trees, shrubs and climbers having pinnate leaves while Podalyrieae are mainly shrubs with palmate or digitative leaves (emanating from a point or a centre) and in rare instances the leaves are reduced to scales (Germishuizen, 2000).

The two species studied belong to different genera, *Sophora* and *Calpurnia*. *Sophora* differs from *Calpurnia* in that their fruits and flowers show some significant differences. In *Sophora* fruit, the seeds within a given pod are at regular intervals (moniliform) and their flowers are white or yellow and rarely blue-violet. *Calpurnia* fruits are winged and have yellow flowers (Germishuizen, 2000).

The Sophoreae is made up of 30 genera and 232 species while the Podalyrieae consists of 26 genera and 125 species (Nkonki *et al.*, 2003).

Scheme 1 Phylogeny of the Fabaceae

*Numbers occurring in parenthesis are the number of genera within the tribe.

1.2 Ethnobotanical information of Sophora and Calpurnia

There has only been one report on the medicinal use of *Calpurnia*, that being the use of *Calpurnia aurea* as an insecticide to kill animal lice (Waka *et al.*, 2004). There is no recorded use of *Sophora velutina* in traditional medicine, however other species of *Sophora* have a long list of medicinal uses, with the most popular medicinal use being for its anti-inflammatory, analgesic, antipyretic and anti-cancer properties (Table 1). There are also many other uses listed in Table 1. There has been a substantial amount of literature on the ethnomedicinal uses of *Sophora flavescens* in particular, being used for its antibacterial, antiviral and anti-diarhoeal properties, for skin disorders such as eczema, dermatitis, pyogenic skin infections, carbuncles, scabies, colpitis, leucorrhea, jaundice, hemorrhaging and hepatitis B (Perry and Metzger, 1980; Yoshikawa *et al.*, 1985; Tang and Eisenbrand, 1992; Kuroyanagi *et al.*, 2008; Jung, 2008). The flowers of *Sophora japonica* has also been used as a blood-staunching agent (Wang *et al.*, 2006) and the fruits were reported to have haemostatic properties (Tang *et al.*, 2012).

Sophora tomentosa is associated with cholera and diarrhoea (Perry and Metzger, 1980) and Sophora exigua is used to treat respiratory diseases (Pongboorod, 1950) which could be caused by bacterial infections. S. flavescens, S. grifithi and S. tonkinensis are used as stomachics (Lee et al., 2005; Ding et al., 2006a,b; Liu et al., 2006; Deng et al., 2007). S. flavescens is also used for gastroenteritis and acute dysentery and S. subprostrata is used for peptic ulcers as well as to remove pathogenic heat and to remove toxins (Perry and Metzger, 1980; Sakamoto et al., 1992). Sophora moorcroftiana is used as a detoxicant (Ma et al., 2007). Sophora alopecuroides is used

for its sedative and anti-hypothermic properties (Yuan *et al.*, 1986). *S. flavescens*, *S. moorcroftiana* and *S. secundiflora* have been reported to be used for its anthelmintic and parasitic properties (Lee, 1966; Chiang, 1977; Yoshikawa *et al.*, 1985; Tang and Eisenbrand, 1992; Huang, 1993; Woo *et al.*, 1998; Kuroyanagi *et al.*, 1999; Ma *et al.*, 2007). *Sophora moorcroftiana* is used as an emetic (Ma *et al.*, 2007).

S. flavescens, S. grifithi, S. secundiflora and *S. tonkinensis* are used as diuretics (Lee, 1966; Chiang, 1977; Perry and Metzger, 1980; Yoshikawa *et al.*, 1985; Huang, 1993; Liu *et al.*, 2006; Deng *et al.*, 2007). The use of these plants as diuretics and *S. tomentosa* for hypertension could be related since diuretics are used to control hypertension. *S. viciiffolia* is relatedly used for cystitis and haematuria (Perry and Metzger, 1980; Xiao, 1993) and in addition is used for oedema (Xiao, 1993). *S. tonkinensis* is also used for the treatment of haemorrhoids (Xiao, 1999). *S. flavescens, S. secundiflora* and *S. tomentosa* are all used as antidotes (Chen and Jiang, 1994; Perry and Metzger, 1980). *S. grifith*i has been used as an insecticide and *S. viciifolia* as an antifeedant (Liu *et al.*, 2006; Rai, 2006). The seeds of *S. secundiflora* may also have narcotic effects as it is used as a hallucinogenic and emetic during traditional ceremonies (Farnsworth, 1968; Schultes, 1969; 1970).

From the genus *Calpurnia*, only *C. aurea* has been used as an insecticide to kill animal lice in traditional medicine. Table 1 comprehensively cites the plants of *Calpurnia* and *Sophora* and the parts of the plants used in traditional medicine.

Plant Species	Part	Traditional use	Reference(s)
Calpurnia aurea	leaves	animal Lice	Waka et al., 2004
Sophora		sedative, central nervous system depressant, analgesic,	Yuan et al., 1986
alopecuroides		hypothermic	
Sophora exigua	roots	antipyretic and respiratory diseases	Pongboord, 1950
Sophora	roots	antipyretic, analgesic, anti-inflammatory, anthelmintic,	Lee, 1966; Yoshikawa et al., 1985; Tang
flavescens		stomachic, gastrointestinal, acute dysentery, diarhoeae,	and Eisenbrand, 1992; Woo et al., 1998;
		antiviral, antibacterial, antidiuretic, eczema, dermatitis,	Kuroyanagi et al., 1999; Kang et al.,
		colpitis, hemorrhage; jaundice, leucorrhea,	2000; Chi et al., 2001; Ma et al., 2002;
		carbuncles, pyogenic skin infections, scabies, enteritis	Lee et al., 2005; Ding et al., 2006a;
		and dysentery, antidote, antifebrile, tumours; hepatitis	Zhang et al., 2006; Jeong et al., 2008;
		B; anodyne activities	Jung et al., 2008
Sophora grifithii	leafy	stomachic, diuretic, antipyretic, and analgesic properties	Liu et al., 2006
	shoots	and insecticide	
Sophora	fruits	hemostatic, anti-fertility and anti-cancer activities	Tang et al., 2001; Wang et al., 2001 &
japonica			Ma et al., 2006
	flowers	blood-staunching agent	Wang et al., 2006

Table 1 Species of Calpurnia and Sophora in traditional medicine

Plant Species	Part	Traditional use	Reference(s)
Sophora	seed	antiphlogistic, detoxicant, emetic, verminosis	Ma et al., 2007
moorcroftiana	decoction		
Sophora	seeds	induce visions (hallucinogenic), ceremonial emetic	Farnsworth, 1968; Schultes, 1969; 1970
secundiflora		stimulant	
	roots	antipyretic, analgesic, inflammation, sore throat;	Chiang, 1977; Chen and Jiang, 1994
		antidote, antitumor, antiparasitic, diuretic	
Sophora		cholera, diarrhoeae, antidote to fish and other marine	Perry and Metzger, 1980
tomentosa		animal poisoning, hypertension	
Sophora	roots	antipyretic, diuretic, throat inflammation, pain,	Xiao et al., 1999; Deng et al., 2007
tonkinensis		hemorrhoids, stomachic and anti-tumour agent	
Sophora	roots	relieve pain, fever, reduce inflammation, remove toxins,	Son et al., 2003; Tingjun and Rongliang,
subprostrata		for peptic ulcers and tumours	2004
Sophora	roots	fever, cystitis, haematuria, oedema	Xiao, 1993
viciifolia	roots,	antifeedant	Rai, 2006
	bark and		
	seeds		

1.3 Biological activity of extracts from Sophora and Calpurnea

In order to find a scientific basis to support the use of plant extracts used in traditional medicine, *in vitro* tests on the extracts of these plants have been carried out. Since most folk medicine made use of water when preparing their prescription, the tests done were mainly on the aqueous or polar extracts such as methanol and ethanol (Table 2). Nonetheless, in a few instances only, hexane extracts were used during the tests.

Of all the plants from the two genera that have been used in alternative medicine, only four plants, *S. flavescens, S. japonica, S. moorcroftiana* and *S. subprostrata* have been subjected to bioassay tests based on their use in traditional medicine. In *Sophora flavescens,* the polar root extracts (methanol and ethanol extracts) have been tested for a variety of biological activity. These tests include antiviral, antioxidant, antiprotozoal, estrogenic, antitoxoplasma and antifeedant assays. The results obtained from these tests are given in Table 2. The tests have confirmed the traditional use of the plant (Table 1). The use of flowers of *Sophora japonica* as a blood-staunching agent in traditional medicine was supported by the test results by Wang *et al.*, (2006) (Table 2). There is still a need to validate several of the claims made in Table 1.

Plant species	Extract	Biological activity	Reference
affinis	aq. EtOH stem and leaf	antitumor	Abbott <i>et al.</i> , 1966a
angustifolia	aq. EtOH root	antitumor	Abbott <i>et al.</i> , 1966a
flavescens	aq. root	antiviral	Ma et al., 2002
	EtOH root	anti-protozoal; estrogenic	Youn et al., 2003; Kim et
			<i>al.</i> , 2008b
	MeOH root	cyclic guanosine monophosphate (cGMP)-specific	Shin <i>et al.</i> , 2002
		phosphodiesterase type 5 (PDE5) inhibitors	
	MeOH whole plant	Na ⁺ -glucose cotransporter (SGLT) inhibitory; contact	Youn et al., 2003; Liu et
		toxicity; anti-Toxoplasma gondii; antiprotozoal	<i>al.</i> , 2007; Sato <i>et al.</i> , 2007;
		activity	Choi et al., 2008;
	Hexane whole plant	contact toxicity; antifeedant	Liu et al., 2007
formosa	aq. EtOH and CHCl ₃	antitumor	Abbott <i>et al.</i> , 1966b
	stem and leaf		
japonica	aq. and EtOH seed and	antitumor, tyrosinase inhibition	Abbott <i>et al.</i> , 1966b;
	flower		1966c; 1966d; Wang et al.,
			2006
moorcroftiana	EtOH seed	tumor inhibition rate	Xingming et al., 2009
nutalliana	aq. stalk, leaf and fruit	antitumor	Abbott et al., 1966e
subprostrata	MeOH whole plant	antiviral	Kim <i>et al.</i> , 2008a
	aq. and EtOH whole	anti-inflammatory, antiulcer and antitumour effects	Son <i>et al.</i> , 2003
	plant		
tetraptera	EtOH leaf, flower, stem	antitumor	Abbott <i>et al.</i> , 1966a
	and fruit		

 Table 2 Pharmacological activities of extracts from Sophora

1.4 A phytochemical review of the lupine alkaloids

The genera *Sophora* and *Calpurnia* have been studied for its phytochemical constituents as early as 1895. To date there have been over 200 publications on the phytochemistry of species within the two genera with over 470 compounds having been isolated from the genus *Sophora* alone and another 13 being isolated from *Calpurnia* (DNP, 2012; Scifinder, 2012). The most prevalent class of compounds are the flavonoids (400), followed by quinolizidine alkaloids (104) and steroids (50) with some minor compounds of pterocapans, oligostilbenes and benzofurans.

During the course of our study on *Sophora* and *Calpurnia*, both quinolizidine alkaloids and flavonoids were isolated. However, since there are numerous reviews on flavonoids in the literature as well as many series of books, the literature review which follows focuses on the quinolizidine alkaloids only.

1.4.1 Classification of quinolizidine alkaloids

1.4.1.1 Bicyclic quinolizidine alkaloids

These are the simplest form of lupine alkaloids and are typified by lupinine (9). Fifteen compounds of this nature have been isolated from these species. Most of these compounds have an additional third six-membered nitrogenous ring.

1.	Sophorine
2.	Lamprolobine
3.	Epilamprolobine
4.	N-oxide Epilamprolobine

5.	9β-Hydroxylamprolobine
6.	Mamanine
7.	Mamanine N-oxide
8.	Pohakuline

9.	Lupinine
10.	5-(3'-Methoxycarbonylbutyroyl)-aminomethyl- <i>trans</i> -quinolizidine N-oxide

1.4.1.2 Tricyclic quinolizidine alkaloids

Eight tricyclic alkaloids have been isolated from *Sophora* species. These compounds have an additional ring joined to the bicyclic structure in such a manner that a methylene bridge exists between the rings. All these compounds have a characteristic α -pyridone ring A. These alkaloids are typified by cytisine (**11**). These alkaloids can also form dimers for example argentine (**23**).

No.	Name	R	\mathbb{R}^1
11.	Cytisine	Н	Н
12.	<i>N</i> -Methylcytisine	Me	Н

13.	11-Allylcytisine	Н	Allyl
14.	N-Acetylcytisine	Acetyl	Н
15.	<i>N</i> -Formylcytisine	Formyl	Н

16.	<i>N</i> -(2-Hydroxyethyl)cytisine
17.	Lehmannine
18.	12-Cytisineacetamide
19.	11-Oxocytisine
20.	Rhombifoline

21.	Sophorasine A
22.	Sophorasine B

23.	Argentine
24.	Tonkinensine A

*Compound 26 was published in a thesis without the stereochemistry in all stereogenic centres

(Ajaz, 1993)

25.	Tonkinensine B
26.	<i>N</i> -Methylsopholupisine

27.	Tsukushinamine A
28.	Tsukushinamine B
29.	Tsukushinamine C

1.4.1.3 Tetracyclic quinolizidine alkaloids

There are two distinct types within the tetracyclic alkaloids. These can be differentiated by whether or not they have a methylene bridge since the manner in which the four rings are fused are different in both types.

The first group is characterized by sparteine (**30**), where a fourth six-membered ring is added onto cytisine (**11**) in a linear fashion to produce a tetracyclic structure. A large number of alkaloids from this group have been isolated from these species. While some of these compounds have the α -pyridone ring, for example thermopsine (**52**), others have a fully saturated ring A as in sparteine (**30**) and some have the amide group retained while losing the double bonds as in lupanine (**35**). In the second group, the methylene bridge is absent and the four rings are fused in the manner typified by matrine (**63**).

30.	Sparteine
31.	β-Isosparteine
32.	13-Hydroxysparteine
33.	10-Oxosparteine

35.	Lupanine
36.	5,6-Dehydrolupanine
37.	17-Oxolupanine
38.	13-Hydroxylupanine

*Only the relative stereochemistry is reported in compound 39 (Radema, et al., 1979; DNP

2009)

20	10.12 Dibydrowylynoning
39.	10,15-Dinyuroxyiupanine
40	18 12 a Dibydrovylupaning
40.	4p,15u-Dinyutoxytupanine
41	36 4a 13a-Tribydroxylupanine
71.	sp,+u,isu minyuloxylupunne
	H A A H A A

42.	13-Hydroxylupanine tiglate
43.	Calpurnine

44.	Digittine	$R = \frac{C}{C} = \frac{N}{H}$
45.	Amino alcohol of digitine	R=H

46.	Calpurmenine	R=H
47.	Calpurmenine 13α-pyrrolecarboxylic acid ester	$R = \frac{2}{3} C \frac{N}{U}$

48.	Calpaurine
	H N H O O N H O O N O N O N O N O N O N

49.	Virgiline	R=H
50.	Virgiline 2-pyrrolecarboxylic acid ester	$R = \frac{\xi}{\xi} C \frac{N}{H}$

51.	2,3-Dehydro-O-(2'-pyrrolylcarbonyl)virgiline

*Compound 55 was published in a thesis without the stereochemistry

52.	Thermopsine
53.	Baptifoline
54.	Anagyrine
55.	Sophosalimine

*Compounds **56** and **58** were published in a thesis without the stereochemistry in all stereogenic centres while only the relative configuration was given for **57**.

56.	Sophazrine
57.	Sophohejrine
58.	Sopholupanizidone

59.	Aloperine

60.	11-Dehydroaloperine
61.	<i>N</i> -Methylaloperine
62.	Allylaloperine

		R	R ¹	R^2	\mathbb{R}^3	\mathbb{R}^4
63.	Matrine	Н	Н	Н	Н	Н
64.	3α-Hydroxymatrine	OH	Н	Н	Н	Н
65.	9α-Hydroxymatrine	Н	Н	OH	Н	Н
66.	5α,9α-Dihydroxymatrine	Н	ОН	ОН	Н	Н
67.	13α-Hydroxymatrine	Н	Н	Н	OH	Н
68.	14α-Hydroxymatrine	Н	Н	Н	Н	OH
69.	14β-Hydroxymatrine	Н	Н	Н	Н	OH
70.	14α-Acetoxymatrine	Н	Н	Н	Н	OCOCH ₃
71.	14β-Acetoxymatrine	Н	Н	Н	Н	OCOCH ₃

72.	7,11-Dehydromatrine
73.	Isomatrine
74.	Allomatrine
75.	Oxymatrine
76.	14β-Hydroxyoxymatrine
77.	Leontalbinine N-oxide (the N-oxide of 7,11-dehydromatrine)

78.	Sophocarpine
79.	5-Episophocarpine
80.	5α-Hydroxysophocarpine

81.	9α-Hydroxysophocarpine
82.	12β-Hydroxysophocarpine
83.	Sophocarpine N-oxide

84.	Sophoridine
85.	14β-Hydroxysophoridine
86.	3α-Hydroxysophoridine
87.	Sophoridine N-oxide
88.	N-Hydroxysophoridine
89.	N-Hydroxy-13,14-dehydrosophoridine

90.	Sophoramine
91.	Neosophoramine
92.	7α-Hydroxysophoramine
93.	9α-Hydroxysophoramine

94.	Δ^7 -Dehydrosophoramine
95.	Sophoranol
96.	Sophoranol N-oxide

1.4.1.4 Miscellaneous alkaloids

Other alkaloids which have been isolated from these plants could not fall under any of the classes

given above and were treated as miscellaneous compounds. These are;

97.	Kuraramine
98.	Isokuraramine
99.	Ammodendrine

100.	Dauricine
101.	Adenocarpine
102.	Griffithine

Nicotine (103) and 4(5)-methylimidazole (104) have also been reported from these plants.

103.	Nicotine
104.	4(5)-Methylimidazole

1.4.2 Quinolizidine alkaloids isolated from Sophora and Calpurnia species

Plants have been known to accumulate secondary metabolites for different functions and *Sophora* and *Calpurnia* are no exception. Sophora have thirty species with twenty-seven of these having been investigated phytochemically. With the exception of *S. arizonica*, *S. davdii*, *S. fraseri*, *S. koreensis*, *S. leachiana*, *S. moorcroftiana* and *S. stenophylla* which did not contain alkaloids and *S. macrocarpa* which did not contain flavonoids, the rest of the plants from *Sophora* were found to contain both alkaloids and flavonoids together.

Table 3 lists each species of *Sophora* that has been studied phytochemically in alphabetical order with the alkaloids isolated from them. The parts of the plant from where they were found are also included where possible.

The genus *Calpurnia* has not been extensively studied for phytochemical compounds and only two species, *C. aurea* and *C. subdecandra* have been studied phytochemically. These two species have yielded bicyclic and tetracyclic quinolizidine alkaloids (Table 4).

Species	Compound	Reference(s)
Sophora	$1^{ns}, 11^{nrs}, 16^{ns}, 17^{s}, 53^{ans}, 59^{ns},$	Monakhova et al., 1973; 1974a;
alopecuroides	$60^{1\&st}, 61^{ns}, 62^{ns}, 63^{ars}, 69^{a},$	1974b; Kuchkarov et al., 1978;
	75^{rs} , 78^{anrs} , 79^{ns} , 82^{a} , 83^{rs} ,	Kamaev et al., 1981; Wang et al.,
	84 ^{anrs} , 86 ^{ns} , 87 ^s , 88 ^{ns} , 89 ^{ns} ,	1991; Zhang et al., 1997; Atta-ur-
	90 ^{anrs} , 91 ^{ns} , 92 ^a , 101 ^a , 103 ^s	Rahman et al., 2000, Liu et al., 2001
Sophora	63 ^r	Plugge, 1895
angustifolia		
Sophora	$2^{\text{ste}}, 3^{\text{ste}}, 4^{\text{l\&ste}}, 6^{\text{a,b,l\&ste}}, 7^{\text{l}}, 8^{\text{b}},$	Briggs et al., 1942; Kadooka et al.,
chrysophylla	$11^{b,s}, 12^{l\&ste}, 15^{ste}, 20^{s},$	1976; Murakoshi <i>et al.</i> , 1984
	$35^{a,l\&ste}, 36^{a,l\&ste}, 37^{l}, 53^{s\&ste},$	
	$54^{s}, 63^{b,l\&ste}, 75^{l\&ste}, 97^{a,l\&ste},$	
	99 ^{a,1&ste}	
Sophora	18 ^r	Takamatsu et al., 1991
exigua		
Sophora	6 ^f , 12 ^{afr} , 17 ^r , 20 ^f , 35 ^f , 53 ^{afr} ,	Bohlmann et al., 1958; Okuda et al.,
flavescens	54 ^{afr} , 63 ^{afr} , 65 ^r , 66 ^f , 72 ^f , 73 ^r ,	1965; Ueno et al., 1975, 1978;
	74 ^r , 75 ^{afr} , 77 ^s , 78 ^{afr} , 79 ^r , 80 ^s ,	Morinaga et al., 1978; Murakoshi et
	81 ^r , 82 ^r , 83 ^{ars} , 84 ^r , 90 ^{afr} , 93 ^{fa} ,	<i>al.</i> , 1981a; 1982; Saito <i>et al.</i> , 1990;
	94 ^f , 95 ^{afr} , 96 ^f , 97 ^f , 98 ^f , 104 ^f	Sekine et al., 1993; Song et al.,
		1999; Kim et al., 2001; Ding et al.,
		2006a
Sophora	11 ^{ar} , 15 ^{ar} , 20 ^{ar} , 27 ^a , 28 ^a , 29 ^a ,	Ohmiya <i>et al.</i> , 1979a; 1979b; 1981
franchetiana	53 ^{ar} , 54 ^{ar} , 99 ^{ar}	
Sophora	$11^{\rm r}, 12^{\rm rs}, 21^{\rm l}, 22^{\rm l}, 23^{\rm s}, 26^{\rm ns},$	Primukhamedov et al., 1969; 1972;
griffithii	33 ¹ , 55 ^{ns} , 56 ¹ , 57 ^{ns} , 58 ^{ns} 63 ^{rs} ,	Karakozova et al., 1975; Atta-ur-
	78^s, 90^r, 102 ¹	Rahman <i>et al.</i> , 1991a; 1991b; 1991c;
		Ajaz, 1993
Sophora	31 ^f	Keller and Hatfield, 1979
japonica		
Sophora	11 ¹ , 12 ^{1s} , 53 ^s , 63 ^{sl} , 64 ^l , 65 ^l , 75 ^l ,	Silva, 1968; Negrete et al., 1982a;
macrocarpa	95 ¹	1982b; 1983
Sophora	$11^{\text{ba&lw}}, 12^{\text{ba&l}}, 54^{\text{l}}, 63^{\text{ba&lfw}},$	Briggs et al., 1960; 1975; Cui and
microphylla	75 ^f , 78 ^f	Zhang, 1986
Sophora	63 ^s , 75 ^s , 78 ^s , 83 ^s , 90 ^s	Zainutdinov et al., 1968
pachycarpa		
Sophora	11 ^s , 30 ^{sr} , 78 ^r , 84 ^r	Pislarasu and Badauta-Tocan, 1973;
prodani		Pislarasu and Dragut,1978

Table 3 Lupine alkaloids from the Sophora species

Sophora	$8^{s}, 9^{l}, 11^{stl}, 12^{stl}, 13^{f}, 14^{l}, 15^{stl},$	Izaddoost et al., 1976; Keller and
secundiflora	19 ^l , 20 ^{fst} , 23 ^l , 30 ^{stl} , 31 ^{fstr} , 32 ^l ,	Hatfield, 1979; Chavez and Sullivan,
-	35 ^{fst} , 36 st , 52 ^s , 53 ¹ , 54 ^{st1}	1984; Abdel-Baky and Makboul,
		1985; Murakoshi <i>et al.</i> , 1986;
		Makboul et al., 1987; Abdel-Baky,
		1989; Mohamed et al., 1993
Sophora	63 ^r , 76 ^r	Kojima et al., 1970; Cui and Zhang,
subprostrata		1986
	19.f	
Sophora	$11^{1001}, 12^{1}, 53^{1}, 63^{1}$	Reyes <i>et al.</i> , 1988
tetraptera		
Sophora	3 ^{alstes} , 4 ^{alstes} , 10 ^{alstes} , 11 ^{alstes} ,	Ohmiya et al., 1974: Komatsu et
tomentosa	12 ^{alstes} . 14 ^{alstes} . 15 ^{alstes} . 53 ^{alstes} .	<i>al.</i> , 1978: Murakoshi <i>et al.</i> , 1981b
	54 ^{alstes} , 63 ^{alstes} , 75 ^{alstes} , 83 ^{alstes} ,	····, ···, ···, ···,
	99 ^{alstes}	
Sophora	2 ¹ , 11 ^{rns} , 12 ^r , 15 ^r , 17 ^{rns} , 24 ^r ,	Dou et al., 1989; Xiao et al., 1996;
tonkinensis	25 ^r , 35 ^l , 53 ^l , 63 ^{rnsl} , 65 ^l , 66 ^l ,	1999; Song et al., 1999; Ding et al.,
	68 ^l , 69 ^{rlns} , 70 ^{rl} , 71 ^{rl} , 72 ^r , 74 ^r ,	2005; 2006b; Deng et al., 2006; Li
	75 ^{rns1} , 76 ^r , 78 ^{rl} , 80 ^{rl} , 83 ^{nsrl} ,	et al., 2008
	90 ^{ns} , 95 ^{nsrl} , 96 ^l , 100 ^r	
Sophora	2 ¹ , 5 ¹ , 11 ¹ , 12 ^s	Asres et al., 1986a; Koorbanally,
velutina		1999
Sophora	11 ^s , 36 ^s , 35 ^s , 63 ^{sfl} , 65 ^s , 67 ^{fl} ,	Zhu et al., 1993; Yan et al., 1996,
viciifolia	69 ^{sfl} , 75 ^{sfl} , 78 ^s , 81 ^s , 82 ^s , 83 ^{sfl} ,	Xiao <i>et al.</i> , 1998
	84 ^{sfl} , 85 ^s , 90 ^{fl}	

Key: Superscripts, a=aerial parts, b=bark, f=fruits, fl=flowers, l=leaves, r=roots, s=seeds, st=stalks, ste=stem, ns= not specified, where the compounds were isolated.

Table 4 Lupine alkaloids from Calpurnia species

Species	Compound	Reference(s)
Calpurnia	$8^{l}, 9^{l}, 38^{l}, 39^{nsl}, 40^{ns}, 41^{l},$	Radema et al., 1979; Vermin et al.,
aurea	$43^{\rm l}, 44^{\rm ns}, 46^{\rm lns}, 47^{\rm lns}, 48^{\rm l},$	1979; Kubo et al., 1984; Asres et al.,
	49 ¹ , 50 ¹ , 51 ¹	1986b; 1986c
Calpurnia	43 ^{ns}	Goosen, 1963
subdecandra		

Key:Superscripts, a=aerial parts, b=bark, f=fruits, fl=flowers, l=leaves, r=roots, s=seeds, st=stalks, ste=stem, ns= not specified, where the compounds were isolated.

1.4.3 Biosynthesis of quinolizidine alkaloids

The phytochemical studies on *Sophora velutina* and *Calpurnia aurea* afforded quinolizidine type alkaloids among other compounds. These alkaloids are made up of slightly varied biosynthetic pathways (van Wyk, 2003) but utilising L-lysine amino acid as the basic building block.

The first step in the biosynthesis of quinolizidine alkaloids is decarboxylation of L-lysine to cadaverine. This step is dependent on the coenzyme pyridoxal phosphate (PLP). The α -amine in L-lysine attacks the carbonyl group in PLP to yield an imine which on undergoing a Schiff hydrolysis gives rise to cadaverine (Scheme 2). This reaction takes place in the enzyme.

Scheme 2 The conversion of L-Lysine to cadaverine (Herbert, 1978; 1980)

The conversion of cadaverine to an aminoaldehyde is through oxidative deamination. This is done through diamine oxidase and oxygen with the concurrent formation of ammonia and hydrogen peroxide. Aminoaldehyde cyclises to form a cyclic amine (Δ^1 -piperideine) which tautomerises via the Δ^1 -piperidinium cation to the enamine (Dewick, 2006). The enamine and Δ^1 -piperidine form the basic units of bicyclic, tricyclic or tetracyclic alkaloids. In the biosynthesis of bicyclic alkaloids like (+)-lupinine (Scheme 3), the enamine and Δ^1 piperidinium cation couple with retention of stereochemistry to form an imine which is hydrolysed to an aldehyde followed by oxidative deamination and cyclisation by a Schiff base reaction, then by two reductive steps to yield (+)-lupinine (Dewick, 2006).

Scheme 3 Biosynthesis of lupinine (Dewick, 2006)

Seyferth *et al.* (1976) and Golebiewski and Spenser (1988) proposed that tetracyclic alkaloids require three Δ^1 -piperidine molecules. The arrangement of these three units determines whether a plant synthesises lupanine and sparteine (Scheme 4) or matrine alkaloids (Scheme 5). The cytisine pathway is envisaged to be a result of a loss of the outermost ring from a sparteine molecule followed by oxidation to a pyridone system. Further coupling, hydroxylation and esterification yields hydroxylated and esterified alkaloids (Leeper *et al.*, 1981).

Scheme 4 Biosynthesis of lupanine, sparteine and cytisine (Golebiewski and Spenser, 1988)

Scheme 5 Biosynthesis of matrine (Leeper *et al.*, 1981)

1.4.4 Biological activity of the quinolizidine alkaloids from Sophora and Calpurnia

For many years infectious disease have been treated traditionally with plants. Traditionally species of *Sophora* and *Calpurnia* have been used as a remedy for common ailments. It is therefore worth investigating which of the bioactive compounds are responsible for the observed bioactivity. Ethnopharmacological studies to identify antiviral agents from plant material are extensively carried out. It has also been established that compounds with varied structures show similar activities (Ma *et al.*, 2002).

It is also interesting to note that **17** lupine alkaloids (Table 5) have been bioassayed and have shown good biological activity. Though not all the studies were based on an ethnobotanical approach in order to find bioactive compounds, some of the compounds have been found to be active against a variety of ailments. Matrine tops the list of these compounds with a variety of pharmacological activities. Tyski *et al.* (1988) found that quinolizidine alkaloids are more active bacteriostatic agents than the normal line antibiotics.

The tests done on these compounds have revealed that ammodendrine (**99**) is the only bycyclic alkaloid that has been reported to have biological activity while the bioactive tricyclic alkaloids are cytisine (**11**), *N*-methylcytisine (**12**) and lehmannine (**17**). In the tetracyclic compounds there are nine matrine types and eight lupanine and sparteine types of alkaloids (Table 5).

Compound	Biological activity	Reference
Allomatrine (74)	Cardiotonic, antiviral	Kimura et al., 1989; Ma et al., 2002
Aloperine (59)	Antifungal, nematicidal	Zhao, 1999; Yu et al., 2006
Ammodendrine (99)	Teratogenic-crooked calf	Keeler and Panter, 1989
Anagyrine (54)	Teratogenic-crooked calf, antiviral, nematicidal-	Keeler, 1976; Keeler and Panter, 1989;
	antinematode and anthelmintic activity, toxicity- congenital,	Ma et al., 2002
	malformation in calves	
Cytisine (11)	Allelopathy-inhibit seed germination and radicle growth,	Wink and Twardouwski, 1992; Ma et al.,
	phe-tRNA binding inhibition and inhibition of <i>in vitro</i> wheat	2002
	germ translation (wheat germ), nematicidal-antinematode	
	and antihelmintic activity, translation in vitro, toxicity-	
	teratogenic in chicks and rabbits, antifeeding-mollusc	
	deterance, antiviral.	
<i>N</i> -Methylcytisine (12)	Hypoglycemic, nematicidal-antinematode and anthelmintic	Ma et al., 2002; Mohamed et al., 1993
	activity, antinematode and anthelmintic activity- motility	
	(spastical), antiviral.	
Lupanine (35)	Allelopathy- inhibit seed germination, antibacterial-growth	Tyski et al., 1988; Wink and
	inhibition, species-specific inhibitory effect, toxicity- in vitro	Twardowski, 1992; Harborne et al., 1998
	inhibition of wheat germ translation, antifeedant, growth	
	inhibitor, antifungal activity –conidia germination inhibition,	
	antifeeding-mollusc deterance, antibacterial- airborne	
	bacteria.	
13α-Hydroxylupanine (38)	Antibacterial-growth inhibition, species-specific inhibitory	Tyski et al., 1988; Wink and
	effect, inhibition of <i>in vitro</i> wheat germ translation (wheat	Twardowski, 1992; Harborne et al., 1998
	germ), anti-arryhythmic, hypotensive	

Table 5 Compounds isolated from Sophora and Calpurnia species and their bioactivity

Compound	Biological activity	Reference
13-Tigloyloxylupanine (42)	Inhibition of phe-tRNA binding and inhibition of <i>in vitro</i> wheat germ translation (wheat germ), allelopathy- inhibit seed germination, antifungal activity –conidia germination inhibition, antibacterial- growth inhibition	Wink and Twardowski, 1992
2,3-Dehydro-O-(2-pyrrolyl- carbonylvirgiline (51)	Molluscicidal activity	Kubo <i>et al.</i> , 1984
Matrine (63)	Nematocidal, antipyretic, contractile response of fundis strip, cardiotonic, antinematode and anthelmintic activity-motility (paralytical), glutamate inhibition, antitumor, ehrlich ascites tumor, sarcoma-180 in mouse, antiarrhythmic, anti- inflammatory, antifeedant, anti-cachectic agents, anti-IBD agent, antifibrotic, analgesic, anti-diarrhea, immunosuppressive effects, antifungal, antioxidant activity, anti-hepatitis B virus (HBV), antiviral- liver fibrosis, antiviral	Kojima <i>et al.</i> , 1970; Yamazaki and Arai, 1985; Cho <i>et al.</i> , 1986; Kimura <i>et al.</i> , 1989; Hu <i>et al.</i> , 1996; 2005; Xin and Ma, 1998; Matsuda <i>et al.</i> , 1991; Ma <i>et al.</i> , 2002; Long <i>et al.</i> , 2004; Xu <i>et al.</i> , 2004, Cheng <i>et al.</i> , 2006; Ding <i>et al.</i> , 2006a,b; Yang <i>et al.</i> , 2006; Jiang <i>et al.</i> , 2007; Liu <i>et al.</i> , 2007; Ma <i>et al.</i> , 2007; Zhang <i>et al.</i> , 2008; Ao <i>et al.</i> , 2009
Isomatrine (73)	Antiviral	Ma et al., 2002
Oxymatrine (75)	Glutamate inhibition, antiviral, antitumor, sarcoma-180 in mouse, anticancer, anti-hepatitis B virus (HBV), anti- inflammatory, antioxidant activity, antifungal, liver injury, antihepatitis C virus, hepatocytes and antihepatic fibrosis	Kojima <i>et al.</i> , 1970; Ishida and Shinozaki, 1984; Liu <i>et al.</i> , 1994; 2003; Wang <i>et al.</i> , 1995; Chen <i>et al.</i> , 2001; Dong <i>et al.</i> , 2002; Ma <i>et al.</i> , 2002; Xiang <i>et al.</i> , 2002; Ding <i>et al.</i> , 2006a,b; Yang <i>et al.</i> , 2006; Ao <i>et al.</i> , 2009
Sophocarpine (78)	Nematocidal, anti-hepatitis B virus (HBV), antitussive in guinea pigs, anticancer, anti-cachectic agents, antiviral	Li <i>et al.</i> , 1980; Wang <i>et al.</i> , 1995; Ma <i>et al.</i> , 2002; Ding <i>et al.</i> , 2006a,b; Zhang <i>et al.</i> , 2008
Oxysophocarpine (83)	Anticancer, anti-hepatitis B virus (HBV), antiviral	Wang <i>et al.</i> , 1995; Ma <i>et al.</i> , 2002; Ding <i>et al.</i> , 2006a,b
Sophoramine (90)	Nematocidal, cardiotonic	Kimura <i>et al.</i> , 1989
Sophoranol (95)	Antiviral	Ma et al., 2002

Compound	Biological activity	Reference
Sophoridine (84)	Cardiotonic, antiviral	Kimura et al., 1989; Ma et al., 2002;
		Zhang <i>et al.</i> , 2006
5-Episophocarpine (79)	Anti-hepatitis B virus	Ding <i>et al.</i> , 2006a
Sparteine (30)	Allelopathy-inhibit seed germination, allelopathy, antiviral-	Wink, 1987; Tyski et al., 1988; Wink and
	viral multiplication, inhibition of <i>in vitro</i> translation (wheat	Twardowski, 1992; Harborne et al., 1998
	germ), antimicrobial-growth inhibition, antibacterial-growth	
	inhibition, antimicrobial activity-growth inhibition,	
	antifungal activity –conidia germination inhibition,	
	antifeeding-mollusc deterance, repolarization of neurons	
	exhi, pancreatic β -cell function, antibacterial- airborne	
	bacteria, inhibited charging reaction when ATP & RNA	
	used, species-specific inhibitory effect, oxytoxic agent,	
	adiurectic, hypoglycaemic	
10-oxosparteine (33)	Insecticidal	Harborne et al., 1998
17-oxosparteine (34)	phe-tRNA binding inhibition and inhibition of <i>in vitro</i> wheat	Wink and Twardowski, 1992
	germ translation (wheat germ)	

Cyclooxygenase (COX), Pathogenic fungi, Fusarium oxysporum (FO), Valsa Pini (VP), Cladosporum oxysporum (CO), Sphaeropsis sapinea (SS), Marssonina brunnee (MB).

1.5 Aims and objectives of the study

The main aim of the study was to phytochemically investigate two South African species *Sophora velutina* and *Calpurnia aurea* both belonging to the Fabaceae family to investigate whether their use in traditional medicine was justified and whether or not they could provide lead compounds to be used as pharmaceuticals.

The research objectives were;

- To extract and isolate the secondary metabolites present in the fruits and pods, stem and stem bark and leaves of *Sophora velutina* and the leaves, stem and stem bark of *Calpurnia aurea*,
- to identify and characterise the isolated compounds using a range of spectroscopic and other chemical techniques
- to test the compounds in suitable bioassays as determined by the types of compounds that were isolated,
- and to publish the findings of the study in peer reviewed journals.

1.6 References

- Abbott, B.J., Hartwell, J.L., Leiter, J., Perdue Jr, R.E., 1966a. Screening data from the Cancer Chemotherapy National Service Center screening laboratories. XXXVIII. Plant extracts. Cancer Research. 26, 1461-1612.
- Abbott, B.J., Leiter, J., Hartwell, J.L., Caldwell, M. E., Schepartz, S.A., 1966b. Screening data from the Cancer Chemotherapy National Service Center screening laboratories. XXXIII. Plant extracts. Cancer Research. 26, 587-743.
- Abbott, B.J., Leiter, J., Hartwell, J.L., Price, J.R., Perdue Jr., R.E., Schepartz, S.A., 1966c. Screening data from the Cancer Chemotherapy National Service Center screening laboratories. XXXI. Plant extracts. Cancer Research. 26, 207-366.
- Abbott, B.J., Hartwell, J.L., Leiter, J., Perdue Jr., R.E., Schepartz, S.A., 1966d. Screening data from the Cancer Chemotherapy National Service Center screening laboratories. XXXVII. Plant extracts. Cancer Research. 26, 1302-1453.
- Abbott, B.J., Hartwell, J.L., Iltis, H.H., Kutchen, S.M., Leiter, J., Terdue Jr., R.E., Schepartz, S.A., 1966e. Screening data from the Cancer Chemotherapy National Service Center screening laboratories. XXXVI. Plant extracts. Cancer Research. 26, 1254.
- Abdel-Baky, A.M., 1989. Lupine alkaloids from the seeds of *Sophora secundiflora*. Bulletin of the Faculty of Pharmacy, Assiut University. 18, 63-68.
- Abdel-Baky, A.M., Makboul, M.A., 1985. Sparteine and 13-hydroxysparteine from the leaves of *Sophora secundiflora* (Orteg.) Lag. Bulletin of Pharmaceutical Sciences. 8, 99-108.
- Ajaz, M.S., 1993. Phytochemicial studies of *Sophora griffithii*, *Petchia ceylanica* and *Zizyphus lotus* and synthesis of Asarone analogues. PhD thesis, University of Karachi.
- Ao, C., Araki, N., Tawata, S., 2009. Cyclooxygenase inhibitory compounds with antioxidant activities from *Sophora subprostrata*. Asian Journal of Chemistry. 21, 745-754.

- Asres, K., Gibbons, W.A., Phillipson, J.D., Mascagni, P., 1986a. The alkaloids of *Sophora velutina*. Journal of Natural Products. 49, 117-121.
- Asres K., Phillipson J.D. Mascagni P., 1986b. Two novel minor alkaloids from Ethiopian *Calpurnia aurea* Ssp. *aurea*. Planta Medica. 52, 302-304.
- Asres, K., Gibbons, W.A., Phillipson, J.D., Mascagni, P., 1986c. Alkaloids of Ethiopian *Calpurnia aurea* subsp. *aurea*. Phytochemistry. 25, 1443-1447.
- Atta-ur-Rahman., Choudhary, M.I., Parvez, K., Ahmed, A., Akhtar, F., Nur-e-Alam, M., Hassan, N.M., 2000. Quinolizidine alkaloids from *Sophora alopecuroides*. Journal of Natural Products. 63, 190-192.
- Atta-ur-Rahman., Pervin, A., Feroz, M., Perveen, S., Choudhary, M.I., Hasan, N., 1991a. Isolation and structural elucidation of griffithine by 1D and 2D NMR techniques. Magnetic Resonance in Chemistry. 29, 1077-1083.
- Atta-ur-Rahman., Pervin, A., Choudhary, M. I., Hasan, N., Sener, B., 1991b. Sophazrine- a novel quinolizidine alkaloid from *Sophora griffithii*. Journal of Natural Products. 54, 929-935.
- Atta-ur-Rahman., Pervin, A., Perveen, S., Nasir, H., Hasan, N., 1991c. Two lupine alkaloids from Sophora griffithii. Phytochemistry. 30, 1001-1003.
- Bohlmann, F., Rahtz, D., Arndt, C., 1958. Lupine alkaloids. XI. The alkaloids from *Sophora flavescens*. Chemische Berichte. 91, 2189-2193.
- Briggs, L.H., Cambie, R.C., Montgomery, R.K., 1975. New Zealand phytochemical survey. 13. Constituents of the wood and bark of *Sophora microphylla* and *Sophora tetraptera*. New Zealand Journal of Science. 18, 555-558.
- Briggs, L.H., Russell, W.E., 1942. Sophora alkaloids. III. The alkaloids of seeds of *S. chrysophylla*. Journal of the Chemical Society, 507-509.

- Briggs, L.H., Cambie, R.C., Holdgate, R.H., Seelye, R.N., 1960. Sophora alkaloids. VI. The alkaloids of the bark and flowers of *Sophora microphylla* and the isolation of diosmin from the flowers. Journal of the Chemical Society. 1955-1956.
- Chavez, P.I., Sullivan, G., 1984. A qualitative and quantitative comparison of the quinolizidine alkaloids of the fascinated and normal stems of *Sophora secundiflora*. Journal of Natural Products. 47, 735-736.
- Chen, Y., Li, J., Zeng, M., Lu, L., Qu, D., Mao, Y., Fan, Z., Hua, J., 2001. The inhibitory effect of oxymatrine on hepatitis C virus *in vitro*. Zhonghua Ganzangbing Zazhi. 9, 12–14.
- Chen, Y., Jiang, P.C., 1994. A brief survey on studies of *Sophora subprostrata*. Guangxi Medicine. 16, 499–501.
- Cheng, H., Xia, B., Zhang, L., Zhou, F., Zhang, Y-X., Ye, M., Hu, Z-G., Li, J., Li, J., Wang, Z-L., Li, C., Guo, Q-S., 2006. Matrine improves 2,4,6-trinitrobenzene sulfonic acid-induced colitis in mice. Pharmacological Research. 53, 202–208.
- Chi, Y.S., Jong, H.G., Son, K.H., Chang, H.W., Kang, S.S., Kim, H.P., 2001. Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: Cyclooxygenases and lipoxygenases. Biochemical Pharmacology. 62, 1185-1191.
- Chiang, S., 1977. New medical college, dictionary of Chinese crude drugs, Shanghai scientific technologic publisher, Shanghai, pp 181, 1283.
- Cho, C.H., Chuang, C.Y., Chen, C.F., 1986. Study of the antipyretic activity of matrine. A lupin alkaloid isolated from *Sophora subprostrata*. Planta Medica. 52, 343-345.
- Choi, K-M., Gang, J., Yun, J., 2008. *Anti-toxoplasma gondii* RH strain activity of herbal extracts used in traditional medicine. International Journal of Antimicrobial Agents. 32, 360–362.
- Cui, J., Zhang, G., 1986. Analysis of alkaloid constituents in four Sophora species. Zhongyao Tongbao. 11, 102-103.

- Deng, Y., Sun, L., Zhang, W., Xu, K., Li, F., Tan, J., Cao, J., Tan, G., 2006. Studies on cytotoxic constituents from *Sophora tonkinensis*. Tianran Chanwu Yanjiu Yu Kaifa. 18, 408-410.
- Deng, Y-H., Xu, K-P., Zhou, Y-J., Li, F-S., Zeng, G-Y., Tan, G-S., 2007. A new flavonol from *Sophora tonkinensis*. Journal of Asian Natural Products Research. 9, 45–48.
- Dewick, P.M., 2006. Essentials of organic chemistry: for students of pharmacy, medicinal chemistry and biological chemistry. John Wiley and Sons, Inc., Hoboken, New Jersey.
- Dictionary of Natural Products, version 21.2; Taylor and Francis Group, 2013; accessed online at http://dnp.chemnetbase.com (Date accessed 21st September 2012).
- Ding, P-L., Huang, H., Zhou, P., Chen, D-F., 2006b. Quinolizidine alkaloids with anti-HBV activity from *Sophora tonkinensis*. Planta Medica. 72, 854-856.
- Ding, P-L., Liao, Z-X., Huang, H., Zhoub, P., Chena, D-F., 2006a. (+)-12αHydroxysophocarpine, a new quinolizidine alkaloid and related anti-HBV alkaloids from *Sophora flavescens*. Bioorganic and Medicinal Chemistry Letters. 16, 1231–1235.
- Ding, P-I., Yu, Y-Q., Chen, D-F., 2005. Determination of quinolizidine alkaloids in *Sophora tonkinensis* by HPCE. Phytochemical Analysis. 16, 257-263.
- Dong, Y., Xi, H., Yu, Y., Wang, Q., Jiang, K., Li, L., 2002. Effects of oxymatrine on the serum levels of T helper cell 1 and 2 cytokines and the expression of the S gene in hepatitis B virus S gene transgenic mice: a study on the anti-hepatitis B virus mechanism of oxymatrine. Journal of Gastroenterology and Hepatology. 17, 1299–1306.
- Dou, J.H., Li, J.S., Yan, W.M., 1989. Studies on the alkaloids of radix *Sophora tonkinensis*. Zhongguo Zhongyao Zazhi. 17, 296-298.
- Farnsworth, N.R., 1968. Hallucinogenic plants. Various chemical substances are known to be the active hallucinogenic principles in many plants. Science. 162, 1086-1092.
- Germishuizen, G., 2000. Polygonaceae, in: Leistner, O.A. (Ed.), Seed Plants of Southern Africa. Strelitzia. 10, 451-453. National Botanical Institute, Pretoria.

- Golebiewski, W.M., Spenser, I.N., 1988. Biosynthesis of the lupine alkaloids. II. Sparteine and lupanine. Canadian Journal of Chemistry. 66, 1734-48.
- Goosen, A., 1963. The alkaloids of the Leguminosae. I. The structure of calpurnine from *Calpurnia subdecandra*. Journal of the Chemical Society. 3067.
- Harborne, J.B., Baxter, H., Moss, G.P., 1998. Phytochemical dictionary. A handbook of bioactive compounds from plants, 2nd edition. Taylor and Francis. UK.
- Herbert, R.B., 1978. In: Barton, D. H. R., Ollis, W. D. (Eds.), Comprehensive organic chemistry, vol. 5. Pergamon, Oxford, pp. 1045.
- Herbert, R.B., 1980. In: Coffey, S. (Ed.), Rodd's chemistry of carbon compounds, 2nd edition, vol. IV, Part L. Elsevier, Amsterdam, pp. 291.
- Hu, M.J., Zeng, H., Wu, Y.L., Zhang, Y.P., Zhang, S., Qiao, M.M., Fu, H., 2005. Synergistic effects of matrine and 5-fluorouracil on tumor growth of the implanted gastric cancer in nude mice. Chinese Journal of Digestive Diseases. 6, 68–71.
- Hu, Z.L., Zhang, J.P., Qian, D.H., Lin, W., Xie, W.F., Zhang, X.R., 1996. Effect of matrine on mouse splenocyte proliferation and release of interleukin-1 and -6 from peritoneal macrophages *in vitro*. Acta Pharmacologica Sinica. 17, 259–261.
- Huang, K.C., 1993. The pharmacology of chinese herbs. CRC Press Inc., Boca Raton, FL., pp. 63-66.
- ILDIS, 2001. Legumes of the world. International legume database and information service. The University of Reading, UK.
- Ishida, M., Shinozaki, H., 1984. Glutamate inhibitory action of matrine at the grayfish neuromascular junction. British Journal of Pharmacology. 82, 523-531.
- Izaddoost, M., Harris, B., Gracy, R.W., 1976. Structure and toxicity of alkaloids and amino acids of *Sophora secundiflora*. Journal of Pharmaceutical Sciences. 62, 352-4.

- Jeong, G-S., Li, B., Lee, D-S., Byun, E., An, R-B., Pae, H-O., Chung, H-T., Youn, K-H., Kim, Y-C., (2008). Lavandulyl flavanones from *Sophora flavescens* protect mouse hippocampal cells against glutamate-induced neurotoxicity *via* the induction of heme oxygenase-1. Biological Pharmaceutical Bulletin. 31, 1964-1967.
- Jiang, H., Hou, C. H., Zhang, S., Xie, H., Zhou, W., Jin, Q., Cheng, X., Qian, R., Zhang, X., 2007. Matrine upregulates the cell cycle protein E2F-1 and triggers apoptosis via the mitochondrial pathway in K562 cells. European Journal of Pharmacology. 559, 98–108.
- Jung, H.A., Jeong, D-M., Chung, H.Y., Lim, H.A., Kim, J.Y., Yoon, N.Y., Choi, J.S., 2008. Reevaluation of the antioxidant prenylated flavonoids from the roots of *Sophora flavescens*. Biological Pharmaceutical Bulletin. 31, 908-915.
- Kadooka, M.M., Chang, M.Y., Fukami, H., Scheuer, P.J., Clardy, J., Solheim, B.A., Springer, J.P., 1976. Hawaiian plant studies. XVII. Mamanine and pohakuline, two unprecedented quinolizidine alkaloids from *Sophora chrysophylla*. Tetrahedron. 32, 919-924.
- Kamaev, F.G., Kuchkarov, S., Kushmuradov, F.K., Aslanov, K.A., 1981. NMR study of the structure of the alkaloid sophorine from *Sophora alopecuroides*. Khimiya Prirodnykh Soedinenii. 5, 604-608.
- Kang, T.H., Jeong, S.J., Ko, W.G., Kim, N.Y., Lee, B.H., Inagaki, M., Miyamoto, T., Higuchi,R., Kim, Y.C., 2000. Cytotoxic lavandulyl flavanones from *Sophora flavescens*. Journal of Natural Products. 63, 680-681.
- Karakozova, S.A., Abdusalamov, B.A., Khazanovich, R.L., 1975. Alkaloids from the seeds and pericarp of *Sophora griffithii*. Khimiya Prirodnykh Soedinenii. 5, 664-665.
- Keeler, R.F., 1976. Lupin alkaloids from teratogenic and noteratogenic lupins.III, Identification of anagyrine as the probable teratogen by feeding trials. Journal of Toxicology and Environmental Health. 1, 887-898.

- Keeler, R.F., Panter, K.E., 1989. Piperidine alkaloid composition and relation to crooked calf disease-inducing potential of *Lupinus formosus*. Teratology. 40, 423-432.
- Keller, W.J., Hatfield, M., 1979. 11-Allycytisine and other minor alkaloids from unripe *Sophora secundiflora* fruits. Phytochemistry. 18, 2068-2069.
- Kim, H-Y., Shin, H-S., Park, H., Kim, Y-C., Yun Y. G., Park, S., Shin, H-J., Kim, K., 2008a. In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. Journal of Clinical Virology. 41, 122–128.
- Kim, I.G., Kang, S.C., Kim, K.C., Choung, E.S., Zee, O.P., 2008b. Screening of estrogenic and antiestrogenic activities from medicinal plants. Environmental Toxicology and Pharmacology. 25, 75–82.
- Kim, J.S., Han, S.J., Byun, J.H., Xu, Y.N., Yoo, S.W., Kang, S.S., Son, K.H., Chang, H.W., Kim, H.P., 2001. Minor constituents from the roots of *Sophora flavescens*. Natural Product Sciences. 7, 5-8.
- Kimura, M., Kimura, I., Chui, L.H., Okuda, S., 1989. Positive inotropic action and conformation difference of lupine alkaloids in isolated cardiac muscle of guinea pig and bullfrog. Phytotherapy Research. 3, 101-105.
- Kojima, R., Fukushima, S., Ueno, A., Saiki, Y., 1970. Antitumor activity of leguminosae plant constituents. I. Antitumor activity of constituents of *Sophora subprostrata*. Chemical and Pharmaceutical Bulletin. 18, 2555-2563.
- Komatsu, M., Yokoe, I., Shirataki, Y., 1978. Studies on the constituents of *Sophora* species. XIII. Constituents of the aerial parts of *Sophora tomentosa* L. Chemical and Pharmaceutical Bulletin. 26, 3863-3870.
- Koorbanally, N.A., 1999. Extractives from the Amaryllidacea and the Fabaceae, M.Sc dissertation, University of Natal (now University of KwaZulu-Natal), South Africa.

- Krishna, P.M., Rao, K.N.V., Sandhya, S., Banji, D., 2012. A review on phytochemical, ethnomedical and pharmacological studies on the genus *Sophora*, Fabaceae. Brazilian Journal of Pharmacognosy. 22, 1145-1154.
- Kubo, I., Matsumoto, T., Kozuka, M., Chapya, A., Naoki, H., 1984. Quinolizine alkaloids from the African medicinal plant *Calpurnia aurea*: molluscicidal activity and structural study by 2D-NMR. Agricultural and Biological Chemistry. 48, 2839-2841.
- Kuchkarov, S., Kushmuradov, Y.K., Aslanov, K.A., Sadykov, A.S., 1978. Novel quinolizidine alkaloids of *Sophora alopecuroides* L. *Tezisy Dokl. - Sov.-Indiiskii Simp*. Khimiya Prirodnykh Soedineni. 5, 44.
- Kuroyanagi, M., Arakawa, T., Hirayama, Y., Hayashi, T., 1999. Antibacterial and antiandrogen flavonoids from *Sophora flavescens*. Journal of Natural Products. 62, 1595-1599.
- Lee, S.W., Lee, H.S., Nam, J.Y., Kwon, O.E., Baek, J.H., Chang, J.S., Rho, M.C., Kim, Y.K., 2005. Kurarinone isolated from *Sophora flavescens* Ait inhibited MCP-1-induced chemotaxis. Journal of Ethnopharmacology. 97, 515–519.
- Lee, S.J., 1966. Korean Folk Medicine, Publishing Center of Seoul National University, Seoul, pp 84.
- Leeper, F.J., Grue-Sorensen, G., Spenser, I.D., 1981. Biosynthesis of the quinolizidine alkaloids. Incorporation of Δ^1 -piperideine into matrine. Canadian Journal of Chemistry. 59, 106-115.
- Li, X-N., Lu, Z-Q., Qin, S., Yan, H-X., Yang, M., Guan, S-H., Liu, X., Hua, H-M., Wu, L-J., Guo, D-A., 2008. Tonkinesines A and B, two novel alkaloids from *Sophora tonkinensis*. Tetradron Letters. 49, 3797-3800.
- Li, Y-Q., Mao, T-F., Yu, S-H., Chao, M-L., Cheng, Y., Wang, C-H., 1980. Pharmacological effects of kugancao (*Sophora alopecuroides*) and sophocarpine. Zhongcaoyao. 11, 555-557.
- Liu, B., Li, J., Yuan, Y., 2001. Isolation of alkaloids and structure elucidation of lehmannine from seeds of *Sophora alopecuroides*. Zhongcaoyao. 32, 293-296.

- Liu, J., Zhu, M., Shi, R., Yang, M., 2003. *Radix sophorae flavescentis* for chronic hepatitis B: a systematic review of randomized trials. American Journal of Chinese Medicine. 31, 337–354.
- Liu, J., Liu, Y., Klaassen, C.D., 1994. The effect of Chinese hepatoprotective medicines on experimental liver injury in mice. Journal of Ethnopharmacology. 42, 183–191.
- Liu, J-Y., Hu, J-H., Zhu, Q-G., Li, F-Q., Wang, J., Sun, H-J., 2007. Effect of matrine on the expression of substance P receptor and inflammatory cytokines production in human skin keratinocytes and fibroblasts. International Immunopharmacology. 7, 816–823.
- Liu, T-X., Xu, H-H., Luo, W-C., 2006. Opportunities and potentials of botanical extracts and products for management of insect pests in cruciferous vegetables, in: Pelletier, S.W. (Ed.), Advances in phytomedicine, Naturally occurring bioactive compounds, Vol. 3, Elsevier Science, Oxford, pp. 171-191.
- Long, Y., Lin, X.T., Zeng, K.L., Zhang, L., 2004. Efficacy of intramuscular matrine in the treatment of chronic hepatitis B. Hepatobiliary and Pancreatic Diseases International. 3, 69-72.
- Luo, R., Li, Z., Qian, G., Lu, J., Fu, C., 2009. Determination of Sophoricoside in rat plasma by HPLC and its application to pharmacokinetic studies. Yakugaku Zasshi. 129, 1545-1549.
- Ma, S.C., Du, J., But, P.P.H., Deng, X.L., Zhang, Y.W., Ooi, V.E.C., Xu, H.X., Lee, S.H.S., Lee, S.F., 2002. Antiviral Chinese medicinal herbs against respiratory syncytial virus. Journal of Ethnopharmacology. 79, 205-211.
- Ma, X. M., Bao, G.S.H., Wan, J.M., Liao, D.J., Yin, S.H.F., Meng, X.Q., Zhou, G.K., Lu, X.M.,
 Li, H.Y., 2007. Therapeutic effects of *Sophora moorcroftiana* alkaloids in combination with albendazole in mice experimentally infected with protoscolices of *Echinococcus granulosus*.
 Brazilian Journal of Medical and Biological Research. 40, 1403-1408.

- Makboul, A.M., Abdel-Baky, A.M., Bishay, D.W., 1987. Argentine, lupinine, cytosine and *N*-methylcytisine alkaloids from *Sophora secundiflora* cultivated in Egypt. Bulletin of the Faculty of Pharmacy, Assiut University. 10, 47-54.
- Matsuda, K., Yamada, K., Kimura, M., Hamada, M., 1991. Nematicidal activity of matrine and its derivatives against pine wood nematodes. Journal of Agricultural and Food Chemistry. 39, 189-191.
- Mohamed, M.H., Kamel, M.S., El-Moghazy, S.A., Murakoshi, I., 1993. The hypoglycemic effect of some lupin alkaloids. Bulletin of the Faculty of Pharmacy (Cairo University). 31, 107-111.
- Monakhova, T.E., Proskurnina, N.F., Tolkachev, O.N., Kabanov, V.S., Perel'son, M.E., 1973. Alkaloids of *Sophora alopecuroides*. 3α-Hydroxysophoridine. Khimiya Prirodnykh Soedinenii. 9, 59-64.
- Monakhova, T.E., Tolkachev, O.N., Kabanov, V.S., Perel'son, M.E., Proskurnina, N.F., 1974a. Alkaloids of *Sophora alopecuroides*, neosophoramine, a new isomer of sophoramine. Khimiya Prirodnykh Soedinenii. 4, 472-476.
- Monakhova, T.E., Tolkachev, O.N., Kabanov, V.S., Proskurina, N.F., 1974b. Alkaloids of *Sophora alopecuroides*. Khimiya Prirodnykh Soedinenii. 10, 259-260.
- Morinaga, K., Ueno, A., Fukushima, S., Namikoshi, M., Iitaka, Y., Okuda, S., 1978. Studies on lupin alkaloids. VIII. A new stereoisomer of sophocarpine. Chemical and Pharmaceutical Bulletin, 26, 2483-2488.
- Murakoshi, I., Ito, M., Haginiwa, J., Ohmiya, S., Otomasu, H., Hirano, R.T., 1984. Lupine alkaloids from *Sophora chrysophylla*. Phytochemistry. 23, 887-981.
- Murakoshi, I., Kidoguchi, E., Haginiwa, J., Ohmiya, S., Higashiyama, K., Otomasu, H., 1982. Isokuraramine and (-)-7,11-dehydromatrine, lupine alkaloids from flowers of *Sophora flavescens*. Phytochemistry. 21, 2379-2384.

- Murakoshi, I., Kidoguchi, E., Haginiwa, J., Ohmiya, S., Higashiyama, K., Otomasu, H., 1981a.
 (+)-Kuraramine, a possible metabolite of (-)-*N*-methylcytisine in flowers of *Sophora flavescens*. Phytochemistry. 20, 1407-1409.
- Murakoshi, I., Kidoguchi, E., Nakamuru, M., Haniwa, J., Ohmiya, S., Higashiyama, K., Otomasu,H., 1981b. (-)-Epilamprolobinne and its N-oxide, lupin alkaloids from *Sophora tomentosa*.Phytochemistry. 20, 1725-1730.
- Murakoshi, I., Kubo, H., Ikram, M., Israr, M., Shafi, N., Ohmiya, S., Otomasu, H., 1986. (+)-11-Oxocystisine, a lupine alkaloid from the leaves of *Sophora secundiflora*. Phytochemistry. 25, 2000-2002.
- Negrete, R., Backhouse, N., Cassels, B.K., 1982a. Leaf alkaloids of *Sophora macrocarpa*. Journal of Natural Products. 45, 652.
- Negrete, R.E., Backhouse, N.C., Cassels, B.K., 1982b. Alkaloids from the leaves of the *Sophora macrocarpa*. Boletin de la Sociedad Chilena de Química. 27, 263-265.
- Negrete, R., Cassels, B.K., Eckhardt, G., 1983 (+)-9α-Hydroxymatrine from *Sophora macrocarpa*. Phytochemistry. 22, 2069-2072.
- Nkonki, T., Glen, H.F., Swelankomo, N., Jordaan, M., Germishuizen, G., Moteetee, A., 2003. Fabaceae, in: Germishuizen, G., Meyer, N.L. (Eds.), Plants of southern Africa: An annotated checklist. Strelitzia. 14, 472-559. National Botanical Institute, Pretoria.
- Ohmiya, S., Higashiyama, K., Otomasu, H., Haginiwa, J., Murakoshi, I., 1979a. The structure of tsukushinamine, a new type of lupin alkaloid in *Sophora franchetiana*. Chemical and Pharmaceutical Bulletin. 27, 1055-1057.
- Ohmiya, S., Higashiyama, K., Otomasu, H., Haginiwa, J., Murakoshi, I., 1979b. The cage-type lupine alkaloids from *Sophora franchetiana* Dunn. Structures of tsukushinamine and its isomers. Koen Yoshishu Tennen Yuki Kagobutsu Toronkai. 22, 525-531.

- Ohmiya, S., Higashiyama, K., Otomasu, H., Haginiwa, J., Murakoshi, I., 1981. Two cage-type lupin alkaloids from *Sophora franchetiana*. Phytochemistry. 20, 1997-2001.
- Ohmiya, S., Otomasu, H., Murakoshi, I., Haginiwa, J., 1974. N-Acetylcytisine from *Sophora tomentosa*. Phytochemistry. 13, 1016.
- Okuda, S., Murakoshi, I., Kamata, H., Kashida, Y., Haginiwa, J., Tsuda, K., 1965. Lupine alkaloids. I. Minor alkaloids of Japanese Sophora flavescens. Chemical and Pharmaceutical Bulletin. 13, 482-487.
- Perry, L.M., 1980. Medicinal plants of East and Southeast Asia, MIT press, Cambridge, Massachusetts, London, pp. 226-227.
- Perry L.M., Metzger J., 1980. Medicinal plants of east and southeast Asia: Attributed properties and uses, MIT Press, Cambridge, Massachusetts, London pp. 226.
- Pislarasu, N., Badauta-Tocan, A., 1973. Alkaloid contents of *Sophora prodani*. Identification and isolation of sparteine. Farmacia. 21, 693-698.
- Pislarasu, N., Dragut, E., 1978. Study on the alkaloids content of the *Sophora prodani* Anders species. Farmacia. 26, 121-126.
- Plugge, P. C., 1895. Matrine, the alkaloid of *Sophora angustifolia*. Archiv der Pharmazie. 233, 441-443.
- Polhill R. M., 1994. Classification of the Leguminosae, in: Bisby, F.A., Buckingham, J., Harborne, J. B. (Eds.), Phytochemical dictionary of leguminosae, XXXV-LVII. Chapman and Hall, New York.
- Pongboonrod, S., 1950. Medicinal Plants in Thailand, 1st edition. Kasembunakit Press, Bangkok, pp. 24.
- Primukhamedov, I., Aslanov, K.A., Sadykov, A.S., 1969. Content of alkaloids in various *Sophora griffithii* species. Rastitel'nye Resursy. 5, 572-575.

- Primukhamedov, I., Aslanov, K.A., Sadykov, A.S., 1972. Alkaloids from the roots of *Sophora griffithii*. Khimiya Prirodnykh Soedinenii. 3, 398-399.
- Radema, M.H., van Eijk, J.L., Vermin, W., de Kok, A.J., Romers, C., 1979. Alkaloids of South African samples of *Calpurnia aurea* subsp. *sylvatica*. Phytochemistry. 18, 2063-2064.
- Rai, M., Carpinella, M.C., 2006. Naturally Occuring Bioactive Compounds Vol. 3. Advances in Phytomedicine, Elsevier Science and Technology, Netherlands.
- Reyes, A., Miranda, N., Martinez, R., 1988. Constituents of *Sophora tetraptera. sensu Reiche*. Revista Latinoamericana de Quimica. 19, 32.
- Saito, K., Arai, N., Sekine, T., Ohmiya, S., Kubo, H., Otomasu, H., Murakoshi, I., 1990. (-)-5α-Hydroxysophocarpine, a new lupine alkaloid from the seeds of *Sophora flavescens* var. *angustifolia*. Planta Medica, 56, 487-488.
- Sakamoto, S., Kuroyanagi, M., Ueno, A., Sekita, S., 1992. Triterpenoid saponins from Sophora subprostrata. Phytochemistry. 31, 1339-1342.
- Sato, S., Takeo, J., Aoyama, C., Kawahara, H., 2007. Na⁺-glucose cotransporter (SGLT) inhibitory flavonoids from the roots of *Sophora flavescens*. Bioorganic and Medicinal Chemistry. 15, 3445–3449.
- Schultes, R.E., 1969. Hallucinogens of plant origin. Science. 163, 245-254.
- Schultes, R.E., 1970. The botanical and chemical distribution of hallucinogens. Annual Review of Plant Physiology. 21, 571-98.
- Scifinder, version 2007.1; Chemical Abstracts Service: Columbus, OH, 2007; accessed online at https://scifinder.cas.org/scifinder (Date accessed 30 August 2012).
- Sekine, T., Saito, K., Minami, R., Arai, N., Suzuki, H., Koike, Y., Murakoshi, I., 1993. A new lupine alkaloid, (-)-leontalbinine N-oxide, in Sophora flavescens var. angustifolia seeds and its synthesis by biomimetic transformation from (+)-matrine N-oxide. Yakugaku Zasshi. 113, 53-62.

- Seyferth, D., Nestle, M.O., Eschbach, C.S., 1976. The biosynthesis of the lupine alkaloids. A reexamination. Journal of the American Chemical Society. 98, 6726-6728.
- Shin, H.J., Kim, H.J., Kwak, J.H., Chun, H.O., Kim, J.H., Park, H., Kima, D.H., Lee, Y.S., 2002.
 A prenylated flavonol, sophoflavescenol: A potent and selective inhibitor of cGMP phosphodiesterase 5. Bioorganic and Medicinal Chemistry Letters. 12, 2313–2316.
- Silva, M., Medina, M.V., Sammes, P.G., 1968. Alkaloids of *Sophora macrocarpa*. Phytochemistry. 7, 661-663.
- Son, J.K., Park, J.S., Kim, J.A., Kim, Y., Chung, S.R., Lee, S.H., 2003. Prenylated flavonoids from the roots of *Sophora flavescens* with tyrosinase inhibitory activity. Planta Medica. 69, 559-561.
- Song, J-Z., Xu, H-X., Tian, S-J., But, P. P-H., 1999. Determination of quinolizidine alkaloids in traditional Chinese herbal drugs by nonaqueous capillary electrophoresis. Journal of Chromatography A, 303–311.
- Takamatsu, S., Saito, K., Ohmiya, S., Ruangrungsi, N., Murakoshi, I., 1991. Lupine alkaloids form *Sophora exigua*. Phytochemistry. 30, 3793-3795.
- Tang, Y., Lou, F., Wang, J., Zhuang, S., 2001. Four new isoflavone triglycosides from *Sophora japonica*. Journal of Natural Products. 64, 1107-1110.
- Tang, W., Eisenbrand, G., 1992. Chinese Drugs of Plant Origin, Springer-Verlag, New York, pp 931.
- Tingjun, H., Rongliang, Z., 2004. Promotion of *Sophora subprosrata* polysaccharide on nitric oxide and interleukin-2 production in murine T lymphocytes: implicated Ca²⁺ and protein kinase C. International Immunopharmacology. 4, 109–118.
- Tyski, S., Markiewicz, M., Gulewicz, K., Twardowski, T., 1988. The effect of lupine alkaloids and ethanol extracts from seeds of *Lupinus angustifolius* on selected bacterial strains. Journal of Plant Physiology. 133, 240-242.

- Ueno, A., Morinaga, K., Fukushima, S., Iitaka, Y., Koiso, Y., Okuda, S., 1975. Lupine alkaloids.VI. Isolation and structure of (+)-isomatrine. Chemical and Pharmaceutical Bulletin. 23, 2560-2566.
- Ueno, A., Morinaga, K., Fukushima, S., Okuda, S., 1978. Studies on the lupin alkaloids. VII. Isolation and structure of $(-)-\Delta^7$ -dehydrosophoramine. Chemical and Pharmaceutical Bulletin. 26, 1832-1836.
- van Wyk, B.E., Schutte, A. L., 1995. Phylogenetic relationships in the tribes Podalyrieae, Liparieae and Crotalarieae, in: Crisp, M., Doyle, J.J. (Eds.), Advances in legume systematics, part 7; phylogeny. Royal Botanic Gardens, Kew, pp. 283-308.
- van Wyk, B.-E., 2003. The value of chemosystematics in clarifying relationships in the genistoid tribes of papilionoid legumes. Biochemical Systematics and Ecology. 31, 875–884.
- Vermin, W.J., de Kok, A.J., Romers, C., Radema, M.H., van Eijk, J.L., 1979. Calpurmenin and its 13α-(2'-pyrrolecarboxylic acid) ester. Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry. B. 35, 1839-1842.
- Waka, E.M., Hopkins, R.J., Curtis, C., 2004. Ethnobotanical survey and testing of plants traditionally used against hematophagous insects in Eritrea. Journal of Ethnopharmacology. 95, 95–101.
- Wang, X-K., Li, J-S., Omiya, S., Wei, L-X., 1995. The alkaloid constituents in the seeds of Sophora viciifolia. Journal of Chinese Pharmaceutical Sciences. 4, 154-156.
- Wang, K-H., Lin, R-D., Hsu, F-L., Huang, Y-H., Chang, H-C., Huang, C-Y., Lee, M-H., 2006. Cosmetic applications of selected traditional Chinese herbal medicines. Journal of Ethnopharmacology. 106, 353–359.
- Wang, Z., Zhang, S., Fang, S., Zhang, R., Yu, H., 1991. The structure of ∆¹¹-dehydroaloperine. Zhiwu Xuebao. 33, 727-728.

- Wink, M., Twardowski, T., 1992. Allelochemical properties of alkaloids. Effects on plants, bacteria and protein biosynthesis, in: Rizvi, S.J.H., Rizvi, V. (Eds.), Allelopathy: Basic and Applied Aspects. Chapman & Hall, London, pp. 129-150.
- Wink, M., 1987. Chemical ecology of quinolizidine alkaloids, in: Waller, G.R. (Ed.), Allelochemicals: Role in agriculture and forestry. ACS Symposium Series No. 330, Washington, pp. 524-533.
- Woo, E.R., Kwak, J.H., Kim, H.J., Park, H., 1998. A new prenylated flavonol from the roots of Sophora flavescens. Journal of Natural Products. 61, 1552–1554.
- Xiang, X., Wang, G., Cai, X., Li, Y., 2002. Effect of oxymatrine on murine fulminant hepatitis and hepatocyte apoptosis. Chinese Medical Journal. 115, 593–596.
- Xiao, P.G., 1993. A pictorial encyclopaedia of Chinese medical herbs, P, Volume 6, Japanese edition, Chuokoron-Sha, Tokyo, pp. 95.
- Xiao, P., Kubo, H., Komiya, H., Higashiyama, K., Yan, Y., Li, J-S., Ohmiya, S., 1999. (-)-14β-Acetoxymatrine and (+)-14α-acetoxymatrine, two new matrine-type lupin alkaloids from the leaves of *Sophora tonkinensis*. Chemical and Pharmaceutical Bulletin. 47, 448-450
- Xiao, P., Kubo, H., Komiya, H., Higashiyama, K., Yan, Y-N., Li, J-S., Ohmiya, S., 1998. Lupin alkaloids from seeds of the *Sophora viciifolia*. Phytochemistry. 50, 189-193.
- Xiao, P., Li, J., Kubo, H., Saito, K., Murakoshi, I., Ohmiya, S., 1996. 14β-Hydroxymatrine, a new lupine alkaloid from the roots of *Sophora tonkinensis*. Chemical and Pharmaceutical Bulletin. 44, 1951-1953.
- Xin, S.M., Ma, Z.Q., 1998. Anti-diarrhea effect of matrine. Chinese Traditional Patent Medicine. 20, 30–32.
- Xingming, M., Hongjuan, Y., Ying, D., Yanping, L., Weihua, T., Fangyu, A., Jun, G., 2009. Antitumor effects of ethanolic extracts from *Sophora moorcroftiana* seeds in mice. Iranian Red Crescent Medical Journal. 11, 18-22.

- Xu, C.Q., Dong, D.L., Du, Z.M., Chen, Q.W., Gong, D.M., Yang, B.F., 2004. Comparison of the anti-arrhythmic effects of matrine and berbamine with amiodarone and RP58866. Acta Pharmaceutica Sinica. 39, 691–694.
- Yamazaki, M., Arai, A., 1985. On the contractile response of fundus strip from rats to matrine, an alkaloidal component of *Sophora flavescens*. Journal of Pharmacobio-Dynamics. 8, 513-517.
- Yan, Y., Wang, X., Li, J., Lao, Q., Ji, X., 1996. Studies in the flower of *Sophora viciifolia* Hance. Zhongguo Zhongyao Zazhi. 21, 232-234.
- Yang, W., Zeng, M., Fan, Z., Mao, Y., Song, Y., Jia, Y., Lu, L., Chen, C.W., Peng, Y.S., Yang, X-Y., Zhao, B-G., 2006. Antifungal activities of matrine and oxymatrine and their synergistic effects with chlorthalonil. Journal of Forestry Research. 17, 323-325.
- Yoshikawa, M., Wang, H.K., Kayakiri, H., Taniyama, T., Kitagawa, I., 1985. Saponin and sapogenol. XL Structure of sophoraflavoside I, a bisdesmoside of soyasapogenol B from Sophorae Radix, the root of *Sophora flavescens* AITON. Chemical and Pharmaceutical Bulletin, 33, 4267-4274.
- Youn, H.J., Lakritz, J., Kim, D.Y., Rottinghaus, G.E., Marsh, A.E., 2003. Anti-protozoal efficacy of medicinal herb extracts against *Toxoplasma gondii* and *Neospora caninum*. Veterinary Parasitology. 116, 7–14.
- Yuan, H., Yin, Y., He, H., Zhao, Y., 1986. Pharmacological studies on *Sophora alopecuroides*.(II) Neuropharmacological effects of oxymatrine. Yaowu Fenxi Zazhi. 6, 349-352.
- Yu, T., Yan, L., Ding, J., Xiao, T., Niu, H., Luo, W., 2006. Bioassay of seven alkaloids from Sophora alopecuroides to Cucumber anthracnose. Nongyao Kexue Yu Guanli. 27, 23-25.
- Zainutdinov, U.N., Aslanov, K.A., Kushmuradov, Y.K. Sadykov, A.S., 1968. Sophora pachycarpa seed alkaloids (sophocarpadine). Nauchnye Trudy Tashkentskii Gosudarstvennyi Universitet im. V. I. Lenina. 341, 117-121.

- Zhang, L., Li, J., Houghton, P.J., Jackson, S., 1997. Alkaloids in *Sophora alopecuroides* seed and tests for their activities. Zhongguo Zhongyao Zazhi. 22, 740-743.
- Zhang, Y., Wang, S., Li, Y., Xiao, Z., Hu, Z., Zhang, J., 2008. Sophocarpine and matrine inhibit the production of TNF-α and IL-6 in murine macrophages and prevent cachexia-related symptoms induced by colon 26 adenocarcinoma in mice. International Immunopharmacology. 8, 1767–1772.
- Zhang, Y., Zhu, H., Ye, G., Huang, C., Yang, Y., Chen, R., Yu, Y., Cui, X., 2006. Antiviral effects of sophoridine against coxsackievirus B3 and its pharmacokinetics in rats. Life Sciences. 78, 1998–2005.
- Zhao, B-G., 1999. Nematicidal activity of quinolizidine alkaloids and functional group pairs in their molecular structure. Journal of Chemical Ecology. 25, 2205.
- Zhu, Z., Zhang, M., Shen, Y., 1993. Antiulcer components of *Sophora viciifolia* alkaloids. Tianran Chanwu Yanjiu Yu Kaifa. 5, 26-29.

Chapter 2. Quinolizidine alkaloids from Sophora velutina subsp. zimbabweensis (Fabaceae: Sophoreae)

Erick Korir¹, Joyce J. Kiplimo¹, Neil R. Crouch^{1,2}, Nivan Moodley³ and Neil. A. Koorbanally¹*

 ¹ School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
 ²Ethnobotany Unit, South African National Biodiversity Institute, PO Box 52099, Berea Road, 4007, Durban, South Africa
 ³Biosciences, Centre for Scientific and Industrial Research (CSIR), Pretoria, South Africa

*corresponding author: E-mail address: Koorbanally@ukzn.ac.za Tel.: +2731 260 3189 Fax: +2731 260 3091.

Abstract

Five novel quinolizidine alkaloids, *N*-methylenehydroxycytisine (**A-1**), 7-hydroxylupanine (**A-2**), 6,7-dihydroxylupanine (**A-3**), 7-oxo-thermopsine (**A-4**), and velutinine (**A-5**) have been isolated from the fruits and pods (**A1-A4**) and stem bark (**A-5**) of *Sophora velutina* subsp. *zimbabweensis* along with the known quinolizidine alkaloids, *N*-methylcytisine (**A-6**), cytisine (**A-7**), a cinnamate ester, methyl-3-(3',4'-dimethoxyphenyl)-2-propenoate (**A-8**) and triterpenoids, lup-20(29)-ene-3β-ol (**A-9**) and 12-oleanen-3-one (**A-10**). Compounds **A-10** and **A-6** showed good antibacterial activity against *E. faecalis* with MIC values of 10.9 and 20.8 μ g mL⁻¹. The other compounds tested exhibited low to moderate antibacterial activity.

Keywords: *Sophora velutina* subsp. *zimbabweensis*, Fabaceae, *N*-methylenehydroxycytisine, 7-hydroxylupanine, 6,7-dihydroxylupanine, 7-oxo-thermopsine, velutinine.

2.1 Introduction

Quinolizidine alkaloids, found abundant in the Fabaceae, are well-known by the existence of a structural unit in which a nitrogen atom occupies a central position in two fused cyclohexane rings (Hoffmann, 2003). This class of alkaloids are also referred to as lupine alkaloids as they were first discovered in species of the legume *Lupinus* L. In the Fabaceae there are about one hundred and seventy quinolizidine alkaloids that have been isolated and characterised thus far (Aniszewski, 2007), and at times considered chemotaxonomic markers useful in delimiting subfamily groups (e.g. Kite and Pennington, 2003; Pennington *et al.*, 2005). Quinolizidine alkaloids such as matrine and oxymatrine have been reported to possess sedative, depressant, anti-tumour, anti-pyretic, cardiotonic and anti-hepatitis B viral activity (Abbott *et al.*, 1966; Kinghorn and Balandrin, 1984).

The genus *Sophora* L., with approximately 50 species, is widespread from southeastern Europe, to temperate Asia, the tropical regions to Australasia and the Pacific. It is poorly represented in Africa (Pennington *et al.*, 2005). Among the African taxa is the large woody shrub *Sophora velutina* Lindl. subsp. *zimbabweensis* Gillett & Brummitt, a highly localised Zimbabwean endemic described relatively recently (Brummitt and Gillett, 1966). This species is quite distinct from other *Sophora velutina* Lindl. var. *albescens* (Rehd.) P.C. Tsoong from the remote mountains of western Szechwan (Brummitt and Gillett, 1966). No ethnomedicinal applications for subsp. *zimbabweensis* in Zimbabwe have been documented (Gelfand *et al.*, 1985). Although we have been unable to trace recorded uses in traditional medicine of any of the infraspecific taxa of *S. velutina*, other genus members are so employed, especially in China. The most widely used of these is *Sophora flavescens* Aiton, reputedly for its anti-inflammatory, analgesic, antipyretic, stomachic, anti-cancer, diuretic, anthelmintic,

antibacterial, antiviral and antidiarrhoeal properties. As such, *S. flavescens* preparations are used to treat enteritis, dysentery, respiratory tract infections, leucorrhea, colpitis, jaundice, gastrointestinal hemorrhages, and skin disorders such as scabies, carbuncles, dermatosis and eczema (Chang, 1986; Tang and Eisenbrand, 1992; Huang, 1993; Zhu, 1998; State Pharmacopoeia commission of P.R.C, 2000; Ma, 2002; Liu, 2003).

Phytochemical investigations of several species of *Sophora* have revealed that these plants contain quinolizidine alkaloids. *Sophora velutina* subsp. *zimbabweensis*, the subject of the present study, has previously been phytochemically investigated (Asres *et al.*, 1986). These authors isolated three alkaloids from the leaves: a quinolizidine alkaloid (cytisine), and two lupanine-type alkaloids, (+)-lamprolobine and (+)-9 β -hydroxylamprolobine. A further well known alkaloid, *N*-methylcytisine was found in the seeds along with two isoflavonoids, pseudobaptigenen and calycosin (Koorbanally, 1997). Such isoflavonoids are also commonly known from the Fabaceae (Dewick, 1994).

The current study was undertaken to isolate natural products (primarily alkaloids) from various *S. velutina* subsp. *zimbabweensis* plant organs and to ascertain their antibacterial activity. This was in view of documented traditional usage profiles of other *Sophora* species, and the known antibacterial activity of various alkaloids (Bruneton, 1995).

2.2 Results and Discussion

Five new alkaloids (Figure 1), *N*-methylenehydroxycytisine (**A-1**), 7-hydroxylupanine (**A-2**), 6,7-dihydroxylupanine (**A-3**) and 7-oxo-thermopsine (**A-4**) from the fruits and pods, and velutinine (**A-5**) from the stem bark have been isolated from *Sophora velutina* subsp. *zimbabweensis*. In addition, the known quinolizidine alkaloids, *N*-methylcytisine (**A-6**) (Wang *et al.*, 2000) also from the fruits and pods, cytisine (**A-7**) (Asres *et al.*, 1986) from the
leaves, a cinnamate ester, methyl-3-(3',4'-dimethoxyphenyl)-2-propenoate (**A-8**) from the stem bark and triterpenoids, lup-20(29)-ene-3 β -ol (**A-9**) (Mahato and Kundu, 1994) from the fruits and pods and 12-oleanen-3-one (**A-10**) (Chiu *et al.*, 2008) from the stem bark were isolated. Of these ten compounds, only two, *N*-methylcytisine (**A-6**) and cytisine (**A-7**) have been found previously in *S. velutina* subsp. *zimbabweensis*. The structures of the known compounds were confirmed by 1D and 2D NMR and by comparison with the data published in the literature, except for **A-8** whose structural elucidation was trivial.

Figure 1 Structures of compounds isolated from Sophora velutina

A-1 was obtained as brown crystals. Its IR spectrum exhibited absorption bands at 3424 cm⁻¹ (O-H stretch [broad band]), 2931 cm⁻¹ (C-H stretch), 1654 cm⁻¹ (α , β -unsaturated N-C=O carbonyl stretch), 1560 cm⁻¹ (C=C aromatic stretch) and 1431 cm⁻¹ (C-N stretch). The ¹H and ¹³C NMR spectra were very similar to that of *N*-methylcytisine with the notable absence of the N-methyl singlet resonance at $\delta_{\rm H}$ 2.09 in N-methylcytisine and the appearance of a methylene singlet at $\delta_{\rm H}$ 2.69. The *N*-methyl carbon resonance at $\delta_{\rm C}$ 46.15 in *N*-methylcytisine was absent and a methylene carbon resonance at δ_C 79.69 occurred instead. This was indicative that the methyl group in N-methylcytisine had been oxidised to a methylenehydroxy group in N-methylenehydroxycytisine (A-1). The α -pyridone ring was established by resonances at $\delta_{\rm H}$ 7.22 (dd, J = 9.0, 6.8 Hz, H-4), $\delta_{\rm H}$ 6.44 (d, J = 9.0 Hz, H-3) and $\delta_{\rm H}$ 5.63 (d, J = 6.8 Hz, H-5). The characteristic H-10_{ax} and H-10_{eq} resonances could be seen at $\delta_{\rm H}$ 3.82 (dd, J = 15.4, 6.6 Hz) and $\delta_{\rm H}$ 4.00 (d, J = 15.4 Hz). The H-13_{eq} and H-13_{ax} resonances were seen coupled in the COSY spectrum to each other at $\delta_{\rm H}$ 2.60 (*J* = 10.98 Hz) and $\delta_{\rm H}$ 1.83 (d, J = 10.98 Hz) and the H-11_{eq} resonance overlapped with the H-7 resonance and the *N*-methylenehydroxy proton resonance at $\delta_{\rm H}$ 2.69. The *N*-methylenehydroxy resonance could be distinguished from the other two resonances as it appeared as a sharp intense singlet. Using the COSY spectrum, the other H-11_{ax} resonance was identified at δ_{H} 2.24 (d, J = 10.81 Hz). The two H-8 resonances were present at $\delta_{\rm H}$ 1.67 (d, J = 12.89 Hz) and $\delta_{\rm H}$ 1.80 (d, J = 12.89 Hz).

The ¹³C NMR spectrum showed the presence of twelve carbon resonances with five methylene, two methine, three protonated and one non-protonated olefinic resonance and a carbonyl resonance. This suggested the presence of a tricyclic lupane structure. The methylene resonance at $\delta_{\rm C}$ 79.69 is ascribed to the *N*-methylenehydroxy carbon resonance.

The position of the methylenehydroxy substituent at the nitrogen atom is consistent with HMBC correlations between 2H-14 and both C-11 and C-13. The carbonyl resonance at $\delta_{\rm C}$ 163.5 was attributed to the pyridine carbonyl group at position 2 because of HMBC correlations to H-3 and H-4 and the other singlet carbon resonance at $\delta_{\rm C}$ 151.0 to C-6 because of HMBC correlations to H-4, H-5 and H-8_{eq}. The two methine carbon resonances at $\delta_{\rm C}$ 34.7 and $\delta_{\rm C}$ 27.9 were assigned to C-7 and C-9 respectively because of HMBC correlations between C-7 and H-5 and between C-9 and 2H-10. In addition H-10_{eq} showed an HMBC correlation to C-8.

The relative stereochemistry of the molecule was deduced from the NOESY spectrum. The H-7 and H-10 resonances at $\delta_{\rm H}$ 2.71 and $\delta_{\rm H}$ 4.00, respectively, correlate to each other and are both equatorial or alpha. The bridge containing C-8 is in the alpha position together with H-7 and H-9 because correlations between the H-8 resonances and H-7 and H-9 are all seen in the NOESY spectrum. We did not carry out further experiments to determine the absolute stereochemistry since all the sample was used for biological assays.

Unfortunately, the molecular ion could not be detected in the High Resolution Mass Spectrum. We postulate that the *N*-methylenehydroxy group is unstable and cleaves before reaching the detector. This occurs with a concomitant hydrogen transfer to nitrogen resulting in the stable cytisine, whose molecular fragment at m/z 190 is seen in the EIMS.

A-2 was isolated as brown oil. Its IR spectrum showed absorption bands at 3427 cm⁻¹ (O-H stretch), 2931 cm⁻¹ and 2857 cm⁻¹ (C-H stretch), and 1672 cm⁻¹ (N-C=O carbonyl stretch). The EIMS indicated a molecular ion peak at m/z 264 consistent with the molecular formula of C₁₅H₂₄N₂O₂. The ¹H NMR spectrum showed a three-proton resonance between $\delta_{\rm H}$ 3.65-3.76

(m, 3H) for the two H-10 protons which overlapped with the H-6 proton resonance. The H-17_{eq} resonance appeared as a double doublet at $\delta_{\rm H}$ 2.92 (J = 13.18, 2.57 Hz) and the H-15_{eq} resonance was present as a doublet at $\delta_{\rm H}$ 2.73 (J = 11.35 Hz). Their corresponding axial resonances were present at $\delta_{\rm H}$ 1.96-2.07 (H-15_{ax} overlapping with H-12_{eq} and H-13_{eq}) and $\delta_{\rm H}$ 1.84-1.92 (H-17_{ax} overlapping with 2H-4). The 2H-3/2H-5 proton resonances appeared as an intense triplet at $\delta_{\rm H}$ 2.61 (J = 6.41 Hz). The H-8, H-9, H-11, 2H-14 and the remaining H-12_{ax} and H-13_{ax} resonances all appeared as multiplets between $\delta_{\rm H}$ 0.95-1.60. Their corresponding carbon resonances.

Although **A-2** had fifteen carbon resonances, only twelve carbon resonances were visible in the ¹³C NMR spectrum. The teriary oxygenated carbon resonance is assumed to be overlapping with the solvent peak and the C-3 and C-5 resonances overlap as does the C-8 and C-13 resonances, accounting for the three less carbon resonances. There were three methine resonances present at $\delta_{\rm C}$ 66.78, 65.04 and 39.23. Two of these were attributed to the methine carbons attached to nitrogen, C-6 and C-11 and the third assigned to C-9. The C-15 and C-17 methylene carbons attached to N-16 at δ 63.43 and 56.10 respectively were more deshielded than the other methylene resonances, while the C-10 resonance appeared at $\delta_{\rm C}$ 41.55. The other methylene resonances all appeared between δ 17.08 and δ 33.63. The hydroxy group was place at C-7 because COSY coupling between H-6 and H-4 (W coupling) ruled out the possibility that the proton could be situated at C-7. This was further supported by HMBC correlations between H-6 and both C-2 and C-10. The NMR data compare well with both 6-hydroxylupanine **A-11** (Abdel-Halim, 1995) and 6,7-dihydroxylupanine (**A-3**) discussed below (Table 6). It is evident from this table (Table 6) that the C-7 methine carbon is clearly absent and on comparison with **A-3** that the H-6 proton was present. The relative configuration of the molecule was determined by NOESY correlations between H-9 and H-8. This was consistent with molecular models, which show that the bridge and its substitutents at C-7 and C-9 must have the same orientation. In the absence of a NOESY correlation to H-11, it was assigned as alpha relative to the bridge. Unfortunately we do not have sample to do more experiments to determine the absolute configuration.

A-3 was isolated as a brown oily substance whose IR spectrum showed absorption bands at 3378 cm⁻¹ (O-H stretch), 2930 cm⁻¹ and 2856 cm⁻¹ (C-H stretch), and 1677 cm⁻¹ (N-C=O carbonyl stretch). The High Resolution Mass spectrum indicated a mass of 280.1748 consistent with a molecular formula of $C_{15}H_{24}N_2O_3$ (calculated 280.1787). The base peak at m/z 154 is a result of the fragment in Figure 2 below, which is consistent with the fragmentation pattern for lupanine but with a hydroxy group at C-6 (Ohmiya *et al.*, 1988).

Figure 2 Fragment representing the base peak in the MS of compound A-3

The ¹H NMR spectrum showed characteristic resonances for lupanine type alkaloids at $\delta_{\rm H}$ 3.67 (m, H-10eq) and $\delta_{\rm H}$ 3.77 (m, H-10ax), $\delta_{\rm H}$ 2.90 (d, J = 2.0 Hz, H-17eq) and $\delta_{\rm H}$ 2.11 (m, H-17ax), $\delta_{\rm H}$ 2.83 (d, J = 11.6 Hz, H-15eq) and $\delta_{\rm H}$ 2.04 (d, J = 2.38 Hz, H-15ax) as well as for the methylene groups of 2H-3 and 2H-5, which both overlap as a multiplet at $\delta_{\rm H}$ 2.62 and the H-8ax and H-8eq proton resonances which appear at $\delta_{\rm H}$ 0.98 (m) and $\delta_{\rm H}$ 1.45 (m), respectively. The proton resonances at positions 10, 15 and 17 are all deshielded since they are adjacent to the nitrogen atoms at either position 1 or 16. The ¹H NMR resonances compare very well with that of 7-hydroxylupanine (A-2) and 6-hydroxylupanine (Abdel-Halim, 1995) with the notable absence of the H-6 and H-7 proton resonances.

The ¹³C NMR spectrum had twelve visible resonances, with overlapping resonances for C-3 and C-5 at δ_C 32.9. This accounts for thirteen of the fifteen carbon resonances in the molecule, with C-6 and C-7 overlapping with the solvent peak at δ_C 76.7 and δ_C 77.0 accounting for the remaining two resonances. There were two methine carbon resonances in the ^{13}C NMR spectrum at δ_C 39.1 and δ_C 66.5, consistent with that of C-9 and C-11 when compared to 7-hydroxylupanine (A-2). Their corresponding proton resonances overlapped at $\delta_{\rm H}$ 2.62 in the ¹H NMR spectrum. This proton resonance showed COSY correlations to the two proton resonances of H-10 (equatorial and axial) and H-8 (equatorial and axial) supporting the assignment of H-9. Four carbon resonances at δ_C 27.7, δ_C 39.1, δ_C 66.5 and δ_C 172.7 showed strong HMBC correlations to the proton resonances of H-10ax and H-10eq. One was the carbonyl resonance at C-2 (δ_C 172.7), two were the methine resonances of C-11 (δ_C 66.5) and C-9 (39.1) and the remaining methylene resonance at δ_C 27.7 was assigned to C-8. COSY correlations could also be seen between H-11 and H-12 at δ_{H} 1.70 and δ_{H} 1.39 respectively. The resonances of 2H-3 and 2H-5 overlapped at δ_{H} 2.62 and 2H-4 was present at δ_H 1.88. These assignments were made in comparison with 7-hydroxylupanine and were consistent with HMBC correlations between C-2 and both 2H-3 and 2H-4. The ¹³C NMR resonances compare well with both 7-hydroxylupanine (A-2) and 6-hydroxylupanine (Table 6).

The relative stereochemistry of the molecule was determined using NOESY correlations. In essence, there were NOESY correlations between the axial protons of H-9, H-10, H-8 and H-

17 and between the axial protons of H-11, H-12, H-13 and H-14. NOESY correlations could also be seen between the equatorial protons of H-13, H-14 and H-15 and H-12 and H-10. Due to the small sample size isolated, further experiments to determine the absolute stereochemistry was not possible as all available sample was used for bioassay experiments.

A-4 was isolated as a brown solid. Its IR spectrum showed absorption bands at 2925 (C-H stretch) and 1655 (N-C=O carbonyl stretches). The EIMS indicated a molecular ion peak at m/z 258, consistent with the molecular formula of C₁₅H₁₈N₂O₂. The ¹H NMR spectrum showed resonances typical of quinolizidine alkaloids with an α-pyridone system with the olefinic resonances of H-3, H-4 and H-5 being present at $\delta_{\rm H}$ 6.46, 7.26 and 6.26 respectively with $J_{3,4} = 8.97$ Hz, $J_{4,5} = 6.78$ Hz and $J_{3,5} = 1.28$ Hz, similar to that of cytisine. Also similar to that of cytisine were the resonances of the two H-10 resonances at $\delta_{\rm H}$ 4.22 (d, J = 15.75 Hz, H-10eq) and $\delta_{\rm H}$ 3.91 (dd, J = 15.75, 6.41 Hz, H-10ax). H-9 was identified at $\delta_{\rm H}$ 2.43 by a COSY correlation to H-10ax and the H-7 resonance at $\delta_{\rm H}$ 3.61 showed COSY coupling to the two H-8 protons at $\delta_{\rm H}$ 2.32 and 1.99. The two non-equivalent proton resonances of H-15 appeared at $\delta_{\rm H}$ 4.56 and 2.39, the latter being more shielded due to the shielding effects of the lone pair of electrons on N-16. The H-11 resonance at $\delta_{\rm H}$ 3.32, a doublet with J = 8.79 Hz was seen coupled to the 2H-12 resonance at $\delta_{\rm H}$ 1.60. The H-13ax and the 2H-14 resonances also overlapped at $\delta_{\rm H}$ 1.60.

The ¹³C NMR spectrum showed the presence of fifteen carbon resonances with two carbonyl resonances at $\delta_{\rm C}$ 166.0 (C-17) and 163.5 (C-2). This was supported by the absence of the methylene carbon, C-17 on comparison with thermopsine. A comparison of the carbon NMR data with both thermopsine (**A-12**) and 17-oxo-sparteine (**A-13**) (Mikhova and Duddeck, 1998) (Table 6) shows that the resonances of C-2 to C-6 match very well with that of **A-12**

due to the similar α -pyridone ring and that C-7 to C-17, the other half of the molecule, match very well with that of **A-13**. This supports the assignment of the extra carbonyl group to C-17. The relative configuration of the molecule was determined by NOESY correlations between H-8 and H-9, H-8 and H-11, and H-9 and H-11.

Table 6 ¹³ C NMR data of 7-hydroxylupanine (A-2), 6,7-dihydroxylupanine (A-3), and 17-oxo-thermopsine (A-4) with 6-hydroxylupanine (A-11) (Abdel-Halim, 1995), thermopsine (A-12) and 17-oxo-β-isosparteine (A-13) (Mikhova and Duddeck, 1998) for comparison

	A-2	A-3	A-11	A-4	A-12	A-13
2	172.7	172.7	171.6	163.5	163.6	54.6
3	32.9#	32.9#	33.1	118.2	116.4	19.6
4	17.1	17.1	19.4	139.3	138.5	25.3
5	32.9#	32.9#	32.4	106.6	104.4	23.0
6	66.8	76.7*	85.5	144.0	151.6	59.2
7	77.0*	77.0*	37.8	43.2	35.2	43.9
8	27.9##	27.7	15.8	20.6	27.5	20.0
9	39.2	39.1	34.5	32.1	32.8	35.1
10	41.5	41.2	42.8	50.7	44.8	52.9
11	65.0	66.5	63.9	63.5	65.9	61.8
12	33.6	29.0	34.1	33.2	29.7	33.3
13	27.9##	24.1	24.4	25.0	24.3	25.5
14	24.6	24.9	24.6	24.9	25.2	25.6
15	56.1	56.1	55.2	43.9	56.0	42.8
17	63.4	56.6	54.3	166.0	63.3	172.2

* underneath solvent peak; #, ## resonances overlap.

A-5 was isolated as a white crystalline compound. Its IR spectrum showed the presence of a hydroxyl group stretch at 3423 cm⁻¹, a C-H stretch at 2926 cm⁻¹, a C=O stretch at 1618 cm⁻¹ and an aromatic C=C stretch at 1508 cm⁻¹. The low stretching frequency of the carbonyl stretch is due to the extended conjugated system present in the molecule. The High Resolution Mass spectrum indicated a mass of 284.0679, consistent with $C_{15}H_{12}N_2O_4$ (calculated 284.0797) and the EIMS showed a fragment at m/z 267 which was the loss of a hydroxyl group as well as the molecular ion base peak at M⁺ 284.

The proton resonances at $\delta_{\rm H}$ 7.35 (d, J = 8.4 Hz, H-3), $\delta_{\rm H}$ 6.53 (dd, J = 8.4, 2.5 Hz, H-4), and $\delta_{\rm H}$ 6.39 (d, J = 2.5 Hz, H-5) revealed the presence of an α -pyridone ring consistent with that of cytisine (**A-7**). The double doublet of one of the proton resonances on the methylene group at $\delta_{\rm H}$ 3.59 coalesces and appears as a triplet with $J_{9,10ax}$ of 11.0 Hz being equal to $J_{10ax,10eq}$. The resonance was assigned to the axial position because it experiences the full effect of the nitrogen lone pair on the alpha face of the molecule, shielding this proton resonance more than its equatorial counterpart (Wiewiorowski *et al.*, 1967) present at $\delta_{\rm H}$ 4.20 (dd, J = 11.0 Hz, 5.0 Hz) as indicated in the HSQC spectrum. For the more stable chair conformation to exist with rings B and C, the nitrogen lone pair must face away from the bridge. The molecule therefore has a relative configuration of the bridge being *beta* and the lone pairs on the two nitrogen atoms being *alpha*. The axial H-10 proton is also *alpha* and the equatorial H-10 proton *beta*. As with the other samples, the absolute configuration was not determined due to the sample being used for biological assays.

Both the H-10 resonances showed a COSY correlation with the multiplet at $\delta_{\rm H}$ 3.47 (H-9) which is more downfield than those observed in cytisine and *N*-methylcytisine where H-9 resonated between $\delta_{\rm H}$ 2.32 and $\delta_{\rm H}$ 2.40. The H-9 proton also showed a COSY correlation with the oxygenated methine resonance at $\delta_{\rm H}$ 5.45 (d, *J* = 7.0 Hz) which was attributed to H-8. This was supported by HMBC correlations between H-8 and both C-6 and C-10.

There were two other more deshielded singlet resonances at δ_H 6.41 and δ_H 6.70. Both these resonances showed HMBC correlations to the resonances at δ_C 154.2 (C-11) and δ_C 148.1 (C-14), with δ_H 6.70 showing an additional correlation to δ_C 141.7 (C-13) and δ_H 6.41 showing an additional correlation to δ_C 112.6 (C-7). This prompted δ_H 6.70 to be assigned to H-12 and

the resonance at δ_H 6.41 to H-16. HMBC correlations between H-9 and both C-7 and C-11 supported these assignments.

The C-2 and C-6 resonances, both at approximately the same chemical shift were distinguished by HMBC correlations to H-3 and H-8 respectively. The carbon signal at $\delta_{\rm C}$ 101.1 and its corresponding proton resonances at $\delta_{\rm H}$ 5.90 and $\delta_{\rm H}$ 5.87, both doublets (1.5 Hz) was consistent with that of a methylenedioxy group which was placed at C-13 and C-14 in the molecule since HMBC correlations was seen between both these non-equivalent resonances to both C-13 and C-14. The more deshielded carbon signal was assigned to C-14 due to the inductive electron withdrawing effect of both the oxygen and the nitrogen. This is the first report of compound **7** and we have given it the trivial name velutinine.

The results of the Minimum Inhibitory Concentration (MIC) determinations of the samples against against *Enterococcus faecalis* and *Pseudomonas aeruginosa* are given in

Table 7. *P. aeruginosa* showed resistance against eight of the ten samples tested with only **A**-**8** and **A-10** being slightly active at 200 and 175 μ g mL⁻¹, respectively. **A-10** (the steroidal ketone, 12-oleanen-3-one) and **A-6** (the quinolizidine alkaloid, *N*-methylcytisine) showed good antibacterial activity against *E. faecalis* with MIC values of 10.9 and 20.8 μ g mL⁻¹ respectively. Two other samples, an aromatic ester (**A-8**) and the lupane alkaloid, 17-oxo-thermopsine (**A-4**) showed moderate antibacterial activity against *E. faecalis* at concentrations of 100 and 125 μ g mL⁻¹, respectively.

Compound	Average MIC (µg mL ⁻¹)			
	Enterococcus faecalis	Pseudomonas aeruginosa		
A-1	>250.00	>250.00		
A-2	>250.00	>250.00		
A-3	208.33	>250.00		
A-4	125.00	>250.00		
A-5	>250.00	>250.00		
A-6	20.83	>250.00		
A-7	>250.00	>250.00		
A-8	100.00	200.00		
A-9	>250.00	>250.00		
A-10	10.90	175.00		
Gentamicin	0.39	0.78		

Table 7MIC values of the isolates from S. velutina subsp. zimbabweensis against E.faecalis and P. aeruginosa

2.3 Conclusions

While most of the compounds isolated were inactive against both *E. faecalis* and *P. aeruginosa*, two compounds, *N*-methylcytisine (6) and 12-oleanene-3-one (10) showed good activity against *E. faecalis*. This activity could be due to the *N*-methyl group in the quinolizidine alkaloid or the 3-keto group in the steroidal ketone. These compounds could make interesting subjects for structure activity relationship studies with *E. faecalis*.

2.4 Experimental section

General experimental procedures

IR spectra were recorded on a Perkin-Elmer Universal ATR Spectrometer and UV spectra on a Varian Cary UV-VIS Spectrophotometer. Specific rotations were measured at room temperature in methanol on a Perkin-ElmerTM, Model 341 Polarimeter with a 10 mm flow tube. The melting points were recorded on an Ernst Leitz Wetzer micro-hot stage melting point apparatus. The ¹H, ¹³C and all 2D NMR spectra were recorded using a Bruker Avance^{III} 400 MHz spectrometer. Spectra were recorded at room temperature using either deuterated methanol (CD₃OD) or deuterated chloroform (CDCl₃) as solvent. For GC-MS analyses, the samples were analysed on an Agilent GC–MSD apparatus equipped with DB-5SIL MS (30 m x 0.25 mm i.d., 0.25 μ m film thickness) fused-silica capillary column. Helium (at 2 ml/min) was used as a carrier gas. The MS was operated in the EI mode at 70 eV. High Resolution Mass Spectrometry was carried out by UPLC-DAD-MS with a Waters SYNAPT HDMS system (4KDA) consisting of a sample manager, ultra-pressure binary pump, integrated column oven and DAD detector connected in series to a SYNAPT G1 QTOF mass spectrometer and equipped with an Acquity HSS T3 Waters column (1.8 μ m, 150 x 2.1 mm). The system was controlled through MassLynx v 4.1 SCN639. The gradient programme used was as follows: 5% (v/v) aqueous HPLC-gradient acetonitrile (A) in 0.1% (v/v) formic acid increasing to 90% acetonitrile over 15 min.

The separation, isolation and purification of compounds were carried out by gravity column chromatography using Merck silica gel 60 (0.040-0.063 mm) and monitored by thin layer chromatography (TLC; Merck 20×20 cm silica gel 60 F₂₅₄ aluminum sheets). The extracts were crudely separated on a 4 cm diameter column using appropriate solvent systems which gave the best separation on TLC. Fraction sizes of 100 mL each were collected and twenty fractions (a total of 2 L) were collected for each stage.

Plant collection

Fruits (including the pods), stems (including the bark) and leaves of *Sophora velutina* Lindl. subsp. *zimbabweensis* Gillet & Brummit were obtained from a plant cultivated in Pretoria, South Africa. A voucher specimen (*Crouch 780*) was deposited at the KwaZulu-Natal Herbarium (NH) in Durban, South Africa.

Extraction and Isolation

The air dried plant parts (fruits, pods and leaves) were grounded in a domestic blender or milled (stem and bark) and then extracted separately using a soxhlet apparatus with hexane, dichloromethane, ethyl acetate and methanol successively for 24 hours each. Extraction of 750 g of the fruits and pods yielded 47.7 g, 20.0 g, 28.4 g and 68.3 g of hexane, dichloromethane, ethyl acetate and methanol extracts respectively. Extraction of 640 g of the leaves and 703 g of the stem and bark yielded 48.2 g, 9.3 g, 26.2 g and 83.9 g (leaves) and 7.0 g, 2.4 g, 7.9 g, and 3.0 g (stem and bark) for the four solvents mentioned above, respectively.

Isolation of compounds from the fruits and pods

The hexane extract was eluted with 2 litres each of a hexane:dichloromethane step gradient 100:0, 90:10, 80:20, 70:30, 60:40, 0:100 and then 1% and 2% methanol in dichloromethane. Fractions 91-95 were combined and further purified on a 1 cm diameter column with 35% dichloromethane in hexane, collecting 2 mL fractions each. Lup-20(29)-ene-3 β -ol (**A-9**) (25.0 mg) eluted in fractions 24-45.

The dichloromethane extract was eluted with a hexane:dichloromethane step gradient as for the hexane extract, followed by 1%, 2%, 3% and 5% methanol in dichloromethane. Fractions 90-92 was purified further with 2% methanol in dichloromethane, where *N*-methylcytisine (**A-6**) (21.5 mg) eluted in fractions 4-42. Fractions 181-189 was purified with 3% methanol in dichloromethane where fractions 5-24 contained thermopsine (**A-4**) (23.3 mg).

The methanol and ethyl acetate extracts were combined (as a TLC analysis showed that they contained similar components) and dissolved in a 1:1 mixture of methanol:water (500 ml in total). This solution was then acidified with 4 M HCl to pH 4 and extracted with 3 x 250 mL

portions of chloroform. The chloroform extracts were combined and evaporated under reduced pressure to produce 67.1 g of extract A. The aqueous phase was then basified to pH 9 using 4 M NH₄OH and extracted with 3 x 250 mL portions of chloroform. The combined chloroform extracts yielded 5.6 g of extract B. Extract A did not yield any compounds of interest on separation.

Extract B was separated on a 2 cm column with a methanol:dichloromethane step gradient of 100% dichloromethane (500 ml) and then 1L each of 2%, 4%, 6%, 8% and 10% methanol in dichloromethane, collecting 50 mL fractions. The combined fraction 25-30 was purified further on a 1cm column collecting 2 mL fractions using 8% methanol in dichloromethane. Fractions 36 to 40 contained two compounds and were separated further using the same solvent. Fraction 16 contained 6,7-dihydroxylupanine (**A-3**) (23.6 mg). Fractions 32-33 were purified using 10% methanol in dichloromethane, where fraction 37 afforded 7-hydroxylupanine (**A-2**) (52.3 mg). Purification of fractions 51-77 with 15% methanol in dichloromethane resulted in *N*-methylenehydroxycytisine (**A-1**) (40.1 mg) being isolated.

Isolation of compounds from the stem and bark

The dichloromethane extract of the stem and bark (2.40 g) was separated on a 3 cm column sequentially using 500 mL each of a dichloromethane: methanol step gradient with 100% dichloromethane, and then 4%, 8%, 12%, and 15% methanol in dichloromethane. A total of 50×50 mL fractions were collected with ten fractions being collected for each stage. Fractions 12-14 were combined and purified with 1% methanol in dichloromethane to produce methyl-3-(3',4'-dimethoxyphenyl)-2-propenoate (A-8) (22.5 mg) in fraction 1 and velutinine (A-5) (20.4 mg) in fraction 2. Although the hexane, ethyl acetate and methanol

extracts were also separated into various fractions, no compounds of interest were found in them.

Isolation of compounds from the leaves

The hexane extract of the leaves (48.2 g) was separated successively with 100% hexane and then 10%, 20%, 30%, 40%, 50%, 60% dichloromethane in hexane and 100% dichloromethane with 24 fractions being collected in each stage. Fraction 68 was purified further with 20% dichloromethane in hexane to produce 12-oleanen-3-one (**A-10**) (32.6 mg) in fraction 2. The dichloromethane extract (9.3 g) was separated with 100% dichloromethane and then 5%, 15%, 16%, 20% methanol in dichloromethane, collecting 7 fractions of 50 mL each in each stage from a 3 cm diameter column. Fractions 30-33 was separated with 16% methanol in dichloromethane, where cytisine (**A-7**) (26.0 mg) was obtained in fraction 12. The ethyl acetate and methanol extracts did not contain any compounds of interest.

N-Methylenehydroxycytisine (A-1)

Dark brown solid; m.p. 142-145 °C; $[\alpha]_{D}^{20}$ -320.30° (*c* 0.00638, CH₃OH); UV $\lambda_{max}^{CH_{2}Cl_{2}}$ nm (log ε) 232 (4.81), 317 (4.94); IR cm⁻¹ 3424, 2931, 2855, 2784, 1654, 1560, 1549, 1141, 798, 734; ¹H NMR (400 MHz, CDCl₃) 7.22 (dd, *J* = 6.8, 9.0 Hz, H-4), 6.44 (d, *J* = 9.0 Hz, H-3), 5.63 (d, *J* = 6.8 Hz, H-5), 4.00 (d, *J* = 15.4 Hz, H-10eq), 3.82 (dd, *J* = 15.4 Hz, 6.6 Hz, H-10ax), 2.74 (H-11eq*), 2.71 (brs, H-7), 2.70 (s, 2H-14), 2.60 (d, *J* = 11.0 Hz, H-13eq), 2.37 (brs, H-9), 2.25 (d, *J* = 9.8 Hz, H-11ax), 1.90 (d, *J* = 1.5 Hz, H-13ax), 1.81 (d, *J* = 14.3 Hz, H-8 eq), 1.67 (d, *J* = 12.8 Hz, H-8ax); ¹³C NMR (100 MHz, CDCl₃) 163.5 (C=O), 151.3 (C-6), 138.6 (C-4), 116.3 (C-3), 105.0 (C-5), 79.7 (C-14), 58.7 (C-11), 57.7 (C-13), 50.0 (C-10), 34.7 (C-7), 27.9 (C-9), 26.2 (C-8). EIMS** *m*/*z* (rel. int.): 190 (66), 160 (24), 148 (30), 147 (74), 146 (100), 134 (22), 109 (14) *Multiplicity obscure because of overlap with other resonances.

** The molecular ion at m/z 220 could not be detected in the mass spectrum. It is postulated that *N*-methylenehydroxycytisine is unstable and reverts to cytisine during fragmentation.

7-Hydroxylupanine (A-2)

Needle like white crystals; m.p. 197-199 °C; $[\alpha]_{D}^{20}$ +22.32° (*c* 0.0224, CH₂Cl₂); UV λ_{max} (CH₂Cl₂) nm (log ε): 230 (7.57); IR cm⁻¹ 3427, 2931, 2857, 2761, 1672, 1352, 1168, 1121, 1055; ¹H NMR (400 MHz, CDCl₃): δ 3.65-3.76 (3H, m, 2H-10, H-6), 2.92 (1H, dd, *J* = 13.18, 2.57 Hz, H-17eq), 2.73 (1H, d, *J* = 11.35 Hz, H-15eq), 2.61 (4H, t, *J* = 6.51 Hz, 2H-3/2H-5), 2.50 (1H, brs, OH), 1.96-2.07 (3H, m, H-12, H-13eq, H-15ax), 1.84-1.92 (3H, m, 2H-4, H-17ax), 1.60 (1H, m, H-9), 1.55 (1H, m, H-14eq), 1.53 (1H, m, H-11), 1.42 (1H, m, H-14ax), 1.38 (1H, m, H-8eq), 1.30 (1H, m, H-13ax), 1.18 (1H, m, H-12ax), 0.95 (1H, m, H-8ax); For ¹³C NMR data see Table 6; MS (EI, 70 eV): *m/z* (%) = 264 [M]⁺ (20), 222 (12), 152 (43), 138 (100), 110 (39), 97 (36), 83 (39).

6,7-Dihydroxylupanine (A-3)

Brown oil; $[\alpha]_{D}^{20}$ +41.67° (*c* 0.00841, CHCl₃); UV $\lambda_{max}^{CH_2Cl_2}$ nm (log ε) 228 (5.06), 286 (5.16), 312 (5.20); IR cm⁻¹ 3378, 2930, 2856, 1677, 1353, 1170, 1135, 1117; ¹H NMR (400 MHz, CDCl₃) δ 3.77 (dd, *J* = 12.8, 2.4 Hz, H-10eq), 3.67 (dd, *J* = 12.8, 9.2 Hz, H-10ax), 2.90 (d, *J* = 12.0 Hz, H-17eq), 2.83 (d, *J* = 11.6 Hz, H-15eq), 2.62 (4H, m, 2H-3, 2H-5), 2.13 (d, *J* = 14.0 Hz, H-17ax), 2.06 (d, *J* = 12.0 Hz, H-15ax), 1.97 (d, *J* = 12.8 Hz, H-12eq), 1.88 (m, 2H-4), 1.78 (d, *J* = 10.6 Hz, H-9), 1.70 (d, *J* = 15.9 Hz, H-11), 1.68 (m, H-14eq), 1.65 (m, H-13eq), 1.60 (brs, H14ax), 1.45 (d, *J* = 13.6 Hz, H-8eq), 1.39 (d, *J* = 12.6 Hz, H-12ax), 1.28 (m, H-13ax), 0.98 (m, H-8ax); For ¹³C NMR data see Table 6; EIMS *m/z* (rel. int.): 280 [M]⁺(20), 154 (100), 126 (34), 96 (32), 55 (24); HREIMS 280.1748 $[M]^+$ (280.1787 calculated for $C_{15}H_{24}N_2O_3$).

17-Oxo-thermopsine (A-4)

Brown solid; m.p. 215-217 °C; $[\alpha]_D^{20}$ -83.33° (c 0.0012, CH₂Cl₂); UV λ_{max} (CH₂Cl₂) nm (log ε): 228 (6.96), 315 (7.28); IR cm⁻¹ 2926, 2856, 2360, 1655, 1544, 1444, 1260; ¹H NMR (400 MHz, CDCl₃): δ 7.26 (1H, dd, J = 8.97, 6.78 Hz, H-4), 6.46 (1H, dd, J = 8.97, 1.28 Hz, H-3), 6.26 (1H, dd, J = 6.78, 1.28 Hz, H-5), 4.56 (1H, dd, J = 11.35, 2.20 Hz, H-15eq), 4.22 (1H, d, J = 15.75 Hz, H-10eq), 3.91 (1H, dd, J = 15.75, 6.41 Hz, H-10ax), 3.61 (1H, d, J = 2.56 Hz, H-7), 3.32 (1H, d, J = 8.79 Hz, H-11), 2.43 (1H, m, H-9), 2.39 (1H, dd, J = 13.00, 2.75 Hz, H-15ax), 2.32 (1H, d, J = 13.55 Hz, H-8eq), 1.99 (1H, dd, J = 13.55, 3.13 Hz, H-8ax), 1.96 (m, H-13eq), 1.60 (5H, m, 2H-12, H-13, 2H-14); For ¹³C NMR data see Table 6; MS (EI, 70 eV): m/z (%) = 258 [M]⁺ (66), 147 (64), 146 (100), 112 (71), 84 (43).

Velutinine (A-5)

Dark brown solid; m.p. 105-107 °C; $[\alpha]_D^{20}$ -2.91 (*c* 0.00852, CH₂Cl₂); UV $\lambda_{max}^{CH_2Cl_2}$ nm (log ε) 227 (6.19), 286 (6.29), 312 (6.33); IR cm⁻¹ 3423, 2926, 1618, 1508, 1498, 1474, 1342, 1289, 1118, 1034, 836; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.4 Hz, H-4), 6.70 (s, H-12), 6.53 (dd, *J* = 8.4, 2.5 Hz, H-3), 6.41 (s, H-16), 6.39 (d, *J* = 2.5 Hz, H-5), 5.90 (d, *J* = 1.5 Hz, H-17a), 5.87 (d, *J* = 1.5 Hz, H-17b), 5.45 (d, *J* = 7.0 Hz, H-8), 4.93 (s, OH), 4.20 (dd, *J* = 11.0, 5.0 Hz, H-10eq), 3.59 (t, *J* = 11.0 Hz, H-10_{ax}), 3.47 (m, H-9); ¹³C NMR (100 MHz, CDCl₃) δ 157.0 (C-2), 156.6 (C-6), 154.2 (C-11), 148.1 (C-14), 141.7 (C-13), 132.1 (C-4), 117.8 (C-7), 109.7 (C-3), 104.7 (C-12), 103.6 (C-5), 101.3 (C-17), 93.8 (C-16), 78.4 (C-8), 66.4 (C-10), 40.1 (C-9); EIMS *m*/*z* (rel. int.): 284 [M]⁺(6), 270 (100), 255 (29), 207 (21), 161 (9), 148 (15), 135 (9); HREIMS 284.0679 [M]⁺ (284.0797 calculated for C₁₅H₁₂N₂O₄).

Antibacterial assay

The bacterial strains used were the Gram-negative *Pseudomonas aeruginosa* (ATCC25922) and the Gram-positive *Enterococcus faecalis* (ATCC29212). Both organisms were maintained in Muller Hinton (MH) Broth overnight.

The samples were dissolved in acetone to a known concentration (1.0 mg mL⁻¹) prior to testing, except for **A-10** and **A-8** which were prepared at 0.7 mg mL⁻¹ and 0.8 mg mL⁻¹, respectively. The antibacterial assays followed the format of the serial microdilution assay of Eloff (1998). Two-fold serial dilutions of the samples (100 μ L) were prepared in wells of 96-well microtitre plates. Bacterial cells (100 μ L of an overnight culture) was then added to each well before incubation for 24 hours at 37 °C. Iodonitrotetrazolium chloride (INT, Sigma, 40 μ L of a 0.2 mg mL⁻¹ solution) was added to each well as an indicator of bacterial growth. INT, a colourless tetrazolium salt is converted to a red-coloured formazan product by actively dividing cells. The minimum inhibitory concentration (MIC) was visually read as the lowest concentration of sample that inhibited microbial growth, as indicated by a visible reduction in the red colour of the INT formazan. In each assay a negative solvent control and a positive control were included. Gentamicin (Sigma) was used as the antibacterial agent. The samples were tested in triplicate.

Acknowledgements

We are grateful to the National Research Foundation (NRF) of South Africa for financial support and a bursary for E. Korir, and to Dr R. Clark of Pretoria for facilitating access to plant materials. The project was funded through the Thuthuka Programme of the NRF.

2.5 References

- Abbott, B.J., Hartwell, J.L., Leiter, J., Perdue Jr., R.E., Schepartz, S.A. 1966. Screening data from the Cancer Chemotherapy National Service Center screening laboratories. 38. Plant extracts. Cancer Research. 26, 1461-1656.
- Abdel-Halim, O.B., 1995. (-)-6α-Hydroxylupanine, a lupin alkaloid from *Lygos raetam* var. *sarcocarpa*. Phytochemistry. 40, 1323-1325.
- Aniszewski, T., 2007. Alkaloids Secrets of Life Alkaloid Chemistry, Biological Significance, Applications and Ecological Role. Elsevier. Kidlington, the Netherlands, pp 98-101.
- Asres, K., Gibbons, W.A., Philipson, J.D., Mascagni, P., 1986. The alkaloids of *Sophora velutina*. Journal of Natural Products. 49, 117-121.
- Brummitt, R.K. and Gillett, J.B., 1966. Notes on the genus *Sophora* in Africa, including an Asian species found near Zimbabwe. Kirkia. 5, 259-270.
- Bruneton, J., 1995. Pharmacognosy, Phytochemistry, Medicinal Plants. Intercept, Andover, UK.
- Chang, H.M., But, P.P.H., 1986. Pharmacology and Applications of Chinese Materia Medica. World Scientific Publishers, Singapore, pp. 736.
- Chiu, H.L., Wu, J.H., Tung, Y.T., Lee, T.H., Chien, S.C., Kuo, Y.H., 2008. Triterpenoids and aromatics from *Derris laxiflora*. Journal of Natural Products. 71, 1829-1832.
- Dewick, P.M., 1994. Isoflavonoids, in: Harborne, J.B., (Ed.), The Flavonoids. Advances in Research since 1986. Chapman and Hall Ltd., New York, pp. 123.
- Eloff, J.N., 1998. A sensitive and quick method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Medica. 64, 711-713.

- Gelfand, M., Mavi, S., Drummond, R.B., Ndemera, B., 1985. The Traditional Medical Practitioner in Zimbabwe. Mambo Press, Gweru.
- Hoffmann, D., 2003. Medical Herbalism. The Science and Practice of Herbal Medicine. Healing Art press, Vermont, pp. 130-133.
- Huang, K.C., 1993. The Pharmacology of Chinese Herbs. CRC Press Inc., Boca Raton, FL., pp. 63-66.
- Kinghorn, A.D., Balandrin, M.F., 1984. Quinolizidine alkaloids of the Leguminosae:
 Structural types, analysis, chemotaxonomy and biological properties in: Alkaloids:
 Chemical and Biological Perspectives. Volume 2, Pelletier, S.W. (Ed.), Elsevier
 Science, Oxford, UK, 105-149.
- Kite, G.C., Pennington, R.T., 2003. Quinolizidine alkaloid status of *Styphnolobium* and *Cladrastis* (Leguminosae). Biochemical Systematics and Ecology. 31, 1409-1416.
- Koorbanally, N.A., 1997. Extractives from the Amaryllidacea and Fabaceae, MSc dissertation, University of Natal (now UKZN), South Africa.
- Liu, J., Zhu, M., Shi, R., Yang, M., 2003. *Radix sophorae flavescentis* for chronic hepatitis B: a systematic review of randomized trials. American Journal of Chinese Medicine. 31, 337-354.
- Ma, S.C., Du, J., But, P.P.H., Deng, X.L., Zhang, Y.W., Ooi, V.E.C., Xu, H.X., Lee, S.H.S., Lee, S.F., 2002. Antiviral Chinese medicinal herbs against respiratory syncytial virus. Journal of Ethnopharmacology. 79, 205-211.
- Mahato, S.B., Kundu, A.P., 1994. ¹³C NMR spectra of pentacyclic triterpenoids. A compilation and some salient features. Phytochemistry. 37, 1517-1575.

- Mikhova, B., Duddeck, H., 1998. ¹³C NMR spectroscopy of tri- and tetracyclic quinolizidine alkaloids. Compilation and discussion. Magnetic Resonance in Chemistry. 36, 779-796.
- Ohmiya, S., Saito, K., Murakoshi, I., 1988. Lupine alkaloids, in: Cordell, G. (Eds.), The Alkaloids. Academic Press, London, Vol 47, pp. 2-105.
- Pennington, R.T., Stirton, C.H., Schrire, B.D., 2005. Tribe Sophoreae. in: Lewis, G., Schrire,B., Mackinder, B., Lock, M. (Eds.), Legumes of the World. Royal Botanic Gardens,Kew, pp 227-243.
- State Pharmacopoeia Commission of P.R.C., 2000. Pharmacopoeia of the People's Republic of China. Chemical Industry Press, Beijing. 1, 197.
- Tang, W., Eisenbrand, G., 1992. Chinese Drugs of Plant Origin: Chemistry, Pharmacology, and Use in Traditional and Modern Medicine. Springer-Verlag, Berlin, pp. 931-943.
- Wang, Y.H., Li, J.S., Jiang, Z.R., Kubo, H., Higashiyama, K., Ohimiya, S., 2000. Lupine alkaloids from Chinese *Maackia amurensis*. Chemical and Pharmaceutical Bulletin (Japan). 48, 641-645.
- Wiewiorowski, M., Edwards, O.E., Bratek-Wiewiorowska, M.D., 1967. Conformation of the C₁₅ lupine alkaloids. Canadian Journal of Chemistry. 45, 1447-1457.
- Zhu, Y.P., 1998. Chinese Materia Medica: Chemistry, Pharmacology and Applications. Harwood Academic Publishers, Amsterdam, pp. 149.

Chapter 3. Isoflavones from *Calpurnea aurea* subsp. *aurea* and their anticancer activity

Erick Korir¹, Joyce J. Kiplimo¹, Neil R. Crouch^{1,2}, Nivan Moodley³ and Neil. A. Koorbanally^{1*}

¹School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
²Ethnobotany Unit, South African National Biodiversity Institute, PO Box 52099, Berea Road, 4007, Durban, South Africa
³Defence, Peace, Safety and Security (DPSS), Centre for Scientific and Industrial Research (CSIR), Pretoria, South Africa

*corresponding author: Koorbanally@ukzn.ac.za; Tel +2731 260 3189; Fax +2731 260 3091

Abstract

The isoflavones, 4',5,7-trihydroxyisoflavone (**B-1**), 7,3'-dihydroxy-5'-methoxyisoflavone (**B-2**), 7-hydroxy-4',8-dimethoxyisoflavone (**B-3**), 7-acetoxy-4',8-dimethoxyisoflavone (**B-4**) and 3',7-dihydroxy-4',8-dimethoxyisoflavone (**B-5**), a pterocarpan (3-acetoxy-9-methoxypterocarpan) (**B-6**) and a quinolizidine alkaloid (calpurnine) (**B-7**) were isolated from the stem and bark of *Calpurnia aurea*. These isoflavones were screened for *in vitro* anticancer activity against breast (MCF7), renal (TK10) and melanoma (UACC62) human cell lines, where **B-5**, with an added hydroxyl group on the phenyl ring was found to be the most active amongst all the compounds tested, followed by **B-2**, also with a hydroxyl and methoxy group on the phenyl ring but in the 3' and 5' positions and not the 3' and 4' positions as in **B-5**.

Keywords: *Calpurnia aurea*, Fabaceae, 5,6'-dihydroxy-2',6-dimethoxyisoflavone, anti cancer.

3.1 Introduction

Calpurnia aurea (Ait.) Benth. is a shrub to slender tree of up to 15 m tall, widespread along the east coast of Africa, throughout which range it is used in traditional medicine and for various utilitarian purposes. The genus *Calpurnia* E. Mey. is currently assigned to the tribe Podalyrieae of the Papilionaceae subfamily (van Wyk, 2005). It was initially considered to belong to the *Sophora* group of the primitive tribe Sophoreae sensu Polhill (1981) but later studies transferred *Calpurnia* to the tribe Poldalyrieae (Polhill *et al.*, 1994; van Wyk and Schutte, 1995).

It is used by the Shinasha people of Northern Ethiopia to treat amoebiasis and giardiasis while the Amhara people from the same region use the leaves to treat malaria and the seeds to treat hypertension while a combination of the leaves and seeds are used to treat diarrhoea, rabies and diabetes (Giday *et al.*, 2007). The plant has also been used as an insecticide to kill lice (Palmer and Pitman, 1972; Waka *et al.*, 2004), to induce uterine contractions (Desta *et al.* 1994), and to treat coughs, amoebic dysentery, syphilis, leishmaniasis, tapeworm, trachoma, ringworm, scabies, elephantiasis, abscesses and wounds as well as stomach ache, vomiting, headache and eye diseases (Jansen 1981; Abebe, 1986; Asres *et al.*, 2001; Tadeg *et al.*, 2005; Teklehaymanot and Giday, 2007). Both in East and southern Africa, plant extracts are employed in treating wounds infested with maggots (Palmer and Pitman 1972; Kokwaro, 1976), to the extent that its Zulu name is umKhiphampethu, meaning "maggot-extracter". Its widespread application for diverse ethnomedicinal uses has made it a subject for many pharmacological (e.g. Desta *et al.*, 1994) and phytochemical studies.

Pharmocological studies have shown that the methanol extracts of the leaves and stems of *C*. *aurea* have good antibacterial and antioxidant properties (Tadeg *et al.*, 2005; Adedapo *et al.*, 2008), validating its traditional use for a range of microbial infections. Insecticidal activity was also shown by the methanol and water extracts against the rice weevil (*Sitophilus oryzae*) (Louis *et al.*, 2007), in keeping with its ethnobotanical use against lice and maggots. The oil extract of the dried leaves was observed to attract and be toxic to two species of ticks, *Rhipicephalus pulchellus* and *Rhipicephalus appendiculatus*, revealing a potential application as an acaricidal trap bait (Nana *et al.*, 2010; Zorloni *et al.*, 2010).

There are seven *Calpurnia* species (eight taxa) (Beaumont *et al.*, 1999) of which only one, *C. aurea* (syn. *Calpurnia subdecandra* (L'Hérit.) Schweick.) has been investigated for its phytochemical constituents. A literature survey on the species *C. aurea* shows several previous investigations of the plant under subspecies *aurea* and *sylvatica*. However, *C. aurea* subsp. *sylvatica* (Burch.) Brummitt is no longer considered distinct from *C. aurea* subsp. *aurea* and has accordingly been synonymised (Beaumont *et al.*, 1999). The Indian endemic *C. aurea* subsp. *indica* Brummitt, is though, still recognised. Two early phytochemical studies of C. *aurea* subsp. *aurea* reported the isolation of agglutinins from the seeds to antigens A and B of human erythrocytes (Bird, 1957; Potapov, 1968), whilst a third (as syn. *C. subdecandra*) yielded the novel quinolizidine alkaloid, calpurnine (Goosen, 1963). Subsequent investigations reported several more quinolizidine alkaloids, characteristic chemotaxonomic markers for the Fabaceae.

The quinolizidine alkaloids 13-hydroxylupanine and its angelate and tiglate esters and virgiline and its pyrrolecarboxylic acid ester were first isolated from the leaves and twigs of the Ethiopian *C. aurea* subsp. *aurea*, along with the previously reported calpurnine (van Eijk and Radema, 1977). Shortly thereafter, these same compounds as well as calpurmenine and its 13-pyrrolylcarboxyl ester were found in South African material of *C. aurea* (as subsp.

sylvatica) (Radema *et al.*, 1979). A subsequent reinvestigation of the leaves of Ethiopian *C. aurea* subsp. *aurea* (Asres *et al.*, 1986a; 1986b) revealed the presence of calpurmenine and its 13-pyrrolylcarboxyl ester, resulting in a total of seven compounds common to both South African and the Ethiopian chemotypes as well as an additional six alkaloids, epilupanine, lupinine, 3β , 4α , 13α -trihydroxylupanine, 3β , 4α -dihydroxy-13-*O*-(2'-pyrrolylcarbonyl)-lupanine (calpaurine), 4β -hydroxy- 13α -*O*-(2'-pyrrolylcarbonyl)-lupanine (digittine) and 4β , 13α -dihydroxylupanine. Along with the previously isolated *O*-(2-pyrrolylcarbonyl) virgiline, the 2,3-dehydro-*O*-(2-pyrrolylcarbonyl) virgiline was also isolated (Kubo *et al.*, 1984), bringing the total number of quinolizidine alkaloids isolated from *C. aurea* subsp. *aurea* to 15.

Apart from the quinolizidine alkaloids, the flavonoids vicenin-2 (6,8-di- β -D-glucopyranosyl-5,7,4'-trihydroxyflavone), butin (7,3',4'-trihydroxyflavanone) and 3'-hydroxydaidzein (7,3',4'trihydroxyisoflavone) were isolated from the seeds of *C. aurea*, in keeping with flavonoids being the other major class of compounds consistently found in the Fabaceae (de Nysschen *et al.*, 1998).

Since there have no previous reports on the wood and stem bark of *C. aurea*, we have carried out a phytochemical analysis of these components to enable a more complete phytochemical analysis of this species. We report herein the isolation of five isoflavonoids, a pterocarpan and a quinolizidine alkaloid from the stem and bark of *C. aurea* as well as the anticancer activity of the isolated isoflavonoids. Isoflavones and in particular genistein (5,7,4'-trihydroxyisoflavone) are known to possess antitumor effects (Barnes, 1997) by preventing the formation of hormone induced breast cancer (Bruneton, 1995). Since the isoflavones here

isolated from *C. aurea* were all substituted at the 7 and 4' positions, they were ideal candidates for the evaluation of their anticancer activity.

3.2 Results and Discussion

The stem and bark hexane extract yielded the widely studied genistein (4',5,7-trihydroxyisoflavone) (**B-1**) (Wang *et al.*, 1999; Dixon and Ferreira, 2002), 5',7-dihydroxy-3'-methoxyisoflavone (**B-2**) (An *et al.*, 2008; Li *et al.*, 2009), 7-hydroxy-4',8-dimethoxyisoflavone (8-O-methylretusin; isoafrormosin) (**B-3**) (Jurd *et al.*, 1972; Hayashi and Thomson, 1974; Harper *et al.*, 1976; Chen *et al.*, 1983), 7-acetoxy-4',8-dimethoxyisoflavone (**B-4**) and 3',7-dihydroxy-4',8-dimethoxyisoflavone (**B-5**) (Harper *et al.*, 1976; de Oliveira *et al.*, 1978; Albuquerque *et al.*, 1981), along with a pterocarpan, 3-acetoxy-9-methoxypterocarpan (**B-6**) (Al-Ani *et al.*, 1984) and a quinolizidine alkaloid calpurnine (**B-7**) (Asres, *et al.*, 1986a) (Figure 3).

To our knowledge, this is the first report of **B**-4 from a plant source. Other reports contain information on the tri-acetylated 7-hydroxy-4',8-dimethoxyisoflavone (Jurd *et al.*, 1972; Hayashi and Thomson, 1974; Harper *et al.*, 1976; Chen *et al.*, 1983). The NMR data reported in Hayashi and Thomson (1974) for both compounds **B**-3 and **B**-4 are erroneous in that the assignments of the two methoxy resonances must be interchanged (8-OCH₃ should be at $\delta_{\rm H}$ 4.06 and 4'-OCH₃ at $\delta_{\rm H}$ 3.90), since our NOESY data shows that the 4'-methoxy resonance shows a NOESY correlation to the H-3'/5' resonance at $\delta_{\rm H}$ 6.90.

The five isolated isoflavones were either tri- or tetra-substituted at positions 5, 7 and 8 on the A ring and 3', 4' or 5' on the phenyl ring (ring C). Biosynthetically, substitution at the 5 and 7 positions occur readily because of the polyketide pathway, however species within the

Sophoreae have also been popularly substituted at the 7 and 8 positions as well as at the 3' and 4' positions on the phenyl ring (Harper *et al.*, 1976; Albuquerque *et al.*, 1981; Bezuidenhout *et al.*, 1988), consistent with the isoflavones isolated from *C. aurea* in this work. It is highly likely that the isoflavones **B-3-B-5** follow the same biosynthetic pathway and most probable that **B-1** and **B-2** is also linked to this pathway prior to dehydroxylations and demethoxylations taking place en route to **B-3-B-5**. The other isoflavonoid isolated from the seeds, 3'-hydroxydaidzen (de Nysschen *et al.*, 1998), is also hydroxylated at the 7, 3' and 4' positions. Furthermore, the isolation of **B-1**, **B-3** and **B-5** from *Monopteryx inpae* W.A. Rodrigues (Albuquerque *et al.*, 1981) and **B-3** and **B-5** from *Xanthocercis zambesiaca* (Baker) Dumaz-le-Grand (Harper *et al.*, 1976) of the Sophoreae, demonstrate the relatively close relationship of the tribes Podalyrieae and Sophoreae within the subfamliy Papilionoideae.

The anticancer activity of the isoflavonoids **B-2-B-5** are shown in Table 8 in the form of the response parameters GI₅₀, Total growth inhibition (TGI) and LC₅₀, which are interpolated values from the concentration response curves where the net percentage growth is plotted against the concentration of each compound and represents the concentrations of the compounds in μ g/mL at which the net percentage growth is +50, 0 and -50, respectively. Due to insufficient amounts isolated, genistein (**B-1**) was not subject to the anticancer screening.

All the tested compounds exhibited concentration-dependendent inhibition up to 100 μ g/mL, with compounds **B-2**, **B-3** and **B-5** being most active against the melanoma (UACC-62) cell line with GI₅₀ values of 31.01, 40.14 and 27.35 μ g/mL (Table 8). Compounds **B-2** and **B-5** were also active against the breast (MCF-7) cell line with GI₅₀ values of 45.51 and 31.92 μ g/mL. From all the compounds tested, compound **B-5** seemed to have the best overall

activity in all three cell lines having the lowest GI_{50} in each at 45.81, 27.35 and 31.92 µg/mL and was the only compound of those tested to show TGI for all three cancer cell lines at below 100 µg/mL and a TGI for the melanoma (UACC-62) cell line of 52.49 µg/mL.

	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆
B-1		OH		OH	ОН	
B-2	OH		OCH ₃		ОН	
B-3		OCH ₃			ОН	OCH ₃
B-4		OCH ₃			OC(O)CH ₃	OCH ₃
B-5	ОН	OCH ₃			ОН	OCH ₃

Figure 3 Compounds isolated from Calpurnia aurea

Structurally, **B-3-B-5** are all methoxylated at both the 8 and 4' positions with **B-4** being acetylated at C-7 whereas the others are hydroxylated at C-7. **B-5** also contains an extra hydroxyl group at the 3' position on the phenyl ring and this added hydroxyl group resulted in improved anticancer activity. Acetylation at C-7 however led to a loss of activity as seen in

B-4, which was the most inactive of all the compounds tested. **B-2** had a unique substitution pattern to the other three compounds tested, in that it was the only isoflavone not to be methoxylated at C-8 and C-4'. Nevertheless, hydroxylation at C-7 and methoxylation and hydroxylation at each of the *meta* positions on the phenyl ring resulted in better activity than all the other isoflavones tested with the exception of **B-5**.

Compound	concentration-	Line 1 (TK-10)	Line 2 (UACC-62)	Line 1 (MCF-7)
	response	Renal	Melanoma	Breast
	parameters			
B-2	GI ₅₀	50.57	31.01	45.51
	TGI	N/A	60.28	78.40
	LC_{50}	N/A	89.55	N/A
B-3	GI ₅₀	55.44	40.14	69.05
	TGI	N/A	90.41	N/A
	LC_{50}	N/A	N/A	N/A
B-4	GI ₅₀	69.89	53.34	66.19
	TGI	N/A	N/A	N/A
	LC ₅₀	N/A	N/A	N/A
B-5	GI ₅₀	45.81	27.35	31.92
	TGI	91.06	52.49	57.22
	LC ₅₀	N/A	77.62	82.52
Etoposide	GI ₅₀	4.88	0.74	0.57
	TGI	36.77	16.41	N/A
	LC ₅₀	85.38	84.58	N/A

Table 8Growth Inhibition values for compounds B-2-B-5 against TK-10, UACC-62 and
MCF-7 cell lines.

It is reported that isoflavones from soybean also have preventive anticancer activity and that the methylated isoflavones (glycitein, biochanin A and formononetin) have much greater anticancer activity than those without methyl groups (Walle *et al.*, 2007). Studies suggest that isoflavones with methoxy groups appear to have more beneficial qualities than their nonmethylated counterparts and have been shown to be more bioavailable and biologically stable than the hydroxylated isoflavones (Wen *et al.*, 2006). This may account for the anticancer activity shown by the isolates of *C. aurea* in this work as all the tested compounds were methoxylated at some point on the skeletal framework.

3.3 Experimental

General experiment procedures: The melting points were recorded on an Ernst Leitz Wetzler micro-hot stage melting point apparatus. UV spectra were recorded on a Varian Cary UV-VIS spectrophotometer and IR spectra were recorded on a Perkin-Elmer Universal ATR spectrometer. The ¹H, ¹³C and all 2D NMR spectra were recorded using a Bruker Avance^{III} 400 MHz spectrometer at room temperature using either deuterated methanol (CD₃OD) or deuterated chloroform (CDCl₃) as solvent. Specific rotations were measured at room temperature in methanol on a PerkinElmerTM, Model 341 polarimeter with a 10 mm flow tube. For GC-MS analyses, the samples were analysed on an Agilent GC–MSD apparatus equipped with DB-5SIL MS (30 m x 0.25 mm i.d., 0.25 µm film thickness) fused-silica capillary column. Helium (at 2 ml/min) was used as a carrier gas. The MS was operated in the EI mode at 70 eV. The separation, isolation and purification of compounds were carried out by gravity column chromatography using Merck silica gel 60 (0.040-0.063 mm) and monitored by thin layer chromatography (TLC; Merck 20 × 20 cm silica gel 60 F₂₅₄ aluminum sheets).

Plant collection and extraction

The stem and bark of *Calpurnia aurea* (Ait.) Benth. was obtained from a cultivated specimen in Kloof, Durban. A voucher specimen (*N. Crouch 1279*, NH) was deposited at the

KwaZulu-Natal Herbarium, Durban, South Africa for verification purposes. The stem and bark was milled and then extracted separately using a soxhlet apparatus with hexane, dichloromethane, ethyl acetate and methanol successively for 24 hours each. The dry milled stem and bark (651.8 g mass) yielded 3.2 g, 3.4 g, 10.7 g, and 72.1 g extracts for each of the four solvents mentioned above.

Separation and purification

The hexane extract of the stem and bark (3.2 g) was separated successively with 100% hexane and then a hexane : dichloromethane step gradient (10% increments up until 100% dichloromethane), with 20 fractions of 100 mL being collected in each stage off a 4 cm diameter column. Further purifications were carried out in 1 cm diameter columns collecting 5 mL fractions. Fraction 10 was purified further with 15% dichloromethane in hexane to produce 7-acetoxy-4',8-dimethoxyisoflavone (40.1 mg) (**B**-4) in fraction 21-22. Fraction 42 was purified further using the same solvent system to afford 3-acetoxy-9-methoxypterocarpan (42.7 mg) in fractions 7-9.

The dichloromethane extract of the stem and bark (3.40 g) was separated on a 3 cm diameter column sequentially using 1 L each of a dichloromethane:methanol step gradient with 100% dichloromethane, and then 2%, 4%, 6% and 8% methanol in dichloromethane. A total of 50×100 mL fractions were collected with ten fractions being collected for each stage. Subsequent purifications were carried out on 1 cm diameter columns collecting 5 ml fractions. Fraction 8 was purified with 1% methanol in dichloromethane, where fraction 3 was further purified with the same solvent system to afford 7-hydroxy-4',8-dimethoxyisoflavone (**B**-3) (49.6 mg) in fractions 14-17. Fraction 32 of the crude column was also purified with 1% methanol in dichloromethane to produce 3',7-dihydroxy-4',8-dimethoxyisoflavone (**B**-5) (46.7 mg) in

fraction 40-48. Fractions 41-50 of the crude column were combined and purified further with 1% methanol in dichloromethane to produce 3',7-dihydroxy-5'-methoxyisoflavone (**B-2**) (37.4 mg) in fraction 3-7.

TLC analysis of ethyl acetate and methanol extracts had similar components and these extracts were combined and separated with a dichloromethane: ethyl acetate step gradient of 100:0, 90:10, 80:20, 60:40, 40:60, 0:100 in a 3 cm column with a total of 120 fractions being collected (20 x 50 ml fractions for each gradient). Purifications were carried out on 1 cm diameter columns collecting 5 ml fractions. Fractions 12-15 were combined and purified further with 2% methanol in dichloromethane to afford genistein (4',5,7-trihydroxyisoflavone) (**B-1**) (48.9 mg) in fractions 12-15. Fractions 8-10 were combined and purified with 2% methanol in dichloromethane to afford calpurnine (**B-7**) (39.8 mg) in fractions 69-74.

Compounds **B-1-B-7** were identified from their ¹H and ¹³C NMR, IR, UV and MS data as well as their physical characteristics and melting points and verified by comparing the data to those found in the literature.

Anticancer activity

Anticancer screening was carried out using a method developed by the national cancer institute and transferred to the CSIR (South Africa) in 1999 and known as the three cell prescreening method (Fouche *et al.*, 2006; 2008). Breast (MCF-7), renal (TK-7) and melanoma (UACC-62) cell lines were chosen due to their high sensitivity to detect anticancer activity (Fouche *et al.*, 2008). The three cell lines were grown in Roswell Park Memorial Institute 1640 (RPMI 1640) medium containing 5% fetal bovine serum and 2 μ M L-glutamine. The cells were then inoculated into 96-well microtiter plates with densities

ranging between 5,000 and 40,000 cells per well. A volume of 100 μ L of the medium was introduced into the microtiter plates and subsequently incubated at 37°C in a 5:95 (carbon dioxide: air) atmosphere with 100% relative humidity for 24 hours.

The test compounds were dissolved in dimethyl suphoxide (DMSO) and added to the cells at concentrations ranging between 0.001 μ g/mL and 100 μ g/mL. The cells were then incubated for 48 hours at 37 °C in a humidified atmosphere, followed by the fixing of the cells *in situ* with trichloroacetic acid (TCA) and staining with 100 μ L sulforhodamine B (SRB) solution. Unbound dye was removed by washing with 1% acetic acid and air drying the plates. Bound stain was solubilized with 10 μ M trizma base and the optical density was read on an automated plate reader at a wavelength of 540 nm.

The percentage growth of human tumor cells was determined spectrometrically by measuring the difference in optical density of the control (*C*) at the start (T_0) and end of drug exposure (*T*). If $T \ge T_o$ either no effect is experienced or inhibition occurs. Inhibition occurs if T < C and no effect is experienced if T=C (Monks *et al.*, 1991). The concentration-response parameters, GI₅₀ (the concentration at which the growth of the cell is inhibited by 50%) and LC₅₀ (the concentration at which 50% of the cells are killed) are calculated using *T*, T_0 and *C* where GI₅₀ is the concentration at which ($T-T_0$)/($C-T_0$) = 0.5 and LC₅₀ is calculated as ($T-T_0$)/($C-T_0$) = -0.5. The total growth inhibition (TGI) value symbolizes cytostatic activity and refers to the concentration at which total cell growth is inhibited (i.e. $T = T_0$). The calculations of the concentration-response parameters required for plotting the concentration-response curves were performed at the CSIR (Pretoria, South Africa).

3.4 Conclusion

The stem and bark of *C. aurea* was investigated phytochemically for the first time and yielded a quinolizidine alkaloid, calpurnine found in other parts of the plant as well five isoflavones and a pterocarpan. Isoflavones were only found in the seed of *C. aurea* previously and all the isoflavones isolated in this work as well as the pterocarpan were isolated for the first time from this source. These findings show the close chemical relationship between the Podalyrieae and the Sophoreae in that three of the isoflavones were common to both tribes. Furthermore, the isoflavones were shown to have moderate activity against the renal, melanoma and breast cancer cell lines tested against, with the 7-hydroxy-8-methoxy substitution on the chromone ring and 3'-hydroxy-4'-methoxy substitution on the phenyl ring as in compound **B-5** showing the best activity.

Acknowledgements

The authors are grateful to the NRF for a grant holders bursary for funds used throughout the duration of this project.

3.5 References

- Abebe, W., 1986. A survey of prescriptions used in traditional medicine in Gonda region, Northwest Ethiopia: General pharmaceutical practice. Journal of Ethnopharmacology. 18, 147-165.
- Al-Ani, H.A.M., Dewick, P.M., 1984. Isoflavonoid biosynthesis: concerning the aryl migration. Journal of the Chemical Society, Perkin Transactions 1. 12, 2831-2838.
- Albuquerque, F.B., Braz, R.F., Gottlieb, O.R., Magalhaes, M.T., Maia, J.G.S., de Oliveira,A.B., de Oliveira, G.G., Wilberg, V.C., 1981. Isoflavone evolution in *Monopteryx*.Phytochemistry. 20, 235-236.

- An, R.B., Jeong, G.S., Kim, Y.C., 2008. Flavonoids from the heartwood of *Dalbergia* odorifera and their protective effect on glutamate-induced oxidative injury in HT22 cells. Chemical Pharmaceutical Bulletin. 56, 1722-1724.
- Adedapo, A.A., Jimoh, F.O., Koduru, S., Afolayan, A.J., Masika, P.J., 2008. Antibacterial and antioxidant properties of the methanol extracts of the leaves and stems of *Calpurnia aurea*. BMC Complementary and Alternative Medicine. 8, 53-61.
- Asres, K., Gibbons, W.A., Phillipson, J.D., Mascagni, P., 1986a. Alkaloids of Ethiopian *Calpurnia aurea* Subsp. *aurea*. Phytochemistry, 25, 1443-1447.
- Asres, K., Phillipson, J.D., Mascagni, P., 1986b. Two novel minor alkaloids from Ethiopian *Calpurnia aurea* Ssp. *Aurea*. Planta Medica. 302-304.
- Asres, K., Bucar, F., Kartnig, T., Witvrouw, M., Pannecouque, C., de Clercq, E., 2001.
 Antiviral activity against human immunodeficiency virus type 1 (HIV1) and type 2 (HIV
 2) of ethnobotanically selected Ethiopian medicinal plants. Phytotherapy Research. 15, 62-69.
- Barnes, S., 1997. The chemopreventive properties of soy isoflavonoids in animal models of breast cancer. Breast Cancer Research and Treatment. 46, 169-179.
- Beaumont, A.J., Beckett, R.P., Edwards, T.J., Stirton, C.H., 1999. Revision of the genus *Calpurnia* (Sophoreae: Leguminosae). Bothalia. 29, 5-233.
- Bezuidenhout, S.C., Bezuidenhout, B.C.B., Ferreira, D., 1988. α-Hydroxydihydrochalcones and related 1,3-diarylpropan-2-ones from *Xanthocercis zambesiaca*. Phytochemistry. 27, 2329-2334.
- Bird, G. 1957. Hemagglutinins in Calpurnia aurea. Nature. 180, 657.
- Bruneton, J., 1995. Pharmacognosy, Phytochemistry, Medicinal plants. Intercept Limited, Andover, UK.

- Chen, C.C., Chen, Y.L., Chen, Y.P., Hsu, H.Y., 1983. A study on the constituents of *Millettia reticulata* Benth. Taiwan Yaoxue Zazhi. 35, 89-93.
- Desta, B., 1994. Ethiopian traditional herbal drugs. Part III: Anti-fertility activity of 70 medicinal plants. Journal of Ethnopharmacology. 44, 199-209.

Dixon, R.A., Ferreira, D., 2002. Genistein. Phytochemistry. 60, 205-211.

- Fouche, G., Cragg, G.M., Pillay, P., Kolesnikova, N., Maharaj, V.J., Senabe, J., 2008. In vitro anticancer screening of South African plants, Journal of Ethnopharmacology. 119, 455-461.
- Fouche, G., Khorombi, E., Kolesnikova, N., Maharaj, V.J., van der Merwe, M., Nthambeleni, R., 2006. Investigation of South African plants for anticancer activity, Pharmacology. online, 3, 494-500.
- Giday, M., Teklehaymanot, T., Mekonnen, Y., 2007. Medicinal plants of the Shinasha, Agewawi and Amhara peoples in northwest Ethiopia. Journal of Ethnopharmacology. 110, 516–525.
- Goosen, A., 1963. The alkaloids of the Leguminosae. Part I. The structure of calpurnine from *Calpurnia subdecandra*. Journal of the Chemical Society. 3067-3068.
- Harper, S.H., Shirley, D.B., Taylor, D.A., 1976. Isoflavones from *Xanthocercis zambesiaca*.Phytochemistry. 15, 1019-1023.
- Hayashi, T., Thomson, R.H., 1974. Isoflavones from *Dipteryx odorata*. Phytochemistry. 13, 1943-1946.
- Jansen, P.C.M., 1981. Spices, condiments and medicinal plants in Ethiopia, their taxonomy and agricultural significance. Agricultural Research Reports 906. Centre for Agricultural Publishing and Documentation, Wageningen.
- Jurd, L., Stevens, K., Manners, G., 1972. Isoflavones from the heartwood of *Dalbergia retusa*. Phytochemistry. 11, 2535-2540.
- Kokwaro, J.O., 1976. Medicinal plants of East Africa. East African Literature Bureau, Nairobi.
- Kubo, I., Matsumoto, T., Kozuka, M., Chapya, A., Naoki, H., 1984. Quinolizidine alkaloids from the African medicinal plant *Calpurnia aurea*: molluscicidal activity and structural study by 2D NMR. Agricultural and Biological Chemistry. 48, 2839-2841.
- Li, X., Li, J., Wang, D., Wang, W., Cui, Z., 2009. Chromone and flavonoids from *Maackia amurensis*. Asian Journal of Traditional Medicine. 4, 98-103.
- Louis, S., Delobel, B., Gressent, F., Duport, G., Diol, O., Rahioui, I., Charles, H., Rahbé, Y., 2007. Broad screening of the Legume family for variability in seed insecticidal activities and for the occurrence of the A1b-like knottin peptide entomotoxins. Phytochemistry. 68, 521-535.
- Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley,
 J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J., Boyd, M.,
 1991. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Journal of the National Cancer Institute. 83, 757-766.
- Nana, P., Maniania, N.K., Maranga, R.O., Kutima, H.L., Boga, H.I., Nchu, F., Eloff, J.N., 2010. Attraction response of adult *Rhipicephalus appendiculatus* and *Rhipicephalus pulchellus* (Acari: Ixodidae) ticks to extracts from *Calpurnia aurea* (Fabaceae). Veterinary Parasitology. 174, 124-130.
- de Nysschen, A-M., van Wyk, B-E., van Heerden, F.R., 1998. Seed flavonoids of the Podalyrieae and Liparieae. Plant Systematics and Evolution. 212, 1-11.
- de Oliveira, A.B., Iracema, M., Madruga, L.M., Gottlieb, O.R., 1978. Isoflavonoids from *Myroxylon balsamum*. Phytochemistry. 17, 593-595.
- Palmer, E., Pitman, N., 1972. Trees of southern Africa. Volume 2. A. A. Balkema, Cape Town.

- Polhill, R.M., 1981. Sophoreae, in: Polhill, R.M., Raven, P.H., (Eds.), Advances in legume systematics, part 1. Royal Botanic Gardens, Kew, pp 213-230.
- Polhill, R.M., 1994. Classification of the Leguminosae, in: Bisby, F.A., Buckingham, J., Harborne, J.B., (Eds.), Phytochemical dictionary of the Leguminosae, XXXV–LVII. Chapman and Hall, New York.
- Potapov, M.I., 1968. Plant agglutinins to human antigen A. Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya. 1, 59-66.
- Radema, M.H., van Eijk, J.L., Vermin, W., de Kok, A.J., Romers, C., 1979. Alkaloids of South African samples of *Calpurnia aurea*. Phytochemistry. 18, 2063-2064.
- Tadeg, H., Mohammed, E., Asres, K., Gebre-Mariam, T., 2005. Antimicrobial activities of some selected traditional Ethiopian medicinal plants used in the treatment of skin disorders. Journal of Ethnopharmacology. 100, 168-175.
- Teklehaymanot, T., Giday, M., 2007. Ethnobotanical study of medicinal plants used by people in Zegie Peninsula, Northwestern Ethiopia. Journal of Ethnobiology and Ethnomedicine. 3, 12-23.
- van Wyk, B-E., 2005. Tribe Podalyrieae, in: Lewis, G., Schrire, B., MacKinder, B., Lock, M. (Eds.), Legumes of the World. Royal Botanic Gardens, Kew. pp 267-271,
- van Wyk, B-E., Schutte, A.L., 1995. Phylogenetic relationships in the tribes Podalyrieae, Liparieae and Crotalarieae, in: Crisp, M.D., Doyle, J.J., (Eds.), Advances in Legume Systematics, part 7: Phylogeny. Royal Botanic Gardens, Kew. pp 283–308.
- van Eijk, J.L., Radema, M.H., 1977. Some alkaloids of Ethiopian *Calpurnia aurea* and *Cadia purpurea*. Planta Medica. 32, 275-279.
- Waka, E.M., Hopkins, R.J., Curtis, C., 2004. Ethnobotanical survey and testing of plants traditionally used against hematophagous insects in Eritrea. Journal of Ethnopharmacology. 95, 95-101.

- Walle, T., Ta, N., Kawamori, T., Wen, X., Tsuji, P.A., Walle, U.K., 2007. Cancer chemopreventive properties of orally bioavailable flavonoids-methylated versus unmethylated flavones. Biochemical Pharmacology. 73, 1288-1296.
- Wang, H., Nair, M.G., Strasburg, G.M., Booren, A.M., Gray, J.I., 1999. Antioxidant Polyphenols from Tart Cherries (*Prunus cerasus*). Journal of Agricultural and Food Chemistry. 47, 840-844.
- Wen, X., Walle, T., 2006. Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metabolism and Disposition. 34, 1786-1792.
- Zorloni, A., Penzhorn, B.L., Eloff, J.N., 2010. Extracts of *Calpurnia aurea* leaves from southern Ethiopia attract and immobilize or kill ticks. Veterinary Parasitology. 168, 160-164.

Chapter 4. CONCLUSION

The phytochemical analysis of *Sophora velutina* subsp. *zimbabweensis* yielded three novel quinolizidine alkaloids, 6,7-dihydroxylupanine and *N*-methylenehydroxycytisine isolated from fruits and pods, and velutinine from the stem bark along with the known quinolizidine alkaloids, *N*-methylcytisine, thermopsine, 7-hydroxylupanine, cytisine, and triterpenoids, lup-20(29)-ene-3β-ol and 12-oleanen-3-one and methyl-3-(3',4'-dimethoxyphenyl)-2-propenoate.

It is important to note that the antibacterial activity studies against both *E. faecalis* and *P. aeruginosa* only compounds 12-oleanen-3-one and *N*-methylcytisine showed good activity against *E. faecalis* with MIC values of 10.9 and 20.8 μ g mL⁻¹. The other compounds tested exhibited low to moderate antibacterial activity. This activity could be due to the *N*-methyl group in the quinolizidine alkaloid or the 3-keto group in the steroidal ketone. These compounds could make interesting subjects for structure-activity relationship studies with *E. faecalis*. These results could also validate the use of the plant as a mild antibacterial, however cytoxicity tests on the extract would need to be carried out before this becomes common practice as alkaloids are known to be cytotoxic. Derivatisation of the two active compounds to develop them into better antibiotics is a subject for future work.

Previous phytochemical studies reported in the literature on *Calpurnia aurea* was done on the roots and leaves of this plant. Hence we carried out a phytochemical analysis of wood and stem bark of this species. The results of the study resulted in the isolation of five isoflavanoids, a pterocarpan and a quinolizidine alkaloid. Isoflavones were only found in the seed of *C. aurea* previously and all the isoflavones isolated in this work as well as the pterocarpan were isolated for the first time from this source. These findings show the close

chemical relationship between the Podalyrieae and the Sophoreae in that three of the isoflavones were common to both tribes.

When the isoflavones were subjected to a variety of cancer cell lines they generally showed moderate activity against the renal, melanoma and breast cancer cell lines, with the 7-hydroxy-8-methoxy substitution on the chromone ring and 3'-hydroxy-4'-methoxy substitution on the phenyl ring as in compound 3',7-dihydroxy-4',8-dimethoxyisoflavone which had best activity.

SUPPORTING INFORMATION

The supporting information for this thesis is contained in two appendices. Appendix A contains the 1D and 2D NMR data for each of the compounds isolated from *Sophora velutina* as well as their IR, UV and MS data. Appendix B contains the same data for each of the compounds isolated from *Calpurnia aurea*.

Appendix A

NMR, UV, IR and MS data are presented for the following compounds isolated from *Sophora velutina* subsp. *zimbabweensis*

N-methylenehydroxycytisine A1; 7-hydroxylupanine A2; 6,7-dihydroxylupanine A3; 17oxo-thermopsine A4; velutinine A5; N-methylcytisine A6; cytisine A7; methyl-3-(3',4'dimethoxyphenyl)-2-propenoate A8; lupeol A9 (not UV and MS); 12-oleanen-3one A10 (not MS)

Appendix B

NMR, UV, IR and MS data are presented for the following compounds isolated from *Calpurnia aurea*

7,3'dihydroxy-5'-methoxyisoflavone **B1**; 4',5,7-trihydroxyisoflavone **B2**; 7-hydroxy-4',8dimethoxyisoflavone **B3**; 7-acetoxy-4',8-dimethoxyisoflavone **B4**; 3',7-dihydroxy-4',8dimethoxyisoflavone **B5**; 3-acetoxy-9-methoxypterocarpan **B6**; calpurnine **B7**

Appendix A

NMR, UV, IR and MS data are presented for the following compounds isolated from Sophora

velutina subsp. zimbabweensis

N-methylenehydroxycytisine A1

7-hydroxylupanine A2

6,7-dihydroxylupanine A3

17-oxo-thermopsine A4

velutinine A5

N-methylcytisine A6

cytisine A7

methyl-3-(3',4'-dimethoxyphenyl)-2-propenoate A8

lupeol **A9** (not UV and MS)

12-oleanen-3one A10 (not MS)

Appendix B

NMR, UV, IR and MS data for compounds isolated from Calpurnia aurea

- 7,3'dihydroxy-5'-methoxyisoflavone B1
- 4',5,7-trihydroxyisoflavone B2
- 7-hydroxy-4',8-dimethoxyisoflavone **B3**

7-acetoxy-4',8-dimethoxyisoflavone B4

- 3',7-dihydroxy-4',8-dimethoxyisoflavone B5
- 3-acetoxy-9-methoxypterocarpan B6

calpurnine **B7**

SUPPORTING INFORMATION

The supporting information for this thesis is contained in two appendices. Appendix A contains the 1D and 2D NMR data for each of the compounds isolated from *Sophora velutina* as well as their IR, UV and MS data. Appendix B contains the same data for each of the compounds isolated from *Calpurnia aurea*.

Appendix A

NMR, UV, IR and MS data are presented for the following compounds isolated from *Sophora velutina* subsp. *zimbabweensis*

N-methylenehydroxycytisine A1; 7-hydroxylupanine A2; 6,7-dihydroxylupanine A3; 17oxo-thermopsine A4; velutinine A5; N-methylcytisine A6; cytisine A7; methyl-3-(3',4'dimethoxyphenyl)-2-propenoate A8; lupeol A9 (not UV and MS); 12-oleanen-3one A10 (not MS)

Appendix B

NMR, UV, IR and MS data are presented for the following compounds isolated from *Calpurnia aurea*

7,3'dihydroxy-5'-methoxyisoflavone **B1**; 4',5,7-trihydroxyisoflavone **B2**; 7-hydroxy-4',8dimethoxyisoflavone **B3**; 7-acetoxy-4',8-dimethoxyisoflavone **B4**; 3',7-dihydroxy-4',8dimethoxyisoflavone **B5**; 3-acetoxy-9-methoxypterocarpan **B6**; calpurnine **B7**

Appendix A

NMR, UV, IR and MS data are presented for the following compounds isolated from

Sophora velutina subsp. zimbabweensis

N-methylenehydroxycytisine A1

7-hydroxylupanine A2

6,7-dihydroxylupanine A3

17-oxo-thermopsine A4

velutinine A5

N-methylcytisine A6

cytisine A7

methyl-3-(3',4'-dimethoxyphenyl)-2-propenoate A8

lupeol A9 (not UV and MS)

12-oleanen-3one A10 (not MS)

Appendix B

NMR, UV, IR and MS data for compounds isolated from Calpurnia aurea

7,3'dihydroxy-5'-methoxyisoflavone B1

4',5,7-trihydroxyisoflavone **B2**

7-hydroxy-4',8-dimethoxyisoflavone B3

7-acetoxy-4',8-dimethoxyisoflavone B4

3',7-dihydroxy-4',8-dimethoxyisoflavone B5

3-acetoxy-9-methoxypterocarpan B6

calpurnine **B7**

¹H NMR spectrum of N-methylenehydroxycytisine AL

csvx1.svsmb	xxx1/5/9/06	in	cdcl3	
probe=5mmASV	J.			

Pulse Sequence: s2pul

INDEX	FREQUENCY	PPM	HEIGHT
1	16440.483	163.482	6.0
2	15216.691	151.313	8.7
3	13937.202	138.590	23.5
4	11690.277	116.246	24.5
5	10554.988	104.957	21.5
6	8014.322	79.693	13.8
7	7775.515	77.319	48.2
8	7743.471	77.000	50.0
9	7711.426	76.681	49.9
10	5900.153	58.670	27.0
11	5800.968	57.684	24.0
12	5023.509	49.953	27.6
13	3493.768	34.742	25.4
14	2800.998	27.853	28.2
15	2637.724	26.229	27.6

ر. _...ا ا. ا

H .CH₂OH 7'''''' 8 1 12 '11 *...*н . Н n A-1 C₁₂H₁₆N₂O₂ Exact Mass: 220.1212 11 13

DEPT spectrum of N-methylenehydroxycytisine A1

. 60

ppm

COSY spectrum of N-methylenehydroxycytisine A1

Г. --:

NOESY spectrum of N-methylenehydroxycytisine A1

IR spectrum of N-methylenehydroxycytisine A1

UV spectrum of N-methylenehydroxycytisine A1

Mass spectrum of N- methylenehydroxycytisine A1

Pulse Sequence: s2pul

Δ

¹H NMR spectrum of -7-hydroxylupanine A2

a 2 13 eq

Ż

3/5

ax

ax

ppm

hsv337.svma	32-33.7	in	cdc13	
probe=5mmASV	1			

Pulse Sequence: s2pul

.

INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HE IGHT	INDEX	FREQUENCY	PPM	HE TONT
1	2895.553	7.240	23.8	40	649.838	1.625	9.7	79	369.833	0.925	11.0
2	1503.587	3.760	12.7	41	646.358	1.616	9.6				
3	1498.459	3.747	20.1	42	643.611	1.609	9.9				
4	1494.064	3.736	19.0	43	641.597	1.604	9.8	;			
5	1490.584	3.727	41.7	44	637.934	1.595	11.5				
6	1484.175	3.711	48.8	45	632.074	1.580	27.4			OH 17	
7	1479.414	3.699	7.1	46	630.060	1.575	25.7		5		6 15
8	1474.652	3.687	30.0	47	621.636	1.554	33.4		\sim		14
9	1471.356	3.679	9.4	48	619.804	1.550	31.9	. 4	I of	8	
10	1461.833	3.655	10.5	49	612.113	1.531	12.5				
11	1182.195	2.956	12.5	50	604.238	1.511	7.1				
12	1179.631	2.950	12.4	51	595.265	1.488	7.5		21 1 2	🤇 🤊 🖁 H	H 12
. 13	1173.221	2.934	12.5	52	591.602	1.479	14.0	- 1		1.	
14	1171.390	2.929	13.2	53	587.757	1.470	9.1		ö "	н	I
15	1169.009	2.923	12.5	54	582.446	1.456	6.3	1	-		
16	1098.138	2.746	14.2	55	578.783	1.447	12.1	· · [-2	
17	1086.784	2.717	15.5	56	574.754	1.437	9.7	l l	C15H	$I_{24}N_2O_2$	
18	1050.891	2.628	87.7	57	568.528	1.422	16.1	i L	Exact Ma	iss: 264 18	38
19	1044.481	2.612	150.0	58	565.415	1.414	13.2	-			
20	1037.889	2 595	94.1	59	556.442	1.391	13.2	I			
21	994.670	2.487	5.8	60	553.511	1.384	11.7				
22	827.107	2.058	11.1	61	539.227	1.348	5.4				
23	824.177	2.061	16.2	62	529.155	1.323	14.2				
24	815.203	2.038	27.3	63	525.676	1.314	9.1				
25	812.456	2.031	27.5	64	518,717	1.297	9.7				
26 .	803.483	2.009	34.7	65	515.604	1.289	13.0				
27	800.553	2.002	22.4	66	512.490	1.281	7 0				
28	792.862	1.982	8.9	67	505.348	1.264	6.4				
29	789.565	1.974	14.0	68	502.418	1.256	6 1				
30	787.001	1,968	13.9	69	487.402	1.219	8.6				
31	770.703	1.927	13.5	70	483.739	1.210	9.8				
32	764.110	1.911	36.7	71	476.048	1.190	12 0				
33	759.898	1.900	38.2	72	472.751	1.182	13 2				
34	757.701	1.895	50.8	73	464.694	1.162	9.0				
35	750.009	1.875	54.3	74	460.848	1.152	9 Q				
36	744.699	1.862	10.7	75	394.921	0.987	6.1				
37	739.205	1.848	22.0	76	386.314	0.966	13.2				
38	659.177	1.648	6.9	77	382.286	0.956	12.4				
39	654.965	1.638	8.8	78	374.045	0,935	11.4				

.

.

CSV337.5Vma 32-33.7 in cdc13 ncobe-5mmASW	INDEX	FREQUENCY	PPM	HEIGHT
pt obe-biningsw	1	17369.009	172.715	29.8
Pulse Sequence: s2pul	2	7775.515	77.319	48.1
	3	7743.471	77.000	50.0
	4	7711.427	76.681	49.8
	5	6715.760	56.781	14.7
	6	6540.279	65.036	26.1
	7	6378.531	63.427	22.0
	8	5640.746	56.091	23.6
•	9	4178.909	41.554	24.5
	10	3944.679	39.225	25.3
	11	3382.376	33.634	21.9
	12	3304.554	32.860	48.1
	13	2803.287	27.875	41.8
	14	2470.635	24.568	20.9
	15	1718.354	17.087	24.6

24.6

* C-7 could not be detected. assumed to be over lapping with the solvent prak.

¹³C NMR spectrum of -7-hydroxylupanine A2

dsv337.svma 32-33.7 in cdcl3 probe=5mmASW

Pulse Sequence: dept

DEPT spectrum of -7-hydroxylupanine A2

HQsv337.svma 32-33.7 in cdc13 Gradient HSQC expt. with mult.editing probe=5mmASW

HSQC spectrum of -7-hydroxylupanine A2

COSY spectrum of -7-hydroxylupanine A2

cysv337.svma 32~33.7 in cdcl3 1H Cosy~90

HBsv337.svma 32-33.7 in cdc13 Gradient HMBC expt. probe=5mmASW

Pulse Sequence: ghmqc_da

HMBC spectrum of -7-hydroxylupanine A2

NOESY spectrum of -7-hydroxylupanine A2

+

IR spectrum of 7-hydroxylupanine A2

UV spectrum of 7-hydroxylupanine A2

Pulse Sequence: s2pu)

· -

¹H NMR spectrum of 6,7-dihydroxylupanine A3

5

<u>OH</u> 17

Ч

A-3

C15H24N2O3 Exact Mass: 280.1787

11 H 12

5 OH

ΗН

1498

Beg

>9X

1

ppm

17

15 07

ż

3/5

110_{9X}

ġ.

1029

4

.

.

.

INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREDUENCY	РРМ	HEIGHT
1	2895.553	7.240	47.8	40	205 875	1 765	20 /
2	1515.307	3.789	13.9	41	686.097	1.716	15 3
3	1513.109	3.783	12.9	42	670.165	1 676	19
4	1502.671	3.757	25.7	43	657.346	1.644	13
5	1500.290	3.751	21.0	44	641 047	1 603	36
6	1498.276	3.746	21.5	45	630 426	1 576	20 9
7	1474.652	3.687	20.6	46	587.757	1.470	15 6
8	1467.144	3.668	18.2	47	574.388	1.436	21.0
9	1465.313	3.664	21.1	48	574.754	1.437	21.1
10	1461.833	3.655	13.5	49	561.752	1.405	11.2
11	1454.325	3.636	10.9	50	549.116	1.373	10.9
12	1452.494	3.632	12,5	51	517.069	1.293	7.9
13	1166,079	2.916	15.3	52	507.729	1.270	10.6
14	1155.091	2.888	16.8	53	504.250	1.261	16.4
15	1138.793	2.847	16.0	54	494.910	1.237	9.0
16	1127.256	2.819	16.8	55	491.431	1.229	12.8
17	1127,622	2.819	16.9	56	400.049	1.000	11.8
18	1053.455	2.634	62.5	57	396.570	0.992	11.5
19	1051.806	2.630	86.6	58	388.146	0.971	11.4
20	1045.397	2.614	150.0	59	383.934	0.960	10.5
21	1040.452	2.602	77.4				
22	1038.804	2.597	92.6				
23	856,957	2.143	10.0				
24	843,039	2.108	25.9				
25	830.769	2.077	26.9				
26	818.683	2.047	10.7				
27	816.302	2.041	10.4				
28	793.411	1.984	16.2				
29	780.592	1.952	19.3				
30	773.084	1.933	12.5				
31	771.435	1.929	15.4				
32	765.758	1.915	38.5				
33	765.026	1.913	38.6				
34	759.898	1.900	46.5				
35	758.433	1.896	54.1				
36	752.390	1.881	35.9				
37	746.895	1.868	10.7				
38	745.248	1.863	11.7				
39	716.497	1.792	38.2				

.

.

39.4

15.2 13.1

13.1

36.1

20.5 15.6 21.0

21.1

11.2

10.9

7.5 10.6

16.4 9.0

12.8 11.8

11.9 11.4 10.5

1

csv16.sv 25/30.36-40.10 in cdc13 probe=5mmASW

2

160

180

Puise Sequence: s2pul

200

1

INDEX	FREQUENCY	PPM	HEIGHT
1	17365.194	172.677	22.3
2	7775.515	77.319	28.5
3	7743.471	77.000	29.7
4	7711.426	76.681	29.3
5	6692.108	66.545	20.0
6	5690.338	56.584	14.3
7	5644.560	56.129	27.2
8	4147.628	41.243	35.7
9	3933.235	39.112	13.6
10	3306.080	32.875	100.0
11	2914.680	28.983	21.8
12	2784.976	27.693	34.2
13	2501.154	24.871	21.8
14	2421.806	24.082	32.5
15	1719.117	17.095	50.6

¹³C NMR spectrum of 6,7-dihydroxylupanine A3

cysv16.sv 25/30.36-40.16 in cdcl3 1H Cosy-30 probe=SmmASW

Pulse Sequence: relayh

COSY spectrum of 6,7-dihydroxylupanine A3
HQsv16.sv 25/30.36-40.16 in cdc13 Gradient HSQC expt. with mult.editing probe=5mmASW

HSQC spectrum of .6,7-dihydroxylupanine A3

HMBC spectrum of 6,7-dihydroxylupanine A3

HBsv16.sv 25/30.36-40.16 in cdc13 Gradient HMBC expt. probe=5mmASW

NOESY spectrum of ~6,7-dihydroxylupanine A3

1

IR spectrum of 6,7-dihydroxylupanine A3

UV spectrum of 6,7-dihydroxylupanine A3

.

hsv412.svdcmx 4.1.2 in cdc]3 probe=5mmASW

Pulse Sequence: s2pul

. റ 17 15 16 ····· 11 ĒH 12 Ή Ö A-4 C₁₅H₁₈N₂O₂ Exact Mass: 258.1368 1 - 1

¹H NMR spectrum of 17-oxo-thermopsine A4

probe=5nmASW		hsv412.svdcmx probe=5mmASW	4.1.2	in	cdc13	
--------------	--	-------------------------------	-------	----	-------	--

Pulse Sequence: s2pul

c13	INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT
	1	2910.203	7.277	11.9	40	934.970	2.338	10.5
	2	2903.428	7.260	12.6	41	919.770	2.300	8.7
	3	2901.047	7.254	13.4	42	918.122	2.296	5.5
	4	2897.018	7.244	6.8	43	805.131	2.013	5.4
	5	2895.919	7.241	250.0	44	802.018	2.005	10.3
	. 6	2894.454	7.237	24.3	45	799.088	1.998	7.0
	7	2589.178	Б.474	11.9	46	791.580	1.979	6.1
	8	2587.896	6.471	14.1	47	788.833	1.972	10.3
	9	2580.204	6.452	11.8	48	785.536	1.964	8.2
	10	2578.739	6.448	13.2	49	780.409	1.951	5.4
	11	2510.798	6.278	10.5	50	774.549	1.937	5.9
	12	2509.516	6.275	10.9	51	592.140	1.731	6.3
	13	2504.022	6.261	11.1	52	683.716	1.710	7.4
	14	2502.557	6.257	10.7	53	664.854	1.662	7.4
	15	1833.586	4.585	5.4	54	649.838	1.625	15.2
	16	1831.388	4.579	5.2	55	646.724	1.617	17.6
	17	1822.232	4.556	5.4	56	643.428	1.609	19.3
	18	1820.400	4.552	. 5.8	57	637.568	1.594	15.8
	19	1818.203	4.546	5.6	58	633.905	1.585	20.7
	20	1697.887	4.245	10.1	59	630.609	1.577	19.0
	21	1682.138	4.206	13.5	60	625.481	1.564	12.0
	22	1574.458	3.937	11.9	61	622.002	1.555	14.1
	23	1568.048	3.921	12.5	62	613.395	1.534	6.2
	24	1558.709	3.897	9.7	63	609.732	1.525	5.4
	25	1552.299	3.881	9.9	64	565.232	1.413	5.7
	26	1448.098	3.621	6.8	65	553.145	1.383	5.3
	27	1445.352	3.614	11.2	66	491.614	1.229	71.1
	28	1442.788	3.608	12.1	67	342.546	0.856	11.0
	29	1439.858	3.600	5.9	68	335.404	0.839	5.4
	30	1440.224	3.601	6.0	69	331.559	0.829	5.2
	31	1332.544	3.332	5.2				
	32	1323.754	3.310	6.5				
	33	975.991	2.440	7.1				
	34	972.328	2.431	6.2				
	35	963.721	2.410	5.9				
	36	960.974	2.403	5.7				
	37	950.719	2.377	9.2				
	38	<u>947.972</u>	2.370	10.6				
	39	937.717	2.345	7.9				

Ť

CSV412.SVdCmX	4.1.2	in	cdc13	
probe=5mmASW				

Pulse Seguence: s2pul

¹³C NMR spectrum of 17-oxo-thermopsine A4

COSY spectrum of 17-oxo-thermopsine A4

HSQC spectrum of 17-oxo-thermopsine A4

HMBC spectrum of 17-oxo-thermopsine A4

Pulse Sequence: noesy_da

NOESY spectrum of 17-oxo-thermopsine A4

F1 (ppm)

IR spectrum of 17-oxo-thermopsine A4

UV spectrum of 17-oxo-thermopsine A4

Mass spectrum of 17-oxo-thermopsine A4

hsv31.svsd 12+14/2/5/31 in cdc13 probe=5mmASW

Pulse Sequence: s2pul

.

¹H NMR spectrum of velutinine A5

hsv31.svsd l2-14/2/5/31 in cdcl3 probe≃5mmASW

Pulse Sequence: s2pul

.

INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT
1	2952.323	7.382	3.3	40	1391.878	3.480	5.4
2	2943.899	7.361	1.2	41	1386.750	3.467	4.8
3	2941.885	7.356	15.8	42	1384.736	3.462	6.1
4	2933.451	7.335	16.5	43	1379.974	3.450	5.7
5	2897.201	7.244	4.3	44	1375.396	3.439	3.3
6	2895.553	7.240	150.0	45	1375.762	3.440	3.4
7	2895.187	7.239	129.9	46	1374.114	3.436	3.7
8	2894.088	7.236	6.3	47	1368,987	3.423	3.1
9	2839.332	7.099	3.2	48	623.101	1.558	68.9
10	2678.911	6.698	25.1	49	492.529	1.232	13.9
11	2615.914	6.541	12.6				
12	2613.351	6.534	11.5				
13	2607.490	6.520	12.2				
14	2604.927	6.513	11.4				
15	2575.626	6.440	3.5				
16	2572.147	6.431	3.4			16	
17	2569.400	6.424	5.2		5 3	19	, <u>14</u>
18	2564.821	6.413	23.0		100	< `Ņ	- 1
19	2558.229	6.397	16.6		46 💙	28	<u> </u>
20	2555.848	6.391	15.1		н н		
21	2360.998	5.903	23.1		N.	10	1 12
22	2359.533	5.900	28.4		゜゙゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚	₩ ⁹ • • H	
23	2349.827	5.875	28.1			11.	
24	2348.729	5.873	23.3		Ь Н	н	
25	2182.813	5.458	11.6				
26	2175.855	5.440	11.9			A-3	
27	1973.863	4.935	9.3		C ₁₅ H	$12N_2O_4$	
28	1687.815	4.220	9.1		Exact Ma	ss: 284.079	7
29	1682.870	4.208	9.7				
30	1676.827	4.193	9.6				
31	1671.699	4.180	5.7				
32	1582.332	3.956	3.6				
33	1498.825	3.748	30.9				
34	1458.354	3.646	10.5				
35	1447.366	3.619	21.8				
36	1439.675	3.600	5.0				
37	1436.378	3.591	12.9				
38	1428.687	3.572	3.4				

3.5

39

1429.053 3.573

.

5.4

4.8 6.1 5.7 3.3 3.4 3.7 3.1 68.9 13.9

-

.

¹³C NMR spectrum of velutinine AS

COSY spectrum of velutinine A5

HSQC spectrum of velutinine AS

Pulse Sequence: ghmqc_da

HMBC spectrum of velutinine A6

HBsv31.svsd 12-14/2/5/31 in cdcl3 Gradient HMBC expt. probe=5mmASW

HMBC spectrum of velutinine A5

NOsv31.svsd 12-14/2/5/31 in cdc13 NOESY expt. mix=1sec probe=5mmASW

Pulse Sequence: noesy_da

NOESY spectrum of velutinine A5

.

F1 (ppm)

.

IR spectrum of velutinine AS

UV spectrum of velutinine A5

Mass spectrum of velutinine AS

hsv411.svd cmx	4.1.1	in	cdc13	
probe=5mmASW				

.

Pulse Sequence: s2pul

INDEX	FREQUENCY	РРМ	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	РРМ	HEIGHT
1	2913.133	7.284	9.0	40	958.960	2 398	12 6	79	621 241	1 570	0.4
2	2905.076	7.264	26.0	41	902 922	2 258	12.0	7 J 7 D	031.341	1.5/9	9.4
3	2900.864	7.253	8.3	42	896.147	2 241	10.0	00	500.473	1.400	10.1
4	2898.300	7.247	25.8	43	894.132	2 236	21.2	90	3/3.030	1.434	9.7
5	2895.553	7.240	165.4	44	885.342	2 214	10 4	02	400.007	1.222	64.5
6	2889.327	7.224	18.2	45	883.327	2.209	28.0	03	339.010	0.849	11.5
7	2580.387	8.452	8.0	46	870.875	2.178	15 8				
8	2576.542	6.442	7.1	47	841.940	2.105	13.9				
9	2575.260	6.439	7.9	48	837.179	2.093	250.0				
10	2572.330	6.432	8.2	49	817.401	2.044	8.3				
11	2566.653	6.418	19.6	50	802.384	2.006	10.8				
12	2565.371	6.414	20.0	51	799.637	1.999	11.5				
13	2557,679	6.395	16.8	52	796.158	1.991	11.1				
14	2556.214	6.392	17.5	53	786.635	1.967	12.8				
15	2391.581	5.980	14.2	54	783.156	1.958	11.7			- 11	14
16	2385.538	5.965	28.9	55	769.970	1.925	11.1		5	Ä	CH ₃
17	2384.439	5.962	28.8	56	760.265	1.901	13.4		~ /	N ₁	
18	2378.762	5.948	16.8	57	747.079	1.868	12.9	4 fí	7.7	1 8 1	" (
19	2377.297	5.944	16.5	58	741.219	1.853	11 1		0	E	
20	1611.633	4.030	15.4	59	739.205	1.848	12 0		N. 10	· · · · · · · · · · · · · · · · · · ·	
21	1596.250	3.991	25.0	60	737.556	1.844	13.1	3		9	
22	1555.962	3.891	16.9	61	735.908	1.840	14.1			/	
23	1549.003	3.873	16.5	62	734.260	1.836	12 1		" н "	Н	
24	1540.396	3.852	10.1	63	732.795	1.832	10.3		0	ć	
25	1533.620	3.835	10.5	64	728.217	1.821	9.3		A-0	0	
26	1164.065	2.911	15.7	65	726.569	1.817	12.8		CH.J	0.1	
27	1161.501	2.904	16.9	66	724 921	1.813	15 4		Evact Mase:	204 1262	
28	1149.598	2.874	12.7	67	723.272	1.808	18 5		LACT WIGS	204.1205	
29	1146.118	2.866	14.2	68	721.624	1.804	15 7				
30	1143.921	2.860	11.6	69	719.976	1.800	12 9				
31	1138.427	2.847	13.4	70	718.328	1.796	9.5				
32	1128.904	2.823	13.4	71	704.044	1.760	8.1				
33	1127.439	2.819	13.2	72	688.844	1.722	20.4				
34	1125.608	2.814	12.1	73	686.463	1.716	25.1				
35	1118.282	2.796	13.8	74	684.083	1.710	20.2				
36	1116.634	2.792	13.7	75	673.461	1.684	18.9				
37	1115.169	2.788	12.5	76	647.640	1.619	7.6				
38	1018.294	2.546	8.9	77	644.344	1.611	7.8				
39	1007.123	2.518	9.3	78	636.652	1.592	8.7				

.

Pulse Sequence: s2pul

csv411.svd cmx 4.1.1 in cdc13 INF probe=5mmASW

Pulse Sequence: s2pul

INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT	
1	16459.557	163.672	4.8	40	2804.813	27.891	31.6	
2	16449.639	163.573	9.9	41	2621.702	26.070	5.8	
3	16271.105	161.798	6.2	42	2549.220	25.349	43.6	
4	15224.320	151.389	4.5	43	2510.309	24.962	9.2	
5	14001.291	139.227	6.9	44	2508.020	24.939	9.6	
6	13967.721	138.893	9.2	45	2279.132	22.663	4.9	
7	13940.254	138.620	29.7	46	2064.739	20.531	8.8	
8	13871.587	137.937	5.1	47	2053.295	20.418	10.1	
9	12707.306	126.360	5.9	48	1970.895	19.598	6.9	
10	11887.884	118.211	5.8					
11	11734.529	116.687	33.2					
12	10928.077	108.667	4.8					
13	10709.107	106.490	4.9					
14	10526.759	104.677	24.9					
15	7775.515	77.319	237.1					
16	7764.071	77.205	15.4					
17	7743.471	77.000	250.0					
18	7711.426	76.681	248.4					
19	6383.871	63.480	5.3					
20	5311.390	62.760	18.3					
21	6278.582	62.433	37.3					
22	6245.775	62.107	32.9					
23	5094.464	50.659	7.0					
24	5021.220	49.930	36.0					
25	4922.797	48.952	5.1			11	14	
26	4641.264	46.152	35.5		5	\sim		
27	4457.390	44.324	4.6			N.	12	
28	4407.798	43.831	6.4		41 💦 7	~~_ *	-	
29	4338.368	43.140	5.7		Ŭ I	ミノ	,	
30	4322.346	42.981	6.7		K N I	· · · · · ·	5	•
31	3946.205	39.241	5.2		ドントン	9		
32	3557.857	35.379	27 0			14		
33	3333.546	33.148	7 2			Ή		
34	3254,198	32.359	18.2			A-6		
35	3225.205	32.071	5.9					
36	3206,894	31.889	4.6		Cont	ı∡N₂O		
37	3054.302	30.372	5 7		Exact Mas	\$ 204 126	3	
38	2983.346	29.666	16 6					
39	2946.724	29.302	4.9					

4.9

.

2946.724 29.302

.

.

Pulse Sequence: relayh

COSY spectrum of N-methylcytisine A6

F1 (ppm)

Z

8-

HSQC spectrum of N-methylcytisine A6

HMBC spectrum of N-methylcytisine A6

.

otuur--- -

NOs∨411.svd cmx 4.1.1 in cdcl3 NOESY expt. mix=1sec probe≈5mmASW

Pulse Sequence: noesy_da

NOESY spectrum of N-methylcytisine A6

IR spectrum of N-methylcytisine A6

UV spectrum of N-methylcytisine A6

Mass spectrum of N-methylcytisine A6

hsv12c.svmld 30-33/12C in cdc13 probe=5mmASW

.

Pulse Sequence: s2pul

÷

¹H NMR of cytisine A7

hsv12c.svmld 30-33/12C in cdcl3 probe=5mmASW

Pulse Sequence: s2pul

.

TNDÉX	FREQUENCY	PPM	HEIGHT	INDEX
1	2915.880	7.291	19.0	40
2	2908.921	7.273	19.5	41
3	2906.907	7.268	19.8	42
4	2899.948	7.251	20.8	
5	2895.553	7.240	60.0	
6	2575.443	6.440	19.3	
7	2573.978	6.436	20.0	
8	2566.286	6.417	18.6	
9	2565.004	6.414	18.7	
10	2395.244	5.989	19.0	
11	2393.962	5.986	19.0	
12	2388.285	5.972	18.8	
13	2387.003	5.968	18.1	
14	1648.259	4.121	22.1	
15	1632.693	4.082	30.6	
16	1559.075	3.898	13.3	
17	1557.976	3.896	13.1	
18	1552.299	3.881.	13.8	
19	1551.200	3.879	12.9	
20	1543.326	3.859	9.6	
21	1542.227	3.856	9.3	
22	1536.733	3.842	9.7	
23	1535.634	3.840	9.1	
24	1244.092	3.111	9.2	
25	1231.640	3.080	15.6	
26	1224.314	3.061	11.6	
27	1221.934	3.055	12.4	
28	1212.228	3.031	36.1	
29	1209.847	3.025	36.2	
30	1201.973	3.005	32.4	
31	1200.691	3.002	33.3	
32	1199.592	2.999	35.0	
33	1189.520	2.974	13.9	
34	1188.238	2.971	14.9	
35	1187.139	2.968	15.1	
36	1156.190	2.891	14.5	
37	1154.176	2.886	13.9	
38	926.912	2.318	9.5	
39	786.269	1.966	9.1	

.

NDEX	FREQUENCY	РРМ	HEIGHT
40	776.929	1.943	31 6
41	773.816	1.935	49.1
42	770.703		25.0

A-7 C₁₁H₁₄N₂O Exact Mass: 190,1106

....

COSYspectrum of cytisine A7

HSQC spectrum of cytisine A7

HMBC spectrum of cytisine A7

NOsv12c.svmld 30-33/12C in cdc13 NOESY expt. mix=1sec probe=5mmASW

NOESY spectrum of cytisine A7

IR spectrum of cytisine A7

Mass spectrum of cytisine A7

¹H NMR spectrum of methyl-3-(3',4'-dimethoxyphenyl)-2-

propenoate A8

csvolsvsu 12+14/1/0 in cacia probe=5mmASW

Pulse Sequence: s2pul

INDEX	FREQUENCY	PPM	HEIGHT .
1	16863.164	167.685	7.4
2	15195.328	151.100	6.0
3	15001.535	149.173	6.9
4	14560.543	144.788	20.2
5	14457.543	143.764	4.8
6	12804.965	127.331	8.7
7	12549.373	124.789	5.5
8	12329.640	122.604	26.1
9	11730.714	116,649	4.6
10	11610.929	115.457	17.4
11	11379.751	113.159	4.7
12	11160.781	110.981	22.5
13	11087.536	110.253	5.6
14	11016.581	109.547	20.3
15	7775.515	77.319	197.4
16	7764.071	77.205	12.9
17	7743.471	77.000	200.0
18	7711.426	76.681	192.5
19	5627.775	55.962	25.8
20	5617.856	55.863	29.3
21	5192.123	51.630	17.0
22	5167.708	51.387	4.0
23	2985.635	29.689	15.8

propenoate A8

cysv6.svsd 12-14/1/6 in cdcl3 1H Cosy-90 probe=5mmASW

COSY spectrum of methyl-3-(3',4'-dimethoxyphenyl)-2-

propenoate A8

propenoate A8

propenoate A8

IR spectrum of methyl-3-(3',4'-dimethoxyphenyl)-2-propenoate A8

UV spectrum of methyl-3-(3',4'-dimethoxyphenyl)-2-propenoate A8

Mass spectrum of methyl-3-(3',4'-dimethoxyphenyl)-2-propenoate A8

Pulse Sequence: s2pul

ġ

· 8

7

23 30

19

3

21

2

1200

16ax

1

- 25

27

26

24

,28

122.00 9

ppm

4

- 5

6

INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREAMENCY	DDM	HETCUT
1	2895.544	7.240	10.7	40	601.848	1 505	9.8	70	100 000		REIGHT
2	1865.807	4.665	17.5	41	598.369	1.496	8 5	90	423.003	1.059	5.3
3	1863,426	4.659	19.8	42	595.072	1.488	7.6	81	413.200	1.048	4.5
4	1819.292	4.549	5.0	43	591.959	1.480	10.3	82	411.211	1.028	5.4
5	1818.010	4.546	14.9	44	589.395	1 474	12 0	89	400.003	1.015	5.9
6	1816.728	4.543	18.9	45	587.564	1.469	7.8	84	401.000	1.004	150.0
7	1815.630	4.540	18,2	46	584.817	1 462	6.7	85	337.110	0.333	12.8
8	1814.165	4.536	14.8	47	579.140	1.448	10 1	BE	394.303	0.986	7.4
9	1812.883	4.533	5.7	48	576.576	1 442	11 /	87	307.307	0.363	6.7
10	1272.468	3.182	10.6	49	574.562	1 437	9 7	89	305.023	0.963	7.8
11	1267.340	3.169	9.2	50	571.998	1.430	8 2	90	303.3/3	0.959	8.0
12	1261.114	3.153	12.8	51	567.603	1 419	4.9	00	300.020	0.952	7.9
13	1256.169	3.141	11.4	52	561 010	1 / 03	4.3	. 50	378.539	0.942	130.9
14	949.245	2.373	4.4	53	558 630	1 207	3.3	91	367.809	0.920	105.5
15	943,934	2.360	7.4	54	553 685	1 984	0.5	92	367.259	0.918	107.4
16	938.074	2.346	7.7	55	552 770	1 280	10.0	93	361.033	0.903	5.6
17	932.946	2.333	4.3	56	545 444	1.302	10.3	94	352.609	0.882	8.5
18	927.086	2.318	4.1	57	549 979	1 260	53.3	80	348.214	0.871	11.0
19	759.156	1.898	4.8	58	538 660	1 947	24.8	30	342.171	0.856	5.2
20	757.508	1.894	4.1	59	599 959	1 224	10.9	97	339.607	0.849	6.0
21	754 578	1.887	5.6	60	530,330	1 004	34.8	98	335.395	0.839	5.2
· 22	746 154	1.866	5 9	61	525.329 525 300	1.324	8.4	99	321.477	0.804	105.9
23	662 281	1 656	97.2	60	JZJ.300	1.313	10.2	100	305.179	0.763	107.9
24	661 731	1.655	97 1	62	522.004	1.305	15.8	101	294.008	0.735	142.4
25	652.209	1 631	37.1	64	519.440	1.239	9.1	102	268.553	0.671	6.4
26	650.927	1 628	. 42.0	66	518,158	1.296	7.8	103	266.721	0.667	8.1
27	647 264	1 618	41.1	60	515.961	1.290	6.2	104	257.565	0.644	9.9
28	642 503	1 607	10 4	00	514.862	1.287	5.8	· · · · · ·		_	
29	638 657	1 597	10.4	67	511.382	1.279	7.7				29
30	634 811	1 587	0.0	00	510,284	1.276	. 7.7				
31	631 332	1 579	2.0	03	506,987	1.268	9.9			1	10 01
32	629 684	1 574	19 0	70	505.705	1.264	10.5			30 2	······
33	626 204	1 566	10.1	71	504,606	1.262	9.7				
34	621 809	1 555	5 1	72	494,351	1.236	29.3			<u> </u>	18 22
35	617 597	1 544	3.1	73	491.604	1.229	41.6		10	\sim	\sim
36	615 034	1 598	7.0 e e	74	484.096	1.210	8.8		25	26 1	3 17
37	613.752	1 525	0.3	73	480.250	1.201	10.6		1 9		4 2
38	605 877	1 515	0.4 6 7	70	4/1.460	1.179	11.8	2,	$\sim \sim$		16
39	604 419	1 511	0.7	70	407.981	1.170	8.0		Ī	T8 Ξ	15
55	uu4.412	1.211	5.5	78	459.740	1.150	9.5	3			1.5

.

1

.

.

lupeol

.

Pulse Sequence: s2pul

Pulse Sequence: s2pu}

INDEX	FREQUENCY	PPM	HEIGHT
1	15179.280	150.941	15.7
2	10992.904	109.312	30.2
3	7941.053	78.965	40.2
4	7775.490	77.319	23.2
5	7743.445	77.000	24.2
6	7711.401	76.681	23.4
7	5556.794	55.256	36.7
8	5068.498	50.401	41.0
9	4853.343	48.261	46.7
10	4822.824	47.958	35.0
11	4321.558	42.973	26.4
12	4303.246	42.791	23.8
13	4102.587	40.796	20.5
14	4020.187	39,976	44.1
15	3904.980	38.831	31.1
16	3888.958	38.671	41.1
17	3822.580	38.011	46.6
18	3734.076	37.131	26.0
19	3575.380	35.553	47.6
20	3443.387	34.241	41.2
21	2997.817	29.810	36.0
22	2984.847	29.681	12.2
23	2812.417	27.966	43.6
24	2756.721	27.413	50.0
25	2753.669	27.382	41.4
26	2524.017	25,099	37.0
27	2101.336	20.895	45.8
28	1938.825	19.279	15.2
29	1839.640	18.293	42.2
30	1808.358	17.982	31.5
31	1619.144	16.101	35.2
32	1603.884	15.949	28.8
33	1543.610	15.349	34.8
34	1460.447	14.523	25.5

ЛГЪ

110

100

90

80

70

.

DEPT spectrum of lupeol A9

60

50

4 በ

20

10

ppm

3 O.

lupeol

COSY spectrum of lupeol A9

HSQC spectrum of lupeol A9

lupeol Gradient KMBC expt. probe≖5mmASW

HMBC spectrum of lupeol A9

NOESY spectrum of lupeol A9

IR spectrum of lupeol A9

Pulse Sequence: s2pul

.

¹H NMR spectrum of 12-oleanene-3-one A10

INDEX	FREQUENCY	РРМ	HE TGHT	INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT	
1	2896.652	7.243	5.6	40	705.509	1.764	5.1	79	483.922	1.210	87	
2	2895.553	7.240	124.5	41	706.058	1.765	5.1	80	481.908	1.205	9.8	
3	2077.697	5.195	6.2	42	701.663	1.754	5.1	81	477.330	1.194	6.5	
4	2074.035	5.186	10.5	43	671.630	1.679	7.3	82	474.216	1.186	8.1	
5	2070.372	5.177	6.2	44	658.261	1.646	18.7	83	471.286	1.178	5.3	
6	1028.549	2.572	3.7	45	652.218	1.631	7.2	84	448.578	1.122	78.2	
7	1021.224	2.553	4.3	46	646.907	1.618	7.2	85	443.084	1.108	5.2	
8	1017.378	2.544	4.3	47	644.527	1.612	8.3	86	440.704	1.102	7.6	
9	1012.617	2.532	6.0	48	640.681	1.602	6.6	87	436.858	1.092	6.9	
10	1010.053	2.526	4.6	49	617.973	1.545	15.4	88	433.562	1.084	11.8	
11	1005.292	2.514	6.3	50	613.944	1.535	14.4	89	429.716	1.074	110.2	
12	1001.446	2.504	6.9	51	603.140	1.508	14.2	90	423.123	1.058	17.2	
13	994.304	2.486	5.8	52	600.759	1.502	9.4	91	420.193	1.051	84.6	
14	951.818	2.380	5.1	53	596.547	1.492	9.1	92	413.967	1.035	114.8	
15	948.155	2.371	6.4	54	594.716	1.487	. 10.0	93	409.572	1.024	9.2	
16	945.042	2.363	6.7	55	592.335	1.481	13.3	94	404.994	1.013	17.7	
17	941.379	2.354	6.3	56	590.687	1.477	10.4	95	399.866	1.000	100.8	
18	936.069	2.341	4.1	57	588.123	1.471	7.8	96	393.456	0.984	10.1	
19	932.223	2.331	4.7	58	583.545	1.459	8.7	97	391.625	0.979	8.7	
20	929.110	2.323	. 4.3	59	576.403	1.441	5.5	98	383.567	0.959	4.5	
21	925.447	2.314	4.0	60	573.106	1.433	5.7	99	381.004	0.953	5.3	
22	854.759	2.137	4.1	61	566.697	1.417	10.6	100	376.509	0.942	9.7	
23	835.164	2.088	9.5	62	562.485	1.406	10.9	101	367.818	0.920	16.5	
24	792.129	1.981	6.4	63	553.511	1.384	13.1	102	357.563	0.894	4.9	
25	787.551	1.969	7.4	64	549.849	1.375	15.9	103	349.322	0.873	3.8	
26	782.973	1.958	5.4	65	543.439	1.359	8.4	104	340.715	0.852	200.0	
27	779.310	1.949	10.4	66	540.876	1.352	9.5	105	333.573	0.834	20.0	
28	776.380	1.941	6.6	67	537.396	1.344	8.5	106	327.530	0.819	110.2	
29	774.182	1.936	5.7	68	534.283	1.336	8.0	107	323.501	0.809	12.3	
30	767.773	1.920	10.4	69	527.141	1.318	10.4	108	315.443	0.789	4.8	
31	765.026	1.913	7.9	70	523.845	1.310	11.7	109	313.612	0.784	5.1	
32	760.448	1.901	4.9	71	521.098	1.303	11.8	110	311.598	0.779	5.6	
33	756.602	1.892	8.4	72	518.351	1.296	8.7	111	309.400	0.774	4.8	
34	753.122	1.883	7.8	7,3	513.589	1.284	7.9	112	290.171	0.726	7.6	
35	749.643	1.874	8.4	74	511.392	1.279	7.1					
36	747.079	1.868	7.9	75	507.546	1.269	7.9					
37	743.417	1.859	6.1	76	501.686	1.254	6.4					
38	739.937	1.850	5.4	77	492.163	1.231	49.4					
39	736.091	1.841	4.9	78	487.036	1.218	12.7					

hsv682.svml 68.2 in cdcl3 probe=5mmASW

.

.

.

Pulse Sequence: s2pul

.

•

csv682.svml 68.2 in c nrobe≖5mmASW	cdc13	INDEX	FREQUENCY	РРМ	HEIGHT						
p1000-0111100w		1	21913.617	217.906	6.2						
Pulse Sequence: s2pul	i	2	14608.951	145.269	8.1						
		3	7774 789	121.483	14.5						
		5	7764.020	77 205	143.3 9 A						
		6	7742.647	76.992	5.4 150 D						
		7	7711.335	76.680	143.6						
		8	5558.251	55.270	15.7						
		9	4772.989	47.462	7.7						
		10	4754.861	47.282	17.7		i,				
		11	4710.365	46.839	21.2						
		19	4701.302	40.749	19.1						
		14	3998 439	41.033	10.7			•	÷ ÷		
		15	3949.823	39.276	19 9						
		16	3728.170	37.072	21.2				20		
		17	3686.147	36.655	9.8				30/111	29	
		18	3488.389	34.688	18.7					×	
		19	3438.950	34.196	20.3		1		19	20 21	
		20	3349.959	33.312	20.0				12 18		
		21	3268-384	32.500	10.0					17 22	
		23	3232.120	32.140	20.5			25	26	\mathbf{K}	
		24	2984.932	29 682	13.5			1		28	
		25	2856.389	28.404	19.4					16	
		26	2704.775	26.896	21.1			10	18 ≜ 15		
		27	2659.456	26.445	19.7			3	27		
		28	2624.024	26.093	16.0			5		l l	
		29	2600.128	25.855	12.1			June .	6		
		30	2379.299	23.659	19.0			23 24	A-10		
		32	2375.003	23.627	21.8		1	24	C ₃₀ H ₄₈ O		
		33	1973 896	21.400	20.8			f	Lxact Wass: 424.3 /05		
		34	1679.732	16.703	21.4						
		35	1529.766	15.212	15.6						
									<i>h</i> .		
									7 6 22	24 6	
									18 19 11 11		
					12			5		26.25	
.3			1.3						<i>4</i>		
					}		N.				
We will see a splitter in the star of some star and a decision of the second star	ويصفنا سرحار يتفتر إصاريان التقالا أدفا	الحرقال استرطع الالتقاد	and the second second second	سرار بيغور فرد والمخ أأقر تعارفهما	bush La gin and la serie	والمراجع والمتعارية التنابية والمراجع والمتقا المتقار والم	A second second second second				
्य तत्त्व व व्यव स्थित स्थान प्रमान का व्यवस्थ स्थान के स 	a na ang pangang panga Pangang pangang	And and Michael Sola		بدأت يعيد المناطرة				स्ति । स्ति विश्व मित्र का विश्व में स्विति का सित्र के स्विति के स्वित के स्वित के स्वित के स्वित के स्वित के स्वित में स्वित के स्व स्वित के स्वित के स्व			
	- 		<u></u>			┍ ╺╔╶╠╶╕╶┍╶┍╶┨╺╸┎┈╒╺┥╸╽			┑╴╷╶╻╶╻╶╓╶╓╴┍╶╻╶╷╴┍	<u>┍╺┲┈┢╌┎╶╻╶┯╼┲═┲╌</u> ╍	
200	180	160	• 1	40	120	100	80	6 በ	40	20	nnm
										<u>د</u> ۵	րիա

¹³C NMR spectrum of 12-oleanene-3-one A 10

κ.

dsv682.svml 68.2 in cdcl3 probe=5mmASW

.

Pulse Sequence: dept

والأخر وفالانتفاع والهو أجط والماح

. 30/11/11 29 وريدونها والجرور 12 18 13 25 26 1 14 16 8 10 15 3 111111 23 A-10 C₃₀H₄₈O Exact Mass: 424.3705 24

مقعان

DEPT spectrum of 12-oleanene-3-one A 10
Pulse Sequence: relayh

COSY spectrum of 12-oleanene-3-one A 10

cysv682.svml 68.2 in cdc13 1H Cosy-90 probe=5mmASW

Pulse Sequence: relayh

<u>a</u>.6

30

28

Expanded COSY spectrum of 12-oleanene-3-one A 10

HSQC spectrum of 12-oleanene-3-one A 10

Expanded HSQC spectrum of 12-oleanene-3-one A 10

HMBC spectrum of 12-oleanene-3-one A 10

HBsv682.svml 68.2 in cdc13 Gradient HMBC expt. probe=5mmASW

Expanded HMBC spectrum of 12-oleanene-3-one A10

•----

NOsv682.svml 68.2 in cdc13 NOESY expt. mix=1sec probe=5mmASW

1999 23

.

.

NOESY spectrum of 12-oleanene-3-one A 10

F1 (ppm)

.

.

IR spectrum of 12-oleanene-3-one A 10

.

UV spectrum of 12-oleanene-3-one A 10

Erick 48 1 C:\Bruker\TOPSPIN guest

61	12		10	5 A S	m		6	ំ ក្រ	4		- - -			Pea)	Oct
			-							.				•	22,
									-					V(F1)	2009
5-48	6.21	6-21	6.34	6.34	6.83	6-83	6.84	6.84	7.35	7.37	7.88	8.05	;	g	(7:
05	65	96	01	37	19	53	34 4	66	61	1 0	0.8	76	•	Ē	34:3!
	1								-					Int	5 PM)
	N		1							調整	4 (((N N			ens.	Ç
8361	20587	4057	.5547	9620	4602	9906	2642	12160	20594	983	27802	98566	ŀ	Į.	Eric
4-01	1.75	1.21	6,75	8-5(3.00	4.50	2.00	6.8	3.75	5.7	20.25	5.00		abs	X 4
)	0.				ľ				Ú,		0		-	_	8
														Anz	Ц
									-					lota	C:∖I
															Bruk
													i	4	er/
															TOPS
															SPIN
										開催した					g
											ĺ				lest
			í I												
															Page
															e 1/
問題		-91924		원련	Į	1924		书题				1990) 1990)			Ч

¹³C NMR spectrum of 4',5,7-trihydroxyisoflavone BL

		60.0	9,3102	0.0617	30 0
		0.02	4359 0191	28.8877	1.29
		0.02	4418.5302	29.2821	28
		2000 11 × 2	4778.3249	31,6665	27
		2.22	7116.7941	47.1638	. 26
ないである。「なる」のないである。		95.5	7138 4928	47,3076	25
		13.72	7159.6634	47.4479	24
新学校の開始の		14.22	7202,5328	47.7320	23
		6.36	7224.1712	47.8754	22
		55°2, 100 - 10	· 7245-4172	48.0162	21
		0.10	7266.7991	48.1579	20
		50.04 C	11716 3232	77, 6454	1.61.0
		0.03	11749.2033	77.8633	18
		E010	11777.1340	78:0484	17
		0.09	14092.8935	93,3952	16
		01.01	14897.6481	98,7284	15
		0.02	15453.0181	102.4089	14
		E0.0	15827.2233	104,8888	:13
		0.21	17333.8672	114.8735	12
		0,02	17433-1714	115,5316	11
	and the second	0.04	18395.6418	121.9100	10
		0.04	18612.7197	123.3486	. 9
	nin waard waard waard all waard w	0.20	19614.7095	129.9889	8
		0.03	19683.3518	130.4438	7:
· · · · · · · · · · · · · · · · · · ·		80.0	23153.0526	153.4379	6
		0.04	23751.4881	157.4038	ۍ ت
		0.05	23892.2583	158.3367	4
		0+05	24512-8754	162.4496	3
		0.03	24833.1356	164.5720	2
		20.03	27294.1317	180.8813	1
	Annotation	тисепать			
		Tat 034.11.	v(E1) [H7]	V(F1) [ppm]	Peak
NK Page 1/1	/opt/topspin	rick 49 1	2 AM) E	2008 (9:46:22	Jul 2

-

•

COSY spectrum of 4',5,7-trihydroxyisoflavone B1

HSQC spectrum of 4',5,7-trihydroxyisoflavone B1

NOESY spectrum of 4',5,7-trihydroxyisoflavone B1

c:\pel_data\spectra\cama 1-2-5 9-2-21.002

IR spectrum of 4',5,7-trihydroxyisoflavone 81

Page 1 of 1

Display Report - All Windows Selected Analysis

[ppm]

22	20	18	16	14		12	10	8		6		4		2	Peak	Sep 2
س	4	10	11	11		11	12	12		14		15	Cinary Cinary	16	v(F1)	3, 2008
0.8062	9.5073	3.2472	.4.0705	6.4769		8.2042	2.8822	26.2008		17.4361		54.8792		54.6620	[ppm]	(10:02
3100	4982	10390	11479	11721		11895	12366	12700		14837		15586		16570	v(F1)	:16 PM)
.1898	.1798	.3084	.5140	-6827		.5099	.2817	2498		.2697		.3080	20,554 9 m 24 m 24 m 24 m 24 m 24 m 24 m 24 m 24	1.8025	[Hz]	Sep19-
															Intens	-2008-NK
0.	0.	0.	0	0.		0.	0.	0.		0.		0.		0.	ity [re	(-Erick
03	17	20	03	20		11	03	60		10		18	n sana Sangar Sangar Sana	11	Ľ	31
															Annot	1 /0
															ation	pt/top
																Page
and the second se					G. 1				Million Li Statistics		200 - 200 200 - 200 200 - 200 200 - 200	and the second	- 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1.			1/1

.

B2

NOESY spectrum 7,3'-dihydroxy-5'-methoxyisoflavone B2

c:\pel_data\spectra\cadm 41-50-3-5-4-10.002 IR spectrum 7,3'-dihydroxy-5'-methoxyisoflavone B2

UV spectrum 7,3'-dihydroxy-5'-methoxyisoflavone B2

Erick 66 1 C:\Bruker\TOPSPIN guest

¹H NMR spectrum of 7-hydroxy-4',8-dimethoxyisoflavone 83
3 4 5 5 10 10 10 10 12 12 12 14 14 16 16	Oct 22, Peak
o. H. H. W. S. M. 6. N. J.	2009 (v(F1) [
9411 1567 2289 2289 1244 0254 0108 9453 9453 9453 9453 9453 8461	7:08:20 ppm] : 1905 9552
528 329 1626 217 217 217 217 213 217 217 217 217 217 217 217 217 217 217	PM) E. [ntensit 222
5812-12 9156-50 92243-50 92243-75 92343-75 8256.38 9931-75 8599.25 8599.25 8444.94 1264-75 8444.94 1264-75 8444.94 1264-75 10859.25 8344-58 126-81 126-81 126-81	rick 66 y (abs) 1933-86
	1 C:\I
	Bruker\1 1tion
	OPSPIN
	guest

Peak v(F1) [ppm]	45 AM) V(F1) [Hz]	Erick 67 1 Intensity	/opt/topspin NK	Page 1/1
	24096.9477	0.12		· · · · · · · · · · · · · · · · · · ·
2.9474	23079.0385	0,20		
4 151.4094	22846.9615	0,28		
EP/66 6 F 1	22630.4117	80.0° (10.00)		
o 133.8975	20204.4987	0.14		
	19645.2205	S S S S S S S S S S S S S S S S S S S		
o 124.8297	18836.2107	0.12	·周阳》。由于1998、2004、2004、2004、2004、2004、2004、2004、200	
10 122 222	18697.3568	a a 0.15		
	18442.9927	0.32		
12 114 0181	9967 PG61T	0.14		
		0.55		, · · · · · · · · · · · · · · · · · · ·
14 77 2297	1670°10111	0,27		
15		14.87	MMM-res security () - A - A - A - A - A - A - A - A - A -	tan ang ang ang ang ang ang ang ang ang a
שיטרים שב דיסדימינין		15,00		
	11589.7372	14.82		ことのなどのないのなどのないのないのないであり、
	9350.7532	0.22		
	8524.1641	0.08	and a second a second of the second	
	10086380869	0.32		

HSQC spectrum of 7-hydroxy-4',8-dimethoxyisoflavone B3

c:\pel_data\spectra\korir\cadm-8-13-16-1714.sp

IR spectrum of 7-hydroxy-4',8-dimethoxyisoflavone B3

UV spectrum of 7-hydroxy-4',8-dimethoxyisoflavone 83

Erick 26 1 C:\Bruker\TOPSPIN guest

18		16	15	14	13	12		10	10 63 F. H	8	$-\eta_{-}$	ი	5	4	3	2		Peak	Oct 22
)														-				V(F1)	2009
0.8531	228644	1.2263	E-2569	1.2700	1.2799	2.3736	3.8241	4.0010	6,9537	6.9681	7.0968	7.1113	7.2354	7.4688	7.4829	8.0119	8.0284	[mqq]	(6:43:
																		Inte	52 PM)
168602	113959	686974	127248	111295	960501	374705	407791	396735	88877	104402	56960	44892	375228	104798	85136	130943	43228	nsity [Eric
9.84	9.184	1.42	$5 \cdot T$	7.25	9.25	9.77	7.53	0.17	9-95	8.02	4-:61	9.11	7.67	4.05	1.72	2.36	9-73	abs]	k 26
														:				Annot	1 C:)
												:						ation	\Bruker
																			\TOPS PI
																			N gue
																			st E
												:							2age j
								<u>.</u>											1/1

¹³C NMR spectrum of 7-acetoxy-4',8-dimethoxyisoflavone B4

	0.07	3468.8558	1 2 19885	£ 5
· · · · · · · · · · · · · · · · · · ·	0.05	3583.6418	23.7492	4 1
	0.05	3734.7031	24.7503	43
	0.06	3995.4199	26.4781	42
	60:0	4354.7770	28,8596	Ť.
。	0.10	4365.5660		40
	0.06	4387.7627	29.0782	e Se
	0.05	4404.1348	3 29.1867	ω β
	80.0	4414 #4410 %	29.2550	CO I
	60.0	4421.7292	6 29.3033	36
	0.14	4431.2054	5 29.3661	CO CO
	уU U ТТ-А	4443.7901	4 29.4495	34
	60.0 60.0	10101010101010101010101010101010101010		са, (
	0,13	4465.9868	2 2 2 2 5 5 2 2 3 2 2 2 2 2 2 2 2 2 2 2	υ L
	0.20	4476.3986	0 29.6656	h ω
	0.65	4482,2231	9 7042 3 529-7042 - 9	27.00
	0.06	4582.1611	8 30.3665	N
	0.16	4817,9198	7	N
	0.06	5844.7319	6 38.7337	N
		8354 4771	5 5:3658	Ň
	05 U	9318.3862	4 61.7540	2
	20-00 58.6T	177/ · COCTT		N- 1
	14.92 S	11500 7001	,7 2,27 1/2 2,27	2
	0.79	17213.7848	20 114.0777 A 114.0777	
	0.30	18120.8011	9 120.0886	بر ر
	0.29	18280.2371	18 121.1452	1
	0.15	18420.0113	7 122.0715	
	0.16	18653.0842	16 123.6161	1
		18681,6788	15 123-8056	
	0.16	18882.0074	14 125.1332	L.
		19146.3155	13 126.8848	<u> </u>
б Л	0.0	19436.6984	12 128.8092)
	10.0	19592.8901	11 129.8443	
л Л	0 0	19609.3376	10 129.9533	
		7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.130.1498	
	it to the second second	68/0 052575	8 9100.081 8	
	0.1	22168.9740	COLG.OFT	
		612/ CC/27		
新聞教養和に満望してたためがな物がないである。そので見たいとしまたものでいた。 さんしょう シー・ディー・ファイン	Z • 0	7999.85677		
	\mathbf{T}	24114.36102		
	0.1	25412.1509	2007 103 100 200 200 200 200 200 200 200 200 200	
	t 0	26524.5206	L	
y Annotation	Intensit	v(F1) [Hz]	ak v(F1) [ppm]	Ъ С
1 /opt/topspin NK Page 1/2	Erick 41	45 PM)	ın 25, 2008 (4:34:	J็น

46 43 49 50 51	Peak	Jun 25,
1)- 11 2)- 2)-	v(F1)	2008
2.6958 0.7320 1.1229 1.0550 1.0550 0.9644 1.0038	[ppm]	(4:34:46
3424. 3128 2131. 2120 1654. -0.	v(F1)	PM)
.6888 3606 .0787 8329 4760 5734	[Hz]	
	Inte	Erick
0.22 0.22 0.22 0.22 0.22 0.05 0.05	ensity	41 1
	Annotation	/opt/topspin
		NK
		Page 2/2

DEPT spectrum of 7-acetoxy-4',8-dimethoxyisoflavone 84

HSQC spectrum of 7-acetoxy-4',8-dimethoxyisoflavone B4

HMBC spectrum of 7-acetoxy-4',8-dimethoxyisoflavone 84

Erick 45 1 /opt/topspin NK

NOESYspectrum of 7-acetoxy-4',8-dimethoxyisoflavone 84

c:\pel_data\spectra\cahx 10-21-22a.002

IR spectrum of 7-acetoxy-4',8-dimethoxyisoflavone 84

UV spectrum of 7-acetoxy-4',8-dimethoxyisoflavone B4

Mass spectrum of 7-acetoxy-4',8-dimethoxyisoflavone 84

¹H NMR spectrum of 3',7-dihydroxy-4',8-dimethoxyisoflavone 85

26	24		22		20		18		16		14		12		10		ω		6		4		2		Peak	Sep 28,
0	1.		3.		4		5		6		9		<u>6</u>		ر د		7		7	ALS A	7		7		v(F1)	, 2008
.8513	5532		.9002		.0560		.6201		.8852		.9075		.0085		.0694		.0796	and the first of the	.0911		.2337		.9395		[mdd]	(5:18:3
340.	621.		1560.		1623.		2249		2755		2764		2804.		2829		2833		2838		2895		3177		v(F1)	2 PM)
7073	.6217		9381		.2924		.2765		.5949		.5198		.9420		.3154		.3976		.0002		.0715		.5468		[Hz]	Sep19-
																									Inten	2008-NK
0.	2.		10.		10		2.		1.		ц		1.		0		2		1.		15		2		sity [r	-Erick
20	47		72		79	I	12		26		55		.58		61		.00		.16		.00	15 A A	.31		el]	40 1
																					A THE RESIDENCE AND A		AND		Annot	l ∕op
																									ation	t/tops
																										p
																										Page
	26 0.8513 340.7073 0.20	24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	20 4.0560 1623.2924 10.79 22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	20 4.0560 1623.2924 10.79 22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	18 5.6201 2249.2765 2.12 20 4.0560 1623.2924 10.79 22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	18 5.6201 2249.2765 2.12 20 4.0560 1623.2924 10.79 21 3.9002 1560.9381 10.72 22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	16 6.8852 2755.5949 1.26 18 5.6201 2249.2765 2.12 20 4.0560 1623.2924 10.79 22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	16 6.8852 2755.5949 1.26 18 5.6201 2249.2765 2.12 20 4.0560 1623.2924 10.79 22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	14 6.9075 2764.5198 1.55 16 6.8852 2755.5949 1.26 18 5.6201 2249.2765 2.12 20 4.0560 1623.2924 10.79 22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	14 6.9075 2764.5198 1.55 16 6.8852 2755.5949 1.26 18 5.6201 2249.2765 2.12 20 4.0560 1623.2924 10.79 22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	127.0085 2804.9420 1.5814 6.9075 2764.5198 1.55 16 6.8852 2755.5949 1.26 18 5.6201 2249.2765 2.12 20 4.0560 1623.2924 10.79 22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	127.0085 2804.9420 1.58 14 6.9075 2764.5198 1.55 16 6.8852 2755.5949 1.26 18 5.6201 2249.2765 2.12 20 4.0560 1623.2924 10.79 21 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	107.0694 2829.3154 0.61 12 7.0085 2804.9420 1.58 14 6.9075 2764.5198 1.55 16 6.8852 2755.5949 1.26 18 5.6201 2249.2765 2.12 20 4.0560 1623.2924 10.79 22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	10 7.0694 2829.3154 0.61 12 7.0085 2804.9420 1.58 12 7.0085 2764.5198 1.55 14 6.9075 2764.5198 1.55 16 6.8852 2755.5949 1.26 18 5.6201 2249.2765 2.12 20 4.0560 1623.2924 10.79 22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	8 7.0796 2833.3976 2.00 10 7.0694 2829.3154 0.61 12 7.0085 2804.9420 1.58 14 6.9075 2764.5198 1.55 16 6.8852 2755.5949 1.26 18 5.6201 2249.2765 2.12 20 4.0560 1623.2924 10.79 21 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20	8 7.0796 2833.3976 2.00 10 7.0694 2829.3154 0.61 12 7.0085 2804.9420 1.58 14 6.9075 2764.5198 1.55 16 6.8852 2755.5949 1.26 18 5.6201 2249.2765 2.12 20 4.0560 1623.2924 10.79 22 3.9002 1560.9381 10.72 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20		6 7.0911 2838.0002 1.16 8 7.0796 2833.3976 2.00 10 7.0694 2829.3154 0.61 12 7.085 2804.9420 1.58 14 6.9075 2764.5198 1.55 16 6.8852 2755.5949 1.26 18 5.6201 2249.2765 2.12 20 4.0560 1623.2924 10.79 21 1.5532 621.6217 2.47 24 1.5532 621.6217 2.47 26 0.8513 340.7073 0.20			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		PeakV(F1)[Hz]Intensity[rel]Annotation27.93953177.54682.31 3.33 47.23372895.071515.0067.09112895.0021.5067.09112838.0021.1687.07962833.39762.00107.06942829.31540.61127.00852804.94201.58146.90752764.51981.55166.88522755.59491.26185.62012249.27652.12204.05601623.292410.72213.90021.560.938110.72220.8513340.70730.20

¹³C NMR spectrum of 3',7-dihydroxy-4',8-dimethoxyisoflavone 85

ш СС (Л	16 7	14 11		12 11	10 12	8 1:	6 1,	4 1.	2 1.	Peak v(F1	Sep 28, 2008
56.0430	17.2273	13.7587 1		19.0519 1	22.2447]	24.8347]	45.5800 :	49.9148 :	52.9360 :	[ppm]	8 (5:13:50
5639.9097	7771.8001	.1448.1522		1980.8355	12302.1442	12562.7898	14650.5014	15086.7357	15390.7754	v(F1) [Hz]	PM) Sep19-2
0	0	0		0	0	0	0	0		Intensity []	2008-NK-Erick
.25	• 58	27		.12	- 30	.14	1.20	.09).17	cel] Annot	41 1 /op
										tation	ot/topsp
			A CONTRACTOR OF								Page 1/1

COSY spectrum of 3',7-dihydroxy-4',8-dimethoxyisoflavone B5

Expanded COSY spectrum of 3',7-dihydroxy-4',8-dimethoxyisoflavone 85

Expanded HSQC spectrum of 3',7-dihydroxy-4',8-dimethoxyisoflavone 85

___ c:\pel_data\spectra\korir\cadm 32-40-8

UV spectrum of 3',7-dihydroxy-4',8-dimethoxyisoflavone 85

.

Page 1 of 1

Display Report - All Windows Selected Analysis

	328742.16 95173.54 247217.20 2783984.6.08 226735.33 98681.41 145468.17 105744.84 946848.95 1896734.80 3392855.61 165976.67 165976.67 165976.67 165976.67 171090.30 171090.30 171090.30	$\begin{array}{c} 4.2694 \\ 4.2616 \\ 4.2517 \\ 4.2517 \\ 4.2436 \\ 4.1433 \\ 4.1342 \\ 4.1247 \\ 4.1247 \\ 4.1247 \\ 3.7513 \\ 3.7513 \\ 3.6297 \\ 3.6297 \\ 3.6297 \\ 3.6297 \\ 3.6297 \\ 3.6297 \\ 3.5536 \\ 3.5546 \\ 3.5579 \\ 3.5546 \\ 3.5415 \\ 3.5308 \end{array}$	2 3 2 4 2 6 2 6 2 8 2 8 2 8 2 8 2 8 2 9 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
	328742.16 95113.54 247217.20 278384 16 230846.08 226435.33 98681.41 1415468.17 105744.84 105744.84 3928454.81 1896734.80 3928454.61 165976.67 165976.67 3833647.30 239119.73 239119.73 171090.30 171090.30	$\begin{array}{c} 4.2694 \\ 4.2616 \\ 4.2517 \\ 4.2436 \\ 4.1433 \\ 4.11342 \\ 4.1247 \\ 4.1247 \\ 4.1247 \\ 3.7513 \\ 3.7513 \\ 3.6446 \\ 3.6597 \\ 3.6297 \\ 3.6297 \\ 3.65934 \\ 3.5934 \\ 3.5934 \\ 3.5579 \\ 3.5415 \end{array}$	23 24 26 28 28 28 29 30 30 30 31 32 32
	328742.16 95113.54 247217.20 2783846.08 226495.33 98681.41 145468.17 105744.84 105744.84 1896734.80 392855.61 165976.67 165976.67 165976.67 239119.73 239119.73 171090.30	$\begin{array}{c} 4.2694\\ 4.2616\\ 4.2517\\ 4.236\\ 4.1433\\ 4.1433\\ 4.1342\\ 4.1247\\ 4.1247\\ 3.7513\\ 3.7513\\ 3.6297\\ 3.6297\\ 3.6297\\ 3.5934\\ 3.5934\\ 3.5579\\ 3.5579\end{array}$	23 24 26 26 27 29 28 29 30 30 31 32
	328742.16 95113.64 247217.20 2783846.08 230846.08 226235.33 98681.41 105744.84 105744.84 105744.84 1896734.80 392853.61 165976.67 165976.67 239119.73 239119.73	4.2694 4.2616 4.2517 4.2436 4.1433 4.11342 4.1247 4.1247 4.1247 3.7513 3.6297 3.6297 3.6297 3.5934 3.5934 3.5579	23 24 26 26 28 28 28 29 30 30 30
	328742.16 951133.84 247217.20 278384 16 244 230846.08 276435.33 98681.41 105744.84 105744.84 105744.84 1896734.80 1896734.80 1896734.80 189576.67 165976.67 165976.73 239119.73	4.2694 4.2517 4.2517 4.1433 4.1433 4.1247 4.1247 4.1247 3.7513 3.6297 3.6297 3.5934	23 24 26 26 27 29 28 28 29 30
	328742.16 95113.54 247217.20 2783046.08 230846.08 226135.33 98681.41 145468.17 105744.84 94848.95 1896734.80 1896734.80 1896734.80 1896734.80 392855.61	4.2694 4.2517 4.2517 4.1236 4.1433 4.11342 4.1247 4.1247 4.1247 3.7513 3.7513 3.6297 3.6297 3.5934	23 24 25 26 26 27 28 28 28 30
	328742.16 95113.64 247217.20 2783846.08 230846.08 226735.33 98681.41 1415468.17 105744.84 105744.84 1896734.80 1896734.80 392858.61 165976.67	4.2694 4.2616 4.2517 4.1433 4.1433 4.1432 4.1247 4.1247 4.1247 3.7513 3.7513 3.6297 3.6297	23 24 25 26 26 28 28 28
	328742.16 951133.64 247217.20 2783084.16 230846.08 276435.33 98681.41 1415468.17 105744.84 105744.84 105744.84 1896734.80 1896734.80	4.2694 4.2616 4.2517 4.1433 4.1433 4.1342 4.1247 4.1247 4.1247 3.7513 3.7513 3.6297	23 24 25 26 26 28
	328742.16 95113.64 247217.20 278384.6.08 230846.08 226425.33 98681.41 145468.47 105744.84 105744.84 1896734.80 1896734.80	4.2694 4.2616 4.2517 4.2436 4.1433 4.1433 4.1247 4.1247 4.1247 3.7513 3.7513	23 24 25 26 27
	328742.16 95113.64 247217.20 278384.16 230846.08 226735.33 98681.41 115468.17 105744.84 105744.84 1896734.80	4.2694 4.2616 4.2517 4.1433 4.1433 4.1432 4.1247 4.1247 4.1247 3.7513	23 24 25 26
	328742.16 95143. 5 4 247217.20 278984.16 230846.08 230846.08 98681.41 98681.41 105744.84 105744.84	4.2694 4.2616 4.2517 4.1433 4.1433 4.1433 4.1247 4.1247	23 24 25
	328742.16 95143.54 247217.20 278384.16 230846.08 230846.08 98681.41 1415468.17 105744.84	4.2694 4.2616 4.2517 4.2436 4.1433 4.1433 4.1247	23 24
	328742.16 95113.84 247217.20 278984 16 2414 230846.08 230846.08 98681.41 1415468.14	4.2694 4.2616 4.2517 4.2436 4.1433 4.1433	23-3-2
	328742.16 951 43.54 247217.20 27838 4.16 230846.08 230846.08 98681.41	4.2694 4 .2606 4.2517 4.2436 4.1433	日本日本市市市
	328742.16 95113.61 247217.20 278384 16 2844 230846.08 230846.08	4.2694 4.2616 4.2517 4.2517	22
	328742.16 95113. 64 247217.20 278384 16 1444 230846.08	4.2694 4.2616 4.2517	
	328742.16 951 33.84 247217.20 278384 16 24 47	4.2694 4.2616	20
	328742.16 951 43.64 247217.20	4.2694	E CENT
	328742.16 95143.84		18
	328742.16	100 EE - 100 EE	
		5.4922	16
	28392464 Namara	2 5 5 6 3 5 6 3 5 6 5 6 5 6 5 6 5 6 5 6 5	
	723102.02	6.4337	14
	246686.27.12	6,4415	13
	223372.64	6.4507	12
	355958727	648949	
Bana Bana Sana ang ang ang ang ang ang ang ang ang	432671.61	6.6892	10
	194745.98	6,7685	
	259879.03	6.7720	8
	211182.36	6.7823	
	263433.34	6.7858	6
	1343159 5052 244	201107495	
	294025.36	7.1238	4
	4647398-34	$7^{-2}401^{4}$	
	316992.25	7.5089	2
	317449 48 2513 2	1.1.1.5228	
notation	Intensity [abs] Annot	r [mdd] (T3)A	reak
,)+;)+;,)]		v(F1) [Dest
C:\Bruker\TOPSPIN guest Page 1/1	PM) Erick 27 1 C:\	2009 (7:39:13	Oct 22,

Erick 34 1 /opt/topspin NK

28 -0.0050 -0	26 21.1229 3187 64 21.1229	24 29.0899 4380 25 25 25 25 25 25 25 25 25 25 25 25 25 2	22 29.7028 448 23 29.7028 448	19 5545232 837 20 39.5389 596 21 81 61 61 6	17 18 18 66.6158 1005	15 16 16 77.0119 16 77.0119	13 13 14 14 14 14 14 14 14 14 14 14 14 17 10 10 10 10 10 10 10 10 10 10 10 10 10	10 115.3182 1740 11 110 7533 161 12 106 5700	7 124.7840 188 8 118.7800 179 9 117.8787 177	4 156.2523 235 5 151.6276 228 6 131.8212 198	1 169.2130 255 2 161.2166 243 3 1.60.58883 242	[₽] eak ν(F1) [ppm] ν(F	
).7015 0.08).7545 0.13	4.5077 (0.05 7.3456 0.15	0.6471 0.05 9.5282 0.05	7.7689 0.08 2.0119 0.16	8 1880 b 14 6.2328 0.17	2.0088 0.16	0.18 0.18 0.18	32.4023 0.16 26.0366 0.16	0.07 0.9703 0.18 12.1486 0.20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.08 77.7322 79.8869 79.1940	33.4405 26.8216 0.10 32.6141	⁻ 1) [Hz] Intensity	, <u>הדדוג</u> 24 T
												Annotation	/opt/topspin NK
												1 / T	Page 1/1

____ c:\pel_data\spectra\cahx 4-4-9a.002

IR spectrum of 3-acetoxy-9-methoxypterocarpan 66

UV spectrum of 3-acetoxy-9-methoxypterocarpan B6

Mass spectrum of 3-acetoxy-9-methoxypterocarpan 86

¹H NMR spectrum of calpurnine **B**7

1 mar

•

		1.70	2934.9582	24 19.4503
。 中国的市场的。 中国市场的 - 日本市场的。 中国市场的 - 日本市场的			0000 000 000 000 000 000 000 000 000 0	10065 96W 10 1055
-		1.54	4118.9126	22 27.2965
のないの ない いい		利用が非正常の必要	但此的感到となる。	211200000000000000000000000000000000000
		1.42	4918.8084	20 32.5975
		第二日の 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日		
		1.89	5156.9211	18 34.1755
		1.51	7085.5135	16 46.9565
				語の語言を見るのない。
		1.97	7879.1622	14 52.2161
			00.424.00	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		3.43	9156.7774	12 60.6830
		PLESSING & LAN	1005206844	45546449348514454
		14.96	11593.1172	10 76.8289
		100 A 10 A 10 A 10 A	162520618	* 9*9 ********************************
		14.60	11657.0063	8 77.2523
		0.29	15088,9833	F966 66
		2.76	16637.2291	6 110.2568
		1.52	17507,8947	5 7 TI6.0268
		0.66	18548.9363	4 122.9259
		Letters the	18577-1688	3 N 123,1130
na vy rupeja (u nazavana se van nazavana se na van nazavan). U se z zaklatera se se nazavanje nazavanje nazava	anana a manana ani ana ani ana ani ana ani ana ani ana ani ana ana	0.76	24158.3470	2 160.1001
		100 Personal 100 Personal Pe Personal Personal P	25913-5691	1014 1014 1014 1321
	Annotation	Intensity	v(F1) [Hz]	Peak v(F1) [ppm]
K Page 1/1	/opt/topspin W	Erick 20 1	5 AM)	Jun 3, 2008 (9:19:36

.

¹³C NMR spectrum of calpurnine

DEPT spectrum of calpurnine 87

HMBC spectrum of calpurnine B7

HMBC spectrum of calpurnine B7

IR spectrum of calpurnine B7

UV spectrum of calpurnine B7

MSD Trap Report v5.2 (A4-Opt1)

🔆 Agilent Technologies