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Abstract

This thesis presents a series of studies conducted on particle swarm optimization
(PSO) technique for global optimization inspired by the drawbacks identified in the
technique with respect to premature convergence, weak local search ability and the
desire to make the technique simpler and more effective, efficient and robust when
handling optimization problems with many local optima. Generally, PSO is widely
applied by individuals, enterprises and researchers to seek best possible solutions to
varieties of problems amidst limited resources hence the need to better efficiency in
its implementation. Many variants of PSO have been proposed to address its
drawbacks with varying successes and failures stories. Many of these variants have
introduced several other parameters, complexities and more computational efforts into
the technique, yet its drawbacks are not sufficiently addressed. Besides, there exist
some areas, like particle velocity limits and search space limits of the PSO technique
that remain static throughout its lifetime of execution in many existing variants.
Introducing dynamism could make the algorithm perform better and obtain better
quality solutions to optimization problems. Besides, the pure greedy method of
obtaining the swarm global best among the personal bests of all the particles in the
swarm is a common attribute of very many PSO variants. These form part of the

things addressed in the studies carried out in this thesis.

In this study, selected existing PSO variants were improved upon and additional
variants were proposed which greatly improved the efficiency and performance of the
PSO technique. These proposed variants include Swarm Success Rate Decreasing
Inertia Weight PSO (SSRDIWpgp) and Swarm Success Rate Random Inertia Weight
PSO (SSRRIWpsp) which use swarm success rate as the feedback parameter for their
inertia weight strategies to enhance the explorative and exploitative power of the PSO
technique. The Modified Basic PSO (M-BPSO) with seven versions, which use
dynamic velocity limits to control the global and local search activities of the PSO;
Improved Original PSO (IOPSO) which does not use the inertia weight parameter but
has dynamic search space and velocity limits; PSO¢pys in which the PSO technique
was hybridized with a novel local search technique called Collective Local Unimodal

search (CLUS) and GRA-PSO which diversified the operations of the PSO by
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incorporating randomness and adaptivity to complement the greedy method PSO,

chooses the global best from among the personal bests of particles in the swarm.

Through numerical experiments, several test problems from literature were used to
validate the proposed variants. The results obtained were compared with their original
counterparts and with various efficient PSO variants that exist in literature. The
results reveal that substantial evidence exist that prove that the new variants are better
than their original counterparts and several of the PSO variants in literature in terms
of reliability, robustness, convergence speed, solution quality, search ability and
efficiency. As a result, the new variants proposed in this thesis offer an alternative to
many currently available algorithms for solving global optimization problems in
which the gradient information is not readily available. These variants can be applied
to solve various global optimization problems and are available for optimization
researchers. The results can also serve as a benchmark on which future researches

could be based.
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Chapter 1

Introduction

Since its inception [35, 36], the Particle Swarm Optimization (PSO) technique has
experienced tremendous improvements, which has fostered its wide application to
optimization problems in different fields of study. The diverse trends accompanying
researches in PSO include its hybridization with other optimizers, addressing the
problem of premature convergence as well as the adaptation of its control parameters

during optimization.

Control parameters like inertia weight, acceleration coefficients and random factors
are widely acknowledged to play important roles in the performance of PSO and
different mathematical analysis have been done relative to how these parameters
influence the diversity of the particles, with the belief that population diversity
influences optimization effectiveness. One of the utmost goals of the authors who
introduced the PSO technique was to make it as simple as possible. Contrary to this,
many existing PSO variants have introduced some computational complexities to this
technique. However, there are some studies on simplified variants of PSO in
literature. One of the objectives of this research work is to provide answers to the
following questions:

1. Are there other ways, different from the existing methods, that the operations of
the original PSO and the basic PSO can be altered without affecting the velocity
and position updating formulas of particles for increased performance compared
to the existing PSO variants?

il. Can the exploration and exploitation activities of the PSO technique be
successfully and efficiently achieved without using the widely accepted inertia
weight parameter? In reality, is it possible to implement the PSO technique
without any of the three control parameters (inertia weight, acceleration

coefficients and random factors) in the velocity updating formula without
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additional complex computational efforts being exerted elsewhere in the
algorithm?

iii. Can the existing simplified PSO variants be made simpler without compromising
the efficiency, accuracy, reliability and robustness needed in the discovery of the
global minimum compared with existing variants? In this context, efficiency
refers to the amount of efforts (CPU time or number of function evaluations)
required to obtain a solution. Accuracy describes how close the final solution
obtained by a global optimization algorithm is to the known global minimum of a
problem while reliability explains how successful the method is in finding the

global minimum.

This thesis reports series of studies carried out on basic PSO and different existing
PSO variants to improve on their identified weaknesses in order to target better global
optimal results. As a result, new hybrids and promising variants of the PSO technique,
including derived simplifications, were proposed which greatly improved on the
efficiency of existing PSO techniques. These variants can be applied to solve various
global optimization problems and are available for optimization researchers. Several
problems were used to validate the proposed variants and their results were compared

with various efficient PSO variants that exist in literature.

1.1 Background to the Study

Inherent in the human nature is the quest for the best possible in almost all endeavours
of life. Driven by this kind of nature, individuals, enterprises and governments daily
seek optimal solutions, amidst limited resources, to different problems encountered.
Many of these problems can be formulated as optimization problems, thus
optimization plays an increasingly significant role in daily management and technical
decision making. Examples in science would include varying some decision
parameters to maximize profit (e.g. investment portfolios, supply chains, etc.); in
engineering, choosing design parameters to improve some objective and in data
analysis, extracting some model parameters from data while minimizing error

measures (e.g. fitting).

Global optimization is an inherently difficult problem because no general criterion

exists for determining when the global optimum is reached. This type of optimization
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seeks to provide solutions to optimization problems which are often multi-modal and
non-convex. These solutions may be good globally or may be a mix of globally and
locally good solutions. Generally, optimization problems entail how to select the best

course of action given some restrictions.

A large number of optimization methods for solving various optimization problems
exist in literature. Broadly, these methods can be categorized into either local or
global optimization search techniques. A local search method iteratively improves its
estimate of the optimum by searching for better solutions within the local
neighborhood of the current solution while a global search method searches
complicated landscapes of multiple local minima. Nature always finds the optimal
solution to solve its problem maintaining perfect balance among its components and is
thus equipping man to discover various inspired solutions for problem-solving and
adaption to the ever-changing environment. For researchers, inspirations from natural
systems that display problem-solving capabilities have been received to develop
algorithms for solving complex and challenging optimization problems. Nature-
inspired techniques have been evolving in recent years, exhibiting extremely diverse,

dynamic, robust, complex and fascinating phenomenon.

Since the inspiration for each nature-inspired technique are unrelated to a particular
class of optimization problems, it becomes easier to modify them substantially
especially when applied in practice. With amazing results being obtained by
researchers, the scope and viability of nature-inspired algorithms has been broadened
opening up the possibilities for exploring new areas of application and providing more
opportunities in computing. A major reason why these sets of algorithms have
become popular is because they are easy to code in relatively few lines. They have
become an important part of contemporary research in global optimization algorithms,

computational intelligence and soft computing

Swarm intelligence (SI) is one of the classes of nature-inspired metaheuristics that has
been used to provide (near) optimal solutions to many complex optimization problems
in recent years. The goal of SI is to design intelligent multi-agent systems by taking
inspiration from the collective behavior of social organisms. Amongst the first set of

(and most popular) SI metaheuristics is the PSO. PSO [35,36] is a technique that
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displays problem-solving capabilities that enables researchers solve complex and
challenging optimization problems. It is an evolutionary computation technique

inspired by the social behaviour of birds and schools of fish.

The basic idea of the PSO stems from biology where a swarm of birds are able to
coordinate themselves, with some degree of randomness, in order to achieve a goal.
Each particle (bird) uses the local information regarding the displacement of its
reachable close neighbours to decide on its own displacement, resulting in complex
and adaptive collective behaviours. The concept was introduced to the field of
optimization in 1995 [35, 36]. PSO can be used to provide solutions to optimization

problems with multimodal or unimodal landscapes.

When PSO was initially proposed, swarm size, particle velocity, acceleration
coefficients and random coefficients, were the associated parameters that controlled
its operations and efficiency. However, it exhibited the problem of premature
convergence. In ridding the PSO of this problem and make it more efficient, many
variants have been developed and these are detailed in literature [41, 55]. These
variants have additional parameter(s) and require extra (complex) computational

effort(s), which give them an edge over the Original OPSO (OPSO).

1.2 Motivation

Optimization problems are wide in range and numerous, hence methods required to
solve them require active and dynamic researches. These include data mining,
engineering, and bio-computing problems which are large-scale in terms of the
decision variables that need to be handled in trying to solve them. As a result, the
performance of most available optimization algorithms deteriorate very quickly as the
the problem dimension increases. This is because complex problems has large
solution space which increases exponentially with the problem size. A current trend
is to develop scalable algorithms with efficient search strategies to explore all the
promising regions in the solution space within given constraint. Nature-inspired
optimization techniques are prominent among these algorithms. They are presently
more frequently studied and utilized for solving optimization problems in academia

and industry than mathematical optimization techniques such as convex
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programming, linear programming and other metaheuristics [79, 123] due to the

increased complexities of many real-world problems.

It is a general knowledge that nature-inspired metaheuristic algorithms are prominent
in tackling challenging highly nonlinear optimization problems with evidence of
efficiency. As a result, researches are expanding towards this direction in different
fields. However, till date, researchers have only utilised very limited characteristics
inspired by nature; thus, other properties of natural environments are worth
investigating for the development of novel nature-inspired algorithms. Moreover,
there are still lots of opportunities to improve existing nature-inspired techniques

hence the thrust of this paper.

The nonlinearity of several optimization problems often results in multiple local
optima that pose substantial challenges in obtaining the global optimality of interest.
Therefore, the need for efficient techniques and improvement on existing ones to
solve complex global optimization problems in the continuous space is evident. PSO
being one of the popular techniques used to solve both simple and complex
optimization problems has undergone countless modifications and improvements
since when it was introduced; hence, many of its variants exist. These modifications
and improvements are done either on the parameters that control the operations of
PSO, the addition of new parameters or both, the resulting variants that have been

useful in solving many global optimization problems.

Diverse variants of the PSO have been proposed with varying level of improved
performances [93,133]. However, many of these variants are characterized by: static
particle search space and velocity limits, which limit their flexibilities in obtaining
optimal solutions for many of the optimization problems. Furthermore, in spite of
some extra computations inherent in these variants and additional parameters like
inertia weight incorporated, premature convergence, which is the major challenge
associated with the OPSO technique, remains a problem that many of the variants
have not been able to handle successfully [29, 39, 41, 46]. In cases where (near)

optimal solutions are obtained, they are with low precision [53, 132].
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In many of the PSO variants, solution search space and velocity threshold are static
throughout the execution of the algorithm [4, 5, 37, 41, 77]. This characteristic
somewhat limits the flexibility of these variants in obtaining optimal solutions for
many of optimization problems. Also, there is the challenge of selection of velocity
threshold especially when dealing with some practical problems. Trial-and-error
approach which can be computationally intensive and time consuming may be
required to make the selection. . There is need for more dynamic way of varying the
solution space and velocity threshold in order to obtain optimal results with higher
precision for optimization problems when using PSO and its variants. This can be
done based on the state of the particles' dimensions so as to enable the algorithm
concentrate its search on the sub-range defined during its execution instead of the
entire search space all the time. In addition, this could also enable the algorithm
escape premature convergence so as to obtain better quality solutions to given

optimization problems.

The inertia weight parameter [96] was introduced into PSO to enable it obtain better
results to optimization problems by balancing the algorithm’s exploration and
exploitation activities. Many Inertia Weight Strategies (IWS) have the initial and final
values of the inertia weight fixed, thereby ruling out the flexibility of obtaining lower
or higher values for the inertia weight that could help the algorithm obtain good
optimal results. Also, many of the IWS do not have access to information about the
state of the swarm in the solution search space; this could influence the nature of the
search for optimal solutions by the swarm. Therefore, it is of utmost importance that a
means of realising the state of the swarm in the search space is devised, in addition to
creating some flexibility in either of the limits of the IWS with the belief that this

could help the algorithm obtain better results.

To further enhance the performance of the PSO algorithm in this work, randomness
was introduced into its IWS. Since chaotic activities can play the role of
randomization, this has been brought into the IWS with the logistic chaotic map being
more prominently used [69]. This feature has improved the optimizing capability of
PSO by introducing better global search mobility. However, there are several chaotic
maps in literature that have the possibility of enhancing the performance of PSO even

more than the logistic map. Therefore, the effects of other chaotic maps on the
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performance of PSO algorithms need further investigation. The outcomes obtained
could provide some useful information to optimization practitioners in choosing

chaotic maps to apply in the various IWS hence another focus of this work

1.3 Aim and Objectives

The primary aim of this thesis is to simplify the basic PSO technique and enhance
selected existing PSO variants so as to improve their performances and extend their
scope of applicability to optimization problems. The objectives summarized below
provide guidance in achieving this aim.

i.  To study the parameters of the PSO technique to better understand their
individual contributions to the algorithm’s operations and efficiency and to
device means of adjusting these parameters to further enhance the efficiency of
the PSO. Some of these will be achieved by introducing dynamism into some
static aspect of the current PSO algorithm and implementations.

ii. To develop PSO variants with enhanced parameter selection and combination
techniques.

iii.  To introduce adaptivity and randomness into the method of selecting the swarm
global best from among the personal bests of particles, instead of the commonly
used greedy method.

iv. To develop PSO variants that could efficiently handle high dimensional global
optimization problems.

v. To develop an improved PSO hybrid with local search that compete

significantly well with current variants.

1.4 Scope of the Thesis

This thesis considered the PSO technique for solving both simple and complex
optimization problems in the continuous space. Much attention was given to the
parameters of the technique because of the vital roles they play in the operations of
the technique. The target is to develop means of making the PSO technique simpler
and more efficient than existing variants in handling optimization problems.
Conclusions and remarks are based on extensive simulation studies of the proposed

variants which are compared with that in literature. The set of benchmark problems
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used in all the studies are with diverse characteristics and complexities as found in

literature and real world problems.

1.5 Methodology

In this work, different variants of the PSO algorithms were developed. Numerical
simulations were carried out on these variants using various benchmark test problems.
Empirical results obtained from the studies were analyzed using statistical techniques
to demonstrate the superiority of the new variants in terms of their performances

compared to the performance of existing PSO variants in literature.

1.6 Contributions

This research study carried out series of investigations on the different parameters and
their contributing effect to the PSO technique for global optimization with the aim of
addressing its major drawback and to improve its efficiency. Some of the parameters
are inertia weight, particle velocity limits and acceleration coefficients, which play
prominent roles in optimizing the power and efficiency of the PSO in the course of

obtaining (near) optimal solutions for global optimization problems.

During the research process, some existing PSO variants were improved upon and

new hybrids and promising variants of the PSO were proposed which greatly

improved the efficiency of the PSO technique. Some of the research contributions in
the work are highlighted below:

1. The exploratory and exploitative powers of selected existing PSO variants were
improved upon by introducing the swarm success rate as the feedback parameter
for their inertia weight strategies.

2. Some PSO variants without the inertia weight parameter were proposed. These
variants implemented dynamic velocity clamping of particles and dynamic
solution search space.

3. A variant which diversified the operations of the PSO by incorporating
randomness and adaptivity to complement the greedy way PSO chooses the

personal and global best of particles was proposed.
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Several problems were used to validate the proposed variants and their results were
compared with various efficient PSO variants that exist in literature. From the results
obtained from this research study, there are indication of significant success with
proposed variant which we hope would be useful for both researchers and
practitioners in the field of global optimization. These variants can be applied to solve
various global optimization problems and are available for optimization researchers.
Finally, results obtained in this study further provided higher benchmarks on which
further work on PSO can be based.

1.7 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 provides an introduction to the theory of optimization and metaheuristics,
followed by a review of the existing swarm intelligence (SI) techniques with emphasis

on the PSO technique.

Chapter 3 presents the PSO based on dynamic velocity and search space limits.
Several experiments were conducted using these limits to improve the performance of
the PSO. Two papers developed from the results of the experiments are also

presented.

Chapter 4 examines the effect of the swarm success rate feedback parameter and the
chaotic maps on the performance of the PSO algorithms. Numerical simulations were
performed to obtain results used for analyzing the effect of the feedback parameter as
well as the chaotic maps. The results obtained are compared with those of selected
existing PSO variants. To conclude this chapter, three papers which are products of

the research study are included.

Chapter 5 presents certain simplifications of the PSO technique. These are done
without compromising the performance of the PSO. Experimental results and
comparisons with existing PSO variants are presented. One research paper developed

is included in this chapter.
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In chapter 6, a new local search technique was proposed and used to improve the PSO
algorithm. The technique was applied to existing PSO variants and results obtained
were compared with those of the prevailing variants to verify the suitability of
applying the local search. In addition, a different method for updating the positions of
particles was devised and implemented. One research paper is included in this

chapter.

Chapter 7 presents a simple PSO variant that is able to handle high dimensional
problems. The variant adaptively adjusts the velocity of particles based on Euclidean
distance between the position of each particle and the position of the global best
particle and applied to continuous optimization problems with low (10 — 30) and high

(50 — 4,000) dimensions.

Finally, Chapter 8 presents a summary and conclusion of this thesis. Major

contributions are highlighted in addition to suggestions for future research.
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Chapter 2

Literature Review

2.1. Optimization

Optimization encompasses selecting the best course of action(s) among several
alternative while considering given restrictions. Examples of practical optimization
problems includes: production of fuel efficient car, selecting portfolio that minimizes
risks while maximizing returns, deciding the shortest route among several
alternatives, to mention a few. These problems typically have three fundamental
components namely, the objective function, decision variables, and constraints. The
objective function is the numerical quantity to be optimized (maximized or
minimized), that is, for which we seek the best possible value. Example may include
maximizing expected return on a stock portfolio, minimizing production cost of an
item, minimizing cost of travel through a given number of cities, and so on. The
decision variables are quantities whose values can be manipulated in order to fulfill
the objective function. Examples include quantities of stock to purchase and
production schedule to optimize. Finally, constraints are simply restrictions that are
placed on the possible values that decision variables can take. For instance, individual
cannot invest more than s/he has into stock, a lecturer cannot teach more than one
modules simultaneously. Within this broad framework, the complexity of
optimization problems depends on many other factors that characterize the problems
including type of decision variable and the nature of the objectives functions and/or

constraints.

Generally, an optimization problem can be represented as follows:

Optimize f(X)
subject to

where X = (x4, Xy, ..., X,) is the decision variable in R"™, />R™ — R is the objective

function and g;:g;: R™ — R, are the constraint functions, j =1, 2, ..., m.
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The goal is to maximize or minimize the objective function. Solution X¥* is a global
minimizer of f(X) if and only if f(X*) < f(X) for all X in the domain of f(X). It is a
global maximizer of f(x) if and only if f(X*) = f (%) for all ¥* in the domain of
f(X). Optimization problems are often multi-modal due to having multiple good
solutions, which could all be globally good or a mix of globally good and locally good

solutions.

Researchers are often faced with numerous nonlinear multimodal optimization
problems such as parameter optimization. Global optimization seeks to find the
globally best solution for nonlinear models among multiple local optima. To
formulate global optimization problems, it is assumed that, (i) objective function and
constraints are continuous functions, (ii) the component-wise bounds related to the
decision variable vector are finite, and (iii) the feasible solution set is not empty. Such
problems require global search technique to solve them. The different approaches to
solving global optimization problems can be broadly grouped into exact and heuristics
methods. However, exact methods often fail to obtain the global optima in the face of
complex optimization problems while the heuristics seek to compare accuracy slightly
for speed in order to obtain a near-optima solution to such problems. An example of
heuristic methods is the evolutionary algorithms which mimic the principle of
biological evolution like natural selection and the "survival of the fittest". The
different types of evolutionary search methods are made up of approaches that are
aimed at continuous global optimization problems, and others that are targeted

towards solving combinatorial problems.

Local optimization, on the other hand, involves finding an optimum solution within
a neighbourhood set of candidate solutions as against all set of possible solutions.
This involves the use of local search methods which apply a local perturbation within
the neighbourhood in search of the optimum solution. These techniques are widely
used to provide solutions to many NP-hard problems in various fields and are also
useful in improving the search trajectories of global search techniques for better
results, in most cases as hybrids. We explore this hybrid approach for PSO in this
work. Examples of local search techniques include hill climbing, tabu search,

simulated annealing, 2-opt algorithm for traveling salesman problem and the
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collective local unimodal search (CLUS) which is explored in this work. Local
optimization algorithms generally depend on the derivatives of the cost function and
constraints to aid in the search. It also depends on an initial point which determines

the result obtained.

Generally, there are many optimization algorithms which can be classified based on
various factors and depending on the focus and characteristics of such algorithms. A
typical classification [121] is presented in Table 2.1. A general term used for most
heuristic-based search algorithms is metaheuristics among which is the focus of this

work. We shall give a brief overview of these in the next session.

Table 2.1: Classification of optimization algorithms [121]

S/N | Focus/Characteristics Class of Algorithms
. Gradient-based
1 Derivative or gradient of a function
il. Derivative-free
i. Trajectory-based
2 Number of agents
il. Population-based
. Deterministic
3 Search procedure/Movement
il. Stochastic
i Local
4 Search capability/space
il. Global

2.2. Metaheuristics

Metaheuristics, a term coined by Glover in 1986 [49], are higher level black boxes
designed to select, generate or find lower level heuristics that can provide good
solutions to optimization problems. They do not guarantee that a global optimum
point will be found but seek a reasonable trade-off between solution quality and
computing time. Metaheuristics seek to maintain an intelligent balance between
exploration and exploitation capabilities of the underlying heuristics while navigating

the search space in search of near-optimal solutions.
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Metaheuristic techniques are well-known global optimization methods which attempt
to mimic some characteristics of natural phenomena or social behaviour and
sometimes incorporate complex learning processes. The algorithms are approximate
and usually non-deterministic. Several of these non-problem specific techniques have
been proposed for global optimization and have helped to increase the overall
computational efficiency for some large-scale problems [79]. Generally, most
research on metaheuristics are based on empirical studies (as in this work) with a few

exploring formal theoretical issues such as convergence.

2.2.1 Characteristics and Classification of Metaheuristics

As mentioned earlier, metaheuristics have many characteristics features [121]. As
they guide and/or modify other lower level heuristics to produce solutions,
metaheuristic algorithms often use some tradeoff between randomization and local
search. While they are good in finding near-optimal solution within reasonable time,
they do not guarantee that optimal solutions can be reached. Often, metaheuristics
incorporate strategies to assist underlying heuristics escape from local optimum
through proper combination of intensification (exploitation) and diversification
(exploration) [121]. The latter helps the algorithm to explore the entire global search
space in search of optimal solution while the former helps to concentrate on a local
region of the search space in search of solution better than the current local optimum.
A good metaheuristic aims to seek a good balance between intensification and
diversification during search in order to improve convergence of the algorithm. This

is to ensure that global optimality is achievable [121].

Metaheuristic algorithms including SI algorithms are optimization methods designed
in accordance with the strategies laid out in the metaheuristic framework. They form
essential part of contemporary global optimization algorithms and have been shown to
be efficient with many advantages over traditional, deterministic methods [120].
These algorithms can be categorized as a constructive approach or a local search
method [100]. A constructive algorithm builds solutions from scratch by gradually
adding solutions’ components to the initially empty solutions whereas on the other
hand, local search algorithms start from a known solution and try to improve on it

over time. Similarly, metaheuristic algorithms can be classified as single solution
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based or population based depending on the number of solutions the algorithm act

upon at each iteration. Evolutionary algorithms are population-based algorithms.

Metaheuristic frameworks are usually defined in general terms without dependence on
problem specific characteristics such as requiring constraints or objective functions to
be defined in certain form. This makes them fit into most real-life optimization
problems with varying requirements, constraints or formulation. These features make
metaheuristic algorithms more flexible compared to exact methods but they have to be

adapted to problem-specific domain sometimes to achieve good performance [120].
2.3. Swarm Intelligence (SI)

This is a class of nature-inspired algorithms with potency for handling complex
optimization problems. These algorithms currently have great impact in contemporary
computing and this will continue even for future generation computing. A swarm is a
collection of large number of homogenous, simple agents that interact locally with
and their environment with no central control. SI is a research field that studies the
emergent collective intelligence of self-organized and decentralized simple agents.
The inspiration often comes from the social behaviours that are observed in nature,
especially in social animals such as flocks of birds, fish schools and swarm bees. The
social interactions among swarm individuals can either be direct or indirect. Examples
of direct interactions are through visual or audio contacts, such as the waggle dance of
honey bees. Indirect interactions occur when one individual changes the environment
for others to respond to, for example, the pheromone trails of ants which they deposit

as they search for food sources [48].

ST algorithms seek to mimic the natural or artificial collective
behaviour of decentralized, self-organized systems. They are population-based
techniques based on agents that interacts locally and with their environment. This
local behaviour with some level of randomness of interacting agents often leads to an
intelligent emerging behaviour that tends towards a global optimum. A concise
introductory overview of the successes of some nature-inspired metaheuristics can be

found in [125].
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2.3.1 Properties of Swarm Intelligence Paradigm

Researchers have long realized the importance of emergent behaviour for complex
problem solving especially in search of intelligent solutions to real-world problems.
However, some recent advances in SI, comprising new swarm-based optimization
methods, hybrid algorithms and innovative applications can be found in [82]. The
major concepts underlying the SI research field are decentralization, stigmergy, self-
organization, emergence, feedbacks (positive and negative), fluctuations and
bifurcations. Furthermore, division of labor, morphogenesis and collective decisions
are essential concept to the SI paradigm [48]. SI algorithms are population-based but

not population-based techniques are swarm-based [120].

A typical SI system has the following properties [33,120]:

i. It is based on population of individuals which are relatively homogeneous (i.e.
they are either all identical or they belong to a few typologies).

ii. Individuals interact based on simple behavioral rules that exploit local information
they exchange directly or via the environment (stigmergy).

iii. Information exchange is through models of well-known behavior of the
underlying agents such as chemical secretion, dance, or broadcasting ability
depending on the nature of the agents.

iv. The overall emerging (global) behaviour of the system results from the self-
organizing ability through the local interaction with each other and the
environment.

v. There is no central control among the self-interested agents.

2.3.2 Swarm Intelligence Models

SI models are computational models inspired by natural swarm systems. Many SI
models have been proposed and successfully applied in literature based on the
characteristics of different natural swarm systems [33]. These include Altruism
algorithm [115], Ant Colony Optimization [34], Artificial Immune System [33, 65,
112], Artificial Bee Colony [60], Bacterial Foraging [32, 83], Bat Echolocation [126],
Cat Swarm Optimization [26], Charged System Search [61, 62, 109], Cuckoo Search
[119], Firefly Algorithm [123, 124], Glowworm Swarm Optimization [66], Intelligent
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Water Drops [78, 80, 98, 99], Mosquito Host-seeking [42], Particle Swarm

Optimization [36, 63], River Formation Dynamics [87-89], Roach Infestation

optimization [52], Slime Mould Optimization [75] and Stochastic Diffusion Search
[17, 18, 74].

Table 2.2 provides, in alphabetical order, a list of well-known SI algorithms as well as

motivation that lead to their derivations including their originators.

Table 2.2: List of Swarm Intelligence Algorithms and their motivations

S/N | ALGORITHM MOTIVATION RESEARCHER(S) | YEAR
1 Altruism Algorithm Hamilton's rule of kin selection Waibe M., Floreans | 2011
[115] D & Keller L.
2 Ant Colony The foraging behaviour of social Dorigo, M 1992
Optimization [34] ants
3 Artificial Immune The characteristics of the immune Kephart J. O. 1994
Systems [65] system of mammals
4 Artificial Bee Colony The foraging behaviour of bees Karaboga, D. 2005
[60]
5 Bacterial Foraging [83] | The social foraging behaviour of Passino, K. M. 2002
bacteria such as Escherichia coli
6 Bat Echolocation [126] | Based on the echolocation behaviour | Yang, X.-S. 2010
of bats
7 Cat Swarm Based on two of the major Chu, S.-C. & Tsai, 2006
Optimization [26] behavioral traits of cats termed P.-W.
”seeking mode” and “tracing mode”
8 Charged System Some principles from physics (laws | Kaveh, A. & 2010
Search [61] of Coulomb and Gauss from Talatahari, S.
electrostatics) and mechanics
(Newtonian laws)
9 Cuckoo Search [119] The brooding behaviour of some Yang , X.-S. & 2009
cuckoo species, which use host birds | Deb, S
to hatch their eggs and raise their
chicks
10 Firefly Algorithm The flashing patterns and behaviour | Yang, X.-S. 2008
[123] of fireflies.
11 Glowworm Swarm The behaviour of glowworms Krishnanand, K. N. | 2006

Optimization [66]

& Ghose, D.
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12 Intelligent Water Drops | Natural rivers and how they find Shah-Hosseini, H. 2007
[98] almost optimal paths to their
destination.
13 Mosquito Host-seeking | The host-seeking behaviour of Feng, X., Lau, F. C. | 2013
[42] mosquitoes M. & Yu, H.
14 River Formation The way water forms rivers by Rabanal, P., 2007
Dynamics [87] eroding the ground and depositing Rodriguez, I, &
sediments; similar to ant colony Rubio, F.
optimization.
15 Roach Infestation Social behaviour of cockroaches Havens, T. C. 2008
Optimization [52] Spain, C. J.,
Salmon, N. G. &
Keller, J. M.
16 Particle Swarm Social behaviour of flock of bird and | Kennedy, J. and 1995
Optimization [63] school of fishes Eberhart, R.. C.
17 Slime Mould The lifecycle of amoeba Monismith, D. R. & | 2008
Optimization [75] Mayfield, B. E.
18 Stochastic Diffusion The restaurant game Bishop, J. M. 1989
Search [15]

The swarm-based algorithms can be classified into three: microscopic agents-based
SI, inanimate agents-based SI metaheuristics and others. Those based on microscopic
agents are the Artificial Immune System, Bacterial Foraging, Slime-Mould while
those based on inanimate agents are Charged System Search, River Formation
Dynamics and Stochastic Diffusion Search. They are so named because they are
unlike other SI metaheuristics like Ant colony Optimization, Artificial Bee Colony,
Bat Echolocation, Cat Swam, Cuckoo Search, etc. stated in Table 2.2 which are based

on animate agents individually visible to the human eyes.

2.4. Particle Swarm Optimization

PSO is one of the two fundamental mainstreams of SI developed in 1995 by James
Kennedy and Russell Eberhart [36, 63]. It is a robust population-based stochastic
optimization technique based on the social behavior, movement and intelligence of
flocks of birds or schools of fish. It applies the concept of social interaction of a
number of agents (particles) that constitute a swarm moving around, with a certain
velocity, in an n-dimensional search space in search of the best solution to an

optimization problem. Each particle resides at a position in the search space with the
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fitness value (evaluated by the fitness function to be optimized) of each particle

representing the quality of its position.

2.4.1 The original PSO framework

PSO involves a swarm of particles (agents) randomly initialized as points in the n-
dimensional Euclidean space in search of optima solution to an optimization problem.
Each particle i is characterized by a position vector X; = (Xjq, ..., Xin), a velocity
vector U; = (Vjq, ..., Vi), and another position vector p; = (Pjq, .., Pin), Which is the
best position the particle has been able to find. The position of each particle is
evaluated using the problem-specific objective function to determine their quality
(fitness). As the particles move in the search space, their position and velocity vectors

are updated as shown in equations (2.1) and (2.2) respectively in the OPSO algorithm.

Uit =0 + o (B — %) + CZFZ(ﬁg - J_C)zt) (2.1)
X = x + pitt (2.2)
wherei=1,2,...,Sand =1, 2, ..., T; S represents the swarm size while 7T represents

the maximum number of iteration allowed for the algorithm to run.

The velocity updating formula

Equation (2.1) known as the velocity updating formula is an integral part of the OPSO
algorithm. This formula determines the flying speed of particles in the search space
and is made up of the past velocity (¥}), cognitive (c;7,(P; — X})) and social
(co7 (ﬁg - a?f)) components. These three components play vital and different roles
for PSO in demonstrating efficient optimizing power in providing (near) optimal
solutions to various optimization problems, therefore making the algorithm sensitive
to these parameters. The random coefficients 7, and #, are n-dimensional vectors of
uniform random numbers between 0 and 1, which introduce randomness to the
searching strategy and enable the algorithm escape from local optima. The
acceleration coefficients c¢; and c;, also known as the cognitive and social scaling
parameters respectively, determine the magnitude of the random forces on particles in
the direction of p; (the best position particle i has been able to find till the " iteration)
and p, (the overall best position the whole particles has been able to find till the "
iteration). They play active roles in the convergence of the algorithm. The combined

effort of these control parameters grants the velocity of each particle its value which
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in turn determines the exploratory power of the algorithm. Getting appropriate values
for particles' velocities demand additional computational efforts and time. An

example can be found in [4].

It is very rare to find any PSO variants in literature that does not utilize the velocity
updating formula, whether in its simplified form or otherwise. This confirms the
implicit belief that PSO algorithms cannot be separated from the velocity updating

formula for a successful optimization process.

The position updating formula

The position updating formula of each particle is made up of two components,
namely: (i) previous position of each particle, (ii) current velocity of each particle.
Depending on the value if its current velocity, each particle moves from its current
position to another position in the solution space. The solution space is bounded by
the upper and lower limits of the decision variables. During execution of the PSO
technique, there is the possibility that values of the design variables extend beyond
their lower (Xmin) and upper (Xmax) boundaries values which could lead to divergence.
In such situations, the common practice is to artificially bring the affected particle
back to the search space boundary as shown in Equation (2.3).

x: = {Xminf ifxi < Xmin (2.3)
! Xmax: ifxi > Xmax

PSO technique has a wide range of applications in different fields including
economics, engineering, industry, biology and many other complex real world

optimization problems [3, 56, 73, 76].

2.4.2 Strengths and weaknesses of the PSO

The good attributes of the PSO technique has been a major attraction for numerous
researchers. However, there are some challenges associated with its usage which have
caused some alternative optimization techniques to be sought for in solving certain
complex optimization problems. We present a few of the strengths and weaknesses of

the OPSO in the following sub-sections.
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2.4.2.1 Strengths of the PSO technique

PSO is self-adaptive, not problem-dependent and easy to implement with few
parameters to adjust and/or optimize. It can be applied to solve both simple and
complex optimization problems with less computational burden. As an intelligent

technique, it does not need major adjustments to adapt it to new problems.

The technique does not need the gradient, continuity or differentiability of the
problem to work with. It is also insensitive to problem dimensionality as well as

initial solutions and can easily be parallelized for concurrent processing.

PSO has good global search ability with high accuracy and fast searching speed.
Besides, it adopts real number representation which is decided directly by the

solution.

2.4.2.2 Weaknesses of the PSO technique

In spite of the attractive features of the PSO as a potential global optimizer, some
weaknesses associated with it have been identified by various researchers. These
include:

1. Lack of PSO variants that perform well in optimizing diverse set of problems. As
identified by [119], some variants of the PSO have high quality performance in
solving complex multimodal functions but demonstrate unsatisfactory
convergence rates in unimodal functions.

1. Victim of premature convergence (easily trapped in local optima) when solving
complex multimodal problems. This area of the PSO has received much attention
in literature [4, 28, 43, 53, 54, 106, 131] and is a situation where the particles
converge to the existing global best in the search space rather than the global
optimum. This comes about because the more the particles communicate
information to one another, the more similar they become especially when other
particles follow are in line with the global best particle. A primary reason
advanced by [106] that could also cause premature convergence is that, all
particles have very similar behaviours because they have the same acceleration
coefficients and inertia weight values leading to poor population diversity among

the particles.
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iii. Profoundly dependence on the settings of cognitive and social learning constants

1v.

V.

Vi.

as well as inertia weight [53]. The cognitive and social learning constants (c¢; and
c2) were part of the OPSO [36, 63] while the inertia weight parameter became part
of the technique in 1998 [104]. In [63], the stochastic factors of both the cognitive
and social components were multiplied by c¢; and ¢, respectively and both
constants were set to the value of 2.0, to give each factor a mean of 1.0. The
inclusion of ¢; and ¢ in the PSO, their settings and contributions to accelerating
convergence as well as enabling PSO to avoid local minimum [43, 63] has made
these parameters fundamental to the operations of PSO. Also, the general belief
that the inertia weight parameter is vital in balancing the exploration and
exploitation activities of the PSO has equally made it an indispensable parameter.
Possible computational inefficiency as measured by function evaluations [131].
Blindness and computational inefficiency in the search process. The cognitive and
social components in the velocity update formula are weighted by ¢ and ¢, having
values of 2.0 and r; and », which take random values in the range [0,1]; this means
that, these two weighting factors arbitrarily take values in the range [0,2]. This
constrains the search covering the surrounding regions [0,2] to be centered on pf
and p;. Thus, while the search is approximating the global optimal solution, large
weighting factors generated randomly could make the particles blindly jump over
the optimal solution. On the other hand, small weighting factors generated
randomly could result in an increase in the number of iterations needed to reach
the global optimal solution especially if the search initially began far from the
global optimal solution [63, 68]

Slow convergence [7]

2.4.3 Developments and improvements on OPSO

The OPSO opened a new world of opportunity in the field of optimization. Over the

years, many researchers in the field of optimization have made tremendous efforts to

address the weaknesses of the PSO technique by developing different strategies to

improve on its effectiveness, efficiency and robustness in handling optimization

(1)

problems. These developments can be grouped into five areas, namely:

Modification and selection of parameters,
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(1) Mutations of particles' positions,
(ii1)) Swarm initialization,
(iv) Hybridization with other techniques, and

(v) Topological structure.

Brief overviews of these are provided below.

2.4.3.1 PSO Parameters

Optimization techniques often have parameters that guide its behaviour as is the case
with PSO. These parameters have to be set by the user to achieve good performance.
The implication is that different choices of these parameters can cause the technique
to perform badly or very well in solving particular problems. Thus, the PSO is a
parameter-sensitive technique and selecting good parameters is significant and very

challenging [21, 84, 103, 132].

The researches that fall into this category relate to the inertia weight parameter,
maximum velocity, constriction factor, acceleration coefficients, random factors and

swarm size. These are briefly reviewed below:

(a) Inertia weight parameter and its variants

To further enhance the performance of the PSO, the Inertia Weight Strategy (IWS)
was introduced with the aim of enhancing its exploitation and exploration
characteristics. This parameter, commonly represented as w, was originally
introduced into the PSO by [104] as a static (constant) factor with a fixed value
throughout the execution of the algorithm. It was introduced to balance the scope of
local and global searches of PSO and reduce the importance of (or eliminate) velocity
clamping during the optimization process [30, 38, 108]. This parameter was added to
the velocity updating formula to modify equation (2.1) resulting in equation (2.4).

DI = wBf + o7y (B — X)) + 75 (By — XF) (24)

The inertia weight parameter added to the first term at the right hand side of equation
(2.4) determines the proportion of the previous velocity that is contributed to the
current particles’ velocity. This implies that, if the value is high, the velocity is
increased and if the value is low the velocity decreases thus a determinant of the

speed of the particles.
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Over the years several inertia weight strategies have been proposed to dynamically
adjust its value at each iteration (see for example [4, 41, 55, 64, 69, 72, 102, 118]).
These strategies include random, time varying, chaotic and adaptive inertia weight
strategies. These inertia weight strategies have been experimentally proven to enhance
the performance of the PSO with varying degrees of success. These variants are
briefly discussed below.

L Random inertia weight strategies

Diversification (exploration) is vital in locating the area of global solution to an
optimization problem. This activity can be facilitated mostly by means of
randomization. As a result, randomness has been introduced to the IWS by different
researchers [36, 47]. This strategy does not have any feedback parameter. The inertia
weight thus takes different values randomly assigned at each iteration from a specified
interval. In [37] it was empirically discovered that random inertia weight strategy
increases convergence in the PSO and could find good solutions to most functions.

ii. Time varying inertia weight strategies

In this category, the value of the inertia weight is computed based on the iteration
number. Variants in this category can be broadly divided into two classes namely,
linear and nonlinear. The linear time-varying strategies can be further categorized into
linear time decreasing and linear time increasing strategies. The linear time
decreasing strategy uses an initially large inertia weight (usually 0.9) which is
linearly decreased to a small value (usually 0.4) [29, 41, 71, 72, 113, 129]. There are
cases where values other than 0.9 or 0.4 are used [39, 64, 68, 101]. The linear time
increasing strategy increases the inertia weight linearly from a specified small value to

a final large value [128, 129].

Similarly, the nonlinear time-varying strategies can be categorized into nonlinear time
decreasing and nonlinear time increasing strategies. The nonlinear time decreasing
strategy decreases an initially large value nonlinearly to a small value [6, 56, 67, 116].
This allows shorter time for exploration than the linear decreasing methods which
spend more time on refining solutions (i.e. exploitation) [29, 67]. These methods seem
more appropriate for smoother search spaces [29]. Conversely, the nonlinear time
increasing strategy works in the reverse order of the nonlinear time decreasing

strategy [88].
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A common characteristic of these inertia weight strategies is that the inertia weight
computed is bounded by two values which are always pre-defined by the user. These
values are the initial value (wmin) and final value (wmax) for the increasing strategies.
However, for the decreasing strategies, the initial value is wnyax While the final value is
wmin. With these static values, no room for flexibility is created for the inertia weight
computed values.

iii. Chaotic inertia weight strategies

Chaos optimizations have been applied to different aspects of PSO by various
researchers over time [31, 27, 46, 45, 70]. The important role of randomization can be
understood using the chaos theory. Chaos is mathematically defined as randomness
generated by a simple deterministic system [110]. It is generally characterised by
three dynamic properties namely, ergodicity, stochastic and sensitivity to its initial
conditions [27, 110] which is believe to enhance the search ability of PSO. This seems
to be the motivation behind the introduction of chaos feature into IWS by [41] which
led to improved optimizing capabilities of the Chaotic Descending Inertia Weight
PSO (CDIW-PSO) and Chaotic Random Inertia Weight PSO (CRIW-PSO) due to
better global search mobility, convergence speed and convergence precision
compared to the Linear Decreasing Inertia Weight PSO (LDIW-PSO) and Random
Inertia Weight PSO (RIW-PSO) respectively. There are several other chaotic maps
such as the logistic chaotic map which can be used in conjunction with the IWSs to
improve the performance of PSO.

iv. Adaptive inertia weight strategies

The adaptive IWSs were also introduced to improve the performance of PSO. These
can be grouped into two namely, the fuzzy adaptive inertia weight, which is
dynamically adjusted based on fuzzy sets and rules in each iteration [77, 105] and
non-fuzzy adaptive inertia weights, which are dynamically adjusted based on some
feedback parameters like swarm particle fitness, particle rank, distance to particle,

global best positions, and particle success rate [77].

(b) Introduction of maximum velocity

The velocity of a particle as given in equation (2.1), without restriction, can grow
unbounded while the particle oscillates around an optimum, increasing its distance to
the optimum in each iteration. This initiated the introduction of the velocity clamping

effect (or maximum velocity, V,.) to avoid velocity divergence. This idea was
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introduced by Eberhart and Kennedy in 1995 [36, 103]. It improves the performance
of the PSO as it helps particles take reasonably sized steps raking through the search
space rather than bouncing and continuously searching outside the solution space.
Velocity limits has been widely used in experimental studies [102]. However, efforts
have been made to eliminate the use of V. although, researches have shown that

velocity clamping has become a standard feature of the PSO [40].

The maximum velocity bounds for particles could negatively affect the performance
of the PSO algorithm if it is not properly set. As a result, various works have sought
to determine the velocity limits of particles that help to improve the performance of
PSO [102, 132]. The three major methods for computing the velocity clamping (Vmin
and Vi) in literature are: (i) multiplying the search space range with a certain
percentage (3), 1i.€. Vimax = 0(Xmax — Xmin) and Viin = -Vimax [40], (ii) multiplying both
the minimum and maximum limits of the search space separately with a certain
percentage (0), i.e. Vimax = 0(Xmax) and Viin = 6(Xmin) [132], and (7ii) assigning the
search space upper limit to Viax, (), 1.€. Viax = Xmax [38, 122]. It can be seen from (i)
and (ii) that the parameter  is very important. As a result, different values have been
used by different authors [40, 68, 101] for 6 € (0,1] to determine velocity clamping
for particles. In literature, irrespective any of the three methods used, the velocity

limits remain constant throughout the lifetime of the algorithm.

From equation (2.2), it is obvious that the velocity of a particle dictates the particle's
trajectory and is the direct determinant of its step sizes. Thus, the velocity limit plays
important roles in the exploration and exploitation ability of the PSO algorithm,
though its selections may be problem-dependent [103]. There exists the possibility of
encountering certain practical problems as a result of lack of knowledge regarding the
selection of V. leading to the use of a trial-and-error approach in order to make a
selection which could be very arduous and time consuming. Allowing the velocity
threshold to remain static, either by assigning to it a predefined constant value or a
search space threshold, throughout the lifetime of the algorithms, can make the
particles have some step size causing them to do more than enough exploration or

insufficient exploitation.
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(c) Introduction of the constriction factor

To ensure convergence, a PSO with constriction coefficient was proposed by [30]
which help transform the velocity update formula in equation (2.1) to that of equation
(2.5) below. The introduction of this parameter was to eliminate the need for velocity
limit as it is believed to limit the exploration of PSO [38]. However, empirical studies
in [38] shows that the constriction factor performed better when used with velocity
limit parameter. A mathematical argument presented in [15] revealed that the inertia
weight model is equivalent to the constriction factor. Earlier on in [38], the two
parameters were observed to be the same and the PSO with the constriction factor was
considered to be a special case of an algorithm with inertia weight. Another study
reported in [132] shows that the constriction factor PSO has varied efficiencies
relative to unimodal and multimodal problems being solved. However, based on the
findings of [15], it is not necessary to compute the constriction factor using equation
(2.5) because the sum of the learning coefficients which is required to be greater than

4 produces an unnecessary oscillation of the particles.

pitt = X(vit + o (B — %) + Czrz(ﬁg - xlt)) =)
where,
2K
X =

2- -/ ( =9
with

¢ =cn + (1)
and

¢ >4

The parameters v;, X;, ¢4, C3, 11,15, P; and ﬁg are as defined in Section 2.4.1. Parameter
x is known as the constriction factor which is a function of c;and ¢;; k € [0,1] is an

arbitrary constant that is used to adjust the value of y.

(d) Acceleration coefficients

These parameters are positive values that are commonly represented as ¢; (cognitive
scaling parameter) and ¢, (social scaling parameter). They regulate the relative
velocity of each particle towards the local and global best respectively. The values of
2.0 as originally assigned to these parameters in the OPSO [63] have been adopted by

many researchers over the years [4, 29, 39, 41]. As a result of the sensitive roles of
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these parameters in the performance of PSO, other researchers have attempted to
adjust them through empirical studies [50, 95-107]. In [50], the role of the
acceleration coefficients on the performance of PSO was investigated by using
unsymmetrical transfer range of acceleration coefficients. Simulation studies
exhibited an improved optimum solution for most of the benchmarks used especially
when changing ¢; from 2.75 to 1.25 and ¢, from 0.5 to 2.25, over the full range of the
search [50].

Furthermore, in [95], the New PSO (NPSO) was proposed. Here, the cognitive
acceleration coefficient ¢; was split into good experience component c;, and bad
experience component c¢;, to help the particles move towards their previous best
positions and away from their previous worst positions in order to facilitate
exploration capability. Similarly, the Anti-Predatory PSO (APSO) was proposed by
[96], where the cognitive acceleration coefficient ¢; was split into good experience
component c¢;, and bad experience component c;, ¢, was also split into the good
experience component ¢, and the bad experience component cz,. The bad experiences
help particles to by-pass their previous worst positions while good experiences help
particles move towards their previous best positions. Likewise in [107], the Time-
Varying Acceleration Coefficients PSO (PSO-TVAC) was introduced to enhance the
global search in the early part of the optimization and to encourage particles’
convergence towards the global optimum at the end of the search. This was achieved
by linearly decreasing the cognitive parameter c¢; from a high value cjpq to a low
value c¢;ni, while the social parameter, ¢, was linearly increased from a low value
Comin t0 @ high value of ¢4 Discussions on other strategies for determining these

acceleration coefficients can be found in [57].

From the preceding information regarding acceleration coefficients, it is clear that in a
bid to make the PSO technique perform better, some complexities and extra
computational efforts have been added to or introduced to the technique. If the
activities of these parameters could be compensated for, with less effort and
complexities, in other parts of the PSO technique, then the parameters could be
removed from the velocity updating formula to avert the extra computational

complications.
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(e) Random factor

A closer look at the PSO algorithm reveals that randomness plays a very useful role in
making the algorithm while seeking effective solution to optimization problems.
Randomness comes into play at the point of initializing the particles in the solution
space and in updating the velocities of particles at each iteration of the algorithm. The
presence of random factors in the velocity formula enhances stochastic tendency and
slows down convergence in order to promote the state space exploration and prevent
premature convergence to non-optimal points [116]. This random feature has

contributed immensely to the performance of PSO [41, 46].

) Swarm size

This is often set relative to the dimensionality and perceived complexity of a problem.
Values in the range 20-50 are common [20, 63, 86, 117, 122], depending on the
problem being solved. The convergence of PSO can also be influenced by the swarm
size. Small size of swarm results in fewer numbers of function evaluations and
consequently faster clock time, but in most cases, a large number of algorithm
iterations is needed while large swarm size requires more function evaluations and
fewer numbers of iterations [113, 132]. Tuning this parameter is seen to be of minor
importance [98], thus, there appears to be no generally defined swarm size in the

literature.

2.4.3.2 Mutation operators

In order to increase the diversity of the swarm and to prevent premature convergence
to local optimal, various mutation operators have been introduced to the PSO [5, 31,
46, 68, 69]. Chaos mutation operator based on logistic map was used by [27, 46] and
another based on Zaslavskii was used by [31]. In [45], twelve different chaos maps

were implemented to tune the attraction parameter of an accelerated PSO algorithm.

2.4.3.3 Swarm initialization

Swarm initialization involves the way particles are randomly distributed in the search
space at the initial stage relative to their positions and velocities, before the algorithm
starts execution. There are two sides to this, i.e. the random number generator used
and the way particles are distributed, both of which could enhance the computational

behaviour of PSO technique during the search process.
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Random number generators: These are systems with the ability to generate sequences
of random numbers according to a probability function [16]. Different types of
random number generators have been experimentally implemented to initialize
particles in the search space [16, 57, 81] but their efficiency seems to be problem
specific, as a certain initialization technique may lead to desirable behaviour in one

problem and undesirable in another [57].

Distribution of particles: During initialization, particles could be distributed
symmetrically or asymmetrically. When particles are distributed within the entire
feasible search space, with the global optimum lying within the space, most especially
when it is at the centre of distribution, it is said to be symmetrical; this is common
among the PSO variants relative to the benchmarking problems [81]. The
initialization is asymmetric when the particles are distributed within a subspace of the
entire feasible search space that does not contain the global optimum. The latter
method is referred to as region scaling and is most applicable as a research standard
for performance testing and comparison of algorithms when both the problem and its

optimum are known [20].

Most PSO variants use uniformly distributed random numbers for the initialization of
particles [81]. However, the random number generator used to initialize swarm in
PSO is not commonly specified by researchers in literature. This is not an

encouraging practice because it makes performance comparisons of PSO variants

difficult.

2.4.3.4 Swarm topological structure

This is the communication structure by which all the particles in the swarm are
organized to share information with each other when they are searching for solution in
the search space. It typically consists of bidirectional links connecting pairs of
particles and the best point found by any particle affects its neighbourhood. For
further information on swarm topological structure and the various ways they are
categorized can be found in [20, 57, 86, 94]. The type of topology used to implement

PSO can affect its efficiency and could be problem dependent.
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2.4.3.5 Hybridization with other techniques

Hybridization is the combination of two or more techniques, taking advantage of their
strengths, to build up a better technique that will be of more benefit compared with
the original individual techniques. Two popular ways of hybridization are sequential
and parallel hybridizations [44, 111]. Using these methods, the PSO has been
hybridized with different population-based techniques over the years. In the research
carried out by [111], hybridization with the Genetic Algorithm is the most popular
choice among researchers followed by Differential Evolution and Ant Colony
Optimization algorithms. Other techniques that have been combined with the PSO are
bacterial foraging optimization [14, 71] and simulated annealing [6, 51, 58, 106]. In
[70], PSO was hybridized with a chaotic local search procedure based on logistic
map. The logistic and tent chaotic maps were respectively used as inertia weights by

[27] in binary PSO to handle the feature selection problem.

PSO has also been hybridized with other local search techniques to help strengthen its
local search ability. Among these are Hill Climbing [59], Golden ratio method [127],
Local interpolation search [114], Adaptive local search [58] and the Quasi-Newton
method [130]. Some other local search techniques hybridized with the PSO are
reviewed in [94, 111].
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Chapter 3

Studies based on Dynamic Velocity and
Search Space Limits

The velocity limits (threshold) as well as the search space limits play important roles
in the efficiency of the PSO technique. They are used to control the extent of the
movements of particles when searching for (near) optimal solutions to optimization
problems within the search space. This control helps particles not to move out of the
search space of the problem, thereby forcing them to concentrate on the environment
where solutions to the problems can be found. The velocity limits are generally
represented by Viin and Viyax to form an interval [Viin, Viex], Where Viin 1s the

minimum velocity and Vy,x is the maximum velocity of particles in the search space.

These parameters are often pre-set by users when implementing PSO. The search
space limits define the boundaries for the decision variables of the problems being
optimized and the dimensions of the variables are expected to take values from within
this space defined by the boundaries. The search space limits are generally
represented by Xpin and Xpax to form an interval [Xpin, Xmax], Where Xpin 1s the
minimum value and X, is the maximum value the decision variables can obtain
relative to the search space. These parameters are also often pre-set by users when
implementing the PSO and they vary with the type of optimization problems. This
chapter presents two research articles (Paper 1 and Paper 2) based on studies on the
velocity and search space limits of PSO. Furthermore, the chapter reports results
another PSO variant based on greedy and adaptive methods of obtaining the global

swarm best.

3.1 Paper 1: On the Performance of Linear Decreasing
Inertia Weight Particle Swarm Optimization for
Global optimization

In Paper 1, the effects of different velocity limits on the performance of PSO were

studied and some of the values obtained for the limits were used to improve the
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performance of one of the PSO variants in literature, that is, the LDIW-PSO. This
variant has been considered by some researchers to be less effective compared to their
respective proposed PSO variants with numerical evidences recorded in literature. In
trying to validate these claims, several numerical simulations were performed using
the improved LDIW-PSO. Empirical results obtained showed that LDIW-PSO
performed better than these variants. Compared to other recent PSO variants with
different inertia weight strategies on the same test problems, it was also discovered
that LDIW-PSO had a competitive advantage. The findings in Paper 1 revealed that
previous claims of its inferior performance might have been due to some unfavourable
experimental settings. With good experimental settings, LDIW-PSO will perform
competitively well compared to many PSO variants. Further simulation results that
can provide useful hints for deciding the setting velocity limits for particles for

LDIW-PSO were provided in the paper.

3.2 Paper 2: Improved Particle Swarm Optimizer with
Dynamically Adjusted Search Space and Velocity
Limits for Global Optimization

Based on the positive effects of velocity limits on the performance of the PSO
technique in Paper 1, it became necessary for further studies on velocity and search
space limits. This is the focus of Paper 2. This further study was motivated by the
original goal of PSO of finding solutions to optimization problems much faster than
traditional methods. Also, spending time to find optimal settings for the velocity
limits parameters could count against any superiority claim over competing methods.
Another motivation for further studies hinges on two major features that characterize
many of the PSO variants in literature namely, the static particle search space and
velocity limits. That is, once values for these parameters are set, they remain the same
throughout the lifetime of the algorithm. This has limited the flexibilities of these
variants in obtaining optimal solutions for many of optimization problems. Paper 2
therefore studied the OPSO with the aims of improving its performance and compare

results thereof with some efficient PSO variants recorded in literature.

Instead of using the inertia weight parameter, which is the common tool being used to
address the problem of premature convergence associated with PSO, Paper 2 worked

directly with the velocities of the particles. This is because the velocities of particles

46



are the direct determinants of the particles' step sizes. The velocity limits were made
to vary throughout the lifetime of the algorithm to create opportunities for the
algorithm to obtain better quality solutions to optimization problems. Also, the
solution search spaces were made to vary to prevent particles from spending

unnecessary time searching areas that may not be necessary in finding good solutions.

Numerical simulation results show that the improved OPSO is very consistent in
convergence velocity, convergence accuracy, global search ability and robustness
than all the PSO variants adopted for comparisons. The findings in Paper 2 further
revealed that if the velocity limits and solution search space of particles are allowed to
vary dynamically relative to the values of particles' dimension, there is likelihood of
great improvement in the performance of the algorithm. This results from the better
exploration and exploitation activities of the algorithm with added flexibility in
concentrating on the promising areas in the solution search space for further search by

the particles instead of the entire space all the time.

3.3 Particle Swarm Optimizer based on greedy and
adaptive methods

This is an additional work, not yet reported or submitted as an article to any journal or
conference as at the time of this thesis. The study attempt to further improve the way
global best is obtained from the personal bests of all the particles in the PSO
technique. In this variant, adaptive feature was introduced in the process of obtaining
the global best. Also, the way velocity limits and search space limits were obtained is
different from the methods mentioned in section 3.2 and reported in Paper 2. This

variant is named PSO based on greedy and adaptive methods (GAPSO).

3.3.1 Motivation

This study was motivated by the fact that:

i.  PSO uses pure greedy method in searching for (near) optimal solution. We seek
ways to complement this with an adaptive strategy for better efficiency.

i1. We also observed that premature convergence to a non-global local minimum is
more likely to occur with a greedy strategy in handling multimodal problems

which might not be of much problem if an adaptive approach is adopted.
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In GAPSO, four phases are involved in the determination of the global best position
from the personal bests of particles as well as in the calculation of the search space

and the velocity limits.

Phase 1: Personal best construction

In this phase, the personal best of each particle is obtained in the normal way as in the
OPSO by using greedy method. That is, if the current position of a particle is better
than the best it last visited, it is retained otherwise it is replaced with the best last
visited position. With this, a vector of personal bests P= (p1, P2, , Pn) is created for

all the particles, where 7 is the swarm size.

Phase 2: Swarm splitting phase

After obtaining personal bests (ﬁ) for all the particles, a threshold is defined using a
value-based method. In the value-based method, the parameter a&/0,1] is used in
defining the threshold. Assume g is the candidate evaluation function which maps
every elements ¢; of the set of yet to be added particles C to a real value, gy, =
min{g(c;)}, V¢; € C and gpqy = max{g(c;)}, Vc; € C. Since minimization problems are
considered, all particles which have objective function value smaller than the
threshold i = g@uin + A(Zmax - Emin) are included in group I while the other particles are
included in group 2. Thus, the objective function value of each particle must be in the
interval g(c;) € [gminn] to be included in group 1. If o = 0 the selection is greedy, but

purely random if o = /.

Listed below are three different approaches of choosing a,

1. Choosing a randomly from a uniform discrete probability,

i1. Choosing o from a non-uniform decreasing discrete probability, and
i11i. Fixing a to a value close to the purely greedy choice.

Approach (i) is currently used in the implementation of GAPSO.

This process of obtaining the personal bests involves using a greedy method whereas
an adaptive method is used in the algorithm to update the particles in groupl. As long

as this phase continues, the solution found gradually improves.
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Phase 3: Obtaining global best position
Instead of obtaining the global best by picking the best of all personal bests, it is

obtained by collecting the least value in each dimension across all particles in group

1. Thus, the global best position (gBest) for entire swarm is obtained using equation

3.1).

gBest) = miin(xij) 3.1)

where, i = 1,2 ,..., n, is particle’s index, j = 1,2 ,..., d, is the index of particle’s

dimension, » is the swarm size and d is the dimension size.

Phase 4: Obtaining velocity and search space limits for particles
The velocity and search space limits are obtained using group 2 of particles as

follows:

(i) During each iteration, the largest dimensions value (L4) and the smallest

dimension value (S4) among the dimensions of all the particles, are obtained

according to equations (2) and (3), where, xij is the i"™ particle with ;™ dimension.

Ly « max (mjax(xij)) (3.2)

Sq < miin (mjm(x{)) (3.3)

(i1) The upper limit xm,x and lower limit xni, of the solution search space for the
particles were obtained according to equations (3.4) and (3.5), where | . | means

absolute value.

Xmax € max(lLdl; |Sd|) (3-4)

Xmin < ~Xmax (3.5)

(i1i1)After obtaining xm,x and xpmin, they are used to compute the upper (vimax) and lower

(vmin) particle velocity limits as defined in equations (3.6) and (3.7).

Vmax < HXmax (3.6)
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Umin € UXmin (3-7)

where, u is a velocity clamping percentage which is used to scale the upper and

lower solution space limits to help reduce the velocity range for particles.

Equation (3.8) was used to update the positions of particles at each iteration.

_ {xmin + (Xppin — x;) X random(0,1) if x; < xpin 59
i = :

Xmax — (Xi = Xmax) X random(0,1) if x; > xpin
Simulation experiments were conducted to implement this new algorithm (GAPSO) in
order to determine its weakness and strength, to guide the direction for its further

improvement(s).

3.3.2 Experimental settings

Since PSO is a stochastic algorithm, all experiments were repeated 50 times with
different random seeds. The performance of each approach takes into account the
Mean Best Fitness (MBF), Standard Deviation (SD), Success Rate (SR), number of
Function Evaluations (FE) to satisfy the success criteria and Average Computer Time
(ACT) in minutes for all the 50 runs. The proposed PSO variant was applied to 31
benchmark test problems in Appendix A as obtained from literature [8, 22, 60, 91,
92].

The number of variables (dimensions) for all functions in the experiments ranges from
2 to 30. Swarm size was set to 30; maximum number of iteration was set to 5,000 for
dimensions of 30 and 2,000 for others. The stopping criterion is to allow algorithms
run for the maximum number of iterations. For the test problems that have their global
minimum as zero (0.0), a run was considered successful if at the end of maximum
iteration the algorithm obtains a result less than 10™°. For other test problems, a run
was considered successful if at the end of maximum iteration the algorithm obtains a
result less than the success criteria stated in Table 3.1. The parameters ¢; and ¢, were
set to 2.0. For LDIW-PSO, V.x was set relative to the search space of each problem,

usingV,_ =0.05x X where Xpax 1S the maximum value of the domain of x. This

Vmax setting was used because it greatly increased the efficiency of LDIW-PSO. For
GAPSO, at the beginning V,_ =X __, but V. was subsequently adjusted using
Equations (3.6) and (3.7).
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Table 3.1: Success criteria for some of the test problems

Test Problem ALFP CML6  CSMI1 EXPN ESOM HTMF MCLZ ROSB

Success criteria -0.3520 -1.0315 -2.9999 -0.9999 -0.9999 -3.85 -1.8012  30.0

3.3.3 Experimental results and discussions

Presented in Table 3.2 are the results obtained from the experiments when LDIW-
PSO and GAPSO were used on the benchmarked test functions. The bold values show
better optimal results. From the results, it is clear that LDIW-PSO generally
performed better in low dimension problems while GAPSO generally performed
better in high dimension problems. However, the two algorithms performed equally in
BKY2 and EXPN problems. In these two problems, GAPSO executed fewer number
of FEs with slightly higher ACT. The higher ACT is perhaps as a result of the time
used by GAPSO to compute Equations (3.1) — (3.7). A general observation is that,
GAPSO has the ability to escape local optima than LDIW-PSO in complex search

spaces.

Observations from the performance of the two algorithms might suggest the need to
hybridize them with other technique for improved overall performance. GAPSO
needs further improvements to make it perform well on low-dimensional problems.
These might include:

1. Introduction of randomness into equation (3.1). This will involve a random

selection of some personal bests of particles in group I to obtain the global

best.
i1. Implementing other approaches of choosing o
iil. Introduction some mutations to the positions of particles.
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Table 3.2: Results obtained for the test problems using LDIW-PSO and GAPSO

Test LDPIW-PSO GAPSO

Prob. \pp SD midERR SR AFE ACT MBF SD midERR SR AFE ACT
ACKL 1.628%¢-14 4.6707e-15 1.4655e-14 100 105595 1.43 8.7574e-15 2.6213e-15 7.5495e-15 100 32101  2.04
ALFP -3.5239e-01 3.3307e-16 8.6074e-05 100 603 0.04 -3.5131e-01 1.8381e-03 3.8840e-04 42 87820  0.05
BEAL 3.0483e-02 1.4933e-01 0.0000e+00 96 4728 0.05 8.2188e-01 4.2357e-01 9.3484e-01 O 62000  0.05
BELA  0.0000e+00 0.0000e+00  0.0000e+00 100 3287 0.03 5.4024e-02 1.5026e-01 1.8151e-02 0O 62000  0.04
BKY1 0.0000e+00 0.0000e+00 0.0000e+00 100 8909 0.03 1.5543e-16 8.5998e-17 2.2204e-16 100 1882 0.05
BKY2 0.0000e+00 0.0000e+00 0.0000e+00 100 8546 0.04 0.0000e+00 0.0000e+00 0.0000e+00 100 1923 0.03
BOOT 0.0000e+00 0.0000e+00 0.0000e+00 100 4063 0.03 7.3119e-01 7.1674e-01 4.9647¢-01 0 62000  0.04
BRWN 1.3800e+01 2.0778e+01 1.9478e-34 62 168093 4.56 6.8330e-48 3.5987e-47 2.2084e-51 100 20259  4.45
CML3 2.2116e-148 1.3789¢-147 2.99172-152 100 1516 0.05 4.9407e-324 0.0000e+00 0.0000e+00 100 3354 0.07
CML6 -1.0316e+00 2.2204e-16 1.0316e+00 100 58 0.05 -1.0250e+00 8.1582e-03 4.1526e-03 6 948720  0.06
CIGR 4.8951e-29 1.2908e-28 1.7227¢-30 100 100744 1.24 7.6967e-46 4.0746e-45 7.0415¢-49 100 30658  1.39
CSM1 -2.6158e+00 2.2510e-01 4.4335e-01 6 2425340 1.38 -3.0000e+00 0.0000e+00 0.0000e+00 100 20957  1.49
CVLE 2.4795e-01 1.2575¢+00 7.0065e-04 4 1483260 0.08 9.2771e+00 4.9589e+00 9.0742¢+00 0 62000  0.10
DEJ4  1.6220e-42 5.5364e-42 2.5449e¢-44 100 69724 1.21 9.8669-62 5.2637e-61 2.668le-66 100 20242  1.40
DIXP 6.6667e-01 3.0927e-16 6.6667e-01 0 150000 2.03 9.5727e-01 1.2447e-02 9.5819e-01 0 155000 2.25
EXPN -1.0000e+00 4.7103e-17 1.1102e-16 100 58001 1.27 -1.0000e+00 8.7419e-17 1.1102e-16 100 10670  1.42
ESOM -1.0000e+00 0.0000e+00 0.0000e+00 100 1543 0.03 -9.7990e-01 6.6969e-02 3.9320e-03 4 1457015 0.05
GWNK 1.5137¢-02 1.8336e-02 9.8610e-03 32 415785 1.52 0.0000e+00 0.0000e+00 0.0000e+00 100 30870  1.54
LVMI1 1.4514e-02 3.5972e-02 1.6995e-32 86 95692  2.23 1.3511e-02 6.5184e-02 2.2328e-04 0 155000 2.32
LVM2 6.5924e-04 2.6094e-03 3.0753e-32 94 85950  2.16 9.8279e-03 1.7673e-02 6.7619¢-03 0 155000 2.36
HTMF -3.7746e+00 6.6502e-02 7.4606e-02 4 1440360 0.23 -3.7898e+00 1.1711e-01 3.1946e-02 30 144474 0.21
MTYS 6.1019e-117 3.8018e-116 3.2015e-120 100 1166 0.03 1.4880e-247 0.0000e+00 2.6758e-272 100 3262 0.03
MCLZ -1.7415e+00 3.8134e-02 5.2467e-02 0 60000  0.05 -1.6893e+00 1.6901e-01 3.8400e-02 0 62000  0.07
NQTC 1.4648e-03 5.2335e-04 1.4087e-03 0 150000 1.28 4.4310e-04 3.4823e-04 3.8526e-04 2 7423760 1.41
NCRA 3.6641e+01 1.1758e+01 3.650le+01 O 150000 1.49 6.0002¢-01 4.2001e+00 0.0000e+00 98 66826  2.14
PLZ1 4.8012e-32 2.1277e-31 6.7335e-33 100 80986  2.32 8.9313e-05 4.3428e-05 8.8466e-05 0 155000 2.30
PLZ2 8.7899e-04 2.9808e-03 4.8010e-32 92 101760 2.39 4.7446e-03 2.2900e-03 4.3059¢-03 0 155000 2.49
PRDC 9.1600e-01 3.6661e-02 9.0000e-01 0 60000  0.05 9.0000e-01 8.8818e-16 9.0000e-01 0 60175  0.07
RAS1 3.1873e+01 1.1360e+01 2.8831e+01 0 150000 1.47 8.9601e-07 6.2721e-06 0.0000e+00 98 83736  1.55
RAS2  3.0505e+01 1.0002e+01 3.0844e+01 O 150000 1.37 1.2574e-03 8.8017e-03 0.0000e+00 98 88057  1.59
ROSB 3.1898e+01 2.1961e+01 2.3236e+01 86 102257 2.43 2.8696e+01 9.2685e-04 2.8696e+01 100 19495  2.56
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Chapter 4

Studies based on Swarm Success Rate and
Chaotic Maps

The drive to further enhance the performance of the PSO technique led to the
introduction of the inertia weight parameter into the PSO in 1998 [104] to balance its
intensification and diversification activities. Intensification (exploitation) searches for
the current best solutions and selects the best candidate; while diversification
(exploration) allows the algorithm explore the search space more efficiently mostly by
means of randomization to locate promising regions that would proffer better
solutions. Motivated by the possibility of increasing the search ability of PSO with
chaotic optimization, the Chaotic Descending Inertia Weight PSO (CDIW-PSO) and
Chaotic Random Inertia Weight PSO (CRIW-PSO) were introduced in [41]. These
variants used logistic chaotic map, to improve the performances of the two PSO
variants that implemented two pioneering inertia weight strategies: linear decreasing

and random inertia weight strategies.

Chaos is mathematically defined as randomness generated by a simple deterministic
system. Also, the swarm success rate was embedded in the inertia weight strategy as a
feedback parameter in [77] to enhance the performance of the PSO technique. Other
chaotic maps different from the existing ones but relative to the inertia weight
strategies, were utilised in this chapter. Moreover, the swarm success rate was applied

in a different way to that employed in [77].

In the three papers (Paper 3, Paper 4 and Paper 5) included in this chapter, three

different types of studies were carried out with three major goals as follows:

i. To investigate the effects of various chaotic maps in comparison with the logistic
map when used in the inertia weight strategy,

ii. To propose new inertia weight strategies based on swarm success rate combined
with the logistic map on one hand and based on only swarm success rate on the

other hand.
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iii. To use the proposed variants to further improve the effectiveness of the PSO
algorithms in terms of convergence speed, global search ability, robustness and

increased solution accuracy.

4.1 Paper 3: On Adaptive Chaotic Inertia Weight in
Particle Swarm Optimization

In Paper 3, two adaptive chaotic inertia weights which combine the swarm success
rate feedback parameter with the logistic chaotic mapping to harness the adaptive and

chaotic characteristics of the individual techniques are proposed.

4.2 Paper 4: An Improved Particle Swarm Optimizer
based on Swarm Success Rate for Global optimization
Problems

Based on the findings in Paper 3, the swarm success rate was found to be a very
useful tool for enhancing the performance of PSO. Paper 4 further explored the
potentiality of inertia weight combined with the swarm success rate as the latter
provide useful information about the particles in the search space. It was ascertained
from literature that many of the inertia weight strategies which originated from the
LDIW strategies always have fixed initial and final values of inertia weight with the
exception of CDIW-PSO and CRIW-PSO which utilize chaotic values to adjust part

of the boundaries.

Paper 4 proposes two new PSO variants namely, the Swarm Success Rate Decreasing
Inertia Weight PSO (SSRDIWpgp) and Swarm Success Rate Random Inertia Weight
PSO (SSRRIWpsp). It is believed that these variants performed better because the
swarm success rate which served as a feedback parameter helped in realizing the state
of the swarm in the search space and hence, adjusted the value of the inertia weight in
each iteration appropriately for better results compared with when chaotic value

which has no information about the state of the swarm is used.

More experiments were conducted using 31 test problems (see Appendix A) to further
test the performance of SSDIWpso compared to LDIW-PSO and CDIW-PSO. The

dimension of the test problems ranges from 2 to 30. Other experimental settings used
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in Paper 4 were used. Presented in Tables 4.1 — 4.3 are the results obtained
implementing the three variants. Best results obtained among the three variants are
indicated in bold. In all the results, the average performance of SSRDIWpgg in all the

performance measurements is better than the competing variants.

Table 4.1: Mean Best Fitness (MBF) and Standard Deviation (SD) for the three PSO variants

Test MBF SD
Problems

LDIW-PSO CDIW-PSO SSRDIWpso LDIW-PSO CDIW-PSO SSRDIWpso

ACKL 1.5323e-10 1.6573¢-14 1.3944E-14 1.6311e-10 1.24%4e-14 3.0972E-15
ALFP -3.5239e-01 -3.5239¢-01 -3.5239e-01 3.3307e-16 3.3307e-16 3.3307e-16
BEAL 4.5724e-02 6.0966e-02 7.6207¢-02 1.8098¢-01 2.0674e-01 2.2862e-01
BELA 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
BKY]1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
BKY2 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
BOOT 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
BRWN 4.0640e+01 1.4720e+01 3.8080e+01 3.4792e+01 2.1188e+01 3.4597e+01
CML3 3.6188e-148 1.6838e-303 0.0000e+00 1.4715e-147 0.0000e+00 0.0000e+00
CML6 -1.0316e+00  -1.0316e+00  -1.0316e+00 2.2204e-16 2.2204e-16 2.2204e-16
CIGR 8.2652e-29 3.3044e-38 1.8190e-68 3.7258e-28 2.3131e-37 1.1950e-67
CSM1 -2.5862¢+00  -2.6305¢+00  -2.5951e+00 2.6928e-01 2.1568e-01 2.4518e-01
CVLE 8.7573e-04 1.5782¢-01 6.2974¢-04 1.0333¢-03 1.1006e+00 9.6451e-04
DEJ4 1.3210e-40 8.2972e-83  2.0480e-120 9.1181e-40 3.0762e-82 1.2303e-119
DIXP 6.6667¢e-01 6.6667e-01 6.6667e-01 3.2101e-16 3.5388e-16 3.3233e-16
EXPN -1.0000e+00  -1.0000e+00  -1.0000e+00 2.7195e-17 1.5701e-17 3.5108e-17
ESOM -1.0000e+00  -1.0000e+00  -1.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
GWNK 1.6122e-02 1.3480e-02 9.9941e-03 1.6529¢-02 1.4403e-02 9.3724e-03
LVM1 1.2440e-02 1.0367e-02 8.2935e-03 3.3688e-02 3.1101e-02 2.8125e-02
LVM2 2.6235e-31 8.7899¢-04 4.1449¢-03 1.0428¢-30 2.9808e-03 1.4021e-02
HTMF -3.7768e+00  -3.7753e+00  -3.7500e+00 5.5431e-02 5.9576e-02 1.5927e-01
MTYS 8.2243e-116 1.9156e-213  8.0597e-274  5.3343e-115 0.0000e+00 0.0000e+00
MCLZ -1.7576e+00  -1.7654e+00  -1.7675e+00 3.6620e-02 2.3939¢-02 1.5048¢-02
NQTC 1.4412¢-03 2.3647¢-03 3.6301e-03 6.0783e-04 7.8462e-04 1.3296e-03
NCRA 3.9561e-01 3.9921e+01 4.0406e+01 1.0911e+01 1.1701e+01 1.1733e+01
PLZI 1.8548e-32 9.4183e-33 1.4329¢-02 4.9741e-32 1.5041e-31 1.0031e-01
PLZ2 1.0987e-03 8.7899¢-04 3.0765e-03 3.2962¢-03 2.9808e-03 4.9333e-03
PRDC 9.1400e-01 9.2000e-01 9.0800e-01 3.4699¢-02 4.0000e-02 2.7129e-02
RASI 3.1495e+01 3.1396e+01 3.2390e+01 9.1559¢+00 1.0665e+01 9.0203e+00
RAS2 3.3948e+01 3.2814e+01 3.4306e+01 1.0491e+01 9.2322¢+00 1.0594e+01
ROSB 2.9097e+01 2.5845e+01 2.9072e+01 1.6590e+01 1.4162¢+01 2.0483e+01
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Table 4.2: Success Rate (SR), Average Function Evaluation (AFE) and Average Computer Time (ACT in minutes for
all the runs) for the three PSO variants

Test SR (%) AFE ACT (min)
P IW-PSO CDIW-PSO SSRDIWpso LDIW-PSO CDIW-PSO SSRDIWpso LDIW-PSO CDIW-PSO SSRDIWyso
ACKL 100 100 100 71937 41092 24071 1.06 1.07 1.09
ALFP 100 100 100 391 345 389 0.04 0.03 0.04
BEAL 94 92 90 5929 6281 7664 0.05 0.05 0.04
BELA 100 100 100 3220 1108 852 0.04 0.03 0.03
BKY1 100 100 100 8868 1934 1558 0.03 0.04 0.03
BKY2 100 100 100 8915 1979 1550 0.04 0.03 0.03
BOOT 100 100 100 3458 1206 1084 0.03 0.02 0.03
BRWN 28 64 28 461863 112559 400440 5.01 5.07 5.02
CML3 100 100 100 1705 807 803 0.05 0.05 0.06
CML6 100 100 100 1385 745 695 0.05 0.05 0.04
CIGR 100 100 100 100362 46835 22705 1.3 129 132
csM1 4 10 6 3674550 1369698 2358920 1.48 1.49 1.53
CVLE 6 2 14 997040 2970360 403037 0.07 0.08 0.06
DEJ4 100 100 100 69273 18272 7420 1.34 137 1.30
DIXP 0 0 0 150000 150000 150000 2.17 224 2.17
EXPN 100 100 100 56761 11175 5107 133 1.27 1.31
ESOM 100 100 100 1407 819 720 0.03 0.04 0.04
GWNK 36 30 32 362598 395244 337328 153 2.01 2.01
LVMI 88 90 92 92961 37551 22215 232 225 23
LVM2 100 92 78 79616 42177 56291 24 2.34 2.25
HTMF 4 6 6 1440195 940110 940170 0.19 021 0.20
MTYS 100 100 100 1117 704 740 0.03 0.03 0.03
MCLZ 0 0 0 60000 60000 60000 0.06 0.05 0.05
NQTC 0 0 0 150000 150000 150000 131 1.36 1.37
NCRA 78 80 84 46263 39569 30292 2.03 1.50 1.58
PLZI 100 100 98 81662 31735 20038 238 237 221
PLZ2 90 92 72 105741 49135 73847 530 2.40 231
PRDC 0 0 0 60000 60000 60000 0.05 0.05 0.04
RASI 96 94 96 24691 12599 8379 1.54 1.5 1.53
RAS2 90 92 94 37342 15856 11955 2.10 2.09 2.05
ROSB 90 94 86 90851 30902 34723 3.30 3.30 3.28
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Table 4.3: Mean error (MEANERR), least error (LEASTERR) and median error (MEDIANERR) for the three PSO variants

Test MEANERR LEASTERR MEDIANERR

Prob. LDIW-PSO CDIW-PSO SSRDIWpso LDIW-PSO CDIW-PSO SSRDIWpso LDIW-PSO CDIW-PSO SSRDIWpso
ACKL 1.5323e-10  1.6573e-14 1.3944E-14 8.168le-12  7.5495e-15 7.5495E-15 1.1020e-10 1.4655e-14 1.4655E-14
ALFP 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05 8.6074e-05
BEAL 4.5724e-02  6.0966e-02  7.6207e-02 0.0000e+00  0.0000e+00 0.0000e+00  0.0000e+00  0.0000e+00  0.0000e+00
BELA 0.0000e+00  0.0000e+00  0.0000e+00 0.0000e+00  0.0000e+00 0.0000e+00  0.0000e+00 0.0000e+00  0.0000e+00
BKY1 0.0000e+00  0.0000e+00  0.0000e+00 0.0000e+00  0.0000e+00 0.0000e+00  0.0000e+00 0.0000e+00  0.0000e+00
BKY2 0.0000et+00  0.0000e+00  0.0000e+00 0.0000e+00  0.0000e+00 0.0000e+00  0.0000e+00  0.0000e+00  0.0000e+00
BOOT 0.0000e+00  0.0000e+00  0.0000e+00 0.0000e+00  0.0000e+00 0.0000e+00  0.0000e+00  0.0000e+00  0.0000e+00
BRWN  4.0640e+01 1.4720e+01 3.8080e+01 2.0057e-37 1.8120e-67 1.9220e-91 3.2000e+01 1.5906e-54 3.2000e+01
CML3  3.6188e-148 1.6838e-303 0.0000e+00 2.8046e-157 0.0000e+00 0.0000e+00 1.3218e-150 6.9811e-313 0.0000e+00
CML6 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05 2.8453e-05
CIGR 8.2652e-29 3.3044e-38  1.8190e-68 5.4450e-33  1.0222e-65 2.9552e-89 4.7527¢-30 1.0087e-52 1.6144e-78
CSM1 4.1380e-01  3.6946e-01 4.0493e-01 0.0000e+00 0.0000e+00 0.0000e+00 4.4335e-01 4.4335e-01 4.4335e-01
CVLE 8.7573e-04 1.5782e-01 6.2974e-04 3.4675e-07 1.7165e-06 1.1562e-08 6.1549¢-04 5.4307e-04 3.4693e-04
DEJ4 1.3210e-40  8.2972e-83 2.0480e-120 1.5984e-48 2.7001e-92 3.5283e-131 2.4644e-44 1.4147¢-86 4.4213e-125
DIXP 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667e-01 6.6667¢-01 6.6667¢e-01
EXPN 1.1768e-16  1.1324e-16 1.2212e-16 1.1102e-16 1.1102e-16 1.1102e-16 1.1102e-16 1.1102e-16 1.1102e-16
ESOM  0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
GWNK  1.6122e-02 1.3480e-02  9.9941e-03 0.0000e+00 0.0000e+00 0.0000e+00 1.3544e-02 9.8573e-03 9.8573e-03
LVMl1 1.2440e-02  1.0367e-02  8.2935e-03 1.5704e-32  1.5704e-32 1.5704e-32  2.0867e-32 1.8931e-32 2.0867e-32
LVM2 2.6235e-31 8.7899e-04  4.1449e-03 1.3497e-32  1.4730e-32 1.4730e-32  3.8765e-32 7.9441e-32 1.5771e-31
HTMF 8.3254e-02 8.4687e-02 1.1010e-01 3.5640e-04 1.1193e-03 1.4795e-03 7.4288e-02 7.2117e-02 8.5187e-02
MTYS  8.2243e-116 1.9156e-213  8.0597-274 2.5760e-127 8.5756e-232 6.2555e-295 8.2894e-120 2.6983e-220 9.5689e-281
MCLZ  4.3705e-02 3.5938e-02 3.3756e-02 1.8403e-02 1.8207e-02 1.8479¢-02 3.5420e-02 2.8134e-02 2.9801e-02
NQTC 1.4412e-03 2.3647e-03 3.6301e-03 5.6536e-04 6.6833e-04 1.3726e-03 1.4087e-03 2.3879¢-03 3.5082e-03
NCRA  3.956le+01 3.9921e+01 4.0406e+01 1.7001e+01 1.6001e+01 2.2001e+01  3.9001+01 3.9001e+01 3.0501e+01
PLZI 1.8548e-32  9.4183e-33  1.4392e-02 1.5704e-33  1.5704e-33 1.5704e-33  6.7335e-33  6.7335e-33  6.7335e-33
PLZ2 1.0987e-03  8.7899¢-04 3.0765e-03 1.5962e-32  1.4730e-32 1.5962e-32  6.7115e-32 7.2662e-32 1.4169e-31
PRDC  9.14000e-01 9.2000e-01  9.0800e-01 9.0000e-01 9.0000e-01 9.0000e-01  9.0000e-01  9.0000e-01 9.0000e-01
RASI 3.1495e+01 3.1396e+01 3.2390e+01 1.1930e+01 1.3918e+01 2.0877e+01 3.0819e¢+01 2.9825e+01 3.0819e+01
RAS2 3.3948e+01 3.2814e+01 3.4306e+01 1.4924e+01 1.4924e+01 1.4924e+01 3.3331e+01 3.1839e+01 3.2834e+01
ROSB  2.9097e+01 2.5845e+01 2.9072e+01 1.7107e+01 7.8878e+00 2.5413e+00 2.3134e+01 2.2516e+01 2.1972e+01
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4.3 Paper 5: An Investigation into the Performance of
Particle Swarm Optimization with Various Chaotic
Maps

Paper 5 empirically investigated further the performances of two PSO variants,
LDIW-PSO and RIW-PSO algorithms. Various chaotic maps were incorporated into
their respective IWSs to provide chaotic features that will enable the particles move to
new search regions in the search space. These investigations reveal that many of the
chaotic maps improved the performance of the algorithms at a higher level than the
commonly used logistic map. In terms of the number of FEs, the two PSO variants
generally performed best with the intermittency chaotic map. However, considering
other performance measurement, none of the chaotic maps, when used with the two
variants, could enable the algorithms perform well in all test problems compared to

other maps.

Based on the experimental findings, it is clear that though the logistic map could
make LDIW-PSO and RIW-PSO have good performances, there exist chaotic maps
that can make them perform even better in terms of convergence speed, accuracy,
stability and global search ability. The findings in this paper provide some useful
information regarding the usage of these maps in the inertia weight strategies of PSO

variants especially LDIW-PSO and RIW-PSO.
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Chapter 5

Simplified Particle Swarm Optimization

5.1. Paper 6: On the Performance of Particle Swarm
Optimization with(out) some Control Parameters
for Global Optimization

The efficient optimizing power of the PSO algorithm lies in the balancing of
exploration and exploitation activities. Meanwhile, inertia weight, acceleration
constants, random factors and velocity threshold play important roles in the
exploration and exploitation ability of the PSO algorithm. Their selections could be
problem-dependent, labour intensive and time consuming with the exception of

random factors. Several PSO variants depend on these parameters.

Two major goals were achieved in Paper 6. Firstly, the paper experimentally
demonstrated that the basic PSO (BPSO) technique can perform efficiently without
using some (or any) of the control parameters in the particle velocity update formula.
Secondly, the problem of premature convergence associated with the PSO technique
when optimizing high dimensional multi-modal optimization problems was
addressed. In achieving these goals, some modifications were made to the BPSO to
make it simpler but more effective without additional complex computational efforts,

to form another PSO variant branded as the modified BPSO (M-BPSO).

The modifications were inspired by the drawbacks of the BPSO with respect to
premature convergence, weak local search ability and the desire to make the
algorithm simpler but more efficient. Some of the modifications involved making the
velocity limits of the particles decrease dynamically depending on the progressive
minimum and maximum dimensional values of the entire swarm. The decreasing
nature of the velocity limits was used to control the exploration and exploitation

activities of M-BPSO.
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Results obtained from the numerical simulations confirm that the inertia weight
parameter may not always be necessary for PSO algorithms to work effectively. Also,
it was discovered from the experiments that with proper modifications to some other
parts of PSO algorithms, the acceleration coefficients and random factors may not be
necessary in the particle velocity updating equation to obtain global optimal solutions

to optimization problems.
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Chapter 6

Particle Swarm Optimization Hybrid with
Local Search

6.1. Paper 7: Improved Particle Swarm Optimization with
a Collective Local Unimodal Search for Continuous
Optimization Problems

Naturally, the PSO technique combines local search idea (through self-experience)
with global search method (through neighbouring experience), in an attempt to
balance exploration and exploitation activities. However, it is widely accepted that the
PSO technique has good global search ability but weak local search ability because it
can easily locate areas in the solution space where good solutions can be discovered.
However, finding the best solution is a challenge. This difficulty often traps the PSO

in local optimum leading to premature convergence.

The optimizing strategy of the PSO hinges on the sharing of new discoveries by each
particle in the swarm with neighbours, while the particle with the best discovery
attracts others. Though, this strategy seems to be very promising, there is the risk that
the particles would be susceptible to premature convergence, especially when the
problem to be optimized is multi-modal and has high dimensionality. This is due to
the fact that, the more particles share their discoveries among themselves, the more
likely they are to have identical behaviours, until they converge to the same area in
the solution search space. If none of the particles could discover the global best, then,
at some point, all the particles will converge about the existing global best and this

may in turn not be the global minimizer.

For the PSO technique to leave up to expectation, it must possess a major feature that
characterizes an efficient optimization algorithm, which is the ability to strike a
balance between local and global searches. As a result, one of the possible ways to

prevent this premature convergence is to embed a local search technique into the PSO
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algorithm to help improve the quality of each solution by searching its
neighbourhood. Once this is accomplished, better information is communicated
among the particles thereby increasing the algorithm's ability to locate better global

solutions during the course of optimization.

Paper 7 was motivated by the possibility of premature convergence associated with
the idea of other particles following the best particle among them in search for a
global solution within the search space relative to the optimization problem being
solved. In the paper, a different local search technique was proposed to harness the
global search ability of PSO and improve on its local search efforts. The local search
technique is based on the collective efforts of randomly selected (with replacement)
particles, which are chosen a number of times equal to the size of the problem
dimension. Each particle selected is made to contribute the value in the position of its
randomly selected dimension from the personal best. The contributed values are then
used to form a potential global best solution which is further refined to locate a better
solution in comparison to the current global solution. Two PSO variants, LDIW-PSO
and RIW-PSO, which have been claimed to be less efficient in optimizing many
continuous optimization problems, were used to validate the proposed improvement

of the performance of the PSO technique.

Another achievement made in the paper is the improvement of the decision making

strategy by the swarm in obtaining potential global solutions in the search space.
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Chapter 7

Solving High Dimensional Problems with
Particle Swarm Optimization

7.1 Paper 8: An Adaptive Velocity Particle Swarm
Optimization  for  High-Dimensional = Function
Optimization

PSO variants that have been used to solve optimization problems up to 2,000
dimensions without losing superiority to its competitor(s) are not common in
literature. There are possibilities of encountering high-dimensional real-world
optimization problems. Therefore, PSO algorithm needs to be improved to enhance it

for better performance in handling such problems.

Presented in Paper 8 is a simple PSO variant, Adaptive Velocity PSO (AV-PSO)
which adaptively adjusts the velocity of particles based on Euclidean distance
between the position of each particle and the position of the global best particle. The
variant was implemented without using the inertia weight, acceleration coefficients
and random coefficients parameters in the velocity formula for particle in the swarm.
A chaotic feature was introduced into the particle's position formula to promote some
stochasticity in order to facilitate good exploitation. Numerical simulations were
conducted to compare the performance of AV-PSO with Adaptive Inertial weight
PSO (AIWPSO), Rank based PSO (PSOyqnk), Chaotic Random Inertia Weight PSO
(CRIW-PSO), Decreasing exponential function PSO (def-PSO), Natural Exponential
inertia weight PSO (e;-PSO) and Adaptive PSO (APSO). It was also compared with
Line Search Restart (LSRS) optimization technique.

Continuous optimization problems with low (10 — 30) and high (50 — 4,000)
dimensions were used in the experiments. In all the experiments AV-PSO
outperformed all its competitors showing that PSO is very much suitable for large-

scale global optimization problems involving very high dimensions, with very good
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performance in locating quality global optimal solutions with few numbers of

iterations without easily getting stuck in local optimal.
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Chapter 8

Conclusion, Summary and Future Research

Motivated by the drawbacks of the PSO technique viz-a-viz premature convergence,
weak local search ability as well as the desire to make the technique simpler, more
effective, efficient and robust than existing variants in handling both simple and
complex optimization problems, a series of studies were conducted with promising

results that are reported in this thesis.

8.1 Conclusions

A number of new PSO variants are proposed in this thesis that effectively addressed
the drawbacks of PSO technique namely, premature convergence and weak local
search ability. Efforts were made to make the technique simpler and more effective,
efficient and robust in handling problems with many local optima. Results obtained
from these variants were compared among themselves and with available ones in

literature in order to show their superiority.

The variants introduced in this thesis tried to avoid the introduction of additional
parameters, complexities or more computational efforts unlike several other PSO
variants in literature. We also introduced some dynamics into the control of the
particle velocity limits and search space limits during execution of PSO as opposed to
many other existing variants. Moreover, the pure greedy method of obtaining the
swarm global best among the personal bests of all the particles in the swarm which is
a common attribute of very many of the existing PSO variants was complemented
with random and adaptive features. Some of the variants were implemented without
the inertia weight, acceleration constants, random factors and the cognitive
component of the velocity formula. All these clearly provide expected answers to the

research questions raised in Chapter 1.
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The new variants were validated with several test problems of diverse complexities
and dimensionality. Experimental results obtained show substantial evidences that the
variants are much better than their original counterparts and many variants in the
literature in terms of reliability, robustness, convergence speed, solution quality,
search ability and efficiency. Since the trends in global optimization focus nowadays
on the application of metaheuristics to practical problems arising from the industries
[1, 2, 23-25, 85], this thesis offers researchers with efficient variants of PSO that we
believe will be of great help in solving industrial problems. These variants offer
alternatives to many currently available algorithms for solving global optimization
problems in which the gradient information is not readily available. They are
available for optimization researchers and the results can also serve as benchmark on

which further research could be based.

8.2 Summary of contributions

We provide a summary of the contributions made through the series of studies carried

out as highlight over this thesis below:

i. New variants of PSO which use swarm success rate as feedback parameter
into their inertia weight strategies are proposed to enhance the explorative and
exploitative power of the PSO technique.

ii. The basic PSO was modified to propose another variant with seven versions,
which use dynamic velocity limits instead of inertia weight to control its
global and local search activities.

ili. This work also introduced a new improved PSO with dynamic search space
and velocity limits.

iv.  Another novel variant was proposed which diversified the operations of PSO
by incorporating randomness and adaptivity to complement the greedy method
PSO normally use to choose the global best among the personal bests of
particles among the swarm.

v. A new local search technique was proposed to address the weak local search
ability of PSO technique. Promising results from this local search technique

show that it can also be used with any other population-based optimization
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vi.

8.3

algorithms to obtain quality solutions to simple and complex optimization
problem.

The results obtained from the experiments with various chaotic maps provide
a platform for informative decision making by practitioners in the process of
selecting chaotic maps to be used in the inertia weight formula of LDIW-PSO
and RIW-PSO.

Future research

Despite the depth of experimental study conducted in this thesis, there is still room for

improvement and future study. Two major areas stand out clearly for future research

study namely,

1l

1ii.

1v.

The application of the proposed variants to real-world problems with diverse
complexities especially combinatorial optimization problems and adaptation
of the variants to handling constrained global optimization problems.

Further study on the tuning of the parameters that makes up the proposed local
search technique.

Study on the parameters and behaviour of other SI techniques especially more
recent ones, in search of improved techniques that can handle increasingly
complex real-world optimization problems.

Finally, since PSO exhibits an implicit parallelism as a multi-agent based
technique, it would be worthwhile to explore a multi-agent-based framework
(see [19, 97]) in the implementation of the variants which perhaps might

further improve their efficiency and convergence.
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Appendix

Test Problems [8]

ACKL: Ackley Function

Model: ACKL(X) = —20exp <—O.2 /% ?=1xi2> —exp (% ¢ cos(27rxl—)) +20+e

Feature: Multimodal and Non-separable
Search space: =32 < x; <32,i=1,2,--,d
Global minimum: x* = (0,:--,0); ACKL(x*) =0

ALFP: Aluffi Pentini's Function

Model: 0.25x7 — 0.5x? + 0.1x; + 0.5x3

Feature: Multimodal and Separable

Search space: —10 < x; <10,i =1,2

Global minimum: x* = (—1.0465,0); ALFP(x*) =~ —0.3523

BEAL: Beale Function

Model: BEAL(X) = (1.5 — x; + x1x3)% + (2.25 — x; + x,x%)? + (2.625 — x; + x1x3)?
Feature: Unimodal and Non-separable

Search space: —4.5 < x; <4.5,i =1,2

Global minimum: x* = (3,0.5); BEAL(x*) = 0

BELA: Becker & Lago Function

Model: BEIA(%) = (|x1| — 5)% + (Jx;| — 5)?
Feature: Multimodal and Separable

Search space: —10 < x; < 10,i =1,2

Global minimum: x* = (+5,+5); BELA(x*) = 0

BKYI: Bohachevsky-1 Function

Model: BKY1(%) = x5 + 2x% — 0.3cos(3mx,) — 0.4cos(4mx,) + 0.7
Feature: Multimodal and Separable

Search space: =50 < x; < 50,i =1,2

Global minimum: x* = (0,0); BKY1(x*) =0

BKY2: Bohachevsky-2 Function

Model: BKY2(¥) = x] + 2x5 — 0.3cos(3mx, )cos(4mx,) + 0.3
Feature: Multimodal and Non-separable
Search space: =50 < x; < 50,i = 1,2
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Global minimum: x* = (0,0); BKY2(x*) = 0

BOOT: Booth Function

Model: BOOT(X) = (x; + 2x, — 7)% + (2x; + x, — 5)?
Feature: Multimodal and Non-separable

Search space: —10 < x; < 10,i =1,2

Global minimum: x* = (1,3); BOOT(x*) =0

BRWN: Brown-3 Function

2 2
Model: BRWN (%) = 341 <xiz(xz+1+1) 4,0 +1)>

Feature: Multimodal and Non-separable
Search space: —1<x; <4,i=1,2,---,d
Global minimum: x* = (0,---,0); BRWN(x*) = 0

CML3: Camel-3 Function

Model: CML3(%) = 2x% — 1.05x} + £x% + 2%, + 23
Feature: Multimodal and Non-separable

Search space: =5 < x; <5,i=1,2

Global minimum: x* = (0,+-+,0); CML3(x*) = 0

CML6: Camel-6 Function

Model: CML6(X) = 4x% — 2.1x7 + %x? + x1%, — 4x5 + 4x]

Feature: Multimodal and Non-separable

Search space: =5 < x; < 5,i =1,2

Global minimum:

x* = (0.089842, —0.712656) or x* = (—0.089842,0.712656); CML6(x*) = —1.0316

CIGR: Cigar Function

Model: CIGR(¥) = X% 4+ 10000 Y&, x?

Feature: Unimodal and Non-separable

Search space: —10 < x; <10,i=1,2,---,d
Global minimum: x* = (0,---,0); CIGR(x*) = 0

CSM: Cosine Mixture Function

Model: CSM(%) = 0.1 3L, cos(5mx,) — XL x?
Feature: Unimodal and Non-separable

Search space: —1 <x; <1,i=1,2,---,d

Global minimum: x* = (0,--+,0); CSM(x*) = 0.4
CVLE: Colville Function

Model: CVLE = (%) = 100(x% — x,)" + (x; — )2 + (x5 — 1)? + 90(x2 — x;)” +
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10.1((x2 — 1?2 + (x4 — 1)) + 19.8(x; — D(xy — 1)
Feature: Multimodal and Non-separable
Search space: —10 < x; <10,i =1,2,3,4
Global minimum: x* = (1,1,1,1); CVLE(x*) = 0

DEJ4: De Jong's Function

Model: DEJ4(%) = Y&, ix}

Feature: Unimodal and separable

Search space: —5.12 < x; < 5.12,i=1,2,--,d
Global minimum: x* = (0,:-+,0); DEJ4(x*) = 0

DIXP: Dixon Price Function

Model: DIXP(2) = (x, — 1)? + X%, i(2x2 — x;,)"
Feature: Unimodal and Non-separable

Search space: —10 < x; <10,i=1,2,---,d
Global minimum: x* = (0,:--,0); DIXP(x*) = 0

EXPN: Exponential Function

Model: EXPN (%) = exp(—0.53™ ; x?)

Feature: Unimodal and Separable

Search space: =1 <x; <1,i=1,2,---,d

Global minimum: x* = (0,:--,0); EXPN(x*) = —1

ESOM: Easom Function

Model: ESOM (%) = — cos(x;) cos(x,) exp(—(x; — m)? — (x, — m)?)
Feature: Unimodal and Non-separable

Search space: —10 < x; <10,i = 1,2

Global minimum: x* = (m,m); ESOM(x*) = —1

GWNK: Griewank Function

Model: GWNK (%) = ﬁ(i‘.?:l xt) — ( ey cos (%)) +1

Feature: Multimodal and Non-separable
Search space: —600 < x; < 600,i =1,2,---,d
Global minimum: x* = (0,---,0); GWNK(x*) =0

LVMI: Levy & Mantalvo-1 Function

Model: LVM1(%) = (%) (10sin? (y,) + Z25H(y; — 1)2[1 + 10sin (ryi41)] + (o
1)?); where:y; = 1 +%(xi +1)

Feature: Multimodal and Non-separable

Search space: —10 < x; < 10,i =1,2,-,d
Global minimum: x* = (—1,—1,---,—1); LVM1(x*) = 0
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LVM?2: Levy & Mantalvo-2 Function

Model: LVM2(%) = 0.1(sin?(3mx;) + Xt (x; — 1)?[1 + sin?(3mx;41)] + (x, —
1)2 X [1 + sin?(27x,)])

Feature: Multimodal and Non-separable

Search space: =5 <x; <5,i=1,2,--,d

Global minimum: x* = (1,1,--,1); LVM2(x*) = 0

HTMF: Hartman-3 Function

N 2
Model: HTMF (X¥) = — Y+, c;exp (— Y3, ai(x — pij) )
Feature: Multimodal and Non-separable

Search space: 0 < x; <1,i=1,2,3

Global minimum: x* = (0.114, 0.556,0.852); HTMF(x*) = —3.86

MTYS: Matyas Function

Model: MTYS(X) = 0.26(x? + x2) — 0.48x;x,

Feature: Unimodal and Non-separable

Search space: —10 < x; < 3102,i =1,2

Global minimum: x* = (0.114614,0.555649, 0.852547); MTYS(x*) = —3.86278

MCLZ: Michalewicz Function
o -2m
Model: MCLZ(X) = — Y&, sin(x;) [sin (lx?l)] where m = 10
Feature: Multimodal and Separable
Search space: 0 < x; <m,i=1,2
Global minimum: x* = (0,+-+,0); MCLZ(x*) = —1.8013

NQTC: Noisy Quatic Function

Model: NQTC(%) = ¥, ix} + random(0,1)
Feature: Unimaodal and Separable
Search space: —1.28 < x; < 1.28,i=1,2,---,d

Global minimum: x* = (0,+-+,0); NQTC(x*) = 0

NCRA: Non-Continuous Rastrigin Function

N d ) X lf |xL-| <05
Model: NCRA(x) = i=1(3’i — 10 cos(2my;) + 10); Yi = {Toun;i(in) if ;] > 0.5}
Feature: Multimodal and Separable

Search space: —5.12 < x; < 5.12,i=1,2,---,d
Global minimum: x* = (0,--+,0); NCRA(x*) =0

PLZI: Penalized Function-1

Model: PLZ1(%) = %(105in2(ny1) + T8y — 1D?(1 + 10sin?(wyipq)) +
(O — 1D?) + X4, ulx;, 10,100, 4); where u(x;, a, k,m) =
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k(x;—a)™, ifx;>a
0, if—aniSa;andyi=1+%(xi+1)
k(—x; —a)™, ifx; < -—a
Feature: Multimodal and Non-separable
Search space: =50 < x; <50,i=1,2,---,d
Global minimum: x* = (1,1,:+-,1); PLZ1(x*) =0

PLZ2: Penalized Function-2
Model: PLZ2(%) = 0.1 (sin2(3nx1) + X80 — 1)?(1 + sin?(3mxi41)) + (xy —
1) (1 + sin(2mx,)) ) + Teky ux;, 5,100, 4); where
k(x;—a)™, ifx;>a
u(x;,a,k,m) = 0, if—-a<x;<a
k(—x; —a)™, ifx;<-—a
Feature: Multimodal and Non-separable

Search space: =50 < x; <50,i=1,2,---,d
Global minimum: x* = (1,1,-+-,1); PLZ2(x*) =0

PRDC: Periodic Function

Model: PRDC(X) = 1 + sin?x; + sin?x, — 0.1exp(—x? — x2)
Feature: Multimodal and Non-separable

Search space: —10 < x; <10,i = 1,2

Global minimum: x* = (0,0); PRDC(x*) = 0.9

RAS1: Rastrigin Function-1

Model: RAS1(%) = Y% ,(x? — 10 cos(2mx;) + 10)
Feature: Multimodal and Separable

Search space: —5.12 < x; < 5.12,i=1,2,---,d
Global minimum: x* = (0,+-+,0); RAS1(x*) =0

RAS?2: Rastrigin Function-2

Model: RAS2(X) = 10d + X&,(x? — 10 cos(2mx;))
Feature: Multimodal and Separable

Search space: —5.12 < x; <5.12,i=1,2,---,d
Global minimum: x* = (0,+-+,0); RAS2(x*) = 0

ROSB: Rosenbrock Function

Model: ROSB(¥) = ¥&1(100(x; 41 — x2)?) + (x; — 1)?
Feature: Unimodal and Non-separable
Search space: =30 < x; <30,i=1,2,---,d

Global minimum: x* = (1,1,:+-,1); ROSB(x*) = 0

236



Hindawi Publishing Corporation

The Scientific World Journal

Volume 2013, Article ID 860289, 12 pages
http://dx.doi.org/10.1155/2013/860289

Research Article

Hindawi

On the Performance of Linear Decreasing Inertia Weight
Particle Swarm Optimization for Global Optimization

Martins Akugbe Arasomwan and Aderemi Oluyinka Adewumi

School of Mathematics, Statistics, and Computer Science, University of Kwazulu-Natal, Private Bag X54001, Durban 4000, South Africa
Correspondence should be addressed to Aderemi Oluyinka Adewumi; laremtj@gmail.com

Received 9 July 2013; Accepted 4 September 2013

Academic Editors: P. Melin, G. Terracina, and G. Wei

Copyright © 2013 M. A. Arasomwan and A. O. Adewumi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm
optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of
premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to
do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying
LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal
of this paper is to experimentally establish the fact that LDIW-PSO is very much eflicient if its parameters are properly set. First,
an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in
LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values,
five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its
competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies

were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted.

1. Introduction

The idea of Particle Swarm Optimization (PSO) stems from
biology where a swarm of birds coordinates itself in order
to achieve a goal. When a swarm of birds looks for food,
its individuals will spread in the environment and move
around independently with some degree of randomness
which enables it to discover food accumulations. After a
while, one of them will find something digestible and, being
social, communicates this to its neighbors. These can then
approach the source of food, thus leading to the convergence
of the swarm to the source of food. Following this analogy,
PSO was largely derived from sociopsychology concept and
transferred to optimization [1], where each particle (bird)
uses the local information regarding the displacement of its
reachable closer neighbors to decide on its own displacement,
resulting to complex and adaptive collective behaviors.

Since the inception of PSO technique, a lot of work has
been done by researchers to enhance its efficiency in handling

optimization problems. One such work is the introduction
of linear decreasing inertia weight (LDIW) strategy into the
original PSO to control its exploration and exploitation for
better performance [2-4]. However, LDIW-PSO algorithm
from the literature is known to have the shortcoming of
premature convergence in solving complex (multipeak) prob-
lems due to lack of enough momentum for particles to do
exploitation as the algorithm approaches its terminal point.
The challenge of addressing this shortcoming has been on for
a long time and has attracted much attention of researchers
in the field of global optimization. Consequently upon this,
many other inertia weight PSO variants have been proposed
[2, 5-16], with different levels of successes. Some of these
variants have claimed better performances over LDIW-PSO,
thereby making it look weak or inferior. Also, since improving
on the performance of PSO is an area which still attracts more
researchers, this paper strives to experimentally establish the
fact that LDIW-PSO is very much efficient if its parameters,
like velocity limits for the particles, are properly set. Using



the experimentally obtained values for particle velocity limits
in LDIW-PSO, results show that LDIW-PSO outperformed
other PSO variants adopted for comparison.

In the sections that follow, inertia weight PSO technique
is described in Section 2, LDIW-PSO and the PSO variants
adopted for comparison are reviewed in Section 3, parameter
settings were experimentally conducted in Section 4, presen-
tations and discussions of the experimental results of LDIW-
PSO and its competing variants are made in Section 5, while
Section 6 concludes the paper.

2. Particle Swarm Optimization

This technique is a simple but efficient population-based,
adaptive, and stochastic technique for solving simple and
complex optimization problems [17, 18]. It does not need the
gradient of the problems to work with, so the technique can
be employed for a host of optimization problems. In PSO, a
swarm of particles (set of solutions) is randomly positioned
(distributed) in the search space. For every particle, the
objective function determines the food at its place (value of
the objective function). Every particle knows its own actual
value of the objective function, its own best value (locally best
solution), the best value of the whole swarm (globally best
solution), and its own velocity.

PSO maintains a single static population whose members
are tweaked (adjust slightly) in response to new discoveries
about the space. The method is essentially a form of directed
mutation. It operates almost exclusively in multidimensional
metric, and usually real-valued, spaces. Because of its origin,
PSO practitioners tend to refer to candidate solutions not
as a population of individuals but as a swarm of particles.
Generally, these particles never die [19], but are moved about
in the search space by the directed mutation.

Implementing PSO involves a small number of different
parameters that regulates the behavior and efficacy of the
algorithm in optimizing a given problem. These parameters
are particle swarm size, problem dimensionality, particle
velocity, inertia weight, particle velocity limits, cognitive
learning rate, social learning rate, and the random factors.
The versatility of the usage of PSO comes at a price because for
it to work well on any problem at hand, these parameters need
tuning and this could be very laborious. The inertia weight
parameter (popularly represented as w) has attracted a lot of
attentions and seems to be the most important compared with
other parameters. The motivation behind its introduction was
the desire to better control (or balance) the scope of the
(local and global) search and reduce the importance of (or
eliminate) velocity clamping, V..., during the optimization
process [20-22]. According to [22], the inertia weight was
successful in addressing the former objective, but could not
completely eliminate the need for velocity clamping. The
feature of the divergence or convergence of particles can be
controlled only by parameter w, however, in conjunction with
the selection of values for the acceleration constants [22, 23]
as well as other parameters.

Each individual in the particle swarm is composed of
three n-dimension vectors (current position, previous posi-
tion, and velocity), where # is the dimensionality of the search
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If x; < min X
x; = min X

else if x; > max X
x; = max X

end if

ALGORITHM I: Particle position clamping.

Ifv, <minV
v; =minV

else if x; > max V'
v; = maxV

end if

ALGORITHM 2: Particle velocity clamping.

space. Thus, in a physical n-dimensional search space, the
position and velocity of each particle i are represented as the
vectors X; = (x;;,...,%;,) and V; = (v;,..., v;,), respectively.
In course of movement in the search space looking for
the optimum solution of the problem being optimized, the
particle’s velocity and position are updated as follows:
VikJrl = wVik +qry (Pbestf-c - X:‘)
)
+ o1, (Gbestf - Xf) ,

X:-ﬁ—l _ Xfc +Vvik+1) (2)

where, ¢; and ¢, are acceleration (weighting) factors known
as cognitive and social scaling parameters that determine the
magnitude of the random forces in the direction of Pbest
(previous best) and Gbest (global previous best); ; and r, are
random numbers between 0 and 1; k is iteration index; w is
inertia weight. It is common that the positions and velocities
of particles in the swarm, when they are being updated, are
controlled to be within some specified bounds as shown
in Algorithms 1 and 2, respectively. An inertia weight PSO
algorithm is shown in Algorithm 3.

3. A Review of LDIW-PSO and Some of Its
Competing PSO Variants

Despite the fact that LDIW-PSO algorithm, from the lit-
erature, is known to have a shortcoming of premature
convergence in solving complex (multipeak) problems, it may
not always be true that LDIW-PSO is as weak or inferior as it
has been pictured to be by some PSO variants in the literature
[2,7,13]. Reviewed below are some of these variants and other
variants, though not directly compared with LDIW-PSO in
the literature, but have been adopted for comparison with
LDIW-PSO.

3.1. Linear Decreasing Inertia Weight PSO (LDIW-PSO). 'The
inertia weight parameter was introduced into the original
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Begin Algorithm
Input: function to optimize, f
swarm size, ps
problem dimension, d

Initialize:
x; = (%, ..
Vi = Vi ee s Vig)s
gbest « best of pbest,
Repeat
Calculate w

x* « gbest
Return x”
End Algorithm

search space range, [min X, max X]
velocity range, [min V, max V]
Output: x*: the best value found
for all particles in problem space
,X;q) and

Evaluate f(x;) in d variables and get pbest, (i = 1,..., ps)

Update v; for all particles using (1)

Update x; for all particles using (2)

Evaluate f(x;) in d variables and get pbest, (i = 1,..., ps)

If f(x;) is better than pbest; then pbest; « x;

If the best of pbest; is better than gbest then gbest « best of pbest,
Until Stopping criteria (e.g., maximum iteration or error tolerance is met)

ALGORITHM 3: Inertia weight PSO algorithm.

version of PSO by [20]. By introducing a linearly decreas-
ing inertia weight into the original version of PSO, the
performance of PSO has been greatly improved through
experimental study [24]. In order to further illustrate the
effect of this linearly decreasing inertia weight, [4] empirically
studied the performance of PSO. With the conviction that a
large inertia weight facilitates a global search while a small
inertia weight facilitates a local search, a linearly decreasing
inertia weight was used with an initial value of 0.9 and
a final value of 0.4. By reason of these values, the inertia
weight can be interpreted as the fluidity of the medium in
which a particle moves [21], showing that setting it to a
relatively high initial value (e.g., 0.9) makes particles move in
a low viscosity medium and performs extensive exploration.
Gradually reducing it to a much lower value (e.g., 0.4) makes
the particle moves in a high viscosity medium and performs
more exploitation. The experimental results in [4] showed
that the PSO converged quickly towards the optimal positions
but slowed down its convergence speed when it is near the
optima. Thus, by using the linearly decreasing inertia weight,
the PSO lacks global search ability at the end of run even
when the global search ability is required to jump out of the
local minimum in some cases. As a result, employing adapt-
ing strategy for adjusting the inertia weight was suggested
to improve PSO’s performance near the optima. Towards
achieving this, there are many improvements on LDIW-PSO
in the literature [2, 3, 16, 24-26], which have made PSO to
perform with varying degree of successes. Represented in (3)
is the LDIW:

-t

Tmax

T,

max

) + Weng» (3)

w; = (wstart - wend) (

where wg,,, and w,.,q are the initial and final values of
inertia weight, t is the current iteration number, T,,,, is the
maximum iteration number, and w, € [0, 1] is the inertia
weight value in the tth iteration.

3.2. Chaotic Descending Inertia Weight PSO (CDIW-PSO).
Chaos is a nonlinear dynamic system which is sensitive
to the initial value. It has the characteristic of ergodicity
and stochastic property. Using the idea of chaotic mapping,
CDIW-PSO was proposed by [2] as shown in (5) based on
logistic mapping in (4). The goal was to improve on the
LDIW-PSO to avoid getting into local optimum in searching
process by utilizing the merits of chaotic optimization

Zp = Xz % (1= 2), 4)

where ¢4 = 4 and z; is the kth chaotic number. The map
generates values between 0 and 1, provided that the initial
value z, € (0, 1) and that 2z, ¢ (0.0,0.25,0.5,0.75, 1.0):

T,

max

t
W = (wstart - wend) < T > * Wend X Zk+1> (5)
ax

m;

where wg,,, and w,,q are the initial and final values of
inertia weight, and rand() is a uniform random number
in [0, 1]. The experimental results in [2] show that CDIW-
PSO outperformed LDIW-PSO in all the test problems used
in the experiment in terms of convergence precision, quick
convergence velocity, and better global search ability.

3.3. Random Inertia Weight and Evolutionary Strategy PSO
(REPSO). This variant proposed in [7] used the idea of sim-
ulated annealing and the fitness of particles to design another



inertia weight represented by (6). A cooling temperature
was introduced to adjust the inertia weight based on certain
probability to facilitate jumping off local optimal solutions.

It was experimentally proven that REPSO is significantly
superior LDIW-PSO in terms of convergent speed and
accuracy:

,
o+ —, 2T,

1too PET

W, = r (6)
o+ —, <1,

2" o0 P
where o, ; € [0,1] are constants with &; > «, and r €
U[0,1]. The simulated annealing probability is defined as
follows:

1, min fit k < min l-t,
1<i<m 1<ism
_ . -k . t
p= mingic, f;  — Mingiem f; .tk .ot
exp| — , min f;" > min f;,
Tt 1<i<m 1<i<m

(7)

where m is the number of particles, f; is the fitness value
of particle i in the tth iteration, and the adaptive cooling
temperature in the tth iteration, T}, is defined as shown in (8):

_ fatvg _
ftiest

where f{_, is the current best fitness value, and fatVg which is
defined in (9), is the average fitness value in the tth iteration:

T, 1, (8)

t 1 < t
fug = 207 ()

The combined efforts of the simulated annealing idea and
fitness variance of particles improved the global search ability
of PSO. In all the experiments performed, REPSO was
recorded superior to LDIW-PSO in convergence velocity and
precision.

3.4. Dynamic Adaptive Particle Swarm Optimization
(DAPSO). DAPSO was introduced by [3] with the aim
of proffering solution to the PSO premature convergence
problem associated with typical multipeak, high dimensional
function optimization problems so as to improve its global
optimum and convergence speed. A dynamic adaptive
strategy was introduced into the variant to adjust the inertia
weight value based on the current swarm diversity and
congregate degree as well as the impact on the search
performance of the swarm. The experimental results
recorded showed that DAPSO was more effective compared
with LDIW-PSO. The inertia weight formula that was used is
represented in (10):

Wy = Wiy + (wmax - wmin) X Ft X Pt (10)

where w,;, and w,,,, are the minimum and maximum inertia

weight values, t is the current number of iterations, the
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diversity function F, and adjustment function ¢,, both in the
tth iteration, are represented in (11) and (12), respectively:

2
F, =1- —arctan (E), 1n)
T
where E is the group fitness as shown in (13):
2 2
(Pt — e(—t /(20 ))) (12)

where 0 = T'/3 and T are the total numbers of iterations:

E= %;(f (xi) - favg)z’ (13)

where N is the swarm size, f(x;) is the fitness of particle i,
and f,,, represented in (14) is the current average fitness of
the swarm:

favg = %Z;f (xi) . (14)

3.5. Adaptive Particle Swarm Optimization (APSO). This PSO
variant was proposed in [5], in which an adaptive mutation
mechanism and a dynamic inertia weight were incorporated
into the conventional PSO method. These mechanisms were
employed to enhance global search ability and convergence
speed and to increase accuracy, while the mutation mech-
anism affected the particle position updating formula, the
dynamic inertia weight affected the inertia weight formula
shown in (15). Though APSO was not compared with LDIW-
PSO, it outperformed all its competitors as evidenced by all
the experimental results:

1 ¢
wt:0.5{1+tanh[&xF(Pg )]}, (15)
where F (P;d) is the fitness of current best solution in the
tth iteration, and the parameter « is predefined which
could be set equal to the fitness of the best particle in the
initial population. For the updating of the particle’s position,
when a particle is chosen for mutation, a Gaussian random
disturbance was added as depicted in (16):
xjj = X5+ M x B, (16)
where x;; is the ith component of the jth particle, B is a
random variable with Gaussian distribution with zero mean
and unit variance, and M is a variable step size which
dynamically decreases according to current best solution
fitness. M is defined in tth iteration according to

1 ¢
M, =x xtanh[;xF(Pgd)]. 17)

max

3.6. Dynamic Nonlinear and Dynamic Logistic Chaotic Map
PSO (DLPSO2). In [11], two types of variants were proposed
to solve the premature convergence problem of PSO. In
this variant, two dynamic nonlinear methods and logistic
chaotic map were used to adjust the inertia weight in parallel
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TABLE 1: Settings for parameter  in LDIW-PSO.

Problem f £ f fa fs fe
1) 0.05 0.0075 0.05 0.015 0.075 0.015

according to different fitness values. One of the dynamic
nonlinear inertia weights is represented by (18) and (19), while
the other is represented by (20) and (21). They are meant to
achieve tradeoff between exploration and exploitation:

iter ) , 18)

iter .«

dn = dnmin + (dnmax - dnmin) (

iter \*"
), (19)

W = Wiy + (wmax - wmin) <iter

max

dn= dnmax - (dnmax - dnmin) <1ti

iter .,

) > (20)

iter \%"
), (21)

W= Wpax — (wmax - wmin) (itel’max
where dn is the dynamic nonlinear factor, w is the inertia
weight, w,,, and w.;, are the maximum and minimum
values of w, respectively, dn,,,, and dn,;, are the maximum
and minimum values of dn, respectively, and iter and iter,,,
are the current iteration numbers and the maximum iteration
number, respectively.

A dynamic logistic chaotic map in (4) was incorporated
into the PSO variant inertia weight as shown in (23) to
enrich searching behaviors and avoid being trapped into local
optima:

iter ) , (22)

& = Cpay ~ (‘xmax - “min) < .
iter ..

w = a+ (1 - a)Lmap, (23)

where « is the dynamic chaotic inertia weight adjustment
factor, «,,,,, and ;. are the maximum and minimum values
of a, respectively, and Lmap is the result of logistic chaotic
map. In this variant, using (19) and (23) was labeled DLPSOI,
while using (21) and (23) was captioned DLPSO2.

For the purpose of achieving a balance between global
exploration and local exploitation and also avoiding prema-
ture convergence, (19), (21), and (23) were mixed together
to dynamically adjust the inertia weight of the variant as
shown in Algorithm 4, where f; is the fitness value of
particle i and f,,, is the average fitness value of the swarm.
Experiments and comparisons showed that the DLPSO2
outperformed several other well-known improved particle
swarm optimization algorithms on many famous benchmark
problems in all cases.

3.7 Discussions. LDIW-PSO is relatively simple to implement
and fast in convergence. When [4] experimentally ascer-
tained that LDIW-PSO is prone to premature convergence,
especially when solving complex multimodal optimization

lfft < favg
compute w using (19) or (21)
elseif f; > foy,
compute w using (23)

end if

ALGORITHM 4

problems, a new area of research was opened up for improve-
ments on inertia weight strategies in PSO, and LDIW-PSO
became a popular yard stick for many other variants.

From the variants described previously, there are ample
expectations that they should outperform LDIW-PSO judg-
ing by the various additional strategies introduced into the
inertia weight strategies used by them. For example, CDIW-
PSO introduced chaotic optimization characteristic, REPSO
introduced a combined effort of simulated annealing idea and
fitness variance of particles, DAPSO introduced a dynamic
adaptive strategy based on swarm diversity function, APSO
introduced an adaptive mutation to the particle positions
and made the inertia weight dynamic based on the best
global fitness, while DLPSO2 used different formulas coupled
with chaotic mapping. The general aims of remedying the
problem of premature convergence by these variants were not
achieved, rather they only struggled to move a bit further than
LDIW-PSO in trying to optimize the test problems because a
total solution to this problem is for an algorithm to escape all
possible local optima and obtain the global optimum. With
this, it is possible that LDIW-PSO was subjected to settings,
for example, the particles velocity limits [24], which were not
appropriate for it to operate effectively.

4. Testing with Benchmark Problems

To validate the claim in this paper, 6 different experiments
were performed for the purpose of comparing the LDIW-
PSO with 6 other different PSO variants, namely, AIW-PSO,
CDIW-PSO, REPSO, SA-PSO, DAPSO, and APSO. Different
experiments, relative to the competing PSO variants, used
different set of test problems which were also used to test
LDIW-PSO. Brief descriptions of these test problems are
given next. Additional information on these problems can be
found in [27-29]. The application software was developed in
Microsoft Visual C# programming language.

4.1. Benchmark Problems. Six well studied benchmark prob-
lems in the literature were used to test the performance
of LDIW-PSO, AIW-PSO, CDIW-PSO, REPSO, SA-PSO,
DAPSO, and APSO. These problems were selected because
their combinations were used to validate the competing
PSO variants in the respective literature referenced. The
test problems are Ackley, Griewank, Rastrigin, Rosenbrock,
Schaffer’s f6, and Sphere.

The Ackley problem is multimodal and nonseparable. It
is a widely used test problem, and it is defined in (24). The
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TABLE 2: Test problems search and initialization ranges for the PSO variants.

Label CDIW-PSO REPSO DAPSO APSO DLPSO2

fi — — [-32,32] — [-32,32]

£, [~600, 600] [-600, 600] [-600, 600] [~600, 600] [-600, 600]

fs [-5.12,5.12] [-10,10] [-5.12,5.12] [-5.12,5.12] [-10,10]

fa [-30,30] [-100,100] — [-30,30] —

fs [-100, 100] [-10,10] — — [-1.0,1.0]

fe [~100, 100] [~10, 10] — — [~100, 100]
TABLE 3: Goals for the test problems in CDIW-PSO. to solve, yet due to a saddle point it is very difficult to converge

to the global optimum:
Label b fs fa s e
Goal 0.05 50.0 100.0 0.00001 0.01 -

global minimum f;(X) = 0 is obtainable at X = 0, and the
number of local minima is not known:

d
1
%) = —20 -0.21]- ) x?
fl (X) eXp n;xz
(24)

d
1
— exp < ;Z cos (Zﬂxi)> +20 +e.
=1

The Griewank problem is similar to that of Rastrigin. It
is continuous, multimodal scalable, and nonseparable with
many widespread local minima regularly distributed. The
complexity of the problem increases with its dimensionality.
Its global minimum f,(X) = 0 is obtainable at X = 0, and the
number of local minima for arbitrary # is not known, but in
the two-dimensional case, there are some 500 local minima.
This problem is represented by

fz()_4000<z ) (Hcos( >>+1 (25)

The Rastrigin problem represented in (26) is continuous,
multimodal, scalable, and separable with many local minima
arranged in a lattice-like configuration. It is based on the
Sphere problem with the addition of cosine modulation so
as to produce frequent local minima. There are about 50 local
minima for two-dimensional case, and its global minimum
f5(X) = 01is obtainable at X = 0:

QU

f3 @ =) (x} - 10cos (2mx;) + 10). (26)

i=1

Shown in (27) is the Rosenbrock problem. It is continu-
ous, unimodal, scalable, and nonseparable. It is a classic opti-
mization problem also known as banana function, the second
function of De Jong, or extended Rosenbrock function. Its
global minimum f,(X) = 0 obtainable at X = 1, lies inside a
long narrow, parabolic shaped valley. Though it looks simple

f,(®) = 2(100( Xy -

i=1

) )+ @)

The Schaffer’s f6 problem represented in (28) is 2-
dimensional, continuous, multimodal, and nonseparable
with unknown number of many local minima. Its global
minimum f;(X) = 0 is obtainable at X = 0:

A - sin ( xi2+1+xi2)—0.5
J5(2) = Z )1y

i1 (0.001 (x7,, +
The Sphere problem also known as the first De Jong
function is continuous, convex, unimodal, scalable, and
separable. It is one of the simplest test benchmark problems.
Its global minimum f,(X) = 0 is obtainable at X = 0, and the
problem is represented by

(28)

d
¥) = ) xi. (29)
i=1

4.2. Parameter Settings. 'The limits of particle velocity could
negatively affect the performance of PSO algorithm if it is
not properly set. As a result, different work has been done to
determine the velocity limits of particles in order to improve
on the performance of PSO. Researches in this direction
are [4, 24, 30] the three major methods that appear in the
hterature, for computing the velocity clamping (V,,;, and
) are (i) multlplymg the search space range with certain
percentage (9); that is, V., = §(Xpax — Xmin) and Vo, =
~Viao (i) multiplying both the minimum and maximum
limits of the search space separately with certain percentage
(6); that is, V., = 0(X,) and V.. = (X ) (iii)
assigning the search space upper limit to V, .. It is obvious
from (i) and (ii) that the parameter § is very important. As
a result, different values have been used by different authors
[5, 6,13, 30] for J to determine velocity clamping for particles.

In trying to substantiate the fact that LDIW-PSO is not
as weak or inferior as many authors claimed it to be, an
experiment was conducted to investigate the effect of the
parameter § on the performance of LDIW-PSO using the
benchmark problems described previously. The results were
used as a guide to set § in LDIW-PSO before embarking on
some experimental comparison, between it and some other

max
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TABLE 4: Experimental results for LDIW-PSO compared with CDIW-PSO.

Criteria Griewank Rastrigin Rosenbrock Schaffer’s f6 Sphere

CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO CDIW-PSO LDIW-PSO
lf;/’flelzrsls 0.014773  0.007609  40.044561 33.055877 44.305058 31.148789  0.007732  0.000117  0.000092 0.000000
Std. Dev.  0.002959  0.008439  8.028912 10.498048 8.861012 20.832263  0.001546  0.001058  0.000016  0.000000
SR (%) 96.2 100 83.6 92.8 99.6 98.0 22.0 98.6 100 100

TABLE 5: Experimental results for LDIW-PSO compared with REPSO.
Tteration Griewank' Rastrigin Rosenbrock? Sphere
REPSO  LDIW-PSO  REPSO  LDIW-PSO REPSO  LDIW-PSO REPSO LDIW-PSO

50 — — — — — — — —
100 0.6705 0.7859 30.7320 44.2732 — — 0.00671 0.00493
200 0.4922 0.6437 — — — — — —
300 0.2487 0.5607 — — — — 2.1142¢ - 04 2.9792e - 04
400 0.2345 0.4318 20.6671 16.5414 — — — —
500 0.1658 0.3185 17.3751 10.4621 570.7681 352.1663 7.1144e - 05 9.1853e — 07
800 — — 15.5611 3.9143 — — 6.8751e - 06 5.8431e - 17
1000 0.1461 0.0967 10.8120 3.2609 300.1407 218.9924 5.6367e — 07 1.2425e — 28
1500 0.1353 0.0842 — — 260.8421 138.2756 — —
2000 0.1089 0.0794 — — 170.2157 79.9941 — —
3000 — — — — 60.4418 21.5586 — —

"This problem is slightly different from the one in (25).
2This problem is slightly different from the one in (27).

PSO variants described previously to prove that LDIW-PSO
is superior to many of the variants that have been claimed to
be better that it. The results of the experiments are listed in the
Appendix. Using the results as guide, the value of § was set in
LDIW-PSO for the various test problems as listed in Table 1.
However, § was set to 0.015 for f, in Experiment 2 and 0.25
for f; in Experiments 2 and 5.

4.3. Experimental Setup. The settings for the different exper-
iments carried out for the comparisons are described next
one after the other. In all the experiments, LDIW-PSO was
subjected to the settings of its competitors as recorded in
the literature. For LDIW-PSO, ¢, = ¢, = 2.0, 0w, = 0.9,
Wpin = 04, Voiw = 0X > and V. = 06X . Table2
shows the respective search and initialization ranges for all
the algorithms, the symbol “~” means that the corresponding
test problem was not used by the algorithm under which the

symbol appears.

Experiment 1. The purpose of this experiment was to compare
LDIW-PSO with CDIW-PSO [2]. All the test problems
described previously were used in this experiment, except f;.
The dimension for f; was 2, while it was 30 for others. The
maximum numbers of iterations were set to 1500 with swarm
size of 20, and the experiment was repeated 500 times. Stated
in Table 3 are the set goals (criteria) of success for each of the
problems.

Experiment 2. The purpose of this experiment was to com-
pare LDIW-PSO with REPSO [7]. All the test problems in
Table 1 except f; were used. The dimension for f; was 2,
while it was 10 for others. The performances of the algorithms
were considered at different number of iterations as shown in
Section 5, in line with what is recorded in the literature [7].
The swarm size used was 30, and the experiment was repeated
50 times.

Experiment 3. The purpose of this experiment was to com-
pare LDIW-PSO with DAPSO [13]. Test problems f, — f; were
used with four different problem dimensions of 20, 30, 40,
and 50. The maximum number of iterations and swarm size
was set to 3000 and 30, respectively, and the experiment was
repeated 50 times.

Experiment 4. The purpose of this experiment was to com-
pare LDIW-PSO with APSO [5]. f,, f3, and f, were used
as test problems with three different problem dimensions
of 10, 20, and 30. The respective maximum numbers of
iterations associated with these dimensions are 1000, 1500,
and 2000, respectively. The experiment was carried out over
three different swarm sizes, 20, 40, and 80 for each problem
dimension, and the experiment was repeated 30 times.

Experiment 5. This experiment compared LDIW-PSO with
DLPSO2 [11]. All the test problems except f, were used in the
experiment with two different problem dimensions of 2 (for
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TABLE 6: Experimental results for LDIW-PSO compared with DAPSO.
Dim Ackley Griewank Rastrigin
DAPSO LDIW-PSO DAPSO LDIW-PSO DAPSO LDIW-PSO
20 3.906209¢ - 014 8.970602e — 015 8.605280e — 002 1.649481e — 002 2.15905%¢ + 001 2.040020e + 001
30 4.159541e — 008 1.527799¢ - 010 2.583338e — 002 9.258783e — 003 3.263463e + 001 2.996404¢ + 001
40 7.046093e — 005 2.578715e — 007 1.087868e — 002 4.875733e — 003 3.890287e + 001 4.109865¢ + 001
50 1.025568e — 003 1.629095e - 005 1.346732e — 002 4.335978e — 003 4.823559%¢ + 001 4.606947¢ + 001
TABLE 7: Experimental results for LDIW-PSO compared with APSO.
Swarm size Dim Maximum iteration Griewank Rastrigin Rosenbrock
APSO LDIW-PSO APSO LDIW-PSO APSO LDIW-PSO
10 1000 0.0983 0.2347 5.1565 12.4602 5.8467 4.3695
20 20 1500 0.0237 0.0150 16.0456 27.6708 47.9842 19.1223
30 2000 0.0117 0.0103 42.2325 33.2050 100.4528 29.3482
10 1000 0.0952 0.2231 2.9468 10.5713 4.5431 3.9145
40 20 1500 0.0201 0.0211 15.3678 19.3199 38.3464 16.5186
30 2000 0.0105 0.0099 33.7538 26.3453 72.5473 26.9638
10 1000 0.0689 0.1294 2.0457 9.0800 4.1680 6.5127
80 20 1500 0.0199 0.0184 10.0563 16.4368 27.9547 17.6043
30 2000 0.0102 0.0080 25.3473 23.2303 69.0609 24.6653

TaBLE 8: Experimental results for LDIW-PSO compared with
DLPSO2.

best results. In the tables, mean best fitness (solution) is a
measure of the precision that the algorithm can get within
a given number of iterations, standard deviation (Std. Dev.)

Criteria Best fitness Mean fitness Std. Dev. ¢ S - !
Ackle is a measure of the algorithm’s stability and robustness, while
Y success rate (SR) [31] is the rate at which an algorithm obtains
DLPSO2 8.6209¢ - 06 0.4743 0.6527 . . o . .
optimum fitness result in the criterion range during a given
LDIW-PSO  2.0441e - 07 0.0000 0.0000 number of independent runs.
Griewank
DLPSO2 7.7589¢ — 06 0.0086 0.0114 Experiment 1 (comparison of LDIW-PSO with CDIW-PSO).
LDIW-PSO  3.5694e - 13 0.0083 0.0088 The results in Table 4 clearly reveal a great difference in
Rastrigin performance between LDIW-PSO and CDIW-PSO [2]. The
DLPSO2 -2 -2 results are compared based on the final accuracy of the aver-
LDIW-PSO ) ) aged best solutions, success rate (SR), and standard deviation
Schaffer’s f6 (Std. Dev.? ot'~ the best solutions. In all the test pro‘t.)lems,
DLPSO2  7.5206e - 07  5.6300e—06  2.8969¢ — 06 2}[6 result le‘C}?tes,tha;Lt?IW‘PSO can get better OPEID“}‘&H
ness result, showing better convergence precision. -
LDIW-PSO  0.0000e + 00 0.0000e + 00 0.0000e + 00 . .
Soh ¢ ¢ ¢ PSO is also more stable and robust compared with CDIW-
phere PSO, because its standard deviation is comparatively lesser
DLPSO2 7.694le—06  9.500le-06  4.9557¢-07 in three of the test problems. Besides, LDIW-PSO has better
LDIW-PSO  4.1289% - 14 0.0000e + 00 0.0000e + 00

f5and f5) and 30 (for f;, f,,and fy). The maximum number
of iterations was set to 2000 and swarm sizes to 20, and the
experiment was repeated 20 times.

5. Results and Discussions

Presented in Tables 4-8 are the results obtained for all the
experiments. The results for all the competing PSO variants
were obtained from the respective referenced papers, and
they are presented here the way they were recorded. Thus,
the recording of the results for LDIW-PSO was patterned
after them. In each of the tables, bold values represent the

global search ability and could easily get out of local optima
than CDIW-PSO.

Experiment 2 (comparison of LDIW-PSO with REPSO). In
Table 5, the comparison between LDIW-PSO and REPSO was
based on the final accuracy of the averaged best solutions
relative to the specified number of iterations and convergence
speed as recorded in [7]. From the results, REPSO appears to
converge faster in Griewank and Rastrigin at the beginning
but was overtaken by LDIW-PSO which eventually converged
faster and had better accuracy. In Rosenbrock and Sphere
problems, LDIW-PSO had better convergence speed and
accuracy in comparison with REPSO. The symbol “—” means
that the corresponding iteration number was not considered
for the test problem under which the symbol appears.
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TABLE 9: Different values of parameter § and respective mean best fitness for Griewank test problem.
5 Dimension 10 Dimension 30 Dimension 50
Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30
1.0 9.913e - 02 9.125e - 02 1.157e + 01 5.607e + 00 6.269¢ + 01 3.941e + 01
0.75 9.645e — 02 8.825e - 02 3.088e + 00 1.451e - 02 1.519¢e + 01 6.875e + 00
0.5 9.983e - 02 9.018e — 02 1.972e - 01 1.601e — 02 2.003e + 00 5.522e - 01
0.25 1.002e - 01 2.925e - 02 1.602e — 02 1.458e — 02 1.200e — 02 9.885e - 03
0.15 9.772e — 02 9.276e — 02 1.556e — 02 1.450e - 02 9.925e¢ - 03 8.654e — 03
0.1 1.044e - 01 9.141e - 02 1.489¢ - 02 1.564¢ — 02 1.027e - 02 9.339¢ - 03
0.075 1.064e - 01 1.006e - 01 1.328e - 02 1.389¢ - 02 8.937e - 03 7.963e — 03
0.05 1.011e - 01 9.417e - 02 1.521e - 02 1.580e — 02 8.224e - 03 7.821e - 03
0.025 9.682e — 02 8.738e - 02 1.604e — 02 1.668e — 02 7.108e — 03 7.354e — 03
0.015 9.028e — 02 8.648e — 02 1.379e — 02 1.444e - 02 5.719e - 03 6.226e - 03
0.01 1.274e - 01 1.265e - 01 1.148e — 02 1.141e - 02 5.005e - 03 4.768e — 03
0.0075 2.251e - 01 2.078e — 01 7.160e — 03 7.595e — 03 4.237e - 03 4.021e - 03
0.005 5.546e — 01 3.751e - 01 8.006e — 03 8.030e - 03 4.025¢ - 03 4.526e — 03
0.0025 1.258e + 00 6.833e - 01 1.203e - 02 1.218e - 02 6.808e — 03 6.013e - 03
0.0015 1.895¢e + 01 9.642¢ - 01 1.415e - 02 1.434e - 02 7.226e - 03 7.419¢e - 03
0.001 4.061e + 00 2.083e + 00 1.366e — 02 1.622e — 02 7.184e — 03 7.462e — 03
TaBLE 10: Different values of parameter & and respective mean best fitness for Rastrigin test problem.
s Dimension 10 Dimension 30 Dimension 50
Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30

1.0 4.551e + 00 3.400e + 00 9.95% + 01 8.462¢e + 01 2.694e + 02 2.361e + 02
0.75 4.537e + 00 3.619¢ + 00 6.924e + 01 5.866¢ + 01 1.935¢e + 02 1.729¢ + 02
0.5 4.646¢ + 00 3.476e + 00 5.253e + 01 4.282e + 01 1.330e + 02 1.151e + 02
0.25 6.484e + 00 5.247e + 00 4.534e + 01 4.197e + 01 8.943e + 01 8.462e + 01
0.15 1.043e + 01 9.013e + 00 4.142e + 01 3.798e + 01 7.204e + 01 6.590e + 01
0.1 1.149¢ + 01 9.470e + 00 3.702e + 01 3.380e + 01 6.183e + 01 5.653e + 01
0.075 1.077e + 01 9.397e + 00 3.328e + 01 2.917e + 01 5.394e + 01 4.824e + 01
0.05 1.162e + 01 1.022e + 01 3.302¢ + 01 2.943e + 01 5.370e + 01 4.704e + 01
0.025 1.373e + 01 1.160e + 01 3.607e + 01 3.194e + 01 5.474e + 01 4.860e + 01
0.015 1.387e + 01 1.15%¢ + 01 3.893e + 01 3.521e + 01 5.762e + 01 5.087e + 01
0.01 1.431e + 01 1.221e + 01 4.010e + 01 3.565e + 01 5.995e + 01 5.390e + 01
0.0075 1.475e + 01 1.213e + 01 4.164e + 01 3.692e + 01 6.256¢e + 01 5.476e + 01
0.005 1.868e + 01 1.398e + 01 4.300e + 01 3.663e + 01 6.451e + 01 5.464e + 01
0.0025 3.337e + 01 2.507e + 01 7.294e + 01 4.917e + 01 9.215e + 01 6.073e + 01
0.0015 4.794e + 01 4.027e + 01 1.168e + 02 7.803e + 01 1.396e + 02 8.922e + 01
0.001 5.792e + 01 5.220e + 01 1.898e + 02 1.548e + 02 2.102e + 02 1.390e + 02

Experiment 3 (comparison of LDIW-PSO with DAPSO). The
results for DAPSO were obtained from [13]. Comparing these
results with that of LDIW-PSO were measured using the
final accuracy of the respective mean best solutions across
the different problems dimensions as shown in Table 6. In
all the problems and dimensions except dimension 40 of
Rastrigin, LDIW-PSO outperformed DAPSO getting better
fitness quality and precision. This is a clear indication that
LDIW-PSO has better global search ability and is not easily
trapped in local optima compared with DAPSO.

Experiment 4 (comparison of LDIW-PSO with APSO).
Recorded in Table 7 are the results for LDIW-PSO and APSO

[5] over different swarm sizes, dimensions, and iterations.
The basis for comparison is the final accuracy and quality
of their mean best fitness. The two variants put up a good
competition. In Griewank and Rastrigin, APSO performed
better in smaller dimensions, while LDIW-PSO performed
better in higher dimensions. But in Rosenbrock, LDIW-PSO
outperformed APSO in locating better solutions to the
problem.

Experiment 5 (comparison of LDIW-PSO with DLPSO2).
The results for LIDIW-PSO and DLPSO2 [11] in Table 8
are compared based on the best fitness, mean best fitness,
convergence speed, as well as standard deviation (Std. Dev.) of
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TaBLE 11: Different values of parameter § and respective mean best fitness for Rosenbrock test problem.
5 Dimension 10 Dimension 30 Dimension 50
Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30
1.0 1.165e + 04 1.040e + 04 1.851e + 05 2.873e + 04 3.075e + 06 1.148e + 06
0.75 6.020e + 03 4.020e + 03 2.009e + 04 1.711e + 04 8.240e + 05 1.837e + 05
0.5 2.585e + 03 2.189%¢ + 03 1.128e + 04 8.214e + 03 1.175e + 04 1.360e + 04
0.25 1.872e + 01 5.571e + 00 4.307e + 02 4.445e + 02 2.315e + 03 1.056e + 03
0.15 1.075e + 01 4.229e + 00 4.910e + 01 4.750e + 01 1.156e + 02 9.710e + 01
0.1 4.798e + 00 4.241e + 00 4.248e + 01 4.147e + 01 9.217e + 01 8.699%¢ + 01
0.075 4.680e + 00 4.099¢ + 00 4.531e + 01 3.607e + 01 1.073e + 02 7.701e + 01
0.05 5.182e + 00 4.534e + 00 3.453e + 01 3.282e + 01 6.858e + 01 6.383e + 01
0.025 5.770e + 00 5.598e + 00 3.148e + 01 3.035e + 01 5.450e + 01 5.215e + 01
0.015 7.818e + 00 6.800e + 00 2.956¢ + 01 2.832e¢ + 01 5.207e + 01 5.218e + 01
0.01 7.748e + 00 6.480e + 00 2.962e + 01 2.891e + 01 5.487e + 01 5.154e + 01
0.0075 8.085e + 00 7.945e + 00 2.998e + 01 2.948¢ + 01 5.505e + 01 5.164e + 01
0.005 6.491e + 00 6.896e + 00 3.134e + 01 3.015e + 01 5.544e + 01 5.263e + 01
0.0025 7.943e + 01 7.682e + 00 3.052e + 01 2.915e + 01 5.656e + 01 5.163e + 01
0.0015 5.003¢ + 01 1.408e + 01 3.095e + 01 2.672e + 01 5.398e + 01 5.174e + 01
0.001 2.417e + 04 3.426e + 03 3.020e + 01 2.949¢ + 01 5.614e + 01 5.222e + 01
TaBLE 12: Different values of parameter § and respective mean best fitness for Sphere test problem.
s Dimension 10 Dimension 30 Dimension 50
Size = 20 Size = 30 Size = 20 Size = 30 Size = 20 Size = 30
1.0 1.043e - 20 3.67%e - 23 1.140e + 03 5.400e + 02 7.380e + 03 4.400e + 03
0.75 9.490e - 21 1.554e — 23 1.600e + 02 4.000e + 01 1.460e + 03 7.600e + 02
0.5 5.108e — 21 1.048e — 23 1.349¢ — 08 4.015e - 10 1.000e + 02 2.000e + 01
0.25 8.561le — 22 5.85% — 24 3.547e - 09 6.110e — 11 1.538e - 05 4.976e - 07
0.15 5.304e - 21 9.144e - 25 1.503e - 09 2.963e - 11 6.952¢ — 06 2.114e - 07
0.1 6.679% — 23 1.203e - 24 4.432e - 10 1.193e - 11 2.224e - 06 7.656e — 08
0.075 8.577e - 23 2.149e - 25 2.397e - 10 8.813e - 12 1.306e — 06 4.954e - 08
0.05 3.92le-23 1.794e - 25 1.147e - 10 3.490e - 12 5.098e - 07 2.235e - 08
0.025 1.006e — 23 4.835e - 26 2.596e — 11 7.592e - 13 1.620e — 07 6.654e — 09
0.015 2.466e — 24 1.795e - 26 1.349¢ - 11 2.364e - 13 5.689¢ — 08 2.222e - 09
0.01 1.022e - 24 4.326e — 27 3.998e — 12 1.245¢ - 13 3.983e - 08 8.837e - 10
0.0075 9.942¢ - 25 3.991e - 27 2.758e — 12 7.017e — 14 1.115e - 08 5.786e — 10
0.005 6.363e — 25 2.300e - 27 1.449e - 12 3.06le — 14 1.116e - 08 2.034e - 10
0.0025 2.003e - 23 1.376e - 26 3.638¢ - 13 9.420e - 15 1.592e - 09 6.778e — 11
0.0015 4.469¢ — 08 2.962e - 08 7.378e - 13 1.254e - 14 1.062e - 09 3.130e - 11
0.001 2.900e + 02 9.887e + 01 5.711e - 02 8.265e - 13 2.563e - 09 2.755e - 11

the best solutions. In Rastrigin, the two algorithms have equal
performances. However, in other test problems, the result
indicates that LDIW-PSO can get better optimum fitness
result, showing better convergence speed. LDIW-PSO is also
more stable and robust compared with DLPSO2, because its
standard deviation is comparatively smaller in all the test
problems. Besides, LDIW-PSO demonstrated better global
search ability and getting out of local optima than DLPSO?2.

6. Conclusion

Motivated by the superiority claims by some PSO variants
over LDIW-PSO in terms of performance, a number of

experiments were performed in this paper to empirically
verify some of these claims. Firstly, an appropriate (approx-
imate) percentage of the test problems search space limits
were obtained to determine the particle velocity limits for
LDIW-PSO. Secondly, these values were used in the imple-
mentation of LDIW-PSO for some benchmark optimization
problems and the results obtained compared with that of
some PSO variants that have previously claimed superiority
in performance. LDIW-PSO performed better than these
variant. The performances of the two other recent PSO
variants with different inertia weight strategies were also
compared with LDIW-PSO on similar problems with the
latter showing competitive advantage. This work has therefore
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TaBLE 13: Different values of parameter § and respective mean best
fitness for Schaffer’s {6 test problem.

Dimension 2

o Size =20 Size = 30

1.0 1.342e - 03 5.446e — 04
0.75 2.392e - 03 9.335e — 04
0.5 2.052e - 03 7.651e — 04
0.25 1.387e — 03 7.212e - 04
0.15 7.756e — 04 2.731e - 04
0.1 6.816e — 04 1.847e — 04
0.075 4.865¢ — 04 1.749¢ - 04
0.05 6.413e — 04 1.612e — 04
0.025 4.275e - 03 2.740e — 03
0.015 5.625e — 03 3.129¢ - 03
0.01 4.726e — 03 2.993e - 03
0.0075 4.594e - 03 2.683e — 03
0.005 5.663e — 03 3.327e - 03
0.0025 5.940e — 03 4.760e — 03
0.0015 7.582e — 03 5.449¢ - 03
0.001 7.776e — 03 6.092e — 03

showed that with good experimental setting, LDIW-PSO will
perform competitively with similar variants. Precious claims
of inferior performance might therefore be due to some
unfavourable experimental settings. The Appendix provides
further simulation results that can provide useful hints for
deciding the setting velocity threshold for particles for LDIW-
PSO.

Appendix

Tables 9, 10, 11, 12, and 13 show the results of LDIW-PSO in
optimizing some benchmark problems so as to determine a
suitable value for § that was used to set the velocity limits for
the particles. The experiments were repeated 500 times for
each of the problems. Two different swarm sizes of 20 and 30
were used for each of the three different problem dimensions
10, 30, and 50. The respective number of iterations that was
used with the dimensions is 1000, 1500, and 2000. The LDIW
strategy was decreased from 0.9 to 0.4 in course of searching
for solution to the problem [7, 10-12, 27], the acceleration
constants (¢; and ¢,) were set to 2.0, and V,,,,, = 6(X,,,.,) and
Voin = 0(X,,i)- In the tables, bold values represent the best
mean fitness value.
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Improved Particle Swarm Optimizer with
Dynamically Adjusted Search Space and
Velocity Limits

Akugbe Martins ARASOMWAN and Aderemi Oluyinka ADEWUMI, Member

Abstract— This paper presents an improved particle swarm
optimization technique for global optimization. Many variants of
the algorithm have been proposed in literature. However, two
major things characterize many of these variants namely, static
particle search space and velocity limits which bound their
flexibilities in obtaining optimal solutions for many optimization
problems. Besides, despite some additional parameters like
inertia weight and extra computations in these variants
compared with the original algorithm, the premature
convergence of the original particle swarm algorithm remains a
challenge. This paper proposes an improved particle swarm
optimization algorithm without inertia weight. The proposed
algorithm dynamically adjusts the search space and velocity
limits for the swarm in each iteration by simply picking the
highest and lowest values among all the dimensions of the
particles, calculates their absolute values and use the higher of
the two values to define a new search range and velocity limits for
the next iteration. The efficiency and performance of the
proposed algorithm was shown using popular benchmark global
optimization problems with low and high dimensions. Results
obtained demonstrate better convergence speed and precision,
stability, robustness with better global search ability when
compared with six recent variants of the original algorithm.

Index Terms— Global optimization, particle swarm
optimization, evolutionary computation, search space limits,
swarm Intelligence, velocity limits

I. INTRODUCTION

Individuals, enterprises and governments meet varieties of
problems from day to day for which they seek best possible
solutions amidst limited resources. Many of these problems
can be formulated as optimization problems. The Original
Particle Swarm Optimization (OPSO) [3] is a popular nature-
inspired technique that displays problem-solving capabilities
for researchers to solve complex and challenging optimization
problems. It is an evolutionary computation technique inspired
by social behaviour of birds and fish schooling. The concept
was brought into optimization in 1995 [3, 12]
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Global optimization seeks to provide solutions to
optimization problems which are often multi-modal and non-
convex. These solutions could all be globally good or a mix of
globally and locally good solutions. While global optimization
algorithms such as OPSO are most naturally applied to the
optimization of multimodal cost functions, they can optimize
unimodal functions as well. However, OPSO is often
characterized with the problem of premature convergence. The
quest for ridding OPSO of this problem and make the
algorithm more efficient has led to many of its variants which
are recorded in literature [4, 6, 14, 23, 25, 18], with many
encouraging successes as well as resounding superiorities
compared with OPSO algorithm. These variants have
additional parameter(s) or extra (complex) computational
effort(s), which without doubt should give them an edge over
OPSO. Two major parameters common among OPSO variants
are inertia weight and velocity threshold. Inertia weight was
introduced into OPSO by [23] and helps the algorithm to
balance its global and local search abilities while the velocity
threshold, which helps control particle from searching outside
the solution search space, has been extensively used in
experimental studies in [24]. Solution search space is
delimited by the upper and lower limits of the decision
variables.

In many of the OPSO variants, solution search space and
velocity threshold are static throughout the execution of the
algorithm [1, 7, 8, 15, 20, 22, 24]. This characteristic
somewhat limits the flexibilities of these variants in the
process of obtaining optimal solutions for many of the
optimization problems. Also, the common problem of
premature convergence associated with OPSO remains
unsolved by very many of the existing its variants [9, 16, 22].
In cases where (near) optimal solutions are obtained, they are
with low precision [1, 6, 14, 20]. In order to obtain optimal
results with higher precision for optimization problems by
OPSO and many of its variants, there are needs to allow the
solution search space and velocity threshold to vary
dynamically based on the state of the particles' dimensions.
This will enable the algorithm to concentrate its searching on
the sub-range dynamically defined during its executing instead
of searching the entire search space all the time. It could also
enable the algorithm escape premature convergence.

In this paper, efforts were made to improve the performance
of OPSO in terms of convergence speed, global search ability
and increased solution accuracy, without additional parameters
or complex computational efforts. The improved OPSO



algorithm (IOPSO), which does not use inertia weight,
dynamically adjusted the search space and velocity limits for
the swarm in each iteration by simply picking the highest and
lowest values among all the dimensions of the particles,
calculates their absolute values and then use the higher of the
two values to define a new search range and velocity limits for
next iteration. Empirical results from experiments performed
showed that IOPSO is very efficient compared with the
variants adopted for comparisons.

In the sections that follow, the framework of the OPSO is
considered in Section 2, the OPSO variants adopted for
comparisons are reviewed in Section 3, the proposed IOPSO
technique is described in section 4, results of numerical
simulations are presented in Section 5 and Section 6 concludes
the paper.

II. THE FRAMEWORK OF ORIGINAL PSO (OPSO)

OPSO is a popular member of swarm intelligence
metaheuristic. It is population-based, stochastic, robust,
problem-independent and self-adaptive optimization technique
for solving simple and complex optimization problems. It has
been successfully used to solve many difficult real-world
optimization problems [10, 17, 19]. When the technique was
initially introduced, it was implemented with few lines of
codes using basic mathematical operations; no major
adjustment was needed to adapt it to new problems; it was
almost independent of the initialization of the swarm; the
gradient, continuity or differentiability of the problem to work
with was not needed and very few parameters regulate the
behaviour and efficiency, were required to be tuned to obtain
quality solutions. Implementing this technique requires that
the positions and velocities of a number of particles (swarm)
be randomly generated using upper and lower bounds on the
design variable values, after which the particles are randomly
distributed in the solution search space. In the course of
operation, every particle works with two major information —
its personal experience and reachable neighbours' experiences;
these are used to determine its next move in the solution
space. Besides, each particle is associated with a value
determined by the objective function of the problem being
optimized to measure their qualities. The technique maintains
a single swarm of particles throughout its execution and
adjusts their positions and velocities in each iteration based on
new discoveries about the solution space. These operations are
basic to the implementations of OPSO variants.

The solution search space of the optimization search space
is often represented as n-dimensional space. Also, the position
and velocity of each particle are represented as the vectors X;
= (Xj1, ..., Xip) and V; = (v, ..., v;,), respectively. When the
particles move in the search space searching for optimum
solution to the problem being optimized, their velocities and
positions are updated according to (1) and (2).

Vit +1D) =V,(t) + coeff\(F, = X,) + ceff,(P, = X;) (1)

X.(t+1)=X(@)+V,(t+1) ©)

Where P; and P, are vectors representing the ™ particle
personal best and swarm global best positions respectively;

coeff; = c1r; and coeff; = cors; ¢; and ¢, are acceleration factors
known as cognitive and social scaling parameters that
determine the magnitude of the random forces in the direction
of P;and P, ; r; and r, are random numbers between 0 and 1
and ¢ is iteration index. A value of 2.0 is used for ¢; and ¢,
respectively.

The positions of particles in the swarm when they are being
updated are controlled to be within some specified bounds as
shown in (3), where minX and maxX represent the lower and
upper bounds of the particle's position. Because the particle
velocity based on (1), without restriction, could grow and
make the particle oscillates around an optimum, increase its
distance to the optimum on each iteration, or go out of the
search space, the idea of velocity clamping was introduced by
Eberhart and Kennedy in 1995 [5], into PSO to avoid the
phenomenon of "swarm explosion". With this introduction, the
particles could take reasonably sized steps so as to rake
through the search space rather than bouncing about
excessively. This has led to significant improvement as
regards the performance of PSO. However, efforts have been
made in time past to eliminate the use of velocity clamping,
but researches have shown that velocity clamping has become
a standard feature of OPSO [5]. Equation (4) shows one of the
ways velocity clamping is implemented, with minV and maxV
representing the lower and upper bounds of the particle's
velocity.

_ {minX if x; <minX (3)
V7 lmaxX if x; > maxX
_ {minV if x; <minV 4)
LT lmaxV  if x; > maxV

OPSO being a stochastic population-based technique that
relies directly on the objective values rather than the derivative
information of the problem being optimized is less exposed to
deception in the solution search space. However, it is
susceptible to premature convergence, especially when the
problem to be optimized is multi-peaked and when there are
many decision variables (dimensions). This is because the
more the particles communicate among themselves, the more
they be alike until converging to the same region of the
solution search space. If after some time no better global best
is found by any other particle, they all converge about the
existing global best which may not be the global minimizer.

III. OPSO VARIANTS ADOPTED FOR COMPARISONS

The OPSO variants considered for comparison with the
proposed improved original PSO (IOPSO) in this paper are
subsequently reviewed. These variants are AIW-PSO, iPSO,
MARPSO, AIWPSO, PSO,y and mPSO. All these variants
implements (5) to update the velocities of particles, except
otherwise clearly stated. Equation (5) differ from (1) because
of the inertia weight parameter () introduced into it. This
parameter has attracted a lot of attentions and seems to be the
most important compared with other parameters. The
motivation behind its introduction was the desire to better
control (or balance) the scope of the (local and global) search
of OPSO algorithm and reduce the importance of (or



eliminate) velocity clamping, V.x during the optimization
process [21, 23].

Vit +1) =V (1) + coeffy(P — X,) + ceff (P, = X,) (5

A. Adaptive inertia weight PSO algorithm (AIW-PSO)

This variant was proposed in [22] to improve on balancing
the global exploration and local exploitation abilities for PSO
by taking advantage of the effect of inertia weight to achieve
better results. A measure called individual search ability (ISA)
defined in (6) was used to ascertain the current situation of
each particle, i.e. whether the particle lacks global exploration
or local exploitation abilities in each dimension. A large ISA
means strong global exploration ability, inertia weight should
be decreased. While a small ISA means that the inertia weight
should be increased. This enables a particle decide whether to
increase or decrease its values of inertia weight.

|xij — vy (6)

ISA;; =
Y |y —pgs| + €

where, x;; is the position of the i™ particle in the /™ dimension,
pij is the own best solution, p, is the current global best
solution, |...| denotes absolute value and & is a positive
constant close enough to zero.

Depending on the ISA, the inertia weight of i particle in /™
dimension was dynamically calculated in each iteration using
a transform function defined in (7), so as to enhance the
corresponding weak search abilities. This strategy was found
to improve the performance of PSO algorithm.

1 ) (7)

wi,-=1—a(m

where, o is a positive constant in the range (0,1].

B. Improved PSO (iPSO)

This variant used opposition-based learning to enhance the
performance of PSO. The underlying principle behind this
approach is the basic idea of opposition-based learning [15]:
assuming a worst case, particle with the lowest fitness, x;, is
taken to be a guess that is “very far away from the existing
solution” in the opposite location. In each iteration this
particle is replaced with its opposite (the anti-particle) as
shown in (8).

where x; € [LBj, UBj], j=1,2, ..., Ng and Ny is the dimension
of the problem. LB;j and UB; are the lower and upper bounds
for the decision variable x, in the d™ dimension.

During each iteration, the velocity and personal experience
of the anti-particle are reset while the global best solution is
also updated.

C. Modified attractive and repulsive PSO (MARPSO)

MARPSO is a new diversity-guided PSO and a
modification of the attractive and repulsive PSO (ARPSO) [8].
The major goal of this variant was to solve the problem of
premature convergence associated with PSO by increasing the
diversity of swarm, while maintaining a higher convergence

speed. In achieving their goal, the authors introduced new
measure of population diversity function and concept of the
particle’s best flight direction into ARPSO. Because the
algorithm could not guarantee local and global convergences,
a mutation strategy was also introduced into it in order to
improve its convergence. The algorithm used (9) to update the
velocities of particles and maintained (2) for the particles'
positions updating.

vt + 1) = wv()d;;(t + 1) + dir(t + 1)
X <C17‘1j (pij - xij(t))

9
+ o1y (ng - xij(t))> ®

Where dir(?) as defined in (10) is the flight direction of the M
generation and d;(?) in (11) is the flight direction of the i
particle of the /™ generation.
-1, if (dir(t) > 0)and(diversity < d,,,,)
dir(t+1) = { 1, if (dir(t) < 0)and(diversity > d,”-gh)
dir(t), otherwise

(10)

The expression dir(z) = 1 means that the swarm does attractive
movement while dir(z) = -1 means it does repulsive
movement. The doy and dy;e, are low and high limits of the
particles respectively.

v(t) .
di(t +1) = {m if Fx(®) <o) an
d;(t), otherwise

The inertia part of (9) is beneficial to the search when d;(?) is 1
or -1. The diversity of the swarm represented by diversity is
measured according to (12).

(12)

1
diversity = i X

The mutation strategy as used in the algorithm is defined in
(13) for velocities of particles and (14) for the positions of
particles.

_ | Viax X r;, if (v < Viinland(ry < 0.5)

e+ 1) = {_Vmax X r;, if (v < Viimand(ry = 0.5) (13)
_(pgtr, if (Iv(®O)] < Viin)and(r, < 0.5)

xe+1) = {pg +7¢, if (v(@®)] < Vygin)and(r, = 0.5) (14)

Where Vi, and V. are the low and high limits of the
speed of particles while 73, 7, € U[0,1]. It is evident in (13)
and (14) that the mutation is carried out when the speed of the
particle is less than V.

D. Adaptive inertia weight PSO (AIWPSO)

In [20], AIWPSO was proposed to further improve on the
performance of PSO by introducing inertia weight that uses
the swarm success rate to compute inertia weight by mapping
it to a range of maximum and minimum inertia weight values
[@max,®min] Using a linear function shown in (15). Using this



adaptive inertia weight value, the algorithm is able to improve
the performance of PSO in the static and dynamic
environments. To improve exploration, at the end of each
iteration of the algorithm, the worst particle is replaced by a
mutated best particle. The mutation is done by adding a
Gaussian noise with zero mean standard deviation to one of
the randomly chosen dimension of the best particle to facilitate
exploration. AIWPSO outperformed its competitors virtually
in all the numerical tests performed [20]. The adaptive inertia
weights help to provide a knowledge of situation of the swarm
at each iteration. A high percentage of success indicates that
the particles have converged to a point that is far from the
optimum point and the entire swarm is slowly moving towards
the optimum while a low percentage of success shows that the
particles are oscillating around the optimum without much
improvement.

(1s)

W = (wstart - wend)spt + Weng

where, wg, and we,q are predefined constants representing the
initial and final values of the inertia weight. The success
percentage in the " iteration (SP.e[0,1]) of the swarm is
computed according to (16).
Y1 succt

SP, = (16)
where, n is the swarm size and the success of particle 7 in the
™ iteration (succl) is obtained using (17), with the assumption
that a minimization problem is being considered.

sucel = {1 f(Pbest!) < f(Pbest!_,)

= a . 17)
0 f(Pbest;) = f(Pbesti_,)

where Pbest! is the current best position of particle i until
iteration ¢ and f{) is the function to be optimized.

E. Rank based PSO with dynamic adaptation (PSO, ;)

In [1], a variation on the standard PSO algorithm called
PSO,..x was proposed based on cooperative behavior of
particles in the swarm. It uses a time-varying inertia weight
which decreases non-linearly to improve its performance. In
the algorithm, some of the best particles (which decrease in
number as the iteration increases) are selected proportionate to
their respective strengths, after the particles are ranked based
on their fitness, so that they contribute to the updating of the
position of a candidate particle. The strength of each
contributing particle is a function of strivness, immediacy and
number of contributed particles. The local search and
convergence to global optimum solution by the algorithm
depends on these selected best particles. PSO,,,x updates the
velocity vector of the particles using (18).

vfi (k+1) = wvé (k) + rand, (pfi - xé (d))

+rand; | ! (pio ~xi@) |
=

where, ¥/ (k) = f(z!(k),8!(Kk), &) =t/ (k) x 8] (k) x
models the influence of the neighbour particle j on the
candidate particle i in the K® iteration,

‘L'ij (k) = fitness;(k)/ Zivzeéghboursi fitness; (k) is the ranking
parameter which signifies the strivness of the individual j in
the neighbourhood of the i particle; fitnessi(k) is the fitness of
particle j in the neighbourhood of particle i and Neighbours; is
the number of neighbour particles.

slk) =1/ \/zgzl(x;(k)—xg(k))z is the immediacy of

individual j from particle i based on Euclidean distance in D-

dimensional solution space where xé'(k) and x} (k)
respectively represent the positions of the particle j and the
candidate particle i in dimension d of the solution space.

& = aNiB is the effect of the individuals in the neighbourhood
of the /™ particle, where N, is the number of individuals in the
neighbourhood of particle i; 0 <a <1 and 0 < <1 are
parameters which controls the importance of social knowledge
provided by the neighbour individuals.

F. Modified PSO (mPSO)

This variant [7], addressed the issue of particles getting over
concentrated, tried to delay the algorithm falling into local
minimum and increase the global search capability of the
swarm. The authors used (19) to control the swarm diversity
effectively in order to prevent their quick gathering at the
location of gbest. This was done with the belief that, effective
control of the swarm's aggregation degree will improve the
algorithm's capability to obtain global minimum.

newPbest; = Pbest; X (1 + no) (19)

From (19), o is a random number drawn from the standard
Gaussian distribution, the initial value of the 7= 1.0, and set 7
= fn every 50 iterations, where £ is a random number
between [0.01, 0.9]. This method not only produces a small
range of disturbance to achieve the local search with high
probability, but also produces a significant disturbance to step
out of the local minimum area with large step migration in
time.

G. Discussions

All the variants described above tried to address the
problem of getting stuck in local optima (premature
convergence) common with OPSO. In the process of trying to
achieve their goals, the authors of these variants modified
OPSO in various ways by introducing additional parameters
and computations. All the variants outperformed their
competitors in solving various test problems that were used in
the different experiments conducted by their authors.
Summarized in Table I are the additional parameters to OPSO
and the extra computations associated with these variants.

TABLE I: ADDITIONAL PARAMETERS AND COMPUTATIONS IN THE
COMPETING OPSO VARIANTS

Additional
No. | Variant parameters and Remark
computations
i. ISA (1) and (iii) were
1 AIW-PSO |ii. Vpuand Vi, | computed. (ii)
iii. ® was assigned the




search space
limits
iPSO i e Was set as a
constant
i.  Flight
directions (for
the swarm
and ‘each (1) — (v) were
. p‘?m"l‘? computed and no
MARPSO | 1 Dlverglty value was
iii. Mut?lthI} of explicitly
part.lc.sles assigned to (vi)
positions
iv. ©
V. dhigh and dlow
vi. Viex and Vi
(i) — (iii) were
. SR Eor)nputed while
. . iv) was not
- M;l tatlc:in of explicitly stated
AIWPSO 8¢ re:tf whether it was
i E)a tele assigned a
iv. V. and V. constant value or
’ * the search space
threshold
i.  Ranking of
i fofluence | 0= () and (i)
jii. Euclidean | Werecomputed
distance (v) and (Yl) were
PSOuy | iv. Individual 3§;§§z§rigﬁtsaﬂy
v Effects assigned the
Vl o search space
vil. Viyaxand Vi threshold
viil. ®
i. © (i), (i), (iii) and
ii. M (v) were
mPSO iii. newPbest computed while
iv. Ve and Vo, | (iv) was assigned
V. @ a constant value

Considering the OPSO variants described above, MARPSO
and PSO,,, are more complicated than others while /PSO is
the least complicated in terms of extra computations and
additional parameters. In this regard, PSO strived at
maintaining the goal of being a simple algorithm which was
one the desires of the authors of OPSO [12], but could not
maintain the goal of robustness. For mPSO, AIWPSO,
MARPSO and PSO,., the goal of robustness was achieved to
a very high level, but could not maintain the goal of
simplicity. From Table I, inertia weight (w) and particles
velocity limits (V. and Vi) parameters are common among
the variants. In cases where the velocity limits were assigned
the upper and lower limits of the solution search space of a
problem, the values remained constant throughout the lifetime
of the algorithm [1, 22]. This was equally the same thing when
the velocity threshold was assigned constant values relative to
each problem [7]. Also, in all the variants as it is common

among other OPSO variants, the solution search space remains
constant till the algorithms finish their executions.

The inertia weight and velocity threshold plays important
roles in the exploration and exploitation ability of PSO
algorithm, though their selections may be problem-dependent.
There are possibilities of encountering some practical
problems with lack of knowledge regarding the selection of
Vinax Which could result to using trial-and-error approach in
order to make a selection and this can be very labourious and
time consuming. Allowing the velocity threshold to remain
static, either by assigning to it a predefined constant value or a
search space threshold, throughout the lifetime of the
algorithms can make the particles have some step size that
may make them do more than enough exploration or less than
enough exploitation. The inertia weight parameter is the
common tool being used to address this challenge, but this
could better be addressed by working directly with the
velocities of the particles because it is the direct determinant
of the particles' step sizes. Making the solution search spaces
static could also make the particles spend needless time
searching areas that may not be necessary for solution. If the
velocity and solution search space limits are made to vary
(dynamic) throughout the lifetime of the algorithms without
using the inertia weight parameter, there are possibilities of
obtaining better and quality solutions to optimization
problems. This is what the present paper seeks to achieve.

IV. THE IMPROVED ORIGINAL PSO (IOPSO)

All the PSO variants considered in this paper obtained
solutions for the test problems that were used to validate the,
with varied solution quality and precision. These variants have
additional parameters and some extra (or complex)
computations that enabled them achieve their various levels of
successes. The major goal of this paper is to improve on the
performance of OPSO, in a simple way, without using the
inertia weight parameter (w) or getting involved in complex
computation(s). Apart from the commonly used Vi, and
velocity clamping percentage (represented as  in this paper),
no other parameters were used. This was done to make the
algorithm simple and robust yet very effective.

In order to achieve this major goal, a careful study was done
regarding the particles' dimensions. First, the following
observations were made:

i.  During search, every particle dynamically changes its
position in a complex environment facing different
situation. As a result, each particle along every dimension
may have different trade-off between global and local
search abilities

ii. Clamping the velocity of a particle changes the step size
as well as the particle’s direction since changing any
component of a vector changes that vector’s direction. As
each dimension is optimized independently, the particle
moves toward the global best on each dimension with a
speed depending on the velocity limits. Since the
maximum iterative movement toward global best on any
dimension is clamped, particles may be thought of as
combing the search space a bit more thoroughly than
when their velocities are unclamped [5]



iii. It has also been experimentally discovered that large
velocity threshold enhances exploration while small
velocity threshold enhances exploitation [24]

iv. A minimizer is sought for the optimization problem

v. The final fitness (objective function) value depends on the
values of the various dimensions that make up the
minimizer

vi. When the algorithm terminates, the final values at the
various dimensions of the minimizer are smaller than their
initial values (when they were initialized at the beginning
of the algorithm)

vii. From the foregoing, the primary purpose of an
optimization algorithm is to optimize the values of each
dimension (decision variables) from its initial value to a
smaller (final) value such that the objective function value
is the possible minimum (i.e. for minimization problems).

Second, an experimental study was conducted using OPSO
to observe the progressive values of the dimensions as well as
the fitness value for each particle while the algorithm is being
run. The Ackley problem was used for the experiment, with
dimension of 10, swarm size of 10, upper and lower particle
velocity limits set as Vipax = Xmax and Viin = X and a maximum
iteration of 100. Sample results for the values of the different
dimension and fitness at the initialization state, as well as at
the 10™, 20™, 50™ and 100™ iteration relative to the particles
are shown in Appendix 1. From the results, it was discovered
that algorithm

When the velocity and search space limits were allowed to
vary dynamically (method described below), the experiment
was repeated with the same settings. It was discovered that
there was a great improvement as shown by the sample results
in Appendix 2. The velocity threshold was used to control
exploitation while the search space threshold was used to
control exploration.

In every iteration, the largest dimension value (Ly) and the

smallest dimension value (Sy) among the dimensions of all the

particles, were obtained according to (20) and (21).

Ly < max (mjax(xlj)) (20)

4 < min (min(x/)) @1
i j

where, xij is the /™ particle with /™ dimension. The upper limit

Xmax and lower limit x,;, of the solution search space for the

particles were obtained according to (22) and (23).

Xmax < max(|Lql, 1Sq1) (22)

(23)

where | . | means absolute value. After obtaining x,,x and X,
they are used to compute the upper (vp.x) and lower (Vi)
particle velocity limits as defined in (24) and (25).

Xmin < ~Xmax

(24)

vmax < l’l xmax

(25)

Umin < HXmin

where, u is a velocity clamping percentage. It serves as a
scaling factor of the upper and lower solution space limits to
help reduce the velocity range for particles in the process of
operation by IOPSO.

After obtaining the new velocity limits and solution search
space, the particles are redistributed in the search space. When
the particles' positions are being updated, contrary to the
common method in (3) for ensuring that the particles do not
move out of the solution search space, IOPSO uses Fig. 1.
This method in some way help the algorithm achieve some
level of exploration.

If xi < Xupin
Xi < Xnin T (Xmin
else if xi > Xpax
Xi ¢ Xmax — (X
end if

- xi)* random(0,1)

— Xmax) * random(0,1)

Fig. 1: Particle position clamping

Shown in Fig. 2 below is the algorithm for IOPSO. The
shaded portions indicate areas of improvements made to
OPSO.

1) Exploration feature of IOPSO
In order to be able to leave a current peak and look for better
solutions in the search space, IOPSO utilizes (20) — (23) to
redistribute the particles within the newly calculated solution
search space. This method could provide the particles with the
opportunity of leaving their current positions to other parts of
the search space, thus helping to escape getting stuck in local
optimum. This happens throughout the process of the
algorithm.
2) Exploitation feature of IOPSO

To facilitate the refinement of the best solution it has found
so far, (24) and (25) enable IOPSO to search a small vicinity
of this solution. This is so because, as the algorithm's
operation progresses, the velocity range of the particles
decreases, thereby reducing the distance each particle should
exploit for b