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ABSTRACT

Background: There is a striking geographic overlap between helminths and tuberculosis (TB),
particularly in developing countries like Africa. Underprivileged communities are more
susceptible to these illnesses due to poverty, poor sanitation, and other environmental factors.
Helminth and tuberculosis infections exhibit distinct immune responses, which may be
antagonistic in coinfected hosts and lead to poor prognosis. Helminth infections induce anti-
inflammatory Th2/Treg responses contrary to the pro-inflammatory Thl responses triggered
by Mycobacterium tuberculosis (Mtb) infection. Reduced TB protection has been associated
with a strong Th2 response. Uncertainty exists on how helminth infection affects the host’s
resistance to TB. This necessitates further investigation of immune responses in helminths and
TB coinfection cases, particularly in KwaZulu-Natal (KZN).

Aim: To determine the cytokine response profiles during intestinal helminth and TB coinfection
using lymphocytic Jurkat and monocytic THP-1 cell lines for the in vitro study and TB and

helminth coinfected South African adults for the human ex vivo study.

Methods: Lymphocytic Jurkat and monocytic THP-1 cell lines were stimulated for 24 and 48
hours with Mtb H37Rv and Ascaris lumbricoides (A. lumbricoides) excretory-secretory protein
extracts for the in vitro study. A cross-sectional study on consenting adult participants (>18
years) (n = 414) recruited from primary health care clinics was conducted between March 2020
and August 2021 in Durban, KwaZulu Natal, for the pilot human ex vivo study. Blood and stool
samples were collected from the recruited participants. The Kato-Katz and Mini-Parasep faecal
parasite concentration techniques were used to detect intestinal parasite infections in stool
samples. Blood samples were analysed to determine A. lumbricoides-specific immunoglobulin

E (IgE) and immunoglobulin G4 (IgG4) levels to improve microscopy sensitivity.

In this study, cytokine analysis was undertaken for 164 participants; 96 were HIV infected and
had to be excluded, leaving 68 eligible participants. The eligible individuals were subdivided
into uninfected controls (no helminth and TB infection) (n = 18), helminth only infected (n =
35), TB only infected (n = 6), and TB and helminth co-infected (n = 6) groups. Thereafter, for
both the in vitro and ex vivo study, the gene expression profiles of the T helper type 1(Th1) and
transcription factors [Interferon-y (IFN-y), Tumour necrosis factor-a (TNF-a), Interleukin-2 (IL-

XVi
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2), Nuclear factor of activated T cells 2 (NFATC2), Eomesodermin (eomes), T helper 2 (Th2) and
transcription factors (Interleukin-4 (IL-4), Interleukin5 (IL-5, Transforming growth factor-f
(TGF-p), T helper type 17 (Th17) (Interleukin-17 (IL-17), immune protein and proteases
(Granzyme B, Perforin), Regulatory T cells (Tregs) (Interleukin-10 (IL-10) and Fork head box
P3 (FoxP3)] and the uninfected controls, TB alone, helminth alone and coinfected groups were
determined using RT-qPCR.

Results: (i) In vitro study: TB-stimulated Jurkat cells had significantly higher levels of IFN-y,
TNF-a, Granzyme B, and perforin compared to unstimulated controls, LPS, A. lumbricoides,
and A. lumbricoides plus TB costimulated cells (p<0.0001). IL-2, IL-17, Eomes, and NFATC2
levels were also higher in TB-stimulated Jurkat cells (p<0.0001). TB alone stimulated cells had
lower IL-5 and IL-4 levels compared to A. lumbricoides alone stimulated and TB plus A.
lumbricoides costimulated Jurkat and THP-1 cells (p<0.0001. A. lumbricoides alone stimulated
cells had higher IL-4 levels compared to TB plus A. lumbricoides costimulated Jurkat and THP-
1 cells (p<0.0001). TGF-B levels were also lower in TB alone stimulated cells compared to TB
plus A. lumbricoides costimulated cells. IL-10 levels were lower in TB stimulated Jurkat and
THP-1 cells compared to TB plus A. lumbricoides costimulated cells (p<0.0001. (ii) Ex vivo
study: Similar results were noted for both the in vitro and the ex vivo study, although the human

study had a smaller sample size.

Conclusion: Data suggest that helminths induce a predominant anti-inflammatory Th2 and
Treg response which may downregulate critical proinflammatory Thl responses crucial for TB
protection.

Keywords: Mycobacterium tuberculosis H37Rv, Ascaris lumbricoides excretory-secretory
proteins, Jurkat cells, THP-1 cells, human tuberculosis and helminth coinfection, cytokine gene

expression.
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1.1 Background

Soil-transmitted helminths (STHSs) are parasitic worm infections that infect more than 1.5
billion people globally (WHO, 2022a). Most helminth cases occur in sub-Saharan Africa, the
Americas, China and East Asia (WHO, 2022a). Forty per cent of the global helminth disease
burden affects children (WHO, 2022a). Endemicity in Africa and other developing countries is
due to tropical and subtropical climatic conditions, malnutrition, overcrowding, poverty and
poor sanitary conditions that favour repeated infections and make effective treatment and

eradication of infection challenging (Hotez et al., 2006; Mkhize-Kwitshana et al., 2011).

Humans get infected with helminths after ingesting eggs or larvae from contaminated ‘soil or
food or through active skin penetration by infective larval stages (hookworm) found in
contaminated soil (Hotez et al., 2004). The most common intestinal helminth species infecting
the human population worldwide are roundworms (A. lumbricoides), whipworms (Trichuris
trichuria ), Schistosoma species and hookworms (Necator americanus and Ancylostoma
duodenale) (Hotez et al., 2004). Intestinal helminths have been linked to poor physical and
cognitive development in children, worker productivity, pregnancy outcomes, and nutritional
status (Garisch, 2014). Despite their harmful influence on health, helminths are classified as a
neglected tropical disease (NTD) (Garisch, 2014).

Following infection, intestinal parasites cause conditions such as anaemia and malnutrition.
For example, hookworms feed directly from the host’s blood, causing chronic intestinal blood
loss leading to iron and protein loss, which may result in the development of anaemia (Loukas
et al., 2016). Intestinal helminths reduce nutrient absorption and can compete for vitamin A
(WHO, 2022a). Furthermore, intestinal helminths cause appetite loss, lowering nutritional
intake, and can cause diarrhoea and dysentery, exacerbating malnutrition (WHO, 2022a).
Morbidity and death are related to worm burden and illness severity. Low worm burden is

generally asymptomatic compared to high-intensity infection (Garisch, 2014).

Tuberculosis (TB) is an infectious disease caused by highly contagious infectious pathogens
belonging to the Mycobacterium tuberculosis complex (Dye et al., 2005). This complex

consists of seven species, including Mycobacterium tuberculosis (Mtb), M. canetti, M.
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africanum, M. pinnipedii, M. microti, M. caprae and M. bovis (Dye et al., 2005). Despite the
close genetic similarities of these species and common progenitor, these organisms differ
significantly in epidemiology, pathogenicity, and even host spectrum (Brosch et al., 2002). Mtb
is the most common pathogen causing TB in humans (Dye et al., 2005). Infection occurs
through the inhalation of droplets containing viable bacteria, and these droplets travel to the
alveoli, where they are ingested by macrophages and dendritic cells (O’Garra et al., 2013). TB
is predominantly a disease of the lung, with pulmonary TB accounting for about 70% of the
cases (O’Garra et al., 2013). Extra-pulmonary disease sites include lymph nodes, bone, and

meninges (O’Garra et al., 2013).

Despite its coexistence with humans since ancient times, TB continues to be a devastating
public health problem worldwide (WHO, 2022b). It is the leading cause of death caused by a
single infectious agent worldwide, particularly among HIV-infected individuals (Borkow and
Bentwich, 2004; WHO, 2022b). HIV infection significantly increases the chance of developing
active TB after exposure or having latent disease reactivated (Narasimhan et al., 2013). The
risk of TB activation from latent to active disease increases as immunosuppression progresses
(Narasimhan et al., 2013). There is a 10% lifetime chance of developing active TB disease for
HIV-uninfected individuals with latent TB and a 10% annual risk for HIV-infected individuals

(Narasimhan et al., 2013).

TB infects over 2 billion people (almost a fourth of the world’s population) (WHO, 2022b). In
2020, the World Health Organization (WHO) reported an estimated 10 million TB cases and
TB has been ranked among the top 10 causes of death globally (WHO, 2022b). In 2020,
approximately 1.4 million TB fatalities were reported worldwide, and more than 95% of
tuberculosis deaths occur in developing countries such as Africa (WHO, 2022b). Africa
accounts for 24% of the estimated 10 million new cases of TB (WHO, 2021). Africa bears 75%
of the world’s 1.03 million cases of TB and HIV coinfection (WHO, 2021). In addition, TB
was identified as one of the leading causes of death in HIV infected patients living in Africa
(WHO, 2021).

South Africa (SA) has one of the highest TB burdens and is among the top eight countries,
accounting for two-thirds of the 87% of new TB cases (WHO, 2021). Approximately 80% of
South Africans are latently infected with TB (Kanabus, 2016). Immunocompromised

3
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individuals such as people living with HIV, malnutrition, severe kidney disease, certain
cancers, those on chemotherapeutic drugs, the elderly, diabetics, smokers, and other chronic
inflammatory conditions are all risk factors for TB disease progression (Kaufmann et al., 2002;
Zu et al., 2012, Narasimhan et al., 2013).In SA, individuals at risk for TB infection are
household contacts of TB patients, pregnant women, children under five, former miners, people
who work in or live near mines, healthcare professionals, jail inmates, and prison personnel
(Stop TB Partnership, 2017).

KwaZulu Natal (KZN) had a TB incidence of 685 per 100 000 in 2015 (Kanabus, 2016). KZN
remains one of the top three South African provinces with the highest TB incidence (Kanabus,
2016). The Sustainable Development Goals (SDG) aim to eradicate TB by 2030 (WHO,
2020b). In addition, the WHO End TB Strategy aims to reduce TB deaths by 90% and new
infections by 80% by 2035 (WHO, 2020b). South Africa has chosen the 90:90:90 TB strategy
to meet the SDGs and WHO End TB Strategy targets. The strategy entails screening 90% of
people in critical populations for TB, initiating treatment for 90% of those diagnosed with the
disease, and ensuring that 90% of those who begin treatment complete it effectively.

The TB vaccine, Bacillus Calmette-Guerin (BCG), is the only currently used vaccine
worldwide; however, its efficacy against pulmonary TB in adults in many high-burden
countries is variable (Hawn et al., 2014). A study carried out in Ethiopia revealed that
patients with concurrent helminth infections had impaired cellular immune responses to
tuberculin pure protein derivative (PPD), which likely indicated decreased resistance to
mycobacterial conditions. The study’s findings could help explain why BCG is less
effective in combating TB in helminth-endemic regions of the world. (Elias et al., 2001).
A decrease in eosinophils and IL-10 levels following albendazole treatment compared to
the placebo group demonstrated that asymptomatic helminth infection during active TB
significantly impacted host immunity. The dewormed patients gained weight, and this
finding suggested that their immunity to TB was improving. (Abate et al., 2015).

Additionally, it was also determined that chronic parasitic infection reduced the
immunogenicity of BCG in humans and that this was accompanied by higher levels of
transforming growth factor beta (TGF-B) (Elias et al., 2008). In light of this evidence and
the fact that South Africa has a geographic overlap of TB and helminths, different vaccine
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strategies will probably be required since there are gaps in the understanding of protective

immunity against TB (Hawn et al., 2014).

TB immune response requires an effective proinflammatory (Th1) cell response. The Thl
response includes the production of interleukin 1 (IL-1), IL-6, IL-12, interferon-gamma (IFN-
y), tumour necrosis factor alpha (TNF-a) and Th17 responses (IL-17 and IL-23) (Romero-
Adrian, 2015). Immune responses and other factors, such as genetic conditions, play an
essential role in the progression of TB infection (Romero-Adrian, 2015). Other factors, such
as bacterial virulence and environmental factors, poverty, malnutrition, overcrowding and
pathogen exposure have been shown to influence host susceptibility to TB (Romero-Adrian,
2015).

Polymorphisms in genes encoding natural resistance-associated macrophage protein 1
(NRAMP1), IL-1 gene cluster, the vitamin D receptor, and mannose-binding lectin have been
linked to susceptibility to TB (Bellamy et al., 2000; RJ et al., 2000). The essential role of Th1-
associated cytokines such as IFN-y and IL-12 was confirmed by the increased susceptibility to
mycobacterial infections in patients with mutations in genes coding for these cytokines
(Bellamy et al., 2000; RJ et al., 2000).

The dually infected host mounts an immune response against TB and intestinal helminths;
however, the responses to each infection differ. As mentioned earlier, TB infection induces
Thl cell activity (Romero-Adrian et al., 2015; Sia, Georgieva and Rengarajan, 2015). In
contrast, intestinal helminth infections induce an anti-inflammatory Th2 and regulatory T cells
(Tregs) immune response (Allen and Maizels, 2011; Inclan-Rico and Siracusa, 2018).
Therefore, in TB and helminth coinfection, the cytokine immune responses may be skewed,

leading to poor host prognosis.

Clinical conditions presumed to be affected by helminths include HIV/AIDS, TB, autoimmune
diseases and allergic disorders (Maizels, 2016; Maizels and Mcsorley, 2016). There is an
increased T regs activity in the case of TB and helminth coinfections, and these cells have been

implicated in impairing Thl responses to TB (Abate et al., 2015). TB commonly overlaps
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geographically with helminths, especially in developing countries (Hartgers and
Yazdanbakhsh, 2006; Abate et al., 2012; Babu and Nutman, 2016; Gashaw, 2018). Therefore,
in TB and intestinal helminth coinfection, the Th1 and Th2 responses act antagonistically,
resulting in dysregulated immune responses to both infections (Babu and Nutman, 2016).
Helminths have been reported to have immunomodulatory effects which aid parasite
establishment and survival while reducing immune response to allergens, autoimmune
disorders, and microbiota determinants. They achieve this by interfering with epithelial cell
alarmins, dendritic cell activation, macrophage function, and T-cell responsiveness by

promoting an immunoregulatory milieu (Maizels, 2019).

1.2 Study Rationale and Significance

STH’s are endemic in South Africa, particularly in the tropical and subtropical regions of the
country, affecting many people in poor, overcrowded communities with a lack of sanitation,
hygiene, insufficient clean water supply and poor public health service delivery (Angie, 2020).
A study conducted by Molvik et al. on children in rural South Africa showed a 60% prevalence
of Schistosoma haematobium and helminth prevalence ranging from 20% - 50% (Molvik et
al., 2017). Schistosomiasis is also present in the North West, Limpopo, Mpumalanga, KwaZulu
Natal and Eastern Cape provinces (Kabuyaya et al., 2017). However, there are few studies that
generated data regarding the prevalence of helminths in adults in South Africa (Kwitshana et
al., 2008, Mkhize-Kwitshana et al, 2011, Adeleke et al., 2015).

There is a triple disease burden of helminth infection with HIV/AIDS and TB in South Africa
(Mkhize-Kwitshana et al, 2014). In addition, SA faces a high burden of intestinal helminths
and poverty, both of which exacerbate the HIV/TB epidemic (Adeleke, Yogeswaran and
Wright, 2015). The prevalence of intestinal helminths was shown to be high in HIV/TB
endemic areas (Borkow and Bentwich, 2004; Adeleke, Yogeswaran and Wright, 2015). This
overlap between the two infections poses a significant health risk in the tropical and subtropical

regions in developing countries such as SA.
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Stats SA released data showing that poverty is rising in South Africa. The “Poverty Trends in
South Africa” report showed that poverty levels rose in South Africa, with more than half of
the population being poor (Angie, 2020). As of 2022, over 18.2 million South Africans were
living in extreme poverty, with the poverty line set at 1.90 US dollars per day. This meant that
123 000 more people fell into poverty between 2021 and 2022 (Galal, 2022). In 2022 the annual
consumer inflation reached another 13-year high, increasing to 7,8% in July from 7,4% in June
2022 (StatsSA, 2022), and the unemployment rate of 32,7% further worsened poverty
(StatsSA, 2022). Helminths and TB are diseases of low-income populations. Therefore, these

poor settings provide a vessel for continuing helminth and TB infections.

KZN is one of the top three provinces in South Africa with the highest TB incidence, with
reported rates of 685 per 100,000 (Kanabus, 2021). KZN is significantly plagued by TB and
HIV epidemics, with an estimated 70% HIV-TB coinfection incidence (Snyman, 2015). TB is
one of the top causes of death in HIV-coinfected patients (WHO, 2022b).

The large extracellular helminth parasites induce a Th2 predominant immune response. On the
other hand, the intracellular pathogen Mtb activates a Thl immune response (Hasanain et al.,
2015). These two arms of immune responses counter regulate each other; for instance, IL-4
and 1L-10 decrease IFN-y producing CD4 cells (Toulza et al., 2016). The Th2 dominance is
thought to attenuate the Thl immune response to mycobacterial antigens and the BCG
vaccination during persistent helminth infection (Elias et al., 2008). Helminth and TB
coinfection also poses a risk of developing active TB, reactivating latent TB, and having active
TB progression (Monin et al., 2015).

In South Africa, past research on parasites has mainly focused on children, mostly on
prevalence surveys which reported high prevalence of these infections , ranging between 5,3%
and 64,8% particularly the coastal areas of KwaZulu-Natal, Western Cape and Mpumalanga
(Mabaso et al., 2004; Saathoff et al., 2004; Adams et.al .,2005; Bhat et al., 2013; Banhela et
al., 2017; Zulu et.al, 2020) and effects of helminthiasis on malnutrition, stunting (Jinabhai,
Taylor and Sullivan, 2003) and cognitive development (Appleton and Kvalsvig, 2017; Banhela

et al., 2017). There is paucity of data on adult helminth infection, the impact of coinfection



692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710
711
712

713

714

715

716

717

718

719

720

with intestinal helminths and TB, and immunological responses to helminth and TB
coinfections in South Africa, as well as the influence that these infections have on protective
immune responses. Furthermore, investigations in other parts of the world investigated
different helminth species and have yielded disparate results regarding the impact of TB/
helminth coinfection (Elias et al. (2008); Monin et al. (2015); Kumar et al., 2020; Bewket et

al.,2022). This raises the need for more research in local communities.

Considering the different effects that the various helminth species have on the immunity to TB,
the current study was conducted in KwaZulu Natal to investigate the impact of TB/helminth
regulatory coinfection on cytokine immune responses using in vitro and human ex vivo
experiments. The data presented by this study is expected to provide pertinent information in
SA, particularly in the KZN province, which is known for its high TB prevalence, subtropical
climate, and poverty suitable for transmission of helminths. Such data may assist in updating
the existing mass deworming program, which only targets school-aged children and excludes
adults. The information will also contribute to TB management strategies in helminth-endemic

areas.

1.3 Null Hypothesis

Co-infection with TB and helminths skews the host’s immunity to a predominant Th2 and
immune response, therefore, a reduced Thl responses required for TB, leading to a poor TB
prognosis.

1.4 Research question

Do helminth infections alter the cytokine immune response during intestinal helminth and TB

coinfection?

1.5 Aim

To determine the cytokine response profiles during intestinal helminth and TB coinfection

using lymphocytic Jurkat and monocytic THP-1 cell lines for the in vitro study and TB
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(GeneXpert positive TB patients) and helminth coinfected South African adults for the human

ex vivo study.

1.6 Objectives

1. To appraise published literature on immune responses during coinfections with intestinal
helminth and TB.

2. To investigate the cytokine immune response profiles in lymphocytic Jurkat and monocytic
THP-1 cell lines costimulated with H37Rv strain of Mtb and A. lumbricoides excretory-

secretory protein antigens.

3. To investigate the cytokine immune response profiles in adult participants coinfected with

intestinal helminths and TB (GeneXpert positive).

1.7 Outline of the dissertation

This work is presented as a dissertation by manuscripts, as per the University of KwaZulu
Natal’s recommendations. Therefore, the chapters include a background/ introduction,
literature review in a form of a published review manuscript and a research manuscript which
has passed the reviewers and is pending approval by the journal’s academic editor. The font of
the review manuscript has been formatted in accordance with the journal in which the article
was published. The font of the research manuscript that is under review is also formatted
according to the journal to which it was submitted.

Chapter 1: Introduction. This chapter introduces the literature and study rationale,
highlighting the significance and contribution of this study to scientific knowledge. This

chapter then addresses the aims and objectives presented as chapters in the dissertation.

Chapter 2: Literature review. This chapter addresses objective 1, which was to review
existing literature on the immunologic impact of coinfection with intestinal helminths and TB.
This manuscript was published in the MDPI Diagnostics journal in November 2022:

Immunological Interactions between Intestinal Helminth Infections and Tuberculosis.
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Bhengu KN, Naidoo, P, Singh R, Mpaka-Mbatha MN, Nembe, N, Duma Z, Pillay R, and
Mkhize-Kwitshana ZL. 2022. Immunological Interactions between Intestinal Helminth
Infections and Tuberculosis. MDPI Diagnostics. 12: 2676.
doi.org/10.3390/diagnostics12112676. [Review article].

Chapter 3: This chapter addresses objectives 2 and 3; the actual research that was undertaken
to explore the immunological responses during intestinal helminth and TB coinfection, using
in vitro and human ex-vivo experimental work. The research manuscript “Cytokine responses
during Mycobacterium tuberculosis H37Rv and Ascaris lumbricoides costimulation using
human THP-1 and Jurkat cells, and a pilot human tuberculosis and helminth coinfection

study” was submitted to the MDPI Microorganisms journal - manuscript number — 2357988.

Bhengu, K.N.; Singh, R.; Naidoo, P.; Mpaka-Mbatha, M.N.; Nembe-Mafa, N.; Mkhize-
Kwitshana, Z.L. Cytokine responses during Mycobacterium tuberculosis H37Rv and A.
lumbricoides coinfection using human THP-1 and Jurkat cells, and a pilot human tuberculosis
and helminth coinfection study. was submitted to the MDPI Microorganisms journal, has

passed the reviewers and is awaiting the academic editor’s decision - manuscript number —

2357988.

Chapter 4: Synthesis, conclusion, recommendations and list of appendices
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Preface to Chapter 2

Mtb and intestinal helminth infections continue to be significant public health concerns. In
addition to HIV coinfection being a substantial risk factor for higher tuberculosis mortality
rates, intestinal helminth co-infection must also be considered. Geographically, intestinal
helminthiasis and tuberculosis overlap extensively in tropical and subtropical areas of the
world, possibly due to the paradoxical impact of immune responses against them (Babu and
Nutman, 2016). Thl and Th2 cells that fight Mtb and intestinal helminths cross-regulate each
other via cytokine production, notably IFN-y and IL4, respectively (Gashaw, 2018).

Furthermore, helminths have been shown to affect the immunogenicity of BCG, the only
known vaccine against Mtb (Elias et al., 2008). A number of studies have been conducted to
study the impact of helminthiasis on the host immunological response to tuberculosis and the
efficacy of BCG vaccination, resulting in conflicting and inconclusive findings (Elias, H.
Wolday, et al., 2001; Elias et al., 2005, 2008; Biraro et al., 2014). On the other hand, strong
evidence suggests that exposure to intestinal helminths reduces the risk of immune-mediated
illnesses (McSorley, Hewitson and Maizels, 2013; Wammes et al., 2014; McFarlane et al.,
2017) As a result, the immunological interactions of the co-infection with Mtb and helminths
are explored in this review paper, which also aims to provide insights into the management of

these infections in areas where they are co-endemic.

These immunological interactions are discussed in the review below, which was published in
the manuscript titled “Immunological Interactions between Intestinal Helminth Infections

and Tuberculosis.”

Bhengu KN, Naidoo, P, Singh R, Mpaka-Mbatha MN, Nembe, N, Duma Z, Pillay R, and
Mkhize-Kwitshana ZL. 2022. Immunological Interactions between Intestinal Helminth
Infections and Tuberculosis. Diagnostics. 12: 2676.doi.org/10.3390/diagnostics12112676.
(Impact factor = 3.992)

[Presented as per Diagnostics journal format requirements]
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Abstract

Helminth infections are among the neglected tropical diseases affecting billions of people
globally, predominantly in developing countries. Helminths’ effects are augmented by
coincident tuberculosis disease, which infects a third of the world’s population. The role of
helminth infections on the pathogenesis and pathology of active tuberculosis (TB) remains
controversial. Parasite-induced suppression of the efficacy of Bacille Calmette-Guerin (BCG)
has been widely reported in helminth-endemic areas worldwide. TB immune response is
predominantly proinflammatory T-helper type 1 (Th1)-dependent. On the other hand, helminth
infections induce an opposing anti-inflammatory Th2 and Th3 immune-regulatory response.
This review summarizes the literature focusing on host immune response profiles during
single-helminth, TB and dual infections. It also aims to necessitate investigations into the
complexity of immunity in helminth/TB coinfected patients since the research data are limited
and contradictory. Helminths overlap geographically with TB, particularly in Sub-Saharan
Africa. Each disease elicits a response which may skew the immune responses. However, these
effects are helminth species-dependent, where some parasites have no impact on the immune
responses to concurrent TB. The implications for the complex immunological interactions that
occur during coinfection are highlighted to inform government treatment policies and
encourage the development of high-efficacy TB vaccines in areas where helminths are

prevalent.

Keywords: Mycobacterium tuberculosis; helminths; coinfection; immune response; Bacille

Calmette-Guerin; vaccination
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1. Introduction

Intestinal helminths are parasitic worms infecting over 1.5 billion people globally [1]. Most
helminth cases occur in tropical and sub-tropical areas such as Sub-Saharan Africa, the
Americas, China and East Asia [1]. Humans are infected with helminth parasites after ingesting
eggs or larvae from contaminated water, soil or food or through active skin penetration by
infective hookworm larvae in contaminated soil [2]. Climate change, malnutrition,
overcrowding, poverty and poor sanitary conditions are risk factors associated with the high
helminth prevalence in Africa and other developing countries, making effective treatment and
the eradication of infection challenging [1-4]. The most common intestinal helminth species
infecting humans are Schistosoma mansoni, Trichuris trichuria (whipworm), A. lumbricoides

(roundworm), Necator americanus and Ancylostoma duodenale (hookworms) [1, 2].

Tuberculosis (TB) is an infectious bacterial disease caused by different strains of acid-fast
bacilli belonging to the Mycobacterium tuberculosis (Mth) complex [5]. The TB bacteria are
airborne, and transmission occurs when a TB-infected person coughs, sheezes, or spits,
expelling the infected droplets into the air. Inhalation of these aerosols may result in infection
of the next host [6]. TB continues to be a public health problem across the world, with the
World Health Organization (WHO) reporting over 10 million TB cases in 2020 [7].
Approximately 1.5 million TB-related deaths were reported worldwide in 2020 [7]. Globally,
Africa accounts for 50% of cases of TB and human immunodeficiency virus (HIV) coinfection
[7]. Furthermore, in Africa, TB is commonly observed in HIV-infected patients, and it is the
leading cause of death among them [7].

TB exposure results in the initiation of an immune response to fight the infection. The immune
response to TB involves the interaction of innate and adaptive immune responses. It is
dependent on the cellular immune response, which is mediated by proinflammatory T-helper
type 1 (Thl) and Th17 cells [8-10]. The Thl cytokines, which are interferon-y (IFN-y),
interleukin 12 (1L12) and tumour necrosis factor-a (TNF-a) and Th17 cytokines (IL-17, IL-21,
IL-22 and IL-23) play a role in combating bacterial and viral infections [8-10]. Helminth

exposure, on the other hand, induces an anti-inflammatory Th2 immune response which is
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characterized by the production of cytokines such as IL-4, IL-5, IL-9, IL-10 and IL-13, and
increased levels of circulating immunoglobulin E (IgE) antibodies, eosinophils, and mast cells,
regulatory T cells (Tregs) and transforming growth factor-p (TGF-B) [11, 12].

TB commonly overlaps geographically with soil-transmitted helminths, especially in
developing countries [13-16], and this co-endemicity has implications for public health and
the afflicted hosts. Helminth infection-induced immune responses could promote the
pathogenesis of severe TB infections [16—18]; others report that they can also be beneficial in
reducing TB severity [19-22]. However, there is no conclusive evidence to confirm whether
helminth-induced immunity modulates TB-specific immune responses or vice-versa, and
studies have yielded contradictory results. Therefore, knowledge on the interaction between

TB and helminth infections is limited, as are the available data.

Given the current evidence on potential immunologic implications, such as those that could
influence TB vaccination, treatment and diagnosis, more research is needed to determine the
influence of helminth coinfection on TB control and how to negate any adverse effects. As a
result, this review will summarize what is currently known about TB and helminths’ immune
responses in human and experimental studies, both separately and in the context of coinfection.
The review will also elucidate the effects of TB and helminth coinfections on vaccine efficacy

and the implications for long-term health care.

2. Article Search Strategy for the Current Review

An electronic search of online databases such as Google Scholar, Google, PubMed, Science
Direct, online library sources, and Web of Science were utilized to extract research and review
articles using phrases and words: helminth, tuberculosis, helminth and tuberculosis coinfection,
helminth and tuberculosis vaccine and helminth and tuberculosis diagnosis in humans, animals

and in vitro studies.
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Figure 1. PRISMA flow diagram of the search strategy and the research design process.

3. The Host Immune Response to Helminths

Helminths are parasitic and multicellular organisms that coevolve with their hosts [23]. These
parasitic infections are often asymptomatic, but there are cases of heavy worm burden. These
have been linked to persistent health conditions such as anaemia, fatigue, growth stunting and
poor cognitive development [24]. Helminths are the driving force behind how immunity is
initiated and maintained [25]. They typically create long-term infections in their hosts. They
can influence physiological and immunological homeostasis to ensure their continuing

existence [25].

Helminths mature within the infected subject and lay eggs for transfer to another host, exposing
them to multiple stages of parasite development, each of which elicits a unique immune
response [26]. Helminths have evolved to exploit a range of host immunoregulatory

22



1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

mechanisms and activate generic suppressive pathways that can suppress bystander responses
to other antigens, allergens, and self-antigens [12]. Helminths have been dubbed “masters of
immunoregulation” because of their capability to control immunity to escape being eliminated
by the host [25, 27]. Helminths enter the body through the skin or intestinal epithelium’s barrier
surface, where they block the transcription of numerous molecules that keep the epithelium
intact [28].

Tissue injury activates the production of “alarmins” (IL-33 and thymic stromal lymphopoietin
(TSLP)) and the identification of invaders by pattern recognition receptors (PPRs) in the host
[28]. The Th1l proinflammatory cytokine production is driven by pattern recognition receptors
(PRRs) such as toll-like receptors (TLRs) or C-type lectin receptors (CLRs), whereas IL-33
and TSLP initiate a Th2 anti-inflammatory response [28]. Helminths stimulate increased
mucin synthesis, smooth muscle contractility and epithelial cell turnover as a host defense to
eliminate the infection. There is also increased IgE and 1gG1 production in mice and IgE and
IgG4 production in humans [12, 28]. All these processes work together to drive worm

expulsion and wound-healing responses, which control worm-induced tissue damage [28].

The Th2 immune response induced by helminths includes interleukins (IL-4, IL-5, IL-9, IL-
10, and I1L-13), broad or localized eosinophilia and hyperplasia of goblet and mucosal mast
cells [12, 28]. The CD4-positive Th2 cells were initially identified as an essential source of IL-
4, 1L-5, IL-9, IL-10 and IL-13 cytokines [29]. Eosinophils, basophils and innate lymphoid cells
(ILCs) can also produce some of these cytokines in response to helminth infections [29].
Although the Th2 immune response induced by helminth parasites is stereotypical, the
initiation, progression and culmination of this response require interaction with different cell
types, most notably: epithelial or stromal cells, ILCs, antigen-presenting cells, dendritic cells,

macrophages, T cells, B cells, eosinophils, mast cells and basophils [12].

Tregs maintain the Th2 dominance, IL-10 and TGF-B, which mediate the suppression of
competing Thl and Th17 cell populations [30]. Tregs modulate the immune system to prevent
tissue damage induced by proinflammatory responses, maintain tolerance to self-antigens and

abrogate autoimmune disease [31]. These cells can be divided into two subsets: natural Tregs
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that develop in the thymus and induced Tregs that arise from conventional CD4-positive T cells
in the periphery, which are promoted by chronic antigen exposure [32]. The forkhead/winged-
helix transcription factor (Foxp3) is a crucial marker for identifying these subsets, but it may
be expressed on activated CD4-positive T cells [32]. Helminth-induced suppression of
immunopathology also involves CD4+ Tregs (Foxp3+ or Foxp3), CD8+ Tregs, regulatory B
cells (Bregs), IL-4-responsive cells, TGF-p, and IL-10 [33]. Since an increased Th2 response
can potentially induce disease, a regulated response must be generated. This is referred to as
the modified Th2 cell response and is characterized by the downregulation of Th2 cytokines
[12].

According to the hygiene hypothesis, in developed countries where sanitation is good, and
helminths have been eliminated, there is an increase in allergic diseases such as asthma and
allergic rhinitis, and autoimmune diseases such as Crohn’s disease [34]. This hypothesis has
led to many human and animal studies conducted using live helminth parasites to determine
whether helminths do nullify the effect of allergies and autoimmune disorders. Human studies
conducted in underdeveloped countries where helminths are still prevalent showed fewer
allergies and autoimmune diseases [34-36]. Others have reported evidence of decreased

allergies in developing countries [37].

Helminths induce various immune and physiologic modifications to survive the hostile
immune response directed against them and their general survival. These survival mechanisms
include this modified Th2 response [27]. These parasites also promote angiogenesis, which
changes tissue vascularity and thus provides a good niche for their survival [38]. The overall
immune modulation of helminths invokes immunosuppression, immunologic and
physiological tolerance and a modified Th2 response [27]. These can lead to a reduced immune
response, thus amplifying susceptibility to infection with other pathogens, reduced anti-tumor

immunity and reduced vaccine efficacy.
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Figure 2. Immune response profiles during helminth infection. Migration of helminths
damages epithelial barrier cells and tissues, triggering an immune response. Helminths produce
damage and pathogen-associated molecular patterns (DAMPS and PAMPS). DAMPS and
PAMPS activate various cells, such as epithelial, which release alarmins such as Thymic
stromal lymphopoietin (TSLP), IL-25 and IL-33. Alarmins stimulate innate lymphoid cells
(ILCs), aiding collagen deposition and tissue repair, and are a source of IL-5 required for
eosinophil activation. Eosinophils enter tissues during helminth infection-induced
inflammation. Eosinophilia is a crucial feature of the host response to helminth infection.
Alarmins promote B cell activation and induction of alternatively activated macrophages
(AAMs). AAMs stimulate 1L-10 and TGF-B, which reduce the host’s immune response to
pathogens to avoid damaging the host and maintain normal tissue homeostasis. Classically
activated macrophages, stimulated by IFN-y produce proinflammatory cytokines (IL-1p, IL-6,

IL-8, IL-12 and TNF-a).

Figure 1 Footnotes: IL: interleukin; IFN-y: interferon-gamma; TGFp: transforming growth
factor beta; TNFa: tumor necrosis factor-alpha; ILCs: innate lymphoid cells; TSLP: Thymic
stromal lymphopoietin; AAMs: alternatively activated macrophages; DAMPS: damage-
associated molecular patterns; PAMPS: pathogen-associated molecular patterns. Red arrow
pointing up indicates cytokines that are upregulated/increased during the early stages of

helminth infection and those that are upregulated during the chronic stages.
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4. The Host Immune Response to TB

TB enters the body via inhaled droplets to the alveoli. It interacts with the alveolar
macrophages, infecting and multiplying inside them, thus making these cells the first line of
defence against infection [6]. In immunocompetent individuals, macrophages are activated,

and they phagocytose and remove TB.

In some cases, the disease is controlled and kept inactive or latent in distinct foci known as
granulomas bacteria [9, 15, 39, 40]. However, some bacteria can escape this fate, multiply and
eventually cause an active infection. This may be due to the intrinsic capacity of the
macrophage, the immune status of the host or the virulence of the infecting bacteria [9, 15, 39,

40]. Mtb is, therefore, a pathogen that can cause both latent and active disease [41].

4.1. Innate Responses to TB

The initial stages of TB infection include phagocytosis of the bacteria by macrophages [6].
Receptors that recognize a broad spectrum of mycobacterial ligands cause phagocytosis [9].
Pathogen recognition receptors, TLRs, complement receptors (C.R.), Nucleotide
Oligomerization Domain (NOD)-like receptors and C-type lectins have all been implicated in
the recognition of mycobacteria and the initiation of the cytokine response [8].

When phagocytic cells encounter TB, they get activated and generate cytokines, including
proinflammatory cytokines such as TNF-, IL-1, IL-6, IL-12 and IFN-y [8]. Increased
susceptibility to TB was reported to be linked to genetic abnormalities in IFN-y production [15,
42]. IFN-y is involved in activating macrophages that fight mycobacteria through intracellular
killing and antigen presentation to T lymphocytes [43]. Vitamin D is also involved in killing
Mtb, which is aided by the creation of the peptide cathelicidin [44]. The presentation of TB
antigens by dendritic cells in lymph nodes, possibly aided by neutrophils, initiates a local
immune response that culminates in pathogen killing by reactive oxygen species (ROS) and

antimicrobial peptides [8].
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Cells required in the host’s defence against Mtb include monocytes, macrophages, neutrophils,
natural killer (NK), and dendritic cells. Together, these cells form a primary granuloma, which
may allow Mtb growth while containing the infection until T cells are recruited to the infection
site, a response process that takes weeks [8]. Phagolysosomal fusion, reactive oxygen and
nitrogen intermediates, and antimicrobial peptides such as cathelicidin induced by vitamin D

are innate mechanisms against Mtb [44].

NK cells may eliminate intracellular Mtb through the activation of perforin, where the
antimycobacterial factor granulysin binds to the bacterial cell surface and disrupts the
membrane, resulting in bacterial osmotic lysis [45]. Apoptosis is a critical mechanism for the
infected host cell to limit Mtb replication to a minimum. Phagocytic cell apoptosis may prevent
the spread of disease, diminish the viability of intracellular mycobacteria and reduce the risk
of infection [46].

4.2. Adaptive Immune Responses to TB

Adaptive immunity develops after exposure to mycobacterial antigens or vaccination with
BCG. This part of the immune system is triggered when the innate immune response is
insufficient to suppress TB infection. The control of TB requires Th1l immune responses (IFN-
Y, IL-12 and TNF-a) and Thl7 responses (IL-17 and IL-23). Thl responses are
proinflammatory and develop a cell-mediated reaction [39]. Thl cells produce IFN-y through
the T-box transcription factor (TBX21). Both IL-12 and IFN-y are the leading cytokines in Th1
responses, where IL-12 is secreted by antigen-presenting cells [40, 47]. The IL-12 receptor,
which is expressed on the surface of T cells, interacts with IL-12. The increased T-bet (encoded
by TBX21) boosts the signal transducer and activator of transcription 4 (STAT4), a regulator
of Th1 cells [47]. T-bet binds to and affects the expression of Th1-specific genes and Thl and
Th17 cell expression [47]. This is important since the control of TB requires Th1 responses.
STAT4 and T-bet work together to ensure optimal IFN-y levels, and their depletion eliminates
IFN-y production [47].
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TB immunity involves many cells, such as T cells, B cells and natural killer (NK) cells, with
CD4+ T cells being the primary cell type in TB control [48]. The CD4+ Thl cells are central
to the control of TB; these cells secrete IFN-y and TNF-o, which are both critical in the
management of TB [39]. IL-12 regulates the induction of IFN-y, and mutations in the genes
coding for IL-12, IL-12R, IFN-yR or STAT1 or depletion of CD4+ T cells (as seen in HIV
infection) all promote susceptibility to disseminated TB [39]. IFN-y stimulates phagocytosis,
phagosome maturation, the production of reactive oxygen intermediates (ROS) and antigen
presentation in macrophages.

IFN-y is regarded as the primary cytokine that regulates TB infection and eradication. It works
by activating the infected macrophage, resulting in the production of reactive oxygen and
nitrogen species, which have a microbicidal role [49]. In terms of memory immune responses,
CD4+ Th17 cells and Th1 cells have been identified as enhancing the host’s resistance to TB
[50]. Th17 cells are a lineage of CD4+ T helper cells that produce the cytokine IL-17, IL-17F
and 1L-22, and they play a role in developing an optimal Th1 response [51].

Th17 was first described as a distinct population of the T helper cells controlled by the
transcription factor RAR-related orphan receptor gamma (RORyt) [52]. They develop
independently of T-bet, STAT4, GATA-3 and STAT®6 transcription factors critical for the
development of Th1l and Th2 development, respectively [52]. The central effector cytokines
of Th17 are IL-17; other cytokines are 1L-22 and IL-26 [53]. The immune response to TB
infection is directed mainly by a Th1 response, with contributions from Th17 and other cells.
A strong proinflammatory milieu also characterizes TB infection. On the other hand, human
innate immune responses to Mtb infection are still poorly understood, owing to the limitations

in examining pulmonary-specific immunity.

Therefore, understanding the interaction of innate and adaptive immune cells in human TB is
crucial for identifying new immunomodulatory targets and clarifying protective immunity

processes.
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Figure 3. Immune response profiles during tuberculosis infection. Mycobacteria encounter
alveolar macrophages where they are phagocytosed, kept inside phagosomes and exposed to
antimicrobial peptides and degrading lysosomal enzymes (lysozyme). However, pathogenic
mycobacteria have developed strategies to subvert the host’s defences. Thl-cell activity (IFN-
Y, IL-12 and TNF-a) is required for Mycobacterium tuberculosis immunity. IFN-y activation
of macrophages promotes bacterial killing by forming toxic reactive oxygen intermediates
(ROI) and reactive nitrogen intermediates (RNI). An array of cytokines and chemokines,
including tumour necrosis factor (TNF-a), induces a proinflammatory response and directs
immune cells to the infection site. Dendritic cells migrate to draining lymph nodes, where they
encounter many immature T cells. In the presence of proinflammatory cytokines such as IFN-
vy and IL12, T cells become activated, multiply and differentiate into T helper (Th)1 cell. IFN-
y stimulates macrophages and triggers the potent antimicrobial activities of the primed Thl
cells. Innate and Thl-dominant adaptive immune responses interact to produce granulomas.

Innate and adaptive immune responses are critical for microorganism eradication.

Figure 2 footnotes: IL: interleukin; IFN-y: interferon-gamma; TNF-a: tumor necrosis factor-a;
ROI: reactive oxygen intermediates; RNI: reactive nitrogen intermediates. Red arrow pointing
up indicates cytokines that are upregulated/increased during TB infection. Red arrow pointing

down indicates cytokines that are downregulated during TB infection.
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5. Host Immune Response during Helminth Coinfection with TB

The geographic distributions of helminths and TB overlap substantially, particularly in
underdeveloped countries, resulting in an increased likelihood of coinfection with both
pathogens [15, 16]. This coexistence has also led to the hypothesis that helminths can worsen
the effects of TB There have been suggestions that the anti-inflammatory response induced by
helminths in cases of coinfection might dampen protective and immunopathological responses
to TB [15, 16].

An Ethiopian study investigated the association between intestinal helminths and active TB
and found that helminth infection increases the likelihood of developing active TB [54]. This
and other studies also suggested that patients with coinfection may have antagonistic effector
cell responses in responding to and regulating these diseases [30, 55]. This can also imply that

the efficacy of the vaccines may be reduced.

One school of thought suggests that helminths create an environment that weakens the host’s
defenses against TB By activating the IL-4 receptor pathway, a preexisting helminth infection
inhibits an innate pulmonary anti-TB defense [56]. In coinfected mice models, helminth-
induced lung alterations increased susceptibility to TB [56]. Macrophages can be classically
or alternatively activated. Classically activated macrophages (CAMSs) increase the activity of
nitric oxide synthase (iNOS), which converts L-arginine to nitric oxide and citrulline. Nitric
oxide promotes intracellular Mtb killing. On the other hand, alternatively activated
macrophages (AAMs) induce arginase, which competes with iNOS for L-arginine, thereby
reducing nitric oxide production for the intracellular killing of Mtb [49]. Mtb resistance in
helminth-infected mice is promoted by AAMs. This major cellular pathway compromises the
helminth-infected host’s ability to limit Mtb growth [56].

A review in support of this proposed role of the Th2-dominant phenotype on Mtb control
illustrated that AAMs might inhibit the macrophage killing of Mtb [49]. Conversely, a murine

study in South Africa using Nippostrongylus brasiliensis (Nb) revealed that Mtb colonies were
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reduced in the lungs of Nb-infected mice. The stimulation of pulmonary CD4+ T cells and Thl
and Th2 cytokines, neutrophils and alveolar macrophages was elevated. This suggests that Nb
infection triggers a macrophage response, which protects the host throughout the early phases
of mycobacterial disease and subsequent illness [19].

Both helminths and TB have independent mechanisms for initiating the host immune response,
with significant consequences for the immunology of each infection [15, 16]. The coexistence
of helminth infection and active tuberculosis has been demonstrated in epidemiological, cross-
sectional and case-control studies that looked at the prevalence and correlation of the two
diseases. Pulmonary TB patients were found to have a significant rate of intestinal nematode

infection, indicating that helminth immunomodulation may affect the control of TB [54], [57].

In Ethiopia, some studies reported an increase in the prevalence of helminth coinfection in TB
patients, where one study found a higher risk of parasites among active TB patients than in
healthy community controls [17, 58, 59]. Likewise, in Iran, a higher prevalence of intestinal
helminths was found in tuberculosis patients compared to the uninfected subjects (Taghipour
et al., 2019). Taghipour and colleagues also determined that immunocompromised TB patients
are more vulnerable to parasitic gastrointestinal infections [60]. It was reported that
Blastocystis subtype 1 was the most common subtype found in TB patients; however, a
phylogenetic analysis revealed no distinction between Blastocystis isolates from TB patients

and those from the uninfected [61].

S. mansoni was also a risk factor for TB infection, and it altered the clinical presentation and
pathogenesis of TB in Tanzania [62]. The authors recommended treatment of this parasite using
praziquantel in TB infection management [62]. A systematic review suggested that health
education be implemented to help prevent intestinal helminth infection. It further added that
screening for helminths should be possibly included in the treatment strategies for tuberculosis
patients [63]. Another review suggested an association between Toxoplasma gondii (T.gondii)
seropositivity and having tuberculosis, with T. gondii seropositivity, which indicates chronic
infection, being relatively common among tuberculosis patients [63].
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Strongyloides stercoralis coinfection with pulmonary TB was implicated in the cause of the
skewed immune response to mycobacterial disease [64]. The proinflammatory Th1 cytokines
were reduced, whereas the anti-inflammatory Th2 and Th3 cytokines were elevated, thus
leading to a conclusion that helminth coinfection may modulate protective immune responses
in latent TB [64]. A study of immunological correlates in TB coinfection with S. mansoni in
Kenya, on the other hand, discovered that the expression of TB-specific Thl cytokines was
maintained. Individuals with latent tuberculosis and S. mansoni infection had more CD4+ Th1l
cells than those who were only latently TB-infected [22]. There were similar results in a
Brazilian study, whose findings revealed that A. lumbricoides infection had no impact on Thil,

Th2 and Th17 responses or the T cell populations [21].

A Thl immune response observed during persistent filarial infection was characterized by a
reduction in Purified Protein Derivative (PPD)-specific IFN-y and IL17 responses [65]. The
study suggested that filaria infection reduced the PPD-specific IFN-y and IL17 responses. In
addition, it was observed that onchocerciasis patients’ peripheral T cells had a weak response
to Mtb antigens [66]. Elias and colleagues illustrated that compared to dewormed patients,
helminth-infected individuals displayed low Th1l immune response and IFN-y production in
response to mycobacteria infection [67]. Lastly, it has been suggested that a robust Thl
response characterizes cell mediated protection against TB infection, and coinfection with

helminths could modulate these immune responses by driving Th2 and Treg cells [17, 68].

Furthermore, enhanced Treg function is associated with helminth infection and may suppress
Th1 responses against unrelated antigens [12, 68]. This finding was supported by studies which
showed that intestinal helminth coinfection was associated with a reduced Th1l response in
active TB [16], [69]. Type | immunity and its proinflammatory cytokines, such as IFN-y, IL-
12 and TNF-a, have a protective role against Mth. By contrast, the induction of type 2
immunity, e.g., Th2 and Treg cells (as seen in helminth infections) and their anti-inflammatory

cytokines, were reported to suppress the efficient immune response against TB [39].

A mouse model study of Schistosoma mansoni showed a reduced protective efficacy of BCG

vaccination against Mtb [67]. Another study demonstrated that concomitant helminth
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infections significantly impair the immunogenicity of BCG vaccines, an impairment associated
with increased TGF- production [30]. During active TB, asymptomatic helminth infection has
been shown to have a considerable impact on host immunity in a double-blind, randomized
clinical study [17]. In comparison to the placebo group, eosinophils and 1L-10 levels decreased
after albendazole treatment [17]. Another albendazole treatment study was conducted to
determine the immunological effects of deworming on proinflammatory cytokine responses to
plasmodial antigens. The study demonstrated improvements in immune hypo responsiveness,
where anthelmintic treatment significantly increased proinflammatory cytokine responses to

Plasmodium falciparum-infected red blood cells [70].

In Egypt, it was determined that hookworm infection was one of the risk factors for the failure
of TB therapy [71]. However, a human study in the United Kingdom (U.K.), where the authors
studied migrants from Nepal, found that hookworm infection reduced TB growth and may
reduce the risk of infection [20]. According to the evidence presented above, some studies
demonstrated that helminthiasis has a negative impact on TB diseases, while others showed a
beneficial effect. Table 1 summarizes some of the studies investigating helminth and TB

coinfections.

Although HIV is not covered in this review, there is evidence of a concurrent distribution of
triple disease burden involving tuberculosis, helminths and HIV, particularly in Sub-Saharan
Africa. This necessitates a greater focus on disease management strategies by various

policymakers.

Table 1. Summary of experimental and human studies focusing on helminth and tuberculosis

coinfections.
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[73] Human study in Kenya. To investigate whether prenatal | Compared to patients with prenatal
. . immunity to helminths persists in | sensitization 10-14 months after
Wuchereria bancrofti and
. . childhood and if it alters the | BCG immunization, T cell IFN-y
Schistosoma haematobium
immune response to BCG production was 26-fold higher in
infants not sensitized to filariae or
schistosomes in utero.
[74] Human study in South Africa. | To determine total serum IgE | TB therapy resulted in reduced
. . before and after tuberculosis | serum Ascaris-specific IgE levels.
Ascaris lumbricoides and
. s therapy Tuberculin induration was found to
Trichuris trichiura
be inversely related to IgE in
patients but not in controls.
[66] Human study in West | To determine total serum IgE | TB therapy resulted in reduced
Cameroon. before and after tuberculosis | serum Ascaris-specific IgE levels.
therapy Tuberculin induration was found to
Onchocerca volvulus
be inversely related to IgE in
patients but not in controls.
[65] Human study in East| To investigate the effect of | Individuals who received BCG
Ethiopia. intestinal helminths on the | vaccination and were infected with
. . immune response to PPD in | helminths had reduced T cell and
Ascaris lumbricoides,
i .| naturally immunized or BCG- | PPD skin test responses. Increased T
hookworms, Trichuris
L . vaccinated individuals cell proliferation and IFN were
trichiura, Strongyloides
) ) associated with improved BCG
stercoralis, Hymenolepis
) efficacy following anthelmintic
nana and Taenia spp.
therapy.
[67] An experimental study in | To investigate whether chronic | Possibly through attenuation of

Ethiopia.

Schistosoma mansoni

helminth-infected  individuals
have reduced efficacy of BCG
vaccine compared to uninfected

persons

protective immune responses to

mycobacterial antigens and/or by
polarizing the general immune
responses to the Th2 profile, S.
reduced the

mansoni infection
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protective  efficacy of BCG

vaccination against Mtb.

[54]

Human study in Ethiopia.

Ascaris lumbricoides,
Hookworm, Strongloides
stercoralis, Trichuris

trichiura, S. mansoni and

Enterobius vermicularis

To study the prevalence of
intestinal helminth infections and
their association with active TB
in TB patients and healthy
household contacts

In addition to HIV infection,
intestinal helminth infection may be
a risk factor for the development of
active pulmonary TB This discovery
could have significant consequences
for the control of tuberculosis in
helminth-endemic areas around the

world.

[30]

Human study in Ethiopia.

Trichuris trichiura, Ascaris

lumbricoides,  hookworms,
Taenia spp, Hymenolepis
nana and Enterobius
vermicularis

This study tested anti-helminthic
before BCG

vaccination to determine if it

medication

could improve BCG vaccination
immunogenicity in helminth-

infected patients

Chronic worm infection reduced
BCG immunogenicity in humans.
This was linked to increased TGF-$3
production but not a better Th2

immune response.

[75]

Human study in South Africa.

Ascaris lumbricoides and

Trichuris trichiura

To investigate whether helminth
infection could affect a child’s
ability to generate a proper Thl
immune response, which was
defined by a positive tuberculin
skin test (TST)

Helminth infection/exposure may
reduce the immune response to Mth
infection. In younger children, being
Ascaris IgE-positive significantly
reduced the likelihood of being
TST-positive, but this effect faded
as they grew older.

[76]

Human study in Venezuela.

Ascaris lumbricoides and

Trichuris trichiura

To investigate the effects of
parasite infections, malnutrition
and plasma cytokine profiles on
tuberculin  skin  test (TST)

positivity

TST positivity was associated with
low plasma Th1l cytokine levels in
indigenous Venezuelan children
with TB contacts and helminth

infections.

[19]

Animal study in South Africa.

Nippostrongylus brasiliensis
(Nb)

To investigate the impact of
acute Nb-induced lung damage
and long-term parasite lung

conditioning on the host’s ability

The findings show that early stage
Nb infection induces a macrophage
response that

protects against

subsequent mycobacterial infection.
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to control mycobacterial
infection
[77] Human study in Ethiopia. To diagnose latent Mtb infection | The tuberculin skin test should be
o ) .| using the tuberculin skin test | used with caution in areas where
Giardia lamblia, Ascaris
.. (TST) and the IFN-y release | parasitic intestinal infections are
lumbricoides, Hookworm
. assays in helminth infected | common.
spp., Strongyloides
. . .| school children
stercoralis, Trichuris
trichuria, Enterobius
vermicularis, Taenia spp.,
Hymenolepis nana,
Schistosoma  mansoni  or
trophozoite stage of
Entamoeba histolytica.
[78] Human study in Uganda. To determine whether | Concurrent helminth, malaria and
) .| coinfections such as helminths, | HIV infections did not affect
Hookworm, Trichuris
- . malaria and HIV modulate the | cytokine responses profile in
trichiura, Hymenolepis nana,
) .| immune system and increase | individuals with LTBI.
Schistosoma mansoni,
. . susceptibility to latent
Ascaris lumbricoides,
. tuberculosis infection (LTBI),
Hymenolepis nana  and
. . leading to the persistence of the
Schistosoma mansoni
tuberculosis epidemic
[79] Human study in Ethiopia. To investigate whether maternal | The combination of early secretory

Schistosoma mansoni

helminth infection affects

maternal and neonatal
immunological function and TB

immunity

antigenic target 6 (ESAT-6) and
culture filtrate protein 10 (CFP-10)
elicited a significantly lower IFN-y
response in helminth-positive than
in helminth-negative participants.
Cord blood mononuclear cells’
(CBMCs) IFN-y response, total IgE
and cross-placental transfer of TB-
specific 1gG were all negatively
correlated with maternal helminth

infection.

36




[17] Human study in Ethiopia. To examine the clinical and | Asymptomatic helminth infection
. . immunological effects  of | had a profound influence on the
Ascaris lumbricoides
helminth infection on TB immunological profile of
Hookworm spp
individuals with TB This favored
Strongyloides  stercoralis Th2 immune responses such as
Trichuris trichiura increased regulatory T cells and IL-
Hymenolepis nana 5 and IL-10 secreting cells.
Taenia spp.
[80] Human study in Ethiopia. To investigate the clinical and | The decrease in eosinophil counts
. . immunological outcomes of | and IL-10 demonstrated that
Ascaris lumbricoides
patients coinfected with | asymptomatic helminth infection
helminths and TB  after | considerably impacts host immunity
albendazole treatment during tuberculosis and can be
efficiently reversed with
albendazole treatment. Helminth
infection has clinical effects on
chronic infectious diseases such as
tuberculosis, and these effects
should be further explored.
[81] An animal study in the USA. | To investigate whether Mtb- | Anthelminthic treatment improved
. . specific T cell responses can be | Mtb-specific T cell responses. In
Schistosoma mansoni
reversibly impaired by treatment | TB-infected mice, arginase-1-
of S. mansoni coinfection, | expressing macrophages in the lung
without impacting arginase-1- | formed granulomas and exacerbated
expressing macrophage- | inflammation.
mediated TB control
[82] An experimental animal study | To investigate whether Mtb | Despite a systemic increase in

in USA.

Heligmosomoides polygyrus

infection would be modulated in

mice with chronic H. polygyrus

infection

FoxP3+ T regulatory cells, neither

primary nor memory immunity
conferred by Mycobacterium bovis
BCG vaccination were affected in
mice with chronic enteric helminth

infection.
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Strongyloides stercoralis

To investigate whether helminth
modulation of cytokine
latent TB

coinfection is reversible after

responses  in

anthelminthic therapy

In Strongyloides stercoralis-latent
TB  coinfection,  anthelmintic
therapy reversed the modulation of
systematic and TB antigen-

stimulated cytokine responses.
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6. Effect of Helminth Infection on TB Vaccine

BCG is currently the only TB vaccine available; it celebrated its 100th anniversary in 2021.
Alternative vaccines are being developed [84]. The BCG vaccine is still the only option for
protection against human TB, and it is inexpensive, safe and widely available. BCG
effectiveness against TB, however, varies in the high helminth-burden areas of the world [84].
Children are typically given the BCG vaccine. A review reported that BCG could provide
protection against severe forms of TB, including meningitis and miliary [85].

The BCG vaccine is administered to more than 80% of all newborns and babies in countries
where it is included in the national childhood immunization program; however, it does not
prevent the development of latent tuberculosis or the reactivation of pulmonary disease in
adults[86]. BCG has been reported to be less effective in TB-coinfected individuals living in
helminth-endemic areas [65]. However, another study reported no difference in BCG
vaccination status and tuberculin skin testing (TST) responses in patients with or without TB

and helminth coinfection [68].

An Ethiopian study found that helminth infection influenced BCG vaccination outcomes, and
PPD-specific cellular immune responses improved in helminth-treated individuals compared
to untreated controls (Elias et al., 2001) [65]. Deworming was shown to boost the efficacy of
BCG immunization in this randomized experiment [65]. In addition, it was found that the BCG
vaccination of PPD-negative individuals in a helminth-infected population in Ethiopia had poor
immunogenicity, and they concluded that this was due to a high Th2 bias in immunological

responses caused by chronic helminth infection [65].
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Furthermore, in another study, S. mansoni was found to reduce the protective efficacy of BCG
vaccination against Mtb, possibly by attenuating protective immune responses to mycobacterial
antigens and polarizing general immune responses to a Th2 profile [67]. Th2-like 1L-10
responses elicited by intestinal helminths may interfere with Thl-like IFN responses induced
by BCG, altering the protective immune response to BCG vaccination [87]. The impact of
helminth infection is due to the antigen-specific modification of cell-mediated immunity, and

the diminished efficacy could be owing to impaired immune responses to recall antigens [88].

Furthermore, helminth infection during pregnancy has been shown to persist into childhood
and shift immunity away from Thl responses, which are required in TB infection and
vaccination [73]. Chronic helminth infections increase susceptibility to TB infections requiring
Th1 responses and also lead to impaired efficacy of the BCG vaccine [30, 89]. While there is
mounting evidence that helminth prophylaxis could have a role in combating the HIV/AIDS
and TB pandemics [90], observational research and randomized controlled trials have not
revealed a uniform clinical picture. Deworming programs may help to enhance community-
based health measures such as proper sanitation, access to clean water and adequate education
[91]. More intervention research is required to demonstrate the impact of deworming on

tuberculosis disease progression.

7. Helminth and TB Coinfection-Immune Mediated Pathology

The typical immune response to helminths, characterized by decreased IFN-y, reduced T cell
proliferation and IL-2 as a result of increased Th2/Treg cytokines, attenuates a potent anti-
tuberculosis IFN-y immune response and therefore uncontrolled TB pathology [15].
Furthermore, the helminth-induced expansion of AAMSs and nitric oxide synthase suppression
could also contribute to the impaired intracellular killing of TB in macrophages, thereby
enhancing TB disease process [15]. In addition, the helminth-induced anergy of cognate and
bystander T cells and increased apoptosis further impair TB responses and increase the

pathogenesis [89].
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8. Effect of Deworming during TB-Helminth Coinfection

The effects of deworming can be used to determine the impact of helminth infections. It was
shown that the use of anthelminthic drugs to treat patients with helminths resulted in increased
T cell proliferation and IFN-y production of PBMC stimulated with PPD. The study showed
that T cell responses to PPD were improved in filarial-infected patients treated with
diethylcarbamazine [56,66]. The treatment of helminth-infected patients with albendazole
during BCG vaccination increased proliferative and IFN-y responses to PPD, suggesting that
persistent helminth infection during BCG vaccination may contribute to a decreased T cell
response to mycobacterial antigens. This meant that removing helminths via anthelminthic

treatment would reduce Th2 cell and cytokine inhibitory effects on Thl responses [92].

Toulza et al. found that anthelminthic therapy altered antimycobacterial immune responses in
U.K. migrants. Patients with helminth infection had a higher frequency of CD4 + Fox P3 + T
cells (Tregs) and a lower frequency of CD4 + IFN-y + T cells, but these effects were reversed
after treatment [69]. Another study in Gabon found that anti-helminth treatment with
praziguantel against Schistosoma infection resulted in a significant decrease in CD4 + Fox P3
+ T cells after treatment [93]. Since helminth infections cause widespread immunological
alterations that revert to normal after the helminth infection is eradicated, their role in the

interaction between their host and other pathogens could be substantial [94].

From the above, it is apparent that concurrent helminth and TB infections have demonstrated
various effects on the host. These reactions could be due to different helminth species, their
location in the body, different life cycles, variable (excretory/secretory) E/S products and Mth
infection. The virulence and infection route of the mycobacterial strain may also contribute.
Some in vitro studies have been reported to have shown that helminth infection affects Mtb
infection in terms of immune response and disease severity, but the clinical and treatment
outcome is unknown, possibly due to underpowered studies, the type or intensity of the
infecting helminth and the various methodologies used to detect helminth infection [15].
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9. Concluding Remarks

Concurrent helminth infection and TB both produce antagonistic immune responses.
Helminths have the potential to impair the host’s ability to respond to bystander infections such
as TB Helminth and TB’s spatial overlap may impair the host’s ability to respond to
mycobacterial conditions. Thl responses are required for TB immunity, whereas helminths
mount an opposing Th2 response, which tends to dominate and thus skew the immune
response. Furthermore, chronic helminth infections impair innate and adaptive immune
responses to TB and induce immunoregulatory responses, lowering TB immunity even further.
However, whether these opposing immune responses in helminth and TB coinfection affect

pathological outcomes is unclear.

In helminth-endemic areas, it is suggested that chronic helminth infections reduce the efficacy
of BCG, the currently available TB vaccine. There is conflicting evidence regarding the
effectiveness of regular anti-helminth medication in the treatment of TB, and this requires
further investigation. Clarification of the effect of deworming in concurrent helminth-TB
infections may aid in the development of government treatment policies. Since vaccines can
prevent TB infection, the co-occurrence of helminths and TB must be considered when
developing new vaccines and conducting research on them. Finally, more research is needed

to understand better the effects of multicellular coinfecting pathogens on immune responses.
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Preface to Chapter 3

TB has become the most important infectious disease to resurface globally and has one of the
highest mortality rates due to a single infectious agent (Borkow and Bentwich, 2004; WHO,
2022b). TB coinfection with HIV has increased mortality rates (WHO, 2021). Almost a quarter
of the global population is infected with TB (WHO, 2022b). In 2020 there were 10 million
reported TB cases, with a mortality rate of approximately 1,5 million worldwide (WHO,
2022b). Most TB deaths are said to have occurred in Sub-Saharan Africa (WHO, 2022b).
Helminths are also highly prevalent in tropical and subtropical countries, causing chronic
infections that can persist for up to twenty years or more, depending on the infecting species
(WHO, 2022a). There is a striking overlap between TB and helminth infections, requiring

serious attention and interventions (Babu and Nutman, 2016; Kumar et al., 2020).

Chronic helminth infection has been shown to bias the immune response toward Th2, which
may subvert the Thl response to TB and other intracellular pathogens (Resende Co et al., 2007;
Verhagen et al., 2012; Chatterjee and Nutman, 2015). Numerous publications have suggested
the mechanisms by which persistent human helminth infections modify immune responses to
other unrelated viral, bacterial, allergic and autoimmune diseases (Borkow et al., 2000; Maizels
et al., 2004). Even though there is a sizable body of research examining the relationships
between intestinal parasites and TB, many of these studies are observational and cross-sectional
studies with very few longitudinal studies involving large populations, which may boost our

understanding of the interaction between helminths and TB (latent or active).

Some studies have shown that the type 2 immune responses that predominate during helminth
infection are detrimental to TB immunological responses, vaccine and treatment to vaccine
(Elias et al., 2005, 2008; Resende Co and Hirsch, 2006; Abate et al., 2015; Hasanain et al.,
2015; Kumar et al., 2020). Other studies found helminths to have no effect on clinical effects
on the development and presentation of pulmonary (George et al., 2014; Santos et al., 2019).
There are opposing views on whether helminths are beneficial or harmful to their hosts. Some
believe it is to protect the host against re-infection, while others suggest it is a parasite-driven
mechanism of resisting inflammatory Thl onslaught or a mix of host-parasite mediated
survival strategies (Maizels et al., 2004).
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This chapter sought to determine whether there is cytokine dysregulation during coinfections
with TB and helminths. The current study aimed to determine the cytokine immune responses
to tuberculosis and helminths using in vitro and human ex vivo analyses. The study hypothesis
was that coinfection with tuberculosis and helminths resulted in a reduction of Thl immune
responses to TB and increased Th2 and Treg immune responses in dually infected hosts as
compared to single or uninfected individuals. The study was divided into in vitro and ex vivo
arms. The in vitro studies used the human monocytic THP-1 and lymphocytic Jurkat cells.
These cells were stimulated with Mtb (H37Rv) and Ascaris lumbricoides excretory-secretory
proteins. The human ex vivo pilot study included participants with TB and TB plus helminth

coinfection.

The resultant research paper was submitted to MDPI Microorganisms — manuscript number —
2357988 — pending academic editor decision and titled “Cytokine responses during
Mycobacterium tuberculosis H37Rv and Ascaris lumbricoides coinfection using human

THP-1 and Jurkat cells, and a pilot human tuberculosis and helminth coinfection study.
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Abstract: Background: Helminth infections are widespread in
tuberculosis-endemic areas and are associated with an increased
risk of active tuberculosis. In contrast to the pro-inflammatory Th1
responses elicited by Mycobacterium tuberculosis (Mtb) infection,
helminth infections induce anti-inflammatory Th2/Treg responses.
A robust Th2 response has been linked to reduced tuberculosis
protection. There are several studies that show the effect of
helminth infection on BCG vaccination and TB, but the
mechanisms remain unclear. Aim: To determine the cytokine
response profiles during tuberculosis and intestinal helminth
coinfection. Methods: For the in vitro study, lymphocytic Jurkat
and monocytic THP-1 cell lines were stimulated with Mtb H37Rv
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and Ascaris lumbricoides (A. lumbricoides) excretory-secretory protein extracts for

24 hrs. and 48 hrs. The pilot human ex vivo study consisted of participants
infected with Mtb, helminths, or coinfected with both Mtb and helminths.
Thereafter, the gene expression profiles of IFN-y, TNF-a, Granzyme B, Perforin,
IL-2, IL-17, NFATC2, Eomesodermin, IL-4, IL-5, IL-10, TGF-f3 and FoxP3 in the
uninfected controls, TB alone, helminth alone and coinfected groups were

determined using RT-qPCR. Results: TB-stimulated Jurkat cells had significantly

higher levels of IFN-y, TNF-a, Granzyme B, and perforin compared to

unstimulated controls, LPS, A. lumbricoides, and plus A. lumbricoides TB
costimulated cells. IL-2, IL-17, Eomes, and NFATC2 levels were also higher in TB-
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stimulated Jurkat cells. TB alone stimulated cells had lower IL-5 and IL-4 levels
compared to A. lumbricoides alone stimulated and TB plus A. [umbricoides
costimulated Jurkat and THP-1 cells. Only A. lumbricoides stimulated cells had
higher IL-4 levels compared to TB plus A. lumbricoides costimulated Jurkat and
THP-1 cells. TGF-{3 levels were also lower in TB alone stimulated cells compared
to TB plus A. lumbricoides costimulated cells. IL-10 levels were lower in TB
stimulated Jurkat and THP-1 cells compared to TB plus A. lumbricoides
costimulated cells. Similar results were noted for the human ex vivo study, albeit
with a smaller sample size.

Keywords: Mycobacterium tuberculosis H37Rv; Ascaris lumbricoides excretory-
secretory proteins; Jurkat cells; THP-1 cells; human tuberculosis and helminth co-

infection; cytokine gene expression

1. Introduction

Tuberculosis (TB) infection is caused by Mycobacterium tuberculosis
(Mtb), a significant global health challenge and one of the deadliest
diseases caused by a single infectious agent [1]. Ten million TB cases and
1,4 million fatalities were reported globally in 2020 [1]. A quarter of the
global population is latently infected with TB [1]. A competent immune
system contains the TB infection in an asymptomatic/latent state.
However, there are underlying factors in 5-10% of hosts that may lead to
the development of active TB from latent infection [1, 2].

Helminths infect 1.5 billion people worldwide, and A. lumbricoides,
the most prevalent helminth, infects an estimated 807 million-1.2 billion
people worldwide [3]. There is a significant geographic overlap between
TB and helminth infection, particularly in low and middle-income
countries (LMICs), with 20-35 per cent of people being co-infected [4]. The
impact of helminths on cell-mediated immunity has been the subject of
numerous investigations [5-9]. However, it is still unclear if parasite
infection is associated with TB activation from a dormant condition to
active disease development [5].

An efficient T-helper type 1 (Thl)/ pro-inflammatory response is
required to control intracellular Mtb [7, 10]. The Th1/ pro-inflammatory
response is characterised by the production of interferon-gamma (IFN-v),
tumour necrosis factor-alpha (TNF-a), and interleukins (IL-1, IL-6 and
IL-12) [11]. In contrast, helminths skew the immunity towards a
predominant T-helper type 2 (Th2)/ anti-inflammatory and Regulatory
(Treg) response, leading to the release of IL-4, IL-5, IL-9, IL-10, IL-13, and
transforming growth factor-beta (TGF-p) [10, 12]. These two arms of
immune responses counter-regulate each other. Subsequently, helminths
have been shown to reduce Bacille Calmette-Guerin (BCG)
immunogenicity [13, 14], weaken Mtb-specific Thl responses,
downregulate co-stimulatory molecules [15], induce anergy [16], and
reduce treatment response, particularly in pulmonary TB [17, 18].

However, in some studies, helminths were demonstrated to have no
impact on human tuberculin skin tests [19] and Mtb infection [20] or the
improvement of TB disease management [20]. Therefore, reports on TB
immune responses in cases of helminth coinfection are variable and
dependent on the infecting parasite and the type of study [8, 9, 21].
Studies involving Nippostrongylus brasiliensis (Nb) and mycobacterial
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mice coinfection yielded divergent findings on Mtb growth control. One
study determined that mycobacterial clearance in the lungs of
tuberculosis and Nb-coinfected mice was not delayed and that the
helminth-induced Th2 responses do not exacerbate tuberculosis infection
[22]. It was also reported that early-stage Nb infection increased
macrophage production, which confers protection against subsequent
stages of the mycobacterial disease [23]. Conversely, another study
reported that mycobacterial burden was higher in tuberculosis and Nb-
coinfected mice and that these animals had reduced resistance to TB
infection [24]. In human studies, A. lumbricoides infection was associated
with negative tuberculin skin tests in children, suggestive of poor
tuberculosis immune response [25, 26].

Therefore, the effect of different helminth species and their antigens
on immunity, particularly the macrophages, the primary effector cells in
tuberculosis infection, remains unclear. Hence the present study
compared the cytokine immune responses in human THP-1, and Jurkat
cells stimulated with and without coincident tuberculosis and antigen to
A. lumbricoides simulate coinfection. The study was also extended to
humans to determine the cytokine immune responses in ex vivo data. The
detailed abbreviations and definitions used in the paper are listed in
Table 1.

Table 1. List of abbreviation and acronyms used in the paper.

Abbreviation Definition

ATCC American Type Culture Collection

BCG Bacille Calmette-Guerin

Eomes Eomesodermin

ESP Excretory-secretory protein

FoxP3 Fork head box P3

GAPDH Glyceraldehyde 3 diphosphate
dehydrogenase

IFN-y Interferon gamma

IL Interleukin

LPS Lipopolysaccharide

MHC Major Histocompatibility Complex

Mtb Mycobacterium tuberculosis

Nb Nippostrongylus brasiliensis

NFATC2 Nuclear factor of activated T-cells

OADC Oleic acid albumin dextrose catalase
enrichment

RT-qPCR Real time quantitative polymerase chain
reaction

SA South Africa

TGF-3 Transforming growth factor beta

Thl T-helper type 1

Th2 T-helper type 2

TNF-a Tumour necrosis factor-alpha

Treg Regulatory T cells
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2. Materials and Methods
2.1. Part 1: In vitro studies:
2.1.1. Bacterial cultures

The H37Rv strain of Mtb (bacterial strain number 25618) was
purchased from the American Type Culture Collection (ATCC) through
Thistle QA Laboratory Services Cc in Johannesburg, South Africa (SA).
H37Rv was cultured to log phase at 37°C in 5% CO:2 in Middlebrook 7H9
broth with 0.05% Tween-80 and 10% oleic acid albumin dextrose catalase
enrichment (OADC) (Becton Dickinson). Colony-forming units were
counted by serial dilutions on Middlebrook agar plates. The H37RV was
heat inactivated, therefore there was no MOI of infection. The protein
concentration of the heat inactivated H37Rv was determined using the
Bradford assay [27] and an optimal concentration of 5ug/ml was used for
cell stimulation. Cells were preserved in 1 ml aliquots at -80°C until
further use.

2.1.2. Helminth (A. [umbricoides) excretory-secretory protein extracts

Whole worm excretory-secretory protein (ESP) extracts of A.
lumbricoides, kindly donated by Prof William Horsnell, were prepared
and supplied by the Division of Inmunology, Department of Pathology
from the Faculty of Health Sciences at the University of Cape Town, SA.
Adult A. lumbricoides were obtained from patients from the Red Cross
War Memorial Children’s Hospital (Cape Town, South Africa), and were
used to acquire excretory proteins. The A. lumbricoides excretory proteins
were obtained by keeping the worms alive at 37°C in Dulbecco modified
essential medium with 1% Pen-strep (Thermofisher Scientific, Waltman,
Mass), and 1% glucose (wt./vol). The media was collected three times a
day. Using Amicon ultra concentrator, extract proteins were concentrated
and resuspended in 5ml of phosphate-buffered saline (Merck). All
antigens were measured for protein content with a BCA protein
estimation kit (Thermofisher Scientific) or by using the Bradford assay
previously described [27] and stored at -80°C at a standard concentration
of 500 pg/ml until further use.

2.1.3. Cell culture and treatment

Human monocytic THP-1 (lot number: TIB-202) and lymphocytic
Jurkat (lot number TIB-152) cells were purchased from the ATCC by
Thistle QA Laboratory Services Cc in Johannesburg, SA. The cells were
maintained in 25 cm?® cell culture flasks containing Roswell Park
Memorial Institute (RPMI) supplemented with 2 mM L-glutamine, 5%
HEPES, 100 U/ml penicillin, 100 pg/ml streptomycin, and 10% foetal
bovine serum (FBS) at 37°C in a humidified atmosphere of 5% COs-.

Thereafter, the Jurkat and THP-1 cells were aliquoted into the 24 well
multi-well plates in 1ml aliquots (>1x10¢) and unstimulated or stimulated
with either lipopolysaccharide (LPS) (Thermofisher — catalogue number
00-4976-93) , Mitb H37Rv or A. lumbricoides ESP extracts. The unstimulated
cells served as the control group, the LPS stimulated group received 1
mg/ml LPS and served as a positive control, the , A. lumbricoides alone
group were stimulated with 5up/ml of A. lumbricoides ESP extracts only,
the TB alone group were stimulated with 5pg/ml of Mtb H37Rv only, and
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2143 lastly, the costimulated group were co-stimulated simultaneously ( to

2144 emulate real-life situation) with both 5ug/ml of A. lumbricoides ESP
2145 extracts and 5ug/ml of Mtb H37Rv. Two independent experiments were
2146 set up in triplicate. Thereafter, the Jurkat and THP-1 unstimulated/
2147 stimulated cells were incubated for 24-hrs or 48-hrs at 37°C. At the end of
2148 the incubation period, the viability of the Jurkat and THP-1 cells was
2149 tested, and it was more than 90%. The cells were collected, stored in
2150 Trizol® (Invitrogen; Thermo Fisher Scientific, Inc. catalogue 15596026)
2151 and stored in the -80°C freezer for RNA extraction and gene expression
2152 studies using Quantitative PCR.
2153 2.1.4. Real-Time - Quantitative PCR (RT-qPCR)
2154 RNA was extracted from unstimulated/ stimulated Jurkat, and THP-
2155 1 cell lines using the Trizol®reagent (Invitrogen; Thermo Fisher Scientific,
2156 Inc. catalogue 15596026) and the Pure Link™ RNA Mini Kit
2157 (Thermofisher Scientific, catalogue number 12183018A). The total RNA
2158 had to be DNA- free, therefore Pure link® DNase treatment at 80uL per
2159 sample was done. The DNase treatment included 88uL10X DNase buffer,
2160 110 pL resuspended DNase and 620uL RNase free water. The prepared
2161 DNase mixture was added directly onto the surface of the spin cartridge
2162 membrane, incubated at 15 minutes, washed with buffer and then ethanol
2163 was added, the cartridge was spun. RNase-free water was added to the
2164 spin cartridge and incubated for 1 minute. The spin cartridge was spun
2165 with the recovery tube. The RNA preparation was added to a Nanodrop
2166 2000 spectrophotometer (Thermofisher Scientific) to check for purity and
2167 concentration. Thereafter, the isolated RNA was reverse transcribed to
2168 cDNA using the High-Capacity cDNA Reverse Transcription Kit with
2169 RNase Inhibitor (Thermofisher Scientific, catalogue number 4374966), as
2170 per the manufacturer’s instructions and reaction protocol. The Nanodrop
2171 2000 spectrophotometer (Thermofisher Scientific) quantified the total
2172 cDNA. The cDNA samples with an optical density at 260/280 nm
2173 (OD2s0/280) >1.8 was used for RT-qPCR.
2174 The Applied Biosystems Quant Studio 5 PCR instrument and
2175 software (Thermofisher Scientific, Waltham, MA) were used to determine
2176 the expression of the cytokine genes of interest listed in Table 1 in the
2177 unstimulated (control cells), tuberculosis stimulated, A. lumbricoides
2178 stimulated, LPS stimulated, and A. lumbricoides and tuberculosis co-
2179 stimulated (coinfected) cells.
2180 The PCR master mix was prepared by adding 5 ul PCR-grade water
2181 (Thermofisher Scientific, catalogue number 10977023), 0,50 ul FAM-
2182 labelled cytokine probe mix (Thermofisher Scientific) (Table 1), 2,50 pl
2183 Fast Start 4x probe master mix (Thermofisher, catalogue number A15300)
2184 and 2 pl cDNA to make a total of 10 ul per sample. Glyceraldehyde 3-
2185 diphosphate dehydrogenase (GAPDH) was used as a housekeeping gene.
2186 PCR-grade water (Thermofisher Scientific, catalogue number 10977023),
2187 instead of cDNA, was used as a negative control.
2188 Table 2. FAM-labelled cytokine probe mix purchased from Thermofisher
2189 Scientific and their corresponding catalogue number.

Cytokine gene Thermofisher Catalogue number

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) Hs99999905 m1
(housekeeping gene) -

Interferon-gamma (INF-vy) Hs00989291 m1
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2223
2224

Tumour necrosis factor-alpha (TNF-a)

Hs00174128 m1l

Granzyme B

Hs00188051 _m1

Perforin

Hs00169473 m1l

Interleukin - 2 (IL-2)

Hs00174114 m1l

Interleukin - 17 (IL-17)

Hs01056316_m1

Nuclear factor of activated T-cells 2 (NFATC2)

Hs00905451 m1

Eomesodermin (Eomes)

Hs00172872_m1

Interleukin - 4 (IL-4)

Hs00174122_m1

Interleukin - 5 (IL-5)

Hs99999031_m1

Interleukin -10 (IL-10)

Hs00961622_m1

Transforming growth factor beta (TGF-B)

Hs00234244_ml

Fork head box P3 (FoxP3)

Hs01085834 _m1

The PCR was performed at 95°C for 1 min, followed by 45 cycles
comprising denaturation at 95°C for 30 seconds, annealing at 60°C for
30 seconds and extension at 72°C for 30 seconds. All PCR reactions were
run in duplicate. Data were collected using the Applied Biosystems
Quant Studio 5 V.2.3 software (Thermofisher Scientific, Waltham, MA).

Serial dilutions of pooled cDNA synthesised from the total RNA
were performed for each target gene and GAPDH, which served as
standard curves for quantitative analysis, ranging from Ing/uL to
1000ng/pL. Gene expression results were depicted as the expression of
the gene of interest divided by the expression of GAPDH.

2.2. Part B: Human ex-vivo experiment

Sample size determination:

n =ZXpq)/e?
=1,96(29,2)(100-p)/25
=1,96(29,2)(70,8)/25
=1,96(2067,36)/25

=318

The Th-1, Th-17 and Treg cytokine gene and transcription factor’s
transcription levels study were also piloted for human ex-vivo
experiments to compare the human and in vitro cytokine profile results.
The current analysis is a sub-study of a previously described cohort of
414 individuals recruited from 6 primary healthcare clinics in a peri-
urban, poor settlement in the eThekwini district of KwaZulu-Natal [28].
In this study, cytokine analysis was undertaken for 164 participants; of
those, 96 were HIV infected and had to be excluded (because the focus of
the study was TB only and not HIV. Another study on HIV on the same
cohort was conducted separately and data had already been published),
leaving 68 eligible participants. Thereafter, the eligible individuals were
subdivided into uninfected controls [no helminth and TB (GeneXpert
negative)] (n = 18), helminth only infected (n = 35), TB (GeneXpert
positive, recently diagnosed, first episode infection and not on treatment)
only infected (n = 6), and TB and helminth co-infected (n = 6) groups.
Intestinal helmith species identified included A. lumbricoides which
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caused the majority of parasite infections, Schistosoma spp, Taenia spp,
Strongyloides spp, Trichuris trichiuria, Enterobius vermicularis and protozoa
such as Entamoeba coli and Hymenolepis spp [29].

Stool samples were collected for microscopical detection of helminth
eggs /larvae using the Kato-Katz and Mini Parasep methods. Microscopy
results can be inaccurate if the sample contains few egg or because of
variation in egg excretion e.g. if the host is infected by male parasites.
Furthermore because the excretion of eggs depend on the individual’s
immune response, genetic and environmental factors. Blood samples
were also collected for parasite serology (Ascaris-specific IgE and IgG4)
to improve the sensitivity and specificity of parasite detection and to
indicate any exposure (past or present) to parasite infection (Mpaka-
Mbatha et al., 2023). TB diagnosis and confirmatory results were obtained
from the district hospital laboratory that services the clinics where
participants were recruited. The sputum was analysed using the
GeneXpert Infinity 48s (Catalog number: Infinity-48).

Blood samples collected from the recruited participants were also
stored in Trizol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.) at -
80°C for RNA extraction and RT-qPCR-based gene expression studies as
described for the in vitro experiments above.

2.3. Statistical analysis

A standard curve method was used to calculate gene expression,
whereby the the value of the target gene was divided by the value of the
housekeeping gene (GAPDH). GAPDH was validated as the most
suitable reference gene due to PCR efficiency, and based on literature.
Values were expressed as medians. All cytokine gene expression data
were analysed using GraphPad Prism 5 (GraphPad Software, Inc., San
Diego, CA, USA) statistical software package. For the in vitro and human
ex vivo studies, analysis of variance (ANOVA) or the Kruskal-Wallis test
with Tukey or Dunn’s Multiple Comparison was used to assess for
statistical significance in cytokine gene expression profiles between the
different groups (uninfected/ unstimulated controls, helmith alone, TB
alone infected/ stimulated and coinfected/ costimulated groups).
Thereafter, the Mann-Whitney or Student’s t-test was used to calculate
the p-value between the two groups. All data presented in Figure 1 — 9
are expressed as the median and interquartile range. A p < 0.05 was
considered statistically significant.

3. Results
3.1. Part 1: In vitro study

Profiling of cytokine and transcription factor gene transcription
levels was performed using THP-1 and Jurkat cells to investigate whether
TB stimulation would upregulate pro-inflammatory and Th1 cytokines
and whether A. lumbricoides coinfection would downregulate these.
Furthermore, it was aimed to determine whether A. lumbricoides would
upregulate Th2 and regulatory cytokines.

3.1.1. Thl/pro-inflammatory immune responses.

Cytokine gene transcription levels levels in unstimulated and
stimulated human cell lines are summarised in the figures below,
showing a significant increase of Thl/proinflammatory cytokine genes
after TB stimulation.
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IFN-y and TNF-a (at both 24 and 48 h stimulation time points),
granzyme B (24 h stimulation only) and perforin (48 h stimulation only)
levels were significantly higher in the TB-alone stimulated Jurkat cells
compared to the unstimulated controls, LPS- and A. lumbricoides-alone
stimulated Jurkat cells, and A. lumbricoides plus TB-costimulated Jurkat
cells (p < 0.0001) (Figure 1). Similar results were noted for the THP-1
stimulated cells, apart from perforin, where similar findings were noted
at 24 h and 48 h (Figure 2). IL-2, IL-17, Eomes, and NFATC2 (at both 24
and 48 h stimulation) were significantly higher in TB-alone stimulated
Jurkat cells compared to the unstimulated controls, LPS and A.
lumbricoides-alone stimulated Jurkat cells, and TB plus A. lumbricoides-
costimulated Jurkat cells (p < 0.0001) (Figure 3). Similar findings resulted
from tests on THP-1 cells (p < 0.0001) (Figure 4).
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2290
2291 Figure 1. Transcription levels data for IFN-y, TNF-a, granzyme B, and perforin
2292 are shown for Jurkat cells at 24 and 48 h time points. The unstimulated control
2293 cells and LPS-stimulated cells were negative and positive controls, respectively.
2294 (A) IFN-v levels for Jurkat cells stimulated for 24 h, (B) IFN-y levels for Jurkat
2295 cells stimulated for 48 h, (C) TNF-a levels for Jurkat cells stimulated for 24 h,
2296 (D) TNF-a levels for Jurkat cells stimulated for 48 h, (E) granzyme B levels for
2297 Jurkat cells stimulated for 24 h, (F) granzyme B levels for Jurkat cells stimulated
2298 for 48 h, (G) perforin levels for Jurkat cells stimulated for 24 h, and (H) perforin
2299 levels for Jurkat cells stimulated for 48 h. The p value in box denotes the overall
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2300 p value for all the results in that particular figure. The p value on the
2301 significance lines between the groups denotes the value among groups.
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Figure 2: Transcription level data for IFN-y, TNF-a, granzyme B, and perforin
are shown for THP-1 cells at 24 and 48 h time points. The unstimulated control
cells and LPS-stimulated cells were negative and positive controls, respectively.
(A) IFN-v levels for THP-1 cells stimulated for 24 h, (B) IFN-y levels for THP-1
cells stimulated for 48 h, (C) TNF-a levels for THP-1 cells stimulated for 24 h,
(D) TNF-a levels for THP-1 cells stimulated for 48 h, (E) granzyme B levels for
THP-1 cells stimulated for 24 h, (F) granzyme B levels for THP-1 cells stimulated
for 48 h, (G) perforin levels for THP-1 cells stimulated for 24 h, and (H) perforin
levels for THP-1 cells stimulated for 48 h. The p value in box denotes the overall
p value for all the results in that particular figure. The p value on the
significance lines between the groups denotes the value among groups.
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Figure 3. Jurkat cell line responses for Th1/pro-inflammatory (IL-2
and IL-17) and transcription factors (Eomes and NFATC2) at 24 and
48 h time points. The unstimulated control cells and LPS stimulated
cells were negative and positive controls, respectively. (A) IL-2 levels
for Jurkat cells stimulated for 24 h, (B) IL-2 levels for Jurkat cells
stimulated for 48 h, (C) IL-17 levels for Jurkat cells stimulated for 24
h, (D) IL-17 levels for Jurkat cells stimulated for 48 h, (E) EOMES
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2335 levels for Jurkat cells stimulated for 24 h, (F) EOMES —transcription

2336 levels for Jurkat cells stimulated for 48 h, (G) NFATC2 levels for
2337 Jurkat cells stimulated for 24 h, and (H) NFATC2 levels for Jurkat
2338 cells stimulated for 48 h. The p value in box denotes the overall p
2339 value for all the results in that particular figure. The p value on the
2340 significance lines between the groups denotes the value among
2341 groups.
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Figure 4. THP-1 cell line responses for Th1/pro-inflammatory
(IL-2 and IL-17) and transcription factors (Eomes and NFATC2) at 24
and 48 h time points. The unstimulated control cells and LPSstimulated
cells were negative and positive controls, respectively. (A) IL-2 levels for
THP-1 cells stimulated for 24 h, (B) IL-2 levels for THP-1 cells
stimulated for 48 h, (C) IL-17 levels for THP-1 cells stimulated for 24 h,
(D) IL-17 —transcription levels for THP-1 cells stimulated for 48 h, (E)
EOMES levels for THP-1 cells stimulated for 24 h, (F) EOMES levels for
THP-1 cells stimulated for 48 h, (G) NFATC2 levels for THP-1 cells
stimulated for 24 h, and (H) NFATC2 levels for THP-1 cells stimulated
for 48 h. The p value in box denotes the overall p value for all the results
in that particular figure. The p value on the significance lines between
the groups denotes the value among groups.

3.1.2. Th2/Anti-Inflammatory, Immune Responses

Type 2 cytokine responses after stimulation of cell lines in Figure 5 show
that both IL-4 and IL-5 were increased after A. lumbricoides-antigen
stimulation of both cell lines. IL-5 (24 and 48 h stimulation) levels were
significantly lower in the TB-alone stimulated cells compared to the A.
lumbricoides-alone stimulated and TB plus A. lumbricoides costimulated
Jurkat and THP-1 cells, which had similar transcription levels (p <
0.0001). Similar findings were noted for IL-4; however, the A.
[umbricoides-alone stimulated cells had significantly higher IL-4 levels
compared to the TB plus A. [umbricoides-costimulated Jurkat (48 h
stimulation) and THP-1 cells (24 and 48 h stimulation) (p < 0.0001).
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Figure 5. IL-4 and IL-5 responses in TB, A. lumbricoides, and dually
stimulated Jurkat and THP-1 cells at 24 and 48 h time points. (A) IL-4 levels for
Jurkat cells stimulated for 24 h, (B) IL-4 levels for Jurkat cells stimulated for 48 h,
(C) IL-4—1evels for THP-1 cells stimulated for 24 h, (D) IL-4 levels for THP-1 cells
stimulated for 48 h, (E) IL-5 levels for Jurkat cells stimulated for 24 h, (F) IL-5 levels
for Jurkat cells stimulated for 48 h, (G) IL-5 levels for THP-1 cells stimulated for 24
h, and (H) IL-5—transcription levels for THP-1 cells stimulated for 48 h.

3.1.3. Regulatory cytokines

Figure 6 illustrates regulatory cytokine transcription levels in the
cell lines. In both Jurkat and THP-1cells, both A. lumbricoides and A.
lumbricoides plus TB stimulation significantly increased TGFf3 and IL-10
transcription levels at 24 h and remained high at 48 h in A. lumbricoides-
stimulated cells. FoxP3 was increased in both A. lumbricoides and TB
plus A. lumbricoides stimulation in both cell lines and at both time points
(24 and 48 h). TGF-j levels were significantly lower in the TB-alone
stimulated Jurkat cells (24 h stimulation) compared to the TB plus A.
lumbricoides-costimulated cells, however, the opposite trend was
observed for THP-1 cells (24 h stimulation) (p < 0.0001). In contrast, no
significant differences were noted in Jurkat and THP-1 cells (48 h
stimulation) between the TB- alone stimulated and TB plus A.
[umbricoides-costimulated cells. IL-10 levels were significantly lower in
the TB-stimulated Jurkat (24 and 48 h stimulation) and THP-1 (24 h
stimulation) cells compared to the TB plus A. lumbricoides-costimulated
cells (p <0.0001). FoxP3 levels were also significantly lower in the TB-
alone stimulated Jurkat and THP-1 cells (24 and 48 h stimulation) in
comparison to the TB plus A. lumbricoides-costimulated cells (p < 0.0001).
(Figure 6). The p value in box denotes the overall p value for all the
results in that particular figure. The p value on the significance lines
between the groups denotes the value among groups.
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Figure 6. Jurkat and THP1 cell responses for regulatory cytokines (TGF-
(3, IL-10, and FoxP3) at 24 and 48 h time points. The unstimulated
control and LPS-stimulated cells were used as negative and positive
controls, respectively. (A) TGF-f3 levels for Jurkat cells stimulated for 24
h, (B) TGE-f5 levels for Jurkat cells stimulated for 48 h, (C) TGF-f3 levels
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for THP-1 cells stimulated for 24 h, (D) TGF-{3 levels for THP-1 cells
stimulated for 48 h, (E) IL-10 levels for Jurkat cells stimulated for 24 h,
(F) IL-10 levels for Jurkat cells stimulated for 48 h, (G) IL-10 levels for
THP-1 cells stimulated for 24 h, (H) IL-10 levels for THP-1 cells
stimulated for 48 h, (I) FoxP3 levels for Jurkat cells stimulated for 24 h,
(J) FoxP3 levels for Jurkat cells stimulated for 48 h, (K) FoxP3 levels for
THP-1 cells stimulated for 24 h, (L) FoxP3 levels for THP-1 cells
stimulated for 48 h. The p value in box denotes the overall p value for all
the results in that particular figure. The p value on the significance lines
between the groups denotes the value among groups.

3.2. Part 2: Human ex-vivo experiment results

A total of 414 participants were recruited in the main study [29]; of
those, a subpopulation of 164 were eligible for cytokine gene
transcription level analysis, based on blood sample availability.
However, 96 were HIV-infected and were excluded, leaving 68 eligible
participants. Of the eligible participants, 18 were uninfected and were
used as controls; 35 were helminth-infected (24 were infected with A.
lumbricoides, 3 Trichuris trichiura, 3 Taenia spp., 3 Schistosoma spp.,
and 2 had Stronglyloides spp.), 6 had TB, and another 6 had TB and
helminth (3 had A. lumbricoides, 1 Schistosoma spp., 1 Trichuris
trichiura and 1 with Taenia spp.) coinfection.

Regardless of the small sample sizes for these two groups, the
Thl/pro-inflammatory cytokines (IFN-y, TNF-a, granzyme B, IL-2,
and IL-17), critical cytokines for TB, were significantly higher among
the TB-alone infected individuals compared to the uninfected controls
and helminth-infected groups (Figure 5). In the presence of helminth
and TB coinfection, these cytokines were decreased, although there
was no significant difference noted between the coinfected group and
the TB- alone infected group, except for granzyme B, where the TB and
helminth-coinfected group had lower levels compared to the TB-alone
infected group (Figure 7).

Eomes and NFATC2 were significantly higher in the control group
compared to the coinfected group. The coinfected group also had
lower Eomes and NFATC2 levels compared to the TB-alone infected
and helminth-alone infected groups (Figure 8).

IL-4 and IL-10 responses were variably increased in the helminth-
infected individuals. TGF-f3 levels were variably increased in the
controls and decreased in TB-alone infected and the helminth and TB-
coinfected individuals. FoxP3 levels also differed between the controls
and the TB-alone infected groups and between the helminth-alone
infected and TB-alone groups. The low number of TB-infected
individuals resulted in even lower numbers of the coinfected groups,
thus making statistically valid analytical comparisons difficult (Figure
9).
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Figure 7. I Figure 7. IFN-y, TNF-a, IL2, IL-17, perforin, and granzyme B ex vivo
gene transcription levels data. (A) IFN-y levels, (B) TNF-a levels, (C) IL-2 levels,
(D) IL-17 levels, (E) granzyme B levels, and (F) perforin levels.
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Figure 8. Eomes and NFATC2 gene transcription levels values. (A) Eomes
levels, and (B) NFATC2 levels. The p value in box denotes the overall p value
for all the results in that particular figure. The p value on the significance lines
between the groups denotes the value among groups.
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Figure 9. IL-4, IL-10, TGF-$3 and FoxP3 gene transcription levels values. (A) IL-1
levels, (B) IL-10 levels, (C) TGF-p levels, and (D) FoxP3 levels. The p value in
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box denotes the overall p value for all the results in that particular figure. The p
value on the significance lines between the groups denotes the value among
groups.

IFN-v, TNF-a, and IL-17 were highest in TB-infected group (albeit, there
were only six individuals). Perforin was similar across all groups, while
granzyme B levels differed between the control and coinfected groups (p
< 0.0001), between the helminthinfected and coinfected groups (p =
0.0020), and between TB-infected and coinfected groups (p < 0.0001). IL-
2 levels differed between the control and the TB plus helminthcoinfection
group (p <0.0001) and also between the helminth-infected and coinfected
group (p = 0.0067).

Eomes levels were higher in the controls than in the TB/helminth co-
infected (p < 0.0001) and higher in the TB-infected compared to the
coinfected individuals (p < 0.0001). NFATC2 levels were significantly
higher among the controls compared to the coinfected individuals (p =
0.0003) and higher in the helminth-infected than in the TB/helminth-
coinfected individuals (p = 0.0032).

IL-4, IL-10, and TGF-3 were higher among uninfected controls and
helminth-infected individuals (albeit there was a wide distribution in
values) compared to the TB-alone infected and coinfected groups (albeit
there was a small sample size). TGF- was lower in the TB-alone infected
group and the coinfected group, compared to the controls (p = 0.0012 and
p < 0.0001, respectively). FoxP3 was significantly lower among the TB-
infected compared to both the control (p < 0.0001) and helminth-infected
groups (p = 0.0012).

4. Discussion

The present study aimed to determine the profile of cytokines after
stimulation of monocytic and lymphoid cells with A. lumbricoides and TB
antigens to assess whether A. lumbricoides infection would decrease the
Th1/pro-inflammatory cytokines essential for TB control and increase the
Th2/ anti-inflammatory and regulatory cytokines. The human ex vivo data
was also used to determine the cytokine responses during helminth, TB
and in cases of helminth/TB coinfection. The Thl cytokines were
increased in TB-stimulated cells/ infected individuals and reduced during
coinfection. The Th2 and regulatory cytokines were variably increased in
dual infection.

The Thl/pro-inflammatory cytokines, IFN-y and TNF-a, were
upregulated for TB compared to the A. lumbricoides and coinfection
stimulation. This finding suggests that Th1/pro-inflammatory cytokines
are upregulated by TB and reduced in helminth coinfection. These
cytokines are produced more in pro-inflammatory conditions such as TB
[7]. The cytokine IFN-y is essential for protective defence against
intracellular infections. IFN-y is a key modulator of macrophage
activation in Mycobacterium tuberculosis (Mtb) infection [29,30].

TNF-a plays a pivotal role in granuloma formation, which is one of
the host’s defence mechanisms against TB [31]. According to some
studies, TNF-a levels are frequently high in individuals with active TB
infection [32, 33]. Our analysis also demonstrated a similar pattern.
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The molecules involved in the cell-mediated killing of intracellular
pathogens in the pro-inflammatory response included granzyme B and
perforin. Granzyme is a serine protease present in the granules of
cytotoxic lymphocytes. Perforin and granzyme work together to kill
infected or target cells by perforating the cell walls leading to
disintegration [34]. Natural Killer (NK) and CD8-positive cells primarily
produce Granzyme B and perforin [34, 35]. They attack malignant or
infected cells and cause them to undergo apoptosis [35]. Granzyme B and
Perforin were both increased at 24 hours in the TB-stimulated cells and
reduced at 48 hours, suggesting that they induce apoptosis in infected
cells during the early stages of infection. However, for granzyme B and
perforin it is crucial to note that more experiments such as tunnel assays
or flow cytometry should be performed to validate these results.

The increased levels of IL-2, IL-17, eomes, and NFATC2 for both the
in vitro and ex vivo analysis are in keeping with the pro-inflammatory
response. IL-2 is produced by Thl cells, and it stimulates T-cell
proliferation, among other functions. In turn, Thl cells produce IL-2,
which has been found to stimulate cytotoxic T lymphocytes and Thl cells
during intracellular pathogen invasion [36, 37]. Compared to uninfected
individuals, patients with active TB have been shown to have high IL-2
cytokine levels suggesting that this cytokine plays a protective role [38].

IL-17, an inflammatory cytokine released during the early stages of
TB infection, is suggested to increase the synthesis of chemokines that aid
in the recruitment of cells essential for granuloma formation [40].
Limiting Mtb growth and immunopathology caused by increased IL-17
production requires a balance between Thl and Th17 immune responses
[39]. Overproduction of IL-17 can increase neutrophil recruitment, which
can cause tissue damage [39]. A Th1/Th17 balance is required for anti-
mycobacterial immunity and immunological disease prevention [39].
Therefore the current study determined that in vitro and ex vivo, the Th1/
pro-inflammatory responses are higher in TB infection and reduced in
helminth and TB/helminth coinfection cases.

Eomes in our study was increased in both the in vitro and ex vivo
experiments in the TB stimulated/ infected group.Eomes was increased
since it plays a role in the differentiation of cytotoxic T cells [40] because
the cytotoxic T cells promote the killing of infected cells through the
release of granzyme B and perforin [40]. Hence, in our study, eomes was
increased in both the in vitro and ex vivo experiments in the TB stimulated
/infected group. NFATC2 overexpression aids cell defence against
oxidative stress and electrophilic offences by stimulating antioxidative
and detoxifying enzyme synthesis [41]. As expected, pro-inflammatory/
Thl responses were all increased by TB antigen stimulation and
decreased during helminth coinfection in our study. The current study
suggests that the A. lumbricoides effect of lowering the pro-inflammatory/
Th1 cytokine responses to TB could be detrimental to TB control during
TB and helminth coinfection.

In the present study, the Th2/ anti-inflammatory cytokines, IL-4 and
IL-5, were higher in the helminths and coinfection in vitro stimulations
compared to TB single stimulation. This is in keeping with the Th2
predominant immune response produced by the extracellular helminths.
IL-4 was increased at 24 hours for both cell lines in the A. [umbricoides and
coinfection stimulation; however, this was not sustained at 48 hours. The
upregulation of IL-4 was shown by the significant differences between
A. lumbricoides stimulated and A. [umbricoides/ TB co-stimulation. High IL-
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4 downregulates IFN-y, which may be deleterious for TB control [42]. IL-
5- was elevated in the helminth and coinfection group versus the control
group. High levels of IL-5 are commonly observed in intestinal helminth
and protozoa-infected hosts, and it also induces eosinophilia, another
common manifestation of parasite infection [43]. The current study
confirmed the association between A. lumbricoides and Th2 cytokine
responses.

The regulatory cytokines, IL10 and transcription factor FoxP3, were
upregulated in the helminths and coinfected cells as opposed to the TB
group. The increase is expected in A. lumbricoides -treated cells since
helminths polarise immunity towards a Th2 and regulatory immune
response [14, 44]. Transcription factor , FoxP3, was also high for the
current study’s in vitro and ex vivo experiments. This upregulation of
FoxP3 in helminths and the coinfected stimulated cells concurs with the
study that determined that helminths increase the secretion of TGFf,
which upregulates FoxP3 and promote differentiation of regulatory cells
[45]. Regulatory cytokines, such as IL-10, play a suppressive role in
regulating immune homeostasis. Hence IL-10 levels are higher in
helminth infection since these parasites have mechanisms of evading the
immune system to ensure long-term survival within the host [46]. IL-10
and FoxP3 were increased in the A. lumbricoides and coinfection group,
suggesting that IL-10 and FoxP3 are upregulated by A. lumbricoides. Dual
infection stimulation was done to elucidate coinfection scenarios and to
determine if there is an effect in the up or downregulation of Thl, Th2,
and regulatory cytokines. Regulatory cytokines are high during A.
lumbricoides infection and also in cases of TB/helminth coinfection
compared to TB. This may be due to the downmodulation of the immune
response to TB.

The present study demonstrated a typical TB response characterized by
an increase in inflammatory cytokines such as IFN-y, TNF-a, IL-2 and IL-
17. However, we did not use costimulatory molecules such as anti-CD-28
or anti CD-49 to enhance the stimulation of the Jurkat cells, since they do
not possess antigen presenting properties. Therefore, the Jurkat cell
response may be suboptimal, due to the exclusion of immuno
costimulatory molecules, which is a limitation for this study.

5. Study Limitations

The current study was limited by human studies which were
compromised by low sample sizes for TB and TB plus helminth
coinfected participants. However, the limited analysis mirrored what was
found in, in vitro experiments, which showed higher pro-inflammatory /
Th1 in TB and lower in the coinfected group. The immune responses to
helminths were not differentiated to species level since this was a pilot
study and some numbers were very small e.g., Trichuris trichiura (n=1)
and Taenia spp (n=1) therefore would not be possible to control for each
individual species differences.

A spurious finding was that some levels of cytokine gene expression
levels were highest among the uninfected controls, such as perforin,
NFATC-2, TGF-, and IL-10. This may be due to the fact that the
uninfected controls were only screened for helminths and TB in the
laboratory and could possibly be exposed to other bacterial, viral or other
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immune activating factors that could not be detected during the
questionnaire administration that was done for the main study. The
demographic profile of the participants may attest to the possibility of
other immune-activating environmental factors [29]. In addition, as
alluded to above, for the in vitro studies, the cell culture experiments did
not include co-stimulatory molecules to properly represent the in vivo
antigen presentation and processing.Therefore these results were
suboptimal, despite the fact that the main responses typically depicted
TB (Thl/inflammatory) and helminth (Th2/Treg) profiles.

As noted above, there are additional tests, such as flow
cytometry and tunnel assays that could be performed to validate the
increase in granzyme B and perforin. The gene transcription levels of
cytokines in stimulated and unstimulated Jurkat and THP-1 cell lines are
not directly correlated with its production. Therefore, to validate the gene
transcription levels results at protein level, further tests such as ELISA
needed to be performed. Flow cytometry for phenotyping the CD4+/CD8
profile for the Jurkat cells line - TIB 152 could unfortunately not be done
owing to the limited quantity of the cells because other analyses had to
be done for the main study, since the current study was a pilot. Flow
cytometry not being done is another limitation for this study.

6. Conclusion

The in vitro findings suggest that pro-inflammatory Th1l responses
are increased in TB infection and reduced in cases of coinfection. The
study also determined that anti-inflammatory Th2 and regulatory
cytokines are increased during single helminth infection and TB and
helminth coinfection. The ex vivo data, although limited by the sample
size, also supported the hypothesis that TB increases Thl immune
responses and those helminths have strong Th2 and regulatory cytokines.
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4.1 Preamble

In the current chapter, we will summarise the current knowledge of the field of TB and helminth
coinfections and then discuss the principal findings of this thesis, identify gaps, highlight

limitations and make recommendations.

This project was conducted in South Africa, and it is general knowledge that Africa is plagued
by many challenges, including poverty, lack of clean water supply, poor hygiene and sanitation
which aggravate a multitude of infectious diseases and inadequate healthcare systems
(Maphumulo et al.;2019; Water Crisis in South Africa - Greenpeace Africa, 2022).
Unfortunately, these issues are exacerbated by an overlapping burden of helminth and TB
coinfection, which has far-reaching public health implications yet is currently receiving little
attention (Borkow et al.,2004). Hence, helminths are classified as one of the NTDs, the most
prevalent human infections in Sub-Saharan Africa (Hotez et al.,2009). Evidence suggests that
the most common NTDs (soil-transmitted helminths and schistosomiasis) have a high degree

of regional overlap with TB, and coinfection is common.

The relationship between helminth infections and immunosuppression is complicated.
Numerous variables may influence whether helminth infection suppresses, (Elias et al., 2005,
2008; Resende Co and Hirsch, 2006; Abate et al., 2015a; Hasanain et al., 2015; Kumar et al.,
2020) , or has no effect (George et al., 2014; Santos et al., 2019) on immunological responses
against TB. These determining factors comprise the type of helminths present, the number of
infecting parasites, and whether the disease in the human host is past infection or ongoing.
These concerns must be investigated further to address the complicated obstacles of helminth-
TB coinfection in tuberculosis diagnosis, treatment, and immunisation regimens. The
widespread helminth coinfection in areas of high TB incidence in Africa remains an essential
element that will decide the immunomodulation generated by the familiar but diverse helminth
infections towards host immunity to TB, diagnostic testing, and the efficiency of preventative

TB vaccinations.

Helminths are potent stimulators of anti-inflammatory Th2 and Treg immune responses, while
intracellular bacterial infections such as TB induce a proinflammatory Th1l response (Maizels
et al.,2004). Studies on the immunological profile of helminth-TB coinfection yielded
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inconclusive results. Some studies suggest that helminths negatively affect the progression of
TB (Elias et al., 2006; Bates, Marais, and Zumla, 2015; Babu & Nutman, 2016). Most agreed
that intestinal helminth infections induce the anti- inflammatory Th2 immune response
development, which down-regulates proinflammatory Th1l cells, which play an essential role
in the fight against intracellular infections like TB (Monin et al., 2015; Anuradha et al., 2017;
Kathamuthu et al., 2018; Bewket et al., 2022). The immunological profile of TB patients has
been demonstrated to be significantly impacted by asymptomatic helminth infection, with a
substantial bias towards the Th2 type of immune response, including increased regulatory T
cells and cells that secrete IL-5 and IL-10 (Abate et al., 2015). Furthermore, cytokines produced
by anti-inflammatory Th2 cells, particularly IL-4, inhibit proinflammatory Thl cytokine
formation (Elias et al., 2005; Gillan and Devaney, 2005) whereas pro-inflammatory cytokines,
particularly 1FN-y, released by Thl due to TB infection disrupt anti-inflammatory Th2
production (Romero-Adrian, 2015; Gashaw, 2018). Furthermore, helminths impair innate and
adaptive immunity, making individuals more susceptible to various diseases (Chatterjee and
Nutman, 2015; Weatherhead et al., 2020). Such immunological profile cross-regulation may
also exacerbate TB in helminth-endemic regions. These findings highlight the impact of the
high prevalence NTDs on the health outcomes of TB and offer a new opportunity to develop
innovative public health interventions and strategies for these diseases. However, other studies
have reported contradictory findings on type effects of helminths on TB disease. For example,
(Du Plessis et al. 2012) illustrated an improvement in TB pathogenesis, shown by increase in
lung macrophages of mice coinfected with the helminth-Nippostrongylus brasiliensis (Nb).
The findings showed that early stage Nb infection induces a macrophage response that protects
against subsequent mycobacterial infection (du Plessis et al.,2012). Furthermore, active TB
was found to be associated with lower rates of sputum smear positivity in Ethiopian patients
with asymptomatic helminth infection, implying that helminth infection had a favourable effect
on TB bacterial loads (Abate et al.,2015).

Reports on BCG vaccination indicate that helminth-specific immune responses developed
during pregnancy remained throughout childhood (Malhotra et al., 1999). As a result, the
prenatal sensitisation brought on by helminths steers T cell immunity away from the Thl IFN-
vy responses linked to defence against mycobacterial infection (Malhotra et al., 1999). Another
study suggested that in helminth-infected individuals, the poor immunogenicity of BCG

immunisation is coupled with increased TGF-B production (Elias et al., 2008). This is crucial
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to note for public health in regions of the world, especially in Africa, where there is a high

prevalence of TB and inadequate diagnostic resources.

In areas where TB and HIV are endemic, mass deworming may also be a cost-effective strategy
for lowering morbidity from helminths and coinfection. Further research is needed because
there is insufficient convincing evidence to link negative effects of helminth/TB coinfections
on the host’s immunity. Additional rigorous investigations are required to provide a
comprehensive understanding of the immunological profiles generated by helminth/TB

coinfections in endemic areas.

4.2 Summary findings of the current study

In South Africa, underprivileged groups that reside in underserved, highly populated areas are
more likely to continue to face significant challenges due to coinfection with intestinal parasites
and TB. Both tuberculosis and helminths are poverty-related diseases particularly prevalent in
impoverished communities. The current study aimed to explore the host immune responses
during coexistent helminth and TB infections. However, it should be noted that properly
understanding the helminth/TB immune interaction will require a long follow-up, randomised

study with a large cohort, with an extensive control for all confounders.

The study had two arms, an in vitro and ex vivo component. For the human ex vivo analysis,
the study population was consenting adults (18 years and above) recruited from clinics in a
peri-urban area of KwaZulu Natal, South Africa. The objectives for this study were to (i) To
appraise published literature on immune responses during coinfections with intestinal helminth
and TB, (ii) To investigate the cytokine immune response profiles in lymphocytic Jurkat and
monocytic THP-1 cell lines coinfected with H37Rv strain of Mtb and Ascaris lumbricoides
excretory-secretory protein antigens, and (iii) To investigate the cytokine immune response
profiles in patients coinfected with intestinal helminths and TB (newly diagnosed GeneXpert

positive and not on treatment).
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The study hypothesised that participants with a dual infection TB and helminth infection would
fare worse in terms of immune response to TB than TB alone, helminth alone or uninfected
participants. The current research project is a sub-study of a previously described cohort of 414
individuals recruited from 6 primary healthcare clinics in a peri-urban, disadvantaged
settlement in KwaZulu-Natal’s eThekwini district (Mpaka-Mbatha et al., 2023). In this study,
cytokine analysis was performed on 164 subjects, 96 of whom were HIV positive and had to
be excluded, leaving 68 eligible participants. Thereafter, the eligible patients were split into
four groups: control group (no helminth and TB infection) (n = 18), helminth and TB co-
infected group (n = 6), helminth infected group (n = 6) and TB (recently diagnosed and not on
treatment) infected group (n = 6). Despite the few eligible human participants, this arm of the
study was supplementing the in vitro experiments which was conducted on lymphocytic Jurkat
and monocytic THP-1 cells unstimulated, TB of helminth alone stimulated or co-stimulated

with H37Ryv strain of Mtb and Ascaris lumbricoides excretory-secretory products.

In the present study, for both the in vitro and human ex vivo experiments, proinflammatory Thl
cytokines were significantly elevated in the TB-stimulated Jurkat and THP-1 cells and TB
infected participants and decreased during TB/ helminth coinfection. Dual infection, on the
other hand, significantly increased anti-inflammatory Th2 and regulatory cytokines. This is in
agreement with some studies examining the interaction between helminth infection and TB and
demonstrated that helminth parasites could reduce immunity against mycobacterial infection
(Abate et al., 2015; Simon, 2016; Gashaw, 2018). The study's overall the result indicated that
helminths could impair the immune responses to TB and these effects are deleterious to
participants coinfected with both helminths and TB. These observations of reduced
proinflammatory Thl and elevated anti-inflammatory Th2 and Treg cytokines among
individuals coinfected provided suggestive evidence of a detrimental effect of both infections
on the infected host.

The current study demonstrated that although helminths are commonly associated with children
in South Africa, they are also prevalent in adults. These findings further emphasise that
helminths, which are part of the NTDs, despite the reports of their high prevalence in SA are
indeed neglected and that they have adverse effects on TB immune responses. Much attention

has been directed on the bidirectional relationship between TB and HIV, their management and
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treatment strategies and less on TB/helminth regimes in adults. Deworming programmes in
South Africa have mainly focused on children and not on adults despite the evidence of
helminths being common in both adults and children living in impoverished conditions. The
prevalence of helminths in adults in KZN has been repeatedly shown to be above 30%, which
is significant (Kwitshana et al., 2008; Mkhize et al., 2017; Mpaka-Mbatha et al., 2023) and
necessitates paying urgent attention to these findings and develop management, preventive,

and treatment strategies for helminth and TB coinfection among adults.

4.3 Conclusion

Helminths being part of the NTDs are continually being underrated as a serious public health
problem, particularly in SA, even though their prevalence has been reported to be above 30%
in adults. The response to our current study question, “Do helminth infections alter the cytokine
immune response during intestinal helminth and TB coinfection?” suggests that helminths do
affect the cytokine profile during coinfection. This is based on our finding that stimulation of
Jurkat and THP-1 cells with TB H37Rv only, and individuals with TB only, result in increased
Thl/proinflammatory cytokines, while dual stimulation with TB H37Rv and Ascaris antigens,
as well as dual infection with helminths and TB result in reduction of these cytokines
accompanied by an increase in Th2/Treg cytokines. This has not been reported in the KwaZulu-

Natal province of South Africa where both TB and helminthiasis are highly prevalent.

4.4 Limitations

Firstly, the human ex vivo aspect of the study was limited by the small number of eligible
participants with TB single infection and TB plus helminth coinfection. Recruitment of TB
infected patients proved to be a challenge. Despite the fact that there were many such patients
in the recruitment sites, the majority were not willing to participate. This could be linked to the
stigma still largely associated with TB (and indirectly with HIV). Secondly, the overall sample
size particularly for the human arm of the study is not representative of the population therefore

results not generalizable.
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Thirdly, we did not assess whether the participants were in the acute or the chronic stages of
both TB and helminth infections. Each of these will induce a different type of response during
the acute versus chronic stages. For example, helminths induce an inflammatory response
during the early acute phase, however during chronic helminth infection the Th2 cytokine,
including IL-10, are upregulated (Caldas et al., 2008). As a result, it was impossible to
determine if the immune responses corresponded to the stage of the disease. Lastly, the in vitro
study utilised only Ascaris lumbricoides excretory-secretory proteins because they were the
only species available for analysis. This made it impossible to compare the cell line’s immune

responses to other helminth species.

4.5 Recommendations

This study revealed several areas of inquiry that need more research, including the
epidemiological and immunological interaction between TB and intestinal helminth
coinfection in susceptible populations. Such data will impact deworming programmes in
coinfected individuals. Future research will need to determine whether prior deworming to TB
immunisation is the best practice for attaining optimal vaccine response and for which helminth
diseases and human population groups this would be advantageous. The scientific
understanding of the health advantages of NTD treatment for HIV and TB patients still needs
additional investigation, despite the expansion of NTD treatment programmes and the rising
body of evidence supporting the positive health impacts of worm treatment. More research will
be required to address the social and logistical elements in implementation and the operational
challenges that arise from integrating these therapy programmes.
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UNIVERSITY OF ™~
' KWAZULU-NATAL
INYUVES!

. YAKWAZULU-NATALI

03 February 2021

Mrs Khethiwe Nomcebo Bhengu (218087035)
School of Lab Med & Medical Sc
Medical School

Dear Mrs Bhengu,

Protocol reference number: BREC/00001983/2020
Project title: Nutritional status and immune responses in patients co-infected with Mycobacterium
tuberculosis and intestinal heiminths in Kwa-Zulu Natal
Degree Purposes: Masters
EXPEDITED APPLICATION: APPROVAL LETTER

A sub-committee of the Biomedical Research Ethics Committee has considered and noted your application.,

The conditions have been met and the study is given full ethics approval and may begin as from 03 February 2021,
Please ersure that outstanding site permissions are obtained and forwarded to BREC for approval before
commencing research at a site.

approval is subject to national and UKIN lockdown regulations, see
mumm.:mumc_m Level _1_ mmnm, Based on
feedback from some sites, we urge Pl to show sensitivity and exercise appropriate consideration at sites
where personnel and service users appear stressed or overioaded.

This approval s valid for one year from 03 February 2021. To ensure uninterrupted approval of this study beyond
the approval expiry date, an application for recertification must be submitted to BREC on the appropriate BREC
form 2-3 months before the expiry date.

Any amendments to this study, unless urgently required to ensure safety of participants, must be approved by
BREC prior to implementation.

of this approval denotes your compliance with South African National Research Ethics Guidelines
mIS) South African National Good Clinical Practice Guidelines (2006) (if applicable) and with UKZN BREC ethics
requirements as contained in the UKZN BREC Terms of Reference and Standard Operating Procedures, all available
at http: //research.ukzn.ac.za/Research-Ethics/Biomedical -Research-Ethics.aspx.

BREC is registered with the South African National Health Research Ethics Council (REC-290408-009). BREC has US
Office for Human Research Protections (OHRP) Federal wide Assurance (FWA 678).

The sub-committee's decision will be noted by a full Committee at its next meeting taking place on 09 March
2021.

Yours sincerely,
///l/\. )ﬁum--

Prof D Wassenaar
Chair: Biomedical Research Ethics Committee

Biomedical Research Ethics Committoe
Chair: Professor D R Wassenaar
UKZN Research Ethics Office Weatvilie Campus, Govan Mbeki Building

Postal Address: Private Bag X54001. Durban 4000
3179 . Emall ADCT Fhdon ar sa
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Appendix B

Informed consent form for participant recruitment
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4 UNIVERSITY OF ™
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UKZN BIOMEDICAL RESEARCH ETHICS COMMITTEE

APPLICATION FOR ETHICS APPROVAL
For research with human participants (Biomedical)

A pilot study on helminthiasis and microbes interactions: macrobiotic control of microbiota and
the effects on Human Immunodeficiency Virus and Mycobacterium tuberculosis diseases,
immune responses and nutritional status: Human and /n vitro studies

INFORMATION TO PARTICIPANTS AND INFORMED CONSENT

inf tion Sheet and C { 1o Participate in R }

Date:

Hello:

YT T 1T

from the School of Iabomory medicine and Medical Sciences and my contact details are as follows: cell
number is.. , office number is

and emai address is or

You are being invited to consider participating in a study that involves research on the consequences of
being infected by intestinal worms and tuberculosis or the human immunodeficiency virus at the same
time. The aim and purpose of this research is to find out if intestinal worm Infection interferes with the
ability of the immune system to fight the HIV virus or the TB germs. and also to find out if the worm
infections also interfere with the body of an infected person to respond appropriately to treatment for
tuberculosis and HIV. We will also check if worm infections do not disturb the good germs that are found
in your gut for good heaith. The study is expected to screen approximately seven hundred individuals
for worms and enroll three hundred and fifty participants in total, those with and those without intestinal
worms plus tuberculosis or HIV. The potential participants will be identified from and recruited from their
clinics in Umlazi area. You are therefore invited to participate t-in the study, if you agree, because you
are attending this clinic.

During your consultation in the Clinic for your ailments and the reasons for your coming to the Clinic,
some tests will be done by the Clinic, as part of your treatment plans. These tests will include, testing for
TB using a machine called the Genexpert, the other test may be a chest XRay. The Clinic will also do
the HIV test and may also do CD4 counts. If you agree to participate in this research, we are asking you
give us permission to get the results of these tests so that we can use them for the research purposes.

If you agree to participate in this research, you will first be given further details of the study, and then if
the researchers are satisfied that you fully understand the study, they will ask you to sign this permission
letter with which you will be confirming that you agree to participate and you understand what will be
expected of you for the study. The researchers will then ask you questions about yourself, your
household income, your health status and sources of water for your household and other questions
relating to your health. To assess the nutntion status, you will be weighed, and your height taken,

e — -
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thereafter will be asked about what you had eaten in the past 24 howrs.  You will then be asked to
donate approximately four teaspoons of blood These blood samples will be taken to the laboratories to
test for the (i) levels of nutrients, (i) your Immune status, (ill) the state of your bicod (to see if you do not
have weak blood- a test called full bloed count). You will then be asked to donate 2 stool samples- you
will be given 2 stool jars. You will be requested to return the first stool the following day, and the next
one when you return to the Clinic to collect your results of the tests that will be requested through the
Clinic for your treatment plan. The stool specimens will be taken to the laboratory to check if they do not
have worm eggs (meaning that there are worms in the gut that are producing these eggs into the stool).
In the laboratory, the researchers will also test what types of the good germs (microbial or normal fiora)
are in your gut.

Although you will have been tested for HIV in the HIV Counselling and Testing program of the Clinic,
some of your donated blood will be tested for HIV again in the laboratory in order to confirm the results
for the research, and to be able to assign you to a group of either those infected or not infected. The
researchers will allow you to get your results if you choose to. This will be done through the Clinic's
Counselling programme. You will be asked if you would like to get these results back, and if you want
them, the researchers will arrange with the HCT staff so that you receive further post-test counselling,
and your results will then be disclosed to you following the same procedures for confidentiality.

The duration of your participation if you choose to enroil and remain in the study is expected to be for at
most 3 months. However, you will donate the blood once and stools in two days, then the resuits of the
screening for worms will be made available to you within that period. In addition, if there is a need to
contact you for any other research related results, the researchers will contact you within that three-
month period”. If there are no further results you may participate for less than 3 months as soon as all
your results are completed.

The study may involve the following risks and/or discomforts. During blood collection, discomfort in the
form of mild pain and possible bruising may be experienced. If it occurs, the bruising disappears and
heals after a few days by itself Also, you will be asked personal questions such as income level which
may make you feel uncomfortable. You are free to decide not to answer any question that you do not
feel comfortable to. We hope that the study will create the following benefits: If you are found to be
infected with intestinal worms, you will be provided with a referral letter to your nearest clinic where you
will be given deworming treatment. Otherwise, the research will provide no direct benefits to you as a
participant. However, the results of the study will help in showing whether worm infections have a bad
effect on those who also have TB or HIV infections, and whether the worms make it difficult for such
people to get better quickly when they get TB or HIV treatment. The research will also check if those
who are infected with worms and HIV or TB have poor nutritional status. This will help the health
providers to look after such patients and decide on all the necessary treatment as well as the control of
the worm infections in the community. The study will therefore be beneficial in Public Heaith planning in
general which will benefit future generations

It is expected that the research will not potentially involve any serious risks. However, it may happen that
if you have been diagnosed with worm infections and advised to take deworming medication, you may
expenence some symptoms related to such treatment, some can be mild and short-lived. They may
include and not limited to nausea, vomiting, headache. If the symptoms become unbearable, you are
advised to consult the health providers.

Because you will be requested to return the stool specimens twice, you will be reimbursed for the retum
trips for R40, and a small token of R110 for compensation for inconvenience will be provided, You will
therefore receive R150.

This study has been ethically reviewed and approved by the UKZN Biomedical research Ethics
Committee (provisional approval number_BE351/19). In addition, the study is funded by the South
African Medical Research Council.

In the event of any problems or concems/questions you may contact the researcher (Z.L. Kwitshana) at

School of Laboratory Medicine and Medical Sciences
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Ground Floor, Room 25

Durban

4000

KwaZulu-Natal, SOUTH AFRICA

Tel: 27 31 2604769 - Fax: 27 31 2604609
Email: BREC@ukzn ac za

Please be aware that participation in this research is voluntary, you may withdraw participation at any
point, and in the event of refusaliwithdrawal of participation you will not incur penalty or loss of treatment
at your clinic or hospital and you will still be entitied to all other benefit to which you are normally entitied.
Pilease note that if you decide to withdraw from the research, you are still expected to continue with your
normal scheduled dlinic visits. You inform the researchers if you decide to withdraw from the research. If
you become very sick, the researcher may terminate your participation from the study and advise you to
seek the necessary care from the heaith provider

You will be reimbursed for travelling to the clinic as a study participant to bring a second stool sample on
the second day after the visit

Your personal details will be kept in a safe place to make sure that they are protected Only the
researcher will have access to them We will keep the records in a computer file that can only be
accessed by the main researchers. We will assign each participant a study number which will be used to
link your personal details in a file which will be kept safely in the computer that will be accessed by the
main researcher only. For research purposes, we will only use the study number. Once the research has
been compieted, your blood samples will be stored for the future research purposes if you agree or will
be discarded after the research results have been obtained.

Name of Researcher providing Information

Signature of Researcher
providing Information Date

CONSENT

| Bl A R e P e D A BN LN ALY R A RO PRI SN R Ciinirieni e o) have been informed
about the study entitled “A pilot study on helminthiasis and microbes interactions: macrobiotic control of
microbiota and the effects on Human Immunodeficiency Virus and Mycobacterium tuberculosis
diseases, immune responses and nutritional status: Human and in vifro studies

by the researcher).

| understand the purpose and procedures of the study (that | will be expected to donate stool and blood
specimens and return the stool samples the following day. | also understand that | will be asked
questions about my diet and other personal information | may refuse to answer questions that | am not
comfortable with

| have been given an opportunity to answer questions about the study and have had answers to my
satisfaction.

| declare that my participation in this study is entirely voluntary and that | may withdraw at any time
without affecting any treatment or care that | would usually be entitled to

| have been informed about any available medical advice and care if injury occurs to me as a result of
study-related procedures such as bruising after blood donation If | have any medical issues, for
example after taking deworming medication | may seek advice form the health care facility.
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If | have any further questionsiconcerns or queries related to the study | understand that | may contact
the researcher, at the following details

School of Laboratory Medicine and Medical Sciences
Ground Floor, Room 25

George Campbell Building

Howard College Campus

University of KwaZulu-Natal

Tel 031 2601931

Email: kwitshanal@ukzn ac za

If | have any questions or concerns about my rights as a study participant, or if | am concerned about an
aspect of the study or the researchers then | may contact

BIOMEDICAL RESEARCH ETHICS ADMINISTRATION
Research Office, Westville Campus

Govan Mbeki Building

Private Bag X 54001

Durban

4000

KwaZulu-Natal, SOUTH AFRICA

Tel 27 31 2604769 - Fax: 27 31 2604609

Email: BREC@ukzn acza

Signature of Participant Date

Signature of Witness Date

(Where applicable)

Signature of Translator Date
3204 (Where applicable)

3205

3206

3207

3208

3209

3210

3211

3212
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Appendix C:

Informed consent form: specimen storage for genetic (DNA) analysis for

participant recruitment

o
4 UNIVERSITY OF e
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. INYUVESI b

b
. YAKWAZULU-NATALI

Informed Consent for specimen storage for genetic (DNA) analysis

Study Title:
A pilot study on helminthiasis and microbes’ interactions: macrobiotic control of microbicta
and the effects on Human Immunodeficiency Virus and Mycobacterium tuberculosis diseases,
immune responses and nutritional status: Human and in vitro studies.

Principal Investigator:

Dr Zilungile L. Mkhize-Kwitshana

School of Laboratory Medicine and Medical Science
Ground Floor Room 25

George Campbell Buildng

Howard College Compass University of KwaZulu -Natal
Tel 031 260 1931

mkhizekwitshanaz@ukzn.ac.za

HERO, T BB B0 s oo i ias b ons 454 sas 23 s so MaN e s S S Bar F I S e RN s a e oekal v s SoRes $4s b de Nl voasotanod
From: - Laboratory Medicine and Medical Sciences at University of kwaZulu Natal (UKZN)
My contact details are as follows:

Bl DN O . i o S i S S L L T L e SRR SIS SRS ESERNS

Office numberis ....... SEs
o T T U S S D S O S ST D

Introduction

You have been invited to voluntarily participate in the study titled “A pilot study on
helminthiasis and microbes’ interactions: macrobiotic control of microbiota and the
effects on Human Immunodeficiency Virus and Mycobacterium tuberculosis diseases,
immune responses and nutritional status: Human and in vitro studies”

During this study blood specimens will be collected from you for the purposes of this study.
Specimens that are left over following compietion of all testing required for cur expenments
may be used for future research. You are being asked to consent to the storage of your blood
for possible future research that may or may not be related to this study.

How will you use my stored blood specimens?

If you agree to participate and donate blood for this study, we also ask for your permission to
store some of your blood in the freezers at the University of KwaZulu-Natal, Howard Campus,
Medical Microbiology Laboratory Ultra freezers. This blood may be used later to confirm test
results and to check the genes (DNA) (which are small substances in our bodies that are
responsible for heredity or for inheriting physical qualities or characteristics that we inherit
form our parents and ancestors like the colour of our eyes, our complexion, and why some

UKZN BREC 2020 1
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people get certain diseases while others do not, and why some people respond to cenain
treatments while others do not).

These stored samples will be used to check further what happens to other genes of the
immune system when people are infected with worms and HIV and /or TB at the same time,
based on the findings of the present study. These future studies will check whether there can
be other substances in the bicod of people who have these infections that can be used In
future, to tell whether there are changes in the blood if there is infection or not (biomarkers) to
assist heaith care workers to diagnose coinfections better or plan for their management. If you
agree to the storage of your blood specimens for possible future research, you will be asked
to sign this consent form. A copy of the form will be given to you to keep.

Your blood specimens will not be sold or used In products that make money for the
researchers or anyone else. Any studies that use your specimens in future research will be
reviewed by the Biomedicail Research Ethics Committee of the Nelson R. Mandela School of
Medicine, University of KwaZulu-Natal

We do not plan to contact you with any resuilts from tests done on your stored blood
specimens. This is because research tests are often experimental, and we don't think the
results will be useful for making decisions about your health. Additionally, these tests will be
done in a way that will make it extremely difficult to link the test resuits to you.

How long will you keep my blood specimens?
There is no time limit on how long your blood specimens will be stored.

Does storage of my blood specimens benefit me?

You may not benefit directly from this kind of research, but it will help future generations when
doctors are able to see early what genes are increased for what diseases, or how they can
use these results for treating these dis Pt note that your personal details will
never be disclosed as a source of this research. Also, if and whenever the results of these
heredity research are published, they will never be linked to Umiazi.

What about confidentiality?

In order to keep your information private, your blood specimens will be labelled with a code.
Your personal information, such as name, address, and phone number, will not be placed on
the specimens. Only the research clinic where you come for study visits will be able to link the
storage code with your personal information

In the future, when researchers are given your stored specimens to study, they will be given
only the code; they will not be given your personal information

What are my rights?

If you do not agree that your bicod sample gets stored in the Biobank, it will be discarded
after the research has been completed. You are free to agree or disagree to this and still
participate in the research.

What do | do if | have questions?
If you ever have any questions about the storage of your blood you should contact Dr ZL
Mkhize- Kwitshana, Tel: 031 260 1931, e-mail mkhizekwitshanaz@ukzn.ac.za

If you have questions about your rights as a research participant, you should contact the
Biomedical Research Ethics Administration, University of KwaZulu-Natal, Research Office,

UKZN BREC 2020 2
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Westville Campus, Govan Mbeki Building, Private Bag X 54001, Durban, 4000, KwaZulu-
Natal SOUTH AFRICA  Tel 27 31 2604768 - Fax: 27 31 2604609, Email:

BREC@uign.ac 23

Signatures:
Participant Name (Print) Signature of Participant Date
Research Staff (Print) Signature of Research Staff Date

The section below is to be completed by the person who administered the informed
consent

Was a copy of the signed copy given to the volunteer: [] Yes ONo

If no, why not.
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Appendix D:

Study questionnaire for participant recruitment
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A pilot study on helminthiasis and microbes interactions: macrobiotic control of
microbiota and the effects on Human Immunodeficiency Virus and Mycobacterium
tuberculosis diseases, immune responses and nutritional status: Human and in vitre studies

STUDY QUESTIONNAIRE

interview Questionnaire.

SECTIONA:
Sty 10N UBCHKION NUMDBE . . oo connisisimmsvsoss s inincess sa e ssiiasasoqass n disdapnes saves s ian s asayms:s s e i iaia

Date of interview

SECTION B: Demographic Information
Ethnic group [African | | Coloured | | indian | | White | |

Gender [Male | [ Female | ]

Marital status Single

Marmied
Divorced
Widowed
Separated
Living together

T L e L

Age of participant R 1| ¢~ 133
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Date of birth d |d m m % y ¥ Y
Mobile number
Phone number (Home)
Name of Next of Kin: Cell Relation:
Weight (kg). | |
Height: (cm): I I
BMI
SECTION C: Socio-Economic Status
1. Where do you live?
2 What would you ciassify the area as? Rural Urban Peri-urban
3 Are you employed? Yes No
4 If no, please specify source of income
5 Ifyes, what is your income per month? <R1000 R1000- R5000-R10 >R10 000
RS5000 000
6. What is your level of education? None Primary High scheol Tertiary
7. What is your occupation?
8 How many standard alcoholic drinks, None 1-2 34 56 7-8 10+
per day, do you have?
S How many times, per day, do you take | Never 01 1-2 3-4 56 7-8
marijuana or any other drug to get
high?
SECTION D: Household Information
1. What type of house do you live in?
2, How many rooms does your house haVET? ... .o
3 How many people live in your household? Bables/Pre-sehool
Primary school
Adults
TOTAL
River
Own tap- inside the house
3048 Health Questiornaire 2019
3249
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4 Where does the household usually get drinking [ Own tap-outside the house

Neighbours' tap

Borehole

5. What kind of water activity do you do? Som

Wash clothes

Bathe

[Fish

F

Collect water for household use and cooking

Cross the nver

6. What toilet facilities do the household [Flush tollet, connected to public pipes

have? Flush todlet, not connected to public pipes

Pit toilet

None

7. What is the main source of energy for cooking? | Electricity

Wood, open fire outside dwelling

Wood open fire inside dwelling

| Gas
Paraffin

8. Fromwhere do you get your food? Tocal shopls)

Shops in town

Home garden

[ Community garden

Own livestock

[ Food aidsiwellareNGO's

SECTION E: Presence of other diseases

1. Do you presently have any diseases that you are aware of? [yes | N0 | |

If yes, please specify

2 Have you beenill in the past 30 days? [yes | N0 | |

3251 "
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3 Iyes, please |ist the disease/s

4 Have you suffered from any worm infection in the past?

IYes l [No

]

]

5. Has any of your family members suffered from any [ Yes |

|No| [Don'tknow ]

|

worm infection?

6. Have you taken any deworming medication in the

IYes l [No

]

|

past 6 months?
7. How often is deworming done in Never
your househoid? Once in 6 months
Once a year
Don't know

Cther, specify... ... P

B.  Whe gets deworming treatment in your household?

8. Have you had an aliergic reaction in the past 30 days?

10. Do you suffer from any of the following chronic iliness?

11. Are you taking arny medication?

If Yes, please specify

Heath Quesbonnare 2019
3252
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Children only

| Adults only

Everyone In the house

No one in the house

|Yes I [No

Yes No

Drabetes

Arthritis

Heart
[Drsease

Cancer

Asthma

Kidney
Disease

Liver
disease

[Ye. | [N |




SECTIONF: Supplements

" T 1% 1]
you take any supplements?
If yes, please name them
SECTION G: Covid-19
Have you come in close contact with someone who have been diagnosed with COVID-19 in the past 14
days?

[yes [ [N | |

Do you have the following fever, cough, shoriness of breath or difficulty breathing, body aches,
headache, new loss of taste or smell, sore throat?

[Yes | [N | |
Have you been experiencing nausea and/or vomiting?

[ves | N | |
Have you experienced any recent stomach upset or diarrhoea?

[Yeo | [N | |
Have you been tested for COVID-197

[Yeo | [N | |
If yes, what was the result?
Have you ever been diagnosed with COVID-197?

[Yeo | JNo | |

if yes, when?

Health Questionnare 2015
3253
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SECTION H: 24-hour food recall

1. How often do you eat?
2. Areyou constantly hungry?

per da

Yes

|

| No

Please indicate everything you ate or drank, including meals, snacks, sweels, beverages. aicohal in the

past 24 hours

Time of day

What food and
drink did you take

How was it
prepared

What was

How much was
eaten

Waking up to
about 8 o'clock

(breakfast time)

9 o'clock to 12
o'clock

{mid-moming)

12 o'clock to 2
o'clock

(lunch time)

20'clockto 5
o'clock

(afternoon)

5 o'clock to
sunset

(supper time)

After supper at
bedtime and
through the night

Thank you for your participation
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Abstract: Helminth infections ane among the neglected tropical diseases affecting billions of people
globally, predominantly in developing countries. Helminths' effects are aug) ted by coincident
tuberculosis disease, which infects a third of the workd's population. The role of helminth infections
on the pathogenesis and pathology of active tuberculosis (TB.) remains controversial. Parasite-
induced suppression of the efficacy of Bacille Calmette-Guerin (BCG) has been \ude!y n:poned
in helminth-endemic areas worldwide. T.B. i is pred ly p v

T-helper type 1 (Thijdependent. On the other hand, h:lmh:lhmie:bunsmduceanuppcwtganh-

inflammatory Th2 and Th3 i gulatory resp This review izes the lit
focusing on host i profiles dunng smglrh:lmmth T.B. and dual infections. It
Alsoamutummhhwumtmmmthc plexity of & ity in helminth /T.B. coinfected

patients since the nesearch data are limited and contradictory. Helminths overlap geographically with
1.8, particularly in Sub-Saharan Africa. &dldmmehubamspmnewhldlmyskm the immune
responses. However, these effects are helminth Jependent, where some parasites have no
impact on the mmmreapumwcmumﬂb The implications for the complex immunological
interactions that occur during coinfection are highlighted to inform government treatment policies

and encourage the development of high-efficacy T.B. vaccines m areas whent helminths are prevalent.

Keywords: Muulvacterium tuberculosis; helminths coinfection; & ponse; Bacille Calmette-Guering

vaccimation

1. Introduction

Intestinal helminths are parasitic warms infecting over 1.5 billion people globally [1]
Most helminth cases occur in tropical and sub-tropical areas such as Sub-Saharan Africa,
the Americas, China and East Asia [1]. Humans are infected with helminth parasites
after ingesting eggs or larvae from contaminated water, soil or food or through active
skin penetration by infective hookworm larvae in contaminated soil [2]. Climate change,
malnutrition, overcrowding, poverty and poor sanitary conditions are risk factors assod-
ated with the high helminth prevalence in Africa and other developing countries, making
effective treatment and the eradication of infection challenging [1—{]. The most common
intestinal helminth species infecting humans are Schistesoma mansoni, Trichuris trichuria
(whipworm), Ascaris lumbricoides (roundworm), Necator americanus and Ancylostoma dunde-
nale (hookworms) [1,2).

Nivomectice M22 12 M8 hetne [ /dni cre 710 T30 /diarnoatice Y THIRTR

httre £ Jwwew mdnd com Seamrmal Jdiaenoatice
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Tuberculosis (T.B.) is an infectious bacterial disease caused by different strains of
acid-fast bacilli belonging to the Mycobacterium tuberculosis (Mtbh) complex [5]. The T.B.
bacteria are airborne, and transmission occurs when a T.B.-infected person coughs, sneezes
or spits, expelling the infected droplets into the air. Inhalation of these aerosols may result
in infection of the next host [6]. T.B. continues to be a public health problem across the
world, with the World Health Organization (WHO) reporting over 10 million TB. cases in
2020 [7]. Approximately 1.5 million TB-related deaths were reported worldwide in 2020 [7].
Globally, Africa accounts for 50% of cases of T.B. and human immunodeficiency virus (HIV)
coinfection [7]. Furthermore, in Africa, T.B. is commonly observed in HIV-infected patients,
and it is the leading cause of death among them [7].

T.B. exposure results in the initiation of an immune response to fight the infection. The
immune response to T.B. involves the interaction of innate and adaptive immune responses.
Itis dependent on the cellular immune response, which is mediated by proinflammatory
T-helper type 1 (Thl) and Th17 cells [5-10]. The Thi cytokines, which are interferon-y
(IFN-y), interleukin 12 {IL12) and tumor necrosis factor-a (TNF-x) and Th17 cytokines
(1L-17, IL-21, IL-22 and IL-23) play a role in combating bacterial and viral infections [$-10].
Helminth exposure, on the other hand, induces an anti-inflammatory Th2 immune response
which is characterized by the production of cytokines such as IL-4, IL-5, IL-9, IL-10 and
IL-13, and increased levels of circulating immunoglobulin E (IgE) antibodies, eosinophils,
and mast cells, regulatory T cells (Tregs) and transforming growth factor-f (TGF-g) [11,12].

T.B. commaonly overlaps geographically with soil-transmitted helminths, especially
in developing countries [13-15], and this co-endemicity has implications for public health
and the afflicted hosts. Helminth infection-induced immune responses could promate
the pathogenesis of severe T.B. infections [16-15]; others report that they can also be
beneficial in reducing T.B. severity [19-22]. However, there is no conclusive evidence to
confirm whether helminth-induced immunity modulates T.B.-specific immune responses
or vice-versa, and studies have yielded contradictory results. Therefore, knowledge an the
interaction between T.B. and helminth infections is limited, as are the available data.

Given the current evidence on potential immunologic implications, such as those
that could influence T.B. vaccination, treatment and diagnosis, more research is needed
to determine the influence of helminth coinfection on T.B. control and how to negate any
adverse effects. As a result, this review will summarize what is currently known about T.B.
and helminths’ immune responses in human and experimental studies, both separately and
in the context of coinfection. The review will also elucidate the effects of T.B. and helminth
coinfections on vaccine efficacy and the implications for long-term health care.

2. Article Search Strategy for the Current Review

An electronic search of online databases such as Google Scholar, Google, PubMed, Sci-
ence Direct, online library sources, and Web of Science were utilized to extract research and
review articles using phrases and words: helminth, tuberculosis, helminth and tuberculosis
coinfection, helminth and tuberculosis vaccine and helminth and tuberculosis diagnosis in
humans, animals and in vitro studies. A PRISMA flow diagram of the search strategy and
research design process for this review is presented in Figure 1.
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Articles Search Strategy for Review Paper

Literature review articles on intestinal
helminth, tuberculosis, co -infection,
vaccination, immune responses

|

Search Strategy
* Googlescholar
* Google
*+ Pubmed

* ScienceDirect
*  Online librarysources
*  Webofscience

Inclusion criteria: \
* Articlessince 1999
+ Articles thatare in line with the title, abstractstudy
aim,and keywords

Exclusion criteria:
* Articlesin language otherthanEnglish
* Articlesearlierthan1999

\e_Articlesirrelevanto the topicofintered /

Figure 1. PRISMA flow diagram of the search strategy and the research design process.

3. The Host Immune Response to Helminths

Helminths are parasitic and multicellular organisms that coevolved with their hosts [23]
These parasitic infections are often asymptomatic, but there are cases of heavy worm burden.
These have been linked to persistent health conditions such as anemia, fatigue, growth
stunting and poor cognitive development [24]. Helminths are the driving force behind how
immunity is initiated and maintained |25]. They typically create long-term infections in
their hosts. They have the power to influence physiological and immunological homeostasis
to ensure their continuing existence [25].

Helminths mature within the infected subject and lay eggs for transfer to another host,
exposing them to multiple stages of parasite development, each of which elicits a unique
immune response [26]. Helminths have evolved to exploit a range of host immunoregula-
tory mechanisms and activate generic suppressive pathways that can suppress bystander
responses to other antigens, allergens, and self-antigens [12]. Helminths have been dubbed
“masters of immunoregulation” because of their capability to control immunity to escape
being eliminated by the host [25,27]. Helminths enter the body through the skin or intesti-
nal epithelium’s barrier surface, where they block the transcription of numerous molecules
that keep the epithelium intact [25).

Tissue injury activates the production of "alarmins” (IL-33 and thymic stromal lym-
phopoietin (TSLP)) and the identification of invaders by pattern recognition receptors
(PPRs) in the host [25]. The Thl proinflammatory cytokine production is driven by pattern
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recognition receptors (PRRs) such as toll-like receptors (TLRs) or C-type lectin receptors
(CLRs), whereas IL-33 and TSLP initiate a Th2 anti-inflammatory response [25).

Helminths stimulate increased mucin synthesis, smooth muscle contractility and
epithelial cell turover as a host defense to eliminate the infection. There is also increased
IgE and IgG1 production in mice and IgE and IgG4 production in humans [ 12,28]. All these
processes work together to drive worm expulsion and wound-healing responses, which
control worm-induced tissue damage [28].

The Th2 immune response induced by helminths includes interleukins (IL-4, IL-5,
IL-9, IL-10, and IL-13), broad or localized eosinophilia and hyperplasia of goblet and
mucosal mast cells [12,28]. The CD4-positive Th2 cells were initially identified as an
essential source of IL-4, IL-5, IL-9, IL-10 and IL-13 cytokines [29]. Eosinophils, basophils
and innate lymphoid cells (ILCs) can also produce some of these cytokines in response
to helminth infections [29]. Although the Th2 immune response induced by helminth
parasites is stereotypical, the initiation, progression and culmination of this response
require interaction with different cell types, most notably: epithelial or stromal cells, [LCs,
antigen-presenting cells, dendritic cells, macrophages, T cells, B cells, eosinophils, mast
cells and basophils [12].

Tregs maintain the Th2 dominance, IL-10 and TGF-§, which mediate the suppression
of competing Thl and Th17 cell populations [3(]. Tregs modulate the immune system
to prevent tissue damage induced by proinflammatory responses, maintain tolerance to
self-antigens and abrogate autoimmune disease [31]. These cells can be divided into two
subsets: natural Tregs that develop in the thymus, and induced Tregs that arise from
conventional CDM positive T cells in the periphery, which are promoted by chronic antigen
exposure [32]. The forkhead / winged-helix transcription factor (Foxp3) is a crucial marker
for identifying these subsets, but it may be expressed on activated CD4 positive T cells [32].

Helminth-induced suppression of immunopathology also involves CD4+ Tregs (Foxp3+
or Foxp3), CD8+ Tregs, regulatory B cells (Bregs), IL-4-responsive cells, TGF-§, and IL-
10 [33]. Since an increased Th2 response can potentially induce disease, a regulated response
mus! be generated. This is referred to as the modified Th2 cell response and is characterized
by the downregulation of Th2 cytokines [12].

According to the hygiene hypothesis, in developed countries where sanitation is
good, and helminths have been eliminated, there is an increase in allergic diseases such
as asthma and allergic rhinitis, and autoimmune diseases such as Crohn's disease [27].
This hypothesis has led to many human and animal studies conducted using live helminth
parasites to determine whether helminths do nullify the effect of allergies and autoimmune
disorders. Human studies conducted in underdeveloped countries where helminths are
still prevalent showed fewer allergies and autoimmune diseases [27,34,35). Others have
reported evidence of decreased allergies in developing countries [36].

Helminths induce various immune and physiologic modifications to survive the hos-
tile immune response directed against them and their general survival. These survival
mechanisms include this modified Th2 response [27]. These parasites also promote an-
giogenesis, which changes lissue vascularity and thus provides a good niche for their
survival [37]. The averall immune modulation of helminths invokes immunosuppression,
immunologic and physiological tolerance and a modified Th2 response [27]. These can
lead to a reduced immune response, thus amplifying susceptibility to infection with other
pathogens, reduced anti-tumor immunity and reduced vaccine efficacy. The host immune
response profile to helminth infection is presented in Figure 2.
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Figure 2. Immune response profiles during helminth infection. Migration of helminths damages
epithelial barrier cells and tissues, tnggering an immune response. Helminths produce damage and
pathogen-associated molecular patterns (DAMPS and PAMPS). DAMPS and PAMPS activate various
cells, such as epithedial, which release alarmins such as Thymic stromal lymphoposetin (TSLP), [L-25
and IL-33. Alarmins stimulate mnate lymphoid cells (ILCs), aiding collagen deposition and tissue
repair, and are a source of IL-5 required for eosinophil activation. Eosinophils enter tissues during
helminth infection-induced inflammation. Eosinophilia is a crucial feature of the host response to
helminth infection. Alarmins promote B cell activation and induction of alternatively activated
macrophages (AAMs). AAMs stimulate [L-10 and TGF-$, which reduce the host’s immune response
to pathogens to avoid damaging the host and maintain normal tissue homeostasis. Classically
activated macrophages, stimulated by IFN-y produce proinflammatory cytokines (IL-15, IL-6, IL-8,
1L-12 and TNF-x).

Figure 2 Footnotes: [L: interleukin; IFN-y: interferon-gamma; TGFp: transforming
growth factor beta; TNFo tumor necrosis factor-alpha; ILCs: innate lymphoid cells; TSLP:
Thymic stromal lymphopoietin; AAMs: alternatively activated macrophages; DAMPS:
damage-associated molecular patterns; PAMPS: pathogen-associated molecular patterns.
Red arrow pointing up indicates cytokines that are upregulated /increased during the early
stages of helminth infection and those that are upregulated during the chronic stages.

4. The Hos! Immune Response to T.B.

T.B. enters the body via inhaled droplets to the alveoli. It interacts with the alveolar
macrophages, infecting and multiplying inside them, thus making these cells the first line of
defense against infection [6]. In immunocompetent individuals, macrophages are activated,
and they phagocytose and remove T.B.

In some cases, the disease is controlled and kept in an inactive or latent state in distinct
foci known as granulomas bacteria [9,15,38,39]. However, some bacteria can escape this
fate, multiply and eventually cause an active infection. This may be due to the intrinsic
capacity of the macrophage, the immune status of the host or the virulence of the infecting
bacteria [9,15,38,29]. Mtb is, therefore, a pathogen that can cause both latent and active
disease [40].
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4.1. Innafe Responses to T.B.

The initial stages of T.B. infection include phagocytosis of the bacteria by macrophages [6].
Receptors that recognize a broad spectrum of mycobacterial ligands cause phagocyto-
sis [9]. Pathogen recognition receptors, TLRs, complement receptors (C.R.), Nucleotide
Oligomerization Domain (NOD)-like receptors and C-type lectins have all been implicated
in recognition of mycobacteria and the initiation of the cytokine response [5].

When phagocytic cells encounter T.B., they get activated and generate cytokines, in-
cluding proinflammatory cytokines such as TNF-, IL-1, IL-6, IL-12 and IFN-y [5]. Increased
susceptibility to T.B. was reported to be linked to genetic abnormalities in IFN-y produc-
tion [15,41}. IFN-y is involved in activating macrophages that fight mycobacteria through
intracellular killing and antigen presentation to T lymphocytes [42]. Vitamin D is also
involved in killing Mtb, which is aided by the creation of peptide cathelicidin [43].

The presentation of T.B. antigens by dendritic cells in lymph nodes, possibly aided
by neutrophils, initiates a local immune response that culminates in pathogen killing by
reactive oxygen species (ROS) and antimicrobial peptides [4].

Cells required in the host’s defense against Mty include monocytes, macrophages,
neutrophils, natural killer (NK) cells and dendritic cells. Together, these cells form a primary
granuloma, which may allow Mt growth while containing the infection until T cells are
recruited to the infection site, a response process that takes weeks [S]. Phagolysosomal
fusion, reactive oxygen and nitrogen intermediates, and antimicrobial peptides such as
cathelicidin induced by vitamin D are innate mechanisms against Mtb [43].

NK cells may eliminate intracellular Mtb through the activation of perforin, where
the antimycobacterial factor granulysin binds to the bacterial cell surface and disrupts the
membrane, resulting in bacterial osmatic lysis [44]. Apoptosis is a critical mechanism for
the infected host cell to limit Mth replication to a minimum. Phagocytic cell apoptosis
may prevent the spread of disease, diminish the viability of intracellular mycobacteria and
reduce the risk of infection [45].

4.2. Adaptive Immune Responses to T.B.

Adaptive immunity develops after exposure to mycobacterial antigens or vaccination
with BCG. This part of the immune system is triggered when the innate immune response
is insufficient to suppress T.B. infection. The control of T.B. requires Thl immune responses
(IFN-y, IL-12 and TNF-«) and Thl7 responses (IL-17 and IL-23). Thl responses are proin-
flammatory and develop a cell-mediated reaction |35]. Thi cells produce IFN-y through the
T-box transcription factor (TBX21). Both IL-12 and IFN-y are the leading cytokines in Thl
responses, where IL-12 is secreted by antigen-presenting cells [39,46]. The IL-12 receptor,
which is expressed on the surface of T cells, interacts with IL-12. The increased T-bet
(encoded by TBX21) boosts the signal transducer and activator of transcription 4 (STAT4), a
regulator of Th cells [46].

T-bet binds to and affects the expression of Thl-specific genes and Thi and Th17 cell
expression [46]. This is important since the control of T.B. requires Thl responses. STAT4
and T-bet work together to ensure optimal IFN-y levels, and their depletion eliminates
IFN-y production [46].

T.B. immunity involves many cells, such as T cells, B cells and natural killer (NK) cells,
with CD4+ T cells being the primary cell type in T.B. control [47]. The CD4+ Thl cells are
central to the control of T.B_; these cells secrete IFN-y and TNF-a, which are both critical
in the management of T.B. [35]. IL-12 regulates the induction of IFN-y, and mutations in
the genes coding for IL-12, IL-12R, IFN-yR or STAT1 or depletion of CD4+ T cells (as seen
in HIV infection) all promote susceptibility to disseminated T.B. [358]. IFN-y stimulates
phagocytosis, phagosome maturation, the production of reactive oxygen intermediates
(ROS) and antigen presentation in macrophages.

IFN-y is regarded as the primary cytokine that regulates T.B. infection and eradication.
It works by activating the infected macrophage, resulting in the production of reactive
oxygen and nitrogen species, which have a microbicidal role [45]. In terms of memory
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immune responses, CD4+ Th17 cells and Th1 celis have been identified as enhancing the
host's resistance to T.B. [49]. Th17 cells are a lineage of CD4+ T helper cells that produce
the cytokine IL-17, IL-17F and I1-22, and they play a role in developing an optimal Thl
response [50].

Th17 was first described as a distinct population of the T helper cells controlled by
the transcription factor RAR-related orphan receptor gamma (RORyt) [51]. They develop
independently of T-bet, STAT4, GATA-3 and STAT6 transcription factors critical for the
development of Thl and Th2 development, respectively [51]. The central effector cytokines
of Th17 are IL-17; other cytokines are IL-22 and I1-26 [52]. The immune response to T.B.
infection is directed mainly by a Thl response, with contributions from Th17 and other
cells. A strong proinflammatory milieu also characterizes T.B. infection.

On the other hand, human innate immune responses to M!b infection are still poorly
understood, owing to the limitations in examining pulmonary-specific immunity.

Therefore, understanding the interaction of innate and adaptive immune cells in hu-
man T.B. is crucial for identifying new immunomodulatory targets and clarifying protective
immunity processes. The immune response profiles to tuberculosis infection are presented
in Figure 3.
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Figure 3. Immune response profiles during tuberculosis infection. Mycobacteria encounter alveolar
macrophages whene they are phagocytosed, kept inside phagosomes and exposed to antimicrobial
peptides and degrading lvsosomal enzymes (lysozyme). However, pathogenic mycobacteria have
developed strategies to subvert the host’s defenses. Thl-cell activity (IFN-y, [L-12 and TNF-a) is
required for Mwcohacterium tuberculoss immunity. [FN-y activation of macrophages promotes bacte-
rial killing by forming toxic reactive oxygen intermediates (RO1) and reactive nitrogen intermediates
(RNI). An array of cytokines and chemokines, including tumor necrosis factor (TNF-), induces a
proinflammatory response and direct immune cells to the infection site. Dendritic cells migrate to
draining lymph nodes, where they encounter many immature T cells. In the presence of proinflam-
matory cytokines such as [FN-y and 1L12, T cells become activated, multiply and differentiate into T
helper (Th)l cells. [FN-y stimulates macrophages and tniggers the potent antimicrobial activities of
the primed Thi cells
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Innate and Thl-dominant adaptive immune responses interact to produce granulomas.
Innate and adaptive immune responses are critical for microorganism eradication.

Figure 3 footnotes: IL: interleukin; IFN-y: interferon-gamma; TNF-«: tumor necrosis
factor-o;; ROI: reactive oxygen intermediates; RNL reactive nitrogen intermediates. Red
arrow pointing up indicates cytokines that are upregulated /increased during T.B. infection.
Red arrow pointing down indicates cytokines that are downregulated during T.B. infection.

5. Host Immune Response during Helminth Coinfection with T.B.

The geographic distributions of helminths and T.B. overlap substantially, particularly
in underdeveloped countries, resulting in an increased likelihood of coinfection with both
pathogens | 15,16]. This coexistence has also led to the hypothesis that helminths can worsen
the effects of T.B. There have been suggestions that the anti-inflammatory response induced
by helminths in cases of coinfection might dampen protective and immunopathological
responses to T.B. [ 15,16].

An Ethiopian study investigated the association between intestinal helminths and
active T.B. and found that helminth infection increases the likelihood of developing active
T.B. [53]. This and other studies also suggested that patients with coinfection may have
antagonistic effector cell responses in responding to and regulating these diseases [30,54].
This can also imply that the efficacy of the vaccines may be reduced.

One school of thought suggests that helminths create an environment that weakens the
host's defenses against T.B. By activating the TL-4 receptor pathway, a preexisting helminth
infection inhibits an innate pulmonary anti-T.B. defense [55]. In coinfected mice models,
helminth-induced lung alterations increased susceptibility to T.B. {55], Macrophages can be
classically or alternatively activated. Classically activated macrophages (CAMs) increase
the activity of nitric oxide synthase (iNOS), which converts L-arginine to nitric oxide and
citrulline. Nitric oxide promotes intracellular Mt Killing.

On the other hand, alternatively activated macrophages (AAMs) induce arginase,
which competes with INOS for L-arginine, thereby reducing nitric oxide production for the
intracellular killing of Mtb [48]. Mth resistance in helminth-infected mice is promoted by
AAMSs. This major cellular pathway compromises the helminth-infected host’s ability to
Timit Mtb growth [55].

A review in support of this proposed role of the Th2-dominant phenotype on Mtb
control illustrated that AAMs might inhibit the macrophage killing of Mth [45]. Conversely,
a murine study in South Africa using Nippostrongylus brasiliensis (Nb) revealed that Mth
colonies were reduced in the lungs of Nb-infected mice. The stimulation of pulmonary
CD4+ T cells and Thl and Th2 cytokines, neutrophils and alveolar macrophages was
elevated. This suggests that Nb infection triggers a macrophage response, which protects
the host throughout the early phases of mycobacterial disease and subsequent illness [19].

Both helminths and T.B. have independent mechanisms for initiating the host immune
response, with significant consequences for the immunology of each infection [15,16].
The coexistence of helminth infection and active tuberculosis has been demonstrated in
epidemiological, cross-sectional and case-control studies that looked at the prevalence and
correlation of the two diseases. Pulmonary T.B. patients were found to have a significant
rate of intestinal nematode infection, indicating that helminth immunomodulation may
affect the control of T.B. |33,56].

In Ethiopia, some studies reported an increase in the prevalence of helminth coinfection
in T.B. patients, where one study found a higher risk of parasites among active T.B. patients
than in healthy community controls [17,57,58]. Likewise, in Iran, a higher prevalence
of intestinal helminths was found in tuberculosis patients compared to the uninfected
subjects [59]. Taghipour and colleagues also determined that immunocompromised T.B.
patients are more vulnerable to parasitic gastrointestinal infections [60]. It was reported
that Blastocystis subtype | was the most common subtype found in T.B. patients; however,
a phylogenetic analysis revealed no distinction between Blastocystis isolates from T.B.
patients and those from the uninfected [59].
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S. mansoni was also a risk factor for T.B. infection, and it altered the clinical presentation
and pathogenesis of T.B. in Tanzania [61]. The authors recommended treatment of this
parasite using praziquantel in T.B. infection management [61].

A systematic review suggested that health education be implemented to help prevent
intestinal helminth infection. It further added that screening for helminths should be
possibly included in the treatment strategies for tuberculosis patients [59]. Another review
suggested an association between Toxoplasma gondii (T. gondii) seropositivity and having
tuberculosis, with T. gondii seropositivity, which indicates chronic infection, being relatively
common among, tuberculosis patients [62].

Strongyloides stercoralis coinfection with pulmonary T.B. was implicated in the cause
of the skewed immune response to mycobacterial disease [63]. The proinflammatory
Thl cytokines were reduced, whereas the anti-inflammatory Th2 and Th3 cytokines were
elevated, thus leading to a conclusion that helminth coinfection may modulate protective
immune responses in latent TB. [63]. A study of immunological correlates in T.B. coinfection
with 5. mamsoni in Kenya, on the other hand, discovered that the expression of T.B.-specific
Thi cytokines was maintained. Individuals with latent tuberculosis and S. mansoni infection
had more CD4+ Thl cells than those who were only latently T.B.-infected [22]. There were
similar results in a Brazilian study, whose findings revealed that A. lumbricoides infection
had no impact on Thl, Th2 and Thi7 responses or the T cell populations [21].

A Thl immune response observed during persistent filarial infection was characterized
by a reduction in Purified Protein Derivative (PPD)-specific IFN-y and IL17 responses [64].
The study suggested that filaria infection reduced the PPD-specific [IFNy and IL17 responses.
In addition, it was observed that onchocerciasis patients” peripheral T cells had a weak
response to Mtb antigens [65]. Elias and colleagues illustrated that compared to dewormed
patients, helminth-infected individuals displayed low Thl immune response and IFN-y
production in response to mycobacteria infection [66]. Lastly, it has been suggested that
a robust Thl response characterizes cell mediated protection against T.B. infection, and
coinfection with helminths could modulate these immune responses by driving Th2 and
Treg cells [17,67].

Furthermore, enhanced Treg function is associated with helminth infection and may
suppress Thl responses against unrelated antigens [12,67]. This finding was supported by
studies which showed that intestinal helminth coinfection was associated with a reduced
Th1 response in active T.B. [ 16,68]. Type I immunity and their proinflammatory cytokines
such as I[FN-y, [L-12 and TNF-x have a protective role against Mth. By contrast, the
induction of type 2 immunity, e.g., Th2 and Treg cells (as seen in helminth infections} and
their anti-inflammatory cytokines, were reported to suppress the efficient immune response
against T.B. [33].

A mouse model study of Schistosoma mansoni showed a reduced protective efficacy of
BCG vaccination against Mth [66). Another study demonstrated that concomitant helminth
infections significantly impair the immunogenicty of BCG vaccines, an impairment associ-
ated with increased TGF-§ production [%0]. During active T.B., asymptomatic helminth
infection has been shown to have a considerable impact on host immunity in a double-blind,
randomized clinical study [17]. In comparison to the placebo group, ecsinophils and IL-10
levels decreased after albendazole treatment [17]. Another albendazole treatment study
was conducted to determine the immunological effects of deworming on proinflammatory
cytokine responses to plasmodial antigens. The study demonstrated improvements in
immune hypo responsiveness, where anthelmintic treatment significantly increased proin-
flammatory cytokine responses to Plasmodium falciparum-infected red blood cells [69].

In Egypt, it was determined that hockworm infection was one of the risk factors
for the failure of T.B. therapy [70]. However, a human study in the United Kingdom
(U.K.), where the authors studied migrants from Nepal, found that hookworm infection
reduced T.B. growth and may reduce the risk of infection [20]. According to the evidence
presented above, some studies demonstrated that helminthiasis has a negative impact on
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T.B. diseases, while others showed a beneficial effect. Table I summarizes some of the
studies investigating helminth and TB. coinfections.

Although HIV is not covered in this review, there is evidence of a concurrent distri-
bution of triple disease burden involving tuberculosis, helminths and HIV, particularly in
Sub-Saharan Africa. This necessitates a greater focus on disease management strategies by
various policymakers [71].

Table 1. Summary of experimental and human studies focusing on helminth and tuberculosis coinfections.

Study Type, Location and

References Helminthis) Study Aim Major Findings
. : Compared to patients who had prenatal
i R e sensitization 10-14 months sfter BCG
uman study in va. prenatal immunity to ization, T cell IFN ceicdesctices
172 Wachereria banerofti and helminths persists in TR Bd g
Schistasome hecwaioblm ehildhood and ifitaliers the Y23 26-fold higher in infants wha were
not sensitized to filariae or schistosomes
immune response to BCG : S .
T.B. therapy resulted in reduced serum
Human study in South Africa.  To determine total serum IgE Ascaris-specific IgE levels. Tuberculin
[73] Ascerds lumbricotdes and before and after induration was found to be inversely
Trichuris trichiura tuberculosis therapy related to IgE in patients but not
in controls.
T.B. therapy resulted in reduced serum
Human study in West To determine total serum IgE Ascaris-specific IgE levels. Tuberculin
[65] Cameroon. betore and after induration was found to be inversely
Onehocerca volonelus tuberculosis therapy related to IgE in patients but not
in controls.
» tasa Individuals who received BCG
Hmn:::;u:bf;uk EI Biopli To mvestigate the effect of vaccination and were infected with
hooksorats. Tricluris trickiura intestinal helminths on the helminths had reduced T cell and PPD
[o4] Slmnw;m'ds absnoralia " immune response to PPD m skin test resporses. Increased T cell
Hyn;e;ldtpummand mtunll‘yunmn:nuz.p?:low pmhfrmbonanleNwmmmh'd
Taertia BCG-vaccinated individuals with improved BOG efficacy following
Py
3 " hett Possibly through attenuation of
d::ni: Mﬁmw protective immune responses to
An experimental study in indivi mycobacterial antigens and /or by
g TR viduals have reduced R -
[66] Ethiopia. of BCG vaccine polarizing the general immune nesponses
Schistosom mansoni emu?umpa R :o to the Th2 profile, S. mursoni infection
; reduced the ive efficacy of BCG
uninfected persons Nk wa::;:i st Mib.
In addition to HIV infection, intestinal
Human study in Ethiopia. To study the prevalence of helminth infection may be a risk factor
Ascuris lumbricoides, Hookiorm,  intestinal helminth infections  for the development of active pulmonary
53] Stromglotdes stercorlis, and their association with T.B. This discovery could have significant
Trichuris trichtury, S. munsoni  active TB. in T.B. patients and consequences for the control of
and Emterobius vermiculiris healthy household contacts tuberculosis in helminth-endemic areay
around the world.
This study tested
Human study in Ethiopi anti-helminthic medication 4 N
Trichyrss ln'd:l"um, As;’:: before BCG vaccination to md\mnc iy mﬁzﬁ'ﬁ
&Y lumbricoides, hovkworms, Taenia  determine i it could improve 3 I‘f:.’"“‘"""l TR production but
spp., Hymenolepis nana and BCG vaccination aital Tha P
Entervbins vermiculars immunogenicity in 0 TP
helminth-infected patients

118



3292

3293

3294

3295

Diagrostics 2022, 12, 2676

1of18

Table 1. Cont.
References Pl L’e";h"“‘"&w"' e Study Aim Major Findings
h d:?n‘t;l\ml £ gz?:lw 1d aff Heh-ninkh hfedi«m/npmnr.my reduce
Human study in South Africa.  a child's ability to generate a the immune r:’hlml \ h;’:_“b ’mh,‘m‘ In
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The combination of early secretory
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T.B. immunity response, tofal IgE and cross-placental
transfer of T.B.-specific IgG were all
negatively correlated with maternal
helminth infection.
Human study in Ethiopia. >
Ascuris Dsmbricoides Hook ; . tichehnhnhl_nfadimhu.h
’ : i profound influence on the immunological
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Trichunts trichiura helminth infectionon TB. ™" TP e e
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Table 1. Cont.
References Ty Hj ll 'y m‘;m . Study Aim Major Findings
The decrease in eosinophil counts and
[L-10 demonstrated that asymptomatic
’lto AT E e ctiioul gnd host immunity during tuberculosis and
i immunological outcomes of £ .
179 Human study in Ethiopia. patients coinfected with can be efficiently reversed with
Ascarts lumbricoides albendazole treatment. Helminth
helminths and T.B. after R0 G :
Dicidasale tnea infection has clinical effects on chronic
infectious diseases such as tuberculosis,
and these effects should be
further explored.
To investigate whether
Mib-specific T cell responses 4 .
can be reversibly i ' by A:'Mmh!hxrh;lhnmt unpm;rnrd
5 . treatment of 5. mansonl 9 M O .
1) An animal study in the USA confection, withatt T.B-infected mice, anginase-1-expressing
Schistosonmnt muansoni : 'tm macrophages in the lung formed
aved 'l-c fesm granulomas and
B : *P " ngl exacerbated inflammation,
T.B. control
Despite a systemic increase in FoxP3+ T
. . To investigate whether Mih regulatory cells, neither primary nor
i81] A e A ™ SO jnfection would be modulated  memary immunity conferred by
Heliomosonsodes ot in mice with chranic H, Mywbacterhnnbo\n!!CG\xchuhm
L4 prygynes polygyrus infection were affected in mice with chronic enteric
helminth infection.
To investigate whether In Stromgloides stercovalis-latent T.B.
- 8 helminth modulation of coinfection, anthelmintic therapy
[=2] ; ‘:;:;i)“m M’::' cytokine responses in latent reversed the modulation of systematic
11’4 T.B. coinfection is reversible and T.B. antigen-stimulated
after anthelminthic therapy cytokine responses.

6. Effect of Helminth Infection on T.B. Vaccine

BCG is currently the only T.B. vaccine available; it celebrated its 100th anniversary
in 2021. Alternative vaccines are being developed [%3]. The BCG vaccine is still the only
option for protection against human T.B,, and it is inexpensive, safe and widely available.
BCG effectiveness against T.B., however, varies in the high helminth-burden areas of the
world [S$3]. Children are typically given the BCG vaccine. A review reported that BCG
could provide protection against severe forms of T.B., including meningitis and miliary [84].

The BCG vaccine is administered to more than 80% of all newboms and babies in
countries where it is included in the national childhood immunization program; however,
it does not prevent the development of latent tuberculosis or the reactivation of pulmonary
disease in adults [35]. BCG has been reported to be less effective in T.B.—coinfected individ-
uals living in helminth-endemic areas [64]. However, another study reported no difference
in BCG vaccination status and tuberculin skin testing (TST) responses in patients with or
without T.B. and helminth coinfection [67].

An Ethiopian study found that helminth infection influenced BCG vaccination out-
comes, and PPD-specific cellular immune responses improved in helminth-treated indi-
viduals compared to untreated controls [64]. Deworming was shown to boost the efficacy
of BCG immunization in this randomized experiment [61]. In addition, it was found that
the BCG vaccination of PPD-negative individuals in a helminth-infected population in
Ethiopia had poor immunogenicity, and they concluded that this was due to a high Th2
bias in immunological responses caused by chronic helminth infection [64].
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Furthermore, in another study, 5. mansom was found to reduce the protective efficacy
of BCG vaccination against Mth, possibly by attenuating protective immune responses to
mycobacterial antigens and polarizing general immune responses to a Th2 profile [66].

Th2-like IL-10 responses elicited by intestinal helminths may interfere with Thl-
like IFN responses induced by BCG, altering the protective immune response to BCG
vaccination [36]. The impact of helminth infection is due to the antigen-specific modification
of cell-mediated immunity, and the diminished efficacy could be owing to impaired immune
responses to recall antigens [87].

Furthermore, helminth infection during pregnancy has been shown to persist into
childhood and shift immunity away from Th1 responses, which are required in T.B. infection
and vaccination |72]. Chronic helminth infections increase susceptibility to T.B. infections
requiring Thl responses and also lead to impaired efficacy of the BCG vaccine [30,88).

While there is mounting evidence that helminth prophylaxis could have a role in
combating the HIV/AIDS and T.B. pandemics [89], observational research and randomized
controlled trials have not revealed a uniform clinical picture. Deworming programs may
help to enhance community-based health measures such as proper sanitation, access to clean
water and adequate education [90]. More intervention research is required to demonstrate
the impact of deworming on tuberculosis disease progression.

7. Helminth and T.B. Coinfection-Immune Mediated Pathology

The typical immune response to helminths, characterized by decreased [FN-y, reduced
T cell proliferation and IL-2 as a result of increased Th2 /Treg cytokines, attenuates a potent
anti-tuberculosis IFN-y immune response and therefore uncontrolled T.B. pathology [15].
Furthermore, the helminth-induced expansion of AAMs and nitric oxide synthase sup-
pression could also contribute to the impaired intracellular killing of T.B. in macrophages,
thereby enhancing T.B. disease process [15]. In addition, the helminth-induced anergy of
cognate and bystander T cells and increased apoptosis further impair T.B. responses and
increase the pathogenesis [585].

8. Effect of Deworming during T.B.-Helminth Coinfection

The effects of deworming can be used to determine the impact of helminth infections.
It was shown that the use of anthelminthic drugs to treat patients with helminths resulted
in increased T cell proliferation and IFN-y production of PBMC stimulated with PPD. The
study showed that T cell responses to PPD were improved in filarial-infected patients
treated with diethylcarbamazine [55,65).

The treatment of helminth-infected patients with albendazole during BCG vaccination
increased proliferative and IFN-y responses to PPD, suggesting that persistent helminth
infection during BCG vaccination may contribute to a decreased T cell response to my-
cobacterial antigens. This meant that removing helminths via anthelminthic treatment
would reduce Th2 cell and cytokine inhibitory effects on Thl responses [V1].

Toulza et al. found that anthelminthic therapy altered antimycobacterial immune
responses in UK. migrants. Patients with helminth infection had a higher frequency of
CD4 + Fox P3 + T cells (Tregs) and a lower frequency of CD4 + IFN-y + T cells, but these
effects were reversed after treatment [65].

Another study in Gabon found that anti-helminth treatment with praziquantel against
Schistosoma infection resulted in a significant decrease in CD4 + Fox P3 + T cells after
treatment [92]. Since helminth infections cause widespread immunological alterations
that revert to normal after the helminth infection is eradicated, their role in the interaction
between their host and other pathogens could be substantial [93].

From the above, it is apparent that concurrent helminth and T.B. infections have
demonstrated various effects on the host. These reactions could be due to different helminth
species, their location in the body, different life cycles, variable (excretory /secretory) E/S
products and Mib infection. The virulence and infection route of the mycobacterial strain
may also contribute.

121



3303

3304

3305

3306

Diagmostics 2022, 12, 2676 140618

Some in vitro studies have been reported to have shown that helminth infection
affects Mth infection in terms of immune response and disease severity, but the clinical
and treatment outcome is unknown, possibly due to underpowered studies, the type or
intensity of the infecting helminth and the various methodologies used to detect helminth
infection [15].

9. Concluding Remarks

Concurrent helminth infection and T.B. both produce anlagonistic immune responses.
Helminths have the potential to impair the host’s ability to respond to bystander infections
such as T.B. Helminth and T.B.'s spatial overlap may impair the host’s ability to respond to
mycobacterial conditions. Thl responses are required for T.B. immunity, whereas helminths
mount an opposing Th2 response, which tends to dominate and thus skew the immune
response. Furthermore, chronic helminth infections impair innate and adaptive immune
responses to T.B. and induce immunoregulatory responses, lowering T.B. immunity even
further. However, whether these opposing immune responses in helminth and T.B. coinfec-
tion affect pathological outcomes is unclear.

In helminth-endemic areas, it is suggested that chronic helminth infections reduce
the efficacy of BCG, the currently available T.B. vaccine. There is conflicting evidence
regarding the effectiveness of regular anti-helminth medication in the treatment of T.B._, and
this requires further investigation. Clarification of the effect of deworming in concurrent
helminth-T.B. infections may aid in the development of government treatment policies.
Since vaccines can prevent T.B. infection, the co-occurrence of helminths and T.B. must be
considered when developing new vaccines and conducting research on them. Finally, more
research is needed to understand better the effects of multicellular coinfecting pathogens

on immune responses.
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Abstract: Background: Helminth infections are widespread in tuberculosis-endemic aneas and are
associated with an increased risk of active tuberculosis. In contrast to the pro-inflammatory Thl
responses elicited by Mycobacterium tuberculosis (Mtb) infection, helminth infections induce anti-
inflammatory Th2/Treg resp A robust Th2 resp has been linked to reduced tuberculosis
protection. Se\'cfal studies show the effect of helminth infection on BCG vaccination and TB, but
the mech in unclear. Aim: To determine the cytokine response profiles during tubercu-
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losis and intestinal helminth coinfection. Methods: For the in vitro study, lymphocytic fjurkat and
monocytic THP-1 cell lines were stimulated with Mtb H37Rv and Asceris lembricoides (A lumdiri-
cutdes) excretory-secretory protein extracts for 24 and 48 h. The pilot human ex vive study consisted
of participants infected with Mth, helminths, or coinfected with both Mtb and helminths. There-
after, the gene transcription levels of IFN-y, TNF-o, granzyme B, perforin, 1L-2, IL-17, NFATC2,
Eomesodermin, IL-4, IL-5, [L-10, TGF-§ and FoxP3 in the unstimulated /uninfected « ls, singly
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stimulated/ infected and costimulated /comfected groups were determined using RTqPCR. Results
TB-stimulated Jurkat cells had significantly higher levels of IFN-y, TNF-a, granzyme B, and perforin
compared to unstimulated controls, LPS- and A. lumbricosdes-stimulated cells, and A. lumibricoddes
plus TB-costimulated cells (p < 0.0001). 1L-2, IL-17, Eomes, and NFATC2 levels were also higher in
TB-stimulated Jurkat cells (p < 0.0001). furkat and THP-1 cells singly stimulated with TB had lower
IL-5 and 1L~ levels compared to those singly stimulated with A. Jumbricoides and those costimulated
with TB plus A, lumbricoides (p < 0.0001). A. lumbricoides-singly stmulated cells had higher 114
levels compared to TB plus A. lumbricoddes-costimulated Jurkat and THP-1 cells (p < 0.0001). TGF-p
levels were also lower in TB-singly stimulated cells compared to TB plus A. lumbricodes-costimulated
cells (p < (L0001). 1L-10 levels were lower in TB-stimulated Jurkat and THP-1 cells compared to TB
plus A. Jumbricoides-costimulated cells (p < 0.0001). Similar results were noted for the human ex
vivo study, albeit with a smaller sample size. Conclusions: Data suggest that helminths induce a

dominant Th2/Treg which may downregulate critical Thl nesponses that are crudal for
mbettul(m protection.

T

Keywords: Mycolwcterium tuberculoss H37Rv; Asairis lumbricoides excretory-secretory proteins; Jurkat
cells; THP-1 cells; human tuberculosis and helminth co-infection; cytokine gene transcription levels

Microongamisees 2023, 11, 1846, hitps:/ / dol.org / 10.33%) / microorgantsms1 1071846 hitps:/ / www.mdpl.com,/ joumal /microonganisms.

127



3325

3326

3327

Micrvopanizns 303, 11, 1846

2cd21

L Introduction

Tuberculosis (T8) infection is caused by Myobacterizm tubercilosis (Mtb), a significant
global health challenge and one of the deadliest diseases caused by a single infectious
agent [1] Ten million TB cases and 1.4 million fatalities were reported globally in 2020 {1].
Furthermore, a quarter of the global population is latently infected with TB [1]. A competent
immune system contains the TH infection in an asymptomatic /latent state. However, there
are underlying factors in 5-10% of hosts that may lead to the development of active TB
from latent infection [1,2).

Helminths infect 1.5 billion people worldwide, and Ascaris lumbricoudes (A. lundri-
coides), the most prevalent hedminth, infects an estimated 807 million-1.2 billion people
worldwide [3]. Humans are infected through ingestion of embryonated A. lombricoides
exgs containing larvae [1]. The hatched larvae enter the circulation and migrate to the
lungs causing pneumonitis and eosinophilia [3]. Larvae mature further in the lungs (10 to
14 days), penetrate the alveolar walls, ascend the bronchial tree to the throat where they
are coughed up and swallowed, thereby re-entering the gastrointestinal tract where they
mature in the small intestines [3]. There is a significant geographic overlap between TB
and helminth infection, particularly in low and middle-income countries (LMICs), with
20-35% of people being co-infected [4]. The impact of helminths on cell-mediated immu-
nity has been the subject of numerous investigations [5-9). However, it is still unclear
if parasite infection s associated with TB activation from a dormant condition to active
disease development [5].

An efficent T-helper type 1 (Thl)/pro-inflammatory response is required to con-
trol intracellular Mtb [7,10]. The Thl/pro-inflammatory response = characterised by the
production of interferon-gamma (1IFN-y), tumour necrosis factor-alpha (TNF-a), and in-
terleukins (IL-1, IL-6 and 1L-12) [11]. In contrast, helminths skew the immunity towards
a predominant T-hedper type 2 (Th2)/anti-inflimmatory and Regulatory (Treg) response,
leading to the release of 114, 1155, IL-9, 1L-10, IL-13, and transforming growth factor-
beta (TGF-§) [10,12]. These two arms of immune responses counter-regulate each other.

ently, helminths have been shown to reduce Bacille Calmette-Guerin (BCG) im-
munogenicity [13,14], weaken Mtb-specific Thl responses, downregulate co-stimulatory
molecules [15], induce anergy |16}, and reduce treatment response, particularly in pul-
monary TB [17,35],

However, in some studies, helminths were demonstrated to have no impact on human
tuberculin skin tests [19], Mtb infection [20], or the improvement of TB disesse manage-
ment [20]. Therefore, reports on TB immune responses in cases of helminth coinfection are
variable and dependent on the infecting parasite and the type of study [£,9.21]. Studies
involving Nippostrongyius brastliensis (Nb) and mycobacterial coinfection in mice yielded
divergent findings on Mtb growth control. One study determined that mycobacterial
clearance in the lungs of tuberculosis and Nb-coinfected mice was not delayed and that the
helminth-induced Th2 responses do not exacerbate tuberculoss infection [22). It was also
reported that early-stage Nb infection increased macrophage production, which confers
protection against subsequent stages of mycobacterial disease [23]. Conversely, another
study reported that mycobacterial burden was higher in tuberculosis and Nb-coinfected
mice and that these animals had reduced resistance to TB infection [24). In human studies,
A. lumbriciides infection was associated with negative tuberculin skin tests in children,
suggestive of poor tuberculosis immune response [25,26].

Therefore, the effect of different helminth species and their antigens on immunity,
particularly on macrophages, the primary effector cells in tuberculoss infection, remains
unclear Hence, the present study compared the cytokine immune responses in human THEP-
1 and Jurkat cells stimulated with and without coincident tuberculosis and A lumibricoides
antigen to simulate coinfection. The study was also extended to humans to determine the
cytokine immune responses in ex vivo data. The detailed abbreviations and definitions
used in the paper are listed in Table 1,
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Table 1. List of abbreviations and acronyms wsed in the paper.

Abbreviation Definition
ATCC Amencan Type Culture Collection
A, lumbricoides Ascaris lumbricoides
BCG Bacille Calmette-Cuerin
Eomes Eomesodermin
Esp Excretory-secnetory protedn
FoxF3 Farkhead box '3
GAPDH Glyceraldehyde 3 diphosphate debydrogenase
IFN-y Interferon-gamma
L Intedeakin
Lrs Lipopolysacchande
MUC Magor histocompatibility complex
Mt Mycobacternon tuberculvsis
Nb Nippostrongwus brasiliensss
NFATC2 Nuclear factor of activated T-cedls
0ADC QOleic acid albumin dextrose catalase enrichment
RT-qPCR Real-time quantitative polymerase chain reaction
SA South Africa
TCFp Transforming growth factor-beta
Thi Tohel rpe 1
Th2 T-hdpupa gl; 2
TNFa Tumour necrosis factoralpha
Treg Regulatory T cells
2 Materials and Methods

21. Part 3: In Vitro Stuilies
21.1. Bacteral Cultures

The H37Rv strain of Mtb (bacterial strain number 25618) was purchased from the
American Type Culture Collection (ATCC) through Thistle QA Laboratory Services Cein
Johannesbung, South Africa (SA). H37Rv was cultured to Jog phase at 37 *C in 5% COy
in Middlebrook 7H9 broth with 0.05% Tween-80 and 10% oleic acid albumin dextrose
catalase enrichment (OADC) (Becton Dickinson). Colony-forming units were counted by
serial dilutions on Middlebrook agar plates. The protein concentration of the H37Rv was
determined using the Bradford assay [27] and an optimal concentration of 5 ug/mL was
used for cell stimulation. Cells wene preserved in I mL aliquots at —50 °C until further use.

21.2. Helminth (A. lumbricoudes) Excretory-Secretory Protein Extracts
Whole worm excretory-secretory protein (ESP) extracts of A, lumbricoules, kindly
domated by Prof William Horsnell, were prepared and supplied by the Division of Im-
, Department of Pathology from the Faculty of Health Sciences at the University
olCapeTuwn SA. Adult worms were obtained from patients from the Red Cross War
Memorial Children’s Hospital (Cape Town, South Africa), and were used to acquire A
lumbricoides excretory proteins. The A lumbricoides excretory proteins were obtained by
keeping the worms alive at 37 °C in Dulbecco modified essential medium with 1% Pen-strep
(Thermofisher Scientific, Waltman, MA, USA), and 1% glucose (rof /ool). The media was
collected three times a day. Using Amicon ultra concentrator, extract proteins werne concen-
trated and resuspended in 5 mL of phosphate-buffered saline (Merck). All antigens wene
measured for protein content with a BCA protein estimation kit (Thermofisher Scientific) or
by using the Bradford assay previously described [27] and stored at —80 “C at a standard
concentration of 500 pg/mL until further use.

2.1.3. Cell Culture and Treatment

Human monocytic THP-1 (lot number: TIB-202) and lymphocytic Jurkat (lot number
TIB-152) cells were purchased from the ATCC by Thistle QA Laboratory Services Ce
in Johannesburg, SA. The cells were maintained in 25 cm” cell cultune flasks containing
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Roswell Park Memonial Institute {RPMI) supplemented with 2 mM L-glutamine, 5% HEPES,
100 U /mL penicillin, 100 pg/mL streptomydn, and 10% foetal bovine serum (FBS) at 37 °C
in a humidified atmasphere of 5% COa.

Thereafter, the Jurkat and THP-1 cells were aliquoted into the 24 well multi-well plates
in 1 mL aliquots (>1 % 10°) and unstimulated or stimulated with either lipopolysaccharide
(LPS) (Thermofisher—catalogue number 00-4976-93), Mtb H37Rv, or A. [imbricosdes ESP
extracts. The unstimulated cells served as the negative control group, the LPS-stimulated
group received 1 mg/ml LPS and served as a positive control, the A, linmbricoides-singly
stimulated group were stimulated with 5 u/mL of A. lumbriceides excretory protein extracts
only, the Mtb=ingly stimulated group were stimulated with 5 pg/mL of Mtb H37Rv anly,
and Lastly, the costimulated group were co-stimulated with both 5 pg/ml of A lumbricontes
excretory protein ESP extracts and 5 pg/mL of Mtb HI7Rv. Two independent experiments
were set up in triplicate. Thereafter, the unstimulated /stimulated Jurkat and THP-1 cells
were incubated for 24 or 48 h at 37 “C. At the end of the incubation period, the cells were
collected, stored in Trizol™ (Invitrogen; Thermo Fisher Scientific, Inc. catalogue 1559%026)
and stored in the —8{ "C freezer for RNA extraction and gene transcription levels studies
using Quantitative PCR.

2.1.4. Real-Time-Quantitative PCR (RT-qPCR)

RNA was extracted from unstimulated /stimulated Jurkat and THP-1 cell lines using
the Trizol® reagent (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA, cata-
logue 15596026) and the Pure Link™ RNA Mini Kit (Thermofisher Scientific, catalogue
number 12I83018A). The total RNA had to be DNA-free, therefore Pure link® DNase treat-
ment at 80 ul. per sample was used. The DNase treatment included 88 ul. DNase buffer,
110 pL resuspended DNase, and 620 pl. RNase-free water. The prepared DNase mixture
was added directly onto the surface of the spin cartridge membrane, incubated at 15 min,
washed with buffer, ethanol was added, and the cartridge was spun. RNase-free water was
added to the spin cartridge and incubated for 1 min. The spin cartridge was spun with the
recovery tube. The RNA preparation was added to a Nanodrop 2000 spectrophotometer
(Thermofisher Saentific) to check for purity and concentration. Theneafter, the solated RNA
was reverse transcribed to cDNA using the High-Capacity cDONA Reverse Transcription
Kit with RNase Inhibitor (Thermofisher Scientific, catalogue number 4374966}, as per the
manufacturer’s instructions and reaction protocol. The Nanodrop 2000
(Thermofisher Scientific) was used to quantify the total cDNA. The cDNA samples with an
optical density at 260,280 nm (0D r35;) >1.8 were used for RT-gPCR.

The Applied Biosystems Quant Studio 5 PCR instrument and software (Thermofisher
Scientific, Waltham, MA, USA) were used to determine the transcription levels of the
cytokine genes of interest listed in Table 2 in the unstimulated {control cells), tuberculosis-
stimulated, A Jumdbricoides-stimulated, LPS-stimulated, and A. harbricoides and tuberculosis-
co-stimulated cells.

The PCR master mix was prepared by addmg 5 ul. PCR-grade water (Thermofisher
Scientific, catalogue number 10977023}, 050 pl. FAM-labelled cytokine probe mix (Ther-
mofisher Scientific) (Table 2), 2.50 ul. Fast Start 4 x probe master mix (Thermofisher, cata-
logue number A15300) and 2 pl. cDNA to make a total of 10 L. per sample. Glyceraldehyde
3-diphosphate dehydrogenase (GAPDH) was used as a housekeeping gene. 'CR-grade
water (Thermofisher Scientific, catalogue number 10977023), instead of cDNA, was used as
a negative control.
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Table 2. FAM-labelled cytokine probe mix purchased from Thermodtsher Scientific and their cor
responding catalogue number. The cytokines and transaription factors were chosen based on the
mmmune response—{Th-1 and Th-17 cytokines and transcription factors (INF-y, TNF-a), [12, ILL7,
Granzyme B, perforin, NFATC2 and Eomes}, Th-2 (IL-4, IL5), Regulatory cytokines and transcription
factors (TGF-B, IL-10 and FoxP3)}.

Cytokine Gene Thermofisher Catalogue Number
Glyceraldehyde 3-phasphate dehydrogenase (CAPDH) (housekeeping gene) Hs99999905_m1
Interfercm-gamma (INF-y) HeO0989291_m1
Tumous necrosts factor-alpha (TNF-x) He00174128 _mt
Granzyme B Hs00188051_m1
Perforin Hu0169473_m1
Interfeukin.2 (IL-2) He0174114_m)
Interleukin 17 {IL-17) He01056316_ml
Nudear factor of activated T-oells 2 (NFATC2) He0OXB451_mt
Eomesodermin (Eomes) Hs00172872_m1
Interleukind (IL4) H=00174122_ml
Interleukin 5 (IL-5) Hs99959031 _m1
Interleukin 10 (IL-10) Hs0061622_mi
Transforming growth factor beta (TCF-§) H00234244_mi
Forkhead box P3 (FoxP3) Ha01088838 _m1t

The PCR was performed at 95 “C for 1 min, followed by 45 cycles comprising denatu-
ration at 95 “C for 30, annealing at 60 °C for 30 s and extension at 72 C for 30 s. All PCR
reactions were run in duplicate. Data werne collected using the Applied Biosystems Quant
Studio 5 V.2.3 software {Thermofisher Scientific, Waltham, MA, USA).

Serial dilutions of pooled cDNA synthesised from the total RNA werne performed for
cach target gene and GAPDH, which served as standard curves for quantitative analysis,
ranging from 1 ng/ ul to 1000 ng/ul. Gene transcription levels results were depicted as the
transcription levels of the gene of interest divided by the transcription levels of GAPDH.

2.2, Part B: Human Ex-Vivo Experiment

The Th-1, Th-17 and Treg cytokine gene and transcription factor's transcription levels
study were also piloted for human ex-vivo experiments to compare the human and in vitro
cytokine profile results. The current analysis is a sub-study of a previously described
cohort of 414 individuals recruited from 6 primary healthcare clinics in a peri-urban, poor
settlement in the eThekwani district of KwaZulu-Natal [25]. In this study, cytokine analysis
was undertaken for 164 participants; of those, 96 were HIV-infected and had to be excluded,
leaving 68 eligible participants. Thereafter, the eligible individuals were subdivided into
uninfected controls (no helminth or TB) (n = 18), helminth-singly infected only (r = 35),
TB-singly infected oaly (n = 6), and TB and helminth-co-infected (r = 6) groups.

Stool samples were collected for microscopical detection of helminth eggs /larvae using
the Kato-Katz and Mini Parasep methods. Blood samples were also collected for parasite
serology (A. lumbricoulesspecific IgE and IgGd) to improve the sensitivity and specificity
of parasite detection [29]. TB diagnosis and confirmatory results were obtained from the
district hospital hbonwwthatsen'iu:thedinicswha!puﬁcipanuwuemcndmd. The
sputum was analysed using the GeneXpert Infinity 48 & (Catalog number: Infinity~48),

Whaole blood samples (4 mls) collected from the recruited participants were also
stored in Trizol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.) at —80 "C for RNA
extraction and RT-qPCR-based gene transcription levels studies as described for the in vitro
experiments above.
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23, Statistical Analysis

A standard curve method was used to calculate gene transcription levels, whereby
the transcription levels of the target gene were divided by the!nmmphm levels value
of the housekeeping gene (GAPDH). Values were d as medians. All cytokine
pene transcription levels data were analysed using Gmphl’ad Prism 5 (GraphPad Software,
Inc., San Diego, CA, USA) statistical software package. For the in vitro and human ex
vivo studies, analysis of varance (ANOVA) or the Kruskal-Wallis test with Tukey or
Dunn’s Multiple Comparison was used to assess for statistical significance in cytokine
gene transcription levels profiles between the different groups (uninfected / unstimulated
controls, singly infected /stimulated and coinfected / costimulated groups). Thereafter,
the Mann-Whitney or Student’s -test was used to cakulate the p-value between the two

groups. All data presented in figures below are expressed as the median and interquartile
range. A p < 0.05 was considered statistically significant.

3. Results
3.1 Part 1: In Vitro Study

Profiling of cytokine and transcription factor gene transcription levels was performed
wsing THP-1 and Jurkat cells to investigate whether TB stimulation would upregulate
pre-inflammatory and Thl cytokines and whether A. lumbricaides comfection would down-
regulate these. Furthermore, it was aimed to determine whether A, bonbricoides would
upregulate Th2 and regulatory cytokines.

3.1.1. Th1/Pro-Inflammatory Immune Responses

Cytokine gene transcription levels levels in unstimulated and stimulated human cell
lines are summarised in the figures below, showing a significant increase of Th1/pro-
inflammatory cytokine genes after TB stimulation.

IFN-y and TNF-x (at both 24 and 48 h stimulation time points), granzyme B (24 h
stimulation only) and perforin (48 h stimulation only) levels were significantly higher in
the TB-singly stimulated Jurkat cells compared to the unstimulated controls, LPS- and A.
hombricontes-singly stimulated Jurkat cells, and A. lumibricoides plus TB-costimulated Jurkat
cells (p < 0.0001) (Figune 1). Similar results were noted for the THP-T stimulated cells, apart
from perforin, where similar findings were noted at 24 h and 48 h (Figure 2).

1L-2, IL-17, Eomes, and NFATC2 (at both 24 and 48 h stimulation) were significantly
higher in TB-singly stimulated Jurkat cells compared to the unstimulated controls, LPS-
and A. lumbricoides-singly stimulated Jurkat cells, and TB plus A. lumbricondes-costimulated
Jurkat cells (p < 0.0001) (Figure 3). Similar findings resulted from tests on THP-1 cells
(< 0.0001) (Figure 4).

312 Th2/Anti-Inflammatory, Immune Respanses

Type 2 cytokine responses after stimulation of cell lines in Figure S show that both IL-4
and IL-5 were increased after A, lumbricodes-antigen stimulation of both cell lines.

1L-5 (24 and 48 h stimulation) levels were significantly lower in the TB-singly stimu-
lated cells compared to the A. fumbricosdes-singly stimulated and TB plus A. Jumbricoides-
costimulated Jurkat and THP-1 cells, which had similar transcription levels (p < (.0001).
Similar fisdings were noted for IL-4; however, the A, lumbricostes-singly stimulated cells
had significantly higher [L-4 levels compared to the T8 plus A, lumbricoides-costimulated
Jurkat (43 h stimulation) and THP-1 celis (24 and 48 h stimulation) (p < 0.0001).

132



3332

3333

Micswwganions 2023, 1), 1846

Tolll

Jurhat cells 24 Hes

< 0.0001

£XANC01 9 <00MY
g hx
2
z

Jurkat cells 24 Hrs
g b P [o’é.l”;qm
:

#2000
g —

"?::f

Px

TNF - /GAPDH

ite
PO P
Ay

W A

P N

e by

Figare 1. Transcription levels data for IPN-y, TNF-o, granzyme B, and perforin are shown for
Jurkat cells at 24 and 45 h time points. The unstimulated control cells and LPSstimulated cefls were
negative and positive controls, respectively. (A) IFN+y leveds for Jurkat cells stimulated for 24 h,
(B) IFN-y levels for Jurkat colfls stimulated for 8 h, (C) TNFex levels for Jurkat cells stimulated foe
24 h, (D) TNF-ax leveds for Jurkat cells stimulated for 48 h, (E) granzyvme B levels for Jurkat cells
sttmulated for 24 b, (F) granzyme B levels for Jurkat cells stimulated for 48 h, {G) perforin levels for
Jurkat cells stemulated for 24 h, and (H) perforin levels for Jurkat cells stimulated for 48 b
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Figure 2. Transcription level data foe IFN-y, TNF-a, granzyme B, and perforin are shown for THP-1
cells at 24 and 48 h time points. The unstimulated contral colls and LPS-stimulated cells were negative
and positive cantrols, respectively. (A) IFN-y levels for THP-1 cells stimulated for 24 b, (B) IFN-y
levels for THP-1 cells stimulated for 44 b, (C) TNF.a levels for THIM L cells stimulated for 24 h,
{D) TNF-a levels for THP-1 cells stimvulated for 48 b, (E) granzyme B levels for THP-1 cells stimulated
for 24 b, (F) granzyme B levels for THP-1 cells stimulated for 48 h. (G) perforin levels for THP-1 cells
stimulkated for 24 b, and (H) perforin levels for THP-1 cells stimulated for 45 h
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Figure 3. Jurkat cell e resp for Thi /pro-nil tory (IL-2 and 1L-17) and transcription
factors (Eomes and NFATC2) at 24 and 24 h time paints. The unstimulated i cells and LPS
stimulated cells were negative and positive controls, respectively. (A) IL-2 levels for Jurkat cells
stimulated for 24 h, (B) 1L-2 levels for Jurkat cells stimulated for 48 b, (C) 1L-17 levels for Jurkat
cells stimulated for 24 h, (D) IL-17 levels for Jurkat cells stimulated for 48 h, (E) EOMES levels
for Jurkat cells stimulated for 24 h, (F) EOMES~trarscription levels for Jurkat cells stimulated for
48 h, (G) NFATC2 levels for Jurkat cells stimulated for 24 h, and (H) NFATC2 levels for Jurkat cefls
stimulated for 48 h
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Figure 4. THI*1 cell line resp for Thi/pro-infl v {IL-2 and IL-17) and transcription
factors (Eomves and NFATC2) at 24 and 48 h timwe points. The unstimulsted control cells and LPS-
stimulated cells were negative and positive contols, respectively. (A) IL-2 levels for THP.1 cells
stimulated for 24 b, (B} IL-2 levels for THP1 cells stimulated for 48 h, (C) [L-17 levels for THP-1 cells
stimulated for 24 h, (D) IL-17—transcription levels for THP-1 cells stimulated for 48 b, (E) EOMES
levels for THI1 cells stimulated for 24 b, (F) EOMES levels for THI™1 cells stimulated for 48 h,
(G) NFATC2 lewels for THI™1 cells stimulated for 24 h, and (H) NFATC2 levels for THP-1 cells
stimulated for 38 h.
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Figure 5. L4 and IL-5 responses in TB, A lwmbricondes, and dually stimulated furkat and THI1
cells at 24 and 48 h time points. (A) 1L kevels for Jurkat cells stimulated for 24 h, (B) 1L levels
for Jurkat cells stimulated for 48 b, (C) IL-4—devels for THP-1 cells stimulated for 24 h, (D) L4
levels for THP-1 cells stimulated for 48 h, (E) IL5 leveds for Jurkat cefls stimulated for 24 h, (F) IL-5
levels for Jurkat cells stimulated foe 48 b, (G) IL-S levels for THP-1 cells stimulated foe 24 h, and
{H) IL-5-transcription Jevels for THP-1 cells stimulated for 48 h
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3.1.3. Regulatory Cytokines

Figure 6 illustrates regulatory cytokine transcription levels in the cell lines In both
Jurkat and THP-1cells, both A. limbricoides and A. lumbricoddes plus TB stimulation signif-
icantly increased TGFS and 1L-10 transcription levels at 24 h and remained high at 48 h
in A. lumbricoides-stimulated cells. FoxP3 was increased in both A. lumbricoufes and TB-A.
lunrhricoddes stimulation in both cell lmes and at both ime points (24 and 48 h).

TGF-p levels were significantly lower in the TB-singly stimulated Jurkat cells (24 h
stimulation) compared to the TB plus A limbricoides-costimulated cells, however, the
opposite trend was observed for THP-1 cells (24 h stimulation) (p < 0.0001). Conversely,
no significant differences were noted in Jurkat and THP-1 cells (48 h stimulation) between
the TB-singly stimulated and TB plus A. lumbricoides-costimulated cells. 1L-10 levels were
significantly lower in the TB-stimulated Jurkat (24 and 48 h stimulation) and THP-1 (24 h
stimulation) cells compared to the TB plus A lumbricoid imulated cells (p < 0.0001).
FoxP3 levels were also significantly lower in the TB-singly stimulated Jurkat and THP-1
cells (24 and 48 h stimulation) in comparison to the TB plus A. lumbricoides-costimulated
cells (p < 0.0001). (Figure 6).

3.2, Part 2: Hummn Ex-View Experiment Results

A total of 414 participants were recruited in the main study [29]; of those, a subpopu-
lation of 164 were eligible for cytokine gene transcription level analysis, based on blood
sample availability. However, 96 were HIV-infected and were excluded, leaving 68 eligible
participants. Of the eligible participants, 18 were uninfected and were used as controls;
35 were helminth-infected (24 were infected with A lumbricoades, 3 Trichurts trichiura, 3
Titeria spp., 3 Scfistosoma spp., and 2 had Stnmyglyloides spp.), 6 had T8, and another 6 had
TB and helminth (3 had A. lumbracoides, 1 Sclastosuma spp., 1 Trichurns trichiura and 1 with
Taera spp.) coinfection.

Regardless of the small sample sizes for these two groups, the Thl/pro-inflammatory
cytokines (IFN-y, TNF-a, granzyme B, [L-2, and IL-17), critical cytokines for TB, were
significantly higher among the TB-singly infected mdividuals compared to the uninfected
controls and helminth-infected groups (Figure 5). In the presence of helminth and TB
coinfection, these cytokines were decreased, although thens was no significant difference
noted betweenthe comfected group and the TBsingly infected group, except for granzyme
B, where the TB and helminth-coinfected group had lower levels compared to the TB-singly
mfected group (Figure 7).

Eomes and NFATC2 were significantly higher in the control group ¢ d to
the coinfected group. Thecmn!ufrdgpralm}udkmaimwNFATC.’lcwls
compared to the TB-singly infected and helminth-singly infected groups (Figure §). 1L-4
and IL-10 responses were varably increased in the helminth-infected individuals. TGF-§
leveds were variably increased i the controls and decreased in TB-singly infected and the
helminth and TB-coinfected individuals. FoxP3 levels also differed between the controls
and the TB-singly infected groups and between the helminth-singly infected and TB-singly
groups. The low number of TB-infected individuals resulted in even lower numbers of the
cuinfected groups, thus making statistically valid analytical comparisons difficult (Figure 9),
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Figure 6. Jurkat and THP1 cell responses for regulatary cytokines (TGF-8, IL-10, and Fox¥3) at
24 and 48 h time points. The unstimulated coatrol and LPS-stimulated cells wene used as iegative
and positive controds, respectively. (A) TGF-§ levels for Jurkat cells stimulated for 24 b, (8) TOF-§
levels for Jurkat cells stimulated for 48 h, (C) TGF4 levels for THP-1 cells sttmulated for 24 h,
(D) TGF- levels for THP-1 cells stimulated for 45 b, (E) IL-10 levels for Jurkat cells stimulated foe
24 h, (F} IL-10 Jevels for Jurkat cells stimulated for 38 b, (G) IL-10 levels for THP-1 cells stimulated for
24 h, (H} IL-10 Yevels for THP-A cells stimulated for 48 by, (1) FoxP3 levels for Jurkat cells stimulated for
24 b, (]} FaxP3 leveds for Jurkat cells stimulated for 45 b, (K) Food’3 levels for THP-1 cells stimulated
for 24 h, (L) FoxP3 leveds for THP-1 cells stimulated foe 48 h.
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Figure 9. [L4, [L-10, TCE-£, and FoxP'3 gene trunscoiption levels values. (A) IL4 levels, (B) [L-10
levels, (C) TGF- levels, and (D) Food3 levels
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IFN-y, TNF-a, and [L-17 were highest in TB-infected group (albeit, there were only
six individuals). Perforin was similar across all groups, while granzyme B levels dif-
fered between the control and coinfected groups (p < 0.0001), between the hedminth-
infected and coinfected groups {p = 0.0020), and between TB-infected and coinfected
groups (p <0.0001). IL-2 levels differed between the control and the TB plus helminth-
coinfection group (p < 0.0001) and also between the helminth-infected and coinfected group
(p = D.0067).

Eomes levels were higher in the controls than in the TB/ heiminth co-infected (p < (.0001)
and higher in the TB-infected compared to the coinfected individuals (p < 0.0001). NFATC2
levels were significantly higher among the controls compared to the coinfected individu-
als {p = 0.0003) and higher in the helminth-infected than in the TB/ helminth-coinfected
individuals (p = 0.0032).

L4, 1L-10, and TGF-B were higher among uninfected controls and helminth-infected
individuals (albeit there was a wide distribution in values) comparned to the TB-singly in-
fected and coinfected groups (albeit thens was a smalf sample size). TGF-§ was lower in the
TB-singly infected group and the coinfected group, compared to the controls (p = 0.0012and
p < 0.0001, respectively). FoxP3 was significantly lower among the TB-infected compared
to both the control {p < 0.0001) and helminth-infected groups (p = 0.0012).

4 Discussion

The present study aimed to determine the profile of cytokines after stimulation of
monocytic and lymphoid cells with A. Jumbricoides and TB antigens to assess whether
A. lumbricoides infection would decrease the Thl/pro-inflammatory cytokines essential
for TB control and increase the Th2/antfi-inflammatory and regulatory cytokines. The
human ex vivo data were also used to determine the cytokine responses in helminth and
TB infection and in cases of helminth /T8 coinfection. The Thl cytokines werne increased
in TB-stimulated cells/infected individuals and reduced during coinfection. The Th2 and
regulatory cytokines were varably increased in dual infection.

The Thl/pro-inflammatory cytokines, IFN-y and TNF-a, were upregulated in ne-
sporse to TB compared to the A. lumiricoides and coinfection stimulation. This finding
suggests that Thl/pro-inflammatory cytokines are upregulated by TB and reduced in
helminth coinfection, These cytokines ane produced more in pro-inflammatory conditsons
such as TB [7]. The cytokine IFN-y is exsential for protective defence against intracellular
infections. IFN-y is a key modulator of macrophage activation in Mycbactermum tuberculosis
(Mtb) infection [29,20],

TNF-a plays a pivotal role in granuloma formation, which is one of the host’s defence
mechanisms against TB [31]. According to some studies, TNF-o levels are frequently
high i individuals with active TB infection [32,33]. Our analysis also demonstrated a
similar pattern.

The molecules mvolved in the cell-mediated killing of intracellular pathogens in the
pro-inflammatory response included granzyme B and perforin. Granzyme is a serine
protease present in the granules of cytotoxic lymphocytes. Perforin and granzyme work

to kill infected cells or target cells by perforating the cell walls leading to disinte-
gration [3]. Natural Killer (NK) and CDE-paositive cells primarily produce granzyme B
and perforin [34,35]. They attack malignant or infected cells and cause them to undergo
apoptosis [35]. Granzyme B and perforin were both increased at 24 b in the TB-stimulated
cells and reduced at 48 h, suggesting that they induce apoptosis in infected cells during the
carly stages of infection. However, it is crucial to note that more experiments such as tunnel
assays or flow cytometry should be performed to validate these results for granzyme B
and perforin.

The increased levels of 1L-2, [L-17, Eomes, and NFATC2 for both the in vitro and
ex vivo analyses are in keeping with the pro-inflammatory response. 1L-2 is produced
by Thi cells, and it stimulates T-cell proliferation, among other functions. In tumn, Thl
cells produce I1L-2, which has been found to stimulate cytotoxic T lymphocytes and Thl
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Tl

cells during intraceliular pathogen invasion [36,37]. G d to uninfected indivaduals,
p.\hmtsmlhactweTBhavebemdwntnMvehnghlL&cﬁ&hmlntksu&;ahng&m
this cytokine plays a p ive role [38].

lL-l?,an inﬂanunatorycybld:&mk.\xd during the early stages of TB infection,
is suggested to increase the synthesis of chemokines that aid in the recruitment of cells

essential for granuloma f tion [39]. Limiting Mtb growth and immunopathology
caused by increased 1L-17 production requires a balance between Thl and Th17 immune
responses [10]. Overproduction of 1L-17 can & hil recruit t, which can

caue tissue damage [§0]. AThlﬂhWhnlanceumqmudfmanﬁ-mycmdumnumty
and immunological disease prevention [40]. It is notable, then, that the current study
determined that, in vitro and ex vivo, the Th1/pro-infl t ane higher in
TB infection and reduced in helminth infection and TB/helmmlh coinfection cases.

&unulcvd-nmumuzdmoursmd);m!xxhﬂwmwmmdewiomb
in the TB stimulated/ infected group. E was inc d since it plays a role in the
differentiation of cytotoxic T cells [39], which promote the killing of infected cells through
the release of granzyme B and perforin [39], Hence, in our study, Eomes was increased in
both the in vitro and ex vivo experiments in the TB-stimulated /infected groups. NFATC2
ov i nx&nﬂ‘“—asﬂuﬂmﬂlhﬁsﬁuandekdmphﬂicoﬁcnmby
lhmulatmga, is of anti tive and detoxifying enzymes [11]. As expected, pro-

tory /Thl resp were all inc d by TB-antigen stimulation and decneased
during helminth coinfection in our study. Furthermore, the current study suggests that
the A lumbricoides effect of lowering the pro-indl y/Thl cytoki to T8
nmldbedehimhlbmcmuoldurhgﬁandhdminthwinm.

In the present study, the Th2 /anti-: tory cytokines, IL-4 and 1L-5, were higher
mﬁlch:lmmﬂlmkchmandunnftdmnmnunsnmndammmpn!db&eTBshmu-
lation. This is in keeping with the Th2-pred t immune resp produced by the
extracellular helminths. [L-d was increased at 24 h for both cell lines in the A. [umbricoides
and coinfection stimulations; however, this was not sustained at 48 h. The upregulation of
IL-4 was shown by the significant differences between the A lumbricoldss stimulation and
the A. lumbricoufes /TB co-stimulation. High 1L-4 downregulstes [FN-y, which may be dele-
terious for TB control [42]. IL-5- was elevated in the helminth and coinfection group versus
the control group. H:ghlmlsolll.-Samcmmmlv observed in intestinal helminth- and
protozoa-mfected hosts, and it also @ inophilia, anoth manifestation of
parasite infection [43]. The current study confirmed the association between A. [umbriconfes
and Th2 cytokine respanses.

Themgulawrvcybk:mll.lﬂand transcription factor FoxP3, were upregulated in
lhehdmmﬂ:—mh:dndandr infected cells compared to the TB-infected group. The increase

ap«bdm&!umhmdemhdcdhnmhdnﬂnﬂupnlmumwykmmam’
and P [14, \ll].'[rampbonhcbl;!‘oxl’.i was also high for the
cmrmtstudysmwhomdcxmoupenmh. upregulation of FoxP3 in helminth-
and coinfection-stimulated cells concurs with the study that determined that helminths
increase the secretion of TGF, which upregulates FoxP3 and promotes differentiation
of regulatory cells [45]. Regulatory cytokines, such as IL-10, play a suppressive role in
regulating immune homeostasis. Hence, [L-10 levels are higher in helminth infection
since these parasites have mechanisms of evading the to long-
lznnum'nal within the host [46]. lL—lededemumasedm&cA lombricoudes
infection and coinfection groups, suggesting that IL-10 and FoxP3 are upregulated by A
tumbricoides. Dual infection stimulation was done to elucidate coinfection scenarios and
to determine if there is an effect in the up or downregulation of Thi, Th2, and regulatory
cytokines. Regulatory cytokines are high during A, lumbricordes infection and also in
cases of TB/helminth coinfection compared to TB infection. This may be due to the
downmodulation of the i P to TB.

The study d. trated a typical TB response characterized by an increase
in inflimmatory cytokines such as IFN-y, TNF-a, IL-2, and IL-17. However, we did not

L
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use costimulatory molecules such as anti-CD 28 or anti-Cd49d to enhance the stimulation
of the Jurkat cells, since they do not possess antigen-presenting properties. Therefore, the
Jurkat cell response may be suboptimal, due to the exclusion of immuno co-stimulatory
molecules, which is a imitation of this study.

5. Study Limitations

The current study was limited by the small sample sizes in the TB-infected and TB
plus hedminth~coinfected participant groups. Howeves, the limited analysis mirrored what
was found in in vitro experiments, which showed higher pro-inflammatory /Th in the
TB-infected group and lower in the coinfected group. An unexpected, possibly spurious
finding was that some levels of cytokine gene transcription levels levels were highest
among the uninfected controls, such as perforin, NFATC-2, TGF-8, and 1L-10. This may be
because the uninfected controls were only screened for helminths and TB in the laboratory,
while they could possibly be exposed to other bacterial, viral, or other immune-activating
factars that could not be detected during the questionnaire administration that was used in
the main study. The demographic profile of the participants may attest to the possibility of
other immune-activating environmental factors [29] In addition, as alluded to above, the
cell culture experiments in the in vitro studies did not include co-stimulatory molecules
to properly represent the in vivo antigen presentation and processing Therefore, these
results were suboptimal, despite the fact that the main responses typically depicted TB
(Thl/inflammatory) and helminth (Th2/Treg) profiles.

As noted above, there are additional tests, such as flow cytometry and tunnel assays
that could be performed to validate the increase in granzyme B and perfonn.

The gene transcription levels of cytokines in stimulated and unstimulated Jurkat and
THP-1 cell ines are not directly correlated with its production. Therefore, to validate the
gene transcription levels results, further tests such as ELISA needed to be performed.

6. Conclusions

The in vitro findings suggest that pro-inflammatory Thl respanses are increased in
TB infection and reduced in cases of coinfection. The study also determined that anti-
inflammatory Th2 and regulatory cytokines are increased durning single helminth infection
and in TB and heiminth coinfection. The ex vivo data, although limited by the sample size,
also supported the hypothesis that TB increases Thl immune responses and responses to
helminths involve strong Th2 and regulatory cytokines.
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03261 | 3,788 | 360 | 27205 | 2279 | 3.179 | 1981 | 2,390 | 06814 | 4.989 | 230721 | 4298737
259 esa| 866 nl 27 06| 244| os1 913 | o6y
~| 4298 2820 | 29133 | 3244 | 2314 | 2606 | 1971 | 05775 | 3,108 | 4224221 | 2279271
o0 [ 737 346 2| ss7| se3| 17| 204 99 | 827
356
~| %603 | 4077 | L7762 | 2229 | 2387 | 2.621 | 107 | O,7825 | 3,933 | 2389303 | 3244887
otos3 | 9| 7 7| 22| ssi| 37 06 063 18
%93
< | 2307 [ 2273 | 15355 | 4127 | 2447 | L9940 | 2.627 | 02951 | 4.504 | 1544569 | 1981244
04051 21| 146 o8| s 294| a1 | a6 a1 | 033
325
3356
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Gene Expression values — Ex vivo study

1FN-y | TNF- [ 112 IL-17 | 1IL4 s 1L-10 Eome | Granz | Perfo | TGF-§ FoxP3
u - s ymeB | rin
05190 | 2943 | 3538 | 2,198 | 3,178 | 256969 | 2.46286 | 3,001 | 14212 | 1818 | 024072 | 1,2228
164 441 661 43 767 9 2 704 38 129 3439 39
03358 | LII3 | 2965 | 1375 1926 | 211996 | 143776 | 1647 | 00616 | 3250 | 1,06420 | 29192
i 195 631 04 758 6 5 541 4 019 a2 07
L2974 | 4381 | 2905 | 309 | 4,193 | 261283 | 1240011 | 2812 | 03%6 | 4,676 | 079088 | 2.36%
91 172 769 92 833 6 9 15 6 633 7984 32
06367 | 4060 | 2933 | 2,776 | 3851 | 304282 | 215523 | 2,960 | 04045 | 2249 | 134447 | 2,5737
406 491 026 843 695 1 4 711 s7 749 596 83
L3153 | 1309 | 2666 | 3923 | 1826 | 136482 | 275498 | 1322 | 01114 222 | 027698 | 3.357S
63 85 938 942 489 9 i 424 X 649 J411 ()
LO337 | L8S1 | 3,138 | 1436 1502 | 129917 | 122283 | 2269 | 03049 | 2217 | 108354 | 04856
49 734 6403 769 077 1 9 R68 7 039 6708 845
03339 | LAG0 | 4136 | 2,121 | 2311 | 1,59264 | 291920 | 1,345 | 10359 | 4322 | 120007 | 43271
13 34 189 936 924 1 7 Rl 19 372 584 I8
OR657 | 2,517 | 3.694 | 2,168 | 2,532 | 140355 | 236903 | 3381 | 13880 | 4,680 | 175717 | 03722
59 328 532 298 002 5 2 603 91 031 4732 239
03607 | 3321 | 2831 | 2,676 | 3,501 | 274882 | 257378 | 2,373 | 035071 | 3837 | 149714 | 43270
3 666 Y82 748 349 2 3 409 8 501 32449 I8
09026 | 4798 | 3297 | 1,779 | 2,708 | 259296 | 335756 | 1,003 | Q0981 | 3,738 | 1,50747 | 14033
73 204 252 467 819 1 4 ol 384 5 55
02250 | 1966 | 4027 | 2,155 | 1.627 | 103324 | 252635 | 2,684 | 09685 | 2,162 | 089255 | 27488
22 135 983 854 601 3 9 604 a6 665 5446 22
05256 | 0867 | 3778 | 1993 | 2040 | 231257 | 182494 | 1983 | 08409 | 4.633 | 0.29981 | 2.5929
122 4 32 983 32 9 2 0ol 63 A 1376 61
01684 | 4193 | 2555 | 1.966 | 378 230949 | 155169 | 1,246 | 09760 | 4537 | 0.19106 | 177N
533 946 905 83 639 1 4 989 42 966 5367 67
09855 | 4119 | 4248 | 2931 | 2859 | 201351 | 069373 | 2872 | 00982 | 2084 | 126665 | 21558
033 S8R 408 244 531 3 01 575 8 361 4326 54
00685 | 3621 | 3,541 | 1908 | 2608 | 1.98563 23915 | 2,652 | 06436 | 4394 | 0.99986 | 1.9939
31 221 7 866 S77 4 13 9% 615 2521 83
L3669 | 1622 | 3616 | 1,702 | 2951 | [,I2882 | 084962 | 1749 | 00259 | 4213 | 122189 | 20135
36 181 043 161 32 4 76 542 7 203 1273 13
L3770 | 2824 | 2398 | 1450 | 2307 | 220756 | O8B9RT | 1476 | 03965 | 1641 | L44663 | 19856
[ 432 72 194 015 5 42 789 15 653 643 34
15888 | 3867 | 4222 | 3764 | 2761 | 175904 | 275543 | 1432 | 29658 | 4,504 | 1.24363 | 1.128%
3 269 633 908 006 S 0i6 05 033 137 24
09575 | 0017 | 4228 | 2319 | 1333 | 255748 | 223737 | 2,602 | 05134 | 3393 | 140370 | 2.2075
992 861 666 171 SN 1 3 151 92 989 778 65
03413 | L1786 | 2906 | 3204 | 2,153 | 310305 | 223886 | 3,099 | 04195 | 1304 | 1201512 | 1,75%
495 398 144 968 944 6 5 903 4 551 065 As
00169 | 3757 | 3743 | 1646 | 3.132 | 161351 | 215115 | 3,031 | O9IS8 | 3,532 | 080754 | 25574
ORI 952 278 529 3N2 S 5 9319 59 798 2644 81
L5863 | 4397 | 4220 | 1585 3924 | 105993 | 206369 | 1,058 | 32049 | 2921 | 0.17557 | 3,1030
65 863 014 312 43 5 9 215 68 379 3923 56
02083 | 2259 | 3314 | 1470 | 2824 | 154456 | 1.72599 | 2718 | 16465 | 4364 | 009879 | 43978
983 256 526 a4 873 9 ] 11 29 423 008 63
10328 | D088 | 2793 | 1688 | 2044 | 244720 | 179213 | 2,694 | 15853 | 4989 | 031560 | 2.2592
77 29 987 298 4 2 343 12 069 I678 56
06022 | 2307 | 4,153 | 3,744 | 3572 | 044938 | 091585 | 1,292 | 14704 | 3,544 | 0,76797 | Y8770,
69 21 199 96 158 3 9 22 K 24 9358 088
00832 | 4224 | 3362 | 2,126 | 3831 | 138779 | 320496 | 1649 | 16889 | 2174 | 1.72839 | 23072
8BS 221 108 653 186 3 ] 167 87 651 6214 1
04965 | 1319 | 2587 | 1,522 | 2375 | 295736 | 080754 | 2,055 | 37449 | 2,883 | 161515 | 4.2242
56 695 R09 s33 178 3 2644 585 6 809 6395 21
01157 | 2901 | 3805 | 1613 | 4306 | 246595 | 017557 | 2,442 | 21266 | 1.696 | 105666 | 1,3196
32 474 794 235 144 7 3923 668 53 W7 5468 95
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09S6d | 4803 | 3851 1912 | 3,166 LETYTD | 143201 LEZ1 | 2153% | 1GER 056070 | 29014
067 1435 Ek] a7 459 3 6 H4T 44 | KT 5620 T

02903 | 3,788 | LB26 | 2150 | 1R40 | 208326 | 260215 | 2839 | 31373 | 3,74 0.576l% | 4,803
(4 HE4 489 27 26 ] 1 316 721 | 96 G175 45
0usTl | 2691 1512 | 2,129 | 1S540 ( 231351 3099 | 2919 | 39244 | 1126 122608 | 3,7T8BG
1 775 077 &7 1313 9 | 528 3 | 653 GUEH H4
0000 | 1021 | 2311 | LOSE 2,745 LOooLkd | 3R5169 | LRIT 10582 | X K24 DBE&LID | 26917
62 K31 924 | 215 SE8 4 ] 272 15 | E73 79 75
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