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Abstract

The Wigner formalism can be used to provide a representation of quantum dynamics in a classical-
like phase space. However, there are many cases, such as when dealing with spin systems in a
dissipative environment, in which one can more conveniently resort to a partial Wigner repre-
sentation. The quantum propagator in the partial Wigner representation is, in general, a very
complicated mathematical object. However, using a linear approximation, the propagator can be
taken as a basis for describing the dynamics of hybrid quantum-classical systems. Such a hybrid
system is composed of a quantum subsystem interacting with a coupled environment subsystem
which evolves under classical-like dynamics represented in the Wigner phase space. In studying
these hybrid dynamics it becomes apparent that, for a general environment system, there exists a
series of quantum correction terms that restore the hybrid equation to exact quantum dynamics.
Thus it is these correction terms that influence the existence of quantum effects in the dynamics
of the environment subsystem and could therefore provide unique dynamical signatures indicating
the existence of quantum effects. With the above motivation, we have derived an analytical ex-
pression for the quantum propagator, including correction terms, in the case of position-dependent
couplings and polynomial-potential environment systems, and we have studied, numerically, the
resulting quantum dynamics in a few relevant cases through comparison of quantum-classical and
quantum-corrected evolutions. The type of system chosen for numerical study consisted of a
two-level, or pseudo-spin, quantum system coupled to an environment represented by a quartic
potential. It was found that the Rabi oscillations of the pseudo-spin are sensitive to the quantum
corrections in a certain range of parameter values, either exhibiting stronger damping or stronger
oscillations, depending on the tunnelling behaviour introduced by the corrections. If one were to
interpret the pseudo-spin as a Cooper-pair box and the polynomial potential as representing the
oscillatory behaviour of a buckled nano-rod, then this works suggests that one might be able to
witness the transition of a non-linear nano-oscillator from the realm of classical dynamics to the
quantum regime by observation of the pseudo-spin Rabi oscillations.
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Chapter 1

Introduction

The study of condensed matter systems with many interacting degrees of freedom is fraught with
complexity. Strong interactions often prevent the use of perturbation-type treatments and the
dynamical equations seldom admit analytical solutions. Moreover, the numerical solution of such
problems can still prove intractable, as the computation time scales exponentially with the number
of degrees of freedom [1]. As such, the efficient computational simulation of quantum dynamics in
condensed matter systems remains an open problem with numerous approaches presented in the
literature [2–8]. In this work we have focussed upon cases where one can identify a subset of the
degrees of freedom, whose dynamics are of interest and whose mass is much smaller than the mass
which characterises the remaining degrees of freedom. If the dynamics of the small mass degrees
of freedom operate on a time scale more rapid than that of the large mass subset, one can make a
Born-Oppenheimer type approximation. Such an approximation, however, tends to break down if
strong non-adiabatic effects are present [9] . With this in mind, it might be more efficient, if one
wishes to study systems that are strongly coupled, or exhibit significant non-adiabatic effects, to
identify these ‘light’ degrees of freedom and to treat them as evolving under the laws of quantum
mechanics, while the environmental degrees of freedom are replaced with an effective environment
in the form of a classical or semi-classical bath. This singling-out of certain degrees of freedom
allows for the examination of the essential dynamical properties of otherwise prohibitively large and
complex systems [4]. A system, so treated, would then consist of a quantum subsystem interacting
with a classical or semi-classical environmental subsystem that might then be represented in a
classical-like phase space, such a system is known as a hybrid or quantum-classical system.

It would seem a plausible approach to obtain a formalism to address the dynamics of a hybrid
system by starting with the fully quantum equations of motion and taking the classical limit of
the environmental dynamics only, demanding that energy remains conserved. The result of this
prescription is the quantum-classical dynamical equation proposed in [10]. Such a prescription is
formulated in terms of a quantum-classical Liouville equation, a review of such formalisms can
be found in the reference [11]. A system evolving in accordance with the quantum-classical Liou-
ville equation is divided into a subsystem evolving under the laws of quantum mechanics, which
interacts with an environmental system, whose evolution is semi-classical, similar in form to the
classical Liouville equation [3, 10, 12]. The coupling between the quantum subsystem and the envi-
ronment results in interactions that produce what is known as the quantum ‘back-reaction’ [12–14].
Whereby, the classical degrees of freedom experience induced quantum fluctuations, this is a result
of directly coupling the state of the quantum subsystem to the state of the classical environment.
However, these induced quantum fluctuations do not create uncertainty relations within the clas-
sical variables as this quantum-classical formulation violates the positivity of the density operator
to preserve classical variable commutation [10, 12]. This means that a completely positive density
operator will not remain so under time evolution in such a quantum-classical formalism [12], this
is contrary to fully quantum evolution, in which case a positive density matrix remains positive
[15–17]. This back-reaction is an essential element of similar hybrid dynamical theories [12–14]
and is addressed by quantum-classical equation of [10] via the inclusion of the interaction effects
in both the quantum and classical parts of the quantum-classical Liouville equation. The method
used in this study to construct a formalism to address hybrid dynamics is found in the Wigner
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picture of quantum mechanics, in which the dynamics appear to take place in a classical-like phase
space [18], while the equations of motion take the form of a classical Liouville equation with the
addition of an infinite series of correction terms [18, 19]. The similarity to classical dynamics is one
of the chief advantages of the Wigner picture, providing explicit differentiation between quantum
and classical terms and making it capable of offering convenient approaches to the classical limit
of quantum dynamics.

If the Wigner transform of only the environmental degrees of freedom is taken, one would
produce a dynamical picture, termed the partial Wigner picture, in which the quantum degrees of
freedom interact with an environment that evolves under classical phase-space dynamics with the
associated Wigner correction terms. The classical limit of this phase-space-represented environment
might be naively taken by neglecting the correction terms through the assumption that ~ →
0, leaving the environmental system to evolve under classical dynamics. This partial Wigner
prescription yields the exact same quantum-classical equation as found in [10, 20]. Given the
methods used to obtain this quantum-classical equation, it is clear that for quantum-classical
formulation to be valid, it must be some classical limit of the original fully quantum dynamics. In
this regard, the naive manner of attaining this limit is not generally valid [21, 22], as is evinced by
the contradictions which emerge by comparison of the Ehrenfest limit and Hamilton-Jacobi theory
[23]. Both [20] and [14] present methods of taking a consistent quantum-classical limit of the
fully quantum system. In the first reference, the authors show that in this partial Wigner picture,
neglect of the correction terms, is equivalent to making a separation of the dynamics based on
the two mass-scales of the system. This approach is analogous to the approximations made in the
treatment of Brownian motion [20] and therefore coincides nicely with objective of hybrid dynamics,
namely: to single out a few degrees of freedom of interest and treat the remainder of the system as a
bath. In the second reference, the authors employ a group theory based approach and demonstrate
that, if the quantum effects in the environmental system are insignificant in comparison to those
of the quantum subsystem, then a linear approximation can be taken to obtain the quantum-
classical equation of [10] as the natural evolution equation for the hybrid system. These two
examples give some credence to defining the quantum-classical dynamics as the classical limit
of the quantum dynamics for the full system and allow one to justify the neglect of the partial
Wigner quantum-corrections when taking the classical limit of the environmental system. However,
despite the existence of a consistent quantum-classical limit, this hybrid formalism conditionally
violates the Jacobi identity [8, 12, 14]. In general, this violation means that time evolution under
the hybrid formalism will not preserve either total system or individual subsystem Hamiltonian
symmetries [12, 14, 24, 25]. This flaw does not diminish the usefulness of the quantum-classical
hybrid methodology as a means of approximately treating the dynamics of complex condensed
matter systems, as there exist systems where the Jacobi violations are insignificant or non-existent,
it merely encourages the use of caution when applying this formalism. As such, a part of the work
displayed in this study addresses the links between the quantum corrections and the preservation of
Hamiltonian symmetries within hybrid systems, including a derivation, following a method similar
to that in [12], of the limits in which the quantum-classical dynamical bracket constitutes a Lie
bracket.

Application of a quantum-classical approach to the study of quantum events in a curved space-
time, in the interest of determining the quantum back-reaction on the form of space-time [14], was
a motivation for the study in [13] but the considerations mentioned previously suggest that this
approach might lack consistency in such an application. This is because the quantum-classical
equation suggested in [10] is an approximate limit of the fully quantum dynamical theory which
therefore conflicts with the inability to quantise gravity in any straightforward manner.

Hybrid quantum-classical theories in quantum mechanics still merit further investigation. Not
only do they offer computationally attractive formalisms for analysing the dynamics of many
physically relevant systems [2, 4], but might also provide routes to investigate open quantum
systems [26, 27]. Examples of systems that merit hybrid treatment would be proton or electron
transport in solvents or other chemical environments composed of heavy atoms [28], diffusion
processes in condensed-phase systems, vibrational motion of molecules in a liquid [20], excited
state relaxation processes [29] and the calculation of chemical reaction rates[14, 30]. This means
that such a hybrid dynamical methodology has broad application to the field of chemical and
condensed matter physics and might facilitate the efficient calculation of transport coefficients



3

or rate constants. Continuing in this line of reasoning, the usefulness of the hybrid approach to
transport problems suggests that it might have applications in the burgeoning field of quantum
biology, where evidence of possible coherent energy transport has been found in otherwise classical
systems [31]. In all these cases, one’s ability to solve the problem benefits greatly from the hybrid
approach, in that, singling out quantum degrees of freedom greatly reduces the complexity of the
problem without significantly affecting the physics being treated, provided the quantum-classical
limit is valid. Moreover, the Jacobi identity violations are unlikely to affect the formalism in
such applications, since systems that require the hybrid treatment seldom exhibit high degrees of
symmetry, this being among the principle difficulties in analysing such systems.

Importantly, due to the fact that quantum-classical dynamics can exist as the classical limit of
the fully quantum formalism, it might be possible to make use of the hybrid formalism in studying
the transition between quantum and classical behaviours. This is because the quantum correction
terms can be viewed as the dynamical source of quantum effects in the environmental degrees of
freedom [18] and, while this system is in the classical regime, these effects would be negligible. If the
environment system were to then transition into the realm of quantum dynamics, the correction
terms would likely have greater influence on the dynamical behaviour. Thus, by comparing an
uncorrected quantum-classical evolution to an evolution with full quantum corrections, differences
in the dynamical properties could be used to identify unique quantum signatures, making possible
a differentiation between systems exhibiting quantum dynamical features and those which do not.
Therefore, if a system were then set up consisting of a nano-mechanical oscillator coupled to
some fully quantum subsystem, the study of the effects of these correction terms might offer the
possibility of witnessing the transition of the nano-mechanical system from the regime of classical
dynamics into the realm of greater quantum influence. It is this aspect of the partially Wigner-
represented quantum-classical formalism which is examined in this study and, for this reason, the
quantum-corrections form the focus of this work.

The study of witnessing quantum effects in nano-mechanical systems has recently been one
which has received great interest [32]. This is in part due to the fact that several experiments
in cooling nano-mechanical systems have approached the limit of quantum behaviour [33–36] and
that theoretical progress has been made in the cooling of nano-mechanical systems [37–39]. Other
interest in these systems is due to the fact that they represent the possibility to produce devices for
the measurement of displacement and forces with unprecedented levels of precision [32, 33]. Such
systems might also have applications in the detection of gravitational waves and in nano-scale
quantum information processing [33, 40], both recently topics of particular interest in the scientific
community. The witnessing of quantum effects in such systems would prove an important test of
quantum mechanics at the nano-scale [32, 33, 41–43], which exists at the boundary of the quantum
and the classical worlds. However, many quantum properties, including the zero-point motion of
a nano-oscillator, are extremely difficult to detect [33]. Despite these difficulties, nano-mechanical
resonator systems are believed to be capable of exhibiting quantum effects in laboratory realisable
conditions [44–46], due to their high frequency of oscillation (≈ 1 GHz) and their tiny mass [44].
Therefore, devising new means of testing the quantum properties of nano systems is a problem of
particular importance, not only in the confirmation of the predictions of quantum mechanics at
the nano-scale but also because of the great potential of nano-scale devices in future technology
and instrumentation. Previous studies have been performed on both harmonic oscillators [47–51]
and also on some non-linear oscillators [44, 52–54]. The fact that this study particularly focusses
upon utilisation of non-linear oscillatory behaviour is vital, simply due to the fact that a coherent
state formed in a system using harmonic nano-oscillators can be difficult to distinguish from the
behaviour of the classical harmonic oscillator [44]; it is also a hypothesis of this work that non-linear
oscillatory behaviour can be exploited to reveal uniquely quantum dynamical effects.

The results of the calculations using the pseudo-spin and polynomial potential system were
then further used to study the possibilities of witnessing quantum behaviour in a mechanical
nano-oscillator, possibly in the form of a buckled nano-rod, by coupling it capacitively to a super-
conducting circuit or a Cooper-pair box, in a manner similar to that discussed in [44]. A Cooper-
pair box consists of a small Josephson junction that is voltage biased to ensure that only two
energy levels are accessible [44], allowing it to be modelled effectively by a pseudo-spin system.
The Cooper-pair box is chosen because it has been shown that it is possible for such a system
to exhibit long decoherence times when coupled to nano-mechanical systems [55], certainly on
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time scales much longer than the period of the nano-mechanical oscillations. This application
involves modelling the nano-rod oscillations with a polynomial potential and the Cooper-Pair box
is then modelled by a two-level, or pseudo-spin, system, meaning that such a system falls neatly
into the category of those under examination in this study. If the rod is subject to a stress
below the critical value its oscillatory potential is quadratic in nature and thus quantum-classical
dynamics would yield an exact description. However, if subject to a stress beyond the critical
value, which is feasible while the ends of the rod are fixed [56], the nano-rod begins to exhibit
non-linear oscillatory behaviour and can then be modelled by a double-well potential [56, 57].
It is hypothesised that a transition of such an oscillator system from classical, or insignificantly
quantum-influenced, dynamics to quantum dynamics can be witnessed by observing the damping
experienced by the Cooper-pair population of the Josephson junction, based on the main result of
this study and the tuning of the system parameters.

Therefore, the motivation behind this study is to analyse the effects of the quantum correc-
tion terms on quantum-classical dynamics as well as demonstrating the effectiveness of the partial
Wigner formalism as a tool for the study of hybrid dynamical systems. This work is also moti-
vated by the notion that the analysis of the quantum-correction terms might yield ways to iden-
tify uniquely quantum dynamical behaviour within lab-realisable systems, which could have great
application in the witnessing of the classical-to-quantum transition of nano-mechanical systems,
particularly those that exhibit non-linear oscillatory behaviour. The non-linearity of the oscillators
is vital, due to the fact that this form of potential introduces quantum-correction effects to the
dynamics, unlike the harmonic case, where all corrections are identically zero. Therefore, study
of the effects of these corrections might allow for the identification of dynamical properties that
indicate that the quantum corrections are significantly influencing the behaviour of the system,
which in turn suggests the system must be in the regime of strong quantum dynamical effects.

As part of this work an analytical form for the complete quantum propagator, in the partial
Wigner picture, was derived for a quantum subsystem with position-dependent coupling to an
environmental system represented by an arbitrary polynomial potential. This was then used to
study the effects of neglecting the correction terms in the quantum-classical approximation. The
test system used for this consisted of a tunnelling pseudo-spin coupled to an environmental system
in the form of a quartic polynomial potential. The coupling between these systems was chosen to
match that used by Leggett in [28]. This particular class of systems was selected because both
subsystem types are applicable in a broad range of physical problems. The two-level, or pseudo-
spin, system is widely applicable in the modelling of simple quantum systems [28]; such a system
may be employed to model the strangeness of the neutral K meson, the spin projection in spin 1

2
systems, the polarisation of a photon [28] or tunnelling of Cooper-pairs in a Josephson junction [44].
Similarly, polynomial potentials have a wide range of physical applications, including the ubiquitous
harmonic oscillator, with its role in the study of fields [58], the famous double well potential, which
can be used in the modelling of chemical reactions, the motion of defects in crystalline solids
[28, 30] or in modelling the oscillations of a buckled nano rod [56, 57]. Moreover, the chosen class
of coupled systems can also be used for the analysis of decoherence in open qubit systems [59] or
the modelling of spin-half ions in an optical cavity, as modes of the electromagnetic field admitted
by the cavity can be represented by harmonic oscillators and thus polynomial potentials [58].

To facilitate this study, a computational technique for the numerical solution of partial Wigner
dynamics was developed and tested by comparison to the established ‘surface-hopping’ approxi-
mation [3, 60, 61]. The developed technique is a method of lines approach to partial differential
equations on a phase-space grid and is built on the Runge-Kutta 5 Cash-Karp method [62]. This
method of lines technique is shown to be particularly suited to addressing strongly interacting
degrees of freedom in low dimensional systems and it was further used to numerically test the
dynamical effects of the partial Wigner correction terms. Where it was demonstrated that, in
a particular range of coupling parameters, the partial Wigner correction terms had a significant
influence on both the behaviour of the environmental subsystem and the behaviour of observables
in the quantum subsystem.

In fact, the Rabi oscillations which occur in the pseudo-spin system were found to be sensitive
to the effects of the quantum corrections in the limit of certain parameter values that encompass
a regime here characterised as that of medium strength coupling between the quantum subsystem
and its environment. This work suggests that quantum mechanical effects, or a transition from
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classical to quantum regimes, within the oscillator degrees of freedom, might be witnessed by the
measurement of the Rabi oscillation damping in the pseudo-spin system. As the Rabi oscillations
demonstrate differing behaviours when the effects of the corrections becomes significant, such
quantum dynamical behaviour might then be used to identify quantum effects in systems where
the unambiguous detection of such phenomena otherwise proves difficult. In particular the results
presented here demonstrate that the principle contribution of the quantum-corrections, for the
studied model, is the introduction of additional quantum-tunnelling effects to the dynamics of
the oscillator degrees of freedom. The tunnelling behaviour thus introduced is found to be the
cause of the alterations to the Rabi oscillations. This means that the study of the Rabi oscillation
behaviour offers the opportunity to indirectly witness the quantum tunnelling of the oscillator
system in particular, in addition to the general possibility witnessing of the quantum or classical
features of the coupled system dynamics.

The structure of this thesis is as follows: Chapter 2 reviews the Wigner and partial Wigner
pictures including the derivation of the partial Wigner correction terms and equations of motion.
Chapter 3 makes a review of the numerical solution of partial differential equations by the method
of lines approach; it also lays out the numerical methods used in the computational simulations.
Chapter 4 is focussed on the nature of the computational simulations, detailing the equations
of motion in the diabatic basis, the models used in the simulations and the parameters chosen.
Chapter 5 displays the results and details the application of these results to the study of witnessing
quantum effects in nano oscillators. Chapter 6 is devoted to concluding remarks and the Appendices
contain a review of quantum statistical mechanics and assorted derivations not included in the main
matter.
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Chapter 2

Wigner and Partial Wigner
pictures

2.1 The Wigner Picture

The Wigner picture of quantum mechanics is one which allows a quantum system to be represented
in phase space, in a manner similar to a system in classical mechanics [18]. As one would expect,
this picture requires the degrees of freedom of the system to be representable in some form of phase
space but, despite appearances, the behaviour of the system remains fully quantum [18, 21].

The Wigner picture is obtained from the abstract Dirac representation through the Wign-
er/Weyl transformation of Hilbert space operators [21]. These transformed operators take the
form of phase-space functions and allow for the calculation of averages in a manner similar to that
employed for their counterparts in classical statistical mechanics.

2.1.1 Operators in the Wigner Picture

Consider a quantum system with canonical conjugate degrees of freedom (r̂1, p̂1, . . . , r̂N , p̂N ), hav-
ing states of definite position given by

r̂ |R〉 = R |R〉 .

In the Wigner picture, operators are mapped onto phase-space functions by means of the Wign-
er/Weyl transform W, defined for an arbitrary Hilbert space operator Â by [18, 21]

W(Â) =

∫ ∞
−∞

dq e
i
~P·q

〈
R− q

2

∣∣∣ Â ∣∣∣R +
q

2

〉
,

=

∫ ∞
−∞

dq e
i
~P·qA

(
R− q

2
,R +

q

2

)
,

here R and P form a pair of canonically conjugate variables defining a phase space [18]. To obtain
an idea of the nature of the transformed operators it is instructive to consider the Wigner transform
of the position and momentum operators r̂ = (r1, . . . , rN ) and p̂ = (p1, . . . , pN ).

W(r̂) =

∫ ∞
−∞

dq e
i
~P·q

〈
R− q

2

∣∣∣ r̂ ∣∣∣R +
q

2

〉
.

This can be evaluated by simply noting that the states
∣∣R + q

2

〉
are still states of definite position:

W(r̂) =

∫ ∞
−∞

dq e
i
~P·q

〈
R− q

2

∣∣∣ (R +
q

2

) ∣∣∣R +
q

2

〉
=

∫ ∞
−∞

dq e
i
~P·q

(
R +

q

2

)〈
R− q

2

∣∣∣ R +
q

2

〉
.
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Since
〈
R− q

2

∣∣ R + q
2

〉
= δ (q) by orthonormality requirements,

W(r̂) = R .

Similarly

W(r̂2) =

∫ ∞
−∞

dq e
i
~P·q

〈
R− q

2

∣∣∣ (R +
q

2

)
·
(
R +

q

2

) ∣∣∣R +
q

2

〉
=

∫ ∞
−∞

dq e
i
~P·q

(
R +

q

2

)
·
(
R +

q

2

)
δ (q)

= R2 .

Turning to the Wigner transform of p̂ and using the definition 〈r| p̂ |r〉 = −i~ ∂
∂r [63, 64] which

implies the more general relation

〈r′| p̂ |r〉 = −i~ ∂
∂r
δ(r− r′) .

This, combined with the change of coordinates

r = R− q

2
,

r′ = R +
q

2
,

yields a new representation for the offset matrix element of the momentum operator, which can be
employed in its Wigner transform

W(p̂) = −i~
∫ ∞
−∞

dq e
i
~P·q

(
− ∂

∂q
+

1

2

∂

∂R

)
δ (q) .

Integrating this expression by parts gives

W(p̂) = i~
∫ ∞
−∞

dq δ (q)

(
− ∂

∂q
+

1

2

∂

∂R

)
e
i
~P·q

= i~
(
− i
~

P

)
= P .

Similarly, one can consider the square of the momentum operator

W(p̂2) = −~2

∫ ∞
−∞

dq e
i
~P·q

(
∂2

∂q2
− ∂2

∂R∂q
+

1

4

∂2

∂R2

)
δ (q)

= −~2

∫ ∞
−∞

dq δ (q)

(
∂2

∂q2
− ∂2

∂R∂q
+

1

4

∂2

∂R2

)
e
i
~P·q

= −~2(
i

~
P) · ( i

~
P)

= P2 .

Thus, in more general terms
W(Â) = AW (R,P) ,

where the W subscript denotes a Wigner-transformed operator. Therefore, if the action of the
operator Â can be represented in terms of position and momentum operators, then a simple
replacement prescription can be followed to implement this transformation

p̂→ P ,

r̂→ R ,

which demonstrates that quantum operators are changed into phase-space functions by a Wigner
transform.
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Clearly the Wigner transform, which is unitary by virtue of the fact that it is, in essence, a
Fourier transform, can be used to define a picture of quantum mechanics in which the dynamics
take place in a classical-like phase space where each observable operator is represented by some
phase-space function. To have a complete picture of dynamics in this Wigner phase space, it
remains to determine how dynamical averages are calculated and how the commutator of quantum
operators are represented.

2.1.2 The Wigner Function

Consider a Wigner-transformed system with position and momentum degrees of freedom X =
(R1, P1, . . . , RN , PN ). In classical statistical mechanics, represented in the phase space (R,P), the
system is described by the f(R,P), which assigns a probability to system occupying the state
(R,P) [15, 65]. This function is vital to the calculation of averages of phase-space properties,
which take the form [15, 65]

〈A〉 =

∫
dR dPA(R,P)f(R,P) ,

where A(R,P) is an arbitrary phase-space function and 〈A〉 is its phase-space average. In quantum
statistical mechanics, the system is described by a density operator ρ̂ which fulfils an analogous role
with regards to the calculation of averages, for more details see Appendix A. Therefore, if one were
to represent quantum mechanics in phase space then the one might expect the transformed density
operator to represent the phase space system in a similar manner as the classical distribution
function. This makes finding the phase-space represented density operator the first priority for
one wishing to formulate quantum statistical mechanics in the Wigner picture. The transformed
density operator is known as the Wigner function and is defined [18, 21]

W (X, t) =
1

hN
W(ρ̂(t)) =

1

hN

∫ ∞
−∞

dq e
i
~P·q

〈
R− q

2

∣∣∣ ρ̂(t)
∣∣∣R +

q

2

〉
, (2.1)

It will be seen in the following sections that the Wigner function plays an analogous role to the
classical distribution function with regards to the calculation of the dynamical properties of the
system. However, first it is worth noting a simple, yet important, property of the Wigner function,
it is not positive definite. This can be illustrated by considering the definition of density operator
on some pure state |ψ〉 [15–17, 63, 65], or

ρ̂ = |ψ〉 〈ψ| .

Then the wavefunctions ψ1(q,R,P) = e
i
~P·qψ

(
R + q

2

)
and ψ2(q,R) = ψ

(
R− q

2

)
can be defined,

with ψ(R) = 〈ψ| R〉. In order that these be normalised, a factor of
(

1√
2

)N
, or one factor of 1√

2

for each of the N position degrees of freedom, must be introduced to each wavefunction. These
wavefunctions can be used, along with the definition of the density operator to express the Wigner
function, as defined in Eq. (2.1), as [21]

W (R,P) =

(
2

h

)N ∫
dq ψ1(q,R,P)ψ∗2(q,R) .

Therefore the Wigner function is bounded in magnitude according to [19, 21]

∣∣W (R,P)
∣∣ ≤ ( 2

h

)N
Therefore, unlike the classical distribution, which must be positive definite [66], the Wigner function
can take on negative values and is bounded from above [19]. It is worth noting that several authors
have linked Wigner function negativity to the existence of non-classical effects [17, 19, 21, 67]. It
is no surprise then that this particular property will be the first means of differentiating between
the Wigner function and the analogous classical distribution.
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2.1.3 Wigner Picture Averages

As stated in the review of quantum statistical mechanics found in the Appendix A, the quantum
average of some observable Â is found, in the Schrödinger picture, by taking the following trace
[15–17, 65]

〈Â(t)〉 = Tr(ρ̂(t)Â) .

In order to find the Wigner transform of this equation, consider first the more general result

Tr(ÂB̂) =
1

hN

∫
dX AW (X)BW (X) , (2.2)

where there are N pairs of conjugate coordinates (Ri, Pi), this result is proved in Appendix. B.1.
Applying this to the calculation of the quantum average yields

〈Â(t)〉 =
1

hN

∫
dX AW (X)W (X, t) ,

which, apart from the factor 1
hN

, looks remarkably like an average in classical phase space.
It must be noted, at this point, that the Wigner function appears to be analogous to a classical

distribution function; however, the completeness of this analogy is scuppered by the fact that, as
has been shown in previous sections, the Wigner function is not in general positive definite [66].
This might be intuitively expected as the density operator itself is not in general composed of strict
probability components, as demonstrated in the review of quantum statistical mechanics found in
Appendix A, and so it is intuitively reasonable that the Wigner-transformed density operator only
corresponds to a quasi-probability distribution [66].

So far, the Wigner transform appears to yield a picture of quantum dynamics that looks very
much like classical dynamics in phase space. However, despite this appearance, no ‘quantumness’
has been lost. The reason for this is that, in addition to the fact that the Wigner function is
not strictly a probability distribution, the equations of motion still contain dynamical sources
of ‘quantumness’. This can be more readily appreciated after a study of the Wigner-Liouville
equation, which will be conducted in the following sections.

2.1.4 The Wigner-Liouville Equation

In quantum statistical mechanics a quantum system is represented by a density operator which
evolves according to the Liouville equation [15–17, 65]

∂

∂t
ρ̂ =

i

~
[ρ̂, Ĥ] ,

where

Ĥ =
p̂2

2m
+ V (r̂) . (2.3)

In the Wigner picture, the corresponding time evolution equation is known as the Wigner-Liouville
equation and is given by

∂

∂t
W (X, t) = −P

m
· ∂
∂R

W (X, t) +
∑

n=1,3,5,···

1

n!

(
~
2i

)n−1
∂nV (R)

∂Rn
· ∂

nW (X, t)

∂Pn
. (2.4)

This result applies only if the potential V (R) is continuous. For a complete derivation of this result
the reader is invited to refer to Appendix B.2.

2.1.5 Analysis of the Dynamics in the Wigner Picture

For the given Hamiltonian form, the Wigner-Liouville equation can be reformulated in such a way
that its divergence from purely classical phase-space dynamics becomes obvious. This will be done
by first making the identification

−P

m
· ∂
∂R

W (X, t) = −∂HW (X)

∂P
· ∂W (X, t)

∂R
.
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Here the Wigner-transformed Hamiltonian is defined by

HW (X) =W(Ĥ) ,

and Ĥ has the form of the Hamiltonian in Eq. (2.3). So the Wigner-Liouville equation might be
rewritten

∂

∂t
W (X, , t) = −∂HW (X)

∂P
· ∂W (X, t)

∂R
+

∑
n=1,3,5,···

1

n!

(
~
2i

)n−1
∂nV (R)

∂Rn
· ∂

nW (X, t)

∂Pn
.

Then the summation term can be rewritten so that it is given by∑
n=1,3,5,···

1

n!

(
~
2i

)n−1
∂nV (R)

∂Rn
· ∂

nW (R,P, t)

∂Pn
=
∂V (R)

∂R
· ∂W (X, t)

∂P

+
∑

n=3,5,7,···

1

n!

(
~
2i

)n−1
∂nV (R)

∂Rn
· ∂

nW (X, t)

∂Pn
.

At this point it is important to note that

∂V (R)

∂R
=
∂HW (X)

∂R
,

so that

∂

∂t
W (X, t) =

∂HW (X)

∂R
·∂W (X, t)

∂P
−∂HW (X)

∂P
·∂W (X, t)

∂R
+

∑
n=3,5,···

1

n!

(
~
2i

)n−1
∂nV (R)

∂Rn
·∂
nW (X, t)

∂Pn
.

This can be simplified by introducing the phase-space Poisson bracket {·, ·}:

∂

∂t
W (X, t) = {HW (X),W (X, t)}+

∑
n=3,5,···

1

n!

(
~
2i

)n−1
∂nV (R)

∂Rn
· ∂

nW (X, t)

∂Pn
, (2.5)

where

{HW (X),W (X, t)} =
∂HW (X)

∂R
· ∂W (X, t)

∂P
− ∂HW (X)

∂P
· ∂W (X, t)

∂R
.

Hence the evolution equation for an operator in the Wigner picture can be expressed in terms of
the classical Poisson bracket and an infinite series of terms, each of a successively higher power
in ~. These ~ terms then provide ‘quantum corrections’ to the classical dynamics given by the
Poisson bracket. It is evident that the inclusion of these ‘correction’ terms incorporates successively
more non-locality into the phase-space dynamics, as each term contains higher order phase-space
derivatives. Inclusion of these higher-order non-local terms into the equations of motion is what
prevents the dynamics from remaining purely classical, and so it might be concluded that this
infinite series of terms contains the ‘quantumness’ which is still present in the dynamics.

2.1.6 Bracket formulation of the Wigner-Liouville Equation

The fact that the Wigner-transformed commutator in the Wigner-Liouville equation is not identi-
cally zero suggests that, despite quantum operators being represented in phase space, their com-
mutator relations are preserved. This can be expressed more explicitly by rewriting the Wigner-
Liouville equation in a bracket formulation, known as the Moyal bracket [68]. To this end one
introduces the notation

←−
∂ =

( ←−
∂
∂R←−
∂
∂P

)
,

ε =

(
0 1
−1 0

)
,

B =

(
0 1
−1 0

)
,

Λ =
←−
∂ ·B ·

−→
∂ =

←−
∂

∂R
·
−→
∂

∂P
−
←−
∂

∂P
·
−→
∂

∂R
,
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here the arrows indicate the direction in which a derivative acts. This allows for the expression of
the Liouville equation as

∂

∂t
ρ̂ = − i

~
(
Ĥ ρ̂

)
· ε ·

(
Ĥ
ρ̂

)
= − i

~
(
Ĥ ρ̂

)
·
(

ρ̂

−Ĥ

)
= − i

~

(
Ĥρ̂− ρ̂Ĥ

)
. (2.6)

Using the introduced operator Λ, it is shown in Appendix B.3 that the Wigner-Liouville equation
can also be expressed in the form

∂

∂t
W (X, t) = − i

~

(
HW (X)e

i~
2 ΛW (X, t)−W (X, t)e

i~
2 ΛHW (X)

)
= (HW (X),W (X, t))M , (2.7)

where (·, ·)M is the Moyal bracket. This result is sufficient to reveal how the quantum-commutator
is preserved in the Wigner phase-space representation, as it is clear that if one were to define a
product of two phase-space observables through the Moyal star product [68] or

AW ∗BW = AW e
i~
2 ΛBW ,

then the Wigner-Liouville equation has the simple form

∂

∂t
W (X, t) = − i

~
[HW (X),W (X, t)]∗ ,

where [·, ·]∗ is the Moyal star-product form of the quantum commutator. Clearly then, with this
definition of the product in the quantum commutator, it is possible for the commutation relations
between observables to be preserved even when quantum mechanics is represented in the Wigner
phase space. This result ensures that the Heisenberg uncertainty principle, which is formulated in
terms of commutator relations [63, 64, 69, 70], is preserved even in this phase-space representation.

The Wigner-Liouville equation can then be written in an anti-symmetric bracket form, analo-
gous to Eq. (2.6), by first expressing it as follows

∂

∂t
W (X, t) = − i

~

(
HW (X)

(
e
i~
2 Λ
)
W (X, t) +W (X, t)

(
−e

i~
2 Λ
)
HW (X))

)
,

to which the ε notation is introduced, yielding

∂

∂t
W (X, t) = − i

~
(
HW (X) W (X, t)

)
· εe i~2 Λ ·

(
HW (X)
W (X, t)

)
. (2.8)

This abstract bracket formulation of the Wigner-Liouville equation expresses Moyal’s phase-space
representation of the quantum commutator between observables [68] and its notation becomes
useful when one wishes to extend the Wigner picture treatment to systems in which only a subset of
the degrees of freedom are Wigner transformed. By comparing Eq. (2.8) or Eq. (2.7) and Eq. (2.6),
this formulation provides an explicit confirmation that the commutator of operators is preserved in
the Wigner picture, despite the fact that the operators would now commute under the rules of the
abstract algebra for Hilbert space operators. Therefore, it is the algebraic modification embodied
by the Moyal star product, evident in Eq. (2.7), that allows the nature of the commutator, and
thus the uncertainty principle, to be preserved in the phase-space representation.

2.1.7 The Wigner Picture and the Classical Limit

It is tempting, upon viewing Eq. (2.5), to attempt to take the classical limit simply by discarding
the quantum correction terms; it becomes doubly tempting when one realises that this could
seemingly be accomplished by letting ~→ 0. However, this naive approach to classical limit is not
generally valid in the Wigner picture [21, 22], for the simple reason that the n-th order quantum
correction term is only superficially proportional to ~n−1. If one were to examine the definition of
the Wigner function in Eq. (2.1) then one would see that the derivative ∂nW

∂Pn would introduce a
factor of 1

~n , meaning that the correction terms cannot be neglected as ~→ 0.
Therefore, without some fortuitous contribution from the density operator itself, the classical

limit cannot be generally reached by letting ~ → 0 and using this to justify the neglect of the
quantum correction terms. There are, however, other means of achieving this same goal that will
be discussed further, in the case of the quantum-classical hybrid system, in Section 2.2.4.
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2.2 Partial Wigner Picture

It is evident from the construction of the Wigner transform that the Wigner picture can only
be employed when considering a system which possesses some phase-space representation. Im-
portantly the Wigner transform depends on the position eigenstates of the transformed system.
This means that if one were to consider a system which consists of two interacting subsystems,
wishing to express only one of them in phase space, then Wigner transform for this system must
be carefully defined. In such a case, it is possible to apply the Wigner transform to only one set
of position eigenstates, resulting in only one of the interacting systems being represented in phase
space. The remaining degrees of freedom are left represented in a Hilbert space which is param-
eterised by the new phase-space variables. For such systems, the Wigner transform is referred to
as a partial Wigner transform and the corresponding picture of quantum mechanics is the partial
Wigner picture.

The partial Wigner picture, as will be seen, lends itself well to approximation techniques, as its
Liouville equation can be written in terms of some hybrid quantum-classical dynamics with a series
of correction terms. It is these correction terms that form the focus of this study; not only are
they derived for arbitrary polynomial potentials and couplings but their impact on the dynamics
of a quantum system forms the core focus of this study.

2.2.1 Partial Wigner Transformations

Consider a Hamiltonian of the form Ĥ = Ĥs(ŝ)+Ĥc(ŝ, X̂)+Ĥx(X̂), where Ĥs(ŝ) is the Hamiltonian

of a subsystem with degrees of freedom ŝ, that will not be Wigner transformed; Ĥx(X̂) is the

Hamiltonian of another subsystem x, whose degrees of freedom are the operators X̂, that act only
on the x-subsystem and have phase-space analogues; and Ĥc(ŝ, X̂) is the coupling Hamiltonian.
The partial Wigner form Ĥw(X) of the Hamiltonian Ĥ is defined by taking the Wigner transform
as before:

Ĥw(X) = Ĥs(ŝ) +

∫ ∞
−∞

dq ei
P
~ ·q
〈
R− q

2

∣∣∣ Ĥc + Ĥx

∣∣∣R +
q

2

〉
.

Since the operator Ĥs(ŝ) does not act upon the position states of the x-subsystem, the Wigner
transform reduces to a multiplication by the identity operator. The partial Wigner Hamiltonian
is, in this way, not simply a phase-space function, as it still contains Hilbert space operators that
act upon the s-subsystem.

It is clear that this treatment might be extended to any arbitrary operator on the system. Such
an operator remains a pure operator only if it acts strictly on the s-subsystem; or the operator
becomes a pure phase-space function if it acts on the x-subsystem only; otherwise it is an operator
dependent on, or parameterised by, the phase-space variables. I is important to note that such
partial Wigner operators possess two forms of commutator, pure operators commutation is defined
by ordinary operator multiplication, while phase-space operator commutation is defined in terms
of the Moyal star product [68]. General hybrid observables commutators are composed of both
the Moyal star commutator and the standard quantum commutator. In this way the observables
related only to subsystem s are assumed to commute with those which act only on system x.

2.2.2 Partial Wigner Density Operator

The density operator, when cast in this partial Wigner form, is not simply the Wigner function of
the system. For example, let |s〉 be the s-subsystem state vector and |x〉 be the state vector of the
x-subsystem. Now assume that the state |Φ〉 of the whole system is separable, given by,

|Φ〉 = |x〉 ⊗ |s〉 .

In this case, the density operator has the form

ρ̂ = |x〉 ⊗ |s〉 〈s| ⊗ 〈x| .

The Wigner function, then, would be given by

W (X) =

∫ ∞
−∞

dq ei
P
~ ·q
〈
R− q

2

∣∣∣ ρ̂ ∣∣∣R +
q

2

〉
.
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However, since the state |s〉 has no intersection with the eigenstates of X̂, the Wigner function
here is not solely a phase-space function. Rather, the transformed density operator ρ̂w(X) is the
product of the Wigner function, for the x-subsystem degrees of freedom, and the density operator
for the s-subsystem.

ρ̂w(X) = |s〉 〈s| ⊗
∫ ∞
−∞

dq ei
P
~ ·q
〈
R− q

2

∣∣∣ x〉〈x∣∣∣ R +
q

2

〉
,

= ρ̂s ⊗Wx(X) .

Considering a general case, the partial Wigner density operator ρ̂w(X) is the familiar density
operator on the s-subsystem but is parameterised by the phase-space degrees of freedom X.

2.2.3 Partial Wigner Picture Averages

The problems under consideration for this picture possess two distinct sets of degrees of freedom.
Thus the representation of averages in this picture needs to be examined with this in mind. The
trace over the operator product may be expressed in this picture by the result:

Tr(ÂB̂) = Trs

(
1

hN

∫
dX Âw(X)B̂w(X)

)
, (2.9)

where Trs is the trace over the s-subsystem degrees of freedom ŝ. This is intuitively reasonable, in
that the average consists of a trace over the Hilbert space degrees of freedom and an integral over
the Wigner phase space. The mathematical reasons for the average taking the form of Eq. (2.9)
are considered in Appendix B.4.

2.2.4 Equations of Motion in the Partial Wigner Picture

The Quantum Classical Equation

Consider a system defined by the total Hamiltonian operator

Ĥ = Ĥs(ŝ) + Ĥc(ŝ, X̂) + Ĥx(X̂) . (2.10)

In Eq. (2.10), Ĥs is the Hamiltonian operator of a system with coordinates ŝ, which will be
unaffected by the partial Wigner transform. Ĥx is the Hamiltonian of the x-subsystem, described
by pairs of canonically conjugate operators X̂ = (R̂, P̂), in keeping with previous notation. These
operators are taken to be the generalised position and momentum coordinates of the system and
therefore may be Wigner transformed as previously established. Also, Ĥc describes the coupling
between the coordinates ŝ and R̂ and is assumed to be capable of representation by the tensor
product: Ĥc = V ′(ŝ)⊗ Vc(X̂).

We now recall the previously used definition of the completely antisymmetric matrix ε = −εT ,
given in block form by

ε =

(
0 1
−1 0

)
.

Consider then the von Neumann, or quantum Liouville, equation for the chosen system, written in
terms of ε as [26]

∂

∂t
ρ̂ = − i

~
(
Ĥ ρ̂

)
· ε ·

(
Ĥ
ρ̂

)
, (2.11)

In order to take a partial Wigner transformation of Eq. (2.11), the result in Eq. (2.8) is used,
yielding:

∂

∂t
ρ̂w = − i

~

(
Ĥwe

i~
2 Λρ̂w − ρ̂we

i~
2 ΛĤw

)
,

where the subscript w denotes a partial Wigner-transformed operator. The use of Eq. (2.8) seems
to place limitations on the nature of the Hamiltonian, however, it is generally true that the partial
Wigner transform of an operator product ÂB̂ is given by [71]:

W
(
ÂB̂
)

= Âw(X)e
i~Λ
2 B̂w(X) , (2.12)
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where Λ is a differential operator given by

Λ =

←−
∂

∂R
·
−→
∂

∂P
−
←−
∂

∂P
·
−→
∂

∂R
=
←−
∂ ·B ·

−→
∂ .

Once again the arrows indicate the direction in which the derivative acts. This Wigner-transformed
operator product naturally yields the Moyal star product, giving credence to defining the Moyal
bracket, as seen in Section 2.1.6, as the general dynamical bracket for quantum mechanics expressed
in the Wigner phase space.

We now introduce an antisymmetric matrix operator D, defined by

D = εe
i~
2 Λ , (2.13)

with this definition, the partial Wigner transform of Eq. (2.11) now reads

∂

∂t
ρ̂w(X, t) = − i

~
(
Ĥw(X) ρ̂w(X, t)

)
·D ·

(
Ĥw(X)
ρ̂w(X, t)

)
. (2.14)

The operator D can now be expanded as a Taylor series in the argument i~
2 Λ:

D = ε

(
1 +

i~
2

Λ +

(
i~
2

Λ

)2

/2! + . . .

)
,

or

D = ε lim
N→∞

N∑
n=0

(
i~
2

Λ

)n
/n! . (2.15)

If terms given only by n = 0 and n = 1 are considered [26]:

∂ρ̂w
∂t

= − i
~
(
Ĥw(X) ρ̂w

)
· ε ·

(
Ĥw(X)
ρ̂w

)
− i

~
i~
2

(
Ĥw(X) ρ̂w

)
· εΛ ·

(
Ĥw(X)
ρ̂w

)
, (2.16)

which can be expanded

∂ρ̂w
∂t

= − i
~

(
Ĥwρ̂w − ρ̂wĤw

)
+

1

2

(
Ĥw

( ←−
∂

∂R
·
−→
∂

∂P
−
←−
∂

∂P
·
−→
∂

∂R

)
ρ̂w − ρ̂w

( ←−
∂

∂R
·
−→
∂

∂P
−
←−
∂

∂P
·
−→
∂

∂R

)
Ĥw

)
.

This can be simplified by invoking the definition of the Poisson bracket for X and quantum com-
mutator for ŝ

∂ ρ̂w
∂t

= − i
~

[Ĥw, ρ̂w] +
1

2

(
{Ĥw, ρ̂w} − {ρ̂w, Ĥw}

)
,

= (Ĥw, ρ̂w)qc

. (2.17)

This final form of the equation is the quantum-classical approximation, in which the dynamics
are composed of a quantum commutator, representing quantum dynamics of the s-subsystem,
and the classical-like dynamics of the Poisson bracket for the x-subsystem. It is evident that
the coupling features in both the classical-like dynamics and quantum dynamics, as it depends
on both an s-subsystem operator and on the phase-space coordinates X. It is this feature of
the coupling between subsystems that produces the ‘back-reaction’ of the quantum variables onto
their classical counterparts, resulting in induced quantum fluctuations in the classical variables
[12, 13]. Such quantum fluctuations do not spoil the commutation of the phase-space variables,
as this approximation violates the positivity of the density operator [10, 12]. In the formulation
of this approximation, terms of higher order in ~ have been neglected, so far without justification.
However, the determination of the consequences of this omission of higher-order expansion terms
is the objective of this study and therefore such terms, as well as conditions that might justify
their neglect, must still be considered.
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Conservation of Energy by the Quantum-Classical Equation

In some of the literature on quantum-classical hybrid brackets, the proposed non-Hamiltonian
quantum-classical brackets, such as that proposed in [13], failed to conserve energy. It is therefore
vital to demonstrate that the formulation of the quantum-classical bracket given by Eq. (2.17),
which is essentially an anti-symmetric analogue of the bracket in [13], is completely consistent with
conservation of energy.

As has been previously stated, the average of an observable operator Â in the Schrödinger
picture of quantum mechanics is given by the trace of the product of the operator with the density
operator

〈Â(t)〉 = Tr(Âρ̂(t)) ,

where ρ̂(t) is time-dependent density operator. Therefore, in the partial Wigner formalism

〈Âw〉 = Tr(Âwρ̂w(t)) ,

where Âw and ρ̂w(t) are the partial Wigner-transformed operators Â and ρ̂(t) and the trace over
the Wigner phase-space degrees of freedom will take the form of an integral as previously outlined
in Section 2.1.3.

The quantum-classical equation conserves energy, if

d

dt
〈Ĥw〉 = 0 ,

or
d

dt
Tr(Ĥwρ̂w(t)) = 0 .

Applying the time derivative leads to the result

Tr

(
Ĥw

∂ρ̂w(t)

∂t

)
= 0 ,

which must be satisfied when the equation of motion is substituted for ∂ρ̂w(t)
∂t , otherwise the

equation of motion will not be consistent with the principle of energy conservation. In order that
this quantum-classical equation be subjected to this test, it will be considered in two parts: thus
the linearity of the trace [15, 72] will be used to perform the following separation

Tr

(
Ĥw

∂ρ̂w(t)

∂t

)
= − i

~
Tr
(
Ĥw[Ĥw, ρ̂w]

)
+

1

2
Tr
(
Ĥw{Ĥw, ρ̂w} − Ĥw{ρ̂w, Ĥw}

)
.

First, consider the quantum-commutator component of the trace

Tr
(
Ĥw[Ĥw, ρ̂w]

)
= Tr

(
Ĥ2
wρ̂w − Ĥwρ̂wĤw

)
.

This can be further subdivided

Tr
(
Ĥw[Ĥw, ρ̂w]

)
= Tr

(
Ĥ2
wρ̂w

)
− Tr

(
Ĥwρ̂wĤw

)
.

Applying the cyclic invariance of the trace yields

Tr
(
Ĥw[Ĥw, ρ̂w]

)
= Tr

(
Ĥ2
wρ̂w

)
− Tr

(
Ĥ2
wρ̂w

)
,

so that there is complete cancellation

Tr
(
Ĥw[Ĥw, ρ̂w]

)
= 0 .

Consider the Poisson bracket component of the trace:

Tr
(
Ĥw{Ĥw, ρ̂w} − Ĥw{ρ̂w, Ĥw}

)
= Tr′

(∫ ∞
−∞

∫ ∞
−∞

dR dP Ĥw{Ĥw, ρ̂w} − Ĥw{ρ̂w, Ĥw}
)
,
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where Tr′ is the trace over the s-subsystem’s degrees of freedom. Expanding the Poisson bracket
combination gives

Tr
(
Ĥw{Ĥw, ρ̂w} − Ĥw{ρ̂w, Ĥw}

)
= Tr′

(∫ ∞
−∞

∫ ∞
−∞

dR dP Ĥw
∂Ĥw

∂R
· ∂ρ̂w
∂P
− Ĥw

∂Ĥw

∂P
· ∂ρ̂w
∂R
− Ĥw

∂ρ̂w
∂R

∂Ĥw

∂P
+ Ĥw

∂ρ̂w
∂P
· ∂Ĥw

∂R

)
.

Considering each term individually, using the cyclic invariance of the trace and integrating by
parts, assuming that ρ̂w vanishes at the bounds of the integration, yields

Tr′

(∫ ∞
−∞

∫ ∞
−∞

dR dP Ĥw
∂Ĥw

∂R
· ∂ρ̂w
∂P

)
= −Tr′

(∫ ∞
−∞

∫ ∞
−∞

dR dP

(
∂Ĥw

∂P
· ∂Ĥw

∂R
+ Ĥw

∂2Ĥw

∂P∂R

)
ρ̂w

)
,

Tr′

(∫ ∞
−∞

∫ ∞
−∞

dR dP Ĥw
∂Ĥw

∂P
· ∂ρ̂w
∂R

)
= −Tr′

(∫ ∞
−∞

∫ ∞
−∞

dR dP

(
∂Ĥw

∂R
· ∂Ĥw

∂P
+ Ĥw

∂2Ĥw

∂P∂R

)
ρ̂w

)
,

Tr′

(∫ ∞
−∞

∫ ∞
−∞

dR dP Ĥw
∂ρ̂w
∂R
· ∂Ĥw

∂P

)
= −Tr′

(∫ ∞
−∞

∫ ∞
−∞

dR dP

(
∂Ĥw

∂P
· ∂Ĥw

∂R
+
∂2Ĥw

∂P∂R
Ĥw

)
ρ̂w

)
,

Tr′

(∫ ∞
−∞

∫ ∞
−∞

dR dP Ĥw
∂ρ̂w
∂P
· ∂Ĥw

∂R

)
= −Tr′

(∫ ∞
−∞

∫ ∞
−∞

dR dP

(
∂Ĥw

∂R

∂Ĥw

∂P
+
∂2Ĥw

∂P∂R
Ĥw

)
ρ̂w

)
.

Reassembling these terms results in

Tr
(
Ĥw{Ĥw, ρ̂w} − Ĥw{ρ̂w, Ĥw}

)
= Tr′

(∫ ∞
−∞

∫ ∞
−∞

dR dP − {Ĥw, Ĥw}ρ̂w + {Ĥw, Ĥw}ρ̂w
)
,

so that, once again, there is complete cancellation of all terms

Tr
(
Ĥw{Ĥw, ρ̂w} − Ĥw{ρ̂w, Ĥw}

)
= 0 .

Finally, combining the two component results yields

Tr

(
Ĥw

∂ρ̂w(t)

∂t

)
= 0 ,

as required by conservation of energy. The preceding results would also suggest that both the
Poisson bracket combination and quantum commutator conserve energy independently. However,
this does not preclude energy transfer between the quantum subsystem and the phase-space system,
as the coupling operators feature in both sets of brackets. This independent energy conservation
becomes important when the coupling is removed and each of the brackets must conserve energy
in isolation.

The Quantum-Classical Limit

So far the quantum-classical equation has appeared only as an arbitrary prescription. That is, there
was no physical motivation for the cut-off of the O(~2) terms in the expansion given in Eq. (2.25).
If the quantum-classical equation is produced via this cut-off it is indeed merely an arbitrary
prescription as it does not qualify as a consistent limit of the original quantum-quantum system
[12]. This problem can be obviated by making a mass-scale separation of the two subsystems.
Assume a Hamiltonian of the form:

Ĥ = Ĥs(r̂, p̂) + Ĥx(R̂, P̂ ) + Ĥc(r̂, R̂) .

Where the degrees of freedom for the s-subsystem are associated with a mass m and the x-
subsystem has a mass M . Then the Hamiltonian can be rescaled by the energy parameter ω,
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defining some arbitrary energy unit. The corresponding time and length scales tω and λω are then
given by [20]

tω =
~
ω
,

λω =

√
~2

mω
.

In particular this length rescaling parameter corresponds to the ω-unit de Broglie wavelength of
the x-subsystem [20]. Then the rescaling factors for the momenta of the x and s subsystem, pm
and PM respectively, are found to be

pm =
mλω
tω

=
√
mω ,

PM =
√
Mω .

Unlike the momenta, the position operators R̂ and r̂ are rescaled by the same factor, this being the
wavelength λω. This rescaling is then analogous to that used in describing the Brownian motion
of a heavy particle in a bath of light particles [20]. The rules for this rescaling can therefore be
written as

r̂′ =
r̂

λω
and p̂′ =

p̂

pm
,

R̂′ =
R̂

λω
and P̂ ′ =

P̂

PM
,

Ĥ ′ =
Ĥ

ω
and t′ =

tω

~
.

If one were then to consider the rescaling of Eq. (2.14)

ω

~
∂

∂t′
ρ̂′w = − i

~
(
ωĤ ′w ρ̂′w

)
· εe

iµ
2 Λ′ ·

(
ωĤ ′w
ρ̂′w

)
. (2.18)

Where µ =
√

m
M and

Λ =

←−
∂

∂R
·
−→
∂

∂P
−
←−
∂

∂P
·
−→
∂

∂R
=

1√
Mω

√
mω

~

( ←−
∂

∂R′
·
−→
∂

∂P ′
−
←−
∂

∂P ′
·
−→
∂

∂R′

)
.

The quantum-classical equation can then be found if one takes the limit where M � m, in
particular [20]

lim
µ�1

e
iµ
2 Λ′ = 1 +

iµ

2
Λ′ = 1 +

i~
2

Λ , (2.19)

which yields the truncated equation Eq. (2.16) when substituted into Eq. (2.18). Taking the
truncation in the limit M � m is equivalent to averaging out the short wavelength de Broglie
oscillations related to PM on the scale of the long de Broglie wavelengths associated to pm [20].

This mass separation might also be compared to the method shown in [14] where the Heisenberg
group which describes the two interacting quantum systems is taken to be a nilpotent Lie group with
a two dimensional centre [14]. Such a Lie group is assumed to possess separate Planck constants
for each of the two subsystems, as the observables of each subsystem as assumed to commute, one
corresponding to the character of each element of the centre. When the character value of ~ for one
of the subsystems becomes insignificant compared to that of the other subsystem, the quantum-
classical bracket is found to be the approximate Lie bracket for the system [14]. This more involved
process bears strong analogy with interpretation given for the simple rescaling procedure presented
above and is far more general, since it makes reference only to the algebraic structure of the theory
and not to the properties of any system.

In systems where one of these scale-separation procedures is possible, the quantum-classical
approximation constitutes a clearly consistent classical limit of the original fully quantum system.
Moreover, the derivation discussed in [14] suggests that the quantum-classical equation naturally
arises as a dynamical approximation when the quantum effects in the dynamics of one of the
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component systems become insignificant. The idea of the mass-scale separation presented here
notably does not cover pseudo-spin systems, which feature no mass. However, such cases can be
treated in the same manner, the pseudo-spin system, with its two energy levels, is simply considered
an approximation for a system with more energy levels, but one that is largely unable to realise any
level higher than the first excited state. In such a system there is a definite mass, that might be
used to justify the kind of scale-separation procedure detailed above, but does not appear explicitly
in the approximate two-level Hamiltonian.

Quantum Corrections to the Quantum-Classical Equation

It might be assumed, if one were attempting to view the quantum-classical equation from a per-
turbative standpoint, that the non-linear terms, neglected when making the quantum-classical
approximation, are small enough to have little effect on the dynamics. However, outside of the
perturbative limit that might justify the quantum-classical approximation, the non-locality of these
terms makes it difficult to estimate the magnitude of their effect on the dynamics of a given sys-
tem. Therefore, the purpose of this study is to investigate fully the role that these corrections
play in the dynamics of a coupled subsystem and environment. In this section, these non-linear
terms will be examined, for a given class of Hamiltonians, with a view to testing their effects on
the dynamics of chosen model systems that feature couplings dependent on position coordinates
R and polynomial potentials for the x-subsystem. As has been seen in Eq. (2.15), general terms
in the partial Wigner-Liouville equation are characterised by the operators

Dn =

(
i~
2

Λ

)n
/n! .

Recall that, as detailed above, the Hamiltonian will be of the of the form

Ĥw = Hx,w(X) +H(ŝ) + V ′(ŝ)× Vc,w(R) ,

where all the symbols retain their previous meanings and Hx,w = P2

2 +
∑nk
k=1

bk
k! R

k. In order to
reformulate the operator Dn, an examination of the properties of the operator Λn is required. To
this end, refer to Eq. (B.6), which, for the given class of Hamiltonians, allows one to write

Λn =

←−
∂n

∂Rn
·
−→
∂n

∂Pn
+ (−1)n

←−
∂n

∂Pn
·
−→
∂n

∂Rn
,

which can be further applied to generate the form of the operators Dn:

Dn =

(
i~
2

)n( ←−
∂n

∂Rn
·
−→
∂n

∂Pn
+ (−1)n

←−
∂n

∂Pn
·
−→
∂n

∂Rn

)
/n! .

In terms of this notation the operator D is defined by

D = ε

(
lim
N→∞

N∑
n=0

Dn

)
. (2.20)

Additionally, this form of the bracket operator encompasses coupling potentials to any arbitrary
polynomial order in R, as no assumptions about the coupling were made beyond its R depen-
dence. With the Wigner-Liouville equation expressed in terms of the operator D, with D given
by Eq. (2.20), one still obtains exact equations of motion for the given class of Hamiltonians. In a
more explicit form, the exact equations of motion can now be written as

∂

∂t
ρ̂w =− i

~

[
Ĥs + V ′(ŝ)⊗ Vc,w, ρ̂w

]
− i

~
lim
N→∞

N∑
n=1

(V ′(ŝ)⊗ Vc,wDnρ̂w − ρ̂wDnV
′(ŝ)⊗ Vc,w)

− i

~
lim
N→∞

N∑
n=1

(Hx,wDnρ̂w − ρ̂wDnHx,w) . (2.21)
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In order to obtain a general feel for the nature of the quantum correction terms, consider the
contribution of the term

− i
~

lim
N→∞

N∑
n=1

(Hx,wDnρ̂w − ρ̂wDnHx,w) .

For n = 1, the definition of Dn yields

D1 =

(
i~
2

)(
Λ1
)

=

(
i~
2

)( ←−
∂

∂R
·
−→
∂

∂P
−
←−
∂

∂P
·
−→
∂

∂R

)
,

so that
1

2
(Hx,wD1ρ̂w − ρ̂wD1Hx,w) =

1

2
({Hx,w, ρ̂w} − {ρ̂w, Hx,w}) .

This means that this particular term in the corrections is just part of an anti-symmetric Poisson
bracket combination, which agrees with the earlier derivation of the quantum-classical equation.
It similarly evident that

− i
~

(V ′(ŝ)⊗ Vc,wD1ρ̂w − ρ̂wD1V
′(ŝ)⊗ Vc,w) =

1

2
({V ′(ŝ)⊗ Vc,w, ρ̂w} − {ρ̂w, V ′(ŝ)⊗ Vc,w}) .

It is clear, then, that only terms with n > 1 will be of interest as quantum corrections, since the
n = 1 Poisson bracket terms describe classical-like phase-space dynamics.

For the remaining terms in the series, namely

− i
~

lim
N→∞

N∑
n=2

(Hx,wDnρ̂w − ρ̂wDnHx,w) ,

it is instructive to expand the expression for a general term of order k

− i
~

(Hx,wDkρ̂w − ρ̂wDkHx,w) =
1

2

(
i~
2

)k−1

Hx,w

( ←−
∂k

∂Rk
·
−→
∂k

∂Pk
+ (−1)k

←−
∂k

∂Pk
·
−→
∂k

∂Rk

)
ρ̂w

− 1

2

(
i~
2

)k−1

ρ̂w

( ←−
∂k

∂Rk
·
−→
∂k

∂Pk
+ (−1)k

←−
∂k

∂Pk
·
−→
∂k

∂Rk

)
Hx,w .

Since Hx,w is a phase-space function it therefore commutes with operators on the s-subsystem,
which means that terms with similar derivative order to can be conveniently grouped through
commuting Hx,w and ρ̂w as follows:

− i
~

(Hx,wDkρ̂w − ρ̂wDkHx,w) =
1

2

(
i~
2

)k−1

Hx,w

( ←−
∂k

∂Rk
·
−→
∂k

∂Pk
+ (−1)k+1

←−
∂k

∂Rk
·
−→
∂k

∂Pk

)
ρ̂w

− 1

2

(
i~
2

)k−1

ρ̂w

( ←−
∂k

∂Rk
·
−→
∂k

∂Pk
+ (−1)k+1

←−
∂k

∂Rk
·
−→
∂k

∂Pk

)
Hx,w .

Therefore, only terms of this type with k odd will be non-zero, so that these corrections can be
simplified to a form familiar from the earlier discussion of the Wigner picture

− i
~

lim
N→∞

N∑
n=2

(Hx,wDnρ̂w − ρ̂wDnHx,w) =

N∑
n=3,5,···

1

n!

(
~
2i

)n−1
∂nHx,w

∂Rn
· ∂

nρ̂w
∂Pn

,

since
∂nHx,w
∂Pn = 0 if n > 2. However, in the case of the correction series due to the coupling

potential, there is a more limited simplification possible as the potential V ′(ŝ)⊗Vc,w still contains
an operator on the s-subsystem. This simplification relies on the assumption that the coupling
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is dependent only on phase-space position R. Consider, then, the series of correction terms that
stem from the coupling potential:

− i
~

lim
N→∞

N∑
n=2

(V ′(ŝ)⊗ Vc,wDnρ̂w − ρ̂wDnV
′(ŝ)⊗ Vc,w) .

The first part of the general summation term may be expressed, by expanding Dn, as

V ′(ŝ)⊗ Vc,wDnρ̂w =

(
i~
2

)n
1

n!
V ′(ŝ)⊗ Vc,w

( ←−
∂n

∂Rn
·
−→
∂n

∂Pn
+ (−1)n

←−
∂n

∂Pn
·
−→
∂n

∂Rn

)
ρ̂w .

Under the assumption that Vc,w ≡ Vc,w(R) this reduces to

V ′(ŝ)⊗ Vc,wDnρ̂w =

(
i~
2

)n
1

n!
V ′(ŝ)⊗ Vc,w

( ←−
∂n

∂Rn
·
−→
∂n

∂Pn

)
ρ̂w .

Similarly, the second part of the term may, after following the same procedure, be expressed as

ρ̂wDnV
′(ŝ)⊗ Vc,w =

(
i~
2

)n
1

n!
(−1)nρ̂w

( ←−
∂n

∂Pn
·
−→
∂n

∂Rn

)
V ′(ŝ)⊗ Vc,w .

Thus the correction terms due to the coupling potential may be written explicitly in terms of the
phase-space derivatives of the coupling potential

− i
~

lim
N→∞

N∑
n=2

(V ′(ŝ)⊗ Vc,wDnρ̂w − ρ̂wDnV
′(ŝ)⊗ Vc,w)

= lim
N→∞

N∑
n=2

1

2nn!

(
i

~

)n−1(
V ′(ŝ)⊗ ∂nVc,w

∂Rn
· ∂

nρ̂w
∂Pn

+ (−1)n−1 ∂
nρ̂w
∂Pn

· ∂
nVc,w
∂Rn

⊗ V ′(ŝ)
)
.

This allows the equation of motion to be expressed in an explicit form, free of the D operators:

∂ρ̂w
∂t

= − i

~
[Ĥw, ρ̂w] +

1

2

(
{Ĥw, ρ̂w} − {ρ̂w, Ĥw}

)
+

∑
n=3,5,...

(
~
2i

)n−1
1

n!

∂nHx,w

∂Rn
· ∂

nρ̂w
∂Pn

+
∑

n=2,3,...

1

2nn!

(
i

~

)n−1(
V ′(ŝ)⊗ ∂nVc,w

∂Rn
· ∂

nρ̂w
∂Pn

+ (−1)n−1 ∂
nρ̂w
∂Pn

· ∂
nVc,w
∂Rn

⊗ V ′(ŝ)
)
.

Clearly, the lowest order phase-space derivative in the coupling correction series is of order 2.
With this in mind, it is now possible to obtain a more extensive simplification if the coupling is
linear in R. The linear dependence of Vc,w on R means that all higher order corrections vanish,
mathematically stated, one has:

∂n

∂Rn
V ′(ŝ)⊗ Vc,w =

∂n

∂Pn
V ′(ŝ)⊗ Vc,w = 0 ∀ n > 1 .

Therefore, for systems where the coupling potential is linear in R, the corrections stem only from
the phase-space potential and have a form strongly analogous to the quantum corrections in the
full Wigner picture for an isolated system. This allows the partial Wigner-Liouville equation for
linearly coupled systems to be written as

∂ρ̂w
∂t

= − i
~

[Ĥw, ρ̂w] +
1

2

(
{Ĥw, ρ̂w} − {ρ̂w, Ĥw}

)
+

N∑
n=3,5,···

(
~
2i

)n−1
1

n!

∂nHx,w

∂Rn
· ∂

nρ̂w
∂Pn

. (2.22)

The dynamics in the case of an arbitrary coupling and phase-space potential are then just the same
hybrid dynamics of the quantum-classical equation but with the addition of some non-local phase-
space correction terms. The correction terms stemming from the phase-space potential Vc,w are
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identical in form to the phase-space corrections that appeared in the Wigner-Liouville equation.
For a system that exhibits such correction terms, one might then expect that the higher the
order of existing, significant corrections, the greater the prevalence of non-local dynamical effects.
The clear expression of the evolution equation in terms of a classical Poisson bracket and some
additional non-local terms suggests that the dynamical differences between a quantum phase-space
evolution and a classical evolution lie in these non-local correction terms. Moreover, if the coupling
is removed, the anti-symmetric Poisson bracket combination can be resolved using the fact that
the purely quantum components of the Hamiltonian have no phase-space derivatives

1

2

(
{Ĥw, ρ̂w} − {ρ̂w, Ĥw}

)
=

1

2

(
{Hx,w, ρ̂w} − {ρ̂w, Hx,w}

)
,

which, since Hx,w is a phase-space function, can be rewritten as a simple Poisson bracket

1

2

(
{Ĥw, ρ̂w} − {ρ̂w, Ĥw}

)
= {Hx,w, ρ̂w} .

Thus the partial Wigner-Liouville equation for uncoupled subsystems has the form

∂ρ̂w
∂t

= − i
~

[Ĥs, ρ̂w] + {Hx,w, ρ̂w}+

N∑
n=3,5,···

(
~
2i

)n−1
1

n!

∂nHx,w

∂Rn
· ∂

nρ̂w
∂Pn

.

It follows, then, that in the limit of zero coupling, the dynamics consist of isolated quantum dy-
namics for the s-subsystem and Wigner classical-like dynamics for the x-subsystem. Therefore, the
dynamics obey the requirement that, when uncoupled, both subsystems evolve in isolation under
exact quantum dynamics. If the case where the corrections are neglected is then considered, the
x-subsystem evolves under purely classical dynamics when the coupling is removed. It has already
been demonstrated that the Poisson bracket combination and quantum commutator conserve en-
ergy independently when the subsystems evolve in isolation; so the zero coupling limit satisfies
both the requirements of dynamical separation and energy conservation for isolated systems.

Examining the complete equation Eq. (2.21), or any of the simplifications presented above, it is
evident that the dynamics of a partially Wigner-transformed system can be viewed from a Eulerian
perspective. That is, the equations of motion can be taken to represent Hilbert space dynamics
for the s-subsystem at any point X in the phase space, therefore evaluating the dynamics of the
system amounts to evaluating phase-space dynamics and the dynamics of a set of Hilbert spaces,
each parameterised by a set of phase-space coordinates. This Eulerian viewpoint is especially
evident in the calculation of the averages Eq. (2.9), in which one sees that taking the average
of an observable is equivalent to taking the observable average in each individual Hilbert space
parameterised by the point X and then averaging over the entire phase space.

Therefore, with all the preceding discussion in mind, a system which possesses a finite number
of non-zero correction terms should allow for a comparison between its evolution under classical
dynamics, by means of discarding the correction terms, and its evolution under fully quantum
dynamics. This comparison would allow for the identification of purely quantum dynamical effects,
as the only difference in the evolution are the non-local quantum-corrections. Thus, study of the
effects of these correction terms could lead to indirect methods of observing quantum behaviour
and testing the principles of quantum mechanics in man-made systems, such as nano-mechanical
oscillators, which straddle the divide between the quantum and classical worlds. Moreover, such
studies highlight the fundamental differences between quantum dynamics and classical dynamics,
offering an opportunity to visualise, through the Wigner phase space, what it is that separates
the evolution of quantum systems from those classical systems we are more directly familiar with.
For these reasons, the numerical work in this study is devoted to determining how the quantum
corrections affect the evolution of a model quantum system, a non-linear oscillator coupled to a
two-level pseudo-spin system, with the aim to highlight particular quantum dynamical effects that
result from the quantum-correction terms.

Analysis of the Algebraic Structure in Quantum-Classical Dynamics

Both Classical and Quantum mechanics feature canonical commutation relations between the gen-
eralised momentum and the generalised position quantities. In fact, commutation relations play
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an additional important role in quantum mechanics due to the fact that operator families like
the Pauli spin operators, which possess a cyclic commutation relation, form the generators of ad-
ditional Lie algebras [24]. If the Lie algebra corresponds to a Lie group, then the operators in
question are the generators of infinitesimal symmetry transformations [24, 73]. In addition to this
consideration, quantities which commute with the Hamiltonian are found to represent the symme-
tries of the system [63] in both the quantum and classical regimes. It is therefore vital that the
dynamical equations for the evolution of physical systems, which can also be expressed in terms of
commutators, preserve such canonical or symmetry-related commutation relations, to do otherwise
means the loss of some symmetry associated with the physical system.

To ensure that such symmetries are preserved, a dynamical bracket (·, ·) must meet certain
requirements, the first being anti-symmetry:

(A,B) = −(B,A) .

This is required to ensure that all quantities, without explicit time dependence, self-commute:

(A,A) = −(A,A) = 0 .

In particular this means that time-independent Hamiltonians are conserved. The second require-
ment is the Jacobi identity [24, 73]

((A,B), C) + ((B,C), A) + ((C,A), B) = 0 .

Here the quantities A, B and C can be commuting phase-space functions or non-commuting op-
erators. It is a simple matter to demonstrate that both these requirements are obeyed by the
quantum and classical brackets, [·, ·] and {·, ·} respectively. These brackets are defined by [63, 74][

Â, B̂
]

= ÂB̂ − B̂Â ,

{A,B} =
∂A

∂r
· ∂B
∂p
− ∂A

∂p
· ∂B
∂r

.

The Poisson bracket {·, ·} is defined here on the phase space (r,p).
There is one further requirement for a dynamical bracket and that is that the bracket forms

a derivation. This means that the bracket corresponds to the generalisation of a derivative on
some algebra. In the case of quantum mechanics this algebra is formed from the linear operators
acting the Hilbert space of the system [65], while in classical mechanics the algebra is composed
of smooth phase-space functions [74]. The defining property of a derivation D is known as the
Leibniz condition and is given by

D(AB) = D(A) ·B +A ·D(B) .

In quantum mechanics the dynamical bracket [·, Ĥ] forms a derivation

[ÂB̂, Ĥ] = ÂB̂Ĥ − ĤÂB̂ = ÂB̂Ĥ − ĤÂB̂ + ÂĤB̂ − ÂĤB̂ = [Â, Ĥ]B̂ + Â[B̂, Ĥ] .

The classical bracket {·, H} is also a derivation

{AB,H} = {A,H}B + {B,H}A ,

which emerges simply by invoking the product rule for derivatives. The fact that these dynamical
brackets form derivations validates their use in the equations of motion

d

dt
Â =

1

i~
[Â, Ĥ] ,

d

dt
A = {A,H} .

If the quantum-classical bracket of Eq. (2.17) is to provide a consistent description of the
dynamics of interacting quantum and classical systems it is vital to ensure that it preserves the
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symmetries associated with the system. To determine this, the quantum-classical bracket will be
analysed to see whether or not is anti-symmetric, a derivation and whether it satisfies the Jacobi
identity.

Before beginning a discussion of the quantum-classical equation it is important to establish some
terminology: A quantum-classical system consists of a quantum sector, or subsystem, coupled to
a classical, or phase-space, subsystem. A hybrid operator is one that acts upon both the quantum
subsystem and the phase-space subsystem, being the product of a phase-space function and an
operator that acts on the quantum subsystem. It is additionally important to establish what is
meant by the notion of dynamical consistency, in the context of the hybrid dynamics, consistency
is defined here to mean that the dynamical formalism inherits all the mathematical advantages of
quantum and classical mechanics, namely that it conserves the intrinsic symmetries of a physical
system and defines some notion of a derivative on the manifold associated to some Lie algebra.

It should be noted, at this point, that the Lie group in question is the nilpotent Lie group with
a two-dimensional centre mentioned in Section 2.2.4.

It is clear that the quantum-classical equation is anti-symmetric, even when acting on non-
commuting operators. This is because the commutator [·, ·] is anti-symmetric by definition and the
Poisson bracket combination can be seen to be anti-symmetric by examining

{Â, B̂} − {B̂, Â} = −
(
{B̂, Â} − {Â, B̂}

)
.

In order to determine whether the quantum-classical bracket is a derivation, consider the Wigner
transform of the Leibniz condition:

W ([AB,H]) =W (A[B,H] + [A,H]B) ,

this can be expanded using Eq. (2.12) with the result:

W ([AB,H]) =W(AB)e
i~
2 ΛHw −Hwe

i~
2 ΛW(AB) ,

= Awe
i~
2 Λ
(
Bwe

i~
2 ΛHw −Hwe

i~
2 ΛBw

)
−
(
Awe

i~
2 ΛHw −Hwe

i~
2 ΛAw

)
e
i~
2 ΛBw .

Here the w subscript denotes the partial Wigner-transformed operator and, in subsequent notation,
the constants i~

2 will be absorbed into the Λ operator, meaning that O(~n) ≡ O(Λn). Expanding
the correction series about the operator Λ results in the exact, but complicated, expression

W ([AB,H]) = Aw(1 + Λ +
1

2
Λ2 + . . .)

(
Bw(1 + Λ +

1

2
Λ2 + . . .)Hw −Hw(1 + Λ +

1

2
Λ2 + . . .)Bw

)
−
(
Aw(1 + Λ +

1

2
Λ2 + . . .)Hw −Hw(1 + Λ +

1

2
Λ2 + . . .)Aw

)
(1 + Λ +

1

2
Λ2 + . . .)Bw ,

= AwBwHw −AwHwBw +AwHwBw −HwAwBw

+AwΛ(BwHw)−AwΛ(HwBw) +Aw(BwΛHw)−Aw(HwΛBw)

+ (AwHw)ΛBw − (HwAw)ΛBw + (AwΛHw)Bw − (HwΛAw)Bw

+AwΛ(BwΛHw)−AwΛ(HwΛBw) + (AwΛHw)ΛBw − (HwΛAw)ΛBw

+Aw(Bw
1

2
Λ2Hw −Hw

1

2
Λ2Bw)− (Aw

1

2
Λ2Hw −Hw

1

2
Λ2Aw)Bw

+Aw
1

2
Λ2(BwHw −HwBw)− (AwHw −HwAw)

1

2
Λ2Bw +O(Λ3) .

(2.23)
The previous result must then be compared to the quantum-classical bracket for the product AwBw
in order to locate the limits in which the bracket forms a derivation. To this end, consider the
bracket evaluation

−~
i

(AwBw, Hw)qc = AwBwHw −HwAwBw + (AwBw)ΛHw −HwΛ(AwBw) .

This expression can be expanded via the definition of Λ and the product rule of differential oper-
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ators, with the result

−~
i

(AwBw, Hw)qc = AwBwHw −HwAwBw −AwHwBw +AwHwBw +Aw (BwΛHw)−Aw (HwΛBw)

+
i~
2

(
∂Aw
∂R

Bw ·
∂Hw

∂P
− ∂Aw

∂P
Bw ·

∂Hw

∂R
− ∂Hw

∂R
Aw ·

∂Bw
∂P

+
∂Hw

∂P
Aw ·

∂Bw
∂R

)
,

= Aw[Bw, Hw] + [Aw, Hw]Bw +Aw (BwΛHw)−Aw (HwΛBw)

+ (AwΛHw)Bw − (HwΛAw)Bw +
i~
2

(
∂Aw
∂R

·
[
Bw,

∂Hw

∂P

]
− ∂Aw

∂P
·
[
Bw,

∂Hw

∂R

])
+
i~
2

([
∂Hw

∂P
, Aw

]
· ∂Bw
∂R

−
[
∂Hw

∂R
, Aw

]
· ∂Bw
∂P

)
.

In order to demonstrate the equivalence of the terms linear in Λ with those in Eq. (2.23), consider
the expansion

2

i~
(AwΛ(BwHw)−AwΛ(HwBw) + (AwHw)ΛBw − (HwAw)ΛBw)

=
∂Aw
∂R

· ∂Bw
∂P

Hw +
∂Aw
∂R

Bw ·
∂Hw

∂P
− ∂Aw

∂R
· ∂Hw

∂P
Bw −

∂Aw
∂R

Hw
∂Bw
∂P

− ∂Aw
∂P

· ∂Bw
∂R

Hw −
∂Aw
∂P

Bw ·
∂Hw

∂R

+
∂Aw
∂P

· ∂Hw

∂R
Bw +

∂Aw
∂P

Hw ·
∂Bw
∂R

+
∂Aw
∂R

Hw ·
∂Bw
∂P

+Aw
∂Hw

∂R
· ∂Bw
∂P

− ∂Hw

∂R
Aw ·

∂Bw
∂P

−Hw
∂Aw
∂R

· ∂Bw
∂P

−∂Aw
∂P

Hw ·
∂Bw
∂R

−Aw
∂Hw

∂P
· ∂Bw
∂R

+
∂Hw

∂P
Aw ·

∂Bw
∂R

+Hw
∂Aw
∂P

· ∂Bw
∂R

=
∂Aw
∂R

·
[
Bw,

∂Hw

∂P

]
− ∂Aw

∂P
·
[
Bw,

∂Hw

∂R

]
+

[
∂Hw

∂P
, Aw

]
· ∂Bw
∂R

−
[
∂Hw

∂R
, Aw

]
· ∂Bw
∂P

+ [{Aw, Bw}, Hw] .

The term [{Aw, Bw}, Hw] vanishes if A and B are either both phase-space functions or both
quantum operators, additionally, it will also vanish if either A or B is a quantum operator. This
means that this term will vanish for any hybrid operator product that can be expressed as the
product of a phase-space function and a quantum subsystem operator. Moreover, any higher-order
term in the expansion that features phase-space derivatives acting on both Aw and Bw will vanish
for similar reasons. Therefore, the quantum-classical bracket is a derivation up to first order in the
differential operator.

−~
i

(AwBw, Hw)qc +O(Λ2) =W (A[B,H] + [A,H]B) .

This agrees with the general form of the correction terms, found in Eq. (2.21), which demonstrates
that the lowest-order quantum correction terms contain phase-space derivatives of second order.
Therefore, if the hybrid operator components of the Hamiltonian depend, at most, linearly on
either of the phase-space variables, the quantum-classical equation is a derivation. The general
non-commutativity of the operators Â and B̂ lies at the heart of this failure to satisfy the Leibniz
condition. It might be noted that if this bracket is used merely as an approximation, this failure
does not present one with any trouble. It may noted that if A and B are either purely quantum
operators or purely phase-space functions then the bracket does form a derivation, as it reduces to
a quantum or classical bracket respectively.

One can now turn to examination of the Jacobi identity for quantum-classical systems. Since
both the Poisson bracket and the quantum commutator satisfy the Jacobi identity individually,
the identity is preserved for the subsets of operators that act only only on one of the subsystems.
However, for general hybrid operators, it will turn out that the Jacobi identity only holds con-
ditionally and the previously demonstrated derivation of the correction terms will allow for the
identification of the explicit conditions that determine whether or not the symmetries associated
with a chosen operator will be preserved by the quantum-classical equation. First, consider the
exact equation partial Wigner bracket

(Â, B̂)pw =
[
Âw, B̂w

]
+ lim
N→∞

N∑
n=1

(
ÂwDnB̂w − B̂wDnÂw

)
. (2.24)
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With

Dn =

(
i~
2

)n
Λn/n! ,

as previously defined. This equation may be expanded [12]

(Â, B̂)pw = F0(Âw, B̂w) + ~F1(Âw, B̂w) + ~2F2(Âw, B̂w) + . . . , (2.25)

where the functions Fn are independent of ~ and defined by

Fn(Q̂w, Ŝw) =
1

n!

(
i

2

)n (
Q̂wΛnŜw − ŜwΛnQ̂w

)
.

Having established this expansion representation of the partial Wigner bracket, the quantum-
classical Jacobi identity takes the form

((A,B)qc, C)qc + c.p = 0 .

Here A, B and C are assumed to represent partial Wigner-transformed operators and c.p stands
for cyclic permutations. Each of the terms in this identity can be expanded in a manner similar
to Eq. (2.25), yielding

(A, (B,C)pw)pw = F0(A,F0(B,C)) + ~F0(A,F1(B,C)) + ~F1(A,F0(B,C))

+ ~2F0(A,F2(B,C)) + ~2F2(A,F0(B,C)) + ~2F1(A,F1(B,C)) + . . .

=
∑
n=0

n∑
k=0

~nFk(Fn−k(A,B), C) .

The complete partial Wigner Jacobi identity can then be divided into one Jacobi identity for each
order of ~ [12]

F0(F0(A,B), C) + c.p = 0 , (2.26)

~F0(F1(A,B), C) + ~F1(F0(A,B), C) + c.p = 0 , (2.27)

~2F0(F2(A,B), C) + ~2F2(F0(A,B), C) + ~2F1(F1(A,B), C) + c.p = 0 , (2.28)

...

In order to determine whether the quantum-classical bracket will violate the Jacobi identity
the same single term of the identity is evaluated for this choice of bracket

(Aw, (Bw, Cw)qc)qc = AwBwCw −AwCwBw + CwBwAw −BwCwAw +Aw(BwΛCw − CwΛBw)

− (BwΛCw − CwΛBw)Aw +AwΛ(BwCw − CwBw)− (BwCw − CwBw)ΛAw

+AwΛ(BwΛCw − CwΛBw)− (BwΛCw − CwΛBw)ΛAw

= F0(Aw, F0(Bw, Cw)) + ~F1(Aw, F0(Bw, Cw))

+ ~F0(Aw, F1(Bw, Cw)) + ~2F1(Aw, F1(Bw, Cw)) .

The Fn notation allows one to see that the terms F2(Aw, F0(Bw, Cw)), F0(Aw, F2(Bw, Cw)) and
all terms of O(~3), or higher, do not appear in the quantum-classical evaluation. This means that
for the quantum-classical bracket to satisfy the Jacobi identity, these extra terms must vanish:

F2(Aw, F0(Bw, Cw)) + F0(Aw, F2(Bw, Cw)) + c.p = 0 ,

F3(Aw, F0(Bw, Cw)) + F0(Aw, F3(Bw, Cw)) + F2(Aw, F1(Bw, Cw)) + F1(Aw, F2(Bw, Cw)) + c.p = 0 ,

...
n∑
k=0

Fk(Aw, Fn−k(Bw, Cw)) + c.p = 0 ,
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This will clearly be satisfied if we deal with hybrid observables that are, at most, linearly dependent
on the phase-space degrees of freedom. This means, with the appropriate choice of Hamiltonian,
and for a restricted class of observables one might find the quantum-classical bracket to be a
Lie bracket. The choice of Hamiltonian only directly guarantees that the bracket constitutes a
derivation; the Jacobi identity will still hold only for a restricted class of observables and thus
any symmetries related to hybrid operators that are at least quadratic in the phase-space degrees
of freedom may be violated by time evolution under the quantum-classical bracket. Importantly,
one can see that for the terms F0(Aw, F2(Bw, Cw)) to be non-zero, at least two of the observables
must be both hybrid observables and quadratic in the phase-space degrees of freedom [12]. The
existence of generally non-vanishing non-linear terms in the Jacobi identity suggests that, even if
a consistent quantum-classical limit exists, the Jacobi identity is not preserved.

The quantum corrections, as shown in equation Eq. (2.21), are clearly also given by Fn functions,
this means if the F2 term is added to the quantum-classical equation one finds the first Jacobi
identity term to appear as

(Aw, (Bw, Cw)qc)qc = F0(Aw, F0(Bw, Cw)) + ~F1(Aw, F0(Bw, Cw)) + ~F0(Aw, F1(Bw, Cw))

+ ~2F1(Aw, F1(Bw, Cw)) + ~2F2(Aw, F0(Bw, Cw)) + ~2F0(Aw, F2(Bw, Cw))

+ ~3F2(Aw, F1(Bw, Cw)) + ~3F1(Aw, F2(Bw, Cw)) .

The Jacobi identity now holds up to O(~2). The introduction of the correction term shifts the
violation of the identity into the third order. Similarly, for each order of correction term added to
the quantum-classical bracket the Jacobi identity is preserved to a correspondingly higher order.
Since the structure of the Hamiltonian is the source of the correction terms, it is evident that the
Jacobi and Leibniz violations will depend upon the Hamiltonian that governs the time evolution
of the system. If one of the operators in the Jacobi identity is chosen to be the Hamiltonian and
the other two are arbitrary hybrid operators, then it is evident that the Hamiltonian commutator
with arbitrary observables will not be preserved under time evolution. Additionally, if only one
arbitrary hybrid operator is chosen, accompanying the Hamiltonian and either a purely quantum
operator or phase-space function, then the violation of the Jacobi identity depends only on the
nature of the coupling function. This is because the coupling function is the only hybrid operator
within the Hamiltonian, therefore it dictates whether the Hamiltonian will constitute a quadratic
hybrid operator or not, as two such operators are required for violation of the Jacobi identity. This
means that, if the coupling is at most a quadratic in the hybrid degrees of freedom, then the Jacobi
identity will be satisfied, independent of the choice of the arbitrary hybrid observable. This means
that the Hamiltonian symmetries associated with purely quantum operators and pure phase-space
functions will be preserved by the quantum-classical equation under time evolution. However, it
is evident that even these symmetries are not generally preserved for arbitrary coupling functions.

Consideration of operator non-commutativity means that the higher-order terms of the Jacobi
identity will clearly only vanish for a limited class of observables. Therefore, for general observables
this means that the Jacobi identity is always violated by time evolution under the quantum-
classical bracket, regardless of the existence of a valid quantum-classical limit for the system. It is
also noteworthy that all the O(~2) and higher-order terms vanish if at least two of the operators
are restricted to being purely quantum operators or purely phase-space variables. This means
that any commutation relations between pure quantum operators or phase-space functions are
preserved by dynamical evolution under the quantum-classical bracket. This ensures that canonical
commutation relations, and other quantum operator commutation relations, are preserved for both
subsystems. It would seem then that the quantum-classical approximation is best suited either
to the study of systems where the only hybrid observables of interest meet the restriction of
being, at most, quadratic in the hybrid degrees of freedom, or possess few critical symmetries,
as highly symmetric systems risk the loss of Hamiltonian symmetries under quantum-classical
evolution. However, highly symmetric systems are likely to be able to be treated through some other
method; hybrid dynamical methods are truly convenient in the case that there are no providential
symmetries to simplify the solution of the dynamics, an example of such a symmetry-lacking system
would be the type of many body condensed matter system that hybrid methods are designed to
address. The link between the quantum corrections and the Jacobi identity is now obvious, if
corrections are introduced upO(~n) then the Jacobi identity will be preserved up to this same order.
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This suggests that the quantum-classical equation can be made use of, as an approximation, by
always introducing a finite number of correction terms in order to preserve the relevant symmetries.
However, it must be noted that if corrections are included to all orders, then the phase-space
subsystem is no longer classical at all, this is problematic if one wishes for a formalism to universally
address interacting quantum and classical systems. This being said, the fully corrected quantum-
classical equation can still be made use of because it benefits from a significant reduction in
computational complexity [2] and the corrected equation largely retains this advantage, provided
that the added correction series is finite. It should be noted that for longer corrections series this
advantage is lost, due to the computational cost of the higher-order derivatives.

The literature [10, 12–14, 75] is contentious as to whether the quantum-classical equation
provides a consistent formalism for the treatment of interacting quantum and classical sectors
and failure of the Leibniz condition and conditional Jacobi violation throws into doubt whether or
not the quantum-classical equation represents a consistent coupling between quantum and classical
sectors [12]. While it is true that the failings demonstrated here do not diminish the usefulness
of the quantum-classical equation as an approximation, it means that it is less than certain that
this bracket constitutes universally valid hybrid dynamics. Moreover, one notes that to restore
the bracket to the status of a Lie bracket, one must include all orders of quantum corrections,
effectively restoring the system to a pair of interacting quantum systems. It is the view of this
author then, that despite the availability of consistent methods of achieving the quantum-classical
limit, the coupled dynamics of quantum and classical subsystems, of the type presented in [10], do
not appear to result in a consistent formalism capable of universally treating interacting quantum
and classical sectors. This is because despite a consistent quantum-classical limit existing, the
Jacobi identity is violated and the Leibniz condition is only preserved based on the structure of the
Hamiltonian. There is some room for doubt in this conclusion, as it is not clear that any hybrid
symmetries would be relevant to the dynamics of the total system; were this the case, then the
violation of the Jacobi identity for hybrid observables becomes irrelevant. However, despite this,
for general coupling functions, the Hamiltonian symmetries related to the individual quantum or
classical subsystems are still violated by quantum-classical evolution; although one cannot discount
the possibility that these violations might turn out to be a physical aspect of hybrid systems.

This conclusion, with its uncertainties, does not seriously diminish the usefulness of the quantum-
classical formalism. Moreover, such non-Hamiltonian integration schemes demonstrate the poten-
tial to address open quantum systems [27, 76] and allow for combining thermostat or barostat
types systems while maintaining other thermodynamic constraints [26]. It is also clear that such
hybrid methods have value in cases that exhibit few symmetries pertaining to the total system,
as the isolation of the quantum degrees of freedom reduces the computational complexity and,
without many Hamiltonian symmetries, the disadvantages of the formalism do not manifest. It is
also important to note that canonical commutations relations and commutation relations between
quantum operator families, which define internal symmetries of the quantum system, are not com-
promised by the violation of the Jacobi identity. Finally, the algebraic structure of the theory can
still be exploited to examine the dynamical differences between quantum and classical evolutions,
through comparison of quantum-classical and quantum corrected dynamics. The failings of this
quantum-classical treatment does not dismiss it, but merely suggests that caution must be exer-
cised in its application and that there are still important questions to be answered about such
formalisms.
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Chapter 3

Numerical Methods

This chapter details the methods used in this work for the numerical solution of partial differential
equations and for the numerical evaluation of phase-space averages. In the course of this chapter
the method of lines technique for solving partial differential equations will be discussed, along
with the attendant method of finite differences used to approximate phase-space derivatives in
the equations if motion. Ordinary differential equation integrators will also be discussed, with
particular emphasis on the Runge-Kutta 5 Cash-Karp method used in obtaining the numerical
results presented in this work. Finally the method of calculating phase-space averages via the
Simpson’s rule technique of numerical integration will be presented.

3.1 Partial Differential Equations

A partial differential equation is one which features derivatives with respect to two, or more, inde-
pendent variables. In particular, wave equations are generally presented as a relationship between
the spatial derivatives and the temporal derivative of a wave function. This means that, due to
the strong association between quantum dynamics and the dynamics of waves, the study of partial
differential equations has a bearing on the solution of problems in quantum dynamics. Indeed, par-
tial differential equations are a prominent aspect of many fields of physics, some examples being:
statistical mechanics, fluid dynamics, thermodynamics, general relativity and electromagnetism.
The discussion of this rich field of study is limited here to a basic over-view and the exposition of
the numerical solution methods used in this particular research endeavour.

Let y(x, t) be a function of the independent variables x and t. Then a partial differential
equation, to which y is a solution, might be generally expressed as∑

n

(
αn(x, y, t)

∂n

∂xn
y + βn(x, y, t)

∂n

∂tn
y

)
+ γ(x, y, t)y = κ(x, t) . (3.1)

3.1.1 Examples and Terminology

The order of a differential equation is determined by the highest-order derivative in that equation.
A differential equation is linear if, when written in the form of Eq. (3.1), the coefficients α, β and
γ are independent of y. The linearity of a partial differential equation can play a significant role
in whether or not an analytical solution exists for the equation [77].

An example of a partial differential equation of physical relevance would be Schrödinger’s
equation [63]:

i~
∂

∂t
ψ(r, t) =

(
− ~2

2m
∇2 + V (r, t)

)
ψ(r, t) ,

where in three dimensions

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Schrödinger’s equation clearly features derivatives with respect to both time and space, making it
a partial differential equation. Moreover, because it features second-order spatial derivatives, it is
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a partial differential equation of second order. Finally, Schrödinger’s equation is also linear as ψ
appears only to the first power throughout the equation.

A second example is the Laplace equation

∇2ξ = 0 ,

where ∇2 is the Laplace operator. This equation is second order and linear.

3.1.2 General Solution

In general, a partial differential cannot be solved using simple ordinary differential equation solution
methods, as it features derivatives with respect to more than one independent variable and cannot
always be separated into a system of ordinary differential equations. However, despite this difficulty,
many of the numerical techniques used in the approximate solution of ordinary differential equations
are still useful in the case of the partial differential equation.

It is also not possible to solve analytically either non-linear partial differential equations or
large systems of partial differential equations [77]. This makes numerical analysis approximation
methods extremely important in the solution of these problems, as exact methods often do not
exist. The method of particular interest in this study is the Method of Lines. However, before
moving on to an explanation of this method, it is appropriate to examine first a technique from
the approximate solution of ordinary differential equations: the Method of Finite Differences.

3.2 Method of Finite Differences

The method of finite differences is a simple approach to the approximation of derivatives, which
has its origin in the definition of the derivative

dy

dt
= lim
dt→0

y(t+ dt)− y(t)

dt
. (3.2)

If the quantity dt is allowed to retain a finite size, rather than being reduced to 0, a simple ap-
proximation is obtained for the derivative with respect to t. This approximation must evidently be
highly sensitive to the magnitude of the quantity dt. Requiring that dt is small, while desirable for
ensuring the accuracy of a computation, may be an impractical or inefficient use of computational
resources if derivatives of y must be evaluated over some large interval. However, it is possible
to generalise this simple approximation to obtain formulae that are not linearly dependent on
the magnitude of dt. These approximate formulae are derived by considering the truncation of a
Taylor-series expansion of the function y(t + βdt), where β is some real constant. Through this
method it is also possible to extend this treatment to derivatives of higher order.

3.2.1 First Derivatives

The formula obtained by approximating the derivative definition can also be obtained by the
method of Taylor series truncation. In order to approximate the first derivative of the function
y(t), consider the Taylor expansion:

y(t+ dt) = y(t) +
dy

dt
dt+O(dt2) .

Where O(dt2) represents the remainder of the series, where the leading order term is proportional
to dt2. A simple rearrangement of the previous formula yields

dy

dt
=
y(t+ dt)− y(t)

dt
+O(dt) ,

which allows for the approximation:

dy

dt
≈ y(t+ dt)− y(t)

dt
.
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This approximation is accurate only up to O(dt).
The determination of a more accurate approximation might be possible if one were to cancel

out the O(dt2) term in the Taylor expansion of y(t + dt). In order to achieve this, consider the
Taylor expansions:

y(t+ dt) = y(t) +
dy(t)

dt
dt+

1

2!

d2y(t)

dt2
dt2 +

1

3!

d3y(t)

dt3
dt3 +O(dt4) , (3.3)

y(t− dt) = y(t)− dy(t)

dt
dt+

1

2!

d2y(t)

dt2
dt2 − 1

3!

d3y(t)

dt3
dt3 +O(dt4) . (3.4)

Clearly, if one were to compute y(t+ dt)− y(t− dt) the terms of order dt2 would be cancelled out,
leaving the dt3 terms as the leading order contributions to the error. Thus the approximation is
found by evaluation of y(t+ dt)− y(t− dt):

y(t+ dt)− y(t− dt) = 2
dy(t)

dt
dt+

2

3!

d3y(t)

dt3
dt3 +O(dt5) ,

this expression can be truncated, with an error of order dt2, to provide an approximation to the
first derivative, dy

dt ,
dy

dt
≈ y(t+ dt)− y(t− dt)

2dt
.

By considering more complicated combinations of Taylor expansions it is possible, in principle,
to determine such an approximation to any desired order. In this study, the highest-order finite-
difference approximation employed is of the fourth order and is given by [77]:

dy

dt
≈
(
y(t− 2dt)− 8y(t− dt) + 8y(t+ dt)− y(t+ 2dt)

12dt

)
.

3.2.2 Higher-Order Derivatives

An approximation to the second derivative of the function y(t) can be immediately determined by
adding Eq. (3.3) and Eq. (3.4):

y(t+ dt) + y(t− dt) = 2y(t) +
d2y(t)

dt2
dt2 +

2

4!

d4y(t)

dt4
dt4 +O(dt6) .

This can be rearranged to yield the approximation

d2y(t)

dt2
≈ y(t+ dt)− 2y(t) + y(t− dt)

dt2
,

which is accurate to O(dt2).
If a more complicated combination of Taylor expansions is chosen, for instance:

y(t+ 2dt) + y(t− 2dt)− 16(y(t+ dt) + y(t− dt)) = 2y(t) + 4
d2y(t)

dt2
dt2 +

32

4!

d4y(t)

dt4
dt4

− 16

(
2y(t) +

d2y(t)

dt2
dt2 +

2

4!

d4y(t)

dt4
dt4
)

+O(dt6) ,

the approximation is found to be

d2y(t)

dt2
≈ 16y(t+ dt) + 16y(t− dt)− 30y(t)− y(t+ 2dt)− y(t− 2dt)

12dt2
,

which has leading order uncancelled terms proportional to O(dt4).
The last finite difference formula that is important for use in this study is a third-order derivative

formula. The derivations previously seen suggest considering a difference of terms with the form

y(t+ βdt)− y(t− βdt) .
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To this end, consider the expansions

y(t+ dt)− y(t− dt) = 2
dy(t)

dt
dt+

2

3!

d3y(t)

dt3
dt3 +

2

5!

d5y(t)

dt5
dt5 +O(dt7) ,

y(t+ 2dt)− y(t− 2dt) = 4
dy(t)

dt
dt+

16

3!

d3y(t)

dt3
dt3 +

64

5!

d5y(t)

dt5
dt5 +O(dt7) ,

y(t+ 3dt)− y(t− 3dt) = 6
dy(t)

dt
dt+

54

3!

d3y(t)

dt3
dt3 +

162

5!

d5y(t)

dt5
dt5 +O(dt7) . (3.5)

To obtain a higher order of accuracy one might consider a linear combination of these three
equations:

a (y(t+ dt)− y(t− dt)) + b (y(t+ 2dt)− y(t− 2dt)) + c (y(t+ 3dt)− y(t− 3dt)) , (3.6)

where a, b and c are real-number coefficients. By requiring that terms of order dt and dt5 vanish,
resulting in the leading-order terms being dt7, a set of simultaneous equations in a, b and c is
constructed:

a+ 2b+ 3c = 0 ,

a+ 32b+ 81c = 0 .

These equations provide two restrictions for the three variables, it transpires, from the examination
of Eq. (3.5) and Eq. (3.6) that one must require that

2a+ 16b+ 54c 6= 0 .

This restriction must be applied in order to prevent the coefficient of the third derivative being
zero. Therefore, let the set of equations be

a+ 2b+ 3c = 0 ,

a+ 32b+ 81c = 0 ,

a+ 8b+ 27c = 3 .

The constant 3 in the last line is chosen for numerical convenience.
This has the solution

a = −13

8
,

b = 1 ,

c = −1

8
.

Therefore, the approximation for the third derivative can be formulated as follows

d3y(t)

dt3
≈ 1

dt3

(
1

8
y(t− 3dt) + y(t+ 2dt) +

13

8
y(t− dt)− 13

8
y(t+ dt)− y(t− 2dt)− 1

8
y(t+ 3dt)

)
,

(3.7)
where the error is given by leading-order uncancelled terms proportional to O(dt4).

3.3 Method of Lines

The method of lines is a technique designed to solve partial differential equations numerically
by converting them into approximate ordinary differential equations. As previously stated, there
is no general analytical way to decompose partial differential equations into ordinary differential
equations. Instead, the method accomplishes this transformation by replacing the partial deriva-
tives, with respect to all but one variable, with finite difference approximations of some suitably
chosen order. The critical point is that derivatives with respect to a single variable are left un-
approximated. The reason for this is that, with only one type of derivative remaining, the equation
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is now an ordinary differential equation and can be solved numerically with an appropriate numer-
ical integration method.

The numerical error incurred by the method of lines depends upon both the error of the finite-
difference approximations and the ordinary differential integrator that was used [78]. This means
the error cannot be generally determined and must be considered for the particular combination
of finite difference order and integrator in use, this means that for more complicated ordinary
differential equation solvers there is often no analytical form for the total error [77].

In this study, the method of lines is employed to replace derivatives in phase-space variables R
and P with fourth-order finite-difference approximations. The ordinary differential equation inte-
grator used is the Runge-Kutta 5 Cash-Karp method. A detailed discussion of ordinary differential
equation integrators follows in the next section.

3.4 Ordinary Differential Equation Integrators

There exists a profusion of ordinary differential equation integrators, each with its own properties
to recommend it. This section begins by examining two of the more basic integration methods: the
Explicit and Implicit Euler methods. These basic methods proved too inaccurate for the purposes
of this study and so the commonly used Runge-Kutta 4 and Runge-Kutta 5 Cash-Karp methods
are presented afterwards, as these were used to complete the numerical analysis that is presented
in the following chapter.

3.4.1 The Explicit Euler Method

Euler’s explicit method is the simplest one-step numerical integrator that can be employed to solve
an ordinary differential equation. Its simplicity, however, comes at the cost of accuracy, as the
method incurs an error of O(dt).

Consider the problem dy
dt = F (y, t). A Taylor expansion of y(t+ dt) about t results in:

y(t+ dt) = y(t) + dt
dy

dt

∣∣∣∣
t

+O(dt2) .

In the case of the given differential equation, this Taylor expansion offers a simple truncation
approximation

y(t+ dt) ≈ y(t) + dtF (y, t) ,

which is valid up to first order in dt. This result can be immediately generalised to a system of
equations d

dty = F(y, t), yielding

y(t+ dt) = y(t) + dtF(y, t) .

Due to its lack of accuracy, the explicit Euler method can be employed only with a small dt
interval. In computationally intensive processes this necessitates having to perform many addi-
tional calculations, as having dt very small means many more calculations must be performed over
the same interval in t. Therefore, in order to achieve sufficient accuracy the explicit Euler method
must sacrifice a large degree of computational efficiency.

3.4.2 The Implicit Euler Method

The implicit Euler method closely resembles the explicit method; however, this method is stable
for any ordinary differential equation and for many partial differential equations [78]. The implicit
Euler method has the same order of accuracy as the explicit version.

Euler’s implicit method, in the simplest one-dimensional case, can be derived by considering
the smooth, continuous function y(t). By invoking the definition of the derivative of y at t + dt,
one finds

y′(t+ dt) = lim
dt→0

y(t+ dt)− y(t)

dt
,
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where y′(t) = dy(t)
dt . This means that the Taylor expansion of y(t+dt) around t might be rewritten

as

y(t+ dt) = y(t) + dty′(t+ dt) +O(dt2) .

This expansion can then be truncated to produce the approximation:

y(t+ dt) ≈ y(t) + dtF (y(t+ dt), t+ dt) ,

with an error per step of O(dt2), making the global error O(dt).

For the simple problem y′ = −cy, with c being a positive constant, the approximate solution is
given by

y(t+ dt) =
y(t)

1 + cdt
.

This can be immediately generalised to a system of equations y′ = −C · y, where C is a
positive-definite matrix [78],

y(t+ dt) = (1 + dtC)
−1

y(t) ,

which is A-stable [78]. However, if the problem is somewhat more complicated, being of the form

y′ = F(y, t) ,

where F is some function of y, possibly non-linear, the problem cannot be immediately inverted
as before. Consequently, iterative methods may become necessary.

The implicit-difference problem, in the general non-invertible case, is then

y(t+ dt) = y(t) + dtF(y(t+ dt), t+ dt) .

However, this method seems to require knowledge of y(t + dt) in order to calculate y(t + dt).
The problem can be circumvented in numerous ways, the first and most simple being iteration:

y(k+1)(t+ dt) = y(t) + dtF(y(k)(t+ dt), t+ dt) ,

where the superscript (k) is an iteration number. The previous value y(t) can be used as an
estimate to begin iteration, or y(0)(t+dt) = y(t). Then the iteration scheme can be repeated until
the results converge to within some desired accuracy. In practice, this convergence requirement
might be represented by the inequality:∣∣∣∣y(k+1)(t+ dt)

y(k)(t+ dt)

∣∣∣∣ ≤ ε ,
where ε is some small numerical tolerance factor.

Since it suffers from the same accuracy-based weakness as the explicit method and requires an
additional computational step, without providing additional accuracy, the usefulness of the implicit
Euler method is somewhat limited in intensive computations. However, it can still be of use when
stability, rather than accuracy, is the numerical priority.

3.4.3 The Runge-Kutta 4 Method

The Runge-Kutta family of numerical integrators is a famous and widely used set of differential
equation solvers. The Runge-Kutta 4 method, in particular, provides a good ratio of fourth-order
accuracy to five computational operations per step. The chief downsides of this algorithm is that
it lacks an inherent means of error estimation [78] and it does not offer any guarantee of numerical
stability. The lack of a means of error estimation and an inability to dynamically adjust the step
size mean that the Runge-Kutta 4 method is largely unsuitable for Method of Lines calculations.
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Definition

For an equation dy
dt = f(y, t) the widely used Runge-Kutta 4 algorithm is formulated as [78]

k1 = dtF (y, t) ,

k2 = dtF

(
y +

1

2
k1, t+

1

2
dt

)
,

k3 = dtF

(
y +

1

2
k2, t+

1

2
dt

)
,

k4 = dtF (y + k3, t+ dt) ,

y(t+ dt) ≈ y(t) +
1

6
(k1 + 2k2 + 2k3 + k4) .

This method has a global error of the order dt4..
For use in this study the method must first be extended to the system of equations dy

dt = F(y, t).
This extension simply means redefining the k variables in vector form

k1 = dtF(y, t) ,

k2 = dtF(y +
1

2
k1, t+

1

2
dt) ,

k3 = dtF(y +
1

2
k2, t+

1

2
dt) ,

k4 = dtF(y + k3, t+ dt) ,

y(t+ dt) ≈ y(t) +
1

6
(k1 + 2k2 + 2k3 + k4) .

The derivation of Runge-Kutta 4 is given in Appendix. (C.1)

3.4.4 Runge-Kutta 5 Cash-Karp

The Cash-Karp method incorporates both Runge-Kutta 4 and 5 solutions and makes a comparison
of the two as a measure of the error incurred in each step of the numerical evaluation of the solution.
This allows the Cash-Karp method to make adjustments to the integration step size dt during
evaluation in order to minimise the numerical error. The ability both to change dynamically the
step-size and to estimate the numerical error makes the Cash-Karp method an attractive choice of
integrator.

The Cash-Karp method is given by the algorithm [62]:

k1 = dtF (y, t) ,

k2 = dtF (y + b21k1, t+ a2dt) ,

k3 = dtF (y + b31k1 + b32k2, t+ a3dt) ,

k4 = dtF (y + b41k1 + b42k2 + b43k3, t+ a4dt) ,

k5 = dtF (y + b51k1 + b52k2 + b53k3 + b54k4, t+ a5dt) ,

k6 = dtF (y + b61k1 + b62k2 + b63k3 + b64k4 + b65k5, t+ a6dt) ,

y(t+ dt) = y(t) + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 . (3.8)

Here the coefficients ci, bij and ai are defined in Table 3.1 [78] These generalised equations will be
specialised to the appropriate equations of motion in the following Chapter.

The error estimate is of the form [62]

∆ =

6∑
i=1

(ci − di) ki . (3.9)

The t step-size correction method comes from considering the error incurred when using two
different step sizes, dt0 and dt1:

∆0 = βdt50 ,

∆1 = βdt51 ,
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Table 3.1: Runge-Kutta 5 Cash-Karp Coefficients

i ai bi1 bi2 bi3 bi4 bi5 ci di
1 37

378
2825
27648

2 1
5

1
5 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10 − 9

10
6
5

125
594

13525
55296

5 1 − 11
54

5
2 − 70

27
35
27 0 277

14336
6 7

8
1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

where β is some constant of proportionality. Then the ratio between these two errors is given by

∆0

∆1
=

(
dt0
dt1

)5

.

This can be rearranged to yield the new form [62]

dt1 = dt0

(
∆1

∆0

)0.2

.

Therefore, let ∆1 be the desired error tolerance and ∆0 the error resulting from using the step
size dt0. This means that if the step size is adjusted to dt1 and the computation is performed
again, then the error will be ∆1 as desired. If the problem being solved is a system of equations
then there exists an error estimate ∆k for each equation individually, the overall error can then be
estimated:

∆ =

√√√√ N∑
i=1

∆2
i .

In the actual simulations error is controlled by this Cash-Karp error correction and the error
in the results is monitored by observation of the conservation of the Hamiltonian and the trace of
the density operator.

3.5 Phase-Space Averages

As seen in the chapter on the Wigner picture, calculation average properties in the partial Wigner
picture involves integration over all phase space. In this work, such integrations will be performed
via Simpson’s rule, a proof of which is found in Appendix. (C.2). Simpson’s rule can expressed, as
shown in Eq. (C.4), as ∫ R2

R0

dr f(r) =
∆R

3
(f(R0) + 4f(R1) + f(R2)) ,

where R1 = R2+R0

2 and ∆R = R2−R0

2 ..
Therefore, an integration of the sort

Int =
1

h

∫ Rn

R0

∫ Pm

P0

dRdP Âw(R,P )ρ̂w(R,P ) ,

necessary to calculate a partial Wigner picture average as in Eq. (2.9), is approximated by

Int ≈
n∑
i=0

m∑
j=0

∆R∆PwR(i)wP (j)Âw(R0 + i∆R,P0 + j∆P )ρ̂w(R0 + i∆R,P0 + j∆P ) .

Here ∆R = Rn−R0

n , ∆P = Pm−P0

m and

wR(i) =


1
3 i = 0, or i = n
4
3 i mod 2 6= 0
2
3 i mod 2 = 0

,
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wP (j) is similarly defined. This approximation also depends upon the requirement that ρ̂w(R,P ) =
0 if R 6∈ [R0 : Rn] or P 6∈ [P0 : Pm]
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Chapter 4

Numerical Calculations

4.1 The Diabatic Basis

In much of the literature on the quantum-classical equation, presented in Eq. (2.17), the equations
of motion are expressed in the adiabatic basis [20]. This basis is given by the eigenstates of the
momentum-independent components of the Hamiltonian and thus, in the partial Wigner picture,
the eigenstates are parameterised by the position R. If, instead, one wishes to work with eigenstates
that are independent of position, the basis of the eigenstates of the subsystem that is not Wigner
transformed (s-subsystem) might be used instead. This basis is known as the diabatic or subsystem
basis [20]. To properly define the diabatic basis, consider the Hamiltonian

Ĥ = Ĥs(ŝ) + Ĥx(X̂) + Ĥc(ŝ, X̂) ,

and its Wigner-transformed counterpart

Ĥw(X) = Ĥs(ŝ) +Hx,w(X) + Ĥc(ŝ,X) , (4.1)

where X = (R,P) and all symbols retain their previously defined meanings. Now let the eigenstates
of the operator Ĥs be defined by

Ĥs |α〉 = εα |α〉 , (4.2)

additionally, Ĥx does not operate on the states |α〉.
This definition can be used to evaluate the matrix element of Eq. (2.17), which is found to take

the form

∂

∂t
ραα

′

w (X, t) = − i
~
〈α| [Ĥw, ρ̂w] |α′〉+

1

2
〈α|
(
{Ĥw, ρ̂w} − {ρ̂w, Ĥw}

)
|α′〉 .

The completeness of the eigenstates |α〉 can be used to rewrite the first term as follows

〈α| [Ĥw, ρ̂w] |α′〉 =
∑
α′′

(
Hαα′′

w ρα
′′α′

w − ραα
′′

w Hα′′α′

w

)
, (4.3)

where

Hαα′

w = 〈α| Ĥw |α′〉 ,

ραα
′

w = 〈α| ρ̂w |α′〉 .

The definition Eq. (4.2) can be used to simplify equation Eq. (4.3) through consideration of the
matrix element

Hαα′′

w = 〈α| Ĥs |α′′〉+ 0 + 〈α| Ĥc |α′′〉 = εα′′δαα′′ +Hαα′′

c .

Therefore,

〈α| [Ĥw, ρ̂w] |α′〉 = ~ω̃αα
′
ραα

′

w +
∑
α′′

(
Hαα′′

c ρα
′′α′

w − ραα
′′

w Hα′′α′

c

)
, (4.4)
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where

ω̃αα
′

=
εα − εα′

~
. (4.5)

Similarly, one can take the matrix element of the Poisson bracket component of Eq. (2.17)

1

2
〈α|
(
{Ĥw, ρ̂w} − {ρ̂w, Ĥw}

)
|α′〉 = − Lραα

′

w +
∑
α′′

1

2

(
∂Hαα′′

c

∂R
· ∂ρ

α′′α′

w

∂P
− ∂Hαα′′

c

∂P
· ∂ρ

α′′α′

w

∂R

)

−
∑
α′′

1

2

(
∂ραα

′′

w

∂R
· ∂H

α′′α′

c

∂P
− ∂ραα

′′

w

∂P
· ∂H

α′′α′

c

∂R

)
,

where the classical Liouville operator L is defined

L ≡ −∂Hx,w

∂R
· ∂
∂P

+
∂Hx,w

∂P
· ∂
∂R

. (4.6)

If the coupling Hamiltonian Ĥc is taken to be independent of P, then the associated derivatives
vanish and one is left with the simplified result,

1

2
〈α|
(
{Ĥw, ρ̂w} − {ρ̂w, Ĥw}

)
|α′〉 = − Lραα

′

w +
∑
α′′

1

2

(
∂Hαα′′

c

∂R
· ∂ρ

α′′α′

w

∂P
+
∂ραα

′′

w

∂P
· ∂H

α′′α′

c

∂R

)
.

(4.7)

Combining the results in Eq. (4.4) and Eq. (4.7) yields the matrix element of Eq. (2.17), which
is then expressed as

∂

∂t
ραα

′

w = − iω̃αα
′
ραα

′

w − i

~
∑
α′′

(
Hαα′′

c ρα
′′α′

w − ραα
′′

w Hα′′α′

c

)
− Lραα

′

w

+
∑
α′′

1

2

(
∂Hαα′′

c

∂R
· ∂ρ

α′′α′

w

∂P
+
∂ραα

′′

w

∂P
· ∂H

α′′α′

c

∂R

)
.

(4.8)

If the coupling is removed, each matrix element ραα
′

w evolves independently with an equation
of motion that consists of a classical Liouville operator L and a frequency ω̃αα

′
. Then, in this

uncoupled case, the diagonal components of the density matrix evolve under purely classical dy-
namics, as the frequency ω̃αα is zero; while the coherence elements will oscillate with a frequency
dependent on the energy spacing of the eigenstates. This implies that the Wigner-transformed
subsystem is evolving purely classically, as expected, as its dynamics are influenced only by the
diagonal elements of the density matrix. However, the dynamics of the untransformed subsystem
will be influenced by the oscillating coherence terms, as these will contribute to the calculation of
eigenstate populations.

Returning to the case of non-zero coupling, one must now consider the projection of the quan-
tum corrections onto the diabatic basis, to wit, the corrections stemming from the x-subsystem
Hamiltonian:

〈α|
∑

n=3,5,...

(
~
2i

)n−1
1

n!

∂nHx,w

∂Rn
· ∂

nρ̂w
∂Pn

|α′〉 =
∑

n=3,5,...

(
~
2i

)n−1
1

n!

∂nHx,w

∂Rn
· ∂

nραα
′

w

∂Pn
.

Additionally, the corrections due to the coupling Hamiltonian (assuming it independent of P)
should be considered:

〈α|
∑

n=2,3,...

1

2nn!

(
i

~

)n−1
(
∂nĤc

∂Rn
· ∂

nρ̂w
∂Pn

+ (−1)n−1 ∂
nρ̂w
∂Pn

· ∂
nĤc

∂Rn

)
|α′〉

=
∑

n=2,3,...

∑
α′′

1

2nn!

(
i

~

)n−1
(
∂nHαα′′

c

∂Rn
· ∂

nρα
′′α′

w

∂Pn
+ (−1)n−1 ∂

nραα
′′

w

∂Pn
· ∂

nHα′′α′

c

∂Rn

)
.
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The exact partial-Wigner equations of motion in the diabatic basis are then given by

∂

∂t
ραα

′

w =− iω̃αα
′
ραα

′

w − i

~
∑
α′′

(
Hαα′′

c ρα
′′α′

w − ραα
′′

w Hα′′α′

c

)
− Lραα

′

w

+
∑
α′′

1

2

(
∂Hαα′′

c

∂R
· ∂ρ

α′′α′

w

∂P
+
∂ραα

′′

w

∂P
· ∂H

α′′α′

c

∂R

)

+
∑

n=2,3,...

∑
α′′

1

2nn!

(
i

~

)n−1
(
∂nHαα′′

c

∂Rn
· ∂

nρα
′′α′

w

∂Pn
+ (−1)n−1 ∂

nραα
′′

w

∂Pn
· ∂

nHα′′α′

c

∂Rn

)

+
∑

n=3,5,...

(
~
2i

)n−1
1

n!

∂nHx,w

∂Rn
· ∂

nραα
′

w

∂Pn
.

(4.9)
In order to eliminate the explicit frequency term from the equations of motion, consider the change
of variable

ραα
′

w (X, t) = ηαα
′

w (X, t)e−iω̃
αα′ t .

This substitution can then be applied to Eq. (4.9) to yield

∂

∂t
ηαα

′

w =− i

~
∑
α′′

(
Hαα′′

c ηα
′′α′

w e−iω̃
α′′α′ t − ηαα

′′

w e−iω̃
αα′′ tHα′′α′

c

)
eiω̃

αα′ t − Lηαα
′

w

+
∑
α′′

1

2

(
∂Hαα′′

c

∂R
· ∂η

α′′α′

w

∂P
e−iω̃

α′′α′ t +
∂ηαα

′′

w

∂P
e−iω̃

αα′′ t · ∂H
α′′α′

c

∂R

)
eiω̃

αα′ t

+
∑

n=2,3,...

∑
α′′

1

2nn!

(
i

~

)n−1
(
∂nHαα′′

c

∂Rn
· ∂

nηα
′′α′

w

∂Pn
e−iω̃

α′′α′ t

)
eiω̃

αα′ t

+
∑

n=2,3,...

∑
α′′

(−1)n−1

2nn!

(
i

~

)n−1
(
∂nηαα

′′

w

∂Pn
e−iω̃

αα′′ t · ∂
nHα′′α′

c

∂Rn

)
eiω̃

αα′ t

+
∑

n=3,5,...

(
~
2i

)n−1
1

n!

∂nHx,w

∂Rn
· ∂

nηαα
′

w

∂Pn
.

(4.10)

This result is the system of equations that was used in the numerical simulation work undertaken
in this study.

It is evident, from this analysis, that the inclusion of a non-zero coupling Hamiltonian also
couples the evolution equations of the density matrix components. It is through this coupling that
the coherence elements of the density matrix come to influence the dynamics of the phase-space
subsystem. Similarly, the coherences can also then be influenced by the eigenstate occupation
probabilities. In the quantum-classical equation, it is this coupling that results in the hybrid dy-
namics in a classical-like phase space. However, when the corrections are introduced the dynamics
are reduced to those of two coupled quantum subsystems, one of which is represented in phase
space.

4.2 Equations of Motion with Runge-Kutta 5

The numerical simulations conducted in this work aimed to evaluate the time evolution of the
partial Wigner-transformed density operator ηαα

′

w (R,P, t), in the same notation as previously em-
ployed. There exists then an equation of motion for each density matrix element, given by the
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quantum-state indices, so that the Runge-Kutta 5 method takes the form:

kαα
′

1 = dtFαα
′
({ηββ

′

w }ββ′ , R, P, t) ,

kαα
′

2 = dtFαα
′
({ηββ

′

w + b21k
ββ′

1 }ββ′ , R, P, t+ a2dt) ,

kαα
′

3 = dtFαα
′
({ηββ

′

w + b31k
ββ′

1 + b32k
ββ′

2 }ββ′ , R, P, t+ a3dt) ,

kαα
′

4 = dtFαα
′
({ηββ

′

w + b41k
ββ′

1 + b42k
ββ′

2 + b43k
ββ′

3 }ββ′ , R, P, t+ a4dt) ,

kαα
′

5 = dtFαα
′
({ηββ

′

w + b51k
ββ′

1 + b52k
ββ′

2 + b53k
ββ′

3 + b54k
ββ′

4 }ββ′ , R, P, t+ a5dt) ,

kαα
′

6 = dtFαα
′
({ηββ

′

w + b61k
ββ′

1 + b62k
ββ′

2 + b63k
ββ′

3 + b64k
ββ′

4 + b65k
ββ′

5 }ββ′ , R, P, t+ a6dt) ,

ηαα
′

w (R,P, t+ dt) = ηαα
′

w (R,P, t) + c1k
αα′

1 + c2k
αα′

2 + c3k
αα′

3 + c4k
αα′

4 + c5k
αα′

5 + c6k
αα′

6 . (4.11)

In this notation {ηββ′w }ββ′ represents a set density matrix elements, over all the combinations

indices β and β′. The function Fαα
′
({ηββ′w }ββ′ , R, P, t) is defined by the equations of motion, from

the earlier definition it must be given by

Fαα
′
({ηββ

′

w }ββ′ , R, P, t) =
∂

∂t
ηαα

′

w .

The equations of motion, including correction terms, are represented in the diabatic basis, shown
in Eq. (4.10).

In these calculations the total error, for the complete system of evolution equations, in the
Cash-Karp method is calculated via a weighted average over the phase space:

E =

∫ ∫
dRdP Tr

(
ρ̂αα

′

w (R,P, t)∆αα′(R,P )
)
,

where there is an error function ∆αα′(R,P ) defined for the evolution equation of each density
matrix element in the same manner as in Eq. (3.9).

4.3 Models

4.3.1 Pseudo-Spin Coupled to a Harmonic Oscillator

This is a special case of the well known Spin-Boson Hamiltonian, where the bath of oscillators
consists of only a single oscillator. The Hamiltonian has the form:

Ĥ = −~Ωσ̂x +
P̂ 2

2M
+

1

2
ω2MR̂2 − cR̂σ̂z . (4.12)

where σ̂x and σ̂z are Pauli spin operators, Ω is the frequency proportional to the energy spacing
between the spin eigenstates, ω is the frequency of the harmonic oscillator, with mass M , and c
is the coupling constant. The correspondence with the previous general analysis can be found by
making the identifications:

Ĥs = −~Ωσ̂x ,

Ĥc = −cR̂σ̂z ,

Ĥx =
P̂ 2

2M
+

1

2
ω2MR̂2 ,

which also allow for the identification of the diabatic eigenstates for this system. To this end, let
the eigenstates of σ̂x be |0〉 and |1〉. Then the properties of the spin operators yield

Ĥs |0〉 = ~Ω |0〉 , Ĥs |1〉 = −~Ω |1〉 ,
Ĥc |0〉 = −cR̂ |1〉 , Ĥc |1〉 = −cR̂ |0〉 .

(4.13)

Furthermore, one can define the frequencies ω̃αα
′

using the diabatic eigenstates

ω̃00 = 0 , ω̃11 = 0 ,

ω̃01 = 2Ω , ω̃10 = −2Ω .
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The Hamiltonian from Eq. (4.12) can then be partially Wigner-transformed to yield

Ĥw = −~Ωσ̂x +
P 2

2M
+

1

2
ω2MR2 − cRσ̂z . (4.14)

For computational convenience this Hamiltonian can be rewritten in dimensionless form. To this
end, consider the definition of the dimensionless variables:

R′ =

(
Mω

~

)1/2

R , P ′ = (~Mω)−1/2P . (4.15)

The Hamiltonian can then be made dimensionless through division by ~ω,

Ĥ ′w =
Ĥw

~ω
= − Ω

~ω
σ̂x +

P 2

2M~ω
+

1

2~ω
ω2MR2 − cR

~ω
σ̂z .

Now one can define the dimensionless constants

Ω′ =
Ω

ω
, c′ =

c

ω
√
Mω~

.

Then, making use of the dimensionless variables and constants, one finds the final form of the
dimensionless Hamiltonian

Ĥ ′w = −Ω′σ̂x +
P ′

2

2
+
R′

2

2
− c′R′σ̂z .

In any further appearances this Hamiltonian will be assumed to be dimensionless and will be
displayed without the primed notation.

With this Hamiltonian, the exact diabatic equations of motion, given by Eq. (4.10), now take
the form

∂

∂t
ηαα

′

w =− i

~
∑
α′′

(
Hαα′′

c ηα
′′α′

w e−iω̃
α′′α′

− ηαα
′′

w e−iω̃
αα′′

Hα′′α′

c

)
eiω̃

αα′

−
(
P
∂

∂R
−R ∂

∂P

)
ηαα

′

w

+
∑
α′′

1

2

(
∂Hαα′′

c

∂R

∂ηα
′′α′

w

∂P
e−iω̃

α′′α′

+
∂ηαα

′′

w

∂P
e−iω̃

αα′′ ∂Hα′′α′

c

∂R

)
eiω̃

αα′

.

Here it is understood that the summation over α′′ runs over the two eigenstates |0〉 and |1〉. The
definition in Eq. (4.13) can now be used to express the equation of motion explicitly, yielding

∂η00
w

∂t
= icR

(
η01
w ei2Ωt − η10

w e−i2Ωt
)
− Lη00

w +
c

2

(
∂η10

w

∂P
e−i2Ωt +

∂η01
w

∂P
ei2Ωt

)
,

∂η10
w

∂t
= icR

(
η11
w − η00

w

)
ei2Ωt − Lη10

w +
c

2

(
∂η00

w

∂P
+
∂η11

w

∂P

)
ei2Ωt ,

∂η11
w

∂t
= −icR

(
η01
w ei2Ωt − η10

w e−i2Ωt
)
− Lη11

w +
c

2

(
∂η10

w

∂P
e−i2Ωt +

∂η01
w

∂P
ei2Ωt

)
.

The coherence term η10
w and its conjugate term η01

w are potentially complex-valued. Therefore, for
computational reasons, one divides these terms into their real and imaginary parts:

η10
w = Re[η10

w ] + iIm[η10
w ] ,

η01
w = Re[η10

w ]− iIm[η10
w ] .

Using these in the equations of motion and separating the η10
w equation into real and imaginary
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parts yield

∂

∂t
η00
w = 2cR

(
Re[η10

w ] sin (2Ωt) + Im[η10
w ] cos (2Ωt)

)
− Lη00

w

+ c

(
∂

∂P
Re[η10

w ] cos (2Ωt)− ∂

∂P
Im[η10

w ] sin (2Ωt)

)
, (4.16)

∂

∂t
Re[η10

w ] =− cR
(
η11
w − η00

w

)
sin (2Ωt)− LRe[η10

w ] +
c

2

(
∂

∂P
η00
w +

∂

∂P
η11
w

)
cos (2Ωt) , (4.17)

∂

∂t
Im[η10

w ] =cR
(
η11
w − η00

w

)
cos (2Ωt)− LIm[η10

w ]− c

2

(
∂

∂P
η00
w +

∂

∂P
η11
w

)
sin (2Ωt) , (4.18)

∂

∂t
η11
w = − 2cR

(
Re[η10

w ] sin (2Ωt) + Im[η10
w ] cos (2Ωt)

)
− Lη11

w

+ c

(
∂

∂P
Re[η10

w ] cos (2Ωt)− ∂

∂P
Im[η10

w ] sin (2Ωt)

)
. (4.19)

These four equations are a complete set of evolution equations for the density matrix of this
system, as both coherences η01

w and η10
w can be constructed from the Re[η10

w ] and Im[η10
w ] equations.

It might be noted at this point that there are no correction terms in the equation of motion. This
is because an examination of Eq. (4.10) reveals that a Hamiltonian with linear coupling and a
quadratic dependence on R and P will have no non-zero correction terms.

4.3.2 Pseudo-Spin Coupled to a Quartic Oscillator

This model is constructed through the modification of the previous model by the addition of a
constant term and a term quartic in the position operator R̂,

Ĥ = −~Ωσ̂x +
P̂ 2

2M
+

1

4
b4R̂

4 +
1

2
b2R̂

2 +
b22
4b4
− cR̂σ̂z , (4.20)

where b2 = −Mω2 and b4 is a constant controlling the strength of the non-linearity of the oscillator.
This Hamiltonian can be Wigner transformed to yield

Ĥw = −~Ωσ̂x +
P 2

2M
+

1

4
b4R

4 +
1

2
b2R

2 +
b22
4b4
− cRσ̂z . (4.21)

Introducing the dimensionless variables given by Eq. (4.15), so that b′2 = −1 and making the
definition

b′4 =
b4~
M2ω3

,

one can produce the dimensionless form of the Hamiltonian:

Ĥw = −Ωσ̂x +
P 2

2
+ b2

R2

2
+

1

4
b4R

4 +
1

4b4
− cRσ̂z .

The classical Liouville operator for this Hamiltonian is given by

L = P
∂

∂R
− ∂Hx,w

∂R

∂

∂P
= P

∂

∂R
− (b2R+ b4R

3)
∂

∂P
.

Therefore, with the above definition of L, the equations of motion are given, once more, by
Eqs. (4.16 - 4.19). However, one must now consider whether there are any quantum correction
terms stemming from the quartic addition to the Hamiltonian. Since the coupling is linearly de-
pendent on R, the only possibly non-zero correction terms from Eq. (4.10) have the dimensionless
form

N∑
n=3,5,···

(
1

2i

)n−1
1

n!

∂nHx,w

∂Rn
∂nηαα

′

w

∂Pn
.
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As previously seen, the R2 and P 2 terms in Hx,w do not contribute any corrections; however, the
R4 term has a non-zero 3rd derivative in R. Therefore,

N∑
n=3,5,···

(
1

2i

)n−1
1

n!

∂nHx,w

∂Rn
∂nηαα

′

w

∂Pn
= − 1

24
(6b4R)

∂3ηαα
′

w

∂P 3
= −1

4
b4R

∂3ηαα
′

w

∂P 3
.

This means the exact equations of motion for this Hamiltonian become

∂

∂t
η00
w = 2cR

(
Re[η10

w ] sin (2Ωt) + Im[η10
w ] cos (2Ωt)

)
− Lη00

w

+ c

(
∂

∂P
Re[η10

w ] cos (2Ωt)− ∂

∂P
Im[η10

w ] sin (2Ωt)

)
− b4R

4

∂3η00
w

∂P 3
,

∂

∂t
Re[η10

w ] =− cR
(
η11
w − η00

w

)
sin (2Ωt)− LRe[η10

w ]

+
c

2

(
∂

∂P
η00
w +

∂

∂P
η11
w

)
cos (2Ωt)− b4R

4

∂3Re[η10
w ]

∂P 3
,

∂

∂t
Im[η10

w ] = cR
(
η11
w − η00

w

)
cos (2Ωt)− LIm[η10

w ]

− c

2

(
∂

∂P
η00
w +

∂

∂P
η11
w

)
sin (2Ωt)− b4R

4

∂3Im[η10
w ]

∂P 3
,

∂

∂t
η11
w =− 2cR

(
Re[η10

w ] sin (2Ωt) + Im[η10
w ] cos (2Ωt)

)
− Lη11

w

+ c

(
∂

∂P
Re[η10

w ] cos (2Ωt)− ∂

∂P
Im[η10

w ] sin (2Ωt)

)
− b4R

4

∂3η11
w

∂P 3
.

It is also worthwhile to examine the nature of the phase-space potential Vx(R) = 1
4b4R

4 +

1
2b2R

2 +
b22
4b4

. This has turning points at R = 0 and R = ±i
√

b2
b4

. Therefore, if b2 is positive there

is only a single turning point at R = 0 and the shape of the potential is vaguely similar to that
in the quadratic case. However, if b2 is negative, one has the well-known ‘double well’ potential.
The significance in the choice of this potential comes down to the possibility of observing uniquely
quantum dynamical behaviour in the phase-space system [79]. Moreover, because such quantum
behaviour might be expected to affect the coherences of the total system density operator, the
population statistics of the pseudo-spin system could provide a dynamical quantity that can be
used to observe directly the effects of the quantum correction terms; one might expect a phase-
space system evolving under quantum-classical dynamics either to lack completely such uniquely
quantum behaviour or to show a large reduction in the magnitude of such effects.

The purpose of the constant term
b22
4b4

now becomes apparent: it is the barrier height in the

double-well configuration, this is evident through setting R = 0, Vx(0) =
b22
4b4

. This elevates the
minima of the double well exactly to zero, leaving the rest of the values of Vx positive. Therefore
it is useful to introduce the notation

d =
b22
4b4

,

w =

√
−b2
b4
.

(4.22)

Here w signifies the ‘width’ of one of the wells in the potential, or the distance to a minimum point
from the origin; while d is well depth. Altering the constants b2 and b4 therefore influences both
the depth and width of the wells, which have great impact on the potential for tunnelling [79].

4.3.3 Adiabatic Analysis

The Hamiltonians for both the models, outlined previously, can be written in the form

Ĥw = −Ωσ̂x + γ(R)σ̂z +
P 2

2
+ Vx(R) ,
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where γ and Vx are some functions of R. The adiabatic basis for such a system is defined as being
composed of the eigenstates of the operator [3]

ĤA,w = −Ωσ̂x + γ(R)σ̂z + Vx(R) .

In the basis of the eigenstates of σ̂x, this equation can be expressed in matrix form, which yields

HA,w = Ω

(
1 0
0 −1

)
+ γ(R)

(
0 1
1 0

)
+ Vx(R)

(
1 0
0 1

)
.

In order to find the eigenvalues of this Hamiltonian one must solve the characteristic equation

det

[(
Vx + Ω− ε γ

γ Vx − Ω− ε

)]
= 0 ,

which results in the solutions [3]

ε±(R) = Vx(R)±
√

Ω2 + γ2(R) .

These adiabatic eigenvalues are the potential energy surfaces along which the system moves [30, 61].
One therefore labels ε+ as the adiabatic excited state of the system while ε− is the adiabatic ground
state. The adiabatic eigenvector problem can now be expressed in the basis of the eigenstates of
σz: (

θ1

θ2

)(
−Ω + Vx γ

γ Ω + Vx

)
= ε±

(
θ1

θ2

)
.

This has the solutions [3]

1√
2(1 +G2)

(
1 +G
1−G

)
,

1√
2(1 +G2)

(
G− 1
1 +G

)
,

where

G(R) =
1

γ(R)
(−Ω +

√
Ω2 + γ(R)2) .

The properties of this function G(R) will reveal symmetries within the adiabatic composition
of the initial state of the system. If the limit γ(R)→ 0 is taken, then

lim
γ(R)→0

G = 0 ,

by l’Hospital’s rule. Now considering the extremes γ(R)→∞ and γ(R)→ −∞, one finds:

lim
γ(R)→∞

G = 1 ,

lim
γ(R)→−∞

G = −1 .

One can apply these properties to the study of the initial spin-states, which can be represented
in terms of the adiabatic eigenvalues by:(

1
0

)
=

1

2(1 +G2)
(1 +G)2 |ε−(R)〉+

1

2(1 +G2)
(1−G)2 |ε+(R)〉 ,(

0
1

)
=

1

2(1 +G2)
(1−G)2 |ε−(R)〉+

1

2(1 +G2)
(1 +G)2 |ε+(R)〉 .

(4.23)

Therefore, when γ(R) = 0 both of these states are perfect mixtures of the adiabatic eigenstates.
While when γ(R)→∞ or γ(R)→ −∞ the spin-up state is completely specified by the adiabatic
ground state or excited state respectively. For the spin-down case the reverse is true.

The initial state of a hybrid system, like those presented previously in Section (4.3), is com-
posed of both an initial direction for the spin system and a Wigner function for the phase-space
system, see Section (4.4). The initial Wigner function supplies one with knowledge of the initial
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average position 〈R〉
∣∣
t=0

= R0, this can be used with the assumption of a central limit approx-
imation to determine the composition of the initial state in terms of the adiabatic eigenstates.
Consider, for instance, a system where the coupling is an odd function, or γ(−R) = −γ(R) and
that limR→∞ γ(R) =∞. Then, using the previous analysis, one finds:

lim
R0→∞

G = 1 ,

lim
R0→−∞

G = −1 .

More generally,
G(R0) = −G(−R0) .

This implies, considering Eq. (4.23), that the initial state with the excited-state spin and R0 < 0
has the same adiabatic composition as the initial state with the ground-state spin and R0 > 0,
provided R0 has the same magnitude in both cases.

The adiabatic symmetry of differing spin-states and initial average phase-space position com-
binations might be viewed as ‘complete inversion antisymmetry’, as the phase-space position must
be reflected across the axis of symmetry and the alignment of the spin must be flipped to leave the
initial state adiabatic composition of the system invariant. Given the similarity of the initial states,
one might then expect the behaviour of the spin systems to be similar. However, the symmetry
was dependent upon the flipping of the initial spin direction and therefore the properties of the
spin, for the two adiabatically equivalent initial states, can only be expected to behave as mirror
images, reflected through some axis of symmetry. The behaviour of the phase-space system might
also be expected to exhibit a similar reflection symmetry.

The existence of this symmetry in the numerical results will provide an important verification
of the effectiveness of the numerical method used to solve of the equations of motion. Therefore,
numerical evidence of this symmetry will be given as part of this study and can be found in the
Results chapter.

The case of γ(R) being even or having no definite symmetry both yield

lim
R0→∞

G = lim
R0→−∞

G = ±1 ,

provided γ(R) is not bounded. This suggests that, in the absence of reflection antisymmetry
in γ(R), a particular adiabatic eigenstate will be favoured by large initial displacements of the
environment system, though there will be no guarantee of symmetry in the neighbourhood of the
roots of coupling function unless gamma is even.

4.4 Initial State

In the computational work done in this study, the initial state of the system, when either model
was in use, was taken to be either:

ργγ
′

w =

(
0 0
0 1

)
⊗ ρw(R,P ) ,

or

ργγ
′

w =

(
1 0
0 0

)
⊗ ρw(R,P ) ,

where ργγ
′

w = 〈γ| ρ̂w |γ′〉 with |γ〉 and |γ′〉 being the eigenstates of the operator σ̂z.
This initial state is chosen to place the state of the spin in an eigenstate of the spin population

operator. Additionally, the choice of both the excited and ground states of the spin system proves
important, as suitable comparison can be used to demonstrate the complete inversion antisymmetry
identified in Section. (4.3.3), which would act as verification of the effectiveness of the equations
of motion.

In order to determine the initial state of the spin in the basis of σ̂x (the diabatic basis) one
must first perform an eigenvector rotation. The phase-space initial state ρw(R,P ) is taken to be a
coherent state in position space, the Wigner transform of which must be performed to find the form
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of ρw(R,P ). The coherent state is chosen due ot its similarity to the state of the classical harmonic
oscillator [80, 81], this is because one wishes to compare the quantum-classical and quantum-
corrected results using the same initial state. In this regard the coherent state is eminently useful,
as it is suitable to represent both the classical and quantum-corrected environmental systems.
Moreover, if one wishes to consider the quantum-to-classical transition of a nano-mechanical system
then a coherent state seems an ideal starting point for an oscillator close to the transition.

The coherent state is still employed in the case of the quartic oscillator under the assumption
that the quartic term is ‘turned on’ at time t = 0. .

The Wigner-transformed initial states, expressed in the diabatic basis are given by

ηαα
′

w (R,P ) =
1

π

(
1
2

1
2

1
2

1
2

)
⊗ e−

(R−R0)2

2a2 e−
2a2

~2 (P−P0)2

,

or

ηαα
′

w (R,P ) =
1

π

(
1
2 − 1

2
− 1

2
1
2

)
⊗ e−

(R−R0)2

2a2 e−
2a2

~2 (P−P0)2

,

with ηαα
′

w = 〈α| ρ̂w |α′〉 e−iω̃
αα′ t and where |α〉 and |α′〉 are eigenstates of the operator σ̂x. The

Wigner transform of the coherent state and the eigenvector rotations needed to find the initial spin
state in the diabatic basis are found in Appendix D.

4.4.1 Quantum Canonical Distribution

In some of the numerical calculations the initial state of the phase-space system will instead be
taken to be the quantum canonical distribution for a harmonic oscillator, which is given by [3, 18]

ρx(R,P ) = tanh (0.5βω)e−
2
ω tanh (0.5βω)Hx(R,P ) , (4.24)

where Hx = P 2

2M + 1
2Mω2R2 is the Hamiltonian of the phase-space system at time t = 0 and

β =
1

kBT
.

Here T is the absolute temperature and kB is the Boltzmann constant. In the scaled units,
previously defined in Section 4.3, this distribution takes the form

ρx(R,P ) = tanh (0.5β′)e−2 tanh (0.5β′)H′x(R,P ) ,

where H ′x = P 2

2 + 1
2R

2, R and P are also the rescaled position and momentum and

β′ = β~ω .

4.5 Computational Simulations

Computational calculations were performed for this study using the techniques outlined in Chap-
ter (3) with the equations of motion and initial conditions established in this chapter. Initial
simulations were carried out to determine if the partial differential equation method was both a
stable integration technique for this problem and if it reproduced the results of established tech-
niques for simulating the quantum-classical equation. The second set of simulation objectives was
to establish numerically the effect of neglecting the quantum correction terms on the dynamics of
a system whose evolution was modelled by the quantum-classical equation.

4.5.1 Selection of Parameters

The set of parameters that must be chosen for a given simulation are, using previously defined
notation, Ω, R0, P0, a, b2, b4 and c. The most significant of these parameters is the coupling
constant c, as a hypothesis of this study is that the effect of the quantum corrections will be
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sensitive to the strength of the coupling. The selection of coupling parameter values is dictated by
the bare coupling parameter λ, here defined in the dimensionless variables, Eq. (4.15), by

λ =
c2

Ω
.

The value of Ω is kept fixed and then c is varied to observe a variety of coupling strengths, taking
values from 0.2 to 1.0. Given this range of c, λ then varies from 0.06 to 1.4, representing a variation
from weak (λ� 1) to strong (λ ≥ 1) couplings.

The diabatic level-spacing Ω was chosen to take a value of 0.6, which would ensure that a
sufficient number of population cycles were observed to make meaningful comparison of observables
such as the spin populations. The value of Ω represents the ratio between the pseudo-spin tunnelling
frequency and the oscillator frequency due to the rescaling used in Eq. (4.15). Therefore Ω also
dictates whether the dynamics take place in the adiabatic regime (Ω > 1), where the pseudo-
spin system has a shorter dynamical time-scale than the oscillator, or in the non-adiabatic regime
(Ω < 1), where the reverse is true.

The initial momentum P0 is chosen to be 0 for all simulations. The remaining parameters are
dealt with separately for each model under investigation.

Pseudo-Spin Coupled to Harmonic Oscillator

The initial position R0 was chosen in the harmonic oscillator case to take the values 0 and 1
in separate simulations, as both these cases prove to be important tests of the dynamics. If for
R0 = 0, the coupling is set such that c = 0, the phase-space system is at equilibrium, meaning
that the state of the system should be stationary in time. If R0 = 1 and c = 0, then the phase-
space evolution should exactly reproduce a classical harmonic oscillator, while the spin should
execute simple population cycles. The case of R0 = 0 and with non-zero c will be compared to the
established ‘surface-hopping’ simulation technique [3, 60, 61], in order to verify the accuracy of the
method-of-lines algorithm. In the case of this system Ω = 0.3 is used to match the conditions used
in testing the surface-hopping method in [3]. The surface-hopping algorithm for hybrid quantum-
classical systems evaluates the dynamics in terms of phase-space trajectories on the adiabatic
potential surfaces, incorporating non-adiabatic transitions between the potential surfaces by means
of stochastic momentum jumps; the algorithm employs a hybrid molecular dynamics/Montecarlo
method to sample and evolve trajectories [60, 61]. This method is chosen for comparison to the
method of lines technique as its accuracy in hybrid problems has already been established in the
literature [60].

The uncertainty parameter a is taken to be the minimum value for this model.

Pseudo-Spin Coupled to Quartic Oscillator

The parameters b2 and b4 are chosen such that the potential takes on a double-well configuration.
This means that b2 is negative while b4 is positive. This configuration was chosen to produce
a situation in which the non-linear oscillatory behaviour can be used to gauge the effects of the
quantum corrections and which might encourage uniquely quantum-dynamical effects, such as
tunnelling. The choice of parameter b2 = −1 is made to be consistent with the rescaling procedure
detailed in Eq. (4.15). The value of b4 can then be varied to locate conditions under which the
quantum corrections become significant.

The initial position R0 is chosen both to aid the ground-state localisation of the initial dis-
tribution in one of the wells and to minimise the initial energy. So with previous well geometry
specifications in mind, R0 is set to be close to the potential energy minimum at a distance w from
the origin. In order to aid the confinement of the initial state to one well of the potential function,
a is chosen to take a non-minimal value, in this case a = 0.6071 is chosen to reduce position-based
uncertainty.

Importantly, to ensure the accuracy of the computational method in the quartic case, the
complete inversion antisymmetry identified in Section. (4.3.3) will be tested by comparing the
cases of the excited-state spin and R0 < 0 to the ground-state spin with R0 > 0. Additionally,
results will be presented for the excited-state spin with R0 < 0 and R0 = 0 for a variety of coupling
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strengths, these results will form the basis for the conclusions drawn from this work and will be
shown to have important consequences in the witnessing of quantum behaviours in nano-mechanical
systems.
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Chapter 5

Results

5.1 Harmonic Model

The Harmonic results demonstrate good agreement between the surface-hopping technique [3] and
the method of lines approach. This agreement is clearly evident for shorter times in Figs. 5.1(a)
and 5.1(b) but is present for long times as well in Fig. 5.1(c). Disagreement between the methods
occurs only when the errors in the surface-hopping method become large, typically for the larger
couplings and at longer times, as shown in Figs. 5.1(a) and 5.1(b). Furthermore, Figs. 5.2(a), 5.2(b)
and 5.3 show that the method of lines technique is stable, trace preserving and obeys Hamiltonian
energy conservation. Finally, Figs. 5.4(a) and 5.4(b) show that, when the coupling is removed,
the oscillator and pseudo-spin systems evolve correctly in isolation, in that, the average oscillator
behaviour corresponds to that of a classical oscillator and the pseudo-spin executes simple Rabi
oscillations.
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Figure 5.1: Comparison of the time dependence of 〈σz〉 between the method lines approach (solid
line) and the surface-hopping technique (dashed line with error bars). Here Ω = 0.3 b2 = 1. In
(a) c = 0.1 and the initial distribution is a coherent state with R0 = 0, in (b) c = 0.1 and the
initial distribution takes the form of the quantum canonical distribution with inverse temperature
β = 0.6 (See Section 4.4.1) and in (c) c = 0.01 and the initial distribution is a coherent state with
R0 = 0
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Figure 5.2: Time dependence of Tr(ρ̂) to demonstrate the stability of the method lines technique.
Here Ω = 0.3, b2 = 1 and R0 = 0. In (a) the two curves have c = 0.1 (solid line) and c = 0.01
(dashed line) and in (b) c = 1.0.
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Figure 5.3: Time dependence of 〈Ĥ〉 in order to demonstrate the stability of the method of lines
approach. Here Ω = 0.6, c = 1.0, R0 = 0.0 (solid line) and Ω = 0.3, c = 1.0, R0 = 0.0 (dashed
line). Values of 〈Ĥ〉 have been normalised in this plot.
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Figure 5.4: Demonstration of the isolated system behaviour at c = 0 for the method of lines
technique. Here Ω = 0.3, b2 = 1 and R0 = 1. Sub-figure (a) is a phase space plot for the oscillator
system and (b) shows the time dependence of 〈σz〉 for the pseudo-spin system.
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5.2 Quartic Model

5.2.1 Complete Inversion anti-Symmetry

The generic symmetry of pseudo-spin polynomial-potential Hamiltonians, as highlighted in Sec-
tion 4.3.3, is evident in all Figs. 5.5(a) through 5.6(b). The population difference plots, in
Figs. 5.5(a) through 5.5(c) all display inversion around the symmetry axis through the origin.
The phase-space position distributions, Figs. 5.6(a) and 5.6(b) also exhibit the total inversion an-
tisymmetry. Such results illustrate the fact that a coupling function with odd symmetry results
in inverted behaviour at opposite extrema of the coupling. These particular plots were produced
using the full quantum evolution but the quantum-classical evolution demonstrates the same re-
sults. Notably the critical point result in Fig. 5.5(c) displays the inversion but its phase-space
distribution will not exhibit any reflection, simply because its initial position is identical in both
cases; this illustrates that, at the roots of the coupling function, the state of the spin exclusively
controls the adiabatic mixing of initial states.

The existence of this symmetry within the results provides a useful check that the method
of lines algorithm conforms to theoretical expectations when used to analyse the quartic model
system.
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Figure 5.5: Comparison of the time dependence of 〈σz〉 for differing initial states: one with the
spin initially excited (solid line) and the other initially in the ground state (dashed line). Here
Ω = 0.6, c = 1.0, b2 = −1 and b4 = 0.5. In (a) the excited-state spin has R0 = −1.6 and the
ground-state spin has R0 = 1.6, in (b) the excited-state spin has R0 = 1.6 and the ground-state
spin has R0 = −1.6 and in (c) both systems have R0 = 0.0.
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Figure 5.6: Comparison of the time-averaged position probability, Prob(R) for differing initial
states: one with the spin initially excited (solid line) and the other initially in the ground state
(dashed line). Here Ω = 0.6, c = 1.0, b2 = −1 and b4 = 0.5. In (a) the excited-state spin has
R0 = −1.6 and the ground-state spin has R0 = 1.6 and in (b) the excited-state spin has R0 = 1.6
and the ground-state spin has R0 = −1.6.
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5.2.2 Critical point results

The central idea to be gleaned from the presented results is that the addition of quantum correc-
tions can both increase and decrease the amplitude of Rabi oscillations in the pseudo-spin system.
At short times (t ≤ 10) there is a propensity for the quantum corrections to increase the damping
experienced by the Rabi oscillations, however at longer times there exists the possibility of in-
creased Rabi oscillation amplitude due to the addition of quantum effects to the dynamics. These
dual possibilities arise because of quantum tunnelling effects that are introduced by the quantum
corrections, thereby allowing the oscillator distribution to continuously fluctuate between a highly
symmetric state (occupying both wells equally) and an asymmetric state (largely occupying a sin-
gle well). In Fig. 5.7(a) the increased damping effects become visible after t ≥ 10, with these
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Figure 5.7: Comparison between the quantum-corrected (solid line) and quantum-classical (dashed
line) dynamics. Here R0 = 0.0, Ω = 0.6, c = 0.2, b2 = −1 and b4 = 0.5. Sub-figure (a) shows
the time dependence of 〈σz〉, (b) the time dependence of the probability of left well occupation,
ProbL(t) and (c) the time-averaged position probabilities Prob(R).

periods of increased damping correlating to the greater symmetry evident in the quantum phase-
space distribution, as evinced by Fig. 5.7(b). Figure. 5.7(c) also indicates that both quantum and
classical oscillators favour the right well initially, as this well is energetically favoured for the form
of the coupling in use. However, the classical oscillator continues to reside largely in the right
well at later times, while in the quantum case, the distribution favours the higher energy left well.
This asymmetry between the quantum and classical cases is a strong indicator of the presence of
quantum tunnelling effects in the dynamics of the quantum oscillator. However, due to the weak
coupling, these quantum effects do not translate into large magnitude differences in the behaviour
of the pseudo-spin. Further Figs. 5.8(a) and 5.9(a) demonstrate a more marked difference between
the quantum and classical evolutions. However, much of the effect of the quantum dynamics here
is to encourage, rather than damp, Rabi oscillation in the population difference. This is to be
expected as both Fig. 5.8(b) and 5.9(b) show a trend towards increasing the asymmetry, favour-
ing the left well in the quantum case, while the classical distribution remains largely static and
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Figure 5.8: Comparison between the quantum-corrected (solid line) and quantum-classical (dashed
line) dynamics. Here R0 = 0.0, Ω = 0.6, c = 0.4, b2 = −1 and b4 = 0.5. Sub-figure (a) shows
the time dependence of 〈σz〉, (b) the time dependence of the probability of left well occupation,
ProbL(t) and (c) the time-averaged position probabilities Prob(R).
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Figure 5.9: Comparison between the quantum-corrected (solid line) and quantum-classical (dashed
line) dynamics. Here R0 = 0.0, Ω = 0.6, c = 0.6, b2 = −1 and b4 = 0.5. Sub-figure (a) shows
the time dependence of 〈σz〉, (b) the time dependence of the probability of left well occupation,
ProbL(t) and (c) the time-averaged position probabilities Prob(R).

favouring the right well. Periods of increased symmetry around T ≈ 20 allow the quantum case
a brief period of damping more efficiently than the classical counterpart. As the coupling has in-
creased, the time-averaged position probability, as seen in Figs. 5.7(c), 5.8(c) and 5.9(c), becomes
more symmetric in both classical and quantum cases. The change, however, is more marked in the
quantum case, where the peak of distribution shifts closer to the origin as the coupling increases.
Moving to the higher coupling of c = 0.8 one can see that the differences induced by the quantum
corrections are decreasing. The qualitative behaviour of the population differences in Fig. 5.10(a)
has become more similar, although it is still possible to distinguish between cases. The increased
similarity comes from the occupation probabilities in Fig. 5.10(b), where the classical case now dis-
plays greater oscillations about a more symmetric mean configuration. Quantum tunnelling effects
still introduce some additional variation to the quantum case, which results in the distinctions in
the population difference damping. This trend towards similarity is the result of non-adiabatic
interactions with the pseudo-spin, which influence both the quantum and classical cases, as these
effects become stronger, the differentiation caused by added tunnelling become less significant at
short times. Figure. 5.10(c) illustrates the continued trend of time-averaged position probability
towards symmetrisation, driven by the aforementioned non-adiabatic effects. Similarly the fact
that tunnelling effects are not absent from the classical case is due to these non-adiabatic effects,
though this becomes more directly apparent in the case where the oscillator is confined initially to
one well of the potential profile.
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Figure 5.10: Comparison between the quantum-corrected (solid line) and quantum-classical
(dashed line) dynamics. Here R0 = 0.0, Ω = 0.6, c = 0.8, b2 = −1 and b4 = 0.5. Sub-figure
(a) shows the time dependence of 〈σz〉, (b) the time dependence of the probability of left well
occupation, ProbL(t) and (c) the time-averaged position probabilities Prob(R).
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5.2.3 Left well results

The results when starting in the left well are similar in nature to those of the critical point.
However, tunnelling is more explicitly evident, since the distribution is initially confined in one
well. Increased damping effects due to the quantum evolution, though evident in Fig. 5.11(a), are
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Figure 5.11: Comparison between the quantum-corrected (solid line) and quantum-classical
(dashed line) dynamics. Here R0 = −1.6, Ω = 0.6, c = 0.2, b2 = −1 and b4 = 0.5. Sub-
figure (a) shows the time dependence of 〈σz〉, (b) the time dependence of the probability of left
well occupation, ProbL(t) and (c) the time-averaged position probabilities Prob(R).

not consistent. This is due to the fact that the quantum case demonstrates far larger oscillations in
well occupation, visible in Fig. 5.11(b). It is also evident, from the aforementioned Figure, that the
classical distribution still displays a tendency to subside to a quasi steady state after some initial
transient behaviour. The oscillations in well occupation from Fig. 5.11(b) and the great differences
evident in Fig. 5.11(c) evince that the quantum corrections contribute extensive tunnelling effects
to the dynamics of the oscillator. However, the weak coupling in this case means that these effects
do not greatly impact the population difference damping. As the coupling is increased to the cases
of c = 0.4 and c = 0.6, a period of enhanced damping is observed for the quantum evolution at
around t ≈ 10, as seen in Figs. 5.12(a) and 5.13(a). These enhanced damping periods correspond
to time intervals where the quantum oscillator distribution is more symmetric than the classical
counterpart, readily seen in Figs. 5.12(b) and 5.13(b). Similarly, periods where the quantum
oscillator encourages larger fluctuations in the population difference correspond well to intervals
where the quantum distribution in phase space is more asymmetric than the classical case. These
fluctuations in the quantum results are evidence of quantum tunnelling effects contributing to the
dynamics of the oscillator, an assertion supported by the enhanced symmetry of the time-averaged
position probabilities in Figs. 5.12(c) and 5.13(c). Further increase in the coupling enters the
regime of strong coupling (λ ≥ 1). Here one observes that the population difference fluctuations
differ mainly in magnitude, the time interval shown in Fig. 5.14(a) does not display significant
qualitative differences between quantum and classical evolutions. Indeed, in Fig. 5.14(b), it is
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Figure 5.12: Comparison between the quantum-corrected (solid line) and quantum-classical
(dashed line) dynamics. Here R0 = −1.6, Ω = 0.6, c = 0.4, b2 = −1 and b4 = 0.5. Sub-
figure (a) shows the time dependence of 〈σz〉, (b) the time dependence of the probability of left
well occupation, ProbL(t) and (c) the time-averaged position probabilities Prob(R).
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Figure 5.13: Comparison between the quantum-corrected (solid line) and quantum-classical
(dashed line) dynamics. Here R0 = −1.6, Ω = 0.6, c = 0.6, b2 = −1 and b4 = 0.5. Sub-
figure (a) shows the time dependence of 〈σz〉, (b) the time dependence of the probability of left
well occupation, ProbL(t) and (c) the time-averaged position probabilities Prob(R).
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Figure 5.14: Comparison between the quantum-corrected (solid line) and quantum-classical
(dashed line) dynamics. Here R0 = −1.6, Ω = 0.6, c = 0.8, b2 = −1 and b4 = 0.5. Sub-
figure (a) shows the time dependence of 〈σz〉, (b) the time dependence of the probability of left
well occupation, ProbL(t) and (c) the time-averaged position probabilities Prob(R).
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evident that the occupation probabilities vary according to a very similar pattern and that the
initial transient behaviour lasts far longer than at previous coupling values. Figure. 5.14(c) also
shows a convergence of the quantum and classical time-averaged position probabilities, one that
has become more evident as the coupling has increased. This drive towards similarity and towards
a symmetric distribution at short times is a manifestation of strong non-adiabatic interactions
with the pseudo-spin. In the region of strong couplings, such interactions dominate the short-time
behaviour of the oscillator and, as such, the quantum dynamical effects are less visible at short
times, appearing only in the slight magnitude differences in the Rabi oscillations of 〈σz〉 and in
minor well occupation differences at t ≥ 10. Drawing inference from the pattern of behaviour
of previous couplings, one might conclude that the quantum effects will simply manifest more
strongly at later times, as the strength of the coupling is merely prolonging the dominance of the
non-adiabatic dynamical effects.

5.3 Application to Quantum Dynamics of a Buckled Nano-
rod

The chosen system for this application consists of a nano-rod coupled capacitively to a Cooper-
pair box through its buckled displacement. The nano-rod consists of a tiny bar of silicon that,
when placed under compression, undergoes elastic, oscillatory buckling [56, 57]. A Cooper-pair box
(CPB) consists of a small Josephson junction which has a Josephson energy much smaller than
its charging energy and is voltage biased so that it behaves as a two-level system or pseudo-spin,
having only two experimentally accessible energy levels as a result of the biasing [44, 53].

The Hamiltonian for a Cooper-pair box can be expressed as [53]:

ĤCPB = 4EC(ng − n−
1

2
)σ̂z −

1

2
EJ σ̂x ,

where EC is the charging energy, EJ is the Josephson energy, ng =
(CbVb+CgVg)

2e , here Cb and Cg
are the bias capacitance of the CPB and capacitance between the nano-rod and CPB; while Vb
and Vg are the bias voltage of the CPB and voltage between the nano-rod and CPB; lastly n is an
integer giving the charge state of the CPB. The operators σ̂z and σ̂x are the Pauli spin operators
for the pseudo-spin representation of the CPB.

The Hamiltonian of the nano-rod is chosen, in accordance with continuum elastic theory [56],
to be

HNR =
P 2

2M
+

1

2
αR2 +

1

4
βR4 ,

where α = Mω2
0
Yc−Y
Yc

, here Y is the compressive strain on the nano-rod, Yc is the critical strain

value, M is the mass of the nano-rod, ω0 is the fundamental frequency of the nano-rod and β =
Mω2

0

d2

where d is the thickness of the nano-rod [56]. The fundamental frequency ω0 is given by [56]

ω0 =

√
Q

12ρ
d
(π
l

)2

,

where l is the length, Q is the quality factor and ρ the density of the nano-rod. In the notation
used here, R represents the fundamental mode displacement of the nano-rod [56, 57] and P is the
conjugate momentum to R.

The interaction Hamiltonian is chosen to represent the capacitive coupling through the dis-
placement of the nano-rod and is therefore given by

ĤI = −cRσ̂z ,

where c is the coupling constant.

The total Hamiltonian then consists of the sum of these three parts, however, in HCPB the
term corresponding to a constant shift on σ̂z is neglected to allow the Hamiltonian to match that
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Table 5.1: Continuum Elastic Theory Nanorod Properties

Quantity S. I. Value
l 200× 10−9 m
w 5× 10−9 m
d 1× 10−9 m
ρ 2330 kg. m−3

Q 130× 109 Pa
ω0 5.0× 108 Hz
M 2.3× 10−21 Kg
β ≈ 1.0× 1015 kg. m−2. s−2

Table 5.2: Simulation Properties

Quantity Simulation Value S. I. Value
EJ = 2~Ω 0.6 0.4 µeV

R0 1.6 1.4× 10−11 m
t (time units) 1 2 ns

Y1 2Yc -
β1 0.5 ≈ 1.0× 1018 kg. m−2. s−2

Y2 1.1Yc -
β2 0.03 ≈ 1.0× 1017 kg. m−2. s−2

Y3 1.25Yc -
β3 0.03 ≈ 1.0× 1017 kg. m−2. s−2

displayed in Chapter 3 of this work. In order to compare this Hamiltonian to that presented
previously, the following identifications must be made

2~Ω→ EJ ,

b2 → α ,

b4 → β ,

ng − n−
1

2
= 0 .

Given this identification it is now possible to interpret the results displayed in the previous
Chapter in terms of this model. Firstly, though, it is important to determine the S.I. values of the
constants used in the simulation work, in order to compare these to the experimentally realisable
values.

Table. (5.1) displays the properties of the nano-rod, the quality factor Q and density ρ are
taken as those of silicon nano-rods [56]. Here l, w and d are the length, width an thickness of the
nano-rod respectively; M and ω0 are the mass and fundamental frequency.

Table. (5.2) displays the properties of the coupled system used in the simulation, along with
their S. I. values. Clearly there is a discrepancy in the β values between the simulation properties
and those calculated from the continuum elastic theory, however, adjustment of the quality factor
could potentially bring the nano-rod into the regime of significant non-linear oscillatory effects.
The initial state of the oscillator, used to obtain the numerical results in this study, was taken
to be a coherent state, with the non-linear terms being ‘switched on’ at time t = 0. This is still
consistent with the buckled nano-rod if one assumes the nano-rod was subjected to compression
below the critical strain at t < 0 and at t = 0 the strain is increased beyond the critical value.
The additional results presented in this chapter will include simulations where b2 6= −1, this is not
inconsistent with the rescaling procedures, as the constant b2 is redefined for this application.

Figure 5.15 presents the results for the simulation using β2 and Y2, despite the previous concerns
these plots using the lower value of β also display clear differences between the quantum and
classical results, in both the occupation probabilities, indicating quantum tunnelling effects, and
in the Rabi oscillations of the CPB population difference. However these differences emerge only at
longer times, it might therefore be necessary to find a system that exhibits stronger non-linearities
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than a buckled nano-rod to experimentally observe the effects of the quantum corrections in this
way, unless further adjustments can be made to the non-linearity to produce non-linear effects
earlier in the evolution. The timing of the non-linear effects is of concern, not because of the
decoherence time for the CPB, which is of the order of 500 ns [44] and t = 20 in the scaled units
corresponds to 40 ns, but because of the more general problem of the long time integration of
quantum dynamics. In terms of the other parameters: the Josephson energy is within an order of
magnitude of lab realisable values [44] and the dimensions of the nano-rod are chosen to be close
to those suggested in [56]. Finally, control of the compressive forces on the rod should not present
great difficulty, despite requiring that the strain be held at one tenth above the critical strain, this
is possible provided the ends are fixed [56].

Figure 5.16 displays a set of results, for similar simulation parameters β3 and Y3, where the
dynamical differences emerge more rapidly. In this case Fig. 5.16(a) the quantum corrections show
a propensity to increase the magnitude of the Rabi oscillations, this corresponds to the fact that
the probability distribution is less symmetric than the classical case during these periods, as born
out in Fig. 5.16(b). The extensive transfer from the left well to the right is clearly evident in
Fig. 5.16(c), where the average position-probability appears to be extremely symmetric in the
quantum case. This shows clear evidence of quantum tunnelling effects in the dynamics of the
oscillator which are again witnessed by changes in the population difference of the pseudo-spin.
This suggests that, even for much smaller non-linearity parameters, the CPB might still witness
the quantum features of the nano-rod dynamics, provided the strain and the coupling are chosen
correctly.
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Figure 5.15: Comparison of the classical evolution (dashed line) with the quantum evolution (solid
line), here Ω = 0.6, R0 = −1.6, c = 0.2, b2 = −0.1 and b4 = 0.03. Sub-figure (a) shows the time
dependence of 〈σz〉, (b) the time dependence of the probability of left well occupation, ProbL(t)
and (c) the time-averaged position probabilities Prob(R).

The results of particular interest are those associated with the population operator σ̂z [53];
as these results display distinct differences between the quantum-classical and quantum-corrected
cases. Such differences indicate that, for a highly non-linear oscillation potential, where the quar-
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Figure 5.16: Comparison of the classical evolution (dashed line) with the quantum evolution (solid
line), here Ω = 0.6, R0 = −1.6, c = 0.3, b2 = −0.25 and b4 = 0.03. Sub-figure (a) shows the time
dependence of 〈σz〉, (b) the time dependence of the probability of left well occupation, ProbL(t)
and (c) the time-averaged position probabilities Prob(R).

tic coefficient is somewhat comparable to quadratic coefficient, measurement of the Cooper-pair
number difference in the CPB would allow one to distinguish between classical and quantum me-
chanical behaviour in the coupled nano-rod; as the quantum-classical case represents a situation
where the corrections are small and quantum dynamical effects are weak, whereas in the quantum-
corrected case, such quantum effects are present in the dynamics. The strength of these corrections
is controlled by the coefficient β, as can be seen in the analysis presented in Chapter 2, and for
this reason the oscillator must exhibit significant non-linear behaviour in order for the correc-
tions to make significant contributions to the dynamics. The presence of differences due to the
quantum correction effects in a relatively large range of couplings, as displayed in Chapter 5, and
even when the properties of the nano-rod are significantly adjusted, as in Figure 5.15, suggests
that, in principle, it should be possible to experimentally detect quantum features of a buckled
nano-rod, or similar non-linear nano-oscillator, through observation of the population difference of
a coupled CPB. The apparent dynamical differences produced by significant non-linear oscillatory
behaviour might therefore provide a method for witnessing the transition of a nano-mechanical
from the regime of classical dynamics into the quantum realm. The differing behaviour of the
pseudo-spin population difference under quantum and classical oscillator dynamics also provide a
means of indirectly witnessing quantum tunnelling effects in the oscillator system, which are seen
to be directly correlated to the apparent dynamical differences. The fact that such differences
would become apparent before the decoherence time of the CPB is promising in regards to the
possibility of detecting these dynamical features in suitably prepared experimental set-up.
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Chapter 6

Conclusions and Perspectives

The quantum Liouville equation in the Wigner picture appears as the classical Poisson bracket
equation with the addition of a series of non-local correction terms. This particular structure reveals
that the correction terms hold the ‘quantumness’ that is present in the dynamics. Therefore, the
study of such correction terms allows one to identify the peculiarly quantum features of a chosen
system’s dynamics; such a method of identification might allow for the witnessing of classical-to-
quantum transitions in suitably chosen systems through observation of the dynamical signature
of the quantum correction effects. The Wigner picture can also be employed in the case where
two systems are coupled together, where one wishes only to express one of the systems in phase
space. Such an approach is termed the partial Wigner picture, this approach can be effectively
used to study the dynamical contribution of the quantum corrections by addressing both the cases
where the correction terms are neglected, yielding a quasi-classical limit of the phase-space system,
and the case where the correction terms are maintained, representing the case where both systems
evolve under fully quantum dynamics. In this work, the form of the corrections was derived for
the case of arbitrary polynomial potentials and couplings; the corrections were found to stem only
from the forms of the coupling function and the phase-space potential. Additionally, the general
form of the Wigner-Liouville propagator, including correction terms, can be conveniently realised
in a bracket notation, providing an explicit form for the equation of motion that expresses the
phase-space evolution in a manner similar to the full Wigner representation. It was also shown
that the quantum corrections have a special form, identical to the form in the complete Wigner
case, when the coupling was chosen to be a linear function of the phase-space position coordinate.

The hybrid dynamical formalism that can be reached through this partial Wigner picture has
the significant advantage of allowing one to focus upon a few degrees of freedom of interest, those
which determine the relevant physics within a condensed matter system that potentially contains
many more degrees of freedom. The remaining degrees of freedom can then be treated as a
semi-classical bath, allowing for the construction of more efficient computational methods without
affecting the physics of the processes being studied. There are many systems in both chemical
and biological physics that might benefit from examination under hybrid and non-Hamiltonian
formalisms, particularly transport type processes taking place in environments composed of heavy
molecules. Such systems exhibit little in the way of Hamiltonian symmetry and are therefore
prime candidates for hybrid treatment, as they do not suffer from the hybrid theory’s conditional
violation of the Jacobi identity and the efficient simulation of such problems remains something of
an open problem.

Furthermore, the algebraic structure of the quantum-classical formalism was examined, demon-
strating the conditions under which it constitutes a Lie algebra. This analysis was accompanied by
a study of how the quantum-corrections contributed to the preservation of Hamiltonian symme-
tries and to maintaining the Lie algebra structure, so important in physical theories. This analysis
determined that each correction term added linearly increases the degree to which Hamiltonian
symmetries are preserved. This means that the hybrid formalism can be employed as an approxima-
tion of full quantum dynamics, while preserving all symmetries up to a given order, by introducing
a finite number of correction terms. This allows one to leverage the considerable computational
advantages of the hybrid formalism even in situations that demand the preservation of particular
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symmetries. This analysis also revealed that, despite the existence of seemingly consistent methods
of obtaining the quantum-classical limit, the resulting quantum-classical bracket does not generally
constitute a Lie bracket, thus compromising the Lie algebra properties of the hybrid theory. The
loss of this property suggests, in this author’s opinion, that this hybrid formalism cannot consti-
tute a general prescription for treating interacting quantum and classical systems, although further
study may be needed in this regard, as it is unclear as to whether preservation of general hybrid
symmetries should be expected in physical systems. Never the less, this hybrid formalism does
yield a powerful computational approximation and a method of studying the essential features of
quantum dynamics in otherwise prohibitively complicated systems.

The observations presented here, pertaining to the coupled pseudo-spin, or two-level system,
and quartic oscillator system, demonstrate that the effects of the quantum corrections can be
observed within a balance of parameters. If the coupling was chosen to be too strong, then the
differences in the pseudo-spin Rabi oscillation damping, between the uncorrected and quantum-
corrected oscillator cases, do not become apparent at short times. In the case of weak couplings,
the differences might also be too minor to be observed, even at longer times. However, when the
bare coupling parameter λ is in the range 0.1 < λ < 1.0 and the quartic coefficient is not too small
in comparison to its quadratic counterpart, the addition of correction terms produce differences in
both the magnitude of Rabi oscillations and in their qualitative behaviour. At shorter times the
quantum corrections can, dependent on the geometry of the oscillator potential and thus the actual
significance of the corrections, introduce more significant damping effects. However, at longer
times the corrections are capable of inducing larger fluctuations in the pseudo-spin population
difference than those produced in the uncorrected case. The variation in the behaviour of the
population difference is induced by additional quantum tunnelling effects that are introduced into
the dynamical behaviour of the oscillator via the correction terms. These tunnelling effects allow
the quantum oscillator distribution to fluctuate continuously between the wells of the potential
profile, shifting between symmetric configurations, where both wells are equally occupied, and
asymmetric configurations, where largely one well is occupied. These shifts switch the influence on
the Rabi oscillations from inducing greater damping than the uncorrected case, when the quantum
oscillator distribution is more symmetric, or making the damping effects caused by the quantum
oscillator less significant in the case where the quantum oscillator distribution is more asymmetric
than the classical case. Throughout the results presented here, classical oscillator distribution was
observed to settle into a quasi steady-state configuration after some short time transient behaviour.
This behaviour is induced by non-adiabatic effects which were dependent on the strength of the
coupling, such effects also cause the classical evolution to seemingly exhibit some lesser tunnelling
effects by allowing non-adiabatic transitions between wells of the potential profile. The stronger
the coupling chosen, the longer the period of transient behaviour was observed to be; during
this transient period the non-adiabatic effects dominate and the quantum corrections provide little
differentiation between the quantum and classical oscillator evolutions. However, after the transient
behaviour dies down, the quantum corrections quickly assert themselves and differentiate the two
cases.

The results demonstrated in this work can also be applied to the study of the classical-to-
quantum transition of nano-mechanical systems. To this end, the coupled quartic oscillator and
pseudo-spin model was applied to the study of a nano-rod under compression, capacitively coupled
to a Cooper-pair box. In this model, the Cooper-pair box and nano-rod correspond to the pseudo-
spin and quartic oscillator respectively. It was found that the effects of the quantum corrections
could be potentially used to identify uniquely quantum features in the dynamics of the non-linear
nano-oscillator by observing the damping of the Rabi oscillations in the Cooper-pair number. Im-
portantly, differences between the quantum and classical evolutions of the nano-rod oscillations
emerge for times shorter than the decoherence time of the Cooper-pair box, meaning that, pro-
vided a suitably non-linear oscillator can be prepared, the dynamical differences are, in principle,
observable under conditions close to those which are currently lab realisable. This work also sug-
gests that differences in the Cooper-pair number Rabi oscillation damping between the cases of
coupling to either a classical or a quantum nano-oscillator are due to quantum tunnelling effects
introduced by the quantum corrections. As such, observation of the Rabi oscillation damping in
the Cooper-pair number allows for the detection of quantum or classical features of the oscillator
dynamics, including the ability to indirectly witness quantum tunnelling, which was determined
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to be at the heart of these dynamical differences. These results also formed the basis of a paper
submitted recently for publication.
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Appendix A

Review of Elementary Quantum
Statistical Physics

A.1 Statistical Mechanics with Quantum Pure States

A.1.1 Definition of a Pure State

In quantum mechanics, any state of a physical system can be completely described [63] by some
abstract vector |i〉, in Dirac notation [15], which is a member of some Hilbert space. This state
vector forms a ray in the Hilbert space, rather than a point, since it is unique only to within a
multiplicative, complex constant. The state is termed a ‘pure’ state if the physical configuration
it represents is described by the measurement of a complete set of commuting observables on the
state [15, 16, 63]. An observable of a quantum mechanical system is a physically measurable
quantity represented by a linear, Hermitian operator on the Hilbert space of the system [70]. A
set of commuting observables, given by the operators {Âi} where [Âi, Âj ] = 0 ∀ i, j, is defined as

complete if for an observable operator B̂,

[B̂, Âi] = 0 ,

iff B̂ = f({Âk}), where {Âk} is one or more of the operators Âi and f(Â) is a function of the
operator Â.

These pure states form the quantum analogue of the classical systems which exhibit determin-
istic certainty, not of classical systems whose behaviour is described in statistical terms [15]. This
analogy arises because the pure state accounts for a complete description of the system and so
cannot give rise to probabilistic scenarios based on a lack of information, which is the reason for
statistical treatments in classical mechanics [17]. Despite the fact that pure states represent a
complete description of the system, they still exhibit probabilistic behaviour under measurement,
as will be demonstrated. It must be made clear, however, that the probabilistic behaviour of a pure
quantum state is of a different sort from the ensemble-based probabilities of classical statistics, this
difference will also be illustrated in the following pages.

A.1.2 Statistical Behaviour of Pure States

The existence of this probabilistic behaviour under measurement, for a system in a pure state, will
be demonstrated by the fact that it is possible to construct a probability distribution, PQ,ψ(a), for
the results of measurement of the observable Q on the pure state |ψ〉. This probability distribution
returns the probability of the result of the measurement of Q, such that it has a value less then
a. To show that this P forms a valid probability distribution it must first satisfy the conditions of
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probability theory, namely [15, 82]

PQ,ψ(a) ≤ PQ,ψ(b) iff a ≤ b ,
P (+∞) = 1 ,

P (−∞) = 0 ,

lim
δ→0+

P (a+ δ) = P (a) .

(A.1)

Consider the pure state |ψ〉, which can be expressed in the orthonormal basis {|ei〉 , i ∈ n}:

|ψ〉 =
∑
i

ci |ei〉 ,

where ci ∈ C, the set of complex numbers. By definition of an observable operator, its eigenstates
form an orthonormal basis. Therefore, the orthonormal basis used previously can to be taken as
the set of the eigenstates of the observable Q, such that Q has a value qi in state |ei〉. It makes
sense then to relabel these eigenstates |qi〉. The observable Q can then be represented by a family
of projectors

Q̂ =
∑
i

qiP̂i ,

where P̂i = |qi〉 〈qi|. This representation assumes there is some countable, discrete set of possible
measurement results for the observable Q on the given system. To guarantee this eigenvalue
decomposition of Q̂ is possible it must be assumed that Q̂ is a compact Hermitian operator [15].
For a definition of compactness, in regards to linear operators, the reader is invited to consult the
referenced works: [15, 72, 83].

Since the probability of measuring a particular eigenvalue qi of the observable Q̂ is given by
the expectation value of the projector |qi〉 〈qi| [17], the probability distribution, PQ,ψ(a), is now

defined in terms of the action of the family of projectors associated with observable Q̂, on the pure
state |ψ〉:

PQ,ψ(a) =
∣∣∣∣ ∑
i,qi<a

P̂i |ψ〉
∣∣∣∣2 ,

where the summation,
∑
i,qi≤a, is performed over all the states |qi〉 that have Q̂ |qi〉 = qi |qi〉, such

that qi ≤ a. The more rigorous motivation for this definition is given by the fact that the set of
projectors {P̂i} forms the spectral family of the operator Q̂ and thus can be used to formulate
Stieltjes integrals [15, 83].

Evaluation of this prospective probability distribution yields

PQ,ψ(a) =
∑
j,qj≤a

〈ψ| P̂j
∑
i,qi≤a

P̂i |ψ〉 ,

=
∑
j,qj≤a

∑
i,qi<a

〈ψ| qj〉 〈qj | qi〉 〈qi| ψ〉 ,

=
∑
i,qi≤a

|ci|2 .

To prove that this is a valid distribution, it must be first shown that it satisfies normalisation,
to this end, consider the normalisation condition of the pure state |ψ〉 combined with the basis
completeness:

〈ψ| ψ〉 =
∑
i

∑
j

cic
∗
j 〈qj | qi〉 =

∑
i

|ci|2 = 1 ,

where the summation over i is made over all the eigenstates indexed by i. Furthermore, it is trivial
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to show that this satisfies the probability theory requirements outlined previously in Eq. (A.1):

P (+∞) =
∑

qi≤+∞

|ci|2 = 1 ,

P (−∞) =
∑

qi≤−∞

|ci|2 = 0 ,

lim
δ→0+

P (a+ δ) = lim
δ→0+

∑
i,qi≤a+δ

|ci|2 = P (a) .

Finally, P is monotonic, non-decreasing because the terms |ci|2 are necessarily real and positive-
definite. Therefore, under measurement of the observable Q, the pure state |ψ〉 exhibits probabilis-
tic behaviour governed by the distribution PQ,ψ(a), with the coefficients |ci|2 giving the probability
of measuring the observable value qi corresponding to the eigenstate |qi〉.

In general then, it is true that a family of projectors {P̂i}, which forms a complete, orthonormal
basis for the Hilbert spaceH, also defines a probability distribution on any pure state |ψ〉 ∈ H. This
can also be shown to be true in the case of an observable with a continuous range of measurement
results, though it is considerably more involved [15].

A.1.3 Pure State Averages

Given the representation of the observable Q in terms of the projectors P̂i = |qi〉 〈qi|, the expecta-
tion value of the observable is defined to be:

〈ψ| Q̂ |ψ〉 =
∑
i

qi 〈ψ| qi〉 〈qi| ψ〉 =
∑
i

qi|ci|2 ,

which can be rewritten
〈ψ| Q̂ |ψ〉 =

∑
i

qipi ,

where pi = |ci|2 is the probability of the system being measured in state |qi〉. This result is
equivalent to taking an average over the possible measurement results; therefore

〈ψ| Q̂ |ψ〉 = 〈Q̂〉 ,

where 〈Q̂〉 is the average of the observable Q. This average can then be expressed in the basis of
the eigenstates of Q̂,

〈Q̂〉 = 〈ψ| Q̂ |ψ〉 =
∑
i

∑
j

〈ψ| qj〉 〈qj | Q̂ |qi〉 〈qi| ψ〉 =
∑
i

∑
j

c∗jciQji ,

where Qji = 〈qj | Q̂ |qi〉. These coefficients c∗jci might be used to define a matrix ρ with elements
given by

ρij = c∗jci ,

from which, an operator can then be defined, such that its matrix elements are similar to Qji.
Therefore, let ρij = 〈qi| ρ̂ |qj〉. The form of this operator can then be deduced to be

ρ̂ = |ψ〉 〈ψ| = P̂ψ ,

which can be proved by considering that

ρij = 〈qi| ψ〉 〈ψ| qj〉 = cic
∗
j ,

as required. This operator ρ̂ is known as the density operator and is vital to quantum statistical
mechanics. Therefore it is worthwhile examining some of the properties of this operator.

The first property of this density operator under consideration is the nature of ρ̂2,

ρ̂ρ̂ = |ψ〉 〈ψ| ψ〉 〈ψ| = ρ̂ .
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If this equality holds the density operator can be shown to describe a pure state [15]. It can also
be shown that ρ̂ is self-adjoint. To accomplish this, consider the expectation value product of
operators ÂB̂:

〈ψ| ÂB̂ |ψ〉 = 〈φ| χ〉 ,
〈φ| = 〈ψ| Â ,

|χ〉 = B̂ |ψ〉 .

Then the adjoint of this expectation value is given by(
〈ψ| ÂB̂ |ψ〉

)†
= 〈χ| φ〉 = 〈ψ| B̂†Â† |ψ〉 .

But this implies that

〈ψ|
(
ÂB̂
)†
|ψ〉 = 〈ψ| B̂†Â† |ψ〉 ,

or, equivalently, that the adjoint of the product is given by product of the adjoints with operator
order reversed. This can be stated mathematically as:(

ÂB̂
)†

= B̂†Â† .

Considering the operator ρ̂, the adjoint is therefore given by

ρ̂† = (|ψ〉 〈ψ|)† = |ψ〉 〈ψ| = ρ̂ .

Which means that ρ̂ is self-adjoint or Hermitian.
The density operator is also bounded, this can be proven directly from the definition of a

bounded operator: An operator Â, acting on the Hilbert space H, is bounded if it satisfies the
inequality [72] ∣∣∣∣Â |v〉 ∣∣∣∣ ≤M ∣∣∣∣ |v〉 ∣∣∣∣ ,
where

∣∣∣∣ ·∣∣∣∣ is the norm on the Hilbert space H and M is a finite constant. Rewriting this inequality
in Dirac notation and squaring it results in

〈v| Â†Â |v〉 ≤M2 〈v| v〉 , (A.2)

where |v〉 is a member of the Hilbert spaceH. Substituting ρ̂ into the left-hand side of the inequality
yields

〈v| ρ̂†ρ̂ |v〉 = 〈v| ψ〉 〈ψ| v〉 .

If the vectors are normalised it is clear that∣∣ 〈v| ψ〉 ∣∣ ≤ 1 .

Therefore,

〈v| ρ̂†ρ̂ |v〉 ≤ 1 ,

which proves that ρ̂ is bounded. The importance of an operator being bounded can be illustrated
by considering ∣∣∣∣Â(|v〉+ |h〉)− Â |v〉

∣∣∣∣ =
∣∣∣∣Â |h〉 ∣∣∣∣ ,

if Â is bounded Eq. (A.2) implies that ∣∣∣∣Â |h〉 ∣∣∣∣ ≤M ∣∣ |h〉 ∣∣ .
Therefore in the limit that |h〉 → |0〉:

lim
|h〉→|0〉

∣∣∣∣Â(|v〉+ |h〉)− Â |v〉
∣∣∣∣ = 0 ,
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which means that Â is continuous at |v〉. Therefore, one can see that boundedness of operators has
important implications for defining continuity of operator action on the Hilbert space. Additionally,
one can prove that the density operator is trace-class: An operator Â is trace-class if

Tr
(
Â†Â

)
≤ +∞ ,

which is clearly true for the density operator, since it is self-adjoint and has unit trace. Finally
it is possible to show that the density operator is compact: A linear operator Â, acting on the
Hilbert space H, is compact if Â is trace-class [15]. It is evident from the preceding discussion that
ρ̂ satisfies this requirement and is thus a compact operator. The fact that ρ̂ is compact and trace-

class is vital in guaranteeing that the trace Tr
(
ρ̂Q̂
)

is valid and finite for an arbitrary bounded

operator Q̂ [83, 84]. All of these properties have been proven here for the density operator of a
pure state, however, it will seen later that these properties can be easily generalised to the density
operators of mixed states.

Having established the properties of ρ̂, we now consider the trace over ρ̂Q̂. As has been stated,
this quantity is valid and finite provided the operator Q̂ is bounded. The trace itself can then be
evaluated

Tr(ρ̂Q̂) = 〈ψ| Q̂ |ψ〉 = 〈Q̂〉 .

Furthermore, if we take the trace of the density operator with some projector P̂i, that is

Tr(ρ̂P̂i) = 〈qi| ψ〉 〈ψ| qi〉 = |ci|2 ,

then an alternative means of obtaining the probability distribution, PQ,ψ(a) can be found via this
density operator

Tr(ρ̂
∑
i,qi≤a

P̂i) =
∑
i,qi≤a

〈qi| ψ〉 〈ψ| qi〉 =
∑
i,qi≤a

|ci|2 = PQ,ψ(a) .

The structure of the density operator can be further analysed by employing the representation
of the pure state |ψ〉 in the basis of the eigenstates |qi〉

ρ̂ =
∑
i

∑
j

c∗i cj |qi〉 〈qj | ,

which can be rewritten

ρ̂ =
∑
i

|ci|2 |qi〉 〈qi|+
∑
i

∑
j,j 6=i

cic
∗
j |qi〉 〈qj | .

In this the coefficients |ci|2 have already been shown to represent the probability of finding the
system in the state indexed by i. However, the remaining terms of the density operator take the
form of mixed projection operators |qi〉 〈qj |, with i 6= j. The operator ρ̂ may then be represented
as a matrix, with the rows and columns indexed by the vectors |qi〉, such that the matrix element
ρij is given by

ρij = 〈qi| ρ̂ |qj〉 .

Then |ci|2 are the diagonal elements and cic
∗
j are the off-diagonal elements, often called coherences.

Since the coefficients ci are potentially complex, cic
∗
j are not guaranteed to be real and thus can-

not constitute probabilities. Instead, they are representative of the correlations between the states
labelled i and j [65]. These coherence terms demonstrate a difference between the pure state statis-
tics and ensemble statistics of classical mechanics: such fundamental correlations between states
do not occur in ensemble statistics, meaning that the pure state exhibits quantum probabilities
rather than the classical variety [65]. This density operator constitutes a vehicle for calculating
any quantum averages, or experimental observables, associated with a pure state system and is
thus capable of describing a pure state completely [16, 17]. It will become evident, in the following
section, that the density operator description can be extended even to systems whose state cannot
be expressed as a pure state in some Hilbert space.
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A.2 Mixed States and Density Operators

In quantum mechanics, a mixed state is defined to be one which cannot be described in terms of a
single ray within a Hilbert space [15] or a state that cannot be described by a coherent superposition
of pure states[16]. Systems for which this is true are the quantum analogy of classical systems that
must be described in statistical terms, as it will turn out that their description is possible only in
terms of an ensemble density operator [16, 17, 63, 65]. Such mixed state systems, since they cannot
be expressed as a single vector pure state, can be described in terms of an ensemble of systems
which can be measured to be in any one of a set of pure states |i〉 [16, 65]. Thus the density
operator for such a system is the average of the density operators for each ensemble element. The
summation in this average runs over all the ensemble elements k ∈ [1, N ], where there are N
ensemble elements

ρ̂ =
1

N

N∑
k

ρ̂k .

This can be converted to a sum over the set of pure states, |i〉, by including a factor di, the number
of times each pure state, i, is measured in the ensemble. Thus

ρ̂ =
1

N

∑
i

diP̂i .

From here on, the projectors P̂i are formulated in terms of the set of available pure states {|i〉},
such that P̂i = |i〉 〈i|. Projectors onto other states will be written explicitly. The factor di

N can be

re-written as pi = di
N , the classical probability of finding any system in the ensemble in the state

|i〉. This allows the density operator to expressed in the form [15, 17]

ρ̂ =
∑
i

piP̂i ,

which is a weighted sum of the pure state density operators.
This density operator satisfies all the previously specified requirements, namely it is trace-class

and compact, as it is the sum of trace-class, compact projectors. This follows from the fact that
the proof of the pure state density operator being trace-class (and therefore compact) is clearly
equivalent to proving a single projection operator is trace-class and compact. Additionally the
mixed state density operator has unit trace

Tr(ρ̂) =
∑
i

piTr(P̂i) =
∑
i

pi = 1 .

It is also true that ρ̂ is bounded as it is expressed as a linear combination of bounded projectors
P̂, each with a real, finite coefficient pi. It remains to demonstrate that a probability distribution
for measurements on a mixed state can be derived from this density operator. First consider the
average of an observable operator Q in the pure state case

Tr(ρ̂pQ̂) = 〈Q̂〉 ,

where ρ̂p is the density operator of the pure case. So following the same pattern as the earlier
derivation, consider

Tr

ρ̂ ∑
i,qi≤a

|qi〉 〈qi|

 =
∑
i,qi≤a

〈qi| ρ̂ |qi〉 ,

which is valid as ρ̂ is trace-class. Including the form of ρ̂ results in

Tr

ρ̂ ∑
i,qi≤a

|qi〉 〈qi|

 =
∑
j

∑
i,qi≤a

pj 〈qi| j〉 〈j| ρ̂ |j〉 〈j| qi〉 ,

and since
|j〉 =

∑
k

cjk |qk〉 ,
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one obtains

Tr

ρ̂ ∑
i,qi≤a

|qi〉 〈qi|

 =
∑
j

∑
i,qi≤a

pj |cji |
2 .

It is necessary now to show

〈j| j〉 =
∑
i

∑
k

cjk
∗
cji 〈qi| qk〉 =

∑
i

∑
k

cjk
∗
cji δik =

∑
i

cji
∗
cji = 1 ,

since the states |qi〉 are orthonormal. Thus the probability distribution is given by

PQ,ψ(a) = Tr

ρ̂ ∑
i,qi≤a

|qi〉 〈qi|

 =
∑
j

∑
i,qi≤a

pj |cji |
2 ,

the validity of which is proven by first considering the normalisation∑
j

∑
i

pj |cji|2 =
∑
j

pj
∑
i

|cji |
2 =

∑
j

pj = 1 .

With normalisation established it is simple to test the further requirements of probability theory

PQ,ψ(+∞) =
∑
j

pj
∑

i,qi≤+∞

|cji |
2 =

∑
j

pj = 1 ,

PQ,ψ(−∞) =
∑
j

pj
∑

i,qi≤−∞

|cji |
2 = 0 ,

lim
δ→0+

PQ,ψ(a+ δ) = lim
δ→0+

∑
j

pj
∑

i,qi≤a+δ

|cji |
2 = PQ,ψ(a) .

Finally, P is monotonic non-decreasing because the terms pj |cji |2 are necessarily real and positive-
definite.

Therefore, the density operator still allows for the definition of a probability distribution for the
measurement statistics of the observable Q̂ on some mixed state system. This property preserves
the equivalence of the trace over the product ρ̂Q̂ with the average of the observable Q, or

Tr(ρ̂Q̂) = 〈Q̂〉 .

Moreover, the density matrix for this system can be defined such that its elements ρij are given by

ρij = 〈qi| ρ̂ |qj〉 ,

=
∑
k

pk 〈qi| k〉 〈k| qj〉 ,

=
∑
k

pkc
k
i c
k
j

∗
,

= cic∗j ,

where cic∗j =
∑
k pkc

k
i c
k
j
∗
, which is the ensemble average over the ij terms of all the pure state

density matrices. Thus the density matrix still has the same form for a mixed state system and
is functionally identical in terms of determining average properties. However, the terms of the
matrix are dependent on classical ensemble probabilities. This means, that, unlike the pure case,
the description of the system is not complete, the density operator can constitute, in classical
terms, only a statistical description of the system.

In this case, there are two kinds of probability, the ensemble variety found in classical statistics,
and the quantum variety, as exhibited in the case of the pure state system. These two kinds of
probability are clearly distinct [65], as the quantum type possesses the correlations or coherences,
while the classical type behaves as a simple ensemble frequency probability.
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A.3 Time Evolution of the Density Operator

To determine the time evolution of the density operator an axiom of quantum mechanics must be
considered first: if the system is described by a state vector |ψ(t0)〉 at some time t0, and is left
to evolve without perturbation, then the state of the system at some time t, given by |ψ(t)〉, is
entirely determined by the initial state [15]. Furthermore, it is required that the time evolution of
the state is subject to a condition of strong continuity [15]

lim
dt→0

∣∣∣∣ |ψ(t0 + dt)〉 − |ψ(t0)〉
∣∣∣∣ = 0 .

Consequently, it must be true that ∣∣∣∣ |ψ(t)〉
∣∣∣∣ =

∣∣∣∣ |ψ(t0)〉
∣∣∣∣ ,

provided the system is unperturbed during time evolution, with
∣∣∣∣ · ∣∣∣∣ constituting a norm within

the Hilbert space of the system. This means that,∣∣ 〈ψ(t)| ψ(t)〉
∣∣ =

∣∣ 〈ψ(t0)| ψ(t0)〉
∣∣ .

Now a theorem of Wigner’s must be invoked: “Any bijection of rays in a Hilbert space conserving
the absolute value of the scalar product can be implemented either as a linear, unitary operator, or,
as an anti-linear, anti-unitary operator” [69]. It is a clear consequence of this theorem, then, that

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 ,

In order to preserve the inner-product norm, during time evolution

〈ψ(t0)|U†(t, t0)U(t, t0) |ψ(t0)〉 = 〈ψ(t0)| ψ(t0)〉 ,

implying that U(t, t0) must be unitary. Additionally, it must be required, that, for such a system,
starting at a time t0 and evolving to a time t1 is treated identically to evolving from t1 to a later
time t2, or

|ψ(t2)〉 = U(t2, t1) |ψ(t1)〉 ,
|ψ(t2)〉 = U(t2, t1)U(t1, t0) |ψ(t0)〉 .

This can be summarised by the general requirement that

U(t2, t0) = U(t2, t1)U(t1, t0) ,

where t2 > t1 > t0.
Consider now an isolated quantum system. The state of this system must be invariant under

time translations, implying that the unitary operator U(t, t0) is identical to the time translation
operator U(t − t0). Therefore, the time evolution of an isolated quantum system is generated by
a set of strongly continuous, unitary operators U(t), such that

|ψ(t)〉 = U(t− t0) |ψ(t0)〉 ,

where t > t0.
Application of the Stone-von Neumann theorem [15, 85] would indicate that

U(t− t0) = e−
i
~ (t−t0)Ĥ ,

where Ĥ is the Hamiltonian operator of the system. Then, taking the time derivative of

|ψ(t)〉 = U(t− t0) |ψ(t0)〉 ,

results in
d

dt
|ψ(t)〉 = − i

~
ĤU(t− t0) |ψ(t0)〉 .
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This yields the Schrödinger equation

d

dt
|ψ(t)〉 = − i

~
Ĥ |ψ(t)〉 .

Now, consider the density operator ρ̂

ρ̂(t) = |ψ(t)〉 〈ψ(t)|
= U(t− t0) |ψ(t0)〉 〈ψ(t0)|U†(t− t0)

= U(t− t0)ρ̂(t0)U†(t− t0) ,

where ρ̂(t0) = |ψ(t0)〉 〈ψ(t0)|. Then the average of some observable operator Â is given by,

〈Â〉 = Tr(ρ̂(t)Â) ,

which is a feature of the Schrödinger picture, where operators are static in time and the state vector
evolves. The time evolution of the density operator can be found by considering its definition

d

dt
ρ̂(t) =

(
d

dt
U(t− t0)

)
ρ̂(t0)U†(t− t0) + U(t− t0)ρ̂(t0)

(
d

dt
U†(t− t0)

)
= − i

~
Ĥρ̂(t) +

i

~
ρ̂(t)Ĥ ,

can be rewritten in terms of a quantum commutator

d

dt
ρ̂(t) = − i

~
[Ĥ, ρ̂(t)] .

This result is known as the von Neumann equation or the quantum Liouville equation.

A.4 Derivations

A.4.1 Cyclic Invariance of the Trace

The trace of a bounded operator Â, as previously defined on the Hilbert space H, with basis
|ei〉 , i ∈ n, is given by

Tr(Â) =
∑
i

〈ei| Â |ei〉 .

Therefore
Tr(ÂB̂) =

∑
i

〈ei| ÂB̂ |ei〉 =
∑
i

∑
j

〈ei| Â |ej〉 〈ej | B̂ |ei〉 ,

which can be re-arranged∑
i

∑
j

〈ei| Â |ej〉 〈ej | B̂ |ei〉 =
∑
j

∑
i

〈ej | B̂ |ei〉 〈ei| Â |ej〉 ,

and making use of the basis completeness∑
i

∑
j

〈ei| Â |ej〉 〈ej | B̂ |ei〉 =
∑
j

〈ej | B̂Â |ej〉 = Tr(B̂Â) .

This property holds true of Hilbert space operators: Â, B̂; provided they are compact and at least
one of the operators is trace-class[15].



78

Appendix B

Additional Wigner Picture
Material and Derivations

B.1 Wigner-Picture Averages

The relation

Tr(ÂB̂) =
1

hN

∫
dX AW (X)BW (X) ,

can be proved by considering the definition of the Wigner transforms of these operators, namely

AW (X) =

∫ ∞
−∞

dq ei
P
~ ·q
〈
R− q

2

∣∣∣ Â ∣∣∣R +
q

2

〉
.

Substituting this into the relation for the trace, yields∫
dX AW (X)BW (X) =

∫ ∫ ∫
dX dq ds ei

P
~ ·q
〈
R− q

2

∣∣∣ Â ∣∣∣R +
q

2

〉
ei

P
~ ·s
〈
R− s

2

∣∣∣ B̂ ∣∣∣R +
s

2

〉
,

since [21] ∫
dP ei

s·P
~ = hNδ(s) .

This relation is used to evaluate the P integral, which yields a delta function allowing for the
evaluation of the integral in s:∫

dX AW (X)BW (X) = hN
∫ ∫

dR dq
〈
R− q

2

∣∣∣ Â ∣∣∣R +
q

2

〉〈
R +

q

2

∣∣∣ B̂ ∣∣∣R− q

2

〉
.

Introduce the variables m = R− q
2 and k = R + q

2 , to obtain∫
dX AW (X)BW (X) = hN

∫ ∫
dm dk 〈m| Â |k〉 〈k| B̂ |m〉 .

The definition of the trace, in some suitably chosen basis, is given by [21]

Tr(ÂB̂) =

∫ ∫
dm dk 〈m| Â |k〉 〈k| B̂ |m〉 ,

which proves the required result.

B.2 Wigner-Liouville Equation

Consider the Liouville equation
∂

∂t
ρ̂ =

i

~
[ρ̂, Ĥ] .
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For convenience, the time-dependence of the density operator will be suppressed for the remainder
of this derivation. Consider a closed quantum system with position-like degrees of freedom r̂ and
their conjugate degrees of freedom p̂. For a Hamiltonian assumed to be of the form

Ĥ =
p̂2

2m
+ V (r̂) ,

the Liouville equation can be re-cast in the basis of the position eigenstates |r〉

∂

∂t
〈r| ρ̂ |r′〉 =

i

~
〈r|
(
ρ̂Ĥ − Ĥρ̂

)
|r′〉 .

Invoking the completeness of the position eigenstates allows the right-hand side of the previous
equation to be expanded into the form

〈r|
(
ρ̂Ĥ − Ĥρ̂

)
|r′〉 =

∫ ∞
−∞

dr′′ 〈r| ρ̂ |r′′〉 〈r′′| Ĥ |r′〉 − 〈r| Ĥ |r′′〉 〈r′′| ρ̂ |r′〉 .

The position-represented Hamiltonian now appears as [63]

〈r′′| Ĥ |r′〉 = 〈r′′| p̂2

2m
+ V̂ |r′〉

= − ~2

2m

∂2

∂r′′2
δ(r′ − r′′) + V (r′′)δ(r′ − r′′) ,

which can be used to simplify the position-represented form of the commutator

〈r| [ρ̂, Ĥ] |r′〉 =

∫ ∞
−∞

dr′′
[
ρ(r, r′′)

(
− ~2

2m

∂2

∂r′′2
+ V (r′′)

)
δ(r′ − r′′)−

(
− ~2

2m

∂2

∂r′′2
+ V (r′′)

)
δ(r− r′′)ρ(r′′, r′)

]
.

Performing integration by parts twice and employing the properties of the dirac delta function
yield

〈r| [ρ̂, Ĥ] |r′〉 =

∫ ∞
−∞

dr′′
[(
− ~2

2m

∂2

∂r′′2
ρ(r, r′′) + V (r′′)ρ(r, r′′)

)
δ(r′ − r′′)

+

(
~2

2m

∂2

∂r′′2
ρ(r′′, r′)− V (r′′)ρ(r′′, r′)

)
δ(r− r′′)

]
= − ~2

2m

∂2

∂r′2
ρ(r, r′) + V (r′)ρ(r, r′) +

~2

2m

∂2

∂r2
ρ(r, r′)− V (r)ρ(r, r′)

=
~2

2m

(
∂2

∂r2
− ∂2

∂r′2

)
ρ(r, r′) + (V (r′)− V (r)) ρ(r, r′) .

Thus the position-represented Liouville equation has the form

∂

∂t
ρ(r, r′) =

i~
2m

(
∂2

∂r2
− ∂2

∂r′2

)
ρ(r, r′) +

i

~
(V (r′)− V (r)) ρ(r, r′) .

It becomes useful now to consider the change of coordinates

r = R− q

2
,

r′ = R +
q

2
,

(B.1)

which results in the transformation of the differential operators

∂

∂r
= − ∂

∂q
+

1

2

∂

∂R
and

∂2

∂r2
=

∂2

∂q2
− ∂2

∂R∂q
+

1

4

∂2

∂R2
,

∂

∂r′
=

∂

∂q
+

1

2

∂

∂R
and

∂2

∂r′2
=

∂2

∂q2
+

∂2

∂R∂q
+

1

4

∂2

∂R2
.
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Applying this change of coordinates to the Liouville equation yields

∂

∂t
ρ
(
R− q

2
,R +

q

2

)
= − i~

2m

∂2

∂R∂q
ρ
(
R− q

2
,R +

q

2

)
− i

~

(
V
(
R− q

2

)
− V

(
R +

q

2

))
ρ
(
R− q

2
,R +

q

2

)
. (B.2)

Now consider the Fourier transform of the first term in Eq. (B.2)

F
(
− i~

2m

∂2

∂R∂q
ρ
(
R− q

2
,R +

q

2

))
= − i~

2m

∫ ∞
−∞

dq e
i
~P·q ∂2

∂R∂q
ρ
(
R− q

2
,R +

q

2

)
.

Here it is understood that dq = dq1dq2dq3 . . . dqN . Integrating by parts, with the assumption that
ρ vanishes on the bounds of the integral, results in

F
(
− i~

2m

∂2

∂R∂q
ρ
(
R− q

2
,R +

q

2

))
= − i~

2m

∂

∂R

∫ ∞
−∞

dq e
i
~P·q

(
− iP

~

)
ρ
(
R− q

2
,R +

q

2

)
= −P

m

∂

∂R
W(ρ̂) ,

where W(ρ̂) is called the Wigner transform of the operator ρ̂ and is defined by [18, 21]

W(ρ̂) =

∫ ∞
−∞

dq e
i
~P·qρ

(
R− q

2
,R +

q

2

)
=

∫ ∞
−∞

dq e
i
~P·q

〈
R− q

2

∣∣∣ ρ̂ ∣∣∣R +
q

2

〉
.

(B.3)

Here the states |R〉 are evidently still states of definite position.
The remaining term in Eq. (B.2) can be simplified by first making Taylor expansions of the

two potential functions

V
(
R− q

2

)
− V

(
R +

q

2

)
= −2

∑
n=1,3,5,···

1

n!

(q

2

)n ∂nV (R)

∂Rn
,

which requires that the potential be continuous, with this in mind, all analysis presented in this
thesis was performed on systems with continuous potentials.

Then the Fourier transform of the second term in Eq. (B.2) can be evaluated

− i
~
F
(
V
(
R− q

2

)
− V

(
R +

q

2

)
ρ
(
R− q

2
,R +

q

2

))
=

2i

~
∑

n=1,3,5,···

1

n!

∂nV (R)

∂Rn

∫ ∞
−∞

dq
(q

2

)n
e
i
~P·qρ

(
R− q

2
,R +

q

2

)
,

which can then be re-arranged so that

2i

~
∑

n=1,3,5,···

1

n!

∂nV (R)

∂Rn

∫ ∞
−∞

dqN
(q

2

)n
e
i
~P·qρ

(
R− q

2
,R +

q

2

)
=

2i

~
∑

n=1,3,5,···

1

n!

∂nV (R)

∂Rn

∫ ∞
−∞

dq

(
~
2i

)n
∂n

∂Pn
e
i
~P·qρ

(
R− q

2
,R +

q

2

)
=

∑
n=1,3,5,···

1

n!

(
~
2i

)n−1
∂nV (R)

∂Rn

∂nW(ρ̂)

∂Pn
.

Recombining the two Fourier transformed terms yields

∂

∂t
W(ρ̂) = −P

m

∂

∂R
W(ρ̂) +

∑
n=1,3,5,···

1

n!

(
~
2i

)n−1
∂nV (R)

∂Rn

∂nW(ρ̂)

∂Pn
,
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which is the Wigner-Liouville equation for the case of a continuous potential V (r)
It might be noted that there is nothing in this derivation that uniquely employs the properties

of the density operator ρ̂. Thus an analogous evolution equation might be defined for any operator
Â in which it is transformed according to

W(Â) =

∫ ∞
−∞

dq e
i
~P·qA

(
R− q

2
,R +

q

2

)
=

∫ ∞
−∞

dq e
i
~P·q

〈
R− q

2

∣∣∣ Â ∣∣∣R +
q

2

〉
.

This means that the Wigner-Liouville equation can be rewritten in the form

∂

∂t
W (X, t) = −P

m

∂

∂R
W (X, t) +

∑
n=1,3,5,···

1

n!

(
~
2i

)n−1
∂nV (R)

∂Rn

∂nW (X, t)

∂Pn
,

where X = (R1, P1, . . . , RN , PN ). Additionally, the symbol W is defined by

W (X, t) =
1

hN
W(ρ̂(t)) , (B.4)

which is the Wigner-transformed density operator and is known as the Wigner function.

B.3 Moyal Bracket

Consider the Wigner-Liouville equation:

∂

∂t
W (X, t) =

∂HW (X)

∂R

∂W (X, t)

∂P
−∂HW (X)

∂P

∂W (X, t)

∂R
+

∑
n=3,5,···

1

n!

(
~
2i

)n−1
∂nHW (X)

∂Rn

∂nW (X, t)

∂Pn
.

(B.5)
Given that the Hamiltonian has the same form as used in Eq. (2.3), the right-hand side of Eq. (B.5)
can be completely incorporated into the summation

{HW (X),W (X, t)}+
∑

n=3,5,···

1

n!

(
~
2i

)n−1
∂nHW (X)

∂Rn

∂nW (X, t)

∂Pn

=
∑

n=1,3,5,···

1

n!

(
~
2i

)n−1(
∂nHW

∂Rn

∂nW

∂Pn
− ∂nHW

∂Pn

∂nW

∂Rn

)

=
∑

n=1,3,5,···

1

n!

(
~
2i

)n−1

HW

( ←−
∂n

∂Rn

−→
∂n

∂Pn
−
←−
∂n

∂Pn

−→
∂n

∂Rn

)
W ,

where an arrows indicates the direction in which the derivative acts.
Consider, now, the terms

HW

( ←−
∂

∂R

−→
∂

∂P
−
←−
∂

∂P

−→
∂

∂R

)
W =HW

( ←−
∂

∂R

−→
∂

∂P
−
←−
∂

∂P

−→
∂

∂R

)
W ,

HW

( ←−
∂

∂R

−→
∂

∂P
−
←−
∂

∂P

−→
∂

∂R

)2

W =HW

( ←−
∂2

∂R2

−→
∂2

∂P2
+

←−
∂2

∂P2

−→
∂2

∂R2
− 2

←−
∂ 2

∂R∂P

−→
∂ 2

∂R∂P

)
W ,

HW

( ←−
∂

∂R

−→
∂

∂P
−
←−
∂

∂P

−→
∂

∂R

)3

W =HW

( ←−
∂3

∂R3

−→
∂3

∂P3
−
←−
∂3

∂P3

−→
∂3

∂R3

)
W

− 3HW

( ←−
∂ 3

∂R2∂P

−→
∂ 3

∂R∂P2
+ 3

←−
∂ 3

∂R∂P2

−→
∂ 3

∂R2∂P

)
W .
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The form of the Hamiltonian also allows for the following simplification

HW

( ←−
∂

∂R

−→
∂

∂P
−
←−
∂

∂P

−→
∂

∂R

)n
W = HW

( ←−
∂n

∂Rn

−→
∂n

∂Pn
+ (−1)n

←−
∂n

∂Pn

−→
∂n

∂Rn

)
W , (B.6)

since
∂n

∂Rk∂Pn−kHW = 0 {k > 0 ,∀ n} .

This simplification allows for the expression

∑
n=1,3,5,···

HW

( ←−
∂n

∂Rn

−→
∂n

∂Pn
−
←−
∂n

∂Pn

−→
∂n

∂Rn

)
W =

∑
n=1,3,5,···

1

n!

(
~
2i

)n−1

HW

( ←−
∂

∂R

−→
∂

∂P
−
←−
∂

∂P

−→
∂

∂R

)n
W

=
2

~
HW sin

(
~
2

Λ

)
W

.

(B.7)
Here the symbol Λ is defined

Λ =

←−
∂

∂R

−→
∂

∂P
−
←−
∂

∂P

−→
∂

∂R
.

One can now make use of the fact that

2i sin (x) = eix − e−ix ,

to write
2

~
HW sin

(
~
2

Λ

)
W =

1

i~

(
HW e

i~
2 ΛW −HW e−

i~
2 ΛW

)
.

As HW and W are functions of the Wigner phase space, they commute under simple multiplication,
meaning that

HW e−
i~
2 ΛW = W e

i~
2 ΛHW .

Therefore, the Wigner Liouville equation can be expressed in the following form

∂

∂t
W (X, t) = − i

~

(
HW e

i~
2 ΛW (X, t)−W (X, t)e

i~
2 ΛHW

)
.

The Moyal Bracket is then defined by [68]

(A,B)M =
1

i~

(
A e

i~
2 ΛB −B e

i~
2 ΛA

)
,

where A and B are assumed to be functions of the phase space.

B.4 Partial Wigner Picture Averages

Let Â = F (X̂)⊗G(ŝ) and B̂ = Q(X̂)⊗K(ŝ),

Tr(ÂB̂) = TrsTrx(F (X̂)⊗G(ŝ) ·Q(X̂)⊗K(ŝ)) .

Since the operators X̂ and ŝ act only on their respective subsystems

TrsTrx(F (X̂)⊗G(ŝ) ·Q(X̂)⊗K(ŝ)) = Trs

(
G(ŝ)K(ŝ)⊗ Trx

(
F (X̂)Q(X̂)

))
.

Making use of Eq. (2.2) yields the result

Tr(ÂB̂) = Trs

(
G(ŝ)K(ŝ)⊗ 1

hN

∫
dX FW (X)QW (X)

)
,
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because the ŝ degrees of freedom are not affected by the Wigner transform,

Trs

(
G(ŝ)K(ŝ)⊗ 1

hN

∫
dX FW (X)QW (X)

)
= Trs

(
1

hN

∫
dX FW (X)⊗G(ŝ) ·QW (X)⊗K(ŝ)

)
.

Here, FW (X)G(ŝ) is just Âw(X), the partial Wigner transformed operator, which means

Tr(ÂB̂) = Trs

(
1

hN

∫
dX Âw(X)B̂w(X)

)
,

as required. In general, then, it is evident that the trace over a partial Wigner-transformed operator
consists of an integral over the Wigner-transformed degrees of freedom that parameterise it, as well
as a trace over the untransformed degrees of freedom.

This result for the trace of an operator product allows the average of an observable operator Â
in the partial Wigner picture, to be expressed in the form

〈Â(t)〉 = Tr(ρ̂(t)Â) = Trs

(
1

hN

∫
dX ρ̂w(X, t)Âw(X)

)
.
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Appendix C

Numerical Methods Derivations
and Proofs

C.1 Runge-Kutta 4

Given the problem
d

dt
y(t) = F (y(t), t) ,

the solution might be formally expressed as

y(t+ dt) = y(t) +

∫ t+dt

t

dτ F (y(τ), τ) .

Applying Simpson’s rule, Eq. (C.4), to this expression yields

y(t+ dt) = y(t) +
dt

6

(
F (y(t), t) + 4F

(
y

(
t+

dt

2

)
, t+

dt

2

)
+ F (y(t+ dt), t+ dt)

)
+O(dt5) .

(C.1)
This new approximation has the clear disadvantage that one must know y(t+ dt/2) and y(t+ dt)
to find y(t+dt). In order to alleviate this difficulty, these two quantities can be replaced by further
approximations. At this point there are many possible ways in which these approximations might
be made. However, this choice must be informed by the objective of obtaining a final approximation
with local error O(dt5). In order to ensure this requirement is met, the final approximation must
be equivalent to the Taylor expansion

y(t+ dt) = y(t) + dtF (y(t), t) +
dt2

2

d

dt
F (y(t), t) +

dt3

6

d2

dt2
F (y(t), t) +

dt4

24

d3

dt3
F (y(t), t) +O(dt5) .

However, this Taylor expansion contains five terms and our Simpson’s rule solution possesses only
four terms, this difficulty can be surmounted if one replaces the term F (y(t + dt

2 ), t + dt
2 ) by a

weighted combination of two approximations:

F

(
y

(
t+

dt

2

)
, t+

dt

2

)
≈ ak2 + bk3 ,

where

a+ b = 1 ,

k2 ≈ F
(
y

(
t+

dt

2

)
, t+

dt

2

)
,

k3 ≈ F
(
y

(
t+

dt

2

)
, t+

dt

2

)
.
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In order to match the form of the Taylor expansion, consider

k2 = F

(
y(t) +

dt

2
F (y, t), t+

dt

2

)
= F (y(t), t) +

dt

2

d

dt
F (y(t), t) +O(dt2) .

This form of k2 is promising: therefore consider

k3 = F

(
y(t) +

dt

2
k2, t+

dt

2

)
= F (y(t), t) +

dt

2

d

dt
F (y(t), t) +

dt2

4

d2

dt2
F (y(t), t) +O(dt3) .

All that remains then is to approximate F (y(t + dt), t + dt) in a form that might account for the
O(dt4) term of the Taylor expansion. Following on from the previous two approximations one
takes

F (y(t+dt), t+dt) ≈ F (y(t)+dtk3, t+dt) = F (y(t), t)+dt
d

dt
F (y(t), t)+

dt2

2

d2

dt2
F (y(t), t)+

dt3

4

d3

dt3
F (y(t), t)+O(dt4) .

This set of approximations allows Eq. (C.1) to be written as

y(t+dt) ≈ y(t)+
dt

6
(2+4a+4b)F (y(t), t)+

dt2

6
(1+2a+2b)

d

dt
F (y(t), t)+

dt3

6

(
1

2
+ b

)
d2

dt2
F (y(t), t)+

dt4

24

d3

dt3
F (y(t), t) .

(C.2)
In order for this approximation to have a local error of O(dt5), the following equations must then
be satisfied

2 + 4a+ 4b = 6 ,

1 + 2a+ 2b = 3 ,

1

2
+ b = 1 ,

a+ b = 1 .

These equations have the simple solution

a = b =
1

2
.

Therefore, the full approximation may be written as

y(t+ dt) = y(t) +
dt

6
(k1 + 2k2 + 2k3 + k4) +O(dt5) , (C.3)

where

k1 = dtF (y, t) ,

k2 = dtF

(
y +

1

2
k1, t+

1

2
dt

)
,

k3 = dtF

(
y +

1

2
k2, t+

1

2
dt

)
,

k4 = dtF (y + k3, t+ dt) .

If this method is repeated making N steps of size dt over some interval, then

N ∝ 1

dt
.

However, the global error Eg is equal to NE, where E is the local error per step. Therefore,

Eg ∝ O(dt4) .
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C.2 Simpson’s Rule

Consider an interval defined by the points t0, t1 and t2, such that t1 = t0 +dt and t2 = t1 +dt. The
quantity dt is a finite real constant. A smooth, continuous, function f(t) has the values f0 = f(t0),
f1 = f(t1) and f2 = f(t2) on this interval. The equation of an interpolating parabola, joining f0,
f1 and f2, is given by

at2 + bt+ c = 0 .

These coefficients may be determined from the system of equations

at20 + bt0 + c = f0 ,

at21 + bt1 + c = f1 ,

at22 + bt2 + c = f2 .

Defining the origin of the t coordinate to be at t1 results in t1 = 0, t0 = −dt and t2 = dt. So
that,

adt2 − bdt+ c = f0 ,

c = f1 ,

adt2 + bdt+ c = f2 .

Therefore,
adt2 = f0 + bdt− f1 .

This allows for the determination of b

b =
1

2dt
(f2 − f0) ,

and, consequently, the determination of a

a =
1

dt2

(
f0 +

1

2
(f2 − f0)− f1

)
.

Integrating the parabolic equation over the interval results in∫ t2

t0

dτ aτ2 + bτ + c =

(
1

3
aτ3 +

1

2
bτ2 + cτ

) ∣∣∣∣t2
t0

,

which can be simplified by completing the integral evaluation and using previously derived results
for a, b and c: ∫ t2

t0

dτ aτ2 + bτ + c =

(
2

3
adt3 + 2cdt

)
,

=
dt

3
(f0 + 4f1 + f2) . (C.4)

Consequently,
∫
dτ f(τ) can be approximated, on this interval, by∫ t2

t0

dτ f(τ) ≈ dt

3
(f0 + 4f1 + f2) ,

with an accuracy corresponding to the validity of the interpolating parabola. This can be extended
to a larger interval, sub-divided into N 3-point intervals, each approximated by Eq. (C.4):∫ b

a

dy f(y) ≈ dt

3
(f0 + 4f1 + 2f2 + 4f3 + 2f4 + · · ·+ 2fN−2 + 4fN−1 + fN ) ,

where dt = b−a
2N . The error per interval E of this interpolation can be determined as follows:

E =

∫ t2

t0

dy f(y)− dt

3
(f0 + 4f1 + f2) .
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Then f(t) can be expanded about t0, yielding

f(t) = f0 + (t− t0)f ′(t0) +
1

2
(t− t0)2f ′′(t0) +

1

6
(t− t0)3f ′′′(t0) +

1

24
(t− t0)4f ′′′′(t0) +O((t− t0)5) .

Similarly, f(t1) and f(t2) can be expanded about t0, resulting in

f(t1) = f0 + dtf ′(t0) +
1

2
dt2f ′′(t0) +

1

6
dt3f ′′′(t0) +

1

24
dt4f ′′′′(t0) +O(dt5) ,

f(t2) = f0 + 2dtf ′(t0) +
1

2
4dt2f ′′(t0) +

1

6
8dt3f ′′′(t0) +

1

24
16dt4f ′′′′(t0) +O(dt5) .

Then the integral ∫ dt

−dt
dτ f(τ) ,

can be rewritten using a change of variable z = τ − t0 and subsequent Taylor expansion about t0,
yielding∫ 2dt

0

dz f(z + t0) =

(
zf0 +

1

2
z2f ′(t0) +

1

6
z3f ′′(t0) +

1

24
z4f ′′′(t0) +

1

120
z5f ′′′′(t0) +O(z6)

) ∣∣∣∣2dt
0

,

=

(
2dtf0 +

4

2
dt2f ′(t0) +

8

6
dt3f ′′(t0) +

16

24
dt4f ′′′(t0) +

32

120
dt5f ′′′′(t0) +O(dt6)

)
.

This expansion can then be compared to the Taylor expansion of the approximation in Eq. (C.4):

dt

3
(f0 + 4f1 + f2) =

(
2dtf0 + 2dt2f ′(t0) +

4

3
dt3f ′′(t0) +

2

3
dt4f ′′′(t0) +

5

18
dt5f ′′′′ +O(dt6)

)
.

Thus the comparison yields an expression for error E:

E =

(
32

120
− 5

18

)
dt5f ′′′′ +O(dt6) ,

which means that
E α O(dt5) .

The global error for Simpson’s rule Eg is given by N × E, but N ∝ 1
dt , so

Eg ∝ O(dt4) .
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Appendix D

Initial State Calculations

D.1 Eigenvector Rotations

In the basis of the eigenstates of σ̂z, the operators σ̂z and σ̂x can be expressed as the matrices [73]

σz =

(
1 0
0 −1

)
,

σx =

(
0 1
1 0

)
.

In order to find the expressions of these operators in the basis of σ̂x one must perform an
eigenvector rotation. To this end the eigenvalues and eigenvectors of σx matrix must be found.
Consider, therefore, the characteristic equation for σx,

det

[(
0 1
1 0

)
− λ

(
1 0
0 1

)]
= 0 .

This yields the solutions
λ2 − 1 = 0 ,

λ = ±1 .

Therefore, the eigenvectors may be found via the equations(
0 1
1 0

)(
a1

a2

)
=

(
a1

a2

)
,(

0 1
1 0

)(
b1
b2

)
= −

(
b1
b2

)
,

having normalised solutions given by(
a1

a2

)
=

1√
2

(
1
1

)
,(

b1
b2

)
=

1√
2

(
−1
1

)
.

The rotation matrix U is then formed from the eigenvectors of the matrix σx:

U =

(
a1 b1
a2 b2

)
=

1√
2

(
1 −1
1 1

)
.

The matrix U is Hermitian, since its entries are real-valued and it satisfies the equation

U† = UT =
1√
2

(
1 1
−1 1

)
.
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Additionally, U is unitary, as evinced by

U†U =
1

2

(
1 1
−1 1

)(
1 −1
1 1

)
=

1

2

(
2 0
0 2

)
=

(
1 0
0 1

)
.

Applying this rotation matrix to the σx and σz matrices yields

UσxU
† =

1

2

(
1 −1
1 1

)(
0 1
1 0

)(
1 1
−1 1

)
=

1

2

(
1 −1
1 1

)(
−1 1
1 1

)
= −

(
1 0
0 −1

)
,

UσzU
† =

1

2

(
1 −1
1 1

)(
1 0
0 −1

)(
1 1
−1 1

)
=

1

2

(
1 −1
1 1

)(
1 1
1 −1

)
=

(
0 1
1 0

)
.

Thus the rotation U takes σx to a basis in which it is diagonal, that is, the basis of its own
eigenvectors. This means that if we write the initial state of the spin system in the basis of the
eigenstates of σz as

ρ0 =

(
0 0
0 1

)
,

it can be transformed, via the rotation U , into the basis of the eigenstates of σx. When the rotation
is applied to the given initial state, the result is:

Uρ0U
† =

1

2

(
1 −1
1 1

)(
0 0
0 1

)(
1 1
−1 1

)
=

1

2

(
1 −1
1 1

)(
0 0
−1 1

)
=

1

2

(
1 −1
−1 1

)
.

Alternatively, the initial spin-state could be chosen to be

ρ0 =

(
1 0
0 0

)
,

corresponding to the excited state of the spin system. This state can also be rotated via U to yield:

Uρ0U
† =

1

2

(
1 1
1 1

)
.

These two results are taken to be the available initial states of the spin and will be used in the
simulation work performed in this study.

D.2 Wigner Transform of a Coherent State

The wavefunction for a coherent state, represented in position space, takes the form [63]

ψ(r) =

(
1

2πa2

)1/4

e−
(r−r0)2

4a2 e
i
~p0r , (D.1)

where a, r0 and p0 are constants and the wavefunction ψ is defined by

ψ(r) = 〈r| ψ〉 ,

where |ψ〉 is the state of the system and |r〉 are states of definite position.
The Wigner function is found by Wigner transforming the density operator associated with ψ:

W (r, p) =

∫
dq e

i
~pq
〈
r − q

2

∣∣∣ ψ〉〈ψ∣∣∣ r +
q

2

〉
=

∫
dq e

i
~pqψ(r − q

2
)ψ∗(r +

q

2
) ,

where the coordinate shifted probability density is expressed as

ψ(r − q

2
)ψ∗(r +

q

2
) =

1√
2πa2

e−
(r− q

2
−r0)2

4a2 e−
(r+

q
2
−r0)2

4a2 e−
i
~p0q .
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In order to simplify this Wigner transform, consider first the expansions

(r − q

2
− r0)2 = r2 +

q2

4
+ r2

0 − rq − 2rr0 + qr0 ,

(r +
q

2
− r0)2 = r2 +

q2

4
+ r2

0 + rq − 2rr0 − qr0 ,

(r +
q

2
− r0)2 + (r − q

2
− r0)2 = 2(r2 +

q2

4
+ r2

0) + 2(−2rr0) .

(D.2)

These allow one to rewrite the above Wigner transform as

W (r, p) =
1√

2πa2

∫
dq e

i
~ (p−p0)qe−

1
2a2 (r2+ q2

4 +r2
0−2rr0) =

1√
2πa2

∫
dq e

i
~ (p−p0)qe−

1
2a2 (r2+r2

0−2rr0)e−
1

8a2 q
2

,

which can be further simplified to

W (r, p) =
1√

2πa2
e−

(r−r0)2

2a2

∫
dq e

i
~ (p−p0)qe−

1
8a2 q

2

.

In order to evaluate the integral in q one must complete the square on the argument of the
exponential:

− 1

8a2
+
i

~
(p− p0)q = −1

2

(
q2

4a2
− 2iq

~
(p− p0)

)
= −1

2

(( q
2a

)2

− 2

(
i

~
(p− p0)2a

)
q

2a
− 4a2

~2
(p− p0)2 +

4a2

~2
(p− p0)2

)
= −2a2

~2
(p− p0)2 − 1

2

(
q

2a
+

2ia

~
(p− p0)

)2

.

With the integral in q being taken over an exponential with a squared argument, the Wigner
transform can now be expressed as

W (r, p) =
1√

2πa2
e−

(r−r0)2

2a2 e−
2a2

~2 (p−p0)2
∫
dq e−

1
2 ( q2a+ 12a

~ (p−p0))2

.

Performing some algebraic manipulations on the argument of the exponential allows one to express
the integral as being over a Gaussian exponential:

e−
1
2 ( q2a+ 12a

~ (p−p0))2

= e
− 1

2

(
1
2a

(
q+i 4a2

~ (p−p0)
))2

= e
− 1

8a2

(
q+i 4a2

~ (p−p0)
)2

,

the evaluation of which is now trivial∫
dq e

− 1
8a2

(
q+i 4a2

~ (p−p0)
)2

=
√

8a2π .

Thus, the final expression for the Wigner-transformed coherent state is found to be:

W (r, p) =
1

π
e−

(r−r0)2

2a2 e−
2a2

~2 (p−p0)2

,

where the Wigner function was multiplied by 1
2π to ensure normalisation.

Despite being a function of both r and p, the uncertainty principle is still manifest through
the constant a. If one were to minimise the width of the Gaussian in r by reducing a, the width
of Gaussian in p expands correspondingly. The point of mutual minimum in these two Gaussians
occurs at a2 = ~

2 , giving a minimum uncertainty product of ∆r∆p = ~ in manifest accordance
with Heisenberg’s uncertainty principle.
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Appendix F

Computer Codes

program d i a b a t i c b a s i s q c
use data
use obse rvab l e s
use numerica l
implicit none
!======================================================================
! q p i j i s the phase−space g r i d corresponding to d en s i t y matrix i n d i c e s
! i and j . qps g r i d s are r e s u l t s a f t e r i n t e g r a t i n g a new s t ep in time
!======================================================================
real ∗8 : : qp00 (Mq,Mp) , qps00 (Mq,Mp)
real ∗8 : : qp10 (Mq,Mp) , qps10 (Mq,Mp)
real ∗8 : : qpi10 (Mq,Mp) , qps i10 (Mq,Mp)
real ∗8 : : qp11 (Mq,Mp) , qps11 (Mq,Mp)
!=====================================================================
! t , q , p , tend −> time , po s i t i on ,momentum, ending time
! pr1 , pr2 , ex1 , ex2 −> temporary v a r i a b l e s
! t r r ho0 and tr rho sum track v a r i a t i on o f t race ( rho ) over time e vo l u t i on
! converge −> f l a g s rk5 c−k convergence
! t s t e p s −> t o t a l no . o f time s t e p s
! count t −> no . o f t s t e p s so f a r
! i , j , n , o −> l oop counters
!=====================================================================
real ∗8 : : t , q , p , tend
real ∗8 : : pr1 , pr2 , ex1 =1.0 , ex2 =2.0
real ∗8 : : t r rho0 , tr rho sum
log ica l : : converge
integer : : n , o , t s t eps , countt , i , j

ca l l i n i c o n ( qp00 , qp10 , qpi10 , qp11 , t s t e p s ) ! i n i t i a l c ond i t i on s + read data
write (∗ ,∗ ) ’ Grid S i z e q , p : ’ ,Mq,Mp
write (∗ ,∗ ) ’ Coupling : ’ , cp
write (∗ ,∗ ) ’Omega : ’ , omega

!=====================================================================
! Opening output f i l e s r e que s t ed by input data
!=====================================================================
i f ( s p i n w r i t e == 1) then

open (2 , f i l e=’ odata ’ )
open (17 , f i l e=’ rhodata ’ )

end i f
i f ( ham write == 1) open (3 , f i l e=’ edata ’ )
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i f ( posp wr i t e == 1)open (4 , f i l e=’ rpdata ’ )
i f ( prob wr i t e == 1) open (15 , f i l e=’ probdata ’ )
i f ( p r o f w r i t e == 1) open (16 , f i l e=’ r p r o f i l e d a t a ’ )
i f ( rho wr i t e == 1) then

open (10 , f i l e=’ rho00 ’ )
open (13 , f i l e=’ rho11 ’ )

end i f
open (14 , f i l e=’ log ’ )

i f (qm /= 0 . 0 ) write (14 ,∗ ) ’ Fu l l Quantum Dynamics ’
write (14 ,∗ ) ’ b3 =’ , b3 , ’ c=’ , cp , ’ b4=’ , b4 , ’ b2=’ , b2
write (14 ,∗ ) ’ dt =’ , dt , ’ t s t e p s=’ , t s t e p s
write (14 ,∗ ) ’ x s t e p s =’ , Mq, ’ p s t ep s =’ , Mp

!=====================================================================
! Writing i n i t i a l data
!=====================================================================

i f ( rho wr i t e == 1) then
do n =1,Mq

do o =1,Mp
write (10 ,∗ ) n , o , qp00 (n , o)+qp11 (n , o )

end do
write (10 ,∗ ) ’ ’

end do
write (10 ,∗ ) ’ ’

end i f

t = 0 .0

i f ( s p i n w r i t e == 1) then
write ( 2 ,∗ ) t , rho ( qp00 , qp10 , qpi10 , qp11 , . f a l s e . ) ,&
s i g z ( qp10 , qpi10 , t , 0 ) , s i g x ( qp00 , qp11 ) , rho ( qp00 , qp10 , qpi10 , qp11 , . t rue . )
write (17 ,∗ ) t , r h o i j ( qp00 , qp10 , qpi10 , qp11 , 1 , t ) ,&
r h o i j ( qp00 , qp10 , qpi10 , qp11 ,−1 , t )

end i f
i f ( ham write == 1) then

write ( 3 ,∗ ) t , H( qp00 , qp11 , qp10 , qpi10 , t ) ,&
s i g z ( qp10 , qpi10 , t , 1 ) , omega∗ s i g x ( qp00 , qp11 ) , osc ( qp00 , qp11 )

end i f
i f ( posp wr i t e == 1) then

write ( 4 ,∗ ) t , qavg ( qp00 , qp11 , ex1 , . t rue .) ,&
qavg ( qp00 , qp11 , ex1 , . f a l s e . ) , qavg ( qp00 , qp11 , ex2 , . t rue .) ,&
qavg ( qp00 , qp11 , ex2 , . f a l s e . )

end i f

i f ( p r o f w r i t e == 1) then
do i = 1 ,Mq

q = ( i− Mq/2)∗ qgr id
pr1 = qprob part ( i , qp00 , qp10 , qpi10 , qp11 , . f a l s e . , . t rue . , t )
pr2 = qprob part ( i , qp00 , qp10 , qpi10 , qp11 , . t rue . , . t rue . , t )
write (16 ,∗ ) q , pr1 , pr2 , q c o r r e c t i o n ( qp00 , qp11 , i )

end do
write (16 ,∗ ) ’ ’
write (16 ,∗ ) ’ ’

end i f
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i f ( prob wr i t e == 1) then
pr1 = reg ionProb part (Mq/2 ,Mq, qp00 , qp10 , qpi10 , qp11 , . f a l s e . , . t rue . , t )
pr2 = reg ionProb part (Mq/2 ,Mq, qp00 , qp10 , qpi10 , qp11 , . t rue . , . t rue . , t )
write (15 ,∗ ) t , pr1 , pr2

end i f
i f ( rho wr i t e == 1) then

do n =1,Mq
do o =1,Mp

write (10 ,∗ ) n , o , qp00 (n , o)+qp11 (n , o )
end do
write (10 ,∗ ) ’ ’

end do
write (10 ,∗ ) ’ ’

end i f

tr rho sum = rho ( qp00 , qp10 , qpi10 , qp11 , . f a l s e . )
t r r h o 0 = tr rho sum
write (14 ,∗ ) ’ H 0 = ’ , H( qp00 , qp11 , qp10 , qpi10 , t )
write (∗ ,∗ ) ’ H 0 = ’ , H( qp00 , qp11 , qp10 , qpi10 , t )

countt = 1 ;
tend = t s t e p s ∗dt
!=====================================================================
! Begin Main Loop , i n t e g r a t i o n method s e l e c t e d by input data
!=====================================================================
Do while ( t <= tend )

i f ( method == 1) then
ca l l e u l e r f u l l i m p l i c i t ( qp00 , qp10 , qpi10 , qp11 , qps00 , qps10 , qpsi10 , qps11 , t )

else i f ( method == 2) then
ca l l e u l e r i m p l i c i t ( qp00 , qp10 , qpi10 , qp11 , qps00 , qps10 , qpsi10 , qps11 , t )
print ∗ , ’ s t ep : ’ , countt

else i f ( method == 3) then
ca l l rk2 ( qp00 , qp10 , qpi10 , qp11 , qps00 , qps10 , qpsi10 , qps11 , t )

else i f ( method == 4) then
ca l l rk4 ( qp00 , qp10 , qpi10 , qp11 , qps00 , qps10 , qpsi10 , qps11 , t , dt )

else
ca l l rk5ck ( qp00 , qp10 , qpi10 , qp11 , qps00 , qps10 , qpsi10 , qps11 , t , converge )
i f ( . not . converge ) then

write (14 ,∗ ) ’FAILED AT: ’ , t , &
’WITH DEVIATION FROM INITIAL RHO: ’ , abs ( t r rho0−tr rho sum / t )
write (∗ ,∗ ) t , abs ( t r rho0−tr rho sum / t )
stop

end i f
end i f

!=====================================================================
! Data f o r Prob (Q) and Wigner f unc t i on s wr i t t en 40 t imes
!=====================================================================

i f (mod( countt , t s t e p s /40) == 0) then
i f ( rho wr i t e == 1) then

do n =1,Mq
do o =1,Mp

write (10 ,∗ ) n , o , qp00 (n , o)+qp11 (n , o )
end do
write (10 ,∗ ) ’ ’
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end do
write (10 ,∗ ) ’ ’

end i f
i f ( p r o f w r i t e == 1) then

do i = 1 ,Mq
q = ( i− Mq/2)∗ qgr id
pr1 = qprob part ( i , qp00 , qp10 , qpi10 , qp11 , . f a l s e . , . t rue . , t )
pr2 = qprob part ( i , qp00 , qp10 , qpi10 , qp11 , . t rue . , . t rue . , t )
write (16 ,∗ ) q , pr1 , pr2 , q c o r r e c t i o n ( qp00 , qp11 , i )

end do
write (16 ,∗ ) ’ ’
write (16 ,∗ ) ’ ’

end i f
end i f
do n = 1 ,Mq

do o = 1 ,Mp
i f (n <= 5 . or . o <= 5 . or . n >= Mq−5 . or . o >= Mp−5) then

! en force boundary cond i t i on s
qp00 (n , o ) = 0 .0
qp10 (n , o ) = 0 .0
qpi10 (n , o ) = 0 .0
qp11 (n , o ) = 0 .0

else
qp00 (n , o ) = qps00 (n , o )
qp10 (n , o ) = qps10 (n , o )
qpi10 (n , o ) = qps i10 (n , o )
qp11 (n , o ) = qps11 (n , o )

end i f
end do

end do
countt = countt + 1

!=====================================================================
! Data wr i t t en f o r current time s t ep
!=====================================================================

i f (mod( countt , t s t e p s /5000) == 0) then
i f ( s p i n w r i t e == 1) then

write ( 2 ,∗ ) t , rho ( qp00 , qp10 , qpi10 , qp11 , . f a l s e . ) ,&
s i g z ( qp10 , qpi10 , t ,0) ,&
s i g x ( qp00 , qp11 ) , rho ( qp00 , qp10 , qpi10 , qp11 , . t rue . )
write (17 ,∗ ) t , r h o i j ( qp00 , qp10 , qpi10 , qp11 , 1 , t ) ,&
r h o i j ( qp00 , qp10 , qpi10 , qp11 ,−1 , t )

end i f
i f ( ham write == 1) then

write ( 3 ,∗ ) t , H( qp00 , qp11 , qp10 , qpi10 , t ) , s i g z ( qp10 , qpi10 , t ,1) ,&
omega∗ s i g x ( qp00 , qp11 ) , osc ( qp00 , qp11 )

end i f
i f ( posp wr i t e == 1) then

write ( 4 ,∗ ) t , qavg ( qp00 , qp11 , ex1 , . t rue .) ,&
qavg ( qp00 , qp11 , ex1 , . f a l s e . ) ,&
qavg ( qp00 , qp11 , ex2 , . t rue . ) , qavg ( qp00 , qp11 , ex2 , . f a l s e . )

end i f

i f ( prob wr i t e == 1) then
pr1 = reg ionProb part (1 ,Mq/2 , qp00 , qp10 , qpi10 , qp11 , . f a l s e . , . t rue . , t )
pr2 = reg ionProb part (1 ,Mq/2 , qp00 , qp10 , qpi10 , qp11 , . t rue . , . t rue . , t )
write (15 ,∗ ) t , pr1 , pr2
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end i f
end i f

tr rho sum = tr rho sum+ rho ( qp00 , qp10 , qpi10 , qp11 , . f a l s e . )

end do

print ∗ , abs ( ( t r rho0−tr rho sum /( t s t e p s +1)))

close (2 )
close (3 )
close (4 )
close (15)
close (10)
close (13)
close (14)
close (16)

end program

module data
implicit none
!=====================================================================
! Mq,Mp −> No. o f phase−space g r i d po in t s on one ax i s
! qgr id , pg r id −> phase−space g r i d spac ings
! omega −> d i a b a t i c l e v e l spac ing
! dt , cp −> t ime step , coup l ing cons tant
! qm −> turns quantum co r r e c t i on s on and o f f ( va l u e s 1 or 0)
! method −> s e l e c t s i n t e g r a t o r
! w −> o s c i l l a t o r f requency
! b2 , b3 , b4 −> p o t e n t i a l c o e f f i c i e n t s
!=====================================================================
! param . h conta ins data s t o r ed wi th parameter type
!=====================================================================
include ’ param . h ’
real ∗8 : : qgr id , pgrid , dt , q s i z e , p s i z e
real ∗8 : : w, omega , cp
real ∗8 : : b2 , b3 , b4
real ∗8 : : p i
integer : : qm, method
!=====================================================================
! These f l a g s dec ide what output i s wr i t t en
!=====================================================================
integer : : rho wr i te , ham write , prob wri te , p r o f w r i t e , sp in wr i t e , posp wr i t e

contains

subroutine i n i c o n ( qp00 , qp10 , qpi10 , qp11 , t s t e p s )
implicit none
real ∗8 , intent (out ) : : qp00 (Mq,Mp) , qp10 (Mq,Mp) , qpi10 (Mq,Mp) , qp11 (Mq,Mp)
integer , intent (out ) : : t s t e p s
real ∗8 : : r0 , p01 , p02 , s , q , p , wr , wp, exa
real ∗8 : : spin00 , spin10 , sp in i10 , spin11 , beta , expo , z f a c
integer : : n , o , therm

open (45 , f i l e=’ indata ’ )
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read (45 ,∗ )
read (45 ,∗ ) q s i z e , p s i z e
read (45 ,∗ )
read (45 ,∗ ) w, r0 , p01 , p02 , s
read (45 ,∗ )
read (45 ,∗ ) b2 , b3 , b4 , omega
read (45 ,∗ )
read (45 ,∗ ) dt , t s t e p s
read (45 ,∗ )
read (45 ,∗ ) qm, cp
read (45 ,∗ )
read (45 ,∗ ) method
read (45 ,∗ )
read (45 ,∗ ) spin00 , spin10 , sp in i10 , sp in11
read (45 ,∗ )
read (45 ,∗ ) rho wr i te , ham write , prob wri te , p r o f w r i t e , sp in wr i t e , posp wr i t e
read (45 ,∗ )
read (45 ,∗ ) therm , beta
close (45)

z f a c = 0 .0

qgr id = 2∗ q s i z e /Mq
pgr id = 2∗ p s i z e /Mp

pi = 4.0∗ atan ( 1 . 0 )

!=====================================================================
! This s e t s up the p a r t i t i o n func t i on f o r c l a s s i c a l thermal s t a t e s
!=====================================================================
do n = 1 ,Mq

i f (n == 1 . or . n == Mq) then
wr = 1 . 0 / 3 . 0

else i f (mod(n−1 ,2) == 0) then
wr = 4 . 0 / 3 . 0

else
wr = 2 . 0 / 3 . 0

end i f

q = (n−Mq/2)∗ qgr id
do o = 1 ,Mp

i f ( o == 1 . or . o == Mp) then
wp = 1 . 0 / 3 . 0

else i f (mod( o−1 ,2) == 0) then
wp = 4 . 0 / 3 . 0

else
wp = 2 . 0 / 3 . 0

end i f
p = ( o−Mp/2)∗ pgr id
z f a c = z f a c + wp∗wr∗ pgr id ∗ qgr id ∗exp(−beta ∗ (0 . 5∗p∗∗2+0.5∗w∗∗2∗q ∗∗2))

end do
end do

!=====================================================================
! I n i t i a l s t a t e chosen by therm parameter
! Beta i s i n v e r s e temperature
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! 0 −> coherent s t a t e
! 1 −> quantum canonica l
! 2 −> c l a s s i c a l canonica l
! s p i n i j v a l u e s are i n i t i a l reduced den s i t y matrix e n t r i e s f o r sp in
! r0 , p0 are i n i t i a l p o s i t i o n and momentum averages
! s i s the unce r ta in t y parameter f o r the coherent s t a t e
!=====================================================================
do n =1,Mq

do o = 1 ,Mp
q = (n−Mq/2)∗ qgr id
p = ( o−Mp/2)∗ pgr id
i f ( therm == 0) then

expo = exp(−(q−r0 )∗∗2/(2∗ s ∗∗2))∗ exp(−2∗ s ∗∗2∗(p−p01 )∗∗2)/ p i
qp00 (n , o ) = spin00 ∗expo
qp10 (n , o ) = spin10 ∗expo
qpi10 (n , o ) = s p i n i 1 0 ∗expo
qp11 (n , o ) = spin11 ∗expo

else i f ( therm == 1) then
exa = 0.5∗p∗∗2+0.5∗w∗∗2∗ abs ( b2 )∗q∗∗2
expo = tanh ( 0 . 5∗ beta ∗w)∗ exp(−2/w∗ tanh ( 0 . 5∗ beta ∗w)∗ exa )/ p i
qp00 (n , o ) = spin00 ∗expo
qp10 (n , o ) = spin10 ∗expo
qpi10 (n , o ) = s p i n i 1 0 ∗expo
qp11 (n , o ) = spin11 ∗expo

else
expo = exp(−beta ∗ (0 . 5∗p∗∗2+0.5∗w∗∗2∗ abs ( b2 )∗q ∗∗2))/ z f a c
qp00 (n , o ) = spin00 ∗expo
qp10 (n , o ) = spin10 ∗expo
qpi10 (n , o ) = s p i n i 1 0 ∗expo
qp11 (n , o ) = spin11 ∗expo

end i f
end do

end do

end subroutine

end module data

module numerica l

contains
!=====================================================================
! L o u i v i l l e Operator
!=====================================================================
real ∗8 function Lr (qp , n , o )

use data
implicit none

integer , intent ( in ) : : n , o
real ∗8 , intent ( in ) : : qp (Mq,Mp)
real ∗8 : : q , p
integer : : i , j

p = ( o−Mp/2)∗ pgr id
q = (n−Mq/2)∗ qgr id



102

Lr = −p∗ f d i f f ( qp , n , o , . t rue . ) + ( b4∗q∗∗3+b2∗q+b3∗q∗∗2)∗ f d i f f ( qp , n , o , . f a l s e . )

end function

!=====================================================================
! n−po in t f i r s t d e r i v a t i v e , n i s d i c t a t e d by param . h f i l e
!=====================================================================
real ∗8 function f d i f f ( qp , i , j , r )

use data
implicit none

real ∗8 , intent ( in ) : : qp (Mq,Mp)
integer , intent ( in ) : : i , j
logical , intent ( in ) : : r
integer : : n , o , k , l , q , p , u , v , vars ,M
real ∗8 , allocatable : : wts ( : )

M = Mp
i f ( r ) M = Mq
i f ( d e r 1 o r d e r == 2) then

allocate ( wts ( 1 ) )
vars = 1
wts = (/−0.5/)

else i f ( d e r 1 o r d e r == 4) then
allocate ( wts ( 2 ) )
wts = (/−2.0/3 ,1 .0/12/)
vars = 2

else i f ( d e r 1 o r d e r == 6) then
allocate ( wts ( 3 ) )
vars = 3
wts = (/−0.75 ,3 .0/20 ,−1.0/60/)

else i f ( d e r 1 o r d e r == 8) then
allocate ( wts ( 4 ) )
vars = 4
wts = (/ −0 .8 ,0 .2 , −4 .0/105 ,1 .0/280/)

end i f
f d i f f = 0 .0
do n = 1 , vars

i f ( r ) then
i f ( ( i−n >= 1) . and . ( i+n <= M) ) then

f d i f f = f d i f f + &
( qp ( i−n , j )∗wts (n) − qp ( i+n , j )∗wts (n ) )/ qgr id

else
f d i f f = 0 .0
exit

end i f
else

i f ( ( j−n >= 1) . and . ( j+n <= M) ) then
f d i f f = f d i f f + &
( qp ( i , j−n)∗wts (n) − qp ( i , j+n)∗wts (n ) )/ pgr id

else
f d i f f = 0 .0
exit

end i f
end i f

end do
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end function
!=====================================================================
! 2nd d e r i v a t i v e
!=====================================================================
real ∗8 function f d i f f 2 (qp , i , j , r )

use data
implicit none

real ∗8 , intent ( in ) : : qp (Mq,Mp)
integer , intent ( in ) : : i , j
logical , intent ( in ) : : r
real ∗8 : : wts (3 )
integer : : n ,M

M = Mp
i f ( r ) M = Mq
wts = (/−2.5 ,4 .0/3 ,−1.0/12/)
f d i f f 2 = 0 .0
do n = 1 ,3

i f ( r ) then
i f ( ( i−n >= 1) . and . ( i+n <= M) ) then

i f (n == 1) then
f d i f f 2 = f d i f f 2 + qp ( i , j )∗wts (n)/ qgr id ∗∗3

else
f d i f f 2 = f d i f f 2 + &
( qp ( i−n , j )∗wts (n) + qp ( i+n , j )∗wts (n ) )/ qgr id ∗∗3

end i f
else

f d i f f 2 = 0 .0
end i f

else
i f ( ( j−n >= 1) . and . ( j+n <= M) ) then

i f (n == 1) then
f d i f f 2 = f d i f f 2 + qp ( i , j )∗wts (n)/ pgr id ∗∗3

else
f d i f f 2 = f d i f f 2 + &
( qp ( i , j−n)∗wts (n) + qp ( i , j+n)∗wts (n ) )/ pgr id ∗∗3

end i f
else

f d i f f 2 = 0 .0
end i f

end i f
end do

end function

!=====================================================================
! 3rd d e r i v a t i v e
!=====================================================================
real ∗8 function f d i f f 3 (qp , i , j , r )

use data
implicit none

real ∗8 , intent ( in ) : : qp (Mq,Mp)
integer , intent ( in ) : : i , j
logical , intent ( in ) : : r
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real ∗8 : : wts (4 )
integer : : n ,M

M = Mp
i f ( r ) M = Mq
wts = (/61.0/30 ,−169.0/120 ,0 .3 ,−7.0/240/)
f d i f f 3 = 0 .0
do n = 1 ,4

i f ( r ) then
i f ( ( i−n >= 1) . and . ( i+n <= M) ) then

f d i f f 3 = f d i f f 3 + &
( qp ( i−n , j )∗wts (n) − qp ( i+n , j )∗wts (n ) )/ qgr id ∗∗3

else
f d i f f 3 = 0 .0
exit

end i f
else

i f ( ( j−n >= 1) . and . ( j+n <= M) ) then
f d i f f 3 = f d i f f 3 + &
( qp ( i , j−n)∗wts (n) − qp ( i , j+n)∗wts (n ) )/ pgr id ∗∗3

else
f d i f f 3 = 0 .0
exit

end i f
end i f

end do

end function

!=====================================================================
! Eva lua tes time d e r i v a t i v e s o f d en s i t y matrix e lements in d i a b a t i c b a s i s
!=====================================================================
subroutine de r i v ( qp00 , qp10 , qpi10 , qp11 , dqp00 , dqp10 , dqpi10 , dqp11 , t )

use data
implicit none

real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp10 (Mq,Mp) , qpi10 (Mq,Mp) , qp11 (Mq,Mp) , t
real ∗8 , intent (out ) : : dqp00 (Mq,Mp) , dqp10 (Mq,Mp) , dqpi10 (Mq,Mp) , dqp11 (Mq,Mp)
real ∗8 : : q
integer : : n , o , l ax
lax = 0
do n = 1 ,Mq

do o = 1 ,Mp
! f i r s t d e r i v a t i v e s on whole g r i d
q = (n−Mq/2)∗ qgr id
!=====================================================================
! L i o u v i l l e term
!=====================================================================
dqp00 (n , o ) = Lr ( qp00 , n , o )
dqp10 (n , o ) = Lr ( qp10 , n , o )
dqpi10 (n , o ) = Lr ( qpi10 , n , o )
dqp11 (n , o ) = Lr ( qp11 , n , o )

!=====================================================================
! Coupling terms
!=====================================================================
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dqp00 (n , o ) = dqp00 (n , o ) − &
2∗ cp∗q∗( qp10 (n , o )∗ s i n (2∗omega∗ t)+&
qpi10 (n , o )∗ cos (2∗omega∗ t ) )
dqp10 (n , o ) = dqp10 (n , o ) − &
cp∗q∗( qp11 (n , o)−qp00 (n , o ) )∗ s i n (2∗omega∗ t )
dqpi10 (n , o ) = dqpi10 (n , o ) − &
cp∗q∗( qp11 (n , o)−qp00 (n , o ) )∗ cos (2∗omega∗ t )
dqp11 (n , o ) = dqp11 (n , o ) + &
2∗ cp∗q∗( qp10 (n , o )∗ s i n (2∗omega∗ t)+&
qpi10 (n , o )∗ cos (2∗omega∗ t ) )

dqp00 (n , o ) = dqp00 (n , o)−&
cp ∗( f d i f f ( qp10 , n , o , . f a l s e . ) ∗ cos (2∗omega∗ t ) )
dqp00 (n , o ) = dqp00 (n , o)+&
cp ∗( f d i f f ( qpi10 , n , o , . f a l s e . ) ∗ s i n (2∗omega∗ t ) )
dqp10 (n , o ) = dqp10 (n , o)− &
0.5∗ cp ∗( f d i f f ( qp00 , n , o , . f a l s e . ) ∗ cos (2∗omega∗ t ) )
dqp10 (n , o ) = dqp10 (n , o)− &
0.5∗ cp ∗( f d i f f ( qp11 , n , o , . f a l s e . ) ∗ cos (2∗omega∗ t ) )
dqpi10 (n , o ) = dqpi10 (n , o)+ &
0.5∗ cp ∗( f d i f f ( qp00 , n , o , . f a l s e . ) ∗ s i n (2∗omega∗ t ) )
dqpi10 (n , o ) = dqpi10 (n , o)+ &
0.5∗ cp ∗( f d i f f ( qp11 , n , o , . f a l s e . ) ∗ s i n (2∗omega∗ t ) )
dqp11 (n , o ) = dqp11 (n , o)−&
cp ∗( f d i f f ( qp10 , n , o , . f a l s e . ) ∗ cos (2∗omega∗ t ) )
dqp11 (n , o ) = dqp11 (n , o)+&
cp ∗( f d i f f ( qpi10 , n , o , . f a l s e . ) ∗ s i n (2∗omega∗ t ) )

!=====================================================================
! Quantum Correc t ions
!=====================================================================
dqp00 (n , o ) = dqp00 (n , o ) −&
(6∗b4∗q + 2∗b3 )∗qm∗ f d i f f 3 ( qp00 , n , o , . f a l s e . ) / 2 4 . 0
dqp10 (n , o ) = dqp10 (n , o ) −&
(6∗b4∗q +2∗b3 )∗qm∗ f d i f f 3 ( qp10 , n , o , . f a l s e . ) / 2 4 . 0
dqpi10 (n , o ) = dqpi10 (n , o)−&
(6∗b4∗q + 2∗b3 )∗qm∗ f d i f f 3 ( qpi10 , n , o , . f a l s e . ) / 2 4 . 0
dqp11 (n , o ) = dqp11 (n , o ) −&
(6∗b4∗q+2∗b3 )∗qm∗ f d i f f 3 ( qp11 , n , o , . f a l s e . ) / 2 4 . 0

end do
end do

end subroutine

!=====================================================================
! Runge−Kutta 4 double−s t ep co r r e c t o r method
!=====================================================================
subroutine rk4ds ( qp00 , qp10 , qpi10 , qp11 , qps00 , qps10 , qpsi10 , qps11 , t , h )

use data
implicit none

real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp10 (Mq,Mp) , qpi10 (Mq,Mp) , qp11 (Mq,Mp) , h
real ∗8 , intent ( inout ) : : t
real ∗8 , intent (out ) : : qps00 (Mq,Mp) , qps10 (Mq,Mp) , qps i10 (Mq,Mp) , qps11 (Mq,Mp)
real ∗8 : : k00 (Mq,Mp) , k10 (Mq,Mp) , k i10 (Mq,Mp) , k11 (Mq,Mp) , h2 , div
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integer : : i , j , nst
log ica l : : err = . true . , maxit = . f a l s e .

h2 = h / 2 . 0 ; div = 1 . 0 ; nst = 0
err = . true . ; maxit = . f a l s e .

do while ( err . and . ( . not . maxit ) )
err = . f a l s e .
ca l l rk4 ( qp00 , qp10 , qpi10 , qp11 , qps00 , qps10 , qpsi10 , qps11 , t , h/ div )
ca l l rk4 ( qp00 , qp10 , qpi10 , qp11 , k00 , k10 , ki10 , k11 , t , h2/ div )
t = t − h/div−h2/ div
do i = 1 ,Mq

do j = 1 ,Mp
i f ( abs ( qps00 ( i , j ) − k00 ( i , j ) ) > t o l ) err = . true .
i f ( abs ( qps10 ( i , j ) − k10 ( i , j ) ) > t o l ) err = . true .
i f ( abs ( qps i10 ( i , j ) − ki10 ( i , j ) ) > t o l ) err = . true .
i f ( abs ( qps11 ( i , j ) − k11 ( i , j ) ) > t o l ) err = . true .

end do
end do
div = div ∗2 .0
nst = nst + 1
i f ( nst > 50) then

maxit = . t rue .
print ∗ , ’ Accuracy Warning : Max Step S i z e Reductions Exceeded ! ’

end i f
end do
t = t + h/ div

end subroutine

!=====================================================================
! Runge−Kutta 4
!=====================================================================
subroutine rk4 ( qp00 , qp10 , qpi10 , qp11 , qps00 , qps10 , qpsi10 , qps11 , t , h )

use data
implicit none

real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp10 (Mq,Mp) , qpi10 (Mq,Mp) , qp11 (Mq,Mp) , h
real ∗8 , intent ( inout ) : : t
real ∗8 , intent (out ) : : qps00 (Mq,Mp) , qps10 (Mq,Mp) , qps i10 (Mq,Mp) , qps11 (Mq,Mp)
real ∗8 : : k00 (Mq,Mp) , k10 (Mq,Mp) , k i10 (Mq,Mp) , k11 (Mq,Mp)
real ∗8 : : t00 (Mq,Mp) , t10 (Mq,Mp) , t i 1 0 (Mq,Mp) , t11 (Mq,Mp)
integer : : i , j

ca l l de r i v ( qp00 , qp10 , qpi10 , qp11 , k00 , k10 , ki10 , k11 , t )
qps00 = k00 ; qps10=k10 ; qps i10=ki10 ; qps11=k11
t00 = qp00+0.5∗h∗k00
t10 = qp10+0.5∗h∗k10
t i 1 0 = qpi10 +0.5∗h∗ ki10
t11 = qp11+0.5∗h∗k11
ca l l de r i v ( t00 , t10 , t i10 , t11 , k00 , k10 , ki10 , k11 , t +0.5∗h)
qps00 = qps00+2∗k00 ; qps10=qps10+2∗k10 ; qps i10=qps i10+2∗ki10 ; qps11=qps11+2∗k11
t00 = qp00+0.5∗h∗k00
t10 = qp10+0.5∗h∗k10
t i 1 0 = qpi10 +0.5∗h∗ ki10
t11 = qp11+0.5∗h∗k11
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ca l l de r i v ( t00 , t10 , t i10 , t11 , k00 , k10 , ki10 , k11 , t +0.5∗h)
qps00 = qps00+2∗k00 ; qps10=qps10+2∗k10
qps i10=qps i10+2∗ki10 ; qps11=qps11+2∗k11
t00 = qp00+h∗k00
t10 = qp10+h∗k10
t i 1 0 = qpi10+h∗ ki10
t11 = qp11+h∗k11
ca l l de r i v ( t00 , t10 , t i10 , t11 , k00 , k10 , ki10 , k11 , t+h)
qps00 = qps00+k00 ; qps10=qps10+k10
qps i10=qps i10+ki10 ; qps11=qps11+k11
qps00 = qps00∗h / 6 . 0 ; qps10 = qps10∗h /6 .0
qps i10 = qps i10 ∗h / 6 . 0 ; qps11 = qps11∗h /6 .0
qps00 = qps00+qp00 ; qps10=qps10+qp10
qps i10=qps i10+qpi10 ; qps11=qps11+qp11

t = t + h

end subroutine

!=====================================================================
! Runge−Kutta 5 Cash−Karp
! Features weigh ted phase−space averaged error
! ( improvised by me and prov id ing order o f magnitude g r ea t e r accuracy )
!=====================================================================
subroutine rk5ck ( qp00 , qp10 , qpi10 , qp11 , qps00 , qps10 , qpsi10 , qps11 , t , converge )

use data
implicit none

real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp10 (Mq,Mp) , qpi10 (Mq,Mp) , qp11 (Mq,Mp)
real ∗8 , intent ( inout ) : : t
real ∗8 , intent (out ) : : qps00 (Mq,Mp) , qps10 (Mq,Mp) , qps i10 (Mq,Mp) , qps11 (Mq,Mp)
real ∗8 : : k100 (Mq,Mp) , k110 (Mq,Mp) , k1 i10 (Mq,Mp) , k111 (Mq,Mp)
real ∗8 : : k200 (Mq,Mp) , k210 (Mq,Mp) , k2 i10 (Mq,Mp) , k211 (Mq,Mp)
real ∗8 : : k300 (Mq,Mp) , k310 (Mq,Mp) , k3 i10 (Mq,Mp) , k311 (Mq,Mp)
real ∗8 : : k400 (Mq,Mp) , k410 (Mq,Mp) , k4 i10 (Mq,Mp) , k411 (Mq,Mp)
real ∗8 : : k500 (Mq,Mp) , k510 (Mq,Mp) , k5 i10 (Mq,Mp) , k511 (Mq,Mp)
real ∗8 : : k600 (Mq,Mp) , k610 (Mq,Mp) , k6 i10 (Mq,Mp) , k611 (Mq,Mp)
real ∗8 : : t00 (Mq,Mp) , t10 (Mq,Mp) , t i 1 0 (Mq,Mp) , t11 (Mq,Mp)
real ∗8 : : de l ta00 , de l ta10 , de l t a i 10 , de l ta11
real ∗8 : : a2 , a3 , a4 , a5 , a6
real ∗8 : : c1 , c2 , c3 , c4 , c5 , c6
real ∗8 : : d1 , d2 , d3 , d4 , d5 , d6
real ∗8 : : b21 , b31 , b41 , b51 , b61
real ∗8 : : b32 , b42 , b52 , b62
real ∗8 : : b43 , b53 , b63
real ∗8 : : b54 , b64
real ∗8 : : b65 , de l ta , h , wq , wp, de l
integer : : i , j , rk5count , count max
log ica l : : err
logical , intent (out ) : : converge

a2 =0.2 ; a3 =0.3 ; a4 =0.6 ; a5 =1.0 ; a6 =7.0/8
c1 =37.0/378; c2 =0.0 ; c3 =250.0/621; c4 =125/594.0; c5 =0; c6 =512/1771.0
d1 =2825/27648.0; d2 =0.0 ; d3 =18575/48384.0; d4 =13525/55296.0; d5 =277/14336.0; d6=0.25
b21 =0.2 ; b31 =3/40.0; b41 =0.3 ; b51=−11/54.0;b61 =1631/55296.0
b32 =9/40.0; b42=−0.9;b52 =2.5 ; b62 =175/512.0
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b43 =1.2; b53=−70/27.0;b63 =575/13824.0
b54 =35/27.0; b64 =44275/110592.0
b65 =253/4096.0
h = dt
err = . true .
converge = . t rue .
rk5count = 0
count max = 100

do while ( err . and . converge )
rk5count = rk5count + 1
ca l l de r i v ( qp00 , qp10 , qpi10 , qp11 , k100 , k110 , k1i10 , k111 , t )
t00 = qp00+b21∗h∗k100
t10 = qp10+b21∗h∗k110
t i 1 0 = qpi10+b21∗h∗ k1i10
t11 = qp11+b21∗h∗k111
ca l l de r i v ( t00 , t10 , t i10 , t11 , k200 , k210 , k2i10 , k211 , t+a2∗h)
t00 = qp00+b31∗h∗k100+b32∗h∗k200
t10 = qp10+b31∗h∗k110+b32∗h∗k210
t i 1 0 = qpi10+b31∗h∗ k1i10+b32∗h∗ k2i10
t11 = qp11+b31∗h∗k111+b32∗h∗k211
ca l l de r i v ( t00 , t10 , t i10 , t11 , k300 , k310 , k3i10 , k311 , t+a3∗h)
t00 = qp00+b41∗h∗k100+b42∗h∗k200 + b43∗h∗k300
t10 = qp10+b41∗h∗k110+b42∗h∗k210+b43∗h∗k310
t i 1 0 = qpi10+b41∗h∗ k1i10+b42∗h∗ k2i10+b43∗h∗ k3i10
t11 = qp11+b41∗h∗k111+b42∗h∗k211+b43∗h∗k311
ca l l de r i v ( t00 , t10 , t i10 , t11 , k400 , k410 , k4i10 , k411 , t+a4∗h)
t00 = qp00+b51∗h∗k100+b52∗h∗k200 + b53∗h∗k300+b54∗h∗k400
t10 = qp10+b51∗h∗k110+b52∗h∗k210+b53∗h∗k310+b54∗h∗k410
t i 1 0 = qpi10+b51∗h∗ k1i10+b52∗h∗ k2i10+b53∗h∗ k3i10+b54∗h∗ k4i10
t11 = qp11+b51∗h∗k111+b52∗h∗k211+b53∗h∗k311+b54∗h∗k411
ca l l de r i v ( t00 , t10 , t i10 , t11 , k500 , k510 , k5i10 , k511 , t+a5∗h)
t00 = qp00+b61∗h∗k100+b62∗h∗k200 + b63∗h∗k300+b64∗h∗k400+b65∗h∗k500
t10 = qp10+b61∗h∗k110+b62∗h∗k210+b63∗h∗k310+b64∗h∗k410+b65∗h∗k510
t i 1 0 = qpi10+b61∗h∗ k1i10+b62∗h∗ k2i10+b63∗h∗ k3i10+b64∗h∗ k4i10+b65∗h∗ k5i10
t11 = qp11+b61∗h∗k111+b62∗h∗k211+b63∗h∗k311+b64∗h∗k411+b65∗h∗k511
ca l l de r i v ( t00 , t10 , t i10 , t11 , k600 , k610 , k6i10 , k611 , t+a6∗h)

qps00 = qp00+c1∗h∗k100+c2∗h∗k200+c3∗h∗k300+c4∗h∗k400+&
c5∗h∗k500+c6∗h∗k600
qps10 = qp10+c1∗h∗k110+c2∗h∗k210+c3∗h∗k310+c4∗h∗k410+&
c5∗h∗k510+c6∗h∗k610
qps i10 = qpi10+c1∗h∗ k1i10+c2∗h∗ k2i10+c3∗h∗ k3i10+c4∗h∗ k4i10+&
c5∗h∗ k5i10+c6∗h∗ k6i10
qps11 = qp11+c1∗h∗k111+c2∗h∗k211+c3∗h∗k311+c4∗h∗k411+&
c5∗h∗k511+c6∗h∗k611

err = . f a l s e .
d e l t a = 0 .0
do i = 1 ,Mq

do j = 1 ,Mp
de l ta00 =(c1−d1 )∗ k100 ( i , j )+(c2−d2 )∗ k200 ( i , j )+(c3−d3 )∗ k300 ( i , j )+&
( c4−d4 )∗ k400 ( i , j )+(c5−d5 )∗ k500 ( i , j )+(c6−d6 )∗ k600 ( i , j )
de l ta10 =(c1−d1 )∗ k110 ( i , j )+(c2−d2 )∗ k210 ( i , j )+(c3−d3 )∗ k310 ( i , j )+&
( c4−d4 )∗ k410 ( i , j )+(c5−d5 )∗ k510 ( i , j )+(c6−d6 )∗ k610 ( i , j )
d e l t a i 1 0 =(c1−d1 )∗ k1i10 ( i , j )+(c2−d2 )∗ k2i10 ( i , j )+(c3−d3 )∗ k3i10 ( i , j )+&
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( c4−d4 )∗ k4i10 ( i , j )+(c5−d5 )∗ k5i10 ( i , j )+(c6−d6 )∗ k6i10 ( i , j )
de l ta11 =(c1−d1 )∗ k111 ( i , j )+(c2−d2 )∗ k211 ( i , j )+(c3−d3 )∗ k311 ( i , j )+&
( c4−d4 )∗ k411 ( i , j )+(c5−d5 )∗ k511 ( i , j )+(c6−d6 )∗ k611 ( i , j )

d e l t a = de l t a + s q r t ( de l ta00 ∗∗2+ de l ta10 ∗∗2+ d e l t a i 1 0 ∗∗2+ de l ta11 ∗∗2)
end do

end do
d e l t a = de l t a /(Mq∗Mp)
d e l t a = 0 .0
do i = 1 ,Mq

i f ( i == 1 . or . i == Mq) then
wq = 1 . 0 / 3 . 0

else i f (mod( i −1 ,2) == 0) then
wq = 4 . 0 / 3 . 0

else
wq = 2 . 0 / 3 . 0

end i f
do j = 1 ,Mp

i f ( j == 1 . or . j == Mq) then
wp = 1 . 0 / 3 . 0

else i f (mod( j −1 ,2) == 0) then
wp = 4 . 0 / 3 . 0

else
wp = 2 . 0 / 3 . 0

end i f
de l ta00 =(c1−d1 )∗ k100 ( i , j )+(c2−d2 )∗ k200 ( i , j )+(c3−d3 )∗ k300 ( i , j )+&
( c4−d4 )∗ k400 ( i , j )+(c5−d5 )∗ k500 ( i , j )+(c6−d6 )∗ k600 ( i , j )
de l ta10 =(c1−d1 )∗ k110 ( i , j )+(c2−d2 )∗ k210 ( i , j )+(c3−d3 )∗ k310 ( i , j )+&
( c4−d4 )∗ k410 ( i , j )+(c5−d5 )∗ k510 ( i , j )+(c6−d6 )∗ k610 ( i , j )
d e l t a i 1 0 =(c1−d1 )∗ k1i10 ( i , j )+(c2−d2 )∗ k2i10 ( i , j )+(c3−d3 )∗ k3i10 ( i , j )+&
( c4−d4 )∗ k4i10 ( i , j )+(c5−d5 )∗ k5i10 ( i , j )+(c6−d6 )∗ k6i10 ( i , j )
de l ta11 =(c1−d1 )∗ k111 ( i , j )+(c2−d2 )∗ k211 ( i , j )+(c3−d3 )∗ k311 ( i , j )+&
( c4−d4 )∗ k411 ( i , j )+(c5−d5 )∗ k511 ( i , j )+(c6−d6 )∗ k611 ( i , j )

de l = s q r t ( de l ta00 ∗∗2+ de l ta10 ∗∗2+ d e l t a i 1 0 ∗∗2+ de l ta11 ∗∗2)
d e l t a = de l t a + ( qp00 ( i , j )+qp11 ( i , j ) )∗wp∗wq∗ qgr id ∗ pgr id ∗ de l

end do
end do
i f ( ( d e l t a > t o l ) . and . ( . not . err ) ) then

err = . true .
h = 0.7∗h∗( t o l / d e l t a )∗∗0 . 2
dt = h
print ∗ , d e l t a / to l , rk5count , h

end i f
i f ( rk5count > count max ) then

print ∗ , ’ Accuracy Warning : Minimum Step S i z e Reached Without Convergence ’
converge = . f a l s e .

end i f
end do
t = t + h

end subroutine
!=====================================================================
! Euler im p l i c i t method us ing forward Euler f u t u r e s t ep
!=====================================================================
subroutine e u l e r i m p l i c i t ( qp00 , qp10 , qpi10 , qp11 , qps00 , qps10 , qpsi10 , qps11 , t )
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use data
implicit none

real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp10 (Mq,Mp) , qpi10 (Mq,Mp) , qp11 (Mq,Mp) , t
real ∗8 , intent (out ) : : qps00 (Mq,Mp) , qps10 (Mq,Mp) , qps i10 (Mq,Mp) , qps11 (Mq,Mp)
real ∗8 : : dqp00 (Mq,Mp) , dqp10 (Mq,Mp) , dqpi10 (Mq,Mp) , dqp11 (Mq,Mp) , u , v , y
integer : : i , j

ca l l de r i v ( qp00 , qp10 , qpi10 , qp11 , dqp00 , dqp10 , dqpi10 , dqp11 , t )

do i = 1 ,Mq
u = cp ∗( i−Mq/2)∗ qgr id ∗ s i n (2∗omega∗ t )∗ dt
v = cp ∗( i−Mq/2)∗ qgr id ∗ cos (2∗omega∗ t )∗ dt
y = 1 + 4∗u∗∗2 − 4∗v∗∗2
do j = 1 ,Mp

qps00 ( i , j ) = qp00 ( i , j )+&
dt/y∗( dqp00 ( i , j )∗(1+2∗u∗∗2−2∗v∗∗2)−2∗u∗dqp10 ( i , j ))−&
dt/y∗(2∗v∗dqpi10 ( i , j )+dqp11 ( i , j )∗ (2∗u∗∗2−2∗v ∗∗2))
qps10 ( i , j ) = qp10 ( i , j )+&
dt/y∗(u∗dqp00 ( i , j )+dqp10 ( i , j )∗(1−4∗v∗∗2)−&
4∗u∗v∗dqpi10 ( i , j )−u∗dqp11 ( i , j ) )
qps i10 ( i , j ) = qpi10 ( i , j )+&
dt/y∗(−v∗dqp00 ( i , j )+dqpi10 ( i , j )∗(1+4∗u∗∗2)+&
4∗u∗v∗dqp10 ( i , j )+v∗dqp11 ( i , j ) )
qps11 ( i , j ) = qp11 ( i , j )+&
dt/y∗( dqp00 ( i , j )∗ (2∗u∗∗2−2∗v∗∗2)+2∗u∗dqp10 ( i , j ))+&
dt/y∗(2∗v∗dqpi10 ( i , j )+dqp11 ( i , j )∗(1+2∗u∗∗2−2∗v ∗∗2))

end do
end do

end subroutine

!=====================================================================
! Euler im p l i c i t method by i t e r a t i o n
!=====================================================================
subroutine e u l e r f u l l i m p l i c i t ( qp00 , qp10 , qpi10 , qp11 , qps00 , qps10 , qpsi10 , qps11 , t )

use data
implicit none

real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp10 (Mq,Mp) , qpi10 (Mq,Mp) , qp11 (Mq,Mp)
real ∗8 , intent ( inout ) : : t
real ∗8 , intent (out ) : : qps00 (Mq,Mp) , qps10 (Mq,Mp) , qps i10 (Mq,Mp) , qps11 (Mq,Mp)
real ∗8 : : dqp00 (Mq,Mp) , dqp10 (Mq,Mp) , dqpi10 (Mq,Mp) , dqp11 (Mq,Mp)
real ∗8 : : k00 (Mq,Mp) , k10 (Mq,Mp) , k i10 (Mq,Mp) , k11 (Mq,Mp)
integer : : i , j , k
log ica l : : err

err = . true .
qps00 = qp00 ; qps10=qp10 ; qps i10=qpi10 ; qps11=qp11 ; k=0

do while ( err . and . ( k <= 150))
err = . f a l s e .
k00 = qps00 ; k10=qps10 ; k i10=qps i10 ; k11=qps11
ca l l de r i v ( k00 , k10 , ki10 , k11 , dqp00 , dqp10 , dqpi10 , dqp11 , t+dt )
do i = 1 ,Mq

do j = 1 ,Mp
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qps00 ( i , j ) = qp00 ( i , j ) + dt∗dqp00 ( i , j )
qps10 ( i , j ) = qp10 ( i , j ) + dt∗dqp10 ( i , j )
qps i10 ( i , j ) = qpi10 ( i , j ) + dt∗dqpi10 ( i , j )
qps11 ( i , j ) = qp11 ( i , j ) + dt∗dqp11 ( i , j )

end do
end do
do i = 1 ,Mq

do j = 1 ,Mp
i f ( abs ( qps00 ( i , j )−k00 ( i , j ) ) > 1e−8) err = . true .
i f ( abs ( qps10 ( i , j )−k10 ( i , j ) ) > 1e−8) err = . true .
i f ( abs ( qps i10 ( i , j )−ki10 ( i , j ) ) > 1e−8) err = . true .
i f ( abs ( qps11 ( i , j )−k11 ( i , j ) ) > 1e−8) err = . true .

end do
end do
k = k + 1

end do
i f ( k > 150) print ∗ , ’ Accuracy Warning : Max I t e r a t i o n s Exceeded ’
ca l l de r i v ( qps00 , qps10 , qpsi10 , qps11 , dqp00 , dqp10 , dqpi10 , dqp11 , t+dt )
do i = 1 ,Mq

do j = 1 ,Mp
qps00 ( i , j ) = qp00 ( i , j ) + dt∗dqp00 ( i , j )
qps10 ( i , j ) = qp10 ( i , j ) + dt∗dqp10 ( i , j )
qps i10 ( i , j ) = qpi10 ( i , j ) + dt∗dqpi10 ( i , j )
qps11 ( i , j ) = qp11 ( i , j ) + dt∗dqp11 ( i , j )

end do
end do
t = t + dt

end subroutine

!=====================================================================
! Crank−Nicholson Scheme
!=====================================================================
subroutine crank ( qp00 , qp10 , qpi10 , qp11 , qps00 , qps10 , qpsi10 , qps11 , t )

use data
implicit none

real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp10 (Mq,Mp) , qpi10 (Mq,Mp) , qp11 (Mq,Mp)
real ∗8 , intent ( inout ) : : t
real ∗8 , intent (out ) : : qps00 (Mq,Mp) , qps10 (Mq,Mp) , qps i10 (Mq,Mp) , qps11 (Mq,Mp)
real ∗8 : : dqp00 (Mq,Mp) , dqp10 (Mq,Mp) , dqpi10 (Mq,Mp) , dqp11 (Mq,Mp)
real ∗8 : : k00 (Mq,Mp) , k10 (Mq,Mp) , k i10 (Mq,Mp) , k11 (Mq,Mp)
integer : : i , j , l , k
log ica l : : err

err = . true .
k = 0
qps00 = qp00 ; qps10=qp10 ; qps i10=qpi10 ; qps11=qp11

do while ( err . and . ( k <= 150))
err = . f a l s e .
k00 = qps00 ; k10=qps10 ; k i10=qps i10 ; k11=qps11
ca l l de r i v ( k00 , k10 , ki10 , k11 , dqp00 , dqp10 , dqpi10 , dqp11 , t )
do i = 1 ,Mq

do j = 1 ,Mp
qps00 ( i , j ) = qp00 ( i , j ) + dt∗dqp00 ( i , j )
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qps10 ( i , j ) = qp10 ( i , j ) + dt∗dqp10 ( i , j )
qps i10 ( i , j ) = qpi10 ( i , j ) + dt∗dqpi10 ( i , j )
qps11 ( i , j ) = qp11 ( i , j ) + dt∗dqp11 ( i , j )

end do
end do
do i = 1 ,Mq

do j = 1 ,Mp
i f ( abs ( qps00 ( i , j )−k00 ( i , j ) ) > 1e−8) err = . true .
i f ( abs ( qps10 ( i , j )−k10 ( i , j ) ) > 1e−8) err = . true .
i f ( abs ( qps i10 ( i , j )−ki10 ( i , j ) ) > 1e−8) err = . true .
i f ( abs ( qps11 ( i , j )−k11 ( i , j ) ) > 1e−8) err = . true .

end do
end do
k = k + 1

end do
i f ( k > 150) print ∗ , ’ Accuracy Warning : Max I t e r a t i o n s Exceeded ’
ca l l de r i v ( qps00 , qps10 , qpsi10 , qps11 , dqp00 , dqp10 , dqpi10 , dqp11 , t+dt )
do i = 1 ,Mq

do j = 1 ,Mp
qps00 ( i , j ) = qp00 ( i , j ) + 0 .5∗ dt∗dqp00 ( i , j )
qps10 ( i , j ) = qp10 ( i , j ) + 0 .5∗ dt∗dqp10 ( i , j )
qps i10 ( i , j ) = qpi10 ( i , j ) + 0 .5∗ dt∗dqpi10 ( i , j )
qps11 ( i , j ) = qp11 ( i , j ) + 0 .5∗ dt∗dqp11 ( i , j )

end do
end do
ca l l de r i v ( qp00 , qp10 , qpi10 , qp11 , dqp00 , dqp10 , dqpi10 , dqp11 , t )
do i = 1 ,Mq

do j = 1 ,Mp
qps00 ( i , j ) = qp00 ( i , j ) + 0 .5∗ dt∗dqp00 ( i , j )
qps10 ( i , j ) = qp10 ( i , j ) + 0 .5∗ dt∗dqp10 ( i , j )
qps i10 ( i , j ) = qpi10 ( i , j ) + 0 .5∗ dt∗dqpi10 ( i , j )
qps11 ( i , j ) = qp11 ( i , j ) + 0 .5∗ dt∗dqp11 ( i , j )

end do
end do
t = t + dt

end subroutine

!=====================================================================
! Runge−Kutta 2
!=====================================================================
subroutine rk2 ( qp00 , qp10 , qpi10 , qp11 , qps00 , qps10 , qpsi10 , qps11 , t )

use data
implicit none

real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp10 (Mq,Mp) , qpi10 (Mq,Mp) , qp11 (Mq,Mp)
real ∗8 , intent ( inout ) : : t
real ∗8 , intent (out ) : : qps00 (Mq,Mp) , qps10 (Mq,Mp) , qps i10 (Mq,Mp) , qps11 (Mq,Mp)
real ∗8 : : dqp00 (Mq,Mp) , dqp10 (Mq,Mp) , dqpi10 (Mq,Mp) , dqp11 (Mq,Mp)
real ∗8 : : k00 (Mq,Mp) , k10 (Mq,Mp) , k i10 (Mq,Mp) , k11 (Mq,Mp)
real ∗8 : : k200 (Mq,Mp) , k210 (Mq,Mp) , k2 i10 (Mq,Mp) , k211 (Mq,Mp)
integer : : i , j , l , k
log ica l : : err

err = . true .
k = 0
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do i = 1 ,Mq
do j = 1 ,Mp

qps00 ( i , j ) = qp00 ( i , j )
qps10 ( i , j ) = qp10 ( i , j )
qps i10 ( i , j ) = qpi10 ( i , j )
qps11 ( i , j ) = qp11 ( i , j )

end do
end do

do while ( err . and . ( k <= 150))
err = . f a l s e .
do i = 1 ,Mq

do j = 1 ,Mp
k00 ( i , j ) = qps00 ( i , j )
k10 ( i , j ) = qps10 ( i , j )
k i10 ( i , j ) = qps i10 ( i , j )
k11 ( i , j ) = qps11 ( i , j )

end do
end do
ca l l de r i v ( k00 , k10 , ki10 , k11 , dqp00 , dqp10 , dqpi10 , dqp11 , t )
do i = 1 ,Mq

do j = 1 ,Mp
qps00 ( i , j ) = qp00 ( i , j ) + dt∗dqp00 ( i , j )
qps10 ( i , j ) = qp10 ( i , j ) + dt∗dqp10 ( i , j )
qps i10 ( i , j ) = qpi10 ( i , j ) + dt∗dqpi10 ( i , j )
qps11 ( i , j ) = qp11 ( i , j ) + dt∗dqp11 ( i , j )

end do
end do
do i = 1 ,Mq

do j = 1 ,Mp
i f ( abs ( qps00 ( i , j )−k00 ( i , j ) ) > 1e−8) err = . true .
i f ( abs ( qps10 ( i , j )−k10 ( i , j ) ) > 1e−8) err = . true .
i f ( abs ( qps i10 ( i , j )−ki10 ( i , j ) ) > 1e−8) err = . true .
i f ( abs ( qps11 ( i , j )−k11 ( i , j ) ) > 1e−8) err = . true .

end do
end do
k = k + 1

end do
i f ( k > 150) print ∗ , ’ Accuracy Warning : Max I t e r a t i o n s Exceeded ’

ca l l de r i v ( qp00 , qp10 , qpi10 , qp11 , dqp00 , dqp10 , dqpi10 , dqp11 , t )
k00 = dt∗dqp00 ; k10 = dt∗dqp10 ; k i10 = dt∗dqpi10 ; k11 = dt∗dqp11
ca l l de r i v ( qps00 , qps10 , qpsi10 , qps11 , dqp00 , dqp10 , dqpi10 , dqp11 , t+dt )
k200 = dt∗dqp00 ; k210 = dt∗dqp10 ; k2 i10 = dt∗dqpi10 ; k211 = dt∗dqp11
ca l l de r i v ( qp00 +0.5∗( k00+k200 ) , qp10+0.5∗k10 +0.5∗k210 , qpi10 +0.5∗ ki10 +0.5∗ k2i10 , &
qp11+0.5∗k11 +0.5∗k211 , dqp00 , dqp10 , dqpi10 , dqp11 , t+dt )
k200 = dt∗dqp00 ; k210 = dt∗dqp10 ; k2 i10 = dt∗dqpi10 ; k211 = dt∗dqp11
do i = 1 ,Mq

do j = 1 ,Mp
qps00 ( i , j ) = qp00 ( i , j ) + 0 . 5∗ ( k00 ( i , j )+k200 ( i , j ) )
qps10 ( i , j ) = qp10 ( i , j ) + 0 . 5∗ ( k10 ( i , j )+k210 ( i , j ) )
qps i10 ( i , j ) = qpi10 ( i , j ) + 0 . 5∗ ( k i10 ( i , j )+k2i10 ( i , j ) )
qps11 ( i , j ) = qp11 ( i , j ) + 0 . 5∗ ( k11 ( i , j )+k211 ( i , j ) )

end do
end do
t = t + dt
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end subroutine

end module

module obse rvab l e s

contains

!=====================================================================
! Simpson ’ s r u l e we i gh t ing func t i on
!=====================================================================
real ∗8 function weight ( i , i s t a r t , i end )

use data
implicit none

integer , intent ( in ) : : i , i s t a r t , i end

i f ( i == i s t a r t . or . i == iend ) then
weight = 1 . 0 / 3 . 0

else i f (mod( i−i s t a r t , 2 ) == 0) then
weight = 4 . 0 / 3 . 0

else
weight = 2 . 0 / 3 . 0

end i f

end function

!=====================================================================
! <H> −> Hamiltonian average
!=====================================================================
real ∗8 function H( qp00 , qp11 , qp10 , qpi10 , t )

use data
implicit none
real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp10 (Mq,Mp) , qp11 (Mq,Mp) , qpi10 (Mq,Mp)
real ∗8 , intent ( in ) : : t
real ∗8 : : q , p , wp, wq , jsum
integer : : i , j

H = 0 .0

do i = 1 ,Mq
wq = weight ( i , 1 ,Mq)
jsum = 0.0
q = ( i−Mq/2)∗ qgr id
do j = 1 ,Mp

wp = weight ( j , 1 ,Mp)
p = ( j−Mp/2)∗ pgr id
! o s c i l l a t o r par t
i f ( . not . ( b4 == 0)) then

jsum = p∗∗2/2 + b2∗q∗∗2/2 + &
b4∗q∗∗4/4 + 1/3.0∗b3∗q∗∗3 + 0.25∗ b2∗∗2/b4
jsum = wp∗ jsum ∗( qp00 ( i , j )+qp11 ( i , j ) )

else
jsum = p∗∗2/2 + b2∗q∗∗2/2 + b4∗q∗∗4/4 + 1/3.0∗b3∗q∗∗3
jsum = wp∗ jsum ∗( qp00 ( i , j )+qp11 ( i , j ) ) )
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end i f
H = H + jsum
! subsystem par t
H = H + wp∗omega∗( qp00 ( i , j )−qp11 ( i , j ) )
! coup l ing par t
H = H − wp∗2∗ cp∗q∗( qp10 ( i , j )∗ cos (2∗omega∗ t)−qpi10 ( i , j )∗ s i n (2∗omega∗ t ) )

end do
H = wq∗ qgr id ∗ pgr id ∗H

end do

end function

!=====================================================================
! Trace o f d en s i t y opera tor or pu r i t y ( f l a g g e d by t r2 )
!=====================================================================
real ∗8 function rho ( qp00 , qp10 , qpi10 , qp11 , t r2 )

use data
implicit none
real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp11 (Mq,Mp) , qpi10 (Mq,Mp) , qp10 (Mq,Mp)
logical , intent ( in ) : : t r2
real ∗8 : : wr , wp, jsum
integer : : i , j , wrc , wpc

rho = 0 . 0 ; wrc = 0 ; wpc = 0

do i = 1 ,Mq
wq = weight ( i , 1 ,Mq)
jsum = 0.0
do j = 1 ,Mp

wp = weight ( j , 1 ,Mp)
i f ( . not . t r2 ) then

jsum = jsum + wp∗ pgr id ∗( qp00 ( i , j )+qp11 ( i , j ) )
else

jsum = jsum +wp∗ pgr id ∗( qp00 ( i , j )∗∗2+qp11 ( i , j )∗∗2)+&
2 . 0∗ ( qp10 ( i , j )∗∗2+ qpi10 ( i , j )∗∗2)∗wp∗ pgr id

end i f

end do
rho = rho + jsum∗wr∗ qgr id

end do

end function

!=====================================================================
! Average o f d en s i t y matrix e lement ( s i g z b a s i s ) , e i t h e r 00 or 11 dec ide by t r2
!=====================================================================
real ∗8 function r h o i j ( qp00 , qp10 , qpi10 , qp11 , tr2 , t )

use data
implicit none
real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp11 (Mq,Mp) , qp10 (Mq,Mp) , qpi10 (Mq,Mp)
real ∗8 , intent ( in ) : : t
integer , intent ( in ) : : t r2
real ∗8 : : wr , wp, jsum
integer : : i , j , wrc , wpc

r h o i j = 0 . 0 ; wrc = 0 ; wpc = 0
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do i = 1 ,Mq
wq = weight ( i , 1 ,Mq)
do j = 1 ,Mp

wp = weight ( j , 1 ,Mp)
jsum = qp00 ( i , j )+qp11 ( i , j )
jsum = jsum + 2∗ t r2 ∗qp10 ( i , j )∗ cos (2∗omega∗ t )
jsum = jsum − 2∗ t r2 ∗qpi10 ( i , j )∗ s i n (2∗omega∗ t )
jsum = 0.5∗wp∗ pgr id ∗wr∗ qgr id ∗ jsum
r h o i j = r h o i j + jsum

end do
end do

end function

!=====================================================================
! Trace o f s igma z
!=====================================================================
real ∗8 function s i g z ( qp10 , qpi10 , t , z )

use data
implicit none
real ∗8 , intent ( in ) : : qp10 (Mq,Mp) , qpi10 (Mq,Mp) , t
real ∗8 : : wq , wp, jsum , q , c o e f f
integer : : i , j
integer , intent ( in ) : : z

s i g z = 0 .0

do i = 1 ,Mq
wq = weight ( i , 1 ,Mq)
jsum = 0.0
do j = 1 ,Mp

wp = weight ( j , 1 ,Mp)
! c a l c u l a t e d exponen t i a l form fo r o f f−d iagona l pa r t s o f rho
c o e f f = (1∗(1− z ) − cp∗q∗z )∗2 . 0∗wp∗ pgr id
jsum = jsum + c o e f f ∗( qp10 ( i , j )∗ cos (2∗omega∗ t)−qpi10 ( i , j )∗ s i n (2∗omega∗ t ) )

end do
s i g z = s i g z + jsum∗wq∗ qgr id

end do

end function

!=====================================================================
! Trace o f s igma x
!=====================================================================
real ∗8 function s i g x ( qp00 , qp11 )

use data
implicit none
real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp11 (Mq,Mp)
real ∗8 : : wr , wp, jsum
integer : : i , j , wrc , wpc

s i g x = 0 . 0 ; wrc=0;wpc=0

do i = 1 ,Mq
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wq = weight ( i , 1 ,Mq)
jsum = 0.0
do j = 1 ,Mp

wp = weight ( j , 1 ,Mp)
jsum = jsum + wp∗ pgr id ∗( qp11 ( i , j )−qp00 ( i , j ) )

end do
s i g x = s i g x + jsum∗wr∗ qgr id

end do

end function

!=====================================================================
! o s c i l l a t o r hami l tonian component
!=====================================================================
real ∗8 function osc ( qp00 , qp11 )

use data
implicit none
real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp11 (Mq,Mp)
real ∗8 : : wr , wp, jsum , q , p
integer : : i , j , wrc , wpc

osc = 0 . 0 ; wrc=0;wpc=0

do i = 1 ,Mq
wq = weight ( i , 1 ,Mq)
jsum = 0.0
q = ( i−Mq/2)∗ qgr id
do j = 1 ,Mp

wp = weight ( j , 1 ,Mp)
p = ( j−Mp/2)∗ pgr id
jsum = jsum + p∗∗2/2+0.5∗b2∗q∗∗2+1/3.0∗b3∗q∗∗3
jsum = jsum + 0.25∗ b4∗q∗∗4+0.25∗b2∗∗2/b4
jsum = jsum∗wp∗ pgr id ∗( qp00 ( i , j )+qp11 ( i , j ) )

end do
osc = osc + jsum∗wr∗ qgr id

end do

end function

!=====================================================================
! Average o f e i t h e r q or p ( dec ided by q f l a g ) ra i s ed to exponent ex
!=====================================================================
real ∗8 function qavg ( qp00 , qp11 , ex , q f l a g )

use data
implicit none

real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp11 (Mq,Mp) , ex
logical , intent ( in ) : : q f l a g
real ∗8 : : wq , wp, jsum , q , p , kgr id
integer : : i , j , wrc , wpc

qavg = 0 . 0 ; wrc=0;wpc=0
kgr id = pgr id
i f ( q f l a g ) kgr id = qgr id
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do i = 1 ,Mq
wq = weight ( i , 1 ,Mq)
jsum = 0.0
q = ( i−Mq/2)∗ qgr id
do j = 1 ,Mp

wp = weight ( j , 1 ,Mp)
p = ( j−Mp/2)∗ pgr id
i f ( q f l a g ) then

jsum = jsum + kgr id ∗wp∗q∗∗ ex ∗( qp00 ( i , j )+qp11 ( i , j ) )
else

jsum = jsum + kgr id ∗wp∗p∗∗ ex ∗( qp00 ( i , j )+qp11 ( i , j ) )
end i f

end do
qavg = qavg + jsum∗wq∗ qgr id

end do
end function

!=====================================================================
! Prob (Q) or Prob (P) dependent on q f l a g
! i g i v e s Q/P−po s i t i o n on phase−space
!=====================================================================
real ∗8 function qprob ( i , qp00 , qp11 , q f l a g )

use data
implicit none

real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp11 (Mq,Mp)
logical , intent ( in ) : : q f l a g
integer , intent ( in ) : : i
real ∗8 : : wp, kgr id
integer : : j , wpc ,M

qprob = 0 . 0 ; wpc=0
kgr id = pgr id
i f ( q f l a g ) kgr id = qgr id

M = Mp
i f ( q f l a g ) M = Mq

do j = 1 ,M
wp = weight ( j , 1 ,M)
i f ( q f l a g ) then

qprob = qprob + kgr id ∗wp∗( qp00 ( i , j )+qp11 ( i , j ) )
else

qprob = qprob + kgr id ∗wp∗( qp00 ( j , i )+qp11 ( j , i ) )
end i f

end do

end function

!=====================================================================
! Contr i bu t ion to Prob (Q) or Prob (P) from 00 or 11 component o f d en s i t y
! matrix , dec ided by e x f l a g
! i g i v e s Q/P−po s i t i o n on phase−space
!=====================================================================
real ∗8 function qprob part ( i , rp00 , rp10 , rpi10 , rp11 , e x f l a g , q f l ag , t )

use data
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implicit none

real ∗8 , intent ( in ) : : rp00 (Mq,Mp)
real ∗8 , intent ( in ) : : rp i 10 (Mq,Mp)
real ∗8 , intent ( in ) : : rp10 (Mq,Mp)
real ∗8 , intent ( in ) : : rp11 (Mq,Mp)
real ∗8 , intent ( in ) : : t
logical , intent ( in ) : : e x f l a g , q f l a g
integer , intent ( in ) : : i
real ∗8 : : wp, kgrid , ex , r e a l r p
integer : : j , wpc ,M

qprob part = 0 . 0 ; wpc=0; r e a l r p = 0 .0
ex = −1.0
i f ( e x f l a g ) ex = 1 .0
kgr id = qgr id
i f ( q f l a g ) kgr id = pgr id

M = Mq
i f ( q f l a g ) M = Mp

do j = 1 ,M
wp = weight ( j , 1 ,M)
i f ( q f l a g ) then

r e a l r p = rp10 ( i , j )∗ cos (2∗omega∗ t ) − rp i10 ( i , j )∗ s i n (2∗omega∗ t )
qprob part = qprob part + &
kgr id ∗wp∗0 . 5∗ ( rp00 ( i , j )+rp11 ( i , j )+2∗ex∗ r e a l r p )

else
r e a l r p = rp10 ( j , i )∗ cos (2∗omega∗ t ) − rp i10 ( j , i )∗ s i n (2∗omega∗ t )
qprob part = qprob part + &
kgr id ∗wp∗0 . 5∗ ( rp00 ( j , i )+rp11 ( j , i )+2∗ex∗ r e a l r p )

end i f
end do

end function

!=====================================================================
! Sum over Prob (Q) or Prob (P) o f occupying a reg ion ou t l i n e d by q min : q max
!=====================================================================
real ∗8 function reg ionProb part ( q min , q max , qp00 , qp10 , qpi10 , qp11 , ex f l ag , q f l ag , t )

use data
implicit none

real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp11 (Mq,Mp) , qp10 (Mq,Mp) , qpi10 (Mq,Mp)
real ∗8 , intent ( in ) : : t
integer , intent ( in ) : : q min , q max
integer : : i
logical , intent ( in ) : : q f l ag , e x f l a g
real ∗8 : : wq

reg ionProb part = 0 .0
do i = q min , q max

wq = weight ( i , q min , q max )
reg ionProb part = reg ionProb part + &
wq∗ qgr id ∗ qprob part ( i , qp00 , qp10 , qpi10 , qp11 , ex f l ag , q f l ag , t )

end do
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end function

!=====================================================================
! Quantum cor r e c t i on averaged over P as func t i on o f Q
! i g i v e s Q−po s i t i o n on phase−space
!=====================================================================
real ∗8 function q c o r r e c t i o n ( qp00 , qp11 , i )

use data
use numerica l
implicit none
real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp11 (Mq,Mp)
integer , intent ( in ) : : i
real ∗8 : : wp
integer : : j

q c o r r e c t i o n = 0 .0

do j = 1 ,Mp
wp = weight ( j , 1 ,Mp)

q c o r r e c t i o n = q c o r r e c t i o n −&
0.25∗ b4 ∗( i−Mq/2)∗ qgr id ∗ pgr id ∗wp∗ f d i f f 3 ( qp00 , i , j , . f a l s e .)+&
0.25∗ b4 ∗( i−Mq/2)∗ f d i f f 3 ( qp11 , i , j , . f a l s e . )

end do

end function

!=====================================================================
! Hamiltonian o f o s c i l l a t o r averaged over P as func t i on o f Q
! i g i v e s Q−po s i t i o n on phase−space
!=====================================================================
real ∗8 function hinq ( qp00 , qp11 , i )

use data
use numerica l
implicit none
real ∗8 , intent ( in ) : : qp00 (Mq,Mp) , qp11 (Mq,Mp)
integer , intent ( in ) : : i
real ∗8 : : wp, p , q , jsum
integer : : j

hinq = 0 .0

do j = 1 ,Mp
wp = weight ( j , 1 ,Mp)
p = ( j−Mp/2)∗ pgr id
q = ( i−Mq/2)∗ qgr id
jsum = p∗∗2/2 + b2∗q∗∗2/2 + b4∗q∗∗4/4 + 1/3.0∗b3∗q∗∗3
jsum = jsum∗wp∗ qgr id
hinq = hinq + jsum ∗( qp00 ( i , j )+qp11 ( i , j ) )

end do

end function
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end module


