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Abstract 
 

The Annelida is an evolutionarily ancient invertebrate taxon. Recent studies have found 

that the formerly described sister taxon of the Polychaeta, Clitellata, is a derived 

Polychaete group thus making Polychaeta a paraphyletic group. Polychaete worms 

represent one of the most diverse invertebrate groups and are well represented in a 

variety of environments such as temporary freshwater puddles, rocky intertidal shores, 

estuaries and the abyssal plain. Polychaetes are fundamentally important in their 

environments as many are regarded as ecosystem engineers. Phylogenetic relationships 

within the Polychaeta are poorly understood and some species level classifications are 

uncertain due to the large number of polychaete worms present. In Chapter two, the 

phylogenetic relationships within the commonly found polychaete families (Nereididae 

and Eunicidae) were analysed using the universal mitochondrial cytochrome oxidase 

subunit 1 (COI). Within Eunicidae, analyses supported a polyphyletic Marphysa and 

Eunice which is consistent with previous results as individuals from both genera are 

nested among one another. Within Nereididae, relationships between genera and 

species were poorly supported and complex. Genera did not form exclusive clades but 

instead grouped with one another. A large degree of homoplasy has been recorded for 

the family which could have attributed to the convoluted groupings. Thus it has been 

suggested that genera from both Eunicidae and Nereididae be revised. Marphysa 

corallina is a poorly studied Eunicid polychaete which has a tropical indo-west 

distribution. It was observed to be a common worm among others on the intertidal 

rocky shores of KwaZulu-Natal and the Eastern Cape. In Chapter three, the population 

genetic structure and demographic history of M. corallina was investigated using two 

genes: universal mitochondrial cytochrome oxidase subunit 1 (COI) and the nuclear 

intron spacer region (ITS1). Diagnostic taxonomic characters were used to identify and 

validate the specimens as Marphysa corallina. The COI marker revealed that 

populations were highly connected to one another and formed a large panmictic 

population whereas ITS1 showed shallow genetic structuring of populations. Family 

Eunicidae individuals are known to lack a long lived planktonic larval stage which could 
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not have contributed to panmixia as demostrated by the COI marker. Demographic 

results indicated that populations had recently undergone sudden expansions which 

could have falsely resembled highly connected populations. Estimation of divergence 

times places the expansions in the mid to late Pleistocene. Populations had not reached 

migration-drift equilibrium thus contemporary population distributions of Marphysa 

corallina along the east coast of South Africa are largely shaped by past climatic events 

such as in the Pleistocene.  

 

Key words: Genetic structure, Marphysa corallina, demographic history, population 

expansions, pleistocene, phylogenetics, Eunicidae, Nereididae. 
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Chapter one: General background 
 

1.1. Introduction 

One of the most diverse, successful and evolutionarily ancient taxon among the 

invertebrates is the Annelida (Fauchald 1974; 1977; Bleidorn et al. 2003b; Glasby 2005; 

Halanych 2006). Previously, the Annelida was considered to be a monophyletic taxon 

consisting of three major Classes: Polychaeta (bristle worms), Hirudinea (true leeches) 

and the Oligochaeta (earthworms) (Rouse & Fauchald 1998; Bleidorn et al. 2003a; 

Bartolomaeus et al. 2005; Colgan et al. 2006; Rousset et al. 2007). Recently however, 

molecular analyses have shown that the hirudineans appear to be nested within the 

oligochaetes; and because they were assigned a Class rank, Oligochaeta is now a 

paraphyletic clade (McHugh 2000; Rousset et al. 2007). The hirudeneans and 

oligochaetes share a common ancestor for which several autapomorphies have been 

described. For this reason, they have been assigned to the class Clitellata 

(Bartolomaeus et al. 2005). The monophyly of Clitellata has been well supported by 

both morphological and molecular analyses (Bartolomaeus et al. 2005). 

 

The Echiura, or spoon worms, consists of a small group of approximately 150 

unsegmented, coelomate marine worms found in a number of different habitats from 

intertidal mudflats to depths of 10 000 m (McHugh 1997; 2000; Hessling & Westheide 

2002). The Sipuncula, or peanut worms, consists of a small clade of approximately 147 

species distributed among 17 genera. The majority of the unsegmented peanut worms 

are larger than 5 mm and found worldwide in marine sediments from the intertidal 

zone to the deep sea (Dordel et al. 2010). Previously, the Echiura and Sipuncula formed 

a clade within Annelida (McHugh 1997). However, due to the absence of segmentation 

which was considered to be a primary loss they were removed from the Phylum 

Annelida (one of the apomorphies being segmentation) and placed as separate phyla 

(McHugh 1997; 2000; Rousset et al. 2006). Recently, many studies focusing on the 
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development of the nervous system in larvae and adults, cleavage patterns, chaetal 

formation, and sperm ultrastructure of echiuran worms have shown that they all 

closely resemble polychaetous annelids (McHugh 1997; Hessling & Westheide 2002). 

For this reason authors concluded that echiurans are derived from a segmented 

ancestor (McHugh 1997; Hessling & Westheide 2002; Bartolomaues et al. 2005; Colgan 

et al. 2006). The nervous system was shown to have metameric organization and the 

trunk a modified segmented structure and not a single large segment as previously 

considered (Hessling & Westheide 2002). Studies relating to the morphology of the 

neural and muscle formation of sipunuclans have shown close resemblance to those of 

annelids therefore adding to the body of information that suggests them to be a 

derived clade of polychaetous annelids (Halanych et al. 2006). 

 

The majority of the diversity of the annelids lies within the Class Polychaeta (McHugh 

2000; Bartolomaeus et al. 2005). Polychaete worms can be identified by their multi-

segmented bodies, the presence of parapodia, chaetae (bristles) and elaborate head 

appendages (Fauchald 1977). Polychaete worms are well represented and form an 

integral part of the benthos of aquatic habitats such as estuaries, rocky shores, 

continental shelves, deep sea hydrothermal vents as well as the water column (Day 

1967; McHugh 2000; Hall et al. 2004; Brett 2006; Zhou et al. 2010). The ability of 

polychaetes to easily adapt to a whole range of habitats and variable environments are 

displayed by their numerous feeding modes (McHugh 2000; Eklof 2010). Polychaetes 

include free-living predators, filter feeders, parasites and scavengers (McHugh 2000; 

Olsgard et al. 2003; Brett 2006; Eklof 2010). 

 

Polychaete worms are essential to the marine environment for many reasons. They 

have a high reproductive output allowing them to reach high densities contributing to 

over half of the total biomass of the benthos (Dean 2004; Brett 2006). Polychaetes 

contribute to the functioning of benthic communities in terms of nutrient cycling 

through digestion (Olsgard et al. 2003; Brett 2006). Anoxic sediments are aerated by 

burrowing and tube building polychaetes through the regulation of water flow in the 
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sediment (Brett 2006). Polychaete worms also serve as an important food source for 

larger predators such as commercially important demersal fish and constitute the main 

diet preference of cuttlefish (Brett 2006; Rivera & Romero 2008). The polychaete group 

contains sensitive and tolerant species and is distributed throughout pristine and 

heavily disturbed areas (Dean 2004). This broad distribution together with their rapid 

generation times allow polychaete worms to respond quickly to environmental changes 

making them good indicator species of anthropogenic disturbances such as pollution 

(Dean 2004). 

 

1.2. Taxonomy of Polychaeta 
 

Traditionally polychaetes were divided into two equally large groups which were 

treated by many authors as orders: “Errantia” and “Sedentaria” (Fauchald 1974; 1977; 

Fauchald & Rouse 1997; Rouse & Fauchald 1998; Bartolomaues et al. 2005; Eklof 2010). 

These groupings were assigned by de Quatrefages (1866) and are based on the life 

habits of the worm as well as the development of the anterior end (head region) 

(Fauchald 1977; Fauchald & Rouse 1997). Errant polychaetes comprised of those 

rapacious, free- living worms with an equal number of body segments and a few 

anterior appendages generally differing in the number of palps, antennae, tentacular 

cirri and occipital antennae (Fauchald 1977; Bartolomaeus et al. 2005). The sedentary 

polychaetes on the other hand consisted of those filter feeding, sessile, and mostly 

tubicolous worms that have a limited number of body segments, a separation of the 

body into distinct regions, and that lack or have a few anterior head appendages 

(Fauchald 1977; Bartolomaeus et al. 2005). This grouping was considered to be very 

practical, convenient and arbitrary and did not reflect any type of taxonomic distinction 

between orders and families nor did it reflect evolutionary history (Fauchald 1974; 

Rouse & Fauchald 1998; Bartolomaeus et al. 2005; Eklof 2010). 

 

Fauchald (1974) observed that many authors had attempted to assign families to higher 

clades but failed and thus reverted to using the arbitrary grouping “Errantia” and 
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“Sedentaria”. With the lack of knowledge on the variability of structure within families 

and the origin of the group, many taxonomists were unable to distinguish between 

primitive and advanced traits making it difficult to erect higher clades within Polychaeta 

(Fauchald 1974). Fauchald (1974) went on to state that the phylogeny of the Class 

Polychaeta is dependent on the knowledge of the origin of the secondary body cavities 

and the origin of segmentation. The origin of segmentation and secondary body 

cavities would ultimately depend on the living conditions of polychaete worms 

(Fauchald 1977). Dales (1962) looked at the structural relations of the buccal organs 

and nephridia of polychaetes in an attempt to create a new classification system. Dales 

successfully divided the polychaetes into 14 more or less inclusive taxa; however, they 

were unresolved (Fauchald & Rouse 1997; Rouse & Fauchald 1998). 

 

Fauchald (1977) then presented a phylogenetic hypothesis of the ancestral annelid and 

proposed that it was more like an earthworm which had a simple body of organization, 

it lacked head appendages, parapodial lobes and pygidial cirri and as time went by, the 

simple body form evolved into a more complex body form. He based this phylogenetic 

hypothesis on Clark’s (1964) Hydrostatic theory presented for the origin of 

segmentation. This theory stated that the primary function of the segmented coelom 

was due to the selection for the hydrostatic skeleton to aid the peristaltic movement of 

a burrowing organism in sediments. This occurred by means of strong muscular septa 

which divided the body into contractible compartments allowing for peristaltic 

movement. Therefore, the segmental organization for other organ systems was 

regarded as a secondary subdivision. Due to this suggestion, the oligochaete – like 

polychaetes such as Capitellidae, Arenicolidae or Ophellidae, that ingest sediment, were 

proposed to be the closest relatives of the ancestral annelid (Fauchald 1977). This 

resulted in polychaetes displaying elaborate body plans such as the filter feeding 

Sabellidae and the rapacious, errant Eunicidae to be more derived families (Fauchald 

1977).  

 

Considering the morpho-functional state of the ancestral annelid proposed by Fauchald 
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(1977) which was based on the descriptions of Clarke (1964; 1977), Fauchald then 

presented a new systematic organization of polychaetes dividing them into 17 orders 

of equal rank. This new classification was similar to that presented by Dales (1962). 

Fauchald (1977) listed the families in a sequence which reflected their morphological 

distance from an ancestral polychaete. The families listed last (eg: Terebellidae, 

Sabellidae) were more morphologically distinct from the ancestral polychaete 

compared to the families listed first. However, many problems were encountered with 

this classification system. In a paper discussing the progress of polychaete systematics, 

Fauchald & Rouse (1997) stated that the majority of the arguments presented in 

Fauchald’s (1977) classification were inaccurate due to many new intensive studies 

describing new taxa. The classification produced in Fauchald (1977) was based on the 

differences observed between taxa, whereas phylogeny should be based on the 

similarities (Cladistics) between and within taxa (Fauchald & Rouse 1997). 

 
 
Rouse & Fauchald (1995) conducted a study in which they examined a series of 

homology assessments in terms of character congruence of all taxa within the Annelida. 

This eliminated all assumptions relating to the evolutionary development of the 

annelids, the proposed theory of the ancestral annelid and the evolution of any 

morphological features (Rouse & Fauchald, 1998). This analysis by Rouse & Fauchald 

(1995) supported the monophyly of Polychaeta; however no synapomorphy was 

described for this class. Rouse & Fauchald (1998) revised their initial classification to 

include morphological similarities between the taxa. Since then, this new classification 

has been accepted and is used as a working hypothesis for the interrelationships of 

major polychaete taxa (Rouse & Fauchald 1998; McHugh 2000; Bartolomaeus et al. 

2005; Halanych 2006). The analysis was performed using traditional multistate 

characters and the presence / absence data with weighted or unweighted characters 

(Brown et al. 1999; McHugh 2000). The Annelida were found to be a monophyletic 

group consisting of the well supported monophyletic Clitellata and Polychaeta (Rouse 

& Fauchald 1998; McHugh 2000). Polychaeta was weakly supported by the presence of 

mixonephridia and by nuchal organs as pits or grooves and parapodia (Rouse & 
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Fauchald 1998). It had been proposed that many polychaetes had lost some of these 

key features (Rouse & Fauchald 1998). The groupings in this analysis were seen as 

problematic because the authors did not identify the difference between features that 

were lost secondarily and features that were absent primarily (Rouse & Fauchald 1998; 

Rouse & Pleijel 2001; Halanych 2006). Instead they simply scored these in the same 

way which is misleading (Rouse & Fauchald 1998; McHugh 2000; Rouse & Pleijel 2001; 

Halanych 2006). For example, key morphological features such as nuchal organs, 

segmentation, parapodia and state of the coelom were subjected to this unequal 

scoring (Halanych 2006). 

 

Knowledge on the evolutionary history of the group has to be considered in order to 

differentiate between primary absence and secondary loss (Halanych 2006), which 

Rouse & Fauchald (1998) omitted in their classification. The most interesting result 

from this analysis was that Pogonophora which was previously considered to be a 

separate phylum, was actually found within Annelida and represented a derived 

polychaete taxon (Rouse & Fauchald 1998; Bartolomaeus et al. 2005). The 

Vestimentifera was positioned in the polychaete clade and found to be a derived 

pogonophoran (Rouse & Fauchald 1998). This finding resulted in the resurrection of 

Siboglinidae which traditionally included both the Vestimentifera and Pognophora 

(Rouse & Fauchald 1998; Bartolomaeus et al. 2005).  

 

In a study analysing the larval and adult development of siboglinids, it was found that 

developmental features closely resemble those of polychaetes, further justifying their 

placement as a derived polychaete taxon (McHugh 2000). The new classification 

recognised two major clades in the weakly supported monophlyetic Polychaeta: 

Palpata and Scolecida. Scolecida is weakly supported by the presence of the following 

two apomorphies: presence of parapodia with similar rami and presence of two or 

more pairs of pygidial cirri (Rouse & Fauchlad 1998). Polychaetes that form part of 

Scolecida are the simple bodied forms that lack head appendages but possess nuchal 

organs (Rouse & Pleijel 2001). The presence of palps (from which the name arose) and 
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a limited peristomium are the two synapomorphies for the Palpata clade (Rouse & 

Fauchald 1998). Palps can either be grooved, used in feeding or as ventral sensory 

palps (Rouse & Pleijel 2001). 

 

Palpata comprises two clades: Aciculata and Canalipalpata (Rouse & Fauchald 1998). 

Aciculata was the most strongly supported clade in their analysis which consists of 

active polychaetes bearing parapodia (Rouse & Pleijel 2001). The name of this clade 

was derived from one of the apomorphies, presence of stout chaetae called “aciculae” 

(Rouse & Pleijel 2001). The monophyly of this clade was strongly supported by the 

presence of several synapomorphies: aciculae found in the parapodia resulting in 

stability, lateral and medial antenna present on the prostomium, ventral sensory palps, 

dorsal and ventral cirri, single pair of pygidial cirri and segmented organs (Rouse & 

Pleijel 2001). Aciculata consists of three major clades: Amphinomida, Eunicida and 

Phyllodocida (Rouse & Fauchald 1998). Amphinomida commonly known as 

“fireworms” consists of approximately 200 nominal species divided into two families, 

Amphinomidae and Euphrosinidae (Rouse & Fauchald 1998; Rouse & Pleijel 2001). The 

monophyly of this clade was supported by the presence of a caruncle, proboscis shape, 

chaetal structure and composition (Rouse & Fauchald 1998). The monophyly for the 

Eunicida clade was suggested to be “very probable” and was supported by the 

presence of a ventral muscular pharynx, ventral mandibles, dorsal maxillae and a 

peristome forming a ring or rings (Rouse & Fauchald 1998; Rouse & Pleijel 2001). This 

clade comprises 7 families (Rouse & Fauchald 1998; Rouse & Pleijel 2001). Phyllodocida 

consists of Nereidiformia (commonly known as “rag-worms”) and Aphroditiformia 

(commonly known as “scale-worms”) (Rouse & Fauchald 1998). The monophyly of 

Phyllodocida was strongly supported by the presence of ventral sensory palps, anterior 

enlarged cirri, loss of dorsolateral folds and compound chaetae with a single filament 

(Rouse & Fauchald 1998). However, according to Rouse & Pleijel (2001) this clade is 

paraphyletic.  

 

Canalipalpata was a weakly supported group by one apomorphy, the presence of 
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grooved palps (Fauchald & Rouse 1997; Rouse & Fauchald 1998; Rouse & Pleijel 2001). 

This clade encompasses almost half of the polychaetes and is divided into three major 

clades: Sabellida (fanworms and christmas tree worms), Spionida and Terebellida 

(spaghetti worms). The relationships within this clade are unresolved (Fauchald & 

Rouse 1997; Rouse & Fauchald 1998; Rouse & Pleijel 2001). Rouse & Fauchald (1998) 

placed the Siboglinidae among other families (contains Vestimentifera and 

Pogonophora) within this clade. The monophyly of Sabellida was weakly supported by 

the presence of one apomorphy, the fusion of the prostomium to the persitomium 

(Rouse & Fauchald 1998; Rouse & Pleijel 2001). Spionida was a strongly supported 

clade by the presence of a pair peristomial grooved palps, posterior projecting nuchal 

organs, anterior excreting nephridia, and segmental organs in the posterior end for 

gamete release (Fauchald & Rouse 1997; Rouse & Fauchald 1998). Terebellida was 

supported by the presence of an achaetous segment (segment without chaetae), and 

gular membrane and heart body (Fauchald & Rouse 1997; Rouse & Fauchald 1998). 

 

Westheide (1997) on the other hand proposed a different approach for the evolution of 

the ancestral annelid and stated that it occurred from a more complex worm such as 

the vagile, predatory Amphinomidae and Nereididae to the more simple bodied form. 

The segmentation of the body was thought to have evolved from annelids bearing 

protective dorsal and lateral calcareous chaetae present along the axis of the body 

(Westheide 1997). The parapodia were suggested to have evolved as outfolds from the 

sides of the body lacking chaetae and the dorsal chaetae were lost (Westheide 1997).  

The remaining chaetae were divided into notochaetae and used as protective and 

defensive structures and the neurochaetae were used for locomotion (Westheide 

1997). Breathing structures such as branchiae may have developed to sustain the 

oxygen supply or alternatively it was suggested that the parapodial lobes may have 

functioned as the branchiae (Westheide 1997). In this case, segmental organisation 

arose for the need to transport blood to external appendages therefore it is considered 

to be secondary to the segmental organisation of the body’s extremities (Westheide 

1997).  
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Looking at the fossil record, earlier annelids from the Sirius Passet exhibited biramous 

parapodia with capillary chaetae (Vinther et al. 2011; Struck 2011). Unfortunately, 

nothing can be deduced about the anterior appendages as the anterior part of the 

fossils were either missing or were not well preserved (Struck 2011). Fossils from the 

Burgess Shales, do however show the presence of one pair of anterior appendages 

which were considered to be homologous to palps (Struck 2011; Eibye-Jacobsen, 2012). 

These appendages are considered by Eibye-Jacobsen (2012) and Vinther et al. (2011) to 

be solid, possible sensory palps due to their distinct morphology. The parapodia from 

these fossils seem to have a range of different orientations, (sub biramous, biramous 

and uniramous), which all have capillary chaetae (Struck, 2011). Therefore, it has been 

concluded that the ancestral annelid seems to be more similar to that of the scenario 

presented by Westheide (1997) and could possibly belong to a clade within the 

Phyllodocida (Eibye-Jacobsen & Vinther 2012). Based on this assumption polychaetes 

were suggested to be ancestral and clitellates more derived. In a molecular analysis 

conducted by McHugh (1997) using the Elongation Factor – 1α gene, it was  found that 

epifaunal polychaetes such as Nereis (Nereidiformia) and Harmothoe (Polynoidae) 

formed the two most basal taxa within the polychaete clade, thus providing molecular 

evidence that the ancestral annelid was most likely a rapacious worm with elaborate 

head appendages. 

 

1.3. Phylogeny of Polychaeta 
 

Unravelling deep-level annelid relationships using morphological analysis have proven 

difficult for many authors (McHugh 2000). This has been attributed to the difficulty in 

assessing the homology of morphological characters of some extant polychaete 

families as well as character state scoring. As mentioned above in the classification 

presented by Rouse & Fauchald (1998) the primary absence of characters and the 

secondary loss of characters were scored in the same way. This presented a problem as 

it is misleading and results in conflicting interpretations (Rouse & Fauchald 1995; 

McHugh 2000; Halanych 2006). To solve this problem of deep-level annelid 
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relationships and to avoid misinterpretation of character states, molecular data has 

proven to be a very productive approach (McHugh 2000; Halanych 2006; Colgan et al. 

2006; Struck et al. 2011). Molecular data provides an abundance of characters across a 

large number of taxa to assess homology of characters making it a more feasible 

approach (Brown et al. 1999; McHugh 2000; Halanych 2006). With regard to secondary 

character losses and character coding, they are not problematic and uncontroversial 

because molecular data presents a limited range of possible character states and 

patterns (Brown et al. 1999; McHugh 2000). Regardless, it should be stressed that 

morphological analysis should not be ruled out completely because it is essential in 

identifying the basic body plans of many organisms. Thus morphology together with 

molecular data can produce a better understanding of polychaete systematics (Brown 

et al. 1999; McHugh 2000; Colgan et al. 2006). Over the past 10 years, a large number 

of studies have been conducted using molecular data to try and resolve the confusion 

surrounding the interrelationships and placement of polychaete families. The most 

influential studies will be discussed below. 

 
 
Winnepenninckx et al. (1998) conducted a study to determine the relationships among 

metazoan families. In the study, 57 metazoan taxa, among them 15 polychaete 

families, were analysed using the 18S rDNA gene sequence. The resulting tree did not 

support the monophyly of Annelida and the 7 polychaete orders analysed did not 

appear to have a common ancestor. This result could have been due to a limited 

sampling of taxa. Kojima (1998) conducted a study using the Elongation factor 1-α gene 

(EF-1α) to determine whether Polychaeta is a paraphyletic group. The study included 

13 polychaetes, 4 clitellates, 2 vetimentiferan and 2 molluscs. The results from the 

study did not clearly indicate any detailed relationships among polychaetes but it did 

strongly suggest that Polychaeta is a paraphyletic group from which clitellates and 

pogonophorans (now known as Siboglinidae) have derived independently (Kojima 

1998). 

 

Many other molecular studies have been conducted using the 18S rDNA gene but have 
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failed to produce well supported polychaete relationships (Halanych 2006). During this 

period, it was suggested that the reason for such poor resolution of polychaete 

relationships could be due to a limited taxon sampling and the usage of a small range 

of molecular genes. As a result Brown et al. (1999) used a multigene dataset and a 

broader sampling range of polychaetes in an attempt to assess the major clades 

erected by Rouse & Fauchald (1998). In the study they used the nuclear histone H3, U2 

snRNA and two fragments of the 28S rDNA (D1 and D9-D10 expansion groups). The 

results showed that two of the major clades, Canalipalpata and Phyllodocida, were 

actually paraphyletic and the strongly supported monophyletic Aciculata was not 

recovered and was suggested to be either paraphyletic or polyphyletic. By this time 

McHugh (2000) summarized all the molecular work that had been done on the 

phylogeny of polychaetes and annelids and concluded that the monophyly of 

polychaetes and annelids were not supported by molecular evidence. Bleidorn et al. 

(2003a; 2003b) assessed the monophyly of the clade Scolecida using the 18S rDNA gene 

together with an increase in taxon sampling. They did not recover a monophyletic 

Polychaeta, Annelida or any of the major clades proposed by Fauchald & Rouse (1997). 

 

In a broad scale analysis conducted by Rousset et al. (2007) another attempt was made 

to assess the clades proposed by Fauchald & Rouse (1997). In their analysis they 

included four loci: the 18S rDNA (small nuclear ribosomal subunit) and the D1 region of 

28S rDNA (large nuclear ribosomal subunit), histone H3 (nuclear protein-coding gene) 

and the 16S rDNA (mitochondrial ribosomal gene). The inclusion of a large number of 

taxa together with numerous nucleotides employed in this study still produced a weak 

phylogenetic signal which was regarded as a rare phenomenon (Rousset et al. 2007). 

The monophyly of the more inclusive clades presented by Fauchald & Rouse (1997) 

were not recovered in their analyses (Rousset et al. 2007). A larger molecular data set 

was used by Struck et al. (2007) to determine whether the major polychaete clades 

were monophyletic. They used two datasets: the first was called Nuc and it included 

~6.5kb of sequence from three nuclear genes. The second dataset was called NucMt 

and included ~13.4kb of sequence from 3 nuclear and 8 mitochondrial genes. The 
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monophyly of Scolecida, Palpata and Canalipalpata was rejected by their analysis. 

 

In recent years the contribution of molecular analyses to determine the relationships 

within Polychaeta has been enormous. The majority of the families within Annelida are 

now represented by the small subunit nuclear gene 18S rDNA (McHugh 2005; Colgan et 

al. 2006; Halanych 2006; Struck et al. 2007; Zrzavy et al. 2009). None of these studies 

together with others that used multiple genes and increased taxon sampling have been 

able to recover the monophyletic clades of those presented by Rouse & Fauchald (1998) 

(McHugh 2005; Colgan et al. 2006; Halanych 2006; Struck et al. 2007; Zrzavy et al. 

2009). Many authors have suggested that the possible reason for such a weak 

phylogenetic signal resulting in a poor resolution of basal nodes could be attributed to 

a rapid radiation of polychaetous annelids (Fauchald 1974; McHugh 2000; McHugh 

2005; Colgan et al. 2006; Halanych 2006; Rousset et al. 2007; Struck et al. 2007; Zrzavy 

et al. 2009). 

 

The idea of a rapid radiation of the polychaetes was first suggested by Fauchald (1974). 

Fauchald (1974) defined this radiation as the evolution of different polychaete families 

from dissimilar ancestors that had adapted to life in the semi-consolidated detrital 

layer above the sea bottom. The possibility exists that morphologically similar but not 

identical groups of polychaetes gave rise to different families which adapted to hard 

bottoms, burrowing or tube-building forms from the detrital layer (Fauchald 1974). This 

could explain why there are different numbers of anterior appendages, variations in 

chaetal morphologies, the oddly distributed nephridia and variations in the 

development of the nervous system in the different families present today (Fauchald 

1974). 

 

A number of genes have been utilised in recent molecular studies to determine deep 

level annelid phylogenies as well as relationships among the annelids and polychaetes. 

These will be discussed here. The 18S nuclear small ribosomal subunit gene (SSU) is 

approximately 1800-2000 nucleotides in length. This gene has been used in countless 

studies to assess the intra-annelid relationships and thus will remain an important tool 
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in annelid molecular phylogeny (Halanych 2006). Unfortunately, this gene has failed to 

uncover the deeper level relationships between annelids but has been helpful in 

placing recognised families within other families as well as determining sister clades. 

 The 18S nuclear gene has also been very useful in the analysis of the Clitellate 

relationships (Halanych 2006). 

 

The 28S large nuclear ribosomal subunit gene ranges between ~2800-3000 nucleotides 

in length. In terms of annelid phylogeny the usefulness of this gene is still unknown 

(Halanych 2006). Studies using this gene showed that it is either too variable or too 

short to convey any important information regarding annelid phylogeny (Halanych 

2006). The fragment of this gene that bears the most information can be amplified 

from a ~2.1kb excluding the 3` end. Some studies have been able to sequence the 

entire length of this gene for polychaetes (Struck et al. 2002). When comparing the 18S 

with the 28S gene, it has been found that the full length of the 28S gene conveys 

slightly more information for uncovering annelid monophyly (Halanych 2006). 

 

Mitochondrial genomes found in most animals have a length of ~15000bp and contains 

phylogenetic information regarding gene rearrangement data, amino acid data and 

nucleotide data. A total of 25 complete annelid genomes are available on NCBI 

GenBank as off January 2015 (Benson et al. 2005). Fifteen of those complete genomes 

have been sequenced for the Polychaeta group and 10 for the Clitellate group (Benson 

et al. 2005).  All annelid mtDNA genomes are reported to have an outstanding degree 

of conservation in gene order; an indication that concatenated coding and ribosomal 

genes may deliver more promising results in the future (Halanych 2006). Elongation 

Factor - 1α is associated with the cell’s protein synthesis machinery. This nuclear gene 

has been used to determine the origin and the inclusiveness of annelids. To some 

extent it can be useful within annelids and can be used at both the amino acid and 

nucleotide levels (Halanych 2006). 

 

 



14 
 

Table 1.1: Summary of molecular markers used in various annelid phylogenetic studies. 

Molecular marker Description Reference 

18 S nuclear small ribosomal 

subunit 

Interfamilial relationships 

 

Clitellate relationships 

Erseus et al. 2002, Nygren 

& Sundberg 2003 

Erseus et al. 2000 

28S nuclear large ribosomal 

subunit 

Overall phylogenetic 

relationships 

Complete gene 

sequencing 

Brown et al. 1999 

 

Struck et al. 2006 

16S mitochondrial large 

ribosomal subunit 

Intraspecific and 

intrageneric relationships 

 

Higher level relationships 

Dahlgren et al. 2001 

 

 

Struck et al. 2006 

Elongation factor  -1α 

Deep level annelid 

relationships and origin 

Kojima et al. 1993, 

Kojima 1998 and McHugh 

1997 

12S small ribosomal subunit 

(mitochondrial) 

Deep level annelid 

relationships 
Borda & Sidall 2004 

Cyt B 
Deep level annelid 

relationships 
Burnette et al. 2005 

Histone H3 
Deep level annelid 

relationships 
Brown et al. 1999 

U2 small nuclear RNA 
Deep level annelid 

relationships 
Brown et al. 1999 

 

The mitochondrial 12S, cytB, histone H3 and U2 snRNA have been used in other studies 

to reveal deep level annelid relationships. There are still a range of other genes that 

have not been assessed but could potentially help us solve a lot of the problems we are 

facing with the current genes in use. These include conserved genes such as the largest 

subunit of the RNA polymerase chain II, Elongation factor 2, and a potential source for 
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deeper level phylogenetic information include nuclear genes such as Enolase, Na+, K+-

ATPase (McHugh 2000). 

 

A summary of the molecular markers discussed above can be found in Table 1.1. It 

should be noted that this is just a summarized version and presents authors that were 

the first to use these markers for those particular phylogenetic problems. A more 

detailed version can be found in Halanych (2006).   

 

1.4. DNA Barcoding of Polychaeta  
 

The most essential first step in any type of biological study is the succcessful 

identification of species (Hebert et al. 2003; DeSalle et al. 2005; Ekrem et al. 2007; 

Hajibabaei et al. 2007; Radulovici et al. 2010; Canales-Aguire et al. 2011; Carr et al. 

2011). Unfortunately there has been a decrease in practising taxonomists who can 

accurately identify polychaetes. Traditional taxonomy requires the gathering of 

morphological and ecological data, thus requiring expert knowledge. When specimens 

are collected in their larval stages or have been damaged during the collection process 

it becomes difficult to identify them using traditional taxonomic tools. As a result DNA 

barcoding can be used as an easy identification tool for non-experts, fulfilling the initial 

step of identification for many ecological, biodiversity or bio-monitoring studies 

(Hajibabaei et al. 2007; Radulovici et al. 2010). DNA barcoding should not be mistaken 

as a tool that replaces traditional taxonomy altogether (Hajibabaei et al. 2007; 

Ratnasingham & Hebert 2007). It should rather be used in conjunction with 

morphological identification to produce a more robust identification system 

(Hajibabaei et al. 2007; Ratnasingham & Hebert 2007). In the case of poorly studied 

taxonomic groups, DNA barcoding can be used to rapidly sort specimens into 

genetically divergent populations (Hajibabaei et al. 2007).  

 

DNA barcoding is useful in phylogenetic studies in that it forms the initial point for 

selection of ideal taxa which can then be barcoded and contribute to the library of 
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sequences (Hajibabaei et al. 2007). The extent and nature of population divergences 

can be detected first by DNA barcoding, which may then facilitate comparative studies 

of population diversity (Hajibabaei et al. 2007). 

 

In order for a specimen to be barcoded, the sequence diversity of a short fragment of 

~650 bp of the mitochondrial cytochrome c oxidase subunit 1 (CO1) is detected and  

for identification purposes compared with other reference barcodes of known 

individuals (Hebert et al. 2003; Hajibabaei et al. 2007; Ratnasingham & Hebert 2007). 

As a result, DNA barcoding produces the expert taxonomic data in a converted format 

which is easily accessible by a wide range of non-expert scientists to identify specimens 

(Maturana et al. 2011). Many different studies investigating vertebrate and 

invertebrate taxa have confirmed the effectiveness of the CO1 gene for DNA barcoding 

and with their studies have significantly contributed to the identification of new and 

cryptic species (Canales-Aguire et al. 2011). 

 

The Barcode of Life Data System (BOLD - www.barcodinglife.org) integrates 

bioinformatics tools which facilitates the entire pathway of analytical processes starting 

from the collection of specimens to the thoroughly validated barcode library 

(Ratnasingham & Hebert 2007). The BOLD platform serves as an archive for specimen 

records and sequence records which are the building blocks of all barcoding studies. It 

can then be used as a workbench where you can perform an array of different analyses 

with the barcoded data and ensure quality and proper management of the deposited 

sequences (Ratnasingham & Hebert 2007). As BOLD is a freely accessible web based 

platform which hosts the specimen data together with sequences, it can be used as a 

medium from which research communities dispersed across different geographical 

regions can come together and collaborate. The main goal of the BOLD initiative is to 

compile a reference library containing barcoded sequences from a wide range of 

taxonomic groups (Ratnasingham & Hebert 2007). 

 

Polychaeta consists of a highly diverse and abundant group of ecologically important 

http://www.barcodinglife.org/
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marine worms (Canales-Aguire et al. 2011). Due to their complex taxonomic history and 

high levels of homoplasy, the application of DNA barcoding may be essential to the 

assessment of polychaete phylogenetic processes (Canales-Aguire et al. 2011; Carr et al. 

2011). These processes have resulted in their diversification as well as the 

identification and description of currently undescribed species (Maturana et al. 2011; 

Canales-Aguire et al. 2011; Carr et al. 2011). As per BOLD’s records, there are currently 

12055 polychaete specimen records distributed over 14 Orders. Only 7981 specimens of 

this total have been barcoded. The majority of these specimens have been collected by 

researchers in Northern Europe, North West Africa, Asia, Canada and the United States 

(Figure 1.1). There exist no barcoded polychaete specimens for South Africa (Figure 

1.1). As a result, all the polychaete worms collected along the Southern African 

coastline will be barcoded in the hope of creating a complete library containing valid 

DNA sequences. 

 

 

(http://www.boldsystems.org/index.php/Public_Maps_MedMapBoldPublicOcc?id=map&width=590&inc[]=tax::class_reg::24489=

%3EPolychaeta). 
 

Figure 1.1: Map of the world taken from BOLD systems reflecting the collection sites of 

polychaete worms thus far. Number legend found at the bottom left-hand corner. 

 

 

http://data.gbif.org/species/256/overviewMap.png)
http://data.gbif.org/species/256/overviewMap.png)
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1.5. Population genetics of Polychaeta 
 

The marine environment is influenced by anthropogenic effects and climate change, 

therefore understanding the degree of connectivity, structure and demography of 

marine assemblages is important for the management of species (Lowe & Allendorf 

2010; Kelly & Palumbi 2010; Ayata et al. 2010). Connectivity of populations and their 

subsequent structuring relies primarily on larval dispersal estimates (Palumbi 1994; 

Bohonak 1999; Weersig & Toonen 2009). Additionally, when populations are not in 

mutation-drift equilibrium, the structuring and connectivity of populations should be 

interpreted in terms of demographic history rather than gene flow (Bohonak 1999; 

Marko & Hart 2011). Dispersal on the other hand is influenced by factors such as 

oceanic currents, occurrence of reproductive barriers (physical and biological) and 

overall larval biology of the species in question (Grosberg & Cunningham 2001; 

Skillings et al. 2011; Villamor et al. 2014). The individual tracking of larvae across ocean 

basins is a daunting task, as a result indirect methods such as population genetic tools 

have been developed using molecular markers to identify the genetic trail left behind 

by larvae (Grosberg & Cunningham 2001; Ayata et al. 2010). 

 

Since the 1960’s a large number of population genetic studies were conducted on a 

variety of marine taxa due to the availability of cheap molecular techniques (Bohonak 

1999). From these studies a general trend was observed for marine taxa where those 

species exhibiting high dispersal larvae (long lived planktotrophic larvae) were found to 

be genetically homogeneous across large geographic distances (Palumbi 1994; Bohonak 

1999; Kamel et al. 2014; Villamor et al. 2014). On the other hand, species characteristic 

of short-lived larvae were found to have genetically structured populations (Palumbi 

1994; Bohonak 1999; Kamel et al. 2014; Villamor et al. 2014). With the increase in the 

availability of population genetic studies on a large number of marine taxa displaying 

varieties of reproductive strategies, significant genetic structuring of populations have 

been found, contrary to the idea that marine populations are highly connected 

(Uthicke & Benzie 2003; Marko & Hart 2011; Kamel et al. 2014). In some cases where 
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larval dispersal patterns are not congruent with gene flow estimates, coalescent times 

need to be estimated and past demographic history need to be investigated to obtain a 

plausible explanation for the structuring patterns of communities (Marko & Hart 2011). 

Over the past years, a few studies analysing the population structure of polychaete 

worms have been carried out, however, there seems to be a lack of studies on 

Southern African polychaetes.   

 

Population genetic studies in the past have used allozyme electrophoresis to identify 

patterns of genetic diversity and connectivity of polychaete worms (Knowlton 2000). A 

lot of attention was given to the genetic structuring of brackish water nereidid species 

namely: Alitta succinea, Hediste diversicolor and Hediste japonica. These populations 

were found to be well-structured due to the presence of geographic barriers and 

reproductive cycles that lacked a pelagic stage (Abbiati & Maltagliati 1992; Abbiati & 

Maltagliati 1996; Rohner et al. 1997). Beckwitt (1980) analysed the genetic structure of 

a sedentary tube dwelling worm Pileolaria pseudomilitaris using allozyme 

electrophoresis, populations analysed in this study were highly differentiated from one 

another because of isolation and founder effects.  Upon analysis of the larval biology of 

these spirorbid species, it was found that they produce brooding larvae with the 

absence of a planktonic larva (Beckwitt 1980). As a result, one would infer that the 

absence of planktonic larvae could have contributed to the isolation and differentiation 

of Pileolaria pseudomilitaris populations.  

 

In an analysis of interstitial polychaetes using RAPD-PCR techniques, Von Soosten et al. 

(1998) found that populations of Petitia amphophthalma were genetically 

differentiated and geographically structured. Schmidt & Westheide (1999) analysed 

another interstitial polychaete Hesionides gohari from three different continents and 

in contrast to the above findings, all populations were genetically similar to one 

another regardless of the large geographic distances between them. Patti & Gambi 

(2001) analysed an invasive species from the Mediterranean, French Atlantic and 

Southern Australia using the ITS2 nuclear ribosomal DNA. This sedentary Sabella 



20 
 

spallanzanii were reported to have long-lived pelagic larvae but were found to be 

genetically and geographically structured (Patti & Gambi 2001). In the Mediterranean, it 

was found that this species formed 3 groups while the Atlantic populations were 

strikingly different to Mediterranean and Australian populations (Patti & Gambi 2001).  

 

Jolly et al. (2004) investigated the processes governing the subdivision of two 

genetically distinct populations of Pectinaria koreni from the Brittany and English 

channels. Using enzymatic and mitochondrial data, they uncovered deep phylogenetic 

breaks between these two populations. The Brittany population displayed unimodal 

mismatch curves indicative of recent population expansion and the English Channel 

population displayed a bimodal mismatch curve which resembled stable populations 

(Jolly et al. 2004). Jolly et al. (2004) was the first polychaete study to include 

demographic analyses to explain the distinct lineages. Similarly Schulze (2006) 

investigated the genetic structure and phylogeography of Palolo worms from the 

Caribbean and tropical north Pacific using COI and 16S rDNA. Schulze (2006) reported 

widespread Palolo haplotypes across large geographical areas regardless of the fact 

that eunicid larvae are short lived and lecithotrophic. The idea of incomplete lineage 

sorting was explored due to a lack of population structuring thus indicating that the 

genus is relatively young and had undergone recent expansions and colonisations, 

meaning that not enough time had elapsed to enable large genetic differences 

between populations to result in distinct lineages (Schulze 2006). 

 

Iannotta et al. (2007) analysed two species of Lysidice and found that the two species 

exhibited different demographic histories. Lysidice collaris populations were not 

genetically structured and it was hypothesised that these populations might have 

undergone founder effects and recent colonisations in the Mediterranean basin 

(Iannotta et al. 2007). As a result, populations were not separated long enough to 

evolve differences resembling one another. On the other hand Lysidice ninetta was 

found to be composed of at least two cryptic species (Iannotta et al. 2007). This would 

lead one to believe that L. ninetta is the older species of the two and these two 
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lineages would have accumulated differences and thus represent cryptic species 

(Iannotta et al. 2007). 

 

Recently, two studies investigating the genetic diversity and population structuring of 

the commonly known “fireworm”, Hermodice carunculata, have revealed contrasting 

results. One study was conducted in northern Crete (Aegan Sea) and the other 

sampling a wider distributional range from the Mediterranean, Gulf of Guinea, Gulf of 

Mexico and Caribbean Sea (Ahrens et al. 2013; Chatzigeorgiou et al. 2014). Two 

populations sampled from the Aegan Sea were highly divergent from one another 

regardless of the short geographical distances between them and the teleplanic larvae 

recorded for family Amphinomidae (Chatzigeorgiou et al. 2014). Populations analysed 

in the Mediterranean, Caribbean Sea, Gulf of Mexico and Guinea had geographically 

distant populations with very low divergences (Ahrens et al. 2013). These contrasting 

results in my opinion could most likely indicate that the Aegan Sea populations were 

evolutionarily older and had diverged due to the presence of a geographical barrier. 

Populations analysed in Ahrens et al. (2013) could be representative of recent 

expansions and colonisations. 

 

1.6. Oceanic currents of the east coast of South Africa  
 

The presumed predominant driver of pelagic larval dispersal along the the east coast of 

South Africa is a major western boundary current known as the Agulhas current 

(Lutjeharms & van Ballegooyen 1988; Lutjeharms & Roberts 1988; Hutchings et al. 

2002). It forms part of the anticyclonic Indian Ocean gyre with the topmost layer 

constituting a mix of tropical and subtropical surface water (Lutjeharms & van 

Ballegooyen 1988; Beckley & van Ballegooyen 1992; Hutchings et al. 2002). The high 

velocities documented for the Agulhas current permits the close movements of the 

current along the edge of the shelf break southward to a broader shelf forming the 

Agulhas Bank (Lutjeharms & Roberts 1988; Beckley & van Ballegooyen 1992; 

Lutjeharms et al. 2000). Retroflection of the Agulhas current then occurs between 16 
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and 20° E back into the South-west Indian Ocean as the Agulhas Return Current 

(Lutjeharms & Roberts 1988; Beckley & van Ballegooyen 1992). Around the Cape of 

Good Hope the Agulhas current has been observed to shed eddies and rings into the 

South-east Atlantic Ocean (Lutjeharms & Roberts 1988; Beckley & van Ballegooyen 

1992).  

 

The northern part of the KwaZulu-Natal (KZN) continental shelf is classified as a linear 

clastic coastline comprising a narrow shelf and a steep slope (Green 2011a; Green 

2011b). The unique physiography of this coastline acts to stabilize the strong Agulhas 

current thus reducing the occurance of sideways meandering (Lujeharms & De Ruijter 

1996; Lutjeharms et al. 2000). The Agulhas current in this northern region is 

characteristic of an inshore boundary with an intense cyclonic shear; the core of the 

current is 3 km in width and has a mean peak surface speed of 1.4 m.s-1 (Lutjeharms & 

De Ruijter 1996). The shelf begins to widen off at Richards Bay extending southward 

toward Durban (Lutjeharms & Roberts 1988; Lutjeharms et al. 2000). This area of the 

shelf creates an unusual change in the shape of the continental shelf of KwaZulu-Natal 

and is called the Natal Bight (Lutjeharms et al. 2000; Meyer et al. 2002). The Natal 

Bight stretches for 160 km long and has a width of 50 km which is at its broadest off 

the Tugela mouth (Lutjeharms et al. 2000; Meyer et al. 2002). The Agulhas current with 

a width of 100 km, travelling at high velocities follows the relatively steep shelf break 

meticulously thus containing the shelf waters to the Natal Bight which are dominated 

by a system of eddies (Lutjeharms & Roberts 1988; Lutjeharms & De Ruijter 1996; 

Lutjeharms et al. 2000). A solitary meander known as the Natal Pulse originates from 

the Natal Bight and is considered to be a major disruption of the Agulhas current that 

is triggered by the instability of the core of the current (Lutjeharms & de Ruijer 1996; 

Lutjeharms et al. 2000).  The continental shelf south of Durban becomes narrow with a 

very steep shelf slope similar to that found in the northern shelf of KZN (Beckley & van 

Ballegooyen 1992). The continental shelf then widens again downstream of Port 

Elizabeth forming the extensive Agulhas Bank (Lutjeharms & Roberts 1988).        
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1.7. Polychaeta from South Africa  
John Day has earned the title of the father of polychaete taxonomy in South Africa. He 

has contributed an enormous amount of taxonomic accounts, distributional records 

and species descriptions of polychaete worms from intertidal rocky shores and 

estuaries in South Africa (Simon & Van Niekerk 2012). He has written several 

polychaete monographs dating from 1930 to 1960 for the region and has described 

several new species (Day 1967). Many of his earlier monographs were based primarily 

on rocky intertidal species, but later several papers and revisions included pelagic 

species (Day 1967). The most influential works of Day include: A monograph on the 

Polychaeta of Southern Africa. The monograph included taxonomic descriptions and 

range distributions of South African polychaete worms. The monograph was published 

in two volumes, the first volume was dedicated to the active polychaetes which were 

known as “Errantia” and the second was on sedentary polychaetes known as 

“Sedentaria” (Day 1967). These arbitrary groupings were used because the presence of 

homologous feeding structures of numerous families made it difficult to place families 

into higher orders (Day 1967). The monograph included approximately 36% of 

polychaete species that are considered endemic to the South African region (Day 

1967). These monographs are the most comprehensive taxonomic guides compiled for 

South African polychaetes and thus are currently still in use. However, these guides 

urgently need revision.  

 

Carol Simon was the next most influential polychaete biologist from South Africa. 

Simon conducted various studies on pest polychaete worms, specifically paying 

attention to pests of cultured abalone Haliotis midae. Various studies were conducted 

on the endemic sabellid Terebrasabella heterouncinata which ranged from growth 

rates, infestation rates on cultured abalone, ultrastructure of oogenesis and 

spermiogenesis, reproductive outputs and life history stages (Simon et al. 2002, Simon 

2004, Simon et al. 2004, Simon et al. 2005a, Simon et al. 2005b, Simon & Rouse 2005). 

Thereafter she looked at various spionid genera and investigated many topics such as 

the general infestation of spionid worms on cultured abalone, population structure 
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and growth of polydorid polychaetes and the general polydorid and diploydorid 

infestation on mollusc shells (Simon et al. 2006, Simon & Booth 2007, Simon 2009, 

Simon et al. 2010, Simon 2011). Simon et al. (2014) also described two new species 

belonging to the genus Syllis from South Africa. David et al. (2014), David and Simon 

(2014) investigated poecilogony in Polydora hoplura which are pests of commercially 

important molluscs. He also looked at the effect that temperature has on the 

development of two non-indigenous spionid species, as well as range expansions of 

this species and establishment.   

 

 

1.8. Rationale for this study  
Polychaete worms are important constituants of benthic and pelagic habitats. The 

phylogenetic relationships within this family are unresolved and not many studies 

focus on South African polychaete phylogenetics or population genetics. In addition, 

the last comprehensive survey on South African intertidal rocky shore polychaetes was 

done over 30 years ago. Therefore, in Chapter 2 the aim of the study is to determine 

the phylogenetic relationships of polychaete families/communities that are commonly 

found on the intertidal rocky shores of the Eastern Cape and KwaZulu-Natal Coasts.  

 

Marphysa corallina is considered to be an ecologically important member of its habitat 

because it was found to burrow in mucus-sand tubes. Polychaetes that burrow in the 

benthos are known to aerate anoxic sediments thus contributing to a healthier 

environment for other intertidal invertebrates to live in. In Chapter 3 the aims are to 

determine whether populations of Marphysa corallina are genetically structured and 

subsequently to assess the past demographic events that have shaped contemporary 

distributions of this ecologically important species. This presents the first study 

investigating the population genetic structure and demographic history of Marphysa 

corallina from South Africa and will contribute significantly to the knowledge of the 

processes that have shaped many important invertebrate species’ distributional 

patterns.   
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Chapter two: Phylogeny of common 

intertidal Nereididae and Eunicidae rocky-

shore polychaetes (Annelida) from South 

Africa 

 
2.1.   Introduction 
 

Polychaete worms are diverse multi-segmented worms that are well represented 

throughout aquatic habitats from shallow continental shelves to deep abyssal plains, 

from brackish estuarine environments to temporary puddles in terrestrial environments 

(Day 1967; Hall et al. 2004; Zhou et al. 2010). Polychaete worms are found in a variety 

of habitats resulting in the development of a diversity of feeding habits and 

reproductive strategies, thus making polychaete worms very successful invertebrates. 

(Wilson 1991; Gambi & Cigliano 2006). Over the years, polychaetes have been 

classified into approximately 80 families however, the phylogenetic relationships 

among them are poorly understood and the monophyly of the families are subject to 

much debate (Fauchald 1974; Bleidorn et al. 2003a; Bleidorn et al. 2003b; Halanych 

2006). 

 

Polychaete worms are constantly evolving and therefore require the need to be 

continuously ranked into higher taxa such as orders (Bartolomaeus et al. 2005). 

Together with the complex evolutionary histories of polychaetes and diversity of 

morphological differences, many gaps are found in the classification of the polychaete 

group (Zhou et al. 2010). As a result further classification of polychaete worms still 

remain a challenge. The majority of studies describing the relationships within the 

Polychaeta have been using morphological data (Bleidorn et al. 2003a). Recently, 
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molecular characters combined with morphological characteristics have gained much 

popularity in providing a more insightful tool in determining deeper polychaete 

relationships (Bleidorn et al. 2003a).  

 

The first and last comprehensive account of Polychaete fauna in South Africa was 

composed by Day (1967) more than 30 years ago. Day (1967) provided a thorough 

description of all polychaetes distributed from the northern parts of southwest Africa, 

around the Cape of Good Hope to the port of Beira in Mozambique. Not many studies 

have focused on defining the phylogenetic relationships of polychaete worms found in 

South African waters. Specimens belonging to families Nereididae and Eunicdae 

dominated the intertidal rocky shores that were sampled along the Eastern Cape and 

KwaZulu-Natal coasts. As a result individuals belonging to these families constituted a 

major portion of our sample set. Thus phylogenetic relationships within Eunicidae and 

Nereididae will be investigated in the present study. 

 

The Eunicida comprises a diverse group of annelids found in a range of habitats (Struck 

et al. 2007; Zanol et al. 2010). Eunicids burrow into hard coral or calcareous algae, live 

in rock crevices and form an essential part of coral reef and rocky shore communities 

(Hutchings 1986; Sorokin 1995). The Eunicida clade is currently defined by seven 

families: Dorvelleidae, Eunicidae, Hartmaniellidae, Histriobdellidae, Lumbrineridae, 

Oenonidae and Onuphidae (Rouse & Pleijel 2001; Struck et al. 2002; Struck et al. 2007; 

Zanol et al. 2010). Eunicidae is one of the most speciose taxon within the Annelida 

comprising 900 nominal species distributed among 100 genera (Rouse & Pleijel 2001; 

Struck et al. 2002; Struck et al. 2007). The descriptions of species of all families within 

Eunicida were carried out during the late 18th and early 19th centuries. Individuals 

belonging to Eunicida are considered to have a long scientific history (Struck et al. 

2007). 

 

The largest known polychaetes appear within the family Eunicidae with sizes ranging 

up to 6 m whereas the smallest interstitial forms are approximately 250 µm in length 
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(Eibye-Jacobsen & Kristensen 1994; Struck et al. 2007; Zanol et al. 2010). The epitokes 

(a sexually mature life stage filled with gametes) of the Palola worms (Eunicidae) are 

consumed by the natives inhabiting the South Pacific Islands (Schulze 2006). Diopatra 

aculata, Marphysa mulawa together with other eunicid species are used as bait for 

leisure and commercial fishing in a number of regions such as the United States, Japan, 

Mediterranean Coast and Australia (Hutchings & Karageorgopolous 2003; Struck et al. 

2007). As a result they are considered to be culturally and commercially important 

polychaetes. 

 

Polychaete worms are soft-bodied animals and the jaw apparatus, called scolecodonts, 

of the eunicids are the sole representation of polychaete worms in the fossil record 

(Struck et al. 2007; Paxton 2009). The Furongian period (final series of the Cambrian) 

was the earliest known period to contain eunicid scolecodont fossils (Paxton 2006; 

2009). However, the Ordovician was seen as the main period for the radiation of 

eunicids, which contained fossils of more than 50 known genera belonging to 15 – 20 

families (Paxton 2006; 2009). Based on the arrangement, number of teeth and shape of 

elements on the jaw apparatus, five different architectural types were described within 

Eunicida (Paxton 2006; Struck et al. 2007; Paxton 2009). The different jaw types reflect 

grades of evolution and do not represent clades of any sort (Paxton 2006; 2009). The 

Labidognatha (pincer-jaw) and the Priognatha (saw-jaw) were the first two grades to 

be described by Ehlers in 1868 (Paxton 2006; 2009). Thereafter the Ctenognatha (comb-

jaw) and the Placognatha (plate-jaw) were described by Kielan-Jaworawska (1966). 

Lastly, the Xenognatha (strange-jaw) was described by Mierzejewski & Mierzejewski 

(1975). The Placognatha and Ctenognatha jaw types were agreed upon by many 

authors to be the most ancestral types (Paxton 2006; Struck et al. 2007; Paxton 2009). 

 

Within the Eunicida, the only relationship to be significantly supported was that of 

families Onuphidae and Eunicidae, forming sister taxa, which has been constantly 

recovered by many morphological and molecular studies (Rouse & Fauchald 1998; 

Struck et al. 2002; Rousset et al. 2007). However, this relationship has been 
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characterised by plesiomorphies such as the asymmetrical labidognath jaws, one to five 

prostomial appendages and a double ringed peristomium with bilobed prostomium 

(Zanol et al. 2010). As a result, molecular analysis using the 18S rDNA gene produced a 

paraphyletic Eunicidae with Onuphidae nested within it, whereas with the analysis of a 

broader range of genes such as CO1, 16S rDNA, 18S rDNA and 28S rDNA, a monophyly 

in the Eunicidae was recovered (Zanol et al. 2010). Due to conflicting results, the 

phylogenetic status of Eunicidae remains uncertain (Zanol et al. 2010). 

 

Polychaetes belonging to the family Nereididae are commonly found in a wide range of 

habitats from shallow marine habitats to freshwater puddles in moist terrestrial 

environments (Sorokin 1995; Glasby 1999; Dean 2002; Bakken & Wilson 2005). 

Nereidids have characteristic flat bodies and well developed parapodia and are known 

to be omnivorous worms that have an eversible pharynx armed with chitonous jaws 

used to catch prey (Fauchald & Jumars 1979; Sorokin 1995). It has also been 

documented that some species of nereidids are filter feeders that consume algae, 

bacteria and detritus (Fauchald & Jumars 1979; Sorokin 1995; Dean 2002). On the 

intertidal rocky shores, nereidids are commonly found living in dead barnacle shells, 

mussel beds and seagrass beds (Fauchald & Jumars 1979; Sorokin 1995). Some 

polychaetes dig burrows and are lined with mucus secreted by the animal in soft 

bottom bethic habitats (Sorokin 1995; Dean 2002). Nereidids over time have developed 

special adaptations that enable them to inhabit areas of low salinity and semi-terrestrial 

habitats where other polychaete families cannot survive (Glasby 1986; Glasby 1999). 

These adaptations contribute to making the Nereididae a very successful family (Glasby 

1986; Glasby 1999). 

 

Nereidid worms are important food sources for many crustacean and fish farms around 

the world (Hamdy et al. 2014). Nereidids are sold as bait to fisherman and sea anglers 

and used as indicatiors for pollution (Bakken & Wilson 2005). They have also been the 

subject of various physiological and endochrinological research (Hamdy et al. 2014). 

There exists a lot of research on the reproductive strategies of nereidid polychaetes 
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(Glasby 1986) as compared to the lack of reproductive studies available for eunicids. 

The release of epitokes in the water column is the dominant reproductive strategy of 

marine nereidid worms. However, it has been found that nereidids found in low salinity 

habitats have developed brooding larvae to ensure the protection of their developing 

eggs and larvae from osmotic stresses (Glasby 1986). 

 

Nereididae, like Eunicidae, is considered to be another very diverse polychaete family 

of approximately 677 described species split among 44 genera to date (Bakken & 

Wilson 2005; de León-González & Goethel 2013). Several phylogenetic studies have 

recovered a monophyletic Nereididae family with the presence of flattened notopodial 

lobes and notochaetae with compound falicgers and/or spinigers as the synapomorphy 

for the family (Bakken & Wilson 2005). The large number of species described for the 

family has resulted in the formation of heterogeneous genera which have been 

errected primarily based on morphological characters (Bakken & Wilson 2005). 

Fitzhugh (1987) conducted the first phylogenetic study on nereidid polychaetes and 

recovered three valid subfamilies: Namanereidinae, Gymnonereidinae and Nereidinae 

(Bakken & Wilson 2005). Monophyly was found for subfamilies Namanereidinae and 

Nereidinae while Gymnonereidina was paraphyletic after using parsimony methods 

(Bakken & Wilson 2005). Within sub-family Nereidinae, 18 speciouse genera were 

described based primarily on presence, formation, morphology and number of 

paragnaths (Glasby 1999; Bakken & Wilson 2005; Bakken et al. 2009). Paragnaths are 

hardened scleroprotein structures that are found in different patterns on the eversible 

pharynx (Glasby 1999; Bakken & Wilson 2005; Bakken et al. 2009). The pharynx of 

nereidids has been divided into areas and assigned Roman numerals I – VII (Figure 2.1) 

from the basal ring to the maxillary ring (Glasby 1999; Bakken & Wilson 2005; Bakken 

et al. 2009). 
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Figure 2.1: Illustration of an everted pharynx of a typical nereidid worm. Each maxillary 

ring is divided into sections that have been assigned Roman numerals. Figure 

reproduced from Glasby (1999).     

 

There have been a few taxonomic revisions of the many genera present in the family 

Nereididae but there seems to be a lack of phylogenetic studies on the 

interrelationships between the genera and their associated species. The few 

phylogenetic studies that have been conducted were inconclusive and thus no valid 

relationships could be drawn from these studies (Bakken et al. 2009). 

 

2.1.1.    Aim of the study 
 

There is a lack of phylogenetic studies of the intertidal Nereididae and Eunicidae 

polychaete worms from South Africa. 

 

The aim of this study is to assess the phylogeny and taxonomy of common polychaete 

families found, in this case Nereididae and Eunicidae, on the intertidal rocky shores of 

the Eastern Cape and KwaZulu-Natal Coast in South Africa and to subsequently 

determine the phylogenetic relationships between and within these families. 
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2.2.   Materials and Methods 
 

2.2.1.   Study sites and sample collection 
 

In order to assess the phylogenetic structure and relationships of common intertidal 

polychaete worms found along the East Coast of South Africa, samples of polychaete 

worms of different families were collected over a year (June 2013 – April 2014, Table 

2.1). Six sites were sampled along the KwaZulu-Natal coast namely: Clansthal, Green 

Point, Reunion Rocks, Adlams, Ballito and Mabibi and two sites from the Eastern Cape 

coast namely: Mgazana 1 and Mgazana 2 (Figure 2.2, Table 2.1). Adlams and Mabibi 

beaches are located near Sodwana Bay, which is the northern-most part of KwaZulu-

Natal (Figure 2.2). Mabibi and Adlams are separated from one another by an extensive 

sandy flat and patches of rocky shores.  

 

 
Figure 2.2: Map showing the eight sampling localities from the Eastern Cape and 

KwaZulu-Natal coasts.  
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Adlams and Ballito are separated by patches of rocky shore and sandy flat beaches, 

Ballito and Reunion Rocks separated by sandy and rocky shores. A total of 44 

specimens belonging to two different families, Nereididae and Eunicidae were 

collected from the 8 different sites (Figure 2.2, Table 2.1). 

 

Individuals were found in mucus-sand tubes in algal mats inundated with sand, under 

worm rock and bait rock on the intertidal rocky shores and under barnacle shells. A 

crow bar was used to lift up rocks and an oyster knife was used to break off worm rock, 

barnacles and mussels from hard substrates. Polychaete worms have delicate soft 

bodies, therefore, to prevent losing body parts and breaking specimens tweezers were 

used to carefully pick out the encrusting worms. 

 

Worms were put into individual bags of sea water and taken to the lab for processing. 

At the laboratory, polychaete worms were anesthetized with 10% MgCl2 for 

approximately 30 minutes after which they were rinsed in distilled water to remove 

salt and finally preserved in 70% molecular grade ethanol for morphological analysis 

and DNA extraction. 

 

Table 2.1: Summary of collection data of polychaete worms collected at eight sample 

sites across two regions, KwaZulu-Natal (KZN) and Eastern Cape (EC) along the South 

African coast. The COI column indicates the number of individuals in that family 

sequenced for the COI gene. 

Family / Species Sample Site Co-ordinates Date 
collected COI 

Nereididae 
Perinereis cultrifera 

Pseudonereis 
variegata 

Perinereis sp. 
 

Eunicidae 
Marphysa corallina 

Clansthal  
KZN 

30°14'10.08"S  
30°47'18.21"E 22 June 2013 5 
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Eunicidae 
Marphysa corallina 

Green Point 
KZN 

30°15'0.61"S  
30°46'55.91"E 23 June 2013 2 

Nereididae 
Pseudonereis 

variegata 
 

Eunicidae 
Marphysa corallina 

Reunion 
Rocks  
KZN 

29°59'11.49"S  
30°57'51.00"E 13 June 2013 4 

Nereididae 
Nereis  falsa 

Pseudonereis 
variegata 
 

Eunicidae 
Marphysa corallina 

Mgazana 1 
 EC 

31°42'19.10"S  
29°24'49.19"E 9 July 2013 3 

Nereididae 
Nereis (Neanthes) 

indica  
Pseudonereis 

variegata 
 

Eunicidae 
Lysidice collaris 

Marphysa corallina 

Mgazana 2 
 EC 

31°41'6.27"S  
29°26'20.37"E 10 July 2013 7 

 

Nereididae 
Nereis falsa 

Nereis coutierei 
Eunicidae 
Marphysa corallina 

Ballito 
 KZN 

29°32'23.16"S  
31°13'25.90"E 

31 January 
2014 8 

Nereididae 
Pseudonereis 

variegata 
 

Eunicidae 
Marphysa corallina 

Adlams 
 KZN 

 
 

27°37'28.34"S  
32°39'22.52"E 

 
 

30 April 2014 

 
 

5 

Eunicidae 
Eunice antennata 

Nicidion cincta 
Marphysa corallina 

Mabibi 
 KZN 

27°25'49.06"S  
32°42'51.58"E 29 April 2014 10 
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2.2.2.   Morphological identification 
 

Polychaete worms are among the most common and abundant marine organisms that 

inhabit benthic environments (Fauchald & Jumars 1979). They are characterised by 

their multi-segmented bodies which are divided into three distinct regions, the 

prostomium, metastomium and pygidium (Figure 2.3). The prostomium forms the 

anterior region making up the “head” of the polychaete worm (Day 1967; Fauchald 

1977). The prostomium bears a wide variety and arrangement of sense organs which, 

depending on function, are known as antennae, palps and nuchal organs (Day 1967; 

Fauchald 1977). The presence, absence, position and arrangement of these sensory 

organs and the overall shape and size of the prostomium are very important for family 

and genus level identifications (Day 1967; Fauchald 1977). In some families such as the 

Nereididae, upon preservation in ethanol, the proboscis is everted and contains 

numerous chitonous teeth called paragnaths (Day 1967; Fauchald 1977). These 

paragnaths are different in shape and size and are arranged in various patterns which 

are useful in the identification to genus level (Day 1967; Fauchald 1977). For other 

predatory polychaete worms, the arrangement of teeth and the structure of jaws are 

used for identification to genus level (Day 1967; Fauchald 1977).  

 

The metastomium forms the body which is made up of numerous segments each 

consisting of a pair of parapodia (Day 1967; Fauchald 1977). Depending on the genus, 

the parapodia are either biramus including the formation of a dorsal notopodium and 

ventral neuropodium, or uniramus which consists of a single continuous lobe (Figure 

2.3) (Day 1967; Fauchald 1977). These rami consist of a chaetigerous lobe and 

comprise bundles of chitonous chaetae. These chitonous chaetae are highly important 

structures as they do not change upon preservation and depending on their position 

and morphology, are useful for differentiating species. The branchiae are respiratory 

organs found on various parts of the body and depending on family and genus they 

could be found concentrated in a bundle on the head region or as individual filaments 

on the dorso-lateral parts of the body (Day 1967; Fauchald 1977). The pygidium forms 

the posterior, anal, region of the body (Day 1967; Fauchald 1977). This region is not of 
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great importance for identification but the morphology of the pygidium differs 

between families and genera and is occasionally used. Pictures of the above-mentioned 

characters were viewed using a Nikon Az1000 AS stereo microscope and dissecting 

microscope and were photographed. Due to the chitonous setae being transparent in 

nature, methylated blue dye was used to stain the setae in order to identify the 

different morphological structures. All specimens were identified to species level by 

myself and none were sent to specialists for identifications. Day’s monographs on the 

polychaeta of Southern Africa (1967) were used to identify all specimens. 

 

 

Figure 2.3: Anatomy of a typical polychaete worm. Each segment on the body bears a 

pair of lateral parapodia which can either be biramus (two rami and setal lobes, 

outlined in yellow), or uniramus (one rami and one setal lobe, outlined in yellow).  

 

2.2.3.   DNA extraction and amplification 
 

Genomic DNA was isolated from polychaete tissue using the ZR Genomic DNA 

Tissue MiniPrep extraction kit (www.zymoreasearch.com) according to standard 
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protocol. Approximately 25 mg of tissue was cut from the posterior end of the worm 

and rinsed with distilled water to remove excess ethanol that could potentially 

inhibit activity of poteinase-K. Tissue was cut up into tiny pieces to ensure 

breakdown of cell walls and maximum yield of DNA. Tissue was placed in 

eppendorf tubes containing 95µl of molecular biology grade water, 95 µl of 2X 

digestion buffer and 10 µl of proteinase-K. Samples were vortexed and incubated in 

a dry bath incubator overnight at 55° C on a gyro- rocker.  

 

Samples were removed from the incubator the next day and to each eppendorf tube, 

700 µl of Genomic Lysis Buffer was added. Samples were vortexed and spun down for 

one minute at 10,000x g using an eppendorf centrifuge 5418 to remove insoluble 

debris. The supernatant was transferred to a Zymo-Spin IIC Column with a collection 

tube and centrifuged for one minute at 10,000x g. 

 

DNA pre-Wash buffer with a total volume of 200 µl was added to each Spin Column in 

a new Collection Tube and centrifuged at 10,000x g for one minute. Thereafter, 400 µl 

of g-DNA Wash Buffer was added to the spin column and centrifuged at 10,000x g for 

one minute. Lastly the spin column was put into a clean eppendorf tube and 100 µl of 

DNA Elusion Buffer was added to each sample and left to incubate for approximately 

60 minutes at room temperature after which the tubes were centrifuged at high speed 

for 30 seconds to allow for elution of DNA. The DNA was then stored in -80° C freezer 

until PCR.  

 

The isolated genomic DNA was amplified using the Polymerase chain Reaction (PCR) 

using the universal mitochondrial primers LCO1490 and HCO2198 (Vrijenhoek 1994). 

PCR amplifications were conducted using 12.5 µl of EconoTaq® PLUS GREEN 2X 

Mastermix (Lucigen), 7.82 µl of molecular biology grade water, 0.84 µl of forward and 

reverse primer, 1 µl/ml of Bovine Serum Albumin (BSA) and 2 µl of template DNA to 

make up a total reaction volume of 25 µl. COI reactions were amplified using a BioRad 

T100-Thermal Cycler. The PCR thermal cycle conditions for COI was carried out as 
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follows: 95° C for 3 minutes, followed by 35 cycles of 94° C for 30 seconds, 45° C for 30 

seconds 72° C for 1 minute, followed by 72° C for 7 minutes and a final cold storage of 

12° C. 

 

PCR products were run on a 1 % agarose gel (1 g agarose powder and 100 ml of 1X TBE 

buffer) using 3 µl of PCR product and 3 µl of 100bp ladder. Images were taken of gels 

using a BioRad Molecular Imager, Gel Doc™ XR+. PCR products were sent to Inqaba 

Biotechnical Industries (Pty) Ltd, Hatfield, South Africa for sequencing using an ABI 

3730 Capillary sequencer. 

 

2.2.4.   Genetic analysis 

 

Sequences were individually aligned and edited in BioEdit v7.0.9.0 (Hall 1999). 

Nucleotide ambiguities were found at different loci and corrected by searching for the 

strongest signal on the chromatograms of the respective sequences using the IUPAC 

ambiguity codes. The edited sequences were aligned using the ClustalW multiple 

alignment method, after which the mtDNA sequences were trimmed to a length of 

560bp. A search for highly similar sequences was conducted using BLAST algorithm in 

NCBI GenBank and these sequences were downloaded and used for further 

phylogenetic analyses (species names and accession numbers in Table 2.2). Sequences 

that could not be found in NCBI GenBank were downloaded from the Barcode of Life 

Database; BOLD (Sample ID’s and species names are found in Table 2.2). 

 

DnaSp v5 (Librado & Rozas 2009) was used to generate a haplotype data file for both 

COI and ITS1 sequences for phylogenetic analyses and polymorphism data. The 

generated haplotype data file was first used in MrModelTest 2.3 (Nylander 2008) to 

calculate a best-fit model of evolution. The Akaike Information Criterion (AIC) GTR+G 

model was chosen to construct a Bayesian tree using Mr Bayes 3.1.2 (Huelsenbeck & 

Ronquist 2001) and a Maximum Likelihood tree using Garli’s (Zwickl 2006) online web 

service. Garli parameters were set to default and were run for 1000 bootstrap 
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replicates. The Bayesian and Maximum Likelihood trees were rooted with Micrura 

dellechiajei which belong to the Phylum Nemertea and represent a distant ancestor of 

the polychaete group (accession numbers in Table 2.2). The Bayesian tree was 

calculated using 4 Markov chains of 1000 000 generations each, with every 100th tree 

sampled. The first 25 % trees were discarded as burn in, and the remaining was used to 

construct a 50 % majority-rule consensus tree with Bayesian Posterior Probability 

support for each clade. To estimate convergence between runs (stationarity of 

parameters), a graph of the log likelihood of sampled trees was plotted in Tracer v1.5 

(Rambaut & Drummond 2007). The mixing quality of all parameters was verified by 

analyzing the plot of the log likelihood versus sampled trees and the effective sample 

sizes (ESS) for all parameters calculated in Tracer v1.5.  An ESS of greater than 200 for all 

parameters when the two runs combined was considered as good mixing. An ESS of >200 

was obtained thus the results were accepted.     

 

Table 2.2: List of species used for phylogenetic analyses and their respective accession 

numbers from Genbank and Sample ID’s from the Barcode of Life Database (BOLD 

indicated in parenthesis). 

 

Family Species Name Accession Number 

Aphroditidae 

Aphrodita negligens AY894309.1 

Aphrodita longipalpa HM473298.1 

Aphroditella hastata HQ023985.1 

Dorvilleidae Schistomeringos longicornis HM473664   (BOLD) 

Eunicidae 

Eunice amoureuxi GQ497538.1 

Eunice antarctica GQ497532.1 

Eunice cf. antilensis GQ497533.1 

Eunice cf. insularis GQ497537.1 

Eunice mutilata GQ497540.1 

Eunice notata GQ497544.1 

Eunice roussaei GQ497543.1 

Eunice torquata GQ497539.1 
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Eunice cariboea DQ317859.1 

Eunice mikeli GQ497558.1 

Eunice valens GQ497534.1 

Lysidice collaris GQ497557.1 

Lysidice ninetta GQ497564.1 

Marphysa angeli GQ497550.1 

Marphysa mossambica JX559751.1 

Marphysa sp. KF931024.1 

Marphysa brevitentaculata GQ497548.1 

Marphysa californica GQ497552.1 

Marphysa cf. hentscheli GQ497551.1 

Maprhysa disjuncta GQ497549.1 

Marphysa regalis GQ497562.1 

Marphysa sanguinea GQ497547.1 

Marphysa viridis GQ497553.1 

Lumbrineridae 

Lumbrinereis erecta HM473450     (BOLD) 

Lumbrinereis fragilis GU672261      (BOLD) 

Lumbrinereis japonica HM473451     (BOLD) 

Nereididae 

Alitta sp. HM473289.1 

Alitta virens  GU672562.1 

Hediste japonica AB603758.1 

Hediste atoka AB603887.1 

Neanthes acuminata KJ539130.1 

Nereis aibuhitensis JX661455.1 

Nereis denhamensis JX392068.1 

Nereis pelagica HQ023592.1 

Nereis heterocirrata KC800626.1 

Perinereis falklandica HQ705184.1 

Perinereis longidonta HQ705191.1 

Perinereis gualpensis HQ705188.1 

Perenereis sp. EU352319.1 

Perinereis vallata HQ705196.1 

Platynereis sp. HM473612.1 
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Platynereis dumerilii KF815726.1 

Pseudonereis anomala JX420271.1 

Pseudonereis variegata HQ705197.1 

Simplisetia cf. erythraensis EU835670.1 

Onuphidae 

Diopatra dentata GQ497522.1 

Diopatra macroensis FJ646632.1 

Diopatra micrura GQ456161.1 

Diopatra neopolitana GQ456164.1 

Diopatra sp. JQ769509.1 

Onuphis elegans  GQ497525.1 

Nothria conchylega HM473514 

Paradiopatra quadricuspis GQ497523.1 

OUTGROUP 

Lineidae Micrura dellechiajei KF935514.1 
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2.3.   Results 
 

2.3.1.   Morphology 
 

A total of 44 individuals were collected from eight different sites across two regions: 

KwaZulu-Natal and the Eastern Cape in South Africa (Table 2.1). Using the diagnostic 

features mentioned in the Material and Methods (section 2.2, p.30) together with Day’s 

polychaete guides for Southern Africa, the 44 specimens identified belonged to two 

families: Nereididae and Eunicidae. The various species names, collection sites, dates 

and geographic co-ordinates can be found in Table 2.1 and a map of sample sites in 

Figure 2.2. For family Nereididae, 6 species were identified across 3 genera (Perinereis, 

Pseudonereis and Nereis) (Table 2.1). Identifications for family Eunicidae included a total 

of 4 genera (Marphysa, Lysidice, Eunice and Nicidion) and 4 species (Table 2.1). 

Marphysa corallina was commonly found throughout all sample sites and found in large 

numbers.  

 

2.3.2.   Genetic analyses 
 

A fragment of 560bp was sequenced for 44 individuals for the universal mitochondrial 

cytochrome oxidase subunit 1 marker. A total of 548 sites were analysed with 12 of 

them counted as missing data or gaps. There were 103 monomorphic or invariable sites 

and 445 variable (polymorphic) sites. There were 763 mutations, with 358 parsimony 

informative sites and 87 singleton haplotypes. The GC content for the 548 analysed sites 

was 0.428. 

 

The haplotype diversity for 44 sets of sequences was 0.963 and the nucleotide diversity 

was 0.246 with the average number of nucleotide differences of 135. A total of 29 

haplotypes were obtained from the 44 sequences spread across 8 samples sites. 

Haplotype frequency was the highest for Ballito and Mabibi (24%) indicative of a very 

diverse population with a large number of singleton haplotypes. Clansthal, Mgazana 2 
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and Adlams had frequencies of 17%. Reunion Rocks and Mgazana both had a 

haplotype frequency of 10% and the lowest frequency was recorded for Green Point 

(3%).  

 

Individuals sampled from both families, Eunicidae and Nereididae formed two distinct 

clades in their respective families as in the consensus tree (Figure 2.4). Nereididae 

formed a monophyletic clade and had strong support for both bayesian and maximum 

likelihood analysis (1/100). However, Eunicidae formed a polyphyletic clade with 

Lubrineridae and Onuphidae nested within it. This polyphyletic Eunicidae clade was 

strongly supported by bayesian analysis only (0.99) (Figure 2.4). 

 

In the Eunicidae clade, Nicidion cincta (sampled for this study) grouped closely with 

Nicidion notata in a clade strongly supported by Bayesian and ML analyses (1/100) 

(Figure 2.4). Nicidion mikeli grouped as a sister taxon to the N. notata and N. cincta 

grouping with moderate to weak support (B: 0.92, ML: 70 respectively). A second 

Nicidion clade was observed with high bayesian support (1) and weak ML support (60) 

(Figure 2.4) and consisted of species previously belonging to Marphysa and Eunice. The 

majority of species belonging to Marphysa grouped into a strongly supported clade for 

bayesian analysis (1) and was weakly supported by ML analysis (70). Marphysa 

corallina (sampled in this study) formed an exclusive strongly supported clade (1/100) 

and is positioned as sister taxa to other Marphysa species (Figure 2.4).  

 

Lysidice collaris sampled in this study did not group in with other Lysidice species and 

instead grouped as a sister taxon to the bigger Marphysa clade with strong Bayesian 

support (0.97). The grouping of Leodice antennata as a sister taxon to L. antarctica, L. 

valens, L. cf. antillensis and L. torquata had strong bayesian support (1) and weak ML 

support (60). Onuphidae in my analysis was found to be polyphyletic with Onuphis 

elegans grouping as an outgroup and two other species (Paradiopatra quadricuspis and 

Nothria conchylega) nesting within Eunicidae (Figure 2.4). The larger Onuphidae clade is 

a sister clade to Eunicidae and occupies a more basal position with weak support 
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(Figure 2.4). 

 

Perinereis cultrifera and most Pseudonereis variegata, from the strongly supported 

monophyletic Nereididae clade, grouped into a well-supported clade (1/100) and forms 

a sister clade to Perinereis sp. This Perinereis-Pseudonereis clade forms a sister clade to 

the Alitta clade with little support (Figure 2.4). Nereis falsa, Nereis coutierei and Nereis 

indica forms a sister grouping to Neanthes acuminata which has no bayesian support 

and is weakly supported by ML analysis (70) (Figure 2.4). The remaining Nereis 

coutierei individuals group together with Platynereis sp. which are well-supported by 

Bayesian analysis (1) and weakly supported by ML analysis (70) (Figure 2.4). The last 

Pseudonereis variegata species groups together with Platynereis dumerilii and has 

weak Bayesian support (0.7) (Figure 2.4). The overall well-supported monophyletic 

Nereididae clade is observed to be a sister clade to the polyphyletic Aphroditoididae 

clade which assumes a more basal grouping that has strong Bayesian support (1) 

(Figure 2.4). All inner and outer nodes for Nereididae and Eunicidae have overall 

moderate to strong support for bayesian and maximum likelihood analyses (Figure 2.4). 
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Figure 2.4: Bayesian 50% majority-rule consensus tree of Polychaete worms. Families Eunicidae (Green) and Nereididae (pink) were 

collected from South Africa. Support for clades: Bayesian and Maximum Likelihood (%).
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2.4.   Discussion 
 

The results from the present phylogenetic study have not recovered a monophyletic 

Eunicidae family based on the placement of Lumbrineridae and Onuphidae species 

nesting within Eunicidae. The larger eunicid clade groups as a sister group to the 

Onuphidae. This result is consistent with several other phylogenetic studies. Zanol et al. 

(2014) recovered a moderately supported monophyletic Eunicidae clade that formed a 

sister clade to Onuphidae using four different genes. Struck et al. (2006) obtained 

similar results when using 16 taxa in his analysis, however, when he included 43 taxa 

he found that Onuphidae was nested within a monophyletic Eunicidae. The nesting of 

Onuphidae within Eunicidae was also observed in the present study where 

Paradiopatra quadricuspis and Nothria conchylega (Figure 2.4) were placed as a 

moderately supported sister clade to Leodice.  Eunicidae species do not share any 

synapomorphies with Onuphidae. These include distinct frontal lips and well developed 

ceratophores at the base of the antennae and palp. As a result the nesting of 

Onuphidae within a monophyletic Eunicidae is considered uncertain (Struck et al. 

2006). Nonetheless, the grouping of Onuphidae as a sister clade to Eunicidae observed 

in this study is a more plausible hypothesis. Nereididae formed a sister clade to the 

Aphroditoidea and had strong Bayesian support. Aphroditoidea assumed a more basal 

position on the tree and thus could have diverged from the last common ancestor first. 

Alternatively, it should be noted that a limited number of polychaete families were 

included in this analysis and the grouping of Aphroditoidea as a basal clade could be a 

consequence of incomplete taxa analysis. 

 

The eight currently valid genera belonging to Eunicidae were analysed by Zanol et al. 

(2014). Their study revealed a monophyletic Palola and Euniphysa, a polyphyletic 

Marphysa and Eunice and a paraphyletic Lysidice with Nematonereis nested within it. 

Palola, Euniphysa and Nematonereis were not analysed in the present study as no 

specimens were obtained in the field. The remaining two genera Nicidion and Leodice 

were previously invalid but were resurrected in Zanol et al (2014). Five of the eight 

genera in the Eunicidae investigated in Zanol et al. (2014) have been included in the 
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present analysis; Eunice, Lysidice, Marphysa, Leodice and Nicidion. Eunice and Marphysa 

in the present study were observed to be polyphyletic which is consistent with the 

results presented by Zanol et al. (2007; 2010; 2014). Fauchald (1970) and Orensanz 

(1990) divided Marphysa into informal groupings based on the morphology of the 

chaetae present. Individuals placed into the sanguinea grouping include M. sanguinea, 

M. viridis, M. brevitentaculata, M. californica and M. regalis (Fauchald 1970; Orensanz 

1990; Glasby & Hutchings 2010). Results from the present study recovered this 

sanguinea group but M. regalis has been placed out and its relationship is unresolved 

(Figure 2.4). Nonetheless, Zanol et al. (2010; 2014) found that the sanguinea-like 

individuals grouped into a separate clade and assumed a basal position to the aenae 

group, thus, the observed groupings in the present study are congruent with their 

results.  

 

The aenae group described by Glasby & Hutchings (2010) includes Marphysa corallina 

and M. disjuncta also sampled in this study, among other individuals, and has been 

found to form an exclusive well supported clade (excluding M. disjuncta). Marphysa 

disjuncta has been placed outside the aenae grouping and its relationship is also 

unresolved. In the phylogenetic study conducted by Zanol et al. (2014), M. disjuncta 

grouped into the sanguinea-like morpho-group but presented as a polytomy. Other 

studies investigating the phylogeny of Eunicidae have not included M. corallina in their 

analyses making it difficult to draw comparisons with the present findings. Regardless, 

Zanol et al. (2010) found the formation of another morpho-group described for the 

genus, the belii-group. These informal morpho-groups described by Glasby & Hutchings 

(2010) should be taken into consideration. It is proposed that a large scale study be 

carried out to include all the morpho-groups to determine whether they should each be 

assigned the status of genus or remain as different lineages. 

 

The recently resurrected Nicidion was recovered in the present study and comprises of 

two clades. Nicidion amoureuxi, N. mutilata, N. cf insularis, N. angeli,  

N. cf hentscheli and N. cariboea all comprise of a moderately supported clade (Figure 



47 
 

2.4). However, the type species: N. cincta described for this genus grouped into a sister 

clade to the above-mentioned group comprising of N. mikeli and N. notata. Previously, 

Nicidion was described based on the absence of branchiae but it was decided that this 

character was not appropriate in defining a genus thus Nicidion was considered 

obsolete (Zanol et al. 2010). Nonetheless Zanol et al. (2014) resurrected the genus and 

revised it to include branchiae and abranchiate species such as those previously 

belonging to Marphysa and Eunice and species possesing dark subacicular hooks such 

as N. mutilata and N. cincta. Thus our results strongly support the resurrection of 

Nicidion as the species described for the emended genus in Zanol et al. (2014) have all 

been analysed in the present study and group into two moderately supported Nicidion 

clades.            

 

Leodice was recovered and represents a strongly supported clade in the present 

analysis (Figure 2.4). Leodice antennata is the type species for the genus and groups 

into an exclusive clade with L. antarctica, L. cf antillensis, L. valens, and L. torquata. 

Previously, diagnostic characters for Leodice were not described properly and many of 

the characters were indistinguishable from Eunice. As a result Leodice was synonymized 

with Eunice (Zanol et al. 2007; 2010; 2014). Despite this, many studies have constantly 

recovered a separate clade containing E. antennata together with other Eunice species 

(Zanol et al. 2007). This led to the resurrection and revision of the genus to include 

those species with regularly articulated prostomial appendages; tridentate true-

compound falcigers and subacicular hooks (Zanol et al. 2014). Within Leodice, L. cf 

antillensis, L. torquata and other Leodice species have constantly grouped together as a 

sister clade to the main clade containing the type species for this genus (L. antennata), 

thus it has been considered that it may represent a separate genus upon further 

analysis (Zanol et al. 2014). The present results revealed a similar pattern where Leodice 

cf antillensis grouped together with Leodice valens in a separate clade to the type 

species clade with moderate to low Bayesian support. The outer node support for the 

two clades as sister clades had strong Bayesian support. Thus it may well represent a 

separate genus. Species described for the emended genus Leodice in Zanol et al. (2014) 



48 
 

have been analysed in the present study and form a strongly supported clade, thus, my 

results support the resurrection of Leodice. In addition, my results support the 

hypothesis proposed by Zanol et al. (2014) regarding the splitting of Leodice due to the 

constant recovery of two separate clades within this genus.  As a result more studies 

including a large number of taxa from the genus Leodice are warranted to determine 

whether these clades are actually separate genera or just separate lineages.   

 

Lysidice collaris examined in this study was placed as a sister taxon to the exclusive 

Marphysa clade and not among the Lysidice clade itself and was well supported by 

Bayesian analysis (Figure 2.4, p.44). During the growth stages of eunicid polychaetes, it 

has been found that there are many irregular stages of development of the prostomial 

appendages (Fauchald 1992a). The discontinuous development of the appendages is 

found to correlate with a different genus and thus have been named accordingly 

(Fauchald 1992a; Parra-Carrera & Salazar-Vallejo 1998). Marphysa sanguinea is an 

example of a eunicid species that has three developmental stages corresponding with a 

different stage of prostomial appendage development (Prevedelli et al. 2007). The first 

is the nematonereis stage where at 18 chaetigers one antenna develops. The second is 

the lysidice stage where approximately 20-30 chaetigers and two antennae develop. 

The last is the amphiro stage where at 60 chaetigers; the last pair of antennae develops 

(Prevedelli et al. 2007). Taking this into consideration, a plausible explanation would 

be that L. collaris was misidentified. It could have represented a juvenile in the lysidice 

developmental stage of a species belonging to Marphysa that would have resulted in its 

placement as a sister taxon to the strongly Bayesian supported Marphysa clade. To 

support this claim, the sequence was blasted in GenBank and the most similar 

sequence found with 97% query cover was that of Marphysa sanguinea. 

 

The genera belonging to family Nereididae, analysed in the present study, all belong to 

the subfamily Nereidinae (Baken & Wilson 2005). Subfamily Nereidinae includes all 

individuals possessing hardened structures on their pharynx termed paragnaths 

(Glasby 1999; Bakken & Wilson 2005). The monophyly of Nereidinae has been 
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recovered and the synapomorphy for the group is a conical shaped paragnath on the 

maxillary ring and oral ring (Bakken & Wilson 2005). In the present study, the 

Nereidinae have a well-supported monophyletic clade congruent with that previously 

reported for the group. However, relationships between the genera and their 

respective species seem to be complex. 

 

Within the Nereidinae, the assignment of species to genera is based on the number, 

morphology and arrangement of paragnaths present on the pharynx (Glasby 1999; 

Bakken & Wilson 2005). In a study conducted by Bakken (2007) the Pseudonereis genus 

with the unique character of closely spaced conical paragnaths in pectinate-like rows 

on the pharynx represents a monophyletic group. In my study Pseudonereis is a 

polyphyletic group with Perinereis cultrifera nested within it forming a well-supported 

clade with Perinereis sp. placed as a sister taxon to the clade. 

 

In a revision by Bakken (2007) of Pseudonereis the shield shaped bar paragnaths 

present on area VI (Figure 2.1, p.29) on the pharynx was shared by both Perinereis and 

Pseudonereis. As a result, Perinereis cultrifera could have been a misidentification that 

could actually be a species belonging to Pseudonereis due to homoplasy. Alternatively, 

it could be that Perinereis cultrifera was identified correctly and that Pseudonereis was 

not a monophyletic genus due to the strong bayesian and ML support of this grouping. 

In addition, the grouping of Perinereis sp. as a sister taxon to the clade supports the 

idea that Perinereis cultrifera was most likely a correct identification. Nonetheless, the 

former is a more plausible explanation as the support for Perinereis sp. as a sister taxon 

to the Perinereis-Pseudonereis clade was weak. Strikingly, an individual of Pseudonereis 

variegata, sampled in the present study, grouped into a clade with Platynereis 

dumerilii. This could possibly represent a misidentified species, however, due to weak 

support, this grouping was not considered. 

 

Two other species of Pseudonereis (sequences obtained from Genbank, Table 2.2, p.38) 
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grouped out of the Pseudonereis group, with one Pseudonereis variegata sharing a 

haplotype with Perinereis falklandica, thus placing it on the same branch and 

Pseudonereis anomala grouped as a polytomy. Due to the large number of species 

described for many of the genera within the subfamily Nereidinae, a majority of the 

genera have been split into informal groups (Bakken & Wilson 2005). The unresolved 

placement of Pseudonereis anomala in the larger Nereididae/Nereidinae clade could 

be attributed to the fact that it possibly resembles its own informal grouping based on 

the unique character found for this species: notopodial homogomph falcigers and 

conical shaped paragnaths on area VI of the pharynx (Bakken & Wilson 2005). Due to 

the unresolved placement of species, this explanation cannot be validated and a larger 

number of Pseudonereis species need to be included to determine whether the 

suggested informal grouping is viable. It is assumed that P. variegata (obtained from 

Genbank, Table 2.2 p. 38) could probably be a misidentification as it shares a haplotype 

with P. falklandica (Glasby 1999; Bakken & Wilson 2005). 

 

Nereis is one of the largest and most speciose genera within the Nereidinae (Glasby 

1999; Bakken & Wilson 2005). It contains approximately 150 described species split 

into several informal groups (Bakken & Wilson 2005). From the present study Nereis 

has been split into two separate groups with the first resulting in a moderately 

supported sister grouping with Neanthes acuminata and the second a well-supported 

sister group to Platynereis sp. A large number of species previously described in 

Neanthes have been observed to nest among various Pseudonereis species (Bakken 

2007; Bakken & Wilson 2005). This led to the revision and consequent placement of 

some Neanthes species in Pseudonereis because of initial misidentifications (Bakken 

2007; Bakken & Wilson 2005). In the phylogeny conducted by Bakken & Wilson (2005) 

Neanthes was found to be a paraphyletic genus and many species of Nereis were found 

nested within a clade containing species belonging to Neanthes and Perinereis, which is 

also evident in the current study. These three genera have been found to possess a 

pointed bar paragnath on area VI  next to the jaw with small conical shaped paragnaths 

on areas VII and VIII (Figure 2.1, p.29) (Bakken & Wilson 2005). Regardless, it should be 



51 
 

noted that the Nereis grouping with Neanthes acuminata has moderate and weak 

support for bayesian and maximum- likelihood analyses and will not be considered.  

 

The well supported Nereis coutierei clade formed an unusually strongly supported 

clade with Platynereis sp. This is strange because Platynereis is known to be a distantly 

related genus to Nereis which is known for unique pectinate paragnaths (Bakken 2007). 

The present results are thus inconclusive and more studies need to be conducted to 

include a large number of taxa from both these genera in order to determine whether 

they are closely related. 

 

In conclusion, monophyly was not obtained for Eunicidae from the present study due 

to the nesting of Lumbrineridae and Onuphidae within this clade. Genera within 

Eunicidae were observed to be polyphyletic. Eunicidae was also found to be a 

monophyletic family from previous studies. The polyphyletic status of genera 

Marphysa and Eunice are consistent with previous results obtained from other studies. 

Lysidice collaris sampled in this study is assumed to be a misidentification due to its 

placement as a sister taxon to the exclusive Marphysa clade. The misidentification 

could be a result of the discontinuous peristomial appendage development during the 

growth stages evident for this family. Misidentifications of this sort are fairly common 

as the appendage growth stages mirror that of the different genera found in the 

Eunicidae family (Fauchald 1992a). Lysidice collaris is therefore assumed to be a 

juvenile of a Marphysa species justified by its position on the tree. Nicidion and Leodice 

represent recently resurrected and emended genera. Both have been recovered in the 

present study thus providing strong support for these revisions. Monophyly was 

recovered for the Nereididae, subfamily Nereidinae in the present analysis but 

relationships between the speciose genera within this subfamily are intricate and 

complicated. This could be attributed to the large number of homoplastic paragnath 

characters observed which overlap in numerous genera. Also a large number of species 

belonging to family Nereididae are known to be cryptic species (Glasby 1999; Bakken & 

Wilson 2005). As a result the numerous genera need to be revised and re-described 
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using characters other than paragnath morphology in order to identify genus level and 

species level relationships in the sub-family Nereidinae. Thereafter species need to be 

investigated to separate out cryptic species. 
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Chapter three: Genetic structure and 

demographic history of  

Marphysa corallina (Annelida: Eunicidae) 

from South Africa 
 

3.1.  Introduction 
 

Many natural systems, marine and terrestrial, are modified to some extent by 

anthropogenic influences, thus, understanding the patterns of connectivity and 

demographic history of taxa is essential knowledge that can be used to manage these 

systems successfully (Lowe & Allendorf 2010; Kelly & Palumbi 2010; Ayata et al. 2010). 

In the marine environment, the genetic connectivity of populations is quantified by the 

dispersal of larvae, juveniles, adults and the successful settlement of recruits (Palumbi 

1994; Grosberg & Cunningham 2001; Palumbi 2003; Kusumo et al. 2006; Hellberg 2009; 

Weersig & Toonen 2009; Kelly & Palumbi 2010; Skillings et al. 2010; Villamor et al. 

2014; Kamel et al. 2014). However, the individual movement of larvae is difficult to 

track in such a vast body of water where passive larvae are influenced by oceanic 

currents and can travel for thousands of kilometres at a time (Palumbi 1994; Grosberg 

& Cunningham 2001; Hellberg et al. 2002; Palumbi 2003; Lowe et al. 2009; Marko & 

Hart 2011, Selkoe & Toonen 2011). Therefore, population genetic tools are indirect 

methods that are commonly used to detect the genetic trail left behind by migrating 

individuals (Palumbi 1994; Grosberg & Cunningham 2001; Hellberg et al. 2002; Palumbi 

2003; Lowe et al. 2009; Marko & Hart 2011, Selkoe & Toonen 2011).  

 

Populations that have a constant influx of genetic material tend to be more genetically 

diverse and as a result these populations are at a lower risk of becoming extinct as 

opposed to populations that are genetically isolated (Lowe et al. 2009; Lowe & 
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Allendorf 2010; Bijma 2011; Sexton et al. 2011; De Jong et al. 2011; Peery et al. 2012; 

Hobbs et al. 2013). This is because a low genetic diversity indicates that populations are 

not equipped with a diverse gene pool to allow for adaptation to changing 

environments, whereas those populations that exhibit high genetic diversities are most 

likely to adapt and thus survive (Lowe et al. 2009; Bijma 2011; Sexton et al. 2011; De 

Jong et al. 2011; Peery et al. 2012; Hobbs et al. 2013). 

 

The majority of the marine taxa are characteristic of having a pelagic larval stage during 

their life cycle (Palumbi 1994). This pelagic stage and the duration that the larvae stay in 

the water column allows for greater or lesser dispersal in the ocean (Palumbi 1994; 

Grosberg & Cunningham 2001; Palumbi 2003; Weersig & Toonen 2009; Larsson 2009; 

Reece et al. 2010; Kelly & Palumbi 2010; Guzman et al. 2011). It has been concluded 

that populations which have long lived planktonic stages are likely to be highly 

connected to one another and have wider distributional ranges, functioning as 

panmictic populations that have shallow genetic structuring (Palumbi 1994; Grosberg 

& Cunningham 2001; Palumbi 2003). On the other hand, organisms exhibiting short 

pelagic larval stages have larvae that do not travel such distances (Palumbi 1994; 2003; 

Kelly & Palumbi 2010). These populations accumulate genetic differences enabling 

them to diverge from one another causing them to function as independent self-

breeding/ self-recruiting populations resulting in genetically well-structured 

populations across the ocean (Palumbi 1994; Grosberg & Cunningham 2001; Palumbi 

2003; Kelly & Palumbi 2010). 

 

With the advent of cheap molecular techniques a large number of population genetic 

studies have been conducted on different marine taxa. These studies had found that 

contrary to the theory that high dispersal potential leads to genetic homogeneity, 

numerous marine species form genetically well-structured populations regardless of 

whether they have high dispersal potentials (Uthicke & Benzie 2003; Marko & Hart 

2011; Kamel et al. 2014). For example, McGovern et al. (2010) conducted a study to 

assess the genetic structure of two invertebrate species, the bat star Patiria miniata 
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and the frilled dogwhelk snail Nucella lamellose; occupying the same region with 

contrasting larval biology. The bat star has a long lived planktonic larval stage whereas 

the dogwhelk snail lacks a planktonic larval stage (McGovern et al. 2010). The gene flow 

analysis revealed that populations of the bat star were differentiated from one another 

displaying structured populations whereas the dogwhelk snail displayed high genetic 

connectivity and no genetic structure. Due to these contradicting results, a theory of 

recent colonisation was then analysed using nuclear loci and revealed that the bat star 

populations represented evolutionarily old populations which over time had led to 

well-structured populations (McGovern et al. 2010). The dogwhelk snail represented 

populations that were relatively young and thus had not accumulated genetic 

differences over a short evolutionary time (McGovern et al. 2010; Marko & Hart 2011). 

In contrast to this study, many recent investigations on shallow water marine 

invertebrates have revealed that populations with high dispersal abilities are 

genetically structured such as those displayed by the broadcast spawner species of the 

genus Palola (Schulze 2006). As a result the use of population genetic techniques 

together with phylogenetic trees in a geographical context; known as phylogeography; 

provide a very powerful tool to uncovering the contemporary genetic structure of taxa 

and historical demographic events that have occurred (Bohonak 1999; Silva & Russo 

2000; Mila et al. 2000; Grosberg & Cunningham 2001; Zink 2002; Plouviez et al. 2009; 

Kelly & Palumbi 2010; Marko et al. 2010; Marko & Hart 2011; Kamel et al. 2014). 

 

Phylogeographic studies draw knowledge from a variety of disciplines such as 

population genetics, ecology, phylogenetic systematics, geology, and palaeontology in 

order to make plausible conclusions for the spatial distribution and structuring of 

populations (Avise 2000; Zink 2002; Duran et al. 2004). Dispersal mechanisms and 

vicariant events are two fundamental theories used for the explanation of 

differentiated and connected populations over spatial and geological scales (Palumbi 

1994). When lineages occupy present day distributional ranges, the theory of the 

dispersing passive or active larvae are used to interpret these distributions whereas if 

populations have undergone genetic differentiation, the vicariant event theory is used 
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to determine how and why these populations have accumulated mutational 

differences (Avise 2000). 

 

Avise et al. (1987) characterised four phylogeographic structures that natural 

populations could represent: Type 1 are those populations that have deep haplotype 

trees and are geographically well structured, Type 2 are those populations that are not 

structured but have deep haplotype trees, Type 3 are those populations that exhibit a 

shallow haplotype tree but are genetically structured and lastly Type 4 are those 

populations that have a shallow haplotype tree and no genetic structure. Types 1 – 3 

are characterised by vicariant events where populations become separated and 

undergo genetic drift due to a geological or ecological barrier and begin to accumulate 

mutations as a result (Avise et al. 1987). Type 4 populations produce star-like 

haplotypes and represent populations with either continuous gene flow (dispersal), 

relatively recent expansions from bottlenecked populations or range-wide selective 

sweeps (Avise et al. 1987; Nielson 2005; Lowe et al. 2009). In a range-wide selective 

sweep a favoured haplotype is selected for and consequently spread across the 

distributional range of the species (Avise et al. 1987; Rogers 1995; Mila et al. 2000; 

Nielsen 2005; Lowe et al. 2009; Mirol et al. 2008). 

 

Polychaete worms are a characteristically unique class among the metazoans for 

exhibiting a wide range of reproductive mechanisms (Fauchald & Jumars 1979; Levin 

1984; Wilson 1991; Giangrande 1997; McHugh & Rouse 1998; Gambi & Cigliano 2006; 

Prevedelli et al. 2007; Malathi et al. 2011). Amongst the families and orders of the 

Polychaete clade, 18 reproductive modes have been identified (Wilson 1991; 

Giangrande 1997). According to Wilson (1991), closely related species generally do not 

exhibit such a variety of reproductive mechanisms. The reproductive plasticity of these 

marine worms enables them to successfully colonise new habitats, ultimately resulting 

in their tremendous success in the marine environment (Wilson 1991; Prevedelli et al. 

2007). 
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Eunicids are a diverse group of polychaete worms that are found in a variety of habitats 

(Sorokin 1995; Struck et al. 2006; Zanol et al. 2014; Kurt Sahin 2014). They are also 

known to be detrimental to reefs by burrowing in to them (Fauchald & Jumars 1979). 

The epitokes (a sexually mature life stage filled with gametes) of the Palola worms 

(Eunicidae) are consumed by the natives inhabiting the South Pacific Islands (Schulze 

2006). Diopatra aculata, Marphysa mulawa and Marphysa sanguinea are used as bait 

for recreational fishing in a large number of regions such as the United States, Japan, 

Mediterranean Coast and Australia (Hutchings & Karageorgopolous 2003; Lewis & 

Karageorgopolous 2008). Polychaete biomass is used in the feed of many finfish and 

crustacean aquaculture industries (Struck et al. 2007), making them a culturally and 

commercially important polychaete group. 

 

Marphysa is one of eight valid genera within the family Eunicidae and is considered to 

be speciose with approximately 79 described species (Glasby & Hutchings 2010; Zanol 

et al. 2014; Katsiaras et al. 2014; Kurt Sahin 2014). The species are known to have a 

worldwide distribution inhabiting temperate and tropical seas, estuaries, rocky 

intertidal areas and ocean depths of 200 m and have a variety of feeding habits ranging 

from herbivory to omnivory (Fauchald & Jumars 1979; Sorokin 1995; Huthcings & 

Karageorgopoulos 2003; Lewis & Karageorgopoulos 2008; Glasby & Hutchings 2010; 

Hutchings 2012). Diagnostic characters such as the presence of 5 antennae and the 

absence of peristomial cirri, define Marphysa (Glasby & Hutchings 2010; Katsiaras et al. 

2014; Kurt Sahin 2014). Fauchald (1970) divided Marphysa into 4 morpho-groups based 

on the morphological variation of the chaetae found in the neuropodia (lower bundle).  

These groups are named according to the oldest species described for that particular 

variation in chaetae. Group A is the Mossambica group consisting of limbate chaetae 

only, Group B is named the Sanguinea group and is characterised by compound 

spinigerous chaetae, Aeana group is Group C and has compound falcigerous chaetae 

only and lastly group D which is known as the Belli group is represented by both 

compound falcigerous and spinigerous chaetae (Fauchald 1970). Glasby & Hutchings 

(2010) described a 5th grouping called the Teretiuscula group which are characterized 
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by compound spinigerous chaetae and limbate capillaries. Unfortunately, many 

taxonomists have based some descriptions of species belonging to Marphysa on the 

juvenile stages, thus they have incorrectly identified and named species due to a lack 

of prostomial appendages at that developmental stage (Kurt Sahin 2014). 

 

Marphysa coralline, a burrowing eunicid, (species of interest in the present study) has 

been classified by Day (1967) to have a tropical indo-west distribution. Taxonomically, 

M. corallina is characterized by having a bilobed prostomium, 5 antennae, a pair of 

reniform eyes, branchiae present throughout the body, absence of peristomial cirri, 

rounded prostomium with a flattened body and tapering pygidium (Day 1967). The 

type locality of this species is the Senegalese and Hawaiian exclusive economic zones 

(WoRMS 2015). There have been records of M. corallina from Mozambique, 

Madagascar, New Zealand, the Red Sea, Kahului, Australia, Marshall Islands, 

Lakshadweep Island and the Jaluit Atoll (Day 1967). Marphysa corallina is a common 

burrowing eunicid found along the KwaZulu-Natal and Eastern Cape coast of South 

Africa. Burrowing polychaetes are known to aerate anoxic sediments thus contributing 

to a healthier environment for other invertebrate species (Dean 2002). As a result, 

Marphysa corallina is considered to be an ecologically important species.   

 

There are no known studies that have investigated the life history traits of Marphysa 

corallina. However, the reproductive cycles of closely related species, such as 

Marphysa sanguinea, Marphysa gravelyi, Marphysa borradailei and Marphysa 

fauchaldi have been studied. It has been found that M. sanguinea is an iteroparous, 

gonochoric species that spawns in synchrony at the population level (Prevedelli et al. 

2007; El Barhoumi et al. 2013). Marphysa sanguinea produces lecithotrophic larvae 

that spend approximately 60 hours in the water column before hatching (Prevedelli et 

al. 2007; El Barhoumi et al. 2013). Once the juveniles have hatched they settle to the 

bottom where they create tubes made of mucus and sediment and live out the rest of 

the summer (Prevedelli et al. 2007; El Barhoumi et al. 2013). The anterior region of the 

worm begins to develop musculature at the end of summer allowing the worm to 
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burrow into the sediment where it will live permanently (Prevedelli et al. 2007; El 

Barhoumi et al. 2013). Marphysa gravelyi, M. fauchaldi and M. borradailei are 

characterized by producing embryos encapsulated in jelly sacs on the benthos (Malathi 

et al. 2010). Various developmental stages occur in this jelly mass for approximately 84 

hours, after which lecithotrophic larvae are produced and consequently settle on the 

sediment (Malathi et al. 2010). As a result species belonging to Marphysa that have 

been studied thus far are known to exhibit short lived and lecithotrophic larvae 

(Schulze 2006), leading to the assumption that M. corallina also exhibit the same larval 

biology. 

 

3.1.1.   Aim of the study 
 

To date, there have been no population genetic studies done on Marphysa corallina.  It 

has been reported that polychaete worms in particular, regardless of larval biology, 

have genetically well-structured populations. Marphysa corallina was observed to be a 

common burrowing worm on the rocky shore communities of KwaZulu-Natal and 

Eastern Cape. 

 

As a result, the aim of this study is to determine whether populations of Marphysa 

corallina found on the intertidal rocky shores of KwaZulu-Natal and Eastern Cape are (a) 

genetically differentiated from one another and (b) to assess the past demographic 

events that have shaped the contemporary patterns of this species’ distribution in 

South Africa.  
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3.2.   Materials and Methods 
 

3.2.1.    Study sites and sample collection 
 

To determine the population structure and connectivity of Marphysa corallina found 

along the East Coast of South Africa, samples of M. corallina were collected over a one 

year period (June 2013 – April 2014, Table 3.1). A total of 220 specimens of M.corallina 

were collected from 8 sites across two regions. From KwaZulu-Natal, 6 sites were 

sampled, namely: Clansthal, Green Point, Reunion Rocks, Ballito, Adlams and Mabibi 

and from the Eastern Cape region 2 sites were sampled: Mgazana 1 and Mgazana 2 

(see Table 3.1, Figure 2.2 p.31). Adlams and Mabibi beach are located near Sodwana 

Bay. Mabibi and Adlams are separated from one another by an extensive sandy flat and 

patches of rocky shore. Adlams and Ballito are separated by patches of rocky shore and 

sandy flats and Ballito and Reunion Rocks are separated by sandy and rocky shores. 

 
Specimens of M. corallina were found in mucus-sand tubes in algal mats inundated with 

sand, under worm rock and bait rock on the intertidal rocky shores at the respective 

sampling sites. A crow bar was used to lift up rocks and an oyster knife was used to 

break off worm rock from hard substrates. Polychaete worms have delicate soft bodies 

and therefore to prevent losing body parts and breaking specimens a tweezer was used 

to carefully pick out the encrusting worms. 

 

Individuals of M. corallina were identified in the field by the white tapering ends on 

their antenna with the rest of the antenna a light brown colour and bilobed palps that 

form the prostomium. Worms were put into individual bags of sea water and taken to 

the laboratory for processing. In the laboratory, M. corallina individuals were 

anesthetized with 10 % MgCl2 for approximately 30 minutes. Thereafter they were 

rinsed with distilled water to remove salt and preserved in 70 % molecular grade 

ethanol for morphological analysis and DNA extraction. 
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Table 3.1: Summary of collection data of Marphysa corallina collected at 8 different 

sites, the geographic co-ordinates of sample sites, the dates of collection, the number 

of morphological ID’s, COI and ITS1 individuals sequenced. 

 

 

3.2.2.  Morphological analysis 
 

Polychaete worms are among the most common and abundant marine organisms that 

inhabit benthic environments (Fauchald & Jumars 1979). They are characterised by 

their multi-segmented bodies, which are divided into three distinct regions, the 

prostomium, metastomium and pygidium. The prostomium forms the anterior region 

which makes up the “head” of the polychaete worm (Day 1967; Fauchald 1977). The 

prostomium bears a wide variety and arrangement of sense organs which depending 

on function are known as antenna, palps and nuchal organs (Day 1967; Fauchald 1977). 

The presence, absence, position and arrangement of these sensory organs and the 

Species Area Collected Co-ordinates Date 
collected ID’s  CO1 ITS 

Marphysa 
corallina 

Clansthal, KZN 30°14'10.08"S   
30°47'18.21"E 22 June 2013 47 25 24 

Green Point, 
KZN 

30°15'0.61"S   
30°46'55.91"E 23 June 2013 52 23 22 

Reunion Rocks, 
KZN 

29°59'11.49"S   
30°57'51.00"E 13 June 2013 22 14 14 

Mgazana 1, EC 31°42'19.10"S   
29°24'49.19"E 9 July 2013 20 20 9 

Mgazana 2, EC 31°41'6.27"S    
29°26'20.37"E 10 July 2013 13 9 - 

Ballito, KZN 29°32'23.16"S   
31°13'25.90"E 

31 January 
2014 28 25 11 

Adlams, KZN 27°37'28.34"S   
32°39'22.52"E 30 April 2014 21 22 - 

MabibI, KZN 27°25'49.06"S   
32°42'51.58"E 29 April 2014 17 16 - 

    220 154 80 
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overall shape and size of the prostomium are very important for family and genus level 

identifications (Day 1967; Fauchald 1977). For predatory polychaete worms such as 

those belonging to the Eunicidae, the arrangement of teeth and the structure of jaws 

are used for generic identification (Day 1967; Fauchald 1977).  

 

The metastomium forms the body which is made up of numerous segments each 

consisting of a pair of parapodia (Day 1967; Fauchald 1977). Depending on the genus, 

the parapodia are either biramus, which is the formation of a dorsal nopodium and 

ventral neuropodium, or uniramus which consists of a single continuous lobe (Day 

1967; Fauchald 1977). These rami consist of a chaetigerous lobe and comprise bundles 

of chitonous chaetae. These chitonous chaetae are highly important structures as they 

do not change upon preservation and depending on their position and morphology, are 

used for the identification of different species (Day 1967; Fauchald 1977). The 

branchiae are respiratory organs found on various parts of the body and depending on 

family and genus; they could be found concentrated in a bundle on the head region or 

as individual filaments on the dorso-lateral parts of the body (Day 1967; Fauchald 

1977). The pygidium forms the posterior region of the body and forms the anal region 

(Day 1967; Fauchald 1977). According to Day (1967) this region is not of great 

importance for identification; however, the morphology of the pygidium differs 

between families and genera and is occasionally used.  

 

The above mentioned characters were viewed using a Nikon Az1000 AS stereo 

microscope and a Zeiss dissecting microscope and were photographed. Due to the 

chitonous chaetae being transparent in nature, methylated blue dye was used to stain 

the chaetae in order to identify the different morphological structures. All specimens 

were identified by myself and were not sent to any specialist. Day’s 1967 monographs 

were used as a guide to identify all specimens. 
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3.2.3.   DNA extraction and amplification 
 

Genomic DNA was isolated from M. corallina tissue using the ZR Genomic DNA Tissue 

MiniPrep extraction kit (www.zymoreasearch.com) according to standard protocol. 

Approximately 25 mg of tissue was cut from the posterior end of the worm and rinsed 

with distilled water to remove excess ethanol that could potentially inhibit activity of 

proteinase-K. Tissue was cut up into tiny pieces to ensure the breakdown of cell walls 

and maximum yield of DNA. Tissue was placed in eppendorf tubes containing 95 µl of 

molecular biology grade water, 95 µl of 2X digestion buffer and 10 µl of proteinase-K. 

Samples were vortexed and incubated in a dry bath incubator overnight at 55° C on a 

gyro- rocker. 

 

Samples were removed from the incubator the next day and to each eppendorf tube, 

700 µl of Genomic Lysis Buffer was added. Samples were vortexed and spun down for 

one minute at 10,000x g to remove insoluble debris. The supernatant was transferred 

to a Zymo-Spin IIC Column with a collection tube and centrifuged for one minute at 

10,000x g. DNA pre-Wash buffer with a total volume of 200 µl was added to each Spin 

Column in a new Collection Tube and centrifuged at 10,000x g for one minute. 

Thereafter, 400 µl of g-DNA Wash Buffer was added to the spin column and 

centrifuged at 10,000x g for one minute. Lastly the spin column was put into a clean 

eppendorf tube and 100 µl of DNA Elution Buffer was added to each sample and left to 

incubate for approximately 60 minutes at room temperature after which the tubes 

were centrifuged at high speed for 30 seconds to allow for elution of DNA. The DNA 

was then stored in -80° C freezer until PCR was conducted. 

 

The isolated genomic DNA was amplified by the Polymerase chain Reaction (PCR) using 

the universal mitochondrial primers LCO1490 and HCO2198 (Vrijenhoek 1994) and 

nuclear ITS1 (pITS-R and pITS-F) primers that were designed from the conserved regions 

of the 18S and 28S rRNA genes (Sugita et al. 1999). PCR amplifications were conducted 

using 12.5 µl of EconoTaq® PLUS GREEN 2X Mastermix (Lucigen), 7.82 µl of molecular 
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biology grade water, 0.84 µl of forward and reverse primer, 1 µl of 10 % Bovine Serum 

Albumin (BSA) and 2 µl of template DNA to make up a total reaction volume of 25 µl. 

COI reactions were amplified using a BioRad T100-Thermal Cycler. The PCR thermal 

cycle conditions for COI was carried out as follows: 95° C for 3 minutes, followed by 35 

cycles of 94° C for 30 seconds, 45° C for 30 seconds 72° C for 1 minute, followed by 72° 

C for 7 minutes and a final cold storage of 12° C. The thermal cycle for the ITS 1 region 

was conducted as follows: 95° C for 3 minutes followed by 35 cycles of 94° C for 30 

seconds, 55° C for 1 minute, 72° C for 2 minutes, followed by 72° C for 10 minutes and 

12° C for infinity. 

 

PCR products were run on a 1 % agarose gel (1 g agarose powder and 100 ml of 1X TBE 

buffer) using 3 µl of PCR product and 3 µl of 100bp ladder. Images were taken of gels 

using a BioRad Molecular Imager, Gel Doc™ XR+. PCR products were sent to Inqaba 

Biotechnical Industries (Pty) Ltd, Hatfield, South Africa for sequencing using an ABI 

3730 Capillary sequencer. 

 

3.2.4.    Genetic analysis 
 

Sequences were individually aligned and edited in BioEdit (v7.0.9.0) (Hall 1999). 

Nucleotide ambiguities were found at different loci and corrected by searching for the 

strongest signal on the chromatograms of the respective sequences using the IUPAC 

ambiguity codes. The edited sequences were aligned using a ClustalW multiple 

alignment method. The COI sequences were trimmed to a length of 560bp and ITS1 to 

a length of 876bp. A search for highly similar sequences was conducted using BLAST 

algorithm in NCBI GenBank, however, this returned no sequences for M. corallina itself 

but did yield sequences for different species of the Marphysa for both COI and ITS 

regions (Accession numbers and species names in Table 3.2). 

 

DnaSp v5 (Librado & Rozas 2009) was used to generate a haplotype data file for both 

COI and ITS1 sequences for various population genetic analyses and phylogenetic 

analyses. Diversity indices such as the number of haplotypes (h), nucleotide diversity 
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(π) and haplotype diversity (Hd) were computed in DnaSp. Nucleotide diversity 

estimates the divergence of sequences between individuals in populations 

independent of haplotypes whereas haplotype diversity estimates the frequency and 

number of variants at a locus irrespective of sequence clusters (Lowe et al. 2009). These 

indices are used to assess the molecular diversity of a species or populations and are 

used as an estimator for historical demographic events (Lowe et al. 2009). Briefly, low 

haplotype and nucleotide diversities indicate that populations may have experienced 

extended or severe bottlenecks. Stable populations with large effective population sizes 

that persist or historical splits that resulted in mixed samples are characteristic of high 

nucleotide and haplotype diversities (Lowe et al. 2009). 

 

Table 3.2: COI and ITS1 sequences of various species of Marphysa and outgroups 

(Limulus polyphemus and Carcinoscorpius rotundicauda) that were used for the 

phylogenetic tree. Sequences were downloaded from NCBI GenBank and their 

accession numbers are given. 

Species Name COI ITS 

Marphysa angeli GQ497550.1 GQ497506.1 

Marphysa brevitentaculata GQ497548.1 GQ497503.1 

Marphysa disjuncta GQ497549.1 GQ497504.1 

Marphysa regalis GQ497562.1 - 

Marphysa cf. hentscheli GQ497551.1 GQ497509.1 

Marphysa californica GQ497552.1 GQ497507.1 

Maprhysa sanguinea GQ497547.1 GQ497502.1 
AY038861.1 

Marphysa viridis GQ497547.1 GQ497508.1 

Marphysa cf. bellii - GQ497511.1 

Limulus polyphemus HQ588747.1 - 

Carcinoscorpius rotundicauda - U91491.1 

 

Populations exhibiting high haplotype and low nucleotide diversities are indicative of 
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rapid expansions from small populations with accumulated mutations and lastly, 

ancestral populations that have undergone short-term bottlenecks display low 

haplotype and high nucleotide diversities (Lowe et al. 2009).  

 

The generated haplotype data files were used in MrModelTest 2.3 (Nylander 2008) to 

calculate a best fit model of evolution. The Akaike Information Criterion (AIC) selected 

the GTR+G model to construct a Bayesian tree using Mr Bayes 3.1.2 (Huelsenbeck & 

Ronquist 2001), maximum parsimony and neighbour joining trees were contructed 

using PAUP. Limulus polyphemus and Carcinoscorpius rotundicauda, both horseshoe 

crabs (Table 3.2) belonging to the Arthropoda represent distant ancestors of the 

polychaete group and therefore were used as outgroups to root both the COI and ITS 

trees respectively. Different species belonging to Marphysa from around the world 

were used to determine evolutionary relationships to M. corallina from South Africa. 

 

GenAlex v6.5.1 (Peakall & Smouse 2012) was used to calculate the mean number of 

alleles across all loci known as the number of alleles (Na), number of effective alleles 

(Ne) which is an estimation of the number of equally frequent alleles occurring in an 

ideal population. The probability that two individuals in a population will be different 

which is gene diversity (He), Shannon’s diversity index (I) which is a measure of allelic 

and genetic diversity in a population and the percentage of polymorphic loci across all 

loci which is percentage polymorphism (%Poly) (Lowe et al. 2009; Peakall & Smouse 

2012) were calculated in GenAlex. Diversity indices are used to assess the genetic 

variability of a species or populations. Populations exhibiting high diversities make 

them less vulnerable to extinction thus allowing for various adaptations (Lowe et al. 

2009). Natural selection, positive, negative or neutral tends to imprint unique 

signatures on molecular data. As a result varying levels of diversity can be used to 

determine the type of selection acting on a particular population or species (Nielsen 

2005; Lowe et al. 2009). 

 

The genetic partitioning of molecular variation within and between populations of both 
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COI and ITS markers were determined by an Analysis of Molecular Variance (AMOVA) 

that was calculated in GenAlex and the efficacy of this method was tested using a 

significance level of 0.05 run for 1000 permutations. AMOVAs were used to explain the 

relative subdivision of genetic diversity between the hierarchical levels (Lowe et al. 

2009). 

 

A minimum spanning network (MSN) was estimated for both COI and ITS1 using a 

squared distance matrix among haplotypes in Arlequin v3.5 (Excoffier et al. 2005). An 

MSN is also known as a molecular-variance parsimony technique because it is 

computed using the squared distance matrix used to calculate F-statistics in an AMOVA 

and determines the relationships between haplotypes (Excoffier & Lischer 2010; De 

Jong et al. 2011). The MSN together with its alternative connection lengths between 

haplotypes were imputed in HapStar v0.5 (Teacher & Griffiths 2011) which uses a force 

directed method for easy visualisation of the network. As mentioned above, different 

evolutionary processes leave a unique signature in genetic data and these signatures 

can be observed in the patterns assumed by gene genealogies or haplotype networks 

(Nielsen 2005; Lowe et al. 2009). For example, according to Lowe et al. (2009) if positive 

selection was acting on a population, it would produce a genealogy that is star shaped 

with a central ancestral haplotype that has short terminal branches. A selective sweep 

would have wiped out all previous polymorphisms and fixed all populations with 

advantageous mutations (Nielsen 2005; Lowe et al. 2009). Past demographic events 

such as bottlenecks, rapid population expansions and population subdivision can also 

be detected by observing the patterns a gene genealogy adopts (Mirol et al. 2008; 

Lowe et al. 2009; De Jong et al. 2011). 

 

Pairwise FST was calculated for pairs of populations in order to determine the genetic 

distances between populations for both COI and ITS1 sequences (Excoffier & Lischner 

2010). A significance level of 0.05 was used to test the calculated genetic distances for 

16000 permutations using Arlequin v3.5.  

 

Tests of selective neutrality are used to determine whether populations are evolving 
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under neutral mutational-drift equilibrium or whether they are evolving under non- 

neutral processes associated with directional or balancing selection and demographic 

expansion and contraction (Fu 1997; Ramos-Onsins & Rozas 2002). Tajima’s test of 

selective neutrality is based on the frequency distribution of alleles of segregating 

nucleotide sites and is used to test population expansions and bottleneck events 

(Tajima 1996; Aris-Brosou & Excoffier 1996). Positive values of this test suggest that 

populations contain an abundance of intermediate alleles whereas a negative value 

indicates that populations have an abundance of rare alleles which is characteristic of a 

sudden expansion (De Jong et al. 2011; Guzman et al. 2011). Fu’s FS test of selective 

neutrality uses the distribution of alleles per haplotype and is known to be very 

sensitive to population expansions yielding large negative FS values (Fu 1997). The 

above mentioned tests of neutrality were computed for both COI and ITS1 data in 

Arlequin v3.5 (p values calculated by 1000 bootstrap replicates). 

 

Mismatch distribution analysis was performed in conjunction with the above mentioned 

neutrality tests to assess past demographic events and effects of selection on 

populations (Guzman et al. 2011). This approach uses the distribution of pairwise 

differences between haplotypes in a sample using the least squares methodology to 

estimate parameters of sudden population growth (used in this study: Raggedness 

index, Sum of squared differences and expansion time) (Rogers & Harpending 1992; 

Rogers 1995; Excoffier & Schneider 1999). Multimodal distributions are characteristic 

of populations that are in demographic equilibrium whereas populations that have 

experienced a sudden range expansion with high levels of migration between 

neighbouring populations display distributions that are smooth or unimodal (Rogers & 

Harpending 1992). The raggedness index is a measure of the smoothness of the 

observed mismatch distribution, where large values indicate a multimodal pattern and 

is observed for stationary populations and smaller values reveal unimodal or smooth 

distributions which are typical for expanding populations (Rogers & Harpending 1992; 

Rogers 1995; Excoffier & Schneider 1999). The sum of squared differences (SSD) is used 

as a test statistic where non-significant values point to population expansions. 

Estimations of population expansion times were calculated using Tau (τ) = 2µt, where 
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µ is the mutation rate and t the time of expansion. Tau (t) was calculated in Arlequin 

and expansion time was estimated with an online mismatch calculator (http://www.uni-

graz.at/zoowww/mismatchcalc/mmc1.php) developed by Schenekar & Weiss (2011). A 

mutation rate of 2.2 % per million years was used for COI calculated by Chevaldonne et 

al. (2002) and Jolly et al. (2006) for polychaete worms. Where τ > 0, whereas τ = 0 

indicates stationary populations (Hurtado et al. 2004). The mismatch distribution 

together with its population expansion parameters were calculated in Arlequin v3.5 for 

both COI and ITS markers and the validity of the expansion model was tested using a 

significance of 0.05 and run for 1600 bootstrap replicates. 

 

In addition to the above demographic analyses, a bayesian skyline plot was estimated 

using BEAST v1.8.0 (Drummond & Rambaut 2007) and subsequently Tracer v1.6 

(Rambaut & Drummond 2011) to estimate the change of effective population sizes 

through time. The date value was set to default (0), the HKY substitution model 

(Hasegawa et al. 1985) was used with base frequencies estimated, the site 

heterogeneity model set to gamma with 4 categories used. A lognormal relaxed clock 

was used and the tree prior set to Bayesian skyline plot. The prior distributions were 

set to normal with the mean of 0 and standard deviation of 1. The MCMC runs were 

set to 10 000 000 with parameters logged every 1000 iterations. 

 

Gene flow is the movement of genes from one population to another and is known to 

counteract the effects of genetic drift and mutation thus preventing differentiation 

between populations (Lowe et al. 2009). Gene flow was estimated using the program 

Migrate-n v3.2.1 (Beerli & Palczewski 2010). Migration rates and effective population 

sizes are calculated using mutation scaled parameters (Beerli & Palczewski 2010). A 

custom directional island migration model was used to estimate the directionality of 

gene flow where migration and theta were both estimated using FST. A DNA sequence 

model data type was used with a transition and transversion ratio of 2.00. A Bayesian 

Inference search strategy was performed and 5000 steps in a chain were computed. 

Static heating was applied using 4 temperatures. Mutation-scaled effective population 

http://www.uni-graz.at/zoowww/mismatchcalc/mmc1.php)
http://www.uni-graz.at/zoowww/mismatchcalc/mmc1.php)
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sizes were estimated with the following equation (Beerli & Palczewski 2010):  

 

χNm = θ x M (Beerli & Palczewski 2010) 

 

Where χ is a multiplier and depends on the ploidy and inheritance (χ = 4 for nuclear 

data and χ = 1 for mitochondrial data), Ne is the effective population size and µ is the 

mutation rate per site per generation (Beerli & Palczewski 2010). Thus the number of 

immigrants per generation was calculated using: 

χNm =  θ x M  (Beerli & Palczewski 2010) 
 

Where θ is the mutation-scaled effective population size and M is the mutation-scaled 

effective immigration rate calculated as the immigration rate (m) divided by the 

mutation rate per site per generation (µ) (Beerli & Palczewski 2010). 

 

The persistence of genetic connectivity between populations is associated with Nm 

values that are greater than 1. Conversely, Nm values less than 1, with an associated FST 

value of >=0.2 indicates that populations over time will eventually diverge from one 

another and become isolated (Lowe et al. 2009). Two migration models were 

estimated, a north to southward flow of genes and secondly a south to northward flow 

of genes. The probability of each model was then calculated using the following 

equation: 

Prob (modeli) = mL modeli / Σj
n mL modelj (Beerli & Palczewski 2010) 

 

Where, mL modeli is the marginal likelihood of model i divided by the sum of all 

models computed. 

 

Private alleles are genetic alternatives (new mutations) found in a single population 

and is commonly used as an indirect estimator of gene flow (Nm) (Hellberg et al. 2002; 

Lowe et al 2009; Lowe & Allendorf 2010). Populations will generally exhibit a large 

number of private alleles due to mutations if gene flow between these populations is 
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particularly low (Lowe & Allendorf 2010). The number of private alleles was computed 

in GenAlex v6.5.1. 

 

3.3.   Results 
 

3.3.1.   Morphology 
 

A total of 220 individuals from 8 different sites along the South African coast (Table 3.1) 

were identified using the diagnostic features mentioned above and were classified as 

Marphysa corallina. They are characterised as having a bilobed prostomium (Figure 

3.1B), and 5 antennae each approximately 1.5 times the length of the prostomium 

(Figure 3.1C). The antenna is smooth and has a white tapering end. A pair of reniform 

eyes was present on the outer side of the lateral antenna. The anterior end of the 

worm is rounded thereafter becoming dorso-ventrally flattened posteriorly (Figure 

3.1A). Branchiae, depending on the size of the individual are present and begin from 

approximately the 20-30th chaetiger and reached a maximum length of 1.4 mm (Figure 

3.1D). The branchiae usually start as single filaments and reach a maximum of 8 

filaments toward the middle of the body thereafter decreasing back to a single 

filament.  

 

Marphysa corallina belongs to the Eunicdae and is characterised by the possession of 

Labidognatha jaws, commonly known as pincer jaws (Figure 3.1K). Marphysa corallina 

has uniramous parapodium with both dorsal and ventral cirrus and two bundles of 

chaetae emerging from a single chaetigerous lobe (Figure 3.1E). Chaetae in the 

superior position, those closest to the dorsal cirrus are known as the notochaetae and 

consist of simple winged capillaries and comb chaetae (Figure 3.1H-J). Chaetae found 

closest to the ventral cirrus are known as the neurochaetae and consist of compound 

falcigerous chaetae with small guards (Figure 3.1G). Also present are the characteristic 

true acicula and acicula chaetae. The acicula is attached to the muscle in a unique way 

in which it will not protrude resulting in “internal skeletal rods” for the parapodia 
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(Rouse & Pleijel 2001). The acicula chaeta on the other hand is thick and spine-like and 

project beyond the tip of the parapodia (Rouse & Pleijel 2001). This acicula chaeta is not 

a true acicula and originates with the other chaetae (Rouse & Pleijel 2001). The acicula 

generally has a blunt tip and is dark in colour (Figure 3.1F) whereas the acicula chaeta is 

pale in colour and has a bidentate tip and a small guard (Figure 3.1I). 
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Figure 3.1: Summary of the diagnostic morphological characters used for the identification of Marphysa corallina. A – Full body of M.corallina, B - ventral view 

of the bilobed prostomium, C - dorsal view of the prostomium showing the antenna, D – side view of the metastomium showing the branchiae, E – Cross 

section of the uniramus parapodium, F – Acicula, G – compound falcigerous neurochaetae H – simple winged capilliries (notosetae), I – bidentate acicula 

chaetae with small guard, J – Comb notoschaetae, K – Labidognath jaw structure.
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3.3.2.  Genetic analysis 
 

A total of 220 individuals of Marphysa corallina inhabiting the rocky shores of South 

Africa were sampled at 8 different locations from two regions namely: the KwaZulu-

Natal coast (6 sites) and the Eastern Cape coast (2 sites) (Table 3.1). 

 

COI: 
 

A fragment of 560bp was sequenced for 154 individuals of the universal mitochondrial 

cytochrome oxidase subunit 1 marker. An overall number of 560 sites were analysed 

with 535 monomorphic and 23 sites polymorphic. There were 24 mutations with 7 

parsimony informative sites, 15 singleton variable sites and an overall G-C content of 

0.438. The overall haplotype diversity was 0.715 and overall nucleotide diversity was 

0.001. The average number of nucleotide differences was 1.055. Out of a total of 154 

sequences, 21 haplotypes were observed with 8 found in Clansthal and Reunion Rocks, 

4 in Green Point, Ballito and Adlams. Five haplotypes were recorded for Mabibi and 

Mgazana 1 and 7 haplotypes were found in Mgazana 2 (Table 3.1). Six of these 21 

haplotypes were shared and 15 were unique to a single population, with them being 

singleton haplotypes. 

 

ITS1: 
 

A fragment of 876bp was sequenced for 80 individuals of the ITS1 region that 

comprises of conserved regions of the 18S and 28S rRNA genes. Of the 32 sites that 

were analysed all were polymorphic. There were 35 mutations with 6 parsimony 

informative sites, 26 singleton variable sites and an overall G-C content of 0.545. The 

overall haplotype and nucleotide diversity was 0.609 and 0.002 respectively, with an 

average number of nucleotide differences of 1.603. Eighty individuals were sequenced 

and a total of 16 haplotypes were found. These haplotypes consisted of 4 from Ballito, 

Reunion Rocks and Clansthal, 8 haplotypes from Green Point and 5 haplotypes from 

Mgazana 1. 
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3.3.3.   Diversity of Marphysa corallina 
 

The genetic diversity indices measured in this study for 8 sample sites (COI) and 5 sites 

(ITS1) are the total number of individuals (N), the number of alleles (Na), the number of 

effective alleles (Ne), Shannon’s information index (I), haplotype number  (h), 

haplotype diversity (Hd), nucleotide diversity (π), gene diversity (He) and percentage 

polymorphism (%Poly) (Table 3.3). The highest haplotype diversity for COI was 

observed for Reunion Rocks (Hd = 0.824) and the lowest was recorded for Ballito (Hd = 

0.626) (Table 3.3). Haplotype diversity observed for ITS1 sequences were overall much 

lower (0.609) than those recorded for COI, with the lowest found for Reunion Rocks 

(0.395) (Table 3.3). Nucleotide diversity for COI was the lowest for Green Point, Ballito, 

Mabibi and Adlams (π = 0.001) and the highest recorded for Reunion Rocks (π = 0.003) 

(Table 3.3). Clansthal, Mgazana 1 and 2, displayed the same low nucleotide diversity 

for COI of π = 0.002 (Table 3.3), whereas ITS1 region showed an overall low nucleotide 

diversity of 0.001 with Ballito exhibiting the lowest 0.000 (Table 3.3). For all populations 

of M. corallina, a general trend of intermediate to high haplotype diversities (Hd = 

0.715) and low nucleotide diversities (π = 0.001) were observed for both COI and ITS1 

data (Table 3.3). This indicates that populations may have recently undergone a 

bottleneck after which a rapid population expansion occurred (Lowe et al. 2009). 

 

The mean number of alleles for any population is a measure of the genetic richness of 

a population (Lowe et al. 2009). Thus the number of alleles for all populations for COI 

ranged from Na = 1.120 (±0.066) to 1.400 (±0.100) with Green Point, Ballito and 

Adlams displaying the lowest genetic richness, and Reunion Rocks displaying the 

highest genetic richness (Table 3.3). For ITS1 data, the overall genetic richness 

(1.586±0.032) was slightly higher than that of COI (1.220±0.290), with the highest 

genetic richness displayed for Mgazana 1 (2.010±0.067) (Table 3.3).  Overall 

populations show a high genetic richness for both COI and ITS1 data (Table 3.3).  

 

The effective number of alleles is a measure of the diversity of alleles across all loci in a 

population (Silva & Russo 2000). Reunion Rocks had the highest allelic richness across 
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all populations of M. corallina for COI (Table 3.3). Mgazana 1 displayed the highest 

allelic richness for ITS1 data (1.313±0.013). Mgazana 1, 2, Clansthal and Mabibi 

displayed similar Ne values for COI ranging from Ne = 1.059 (±0.033) – 1.063 (± 0.027). 

Clansthal, Green Point and Ballito on the other hand displayed similar allelic richness for 

ITS1 data indicating that populations are similar in allelic richness (Table 3.3). Ballito 

was recorded as having the lowest Shannon’s information index for both COI and ITS1 

data which is another measure of allelic and genetic diversity (Peakall & Smouse, 

2012). Reunion Rocks was found to have the highest Shannon’s information index (I = 

0.126±0.034) for COI and Mgazana 1 had the highest scores for ITS1 data 

(0.365±0.025). 

 

The largest number of individuals sampled for a population was Ballito and Clansthal 

(N = 25), whereas Mgazana 2 had the smallest population (N = 9) (Table 3.3). Clansthal 

and Reunion Rocks had the highest number of haplotypes for COI (8) whilst Green Point, 

Ballito and Adlams had the lowest (4) (Table 3.3). The highest number of haplotypes 

was observed for Green Point for ITS1 data (8) and the lowest was found for Clansthal, 

Reunion Rocks and Ballito (4). The highest percentage of polymorphic loci was recorded 

for the geographically intermediate population, Reunion Rocks (40%) indicating high 

diversity, whereas Ballito, Adlams and Green Point displayed the lowest polymorphic 

diversity (12%, Table 3.3). The highest percent polymorphism was observed for 

Mgazana 1 (80%) and the lowest for Ballito (14%, Table 3.3). Overall, for COI, Reunion 

Rocks was observed to be the most genetically diverse population of M. corallina 

(Table 3.3). In contrast, ITS1 data indicated that Mgazana 1 was the most genetically 

diverse population due to the highest percent polymorphism, haplotype diversity, 

Shannon’s Information Index, number of alleles and number of effective alleles (Table 

3.3).
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Table 3.3: Diversity indices for populations of Marphysa corallina sampled at eight different sites (Clansthal, Green Point, Reunion Rocks, 

Ballito, Mabibi, Adlams, Mgazana 1 and Mgazana 2) across two regions (KwaZulu-Natal and Eastern Cape) in South Africa for the COI and 

ITS1 genes.  

COI ITS 

Population N Na Ne I h Hd 𝜋 He %Poly N Na Ne I h Hd π He %Poly 
                   

Clansthal 25 
 

1,360 
(±0,098) 

1,061 
(±0,026) 

0,087 
(±0,029) 8 0,763 0,002 0,047 

(±0,018) 36 24 1,404 
(±0,070) 

1,096 
(±0,030) 

0,105 
(±0,022) 4 0,510 0,001 0,056 

(±0,013) 30 

GreenPoint 23 1,120 
(±0,066) 

1,058 
(±0,038) 

0,058 
(±0,033) 4 0,695 0,001 0,037 

(±0,022) 12 22 1,414 
(±0,066) 

1,068 
(±0,013) 

0,101 
(±0,017) 8 0,688 0,002 0,053 

(±0,009) 34 

ReunionRocks 14 1,400 
(±0,100) 

1,089 
(±0,027) 

0,126 
(±0,034) 8 0,824 0,003 0,070 

(±0,020) 40 14 1,909 
(±0,064) 

1,197 
(±0,028) 

0,258 
(±0,023) 

4 0,395 0,002 0,136 
(±0,013) 76 

Ballito 25 1,120 
(±0,066) 

1,041 
(±0,027) 

0,046 
(±0,028) 4 0,626 0,001 0,028 

(±0,018) 12 11 1,192 
(±0,055) 

1,090 
(±0,033) 

0,078 
(±0,023) 4 0,600 0,000 0,045 

(±0,013) 14 

Mabibi 16 1,160 
(±0,075) 

1,059 
(±0,033) 

0,064 
(±0,033) 5 0,750 0,001 0,039 

(±0,021) 16 - - - - - - - - - 

Adlams 22 1,120 
(±0,066) 

1,051 
(±0,034) 

0,051 
(±0,031) 4 0,688 0,001 0,033 

(±0,021) 12 - - - - - - - - - 

Mgazana 1 20 1,320 
(±0,095) 

1,063 
(±0,027) 

0,087 
(±0,030) 7 0,784 0,002 0,048 

(±0,018) 32 9 2,010 
(±0,067) 

1,313 
(±0,033) 

0,365 
(±0,025) 5 0,722 0,001 0,206 

(±0,014) 80 

Mgazana 2 9 1,160 
(±0,075) 

1,062 
(±0,031) 

0,070 
(±0,034) 5 0,861 0,002 0,043 

(±0,021) 16 - - - - - - - - - 

 154 1,220 
(±0,29) 

1,060 
(±0,011) 

0,074 
(±0,011)    21 0,715 0,001 0,043 

(±0,007) 22 80 1,586 
(±0,032) 

1,153 
(±0,013) 

0,181 
(±0,011) 16 0,609 0,001 0,099 

(±0,006) 42 

 N = number of individuals; Na = Number of alleles; Ne = number of effective alleles; I = Shannon’s Information Index; h = number of haplotypes; Hd = haplotype diversity, 
 π = nucleotide diversity; He = expected heterozygosity; %Poly = Percentage of polymorphic loci 
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Dominant haplotypes 1, 2 and 3 are found in all populations for COI data and are 

present in high frequencies (Figure 3.2). Haplotypes 3 and 4 generated for ITS1 data 

are present in high frequencies in all sample sites besides Green Point and Mgazana 1 

(Figure 3.2). Haplotype frequencies for populations of M. corallina were highest for 

Clansthal and Reunion Rocks (38%) and Mgazana 1 (33%) for COI. For ITS1 Green Point 

(50%) had the highest diversity. This indicates that these populations are diverse with 

regard to a large number of singleton haplotypes present (Figure 3.2). Green Point, 

Ballito and Adlams had the lowest haplotype frequencies for COI indicating that these 

populations of M. corallina are not as diverse. This is further supported by the low 

polymorphism present for these populations (Table 3.3). 

 

No private alleles for COI were recorded for Mabibi and Ballito leading to the 

conclusion that these populations are well mixed, however, Reunion rocks, Mgazana 1 

and Clansthal displayed a significant (p ˂ 0,05) number of private alleles for COI (0.240 

and 0.200, respectively). For ITS1 data, Green Point, Clansthal, Ballito and Mgazana 1 

displayed the highest number of private alleles (Figure 3.2, adjacent bar graph), 

indicating that genetic drift or selection in conjunction, with gene flow is acting on 

these populations. These frequency patterns further support the diversity indices 

suggesting that Marphysa corallina from Reunion Rocks is the most genetically diverse 

population for COI data. 
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Figure 3.2: Map showing Marphysa corallina sample sites with the geographical distribution of haplotypes and haplotype frequencies per 

population sampled per gene; COI and ITS1. The adjacent bar graph represents the average frequency of private alleles for each sample site for 

COI and ITS1. 
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Table 3.4: AMOVA results computed for COI and ITS1 for eight different populations of 

Marphysa corallina sampled along the South African coastline. COI had a ɸST value of -

0.021 (p > 0.05) and ITS1 had a ɸST value of 0.071 (p < 0.05).  

 
 

 
 
 
3.3.4.  Genetic structure, gene flow and migration patterns 
 

AMOVAs were conducted to determine the sources of genetic variation and to 

determine whether populations display any genetic structure. The results from the 

AMOVA showed that 100% of the genetic variation for COI is found within populations 

and 0% of the variation can be explained among populations (Table 3.4). Intra-

population differences are responsible for all of the molecular variation found for 

eight populations of M. corallina for COI, demonstrating that populations are similar to 

one another and display no genetic structure (Table 3.4). This is further supported by 

the ɸST value, -0.021 (p > 0.05).  

 

Consequently, ITS1 data are slightly different.  The variation among populations show a 

7% variation and within populations exhibit 93 % of variation (Table 3.4) further 

confirming that majority of the variation is found within populations of Marphysa 

corallina. The ɸST statistic reveals fine-scale genetic structuring between populations, 

0.071 (p < 0.05). Genetic distances were calculated using the population pairwise 

distance method for populations of M. corallina and resulted in substantially low FST 

values that were not significant for COI data (Table 3.5). A similar pattern is observed 

 COI ITS 

Source of 
variation d.f Sum of 

squares MS Est.Var. % d.f Sum of 
squares MS Est.Var. % 

Among 
pops 7 2,356 0,337 0,000 0 4 38,890 9,722 0,341 7 

Within 
pops 146 80,345 0,550 0,550 100 75 334,698 4,463 4,463 93 

Total 153 82,701 - 0,550 100 79 373,588 - 4,803 100 
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for ITS1 data where the majority of the FST values are extremely low, negligible and 

non-significant (Table 3.5). These low FST values are characteristic of either extensively 

mixed populations or a recent colonisation of new habitats. The lowest genetic 

distance observed was for the southern-most population, Mgazana 1 and northern-

most population, Adlams 0.000 (p < 0.05), indicating that these populations regularly 

exchange genes. The genetic distances observed for Mgazana 1 and Clansthal, Mgazana 

1 and Green Point display moderately differentiated populations (0.140 – 0.109, Table 

3.5). Overall, the genetic distances between pairs of populations were low and not 

significant indicating that populations share a lot of genetic material and are not 

genetically structured. This is further supported by the AMOVA results displaying no 

genetic variation among populations (Table 3.4). 

 

Migration was estimated using the directional island model of migration, in a north to 

south direction and subsequently from a south to north direction. The probability of 

each model was calculated and results showed that both models for COI and ITS1 data 

yielded a probability that was significant (p < 0.05). This result suggests that there is a 

bidirectional flow of immigrants. The highest number of immigrants per generation was 

observed from Green Point to Clansthal (Nm = 46) and thereafter from Green Point to 

Mgazana 1 (Nm = 37) (Figure 3.3). 

 

High gene flow observed from Green Point to Clansthal could be due to these 

populations present in close proximity to one another thus allowing for the successful 

recruitment and subsequent settlement of larvae. Gene flow was observed to be less 

than 1 from Mabibi to Adlams (Nm = 0.3), Clansthal to Green Point (Nm = 0.09), 

Mgazana 1 to Green Point (Nm = 0.1) and Ballito to Adlams (Nm = 0.3, Figure 3.3). The 

number of immigrants moving per generation to and from these populations is 

significant enough to prevent genetic drift and subsequent isolation. The low gene flow 

observed could be due to a geographical barrier present between these populations. 
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Table 3.5: Pairwise FST values calculated for eight populations of Marphysa corallina 

sampled along the South African coast from two regions (KwaZulu-Natal and Eastern 

Cape). COI values are below diagonal and ITS1 values are above diagonal. (FST p values 

are presented in parentheses and those that are significant are in bold). 

 
 

Gene flow was higher from a South to North direction with an average number of 19 

immigrants per generation, whereas gene flow from a North to South direction yields 

an average number of 16 immigrants per generation. The overall high values of 

immigrants per generation for all populations correspond to the low values of genetic 

distances between populations. This indicates that populations share a lot of genetic 

material making them panmictic. No genetic structuring of populations was observed 

from the AMOVA results (Table 3.4). The same pattern can be observed for ITS1 data. 

Overall, the number of immigrants per generation for ITS1 data is significantly higher 

than that for COI data (Figure 3.3). The highest gene flow observed for ITS1 data was 

from Clansthal to Green Point with 181 immigrants per generation and Reunion Rocks 

to Ballito with 131 immigrants per generation (Figure 3.3). The results from ITS1 data is 

in agreement with patterns displayed for COI, thus strongly suggesting a large 

panmictic population. 

  

 Clansthal Green 
Point 

Reunion 
Rocks 

Mgazana 
1 

Mgazana 
2 Ballito Adlams Mabibi 

Clansthal 0 -0,007 
(0,588) 

0,010 
(0,283) 

0,140 
(0,000) - -0,030 

(0,695) - - 

Green 
Point 

-0,018 
(0,708) 0 -0,003 

(0,474) 
0,109 

(0,004) - -0,023 
(0,784) - - 

Reunion 
Rocks 

-0,011 
(0,603) 

0,003 
(0,342) 0 0,088 

(0,142) - -0,020 
(0,748) - - 

Mgazana 
1 

-0,021 
(0,896) 

-0,015 
(0,573) 

-0,005 
(0,490) 0 - 0,124 

(0,007) - - 

Mgazana 
2 

-0,047 
(0,940) 

-0,045 
(0752) 

-0,039 
(0,894) 

-0,046 
(0,928) 0 - - - 

Ballito -0,024 
(0,999) 

-0,018 
(0,613) 

0,005 
(0,318) 

-0,028 
(0,921) 

-0,053 
(0,832) 0 - - 

Adlams -0,016 
(0,668) 

-0,024 
(0,684) 

-0,002 
(0,428) 

-0,000 
(0,321) 

-0,040 
(0,692) 

-0,002 
(0,383) 0 - 

Mabibi -0,036 
(0,988) 

-0,038 
(0,865) 

-0,020 
(0,672) 

-0,029 
(0,893) 

-0,059 
(0,832) 

-0,031 
(0,820) 

-0,034 
(0,714) 0 
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Figure 3.3: Migration patterns among eight (COI) and five (ITS1) populations of Marphysa corallina sampled along the South African coast 

from two regions namely: KwaZulu-Natal and Eastern Cape for both COI and ITS1 genes. Mutation-scaled effective population sizes (ϴ) are 

in coloured ovals and correspond to each population and the estimated number of immigrants per generation (xNm) in coloured 

rectangles corresponding to populations.
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The minimum spanning network assumes a star-like pattern for both COI and ITS1 data, 

with the ancestral haplotype in the star’s centre (Figure 3.4). These ancestral 

haplotypes are made up of a mixture of all eight COI populations of M. corallina 

sampled with many derived singleton haplotypes around it that are separated by a one 

nucleotide change. For ITS1 data, only 5 sample sites were presented and the ancestral 

haplotype (Haplotype 3) consists of all 5 populations (Figure 3.4). These mixed 

ancestral haplotypes for both COI and ITS1 are indicative of panmixia where gene flow 

persists resulting in very diverse and highly connected populations (Mirol et al. 2008; 

Lowe et al. 2009). An individual from Mgazana 1 is separated by two nucleotide 

differences from the main ancestral haplotypes, whereas individuals from Clansthal 

are separated by three nucleotide differences from the ancestral haplotype (Figure 

3.4). For ITS1 data, haplotypes consisting of individuals from Mgazana 1 and Reunion 

Rocks seem to have diverged from the main ancestral haplotype by 10 nucleotide 

differences (Figure 3.4). 

 

 
Figure 3.4: Minimum spanning haplotype network for eight populations of Marphysa 

corallina sampled along the South African Coast from two regions. Circle sizes are 

proportional to the frequency of individuals present in each haplotype; solid lines 

represent nucleotide differences and dots represent inferred missing haplotypes. 
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The network illustrates that populations of M. corallina are not genetically or 

geographically structured and exhibit a high level of genetic homogeneity. These 

results are supported by the high diversity indices (Table 3.3, p.75), low genetic 

distances indicating no structure (Table 3.5, p.80) and extensive gene flow patterns (FST 

and migration) among these populations (Figure 3.3, p.81). The overall high haplotype 

diversities and low nucleotide diversities (Table 3.3, p.75) observed for all populations 

reinforces the hypothesis of a rapid population expansion and a large accumulation of 

mutations as suggested from the observed star-like pattern of the minimum spanning 

networks presented (Figure 3.4). 

 

3.3.5.   Demographic analysis 
 

Tests of neutrality were performed to determine whether populations have undergone 

a recent and sudden expansion or bottleneck. Six populations of M. corallina display 

negative, non-significant (p > 0.05) results for Tajima’s D test for COI (Table 3.6). Green 

Point and Adlams have positive values indicating a collection of intermediate alleles 

nonetheless these are not significant (Table 3.6).  

 

ITS1 data showed similar results, however, only 5 populations of Marphysa corallina 

were analysed and 4 populations displayed negative significant values (p < 0.05) for 

Tajima’s D (Table 3.6). Fu’s FS test showed that Clansthal, Reunion Rocks, Mgazana 1 

and 2 all show large negative significant values for COI suggesting these populations had 

undergone a sudden expansion (Table 3.6). Green Point and Ballito display positive 

significant values for Fu’s FS test for ITS1 data (Table 3.6). All of these values point to a 

sudden recent population expansion of the eight different COI populations and five ITS1 

resulting in an abundance of rare alleles. 

 

The mismatch distribution for COI presented results that demonstrate support for 

neutrality tests where the distributions for all populations are considered to be 

unimodal or “smooth” (Figure 3.5). These “smooth” distributions signify sudden 
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expansions. The mismatch distribution displayed for ITS1 data showed contrasting 

results to that of COI. The ITS1 mismatch distributions for Green Point, Mgazana 1 
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Table 3.6: Demographic expansion statistics (Tajima’s D, Fu’s FS) and population expansion indices for mismatch distribution: Sum of 

squared distances (SSD), Raggedness index and τ–estimated time of expansion, for eight populations of Marphysa corallina sampled in 

South Africa. The associated p-values are in parenthesis. 

 COI ITS1 

Population Tajima’s 
D 

Fu’s and 
F SSD Raggedness 

Index   Tajima’s 
D 

Fu’s and 
F SSD Raggedness 

Index 

Clansthal -1,456 
(0,058) 

-3,515 
(0,005) 

0,012 
(0,265) 0,130 (0,111)   -1,838 

(0,009) 
0,318 

(0,577) 
0,007 

(0,385) 0,110 (0,563) 

Green Point 0,500 
(0,735) 

0,072 
(0,463) 

0,011 
(0,267) 0,127 (0,207)   -1,785 

(0,025) 
-2,737 
(0,047) 

0,005 
(0,826) 0,031 (0,953) 

Reunion 
Rocks 

-1,468 
(0,069) 

-3,553 
(0,007) 

0,010 
(0,506) 0,077 (0,499)   -2,000 

(0,009) 
0,791 

(0,691) 
0,025 

(0,318) 0,217 (0,647) 

Mgazana 1 -1,468 
(0,052) 

-2,696 
(0,025) 

0,008 
(0,416) 0,102 (0,304)   -1,619 

(0,042) 
0,491 

(0,592) 
0,618 

(0,000) 0,114 (1,000) 

Mgazana 2 -0,689 
(0,266) 

-1,994 
(0,021) 

0,045 
(0,181) 0,280 (0,116)   - - - - 

Ballito -0,170 
(0,434) 

-0,477 
(0,330) 

0,025 
(0,098) 0,192 (0,048)   -1,113 

(0,209) 
-1,524 
(0,024) 

0,258 
(0,164) 0,195 (0,323) 

Adlams 0,107 
(0,620) 

-0,264 
(0,374) 

0,024 
(0,091) 0,194 (0,049)   - - - - 

Mabibi -0,403 
(0,391) 

-1,302 
(0,124) 

0,021 
(0,236) 0,166 (0,152)   - - - - 
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and Clansthal represent multimodal distributions, which are indicative of stable 

populations (Figure 3.5). The raggedness index reported for all populations of M. 

corallina are small (R < 0.5) which is typical for populations undergoing rapid 

expansions (Rogers & Harpending 1992). 

 

 

 

Figure 3.5: Mismatch distribution for populations of Marphysa corallina from two 

regions along the South African coast, sampled for two genes. The x-axis represents the 

pairwise number of differences. The y-axis represents the observed frequencies. Each 

population is coded with a different colour.  

 

The Bayesian skyline plot presented in Figure 3.6 shows that Marphysa corallina 

experienced a gradual population decline that started approximately 113 636 years 

before present. The population then went through a rapid expansion about 22 727 

years before present. These results are consistent with those produced for the 
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mismatch distributions which also indicated that the individual populations had 

undergone expansions in the past. A Bayesian skyline plot was analysed for ITS1 data 

but unfortunately did not yield any informative results therefore it was not presented.  

 

   

 

Figure 3.6: Bayesian Skyline Plot based on the COI gene of Marphysa corallina. All eight 

populations were considered as one meta-population. The x-axis represents time in 

terms of the substitution rate per nucleotide. The y-axis represents the effective 

population size. The black bold line represents the effective population size and the 

shaded areas represent the upper limits of the 95 % confidence intervals. 

 

3.3.6.   Phylogenetic analysis 
 

The phylogenetic trees were constructed to determine the evolutionary relationships of 

M. corallina as well as to validate that it is an exclusive species. Three distinct clades 

were observed from the COI phylogenetic tree (Figure 3.7). Marphysa corallina (grey) 

forms an exclusive clade with the remaining species of Marphysa grouped into two 

separated clades (purple and green). The Marphysa corallina clade and the purple clade 
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constitute one clade and are sister to one another with moderate bootstrap support (< 

90%, Figure 3.7). The green clade containing M. angeli and M. cf. hentscheli do not 

group into the bigger Marphysa clade, but groups as the sister clade with very strong 

support (> 90%, Figure 3.7). This grouping represents a different genus that was 

recently resurrected by Zanol et al. (2014). As a result, Marphysa angeli and Marphysa 

cf hentscheli were placed into the Nicidion genus. The grey and green clades have very 

strong bootstrap support (> 90%, Figure 3.7), whereas the purple clade is moderately 

supported (< 90%, Figure 3.7). 

 

Results from the minimum spanning network (Figure 3.4), demographic expansion 

tests (Table 3.6), mismatch distribution analyses (Figure 3.5) and the nucleotide and 

haplotype diversities (Table 3.3, p.75) all support the hypothesis that populations of M. 

corallina have undergone a recent rapid population expansion from a bottleneck event. 

This can also be observed from the 15 singleton haplotypes (unique mutations or 

private alleles) for three of the populations found on the phylogenetic tree (Figure 

3.7).  

 

The ITS1 tree shows a similar pattern to that of the COI tree in that the M. corallina 

obtained from South Africa all group into one exclusive clade which has strong 

bootstrap support (0.99/1/1) (Figure 3.7). Marphysa sanguinea groups as a sister taxon 

to the bigger exclusive M. corallina clade with high bayesian support (1, Figure 3.7). 

Other species of Marphysa group as a sister clade to the M. corallina clade with low 

support from bayesian analysis and high support from neighbour joining and 

parsimony methods (Figure 3.7). M. angeli and M. cf hentscheli belonging to the newly 

emended Nicidion genus share a haplotype and thus are placed on the same branch. 

Nicidion (green) is placed as a sister taxon to the remaining Marphysa species (purple) 

with strong bootstrap support. A few polytomies were observed for the M. corallina 

clade, and as mentioned above this could be indicative of a rapid recent expansion 

event due to incomplete lineage sorting (Avise et al. 1987). It is also evident from the 

COI and ITS1 trees that no genetic or geographic structuring is observed for 
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populations of M. corallina which is further confirmed by the AMOVA results (Table 3.4, 

p.78) and the gene flow results (Figure 3.3, p.81). Overall, the phylogenetic results 

support a rapid expansion event. 
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Figure 3.7: Bayesian phylogenetic trees of the genus Marphysa, with M. corallina sampled for COI and ITS1 markers respectively along the South African coast 

(Grey Clade). Other species of Marphysa are from around the world and the trees are rooted with the horseshoe crab; Limulus polyphemus and 

Carcinoscorpius rotundicauda (Accession numbers in Table 3.2, p.64). NJ, B and MP support in parenthes. 

COI ITS 
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3.4. Discussion 

 

The aim of this study was to determine whether populations of Marphysa corallina are 

differentiated from one another and subsequently analyse past demographic events 

that contributed to shaping their current distributional patterns across the Eastern Cape 

and KwaZulu-Natal regions of South Africa. 

 

3.4.1.   Genetic diversity of Marphysa corallina 
 

Genetic diversity varied slightly among populations of Marphysa corallina for COI. The 

highest overall diversity was recorded for Reunion Rocks, which is the population in the 

centre of the sampling regime. Clansthal and Mgazana 1 displayed diversities that were 

significantly higher than other populations but slightly lower than Reunion Rocks. The 

overall genetic diversity indices for ITS1 indicated a similar pattern to COI. The genetic 

diversity indices varied slightly between populations. Mgazana 1 had the highest 

genetic diversity as opposed to other populations of M. corallina. In contrast to the 

Reunion Rocks population present in a highly polluted area, the Mgazana populations 

were sampled from an unpolluted habitat. It should also be noted that the sample size 

was relatively small (N = 9, Table 3.3, p.75) in comparison to other populations. 

 

Genetic variability is the platform upon which evolution occurs and is influenced by 

mutation, effective population sizes and gene flow (Vellend & Geber 2005;  Nabholz et 

al. 2009). There are a number of explanations as to why certain sample locations are 

more genetically diverse than others. High genetic diversities in a population can be 

indicative of large population sizes maintained over evolutionary time as a result of a 

stable habitat, an evolutionarily old population which has accumulated mutations over 

time or it could be a genetic signal of refugial areas during glacial events at ice free 

regions relative to glaciated regions (Stevens et al. 2007; Hobbs et al. 2013; Reynolds et 

al. 2014; Zhang et al. 2014). The rocky shore present at Reunion Rocks is highly polluted 

due to the presence of a petroleum refinery outlet. This petroleum outlet has been 
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operational for the past 50 years. The possibility exists that M. corallina at this sample 

site could have maintained large population sizes prior to the development of the 

refinery resulting in such high genetic diversities. The expansion time for populations at 

Reunion Rocks, Clansthal and Mgazana 1 was estimated to be between 105 000 - 

121 753 years ago placing these expansions in the middle to late Pleistocene glacial 

cycles. Clansthal and Mgazana are relatively unpolluted sample sites. Populations that 

have survived the series of glacial cycles have a longer demographic history and display 

high genetic diversities due to a large accumulation of mutations (Provan & Bennett 

2008). Alternatively, these sample sites could have been refugial areas during the 

Pleistocene glacial cycles resulting in high genetic diversities. However, this should be 

interpreted with caution as the genetic signatures of admixture zones are commonly 

confused with refugial zones (Petit et al. 2003; Provan & Bennett 2008; Hu et al. 2011). 

Thus, the entire distributional range of M. corallina needs to be sampled for the 

identification and separation of refugial zones and zones of admixture.  

 

A study investigating the genetic diversity of a marine invertebrate by Aguirre & 

Marshall (2012) found that populations have more stability, are more productive and 

resistant to disturbances when they have high genetic diversities (Amos & Harwood 

1998). One could infer that the high genetic diversities obtained by the M. corallina 

population at Reunion Rocks as a result of their supposed past demographic history 

have equipped these individuals with advantageous alleles to enable them to adapt and 

survive in an extensively polluted area.   

 

Refugial populations can be identified by the presence of a large number of private 

haplotypes specific to one population (Maggs et al. 2008; Provan & Bennett 2008). For 

the COI gene, Reunion Rocks, Clansthal and Mgazana 1 populations all have a large 

number of private haplotypes possibly suggesting that these populations served as 

refugial zones during the Pleistocene climatic events. For the ITS1 gene, Green Point, 

Clansthal and Ballito all displayed a high number of private haplotypes. The only 

population containing private haplotypes for the two genes is Clansthal. This would 



95 
 

imply that Clansthal could have been the refugial population. Contact zones or zones of 

admixture constitute soley of ancestral haplotypes and are assumed to have recently 

colonized or recolonised that particular area (Maggs et al. 2008; Provan & Bennett 

2008). As a result it is assumed that for COI, Ballito and Mabibi could have been 

recently colonized as they displayed no private alleles. Since the diversity indices for 

both markers for all populations of M. corallina vary slightly from one another, it is 

hypothesized that the entire region could be representative of an evolutionarily old 

population that could have been a refuge. Thus emphasis is placed on more adequate 

sampling of haplotypes spanning the distributional range of Marphysa corallina as the 

limited sampling within this proposed refugial area resulted in the absence of 

haplotypes found elsewhere.  

 

Haplotype diversities for all populations of M. corallina were intermediate to high for 

COI (Hd = 0.715, Table 3.3, p.75) and slightly lower for ITS1. In contrast to Reunion 

Rocks displaying the highest haplotype diversity for COI (Hd = 0.824, Table 3.3, p.75), it 

has the lowest haplotype diversity for ITS1 data (Hd = 0.395, Table 3.3, p.75). The over-

estimation of diversity in the COI gene could be due to mitochondrial DNA having a 

higher mutation rate as opposed to nuclear DNA (Nabholz et al. 2009). This high 

mutation rate gives rise to homoplasy when using the COI gene for phylogenetic and 

population genetics studies (McMillen-Jackson & Bert 2004; Nabholz et al. 2009; 

Hobbs et al. 2013); as could be the case in the present study. Nonetheless, high 

haplotype diversities were also recorded for Palola worms using COI as documented by 

Schulze (2006). 

 

The relatively low haplotype and nucleotide diversities recorded for the ITS1 gene for 

Reunion Rocks and Clansthal signify that these populations might have undergone or 

are currently going through a severe population bottleneck (Lowe et al. 2009; 

Winkelmann et al. 2013). These populations could have recently colonized their 

respective habitats shown by the loss of haplotypes, low nucleotide differences and 

the low number of private alleles (as mentioned above). The overall high haplotype and 
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low nucleotide diversities found for all populations of M. corallina for the COI gene is 

the genetic imprint of a recent population expansion (McMillen-Jackson & Bert 2004; 

Lowe et al. 2009; Hellberg 2009; Marko et al. 2010). Avise et al. (1987) documented 

that during rapid population expansion events, expanding populations retain 

haplotypes due to the absence of genetic drift, which significantly reduces haplotypes. 

Thus a plausible reason for such high haplotype and low nucleotide diversities found for 

all populations for both COI and ITS1 could be that of a recent population expansion 

from an ancestral population. 

 

Geographically widespread haplotypes and their abundant presence in a population are 

indications of an ancestral lineage (Avise 2000; Beheregaray & Sunnucks 2001; Duran 

et al. 2004; Maggs et al. 2008). Thus in this study, haplotype 1 for COI is the ancestral 

lineage since it is present in high frequencies in all populations whereas haplotype 3 

for ITS1 is the most ancestral lineage since it is also present in all populations but in 

intermediate frequencies (Figure 3.2, p.77). It is expected that the ancestral haplotype is 

generally more frequent around its place of origin and the majority of the ancestors’ 

descendants occur near the place of the ancestral lineages’ origins (Templeton 1993; 

Avise 2000; Maggs et al. 2008). As a result, this then acts as the centre of origin and 

radiation to other areas.  

 

Interestingly COI haplotype 1 and ITS1 haplotype 3 occur in their highest frequencies in 

Ballito therefore it is assumed that the Ballito population is possibly the ancestral 

lineage. However, this assumption is not likely because looking at COI data, the 

frequencies of haplotype 1 differ very slightly between populations which could also 

mean that the ancestral population could have not been sampled. In addition to the 

above, no private alleles were recorded for Ballito further implying that a recent 

colonization had taken place. In contrast to COI, ITS1 data reflect a large accumulation 

of private alleles for Ballito which could infer that this could have been a refugial 

population.  It should be noted that only 5 populations of Marphysa corallina were 

analysed for ITS1 data thus, there could be missing links and the source population 
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cannot be identified with certainty. Alternatively, if we take into consideration that 

evolutionarily old populations are characterised by a high diversity of haplotypes this 

would lead to the assumption that the Mgazana populations of M. corallina for both 

ITS1 and COI would be the oldest population due to high haplotype and low nucleotide 

diversities. However, this may not be ascertained as the distribution of haplotypes 

indicates that the ancestral haplotype is widely distributed, giving no indication as to 

the direction and origin of the expansion (Hellberg 2009). 

 

3.4.2.   Population structure and gene flow 
 

The AMOVA analyses reveal no genetic structuring for populations of Marphysa 

corallina for COI and very shallow structuring for ITS1. The genetic structuring of 

populations are influenced by a wide range of factors such as genetic drift, local 

adaptations, gene flow which is dependent on larval biology, mobile adults and oceanic 

currents (Nabholz et al. 2009; Marko & Hart 2011). Extensive gene flow among 

populations can drastically slow down the process of genetic drift producing highly 

connected panmictic populations (Lowe et al. 2009; Marko & Hart 2011). Populations 

that receive little or no gene flow from neighbouring populations are assumed to be 

separated leading to fragmented population distributions (Grosberg & Cuningham 

2001). The gene flow analysis for populations of Marphysa corallina for COI reveal 

highly connected populations. In contrast, ITS1 data suggest shallow genetic 

structuring. 

 

The majority of the FST values recorded for COI populations do not differ from 0 and 

others are negative (Table 3.5, p.80). According to Popa et al. (2013), FST values that 

are negative and negligible are an indication of excessive outbreeding. Due to the lack 

of information available on the larval biology of Marphysa corallina, the general larval 

biology of the Marphysa has been applied when considering M. corallina. The genus is 

known to be iteroparous and to produce lecithotrophic larvae that spend 

approximately 7-10 days in the water column before settling down and creating 

permanent burrows on the benthos.  
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The results from this study found no geographic or genetic structure regardless of the 

assumed short-lived lecithotrophic larvae that would otherwise result in structuring of 

Marphysa corallina populations. The growing literature on the phylogeography of 

marine invertebrates in South Africa has identified different lineages of species that 

coincide with the biogeographic provinces described for the region (Teske et al. 2011). 

These phylogeographic breaks are found on the south-west coast near Cape Point and 

Cape Agulhas forming a transition zone between the cool temperate and warm 

temperate regions, the south-east coast between Algoa Bay and the Wild Coast 

creating the second transition zone between the warm temperate and subtropical 

regions and lastly a new break has been found at St Lucia which is the third transition 

zone between the subtropical and topical regions (Teske et al. 2011). The sampling 

range of M. corallina in the present study extends over three of these biogeographic 

provinces thus covering two of the phylogeographic breaks. These are the St. Lucia 

break in the north-east and the Wild Coast break in the south-east. Taking this 

sampling range into consideration and assuming that M. corallina is a poor disperser 

one would expect at least two separate lineages. However, from our results it has been 

found that populations of M. corallina are highly connected resembling a meta-

population. As a result M. corallina is an example of a species that is present in three 

biogeographic regions described for South Africa but has no apparent genetic structure 

and thus does not coincide with any of the described phylogeographic breaks. 

 

 The high genetic connectivity observed for the current study was also found for a 

closely related species in the Eunicidae family. Schulze (2006) found that regardless of 

whether species had long lived lecithotrophic larvae, a high level of genetic 

connectivity was still observed. It has been suggested that significant genetic and 

geographic structuring is characteristic of all polychaete worms.  In contrast to this 

assumption, it was found that the fireworm Hermodice carunculata as well as the 

invasive nereidid species Platynereis dumerilii  resemble extensively connected 

populations across ocean basins (Ahrens et al. 2013; Popa et al. 2013). Therefore in 

terms of the current study, gene flow was not considered an appropriate estimator for 
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the high connectivity observed between populations. Instead the hypothesis of recent 

expansions from ancestral populations discussed in the paragraphs below appears to be 

a more accurate explanation for such high connectivity. 

 

According to Mirol et al. (2008), a lack of population structure found in COI could 

resemble a shared ancestry of populations whilst the shallow nuclear genetic 

structuring of populations could indicate that genetic drift is acting on the nuclear 

gene thus differentiation is currently in progress. One would take into consideration the 

effect of concerted evolution on the nuclear ITS1 gene. ITS1 is a multicopy gene 

containing tandem arrays that evolve under concerted evolution (Liao 1999; Fuertes 

Aguilar et al. 1999; Naidoo et al. 2013). The process of concerted evolution occurs when 

multigene copies of repetitive sequences are homogenized due to their evolution as a 

single unit (Liao 1999; Naidoo 2013). The ITS1 gene had a higher polymorphism 

percentage (42 %, Table 3.3, p.75) compared to COI, and nucleotide diversity was low 

(0.001). This result implies that concerted evolution was slow acting as the gene was 

not completely homogenized yet. The incomplete homogenization ITS1 could be a 

result of the recent admixture of genes in contact zones. These large polymorphic 

differences could have contributed to the shallow genetic structuring of the ITS1 

populations resulting in a 7 % genetic variation between populations of Marphsya 

corallina. Similar results were obtained by Gao et al. (2012) when analyzing intraspecific 

differences of Rhodiola alsia. Gao et al. (2012) found a high number of polymorphic loci 

and high nucleotide differences for the ITS gene and concluded that concerted 

evolution was gradual in this case. Alternatively, it could be a case of retention of males 

in their natal homes and females dispersing to other habitats (Waser & Jones 1983).  

This phenomenon could have resulted in the sampling of female mitochondrial 

haplotypes producing a shared maternal ancestry and male haplotypes under nuclear 

genetic drift. Unfortunately there has been no evidence of the latter recorded for 

polychaete worms.  

 

Taking into consideration the former hypothesis, this scenario produces an increased 
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number of singleton haplotypes due to the unstable population losing haplotypes 

because of genetic drift (Chatzigeorgiou et al. 2014). In addition, Duran et al. (2004) 

stated that shallow genetic structuring could be attributed to a relatively young species 

that has recently spread across its geographic range and thus spent very little time 

independently isolated to accumulate large genetic differences. This, coupled with 

high haplotype diversities is characteristic of an evolutionarily old species that has 

been influenced by demographic events (Duran et al. 2004). It can be assumed that 

populations of Marphysa corallina might have recently spread from an ancestral 

population and colonised new habitats resulting in a large retention of ancestral genes 

in the present populations. This is further supported by the 26 singleton haplotypes 

found for ITS1 gene, which represents recently radiated populations that are 

undergoing genetic drift. This hypothesis is further supported by the presence of the 

star-like topology of the haplotype network displayed for both mitochondrial and 

nuclear genes (Figure 3.4, p.83) (Mirol et al. 2008; Lowe et al. 2009). 

 

The COI star-like network observed is an indication of populations undergoing rapid 

recent expansions (Mirol et al. 2008; Lowe et al. 2009). This is further validated by the 

high haplotype and low nucleotide diversities found in the COI gene where populations 

have a retention of haplotypes and have undergone a recent bottleneck resulting in 

low nucleotide differences. The ITS1 network on the other hand resembles a 

somewhat star-like topology with a large number of mutational differences between 

the haplotypes. This is congruent with the idea that the nuclear gene is undergoing 

genetic drift resulting in populations accumulating mutational differences. 

Furthermore, FST values that are equal to 0 need to be interpreted with caution and a 

lack of statistical significance for FST values must not be equated to high genetic 

connectivity between populations (Hellberg 2009). Due to this common error made by 

many population geneticists, Marko & Hart (2011) suggested that a more robust 

method would be to estimate coalescent times and demographic history in 

conjunction with gene flow analyses in order to explain extensive (FST = negative and 

zero) connectivity between populations. 
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3.4.3.  Demographic history 
 

The genetic imprint of a shared ancestry uncovered by the COI marker for populations 

of Marphysa corallina as well as the on-going genetic drift acting on the nuclear gene 

sampled for the recently split populations coupled with the star like topology for both 

networks are all indicative of a recent sudden expansion from an ancestral population. 

This range expansion event is further denoted by the presence of the ancestral 

haplotype in high frequencies throughout all populations along the East coast of South 

Africa for both COI and ITS1 genes (Figure 3.2, p.77).  

 

Tajima’s D and Fu’s Fs tests were conducted to confirm whether populations have 

undergone a recent sudden expansion. All populations sampled for the COI gene 

displayed negative, non-significant Tajima’s D values whereas for Fu’s FS test half of the 

populations had negative and significant values (Table 3.6, p.85). Tajima’s D values 

analysed for ITS1 were all negative and significant except for Ballito. Fu’s FS test 

revealed negative and significant values for Green Point and Ballito populations. These 

results support the initial hypothesis proposed for a recent population expansion as 

negative values for both tests imply that there is retention of rare mutations in the 

population indicative of a population that has recently expanded (De Jong et al. 2011).  

 

A similar pattern of population expansions has been observed for various seahorse 

species (Zhang et al. 2014) and for the diamondback moth from Africa (Wei et al. 

2013). This collection of rare mutations was also identified by the high haplotype and 

low nucleotide diversities displayed for all populations. However, it should be noted 

that the discrepancies between the significance of Tajima’s D and Fu’s FS test is 

attributed to sensitivity of the test itself. Fu’s FS test is commonly used as a more 

reliable and powerful source for population expansion analyses (De Jong et al. 2011). 

The unimodal distributions shown for the COI gene for populations of Marphysa 

corallina signify recently expanding populations. Unimodal distributions can also be 

influenced by a selective sweep for advantageous alleles, which would reach high 

frequencies in a population subject to this process (McMillen-Jackson & Bert 2004; 



102 
 

Mirol et al. 2008). A selective sweep in the COI gene could have occurred for all 

populations of Marphysa corallina as can be shown by the high haplotype frequencies 

and unimodal distributions found. For the ITS1 gene most of the populations display a 

multimodal distribution as seen in figure 3.5, p.86. Multimodal distributions are 

indicative of stable populations and large effective population sizes; however, this 

distribution is not supported by the non-significant high values for the raggedness 

index and SSD statistic (Table 3.6, p.85). 

 

Populations of Marphysa corallina sampled show only shallow genetic structuring for 

ITS1 and no structuring for COI. It is therefore assumed that together with the genetic 

data indicating recent population expansions and shallow genetic structure, 

populations of M. corallina along the South African coast have not yet reached 

migration-drift equilibrium. As a result the patterns of genetic homogeneity across all 

sampled populations are attributed to past demographic history, which could have 

been influenced by climate change (Chatzigeorgiou et al. 2014).  

 

The expansion time calculated for Marphysa corallina populations all pre-date the Last 

Glacial Maximum, ranging between 138 344 – 77 818 years ago. The last glacial 

maximum was estimated to have occurred approximately 21 000 years ago (Stone 

2014), thus placing population expansion of Marphysa corallina in the mid to late 

Pleistocene. Results from the bayesian skyline plot analysed for the overall change in 

effective population size of Marphysa corallina indicate that a gradual population 

decline had begun aproximately 113 600 years ago. This population decline appears to 

have occurred in the middle of the Pleistocene glacial cycles, congruent with the above 

findings. This decline was followed by a rapid expansion around 22 700 years ago during 

the late Pleistocene. This result deviated from the general consensus found for South 

African marine taxa which normally expand after glacial episodes as documented by 

Reynolds et al. (2014). However, there exists a considerable amount of research that 

has found pre LGM expansions such as the South African barnacle Tetraclita serrata 

(Reynolds et al. 2014) and two seahorse species, Hippocampus trimaculatus and H. 
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mohnikei from the southeast coast of China  (Zhang et al. 2014). In addition, Marko et 

al. (2010) conducted an investigation using multiple rocky shore species from the 

Northern hemisphere and found that the majority of species expansions occurred after 

the Pleistocene, before the Last Glacial Maximum. 

 

During glacial periods, climatic conditions fluctuate rapidly affecting the normal 

distribution of species that are intolerant to extreme changes in temperatures and 

conditions (McMillen-Jackson & Bert 2004; Zhang et al. 2014). The South African coast 

did not experience any ice-cover during these glacial cycles but sea levels decreased by 

approximately 130 m exposing extensive beds of intertidal habitats and consequently 

destroying those (Reynolds et al. 2014). This could have forced many rocky intertidal 

species to contract into smaller refugial populations thus decreasing their ranges (De 

Jong et al. 2011; Zhang et al. 2014). Temperatures increased thereafter and sea levels 

rose which would have facilitated in-range expansions of many intertidal species from 

these refugial populations. This would have resulted in the newly colonising 

populations being identical to one another, implying extensive gene flow (Maggs et al. 

2008). 

 

The results obtained in this study are consistent with the hypothesis of multiple 

colonisations of Marphysa corallina that have been shaped by Pleistocene glacial 

cycles. The phylogenetic tree of M. corallina has many unresolved branches that could 

be a result of incomplete sorting of lineages and, thus, a retention of rare haplotypes 

caused by rapid population radiations (Avise et al. 1987). The topology of this tree 

supports the hypothesis of recent expansions of Marphysa corallina.  

 

In conclusion, patterns of little or no genetic structure observed for Marphysa corallina 

in the present study lead to the assumption that these populations are not in 

migration-drift equilibrium due to the climatic events that caused recent expansions. 

These expansions would then have prevented genetic differentiation thus giving the 

impression of a large homogenous population which one would readily interpret as high 
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gene flow. Due to the lack of studies available on the larval biology of M. corallina it has 

proved difficult to ascertain whether genetic homogeneity is a result of high dispersal 

ability. Nonetheless, looking at the larval biology of closely related species it has been 

assumed that Marphysa corallina could potentially be a low dispersing species 

therefore the idea of highly connected populations was not expected in the present 

study. Strong evidence has been found that populations have diverged from its recent 

common ancestor during the middle to late Pleistocene period and have since been 

going through large population expansions and colonising new available habitats. Thus 

the Pleistocene climate appears to have influenced the contemporary distributional 

ranges of Marphysa corallina in South Africa. 
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Chapter four: Trends and future research 
 

4.1.   Phylogeny of intertidal Nereididae and Eunicidae 
polychaetes 
 

Polychaete worms are known to be one of the most diverse groups of worms that are 

well represented in freshwater and marine environments (Day 1967). The incredible 

ability of polychaetes to inhabit a variety of habitats is due to the diversity of feeding 

modes and reproductive strategies displayed by the group, which in evolutionary time 

resulted in new adaptations and potentially new species (Wilson 1991; Bartolomaeus 

et al. 2005; Gambi & Cigliano 2006). The plasticity of morphology presented by the 

group together with their intricate evolutionary histories leave many gaps in the 

classification of polychaete worms. The consequences of such plasticity have resulted in 

questionable phylogenetic relationships among taxa (Zhou et al. 2010). In terms of 

South African polychaete worms, not many studies are available on the phylogenetic 

relationships of these worms. For this reason, chapter two was set out to investigate 

the phylogenetic relationships of commonly found intertidal eunicid and nereidid 

worms from the South African coast. 

 

A bayesian phylogenetic tree revealed two distinct clades, one with the monophyletic 

Nereididae and the other containing one polyphyletic Eunicidae with Lumbrineridae 

and Onuphidae nesting among the eunicid taxa. Two of the genera (Marphysa and 

Eunice) analysed for the Eunicidae were found to be polyphyletic. Marphysa species 

were found nested within a Eunice clade that was recovered in previous studies. This 

clade strongly supports the resurrection of the Nicidion as was recently amended. Those 

Marphysa species have been placed in Nicidion. Species belonging to the newly 

resurrected Leodice formed an exclusive grouping with its previously described type 

specimen Eunice anetennata and other Eunice species. Those species previously 

belonging to Eunice have been synonymized with Leodice. Results from the present 

study strongly agree with the newly resurrected and emended genera.    
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In the large Marphysa clade, there is evidence that the morpho-groups described for 

the genus form separate clades. However, some relationships were unresolved in this 

clade due to insufficient taxon sampling. As a result, it is suggested that more species 

of Marphysa be included in subsequent studies in order to determine whether these 

morpho-groups actually exist which would then potentially result in the classification 

of these morpho-groups as subgenera. Overall, the morphology and phylogeny of 

Marphysa and Eunice need to be revised. The suggested groupings of these genera 

could possibly result in natural monophyletic groupings.  

 

The monophyly of family Nereididae was recovered, however, relationships between 

genera and species were complicated. Pseudonereis is a monophyletic genus however 

in the present study it was polyphyletic with Perinereis nested in the clade. With a 

larger number of taxa included in future studies, the monophyly of this genus could be 

recovered. Due to Nereis being a large speciose genus, species were assigned to 

numerous informal groupings within the genus. Species belonging to Nereis grouped 

up into separate well supported clades which could resemble one of the many informal 

groups proposed for the genus. It is suggested that future studies explore these 

informal groupings for Nereis by including a large number of taxa in their analyses. In 

the Nereididae clade, many of the inner nodes representing species and genus level 

relationships were weak and not supported. Therefore it is suggested that each genus 

within the family be thoroughly analysed and revised using both morphological and 

molecular data which could potentially result in more clarity regarding relationships 

within and between genera and species. 

 

4.2.   Genetic Structure and demographic history of 
Marphysa corallina 

 

Understanding patterns of diversity, connectivity and past demographic histories of 

populations and how they impact the present distributions of species in the marine 

environment is a fundamental aspect that is explored in population genetics and 
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phylogeography (Grosberg & Cunningham 2001; Marko & Hart 2011). Natural 

populations are largely influenced by anthropogenic effects and climate change. 

Information about population connectivity and demography will aid ecologists and 

biologists in monitoring natural populations that are most likely to adapt to changing 

environmental conditions ensuring their survival and populations that die out due to 

their inability to adapt (Lowe & Allendorf 2010; Kelly & Palumbi 2010; Ayata et al. 

2010). 

 

The genetic structure, connectivity and demography of Marphysa corallina have never 

before been studied. Marphysa corallina was observed to be the most abundant 

polychaete among others on South Africa’s east coast rocky shores. Polychaete worms 

form an integral part of their communities and function as ecosystem engineers, thus it 

is imperative to understand the demography, structure, diversity and connectivity of 

these important invertebrates. As a result, chapter three was set out to investigate the 

genetic structure and demographic history of the abundant rocky shore polychaete M. 

corallina from two regions: KwaZulu-Natal and Eastern Cape in South Africa. 

 

The COI data revealed that all 8 populations of M.corallina were extensively connected 

to one another, which was further supported by the large number of migrants 

estimated moving between populations and forming a large panmictic population. The 

ITS1 data in contrast showed shallow genetic structuring for this species. Due to a lack 

of information available regarding reproductive strategies of this species in question, a 

general pattern for species belonging to the genus was assumed instead. Marphysa 

species are known to produce short lived lecithotrophic larvae as a result this 

reproductive strategy was not congruent with the high population connectivity 

obtained.  

 

Due to the lack of population genetic studies available, comparisons could not be 

drawn with other studies. Nonetheless, demographic analyses were conducted and all 

indicated a sudden recent population expansion for all populations of Marphysa 
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corallina. Thereafter coalescent times were estimated and it was found that all 

populations have recently expanded during the mid to late Pleistocene. The ancestral 

populations could not be identified which is possibly due to incomplete sampling of 

the species range. 

 

One of the major drawbacks of this study was the lack of information available on 

M.corallina. A lot of difficulty was encountered when estimating generation times, 

larval behaviour and general ecology of this species which was required to accurately 

make assumptions on the demographic history. Also incomplete sampling along the 

east coast of South Africa posed a problem when estimating various population 

genetics statistics. It has been documented by Helberg (2009) that an overestimation 

of gene flow will occur due to the presence of ghost populations. These ghost 

populations are those populations of M. corallina that were not sampled but 

contributed to the gene flow of populations documented in this study. The uneven 

sample size could have resulted in an over estimation of effective population sizes, 

diversities and gene flow. 

 

As a result, future studies should focus on identifying the distributional ranges, 

reproductive biology and other general ecological aspects of Marphysa corallina. More 

sample sites need to be included for the entire distributional range of M. corallina to 

allow for proper estimations of gene flow and to identify ancestral populations and the 

origin of the multiple radiations that took place. And lastly, a more uniform sample size 

should be employed to prevent the over estimation of various population genetic 

indices. 
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