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Abstract

The fractional calculus of deterministic functions is well known and
widely used. Mean-square calculus is a calculus that is suitable for use
when dealing with second-order stochastic processes. In this dissertation
we explore the idea of extending the fractional calculus of deterministic
functions to a mean-square setting. This exploration includes the develop-
ment of some of the theoretical aspects of mean-square fractional calculus
– such as definitions and properties – and the consideration of the appli-
cation of mean square fractional calculus to fractional random differential
and integral equations. The development of mean-square calculus follows
closely that of the calculus of deterministic functions making mean square
calculus more accessible to a large audience. Wherever possible, our devel-
opment of mean-square fractional calculus is done in a similar manner to
that of ordinary fractional calculus so as to make mean-square fractional
calculus more accessible to people with some exposure to ordinary frac-
tional calculus.
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Chapter 1

Introduction

Fractional calculus is a branch of mathematics in which integrals and deriva-
tives can be of non-integer order. Since its first appearance in the late 17th cen-
tury it has become popular (especially amongst mathematicians and engineers)
because many problems are described by, and can be solved using, fractional
calculus. It has been used in areas such as finance (Gorenflo et al. (2001)),
viscoelasticity (Glöckle & Nonnenmacher (1991)), electromagnetism (Engheia
(1997)), signal processing (Tseng (2001)), control theory (Podlubny (1999)) and
in the biomedical field (Magin (2006)). Modelling real-life phenomena with
mathematical equations involving differential and integral equations (of both
integer and fractional order) may be limited by the fact that the uncertainties
inherent in real-life may not be taken into account. As a result of this, ran-
dom differential and integral equations have been used more and more over
the past few decades. It therefore makes sense to develop a fractional calculus
that takes into account the “randomness” of real situations. In this disserta-
tion we aim to do this by translating the deterministic fractional calculus to a
mean-square (m.s.) setting. The reason we choose to use a m.s. setting is that
important information about a stochastic process (s.p.) can be found from its
first and second moments. That m.s. calculus is a well-developed subject with
methods that follow, in a general way, those of ordinary calculus only makes it
more attractive.

There is currently a small body of work dedicated to m.s. fractional calculus
(see Hafiz et al. (2001), Hafiz (2004) and El-Sayed et al. (2005)). We will use this
body of work as a base from which to launch an exploration of the m.s. fractional
calculus. In Chapter 2 we will give some important definitions and results from
m.s. calculus. In Chapter 3 we will introduce several definitions for the m.s.
fractional integral and derivative based on some of the common definitions from
the deterministic fractional calculus. In Chapter 4 we will consider various
properties of m.s. fractional integrals and derivatives – properties such as the
m.s. continuity of the integrals and derivatives. A large portion of Chapter 4
is dedicated to finding expressions for the fractional integral (derivative) of the
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fractional derivative (integral) and similar expressions. In Chapter 5 we will
find expressions for the fractional integral and derivative of the product of a
deterministic function and a (second-order) stochastic process. Chapters 6 and
7 are dedicated to solving m.s. fractional integral and differential equations.
In Chapter 6 we do this using the properties developed in Chapter 4 and in
Chapter 7 we do this by introducing a transform of m.s. fractional integrals and
derivatives.
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Chapter 2

Background material

Throughout this thesis we will use the following terminology and notation:
N = {1, 2, 3, . . .}
N0 = {0, 1, 2, . . .}
R = the set of all real numbers
[a, b] = the set of all real numbers between a and b

We will use “β > 0” to mean “all positive real values of β” and similarly
“β ∈ [a, b]” to mean “all real values of β between a and b”. We will also use “,”
to mean “by definition, equals to” and “iff” to mean “if, and only if”. Other no-
tation and terminology in this dissertation is commonly used.

Mean-square calculus

A random variable, X, is called a second-order random variable if its second
moment, E[X2], is finite. The norm of the second order random variable X is
defined as follows:

‖X‖ ,
√
E[X2] .

Consider a stochastic process (s.p.) with index set T ⊂ R for which
X(t1), X(t2), . . . , X(tm) are elements of L2-space for every set t1, t2, . . . , tm. Such
an s.p. is called a second-order s.p. and is characterized by

‖X(t)‖2 = E[X(t) X(t)] = ΓXX(t, t) <∞ , t ∈ T .

Before introducing m.s. integrals and derivatives we must consider the con-
cept of m.s. convergence. A sequence of random variables {Xm(t)}, t ∈ T , is
said to converge in mean-square to a second-order s.p.X(t) as m → ∞, written
l.i.m.
m→∞

Xm(t) = X(t), if
lim

m→∞
‖Xm(t)−X(t)‖ = 0 .

Let m vary over some index set M and let n be a limit point of M . The
sequence {Xm(t)}, t ∈ T , converges to a second order s.p. X(t), t ∈ T , as m→ n
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iff the functions E[Xm(t)Xḿ(t)] converge to a finite function on T as m, ḿ → n
in any manner whatever. Then

ΓXmXm(s, θ) → ΓXX(s, θ)

on T ×T . This is called the convergence in mean-square criterion. We note that
the operators “E” and “l.i.m.” commute (Loève (1955), sec. 34).

Mean-square integrals

Let pn be a finite partition of the interval [a, b] defined by the partition points
s0, s1, s2, . . . , sn such that a = s0 < s1 < s2 < . . . < sn = b. Letting s∗k be an
arbitrary point within the interval [sk−1, sk] and letting

∆n = max
k

(sk − sk−1) , (2.1)

we have the following definition:

Definition 2.1. Let X(t), t ∈ T , be a second-order stochastic process and let
f(t, s) be a deterministic function defined on T × T . The mean-square Riemann
integral of f(t, s)X(s) over the interval [a, b] ⊂ T is defined by∫ b

a
f(t, s)X(s) ds , l.i.m.

n→∞
∆n→0

n∑
k=1

f(t, s∗k)X(s∗k)(sk − sk−1) (2.2)

if the limit in mean exists for all partitions pn.

Using the convergence in m.s. criterion we see that the m.s. Riemann in-
tegral in (2.2) exists iff the following double Riemann integral exists and is
finite: ∫ b

a

∫ b

a
f(t, s)f(t, u)ΓXX(u, s) du ds . (2.3)

(We have not shown the detail of how the convergence in m.s. criterion is used
to get the above condition because next, and in Chapter 4, we will give these
details for other m.s. integrals.) A stochastic process X(t), t ∈ T , is said to be
m.s. integrable on [a, b] ⊂ T if

∫ b
a X(s) ds exists.

As with deterministic Riemann integrals, there are improper m.s. Riemann
integrals. Suppose that f(t, s) has a vertical asymptote at s = b. Then the m.s.
Cauchy-Riemann integral of f(t, s)X(s) over the interval [a, b] is defined as

CR -
∫ b

a
f(t, u)X(u) du , l.i.m.

h→0

∫ b−h

a
f(t, s)X(s) ds , h > 0 (2.4)
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provided the limit in mean exists. (For a discussion of the deterministic Cauchy-
Riemann integral see Kestelman (1960).) Due to the convergence in m.s. crite-
rion, in order to show that the right hand side does converge in mean-square
we need only show that, for h1 > 0 and h2 > 0,

lim
h1,h2→0

E

[ ∫ b−h1

a
f(t, u)X(u) du ·

∫ b−h2

a
f(t, s)X(s) ds

]
converges to a finite limit as h1 and h2 converge to zero in any manner whatever.
If we let

• a = u0 < u1 < u2 < . . . < un = b− h1,

• u∗k ∈ [uk−1, uk] for k = {1, 2, . . . , n}

• ∆n = maxk(uk − uk−1)

and

• a = s0 < s1 < s2 < . . . < sm = b− h2

• s∗j ∈ [sj−1, sj ] for j = {1, 2, . . . ,m}

• ∆m = maxj(sj − sj−1) ,

then

lim
h1,h2→0

E

[ ∫ b−h1

a
f(t, u)X(u)du ·

∫ b−h2

a
f(t, s)X(s)ds

]
= lim

h1,h2→0
E

[
l.i.m.

n,m→∞
∆n,∆m→0

n∑
k=1

f(t, u∗k)X(u∗k) (uk − uk−1)
m∑

j=1

f(t, s∗j )X(s∗j ) (sj − sj−1)

]

= lim
h1,h2→0

lim
n,m→∞
∆n,∆m→0

[
n∑

k=1

m∑
j=1

f(t, u∗k)f(t, s∗j ) ΓXX(u∗k, s
∗
j ) (uk − uk−1)(sj − sj−1)

]

= lim
h1,h2→0

∫ b−h1

a

∫ b−h2

a
f(t, u)f(t, s) ΓXX(u, s) du ds

= CR -
∫ b

a

∫ b

a
f(t, u)f(t, s) ΓXX(u, s) du ds . (2.5)

So we see that the m.s. Cauchy-Riemann integral given in (2.4) will exist iff
the deterministic double Cauchy-Riemann integral in (2.5) exists and is finite.
Note that as with the deterministic case where the Cauchy-Riemann integral
will equal the Riemann integral when the Riemann integral exists, the m.s.
Cauchy-Riemann integral will equal the m.s. Riemann integral when the m.s.
Riemann integral exists. For convenience, in the remainder of this dissertation
we will drop the “CR” when writing Cauchy-Riemann integrals.
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Soong (1973) shows that∣∣∣∣∣∣∣∣ ∫ b

a
X(t) dt

∣∣∣∣∣∣∣∣ ≤ ∫ b

a
||X(t)|| dt

where [a, b] ⊂ T and the s.p. X(t) is m.s. continuous. Here we will try to show
under what conditions – if any – the following holds:∣∣∣∣∣∣∣∣ ∫ t

a
f(t, s)X(s) ds

∣∣∣∣∣∣∣∣ ≤ ∫ t

a
f(t, s) ||X(s)|| ds (2.6)

where X(t) is a second-order s.p. defined on T (not necessarily m.s. continuous),
t ∈ [a, b] ⊂ T and f(t, s) = (t−s)β−1

Γ(β) for β > 0. The reason for interest in f(t, s) of
this form will become apparent in the following chapters. We note that f(t, s) is
not defined for s = t when β ∈ (0, 1) so we will consider the β ≥ 1 and β ∈ (0, 1)
cases separately.

Let β ≥ 1 and let

Yn =
n∑

k=1

(t− s∗k)
β−1

Γ(β)
X(s∗k) (sk − sk−1)

where

∆n = max
k

(sk − sk−1) ,

a = s0 < s1 < . . . < sn = t and
s∗k ∈ [sk−1, sk] .

Then

lim
n→∞
∆n→0

||Yn|| = lim
n→∞
∆n→0

∣∣∣∣∣∣∣∣ n∑
k=1

(t− s∗k)
β−1

Γ(β)
X(s∗k) (sk − sk−1)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
∣∣∣∣∣ l.i.m.

n→∞
∆n→0

n∑
k=1

(t− s∗k)
β−1

Γ(β)
X(s∗k) (sk − sk−1)

∣∣∣∣∣
∣∣∣∣∣

=
∣∣∣∣∣∣∣∣ ∫ t

a

(t− s)β−1

Γ(β)
X(s) ds

∣∣∣∣∣∣∣∣ (2.7)

provided that the integral inside the norm exists as a m.s. Riemann integral.
Also,

||Yn|| ≤
n∑

k=1

∣∣∣∣∣∣∣∣(t− s∗k)
β−1

Γ(β)
X(s∗k) (sk − sk−1)

∣∣∣∣∣∣∣∣
=

n∑
k=1

(t− s∗k)
β−1

Γ(β)
||X(s∗k)|| (sk − sk−1)
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so that

lim
n→∞
∆n→0

||Yn|| ≤ lim
n→∞
∆n→0

n∑
k=1

(t− s∗k)
β−1

Γ(β)
||X(s∗k)|| (sk − sk−1)

=
∫ t

a

(t− s)β−1

Γ(β)
||X(s)|| ds (2.8)

provided that the integral above exists as an ordinary Riemann integral.
Using (2.7) and (2.8) we thus have for β ≥ 1∣∣∣∣∣∣∣∣ ∫ t

a

(t− s)β−1

Γ(β)
X(s) ds

∣∣∣∣∣∣∣∣ ≤
∫ t

a

(t− s)β−1

Γ(β)
||X(s)|| ds

provided that the integrals involved exist.
If X(t) is m.s. continuous on [a, b] then ΓXX(t, s) is continuous on [a, b] × [a, b].
Also, f(t, s) is continuous so that f(t, s)f(t, u)ΓXX(s, u) is continuous. Thus∫ t

a

∫ t

a
f(t, s)f(t, u)ΓXX(s, u) ds du

exists as a double Riemann integral and so the integral in the last line of (2.7)
will exist in a m.s. sense. Similarly, if X(t) is m.s. continuous then ‖X(s)‖ is
continuous so that f(t, s)‖X(s)‖ is also continuous and the integral in (2.8) will
exist as an ordinary Riemann integral. Thus, if X(t) is m.s. continuous on [a, b]
then equation (2.6) holds for β ≥ 1. The result that is given in Soong (1973) is
the case when β = 1 and X(t) is m.s. continuous.

The derivation for the β ∈ (0, 1) case is only slightly different to that of the
β ≥ 1 case. Following the method given for the β ≥ 1 case but with

a = s0 < s1 < . . . < sn = t− h , h > 0

we see that∣∣∣∣∣∣∣∣ ∫ t−h

a

(t− s)β−1

Γ(β)
X(s) ds

∣∣∣∣∣∣∣∣ ≤
∫ t−h

a

(t− s)β−1

Γ(β)
||X(s)|| ds (2.9)

provided that the integrals involved exist.
Taking the limit as h tends to zero of the left hand side of (2.9) we have

lim
h→0

∣∣∣∣∣∣∣∣ ∫ t−h

a

(t− s)β−1

Γ(β)
X(s) ds

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣ l.i.m.

h→0

∫ t−h

a

(t− s)β−1

Γ(β)
X(s) ds

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣ ∫ t

a

(t− s)β−1

Γ(β)
X(s) ds

∣∣∣∣∣∣∣∣
provided that the m.s. Cauchy-Riemann integral exists.
Taking the limit as h tends to zero of the right hand side of (2.9) we have

lim
h→0

∫ t−h

a

(t− s)β−1

Γ(β)
||X(s)|| ds =

∫ t

a

(t− s)β−1

Γ(β)
||X(s)|| ds
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provided that this Cauchy-Riemann integral exists.
Thus, (2.6) will hold for β ∈ (0, 1) if the deterministic Cauchy-Riemann integral
and the m.s. Cauchy-Riemann integral involved exist. Note that unlike the
β ≥ 1 case, for the β ∈ (0, 1) case equation (2.6) does not necessarily hold when
X(t) is m.s. continuous – when X(t) is m.s. continuous we still need to check
that the limits as h→ 0 of both sides of (2.9) do indeed exist.

Combining all the preceding pieces we have the following result:

Theorem 2.1. Let X(t) be a second-order stochastic process. Then, for β > 0,∣∣∣∣∣∣∣∣ ∫ t

a

(t− s)β−1

Γ(β)
X(s) ds

∣∣∣∣∣∣∣∣ ≤ ∫ t

a

(t− s)β−1

Γ(β)
||X(s)|| ds (2.10)

provided that the integrals involved exist as deterministic/m.s. Riemann inte-
grals when β ≥ 1 and as deterministic/m.s. Cauchy-Riemann integrals when
β ∈ (0, 1).

Corollary 2.1. If (2.10) holds then∫ t

a

(t− s)β−1

Γ(β)
X(s) ds

∣∣∣∣
t=a

= 0 .

Proof:
For β > 0∣∣∣∣∣∣∣∣ ∫ t

a

(t− s)β−1

Γ(β)
X(s) ds

∣∣∣∣∣∣∣∣ ≤ ∫ t

a

(t− s)β−1

Γ(β)
||X(s)|| ds ≤M

∫ t

a

(t− s)β−1

Γ(β)
ds

where M = max
s∈[a,t]

‖X(s)‖.

Thus ∣∣∣∣∣∣∣∣ ∫ t

a

(t− s)β−1

Γ(β)
X(s) ds

∣∣∣∣∣∣∣∣
∣∣∣∣∣
t=a

≤ (M)(0) = 0 .

Since ‖X(t)‖ = 0 iff X(t) = 0,∫ t

a

(t− s)β−1

Γ(β)
X(t) dt

∣∣∣∣
t=a

= 0 , β > 0 .

�
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Mean-square derivatives

Definition 2.2. Let X(t), t ∈ T , be a second-order stochastic process. The mean
square derivative of X(t) at t, Ẋ(t), is defined by

X(1)(t) ≡ Ẋ(t) , l.i.m.
τ→0

1
τ
[X(t)−X(t− τ)] (2.11)

provided this limit exists.

Using the convergence in m.s. criterion i.e. letting Xτ (t) = 1
τ [X(t)−X(t− τ)]

and considering E[Xτ (t)Xε(s)], we see that the m.s. derivative of X(t) exists at
t iff the second generalized derivative – given by equation (2.12) below – exists
at (t, t) and is finite:

lim
τ, τ́→0

∆τ∆τ́ΓXX(t, s) = lim
τ́ , τ́→0

1
τ τ́

[
ΓXX(t, s)− ΓXX(t− τ, s)

−ΓXX(t, s− τ́) + ΓXX(t− τ, s− τ́)
]
.

(2.12)

We can similarly define the second mean-square derivative of X(t) at t by

X(2)(t) , l.i.m.
τ→∞

1
τ2

[X(t)− 2X(t− τ) +X(t− 2τ)] (2.13)

provided this limit exists. Using the convergence in m.s. criterion we see this
limit will exist if the following second generalized derivative exists:

lim
τ, τ́→0

∆τ∆τ́ΓX(1)X(1)(t, s) = lim
τ́ , τ́→0

1
τ τ́

[
ΓX(1)X(1)(t, s)− ΓX(1)X(1)(t− τ, s)

−ΓX(1)X(1)(t, s− τ́) + ΓX(1)X(1)(t− τ, s− τ́)
]
.

In general we can define the nth m.s. derivative at t of a second-order s.p.
X(t) in the following way:

X(n)(t) = l.i.m.
τ→0

[
1
τn

n∑
j=0

(−1)j

(
n

j

)
X(t− jτ)

]
(2.14)

provided this limit exists.

In deterministic fractional calculus relationships between integrals and deriva-
tives are given by integration by parts (IBP) and Leibniz’s Rule. Next we give
the m.s. versions of these two important results.

Integration by parts (IBP)
Suppose that f(t, s) is a deterministic function defined on T × T whose partial

9



derivative ∂f(t,s)
∂s exists and suppose that the second-order stochastic process

X(t) is mean-square differentiable on T . Then∫ t

a
f(t, s) Ẋ(s) ds = f(t, s)X(s)

∣∣t
a
−
∫ t

a

∂f(t, s)
∂s

X(s) ds .

Leibniz’s Rule
Suppose that f(t, s) is a continuous deterministic function defined on T × T

whose partial derivative ∂f(t,s)
∂t exists and suppose that the second-order stochas-

tic process X(t) is mean-square integrable on T . Then

d

dt

∫ t

a
f(t, s)X(s) ds =

∫ t

a

∂f(t, s)
∂t

X(s) ds+ f(t, t)X(t) .

One last concept that we will need in this dissertation is that of m.s. con-
tinuity. The s.p. X(t), t ∈ T , is m.s. continuous at t (a fixed point in T ) if, for
t, t+ h ∈ T ,

lim
h→0

‖X(t+ h)−X(t)‖ = 0 .

Using the convergence in mean-square criterion we see that if ΓXX(s, θ) is con-
tinuous at (t, t) then X(t) is m.s. continuous at t. It can be shown that m.s.
differentiability implies m.s. continuity which in turn implies m.s. integrability.

For the interested reader, many of the results covered in this chapter are
developed for fuzzy stochastic processes in Feng et al. (2001).
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Chapter 3

The mean-square fractional
integral and derivative

In the deterministic theory of fractional calculus there are many different def-
initions, and almost as many different notations and names, for both the frac-
tional integral and the fractional derivative. That there are many different
definitions should not be surprising as there are many different kinds of func-
tions to which you may want to apply a fractional integral or derivative. The
choice of definition in any particular situation depends not only on the function
involved but also on the properties associated with the definition. For exam-
ple, what Loverro (2004) refers to as the Left-Hand definition (of a fractional
derivative) is a common choice for the fractional derivative because when solv-
ing a fractional differential equation with this definition, the initial conditions
take the form of integer order derivatives – initial conditions of this kind be-
ing relatively easy to find and interpret. In some situations other definitions
for the fractional derivative are used because physical meaning can be given to
initial conditions that are non-integer order derivatives (Heymans & Podlubny
(2006) demonstrate this using examples from the field of viscoelasticity). What
these definitions have in common is that they reduce to ordinary repeated inte-
grals and derivatives when the fractions are in fact integers. As this property
– reducing to ordinary repeated integrals or derivatives when the parameter is
of integer order – is so desirable, we will start our search for definitions for the
m.s. fractional integral and the m.s. fractional derivative by building up expres-
sions for the nth integral and nth derivative of a second-order s.p. X(t), t ∈ T ,
where n ∈ N. Using these expressions we will then explore various definitions
based on some common definitions from the deterministic fractional calculus.

In deterministic calculus Cauchy’s formula for repeated integrals gives an
expression for the nth repeated integral of a (suitable) deterministic function
f(t). Below we find an expression for the nth integral of X(t), t ∈ T , over the
interval [a, t] where t ∈ [a, b] by briefly showing that Cauchy’s formula for re-
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peated integrals holds for mean-square integrals.

Suppose
∫ t
a

∫ s
a X(u) du ds exists in a m.s. sense. Using mean-square IBP we

have ∫ t

a

[ ∫ s

a
X(u) du

]
ds = s

∫ s

a
X(u) du

∣∣∣∣t
a

−
∫ t

a
sX(s) ds

= t

∫ t

a
X(u) du−

[
s

∫ s

a
X(u) du

]
s=a

−
∫ t

a
sX(s) ds .

Using Corollary 2.1[
t

∫ t

a
X(u) du

]
t=a

=
[
t

∫ t

a

(t− a)1−1

Γ(1)
X(u) du

]
t=a

= 0 .

Thus∫ t

a

[ ∫ s

a
X(u) du

]
ds =

∫ t

a
tX(u) du−

∫ t

a
uX(u) du

=
∫ t

a
(t− u)X(u) du

=
∫ t

a

(t− u)2−1

Γ(2)
X(u) du .

Continuing in this manner we are able to show that∫ t

a

∫ sn−1

a
. . .

∫ s3

a

∫ s2

a
X(s1) ds1 ds2 . . . dsn−2 dsn−1

=
∫ t

a

(t− s)n−1

Γ(n)
X(s) ds (3.1)

, In
aX(t)

Equation (3.1) leads us to our first definition for the m.s. fractional integral.
The m.s. Riemann-Liouville fractional integral is found by replacing n ∈ N by
β > 0 in equation (3.1). Doing so we have the following definition:

Definition 3.1. Let X(t), t ∈ T , be a second-order stochastic process and let
β > 0. The mean-square Riemann-Liouville (R-L) fractional integral to order β
of X(t) is given by

Iβ
aX(t) ,

∫ t

a

(t− s)β−1

Γ(β)
X(s) ds , t ∈ [a, b] ⊂ T . (3.2)

According to m.s. theory the integral
∫ t
a

(t−s)β−1

Γ(β) X(s) ds will exist in a m.s.
sense iff the following ordinary double Riemann integral exists and is finite:∫ t

a

∫ t

a

(t− s)β−1

Γ(β)
(t− θ)β−1

Γ(β)
ΓXX(s, θ) ds dθ . (3.3)
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Remembering that if E[X(t)X(t)] < ∞ then X(t) is a second order s.p. and
noting that∫ t

a

∫ t

a

(t− s)β−1

Γ(β)
(t− θ)β−1

Γ(β)
ΓXX(s, θ) ds dθ = E[Iβ

aX(t)Iβ
aX(t)] ,

we see that if Iβ
aX(t) exists in a m.s. sense then it is a second-order stochastic

process. It is often easy to check if the double Riemann integral in (3.3) exists
and is finite as the following example demonstrates.

Let Φ be a second-order random variable with E(Φ) = 0 and finite variance
V ar(Φ) = σ2. Then the s.p. X(t) defined by X(t) = Φ t will be a second-order s.p.
for finite t and will have

ΓXX(s, θ) = σ2sθ .

Then ∫ t

a

∫ t

a

(t− s)β−1

Γ(β)
(t− θ)β−1

Γ(β)
ΓXX(s, θ) ds dθ

= σ2

[ ∫ t

a

(t− s)β−1

Γ(β)
s ds

] [ ∫ t

a

(t− θ)β−1

Γ(β)
θ dθ

]
= σ2

[
a(t− a)β

Γ(β + 1)
+

(t− a)β+1

Γ(β + 2)

]2

where ordinary integration by parts was used to get the last line. Clearly Iβ
aX(t)

will exist and be finite for 0 < β <∞.

Under some circumstances it is not necessary to evaluate (3.3) in order to
check the existence of the m.s. integral. For example, when X(t) is m.s. contin-
uous for t ∈ [a, b] and 1 ≤ β < ∞, the integral in (3.2) will exist in a m.s. sense
(for a more detailed explanation see the discussion preceding Theorem 2.1 in
the previous chapter).

In the previous chapter we found that the nth, n ∈ N, m.s. derivative of the
second-order s.p. X(t) at t is given by

X(n)(t) = l.i.m.
τ→0

[
1
τn

n∑
j=0

(−1)j

(
n

j

)
X(t− jτ)

]
(3.4)

provided this limit exists. Like the R-L fractional integral, if X(n)(t) exists it
will be a second-order stochastic process. To see this we note that Ẋ(t) will exist
iff

lim
τ,τ́→0

E[Xτ (t)Xτ́ (t)]

13



exists and is finite for all (t, t) in T × T where Xτ (t) = 1
τ [X(t)−X(t− τ)].

But

lim
τ,τ́→0

E[Xτ (t)Xτ́ (t) ] = E

[
l.i.m.
τ,τ́→0

1
τ
[X(t)−X(t− τ) ]

1
τ́
[X(t)−X(t− τ́) ]

]
= E[ Ẋ(t)Ẋ(t) ] .

Thus if Ẋ(t) exists then E[ Ẋ(t)Ẋ(t) ] <∞ and so Ẋ(t) is a second order stochas-
tic process. Since X(n)(t) = d

dtX
(n−1)(t), by considering

lim
τ,τ́→0

E[X(n−1)
τ (t)X(n−1)

τ́ (t)]

we can similarly show that if X(n)(t) exists then it is a second-order stochastic
process.

To find a definition for the m.s. fractional derivative we can try the same
approach that we used for the fractional integral – replacing n ∈ N by β > 0 in
(3.4). However, before we try this we are going to use X(n)(t), in combination
with the m.s. R-L fractional integral to find two definitions for the m.s. frac-
tional derivative.

When deterministic calculus is taught, the Riemnann integral is often pre-
sented in terms of the anti-derivative giving the impression that differentiation
and integration are inverse operations. This is not entirely true in deterministic
calculus, nor is it the case in m.s. calculus. For example, although

d

dt

∫ t

a
X(s) ds = X(t) ,

we have ∫ t

a
Ẋ(s) ds = X(t)−X(a) .

Also,
d2

dt2

∫ t

a
X(s) ds =

d

dt
X(t) = Ẋ(t)

but ∫ t

a
Ẍ(s) ds = Ẋ(t)− Ẋ(a)

and in general, integration and differentiation will only be inverse operations
if X(n)(a) = 0 for n ∈ N0. Despite this fact, the Right-Hand and Left-Hand def-
initions of the m.s. fractional derivative are based on the idea that integration
and differentiation are (roughly) inverse operations.

Before giving the definitions let us consider an example. Suppose we want
to find the 3.5th derivative of X(t). We could take the 4th m.s. derivative of X(t)
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and “undo” some of the differentiation by taking the 0.5th R-L fractional inte-
gral to arrive at X(3.5)(t). Or we could reverse the order of the operations – first
taking the 0.5th R-L fractional integral of X(t) then taking the 4th m.s. deriva-
tive of the resulting integral to arrive at X(3.5)(t).

Below we give the definitions for the Right-Hand and Left-Hand definitions
of the m.s. fractional derivative.

Definition 3.2. Let X(t), t ∈ T , be a second-order stochastic process and let
β > 0 be such that β ∈ (m − 1,m], m ∈ N. The mean square Left-Hand (LH)
fractional derivative of X(t) at t, t ∈ [a, b] ⊂ T , is given by

∗D
β
aX(t) =


dm

dtm
Im−β
a X(t) , β ∈ (m− 1,m)

dm

dtm
X(t) , β = m.

(3.5)

(3.6)

Definition 3.3. Let X(t), t ∈ T , be a second-order stochastic process and let
β > 0 be such that β ∈ (m − 1,m], m ∈ N. The mean square Right-Hand (RH)
fractional derivative of X(t) at t, t ∈ [a, b] ⊂ T , is given by

Dβ
aX(t) =


Im−β
a X(m)(t) , β ∈ (m− 1,m)

dm

dtm
X(t) , β = m

(3.7)

(3.8)

When β = m ∈ N both ∗D
β
aX(t) and Dβ

aX(t) give us ordinary repeated m.s.
derivatives and so will exist if a suitable generalized derivative holds.

Clearly, for (3.5) to exist, Im−β
a X(t) must exist as a m.s. Cauchy-Riemann

integral i.e. the (deterministic) repeated Cauchy-Riemann integral∫ t

a

∫ t

a

(t− s)m−β−1

Γ(m− β)
(t− θ)m−β−1

Γ(m− β)
ΓXX(s, θ) ds dθ ,

must exist. Assuming this is the case, we then require the mth m.s. derivative
of Im−β

a X(t) to exist – something that can be checked using a suitable second
generalized derivative.

Now consider (3.7). For this fractional derivative to exist we need X(m)(t) to
exist – the existence can be checked by the use of a suitable second generalized
derivative. If it does exist, since (3.7) is a m.s. Cauchy-Riemann integral, we
then require the following (deterministic) repeated Cauchy-Riemann integral
to exist: ∫ t

a

∫ t

a

(t− s)m−β−1

Γ(m− β)
(t− θ)m−β−1

Γ(m− β)
ΓX(m)X(m)(s, θ) ds dθ .
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The two definitions that we have just given for the m.s. fractional derivative
are based on the R-L fractional integral. We will now consider a third definition
– this one based on the form given in given in (3.4) for the nth m.s. derivative of
X(t). Equation (3.4) is repeated below for convenience:

X(n)(t) = l.i.m.
τ→0

[
1
τn

n∑
j=0

(−1)j

(
n

j

)
X(t− jτ)

]
.

Let us replace n ∈ N by β > 0. If we do this we encounter two problems. The
first problem is only a minor problem – the expression (−1)j

(
n
j

)
must be written

in terms of the gamma function in order to make sense when we replace n by
β. The second problem involves the upper limit of the sum – the upper limit
must be a non-negative integer. Sorting out this second problem requires a bit
of creativity and unfortunately requires some unwanted changes to equation
(3.4). In (3.4) τ tends to zero through values that are unrestricted. If this limit
exists then so too does the limit when τ tends to zero through particular values.
Further, this restricted limit will then be equal to the unrestricted limit. So
letting τ tend to zero through the values given by δtN = (t−a)

N for N = 1, 2, . . .
where a < t and using the notation

(−1)j

(
n

j

)
=

Γ(j − n)
Γ(−n)Γ(j + 1)

=
ψ(j, n)
Γ(−n)

,

we can re-write equation (3.4) as follows:

X(n)(t) = l.i.m.
δtN→0

[
1

(δtN )n

N−1∑
j=0

(−1)j

(
n

j

)
X(t− j δtN )

]

= l.i.m.
N→∞

[
(δtN )−n

Γ(−n)

N−1∑
j=0

ψ(j, n)X(t− j δtN )

]
.

Replacing n ∈ N by β > 0 we thus have the following definition for the fractional
derivative:

Definition 3.4. Let X(t), t ∈ T , be a second-order stochastic process and let
a ∈ T . The mean-square Grünwald fractional derivative of order β > 0 of a
second-order stochastic process X(t), is given by

X(β)
a (t) = l.i.m.

N→∞

[
(δtN )−β

Γ(−β)

N−1∑
j=0

ψ(j, β)X(t− j δtN )

]
(3.9)

where, for N = {1, 2, 3, . . .},

δtN =
(t− a)
N

and ψ(j, β) =
Γ(j − β)
Γ(j + 1)

.
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Using the convergence in mean-square criterion we see that the above limit
will exist iff

(δtN δsN ′)−β

Γ2(−β)

N−1∑
j=0

N ′−1∑
k=0

ψ(j, β)ψ(k, β) ΓXX(t− jδtN , s− k δsN ′)

(3.10)

tends to a finite limit as N and N ′ tend to infinity in any manner whatever.
It is important to note that the limit in (3.9) is a restricted limit so that for
β = m ∈ N, (3.9) will give us integer order derivatives only when those deriva-
tives exist i.e. when the unrestricted limit in (3.4) exists.

A second definition for the m.s. fractional integral can be found by allowing
negative values of β in the formula for the Grünwald m.s. fractional derivative.
Doing so we have the following definition:

Definition 3.5. Let X(t), t ∈ T , be a second-order stochastic process and let
a ∈ T . The mean-square Grünwald fractional integral to order β > 0 of a
second-order stochastic process X(t), is given by

[Iβ
aX(t)]G = l.i.m.

N→∞

[( t−a
N

)β

Γ(β)

N−1∑
j=0

Γ(j + β)
Γ(j + 1)

X
(
t− j

[ t− a

N

])]
. (3.11)

By replacing β by −β in the existence condition for the Grünwald m.s. frac-
tional derivative, we have the existence condition for the Grünwald m.s. frac-
tional integral.

Now, it is not clear from looking at equation (3.11) that the Grünwald m.s.
fractional integral reduces to ordinary repeated m.s. integrals for integer β. To
see that it does, we will show that [Iβ

aX(t)]G equals the m.s. R-L fractional in-
tegral not only for integer values of β but also for non-integer values of β that
are greater than 2. The method that we will use to show the equality of the two
definitions is the one Oldham & Spanier (1974) use to determine the equality
in the deterministic case. We will start by finding an expression for the R-L
fractional integral that allows us to compare the two definitions.

Letting [Iβ
aX(t)]R−L represent the m.s. R-L fractional integral of order β > 0,

we have

[Iβ
aX(t)]R−L =

∫ t

a

(t− s)β−1

Γ(β)
X(s) ds

=
∫ t−a

0

sβ−1

Γ(β)
X(t− s) ds

= l.i.m.
n→∞
∆n→0

n∑
k=1

(s∗k)
β−1

Γ(β)
X(t− s∗k)(sk − sk−1) (3.12)
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where

• 0 = s0 < s1 < s2 < . . . < sn = t− a ≤ b,

• s∗k ∈ [sk−1, sk],

• ∆n = max
k

(sk − sk−1).

The limit in mean in (3.12) is independent of both the sequence of subdivi-
sions and the position of the s∗k ’s within the intervals [sk−1, sk]. The existence
of this limit implies the existence of the limit when a particular sequence of
subdivisions is chosen and the s∗k ’s are chosen to be particular points in the in-
tervals [sk−1, sk]. Choosing a particular sequence of subdivisions – one in which
the intervals are of equal length – and letting the s∗k ’s be the upper points of
each interval, we can write

[Iβ
aX(t)]R−L = l.i.m.

n→∞
∆n→0

n∑
k=1

(s∗k)
β−1

Γ(β)
X(t− s∗k)(sk − sk−1)

= l.i.m.
N→∞

N−1∑
k=0

(k δtN )β−1

Γ(β)
X(t− kδtN )δtN

= l.i.m.
N→∞

N−1∑
k=0

kβ−1

Γ(β)
(δtN )βX(t− k δtN ) . (3.13)

Note that due to the way we have defined our subdivisions, letting N → ∞ im-
plies that ∆n → 0.

Now, again letting

ψ(j, β) =
Γ(j + β)
Γ(j + 1)

we have

∆ ,
[
Iβ
aX(t)

]
G
−
[
Iβ
aX(t)

]
R−L

= l.i.m.
N→∞

[
(δtN )β

Γ(β)

N−1∑
j=0

ψ(j, β)X(t− j δtN )

]

− l.i.m.
N→∞

[
(δtN )β

Γ(β)

N−1∑
k=0

kβ−1X(t− k δtN )

]

= l.i.m.
N→∞

(
(δtN )β

Γ(β)

N−1∑
j=0

X(t− j δtN )
[
ψ(j, β)− jβ−1

])

=
(t− a)β

Γ(β)
l.i.m.
N→∞

(
N−1∑
j=0

1
Nβ

X(t− j δtN )
[
ψ(j, β)− jβ−1

])
.

(3.14)
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In (3.14) we will group the first J terms together and then group the remaining
(N − J) terms. We require J to be independent of N and large enough to allow
us to use the asymptotic expansion

ψ(j, β) =
Γ(j + β)
Γ(j + 1)

∼ jβ−1

[
1 +

β(β − 1)
2j

+ O(j−2)

]
j →∞ .

We thus have

∆ =
(t− a)β

Γ(β)
l.i.m.
N→∞

J−1∑
j=0

X(t− j δtN )
1
Nβ

[
ψ(j, β)− jβ−1

]
+

(t− a)β

Γ(β)
l.i.m.
N→∞

1
N

N−1∑
j=J

X(t− j δtN )
[ j
N

]β−2
[
β(β − 1)

2N
+

O(j−1)
N

]
.

We note that in the first summation, for β > 1

1
Nβ

[
ψ(j, β)− jβ−1

]
→ 0 as N →∞

so that since X(t) is a second-order s.p. the first summation will tend to zero as
N tends to infinity. Also, in the second summation[

β(β − 1)
2N

+
O(j−1)
N

]
→ 0 as N →∞,

[ j
N

]β−2
< 1 provided β ≥ 2 and

1
N
→ 0 as N →∞,

so that since X(t) is a second-order s.p. the second summation will tend to zero
as N tends to infinity. Thus, we have shown the equality of the two definitions
for the β ≥ 2 case.

Looking at the specific case when β = 1 we see that

∆ ,
[
I1
aX(t)

]
G
−
[
I1
aX(t)

]
R−L

= l.i.m.
N→∞

[
δtN

N−1∑
j=0

X(t− j δtN )

]
− l.i.m.

N→∞

[
δtN

N−1∑
k=0

X(t− k δtN )

]

= l.i.m.
N→∞

δtN

N−1∑
j=0

X(t− j δtN ) [1− 1]

= 0
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since X(t) is a second-order stochastic process. Thus the two definitions are
also equal for β = 1.

The first step we did when showing the equality of the two definitions high-
lights an important point – the limit used in the Grünwald m.s. fractional
integral is a restricted limit and so will only actually reduce to integer or-
der repeated m.s. integrals when those repeated m.s. integrals exist i.e. when
[In

aX(t)]R−L, n ∈ N, exists.

We have considered the m.s equivalents for some of the more common def-
initions of the deterministic fractional integral and fractional derivative. We
have seen that they can be derived in the same way, and have the same form
as, the deterministic fractional integrals and derivatives. This should not be
surprising – the development of m.s. calculus is similar to that of determinis-
tic calculus and so it seems reasonable that the development of m.s. fractional
calculus is similar to that of deterministic fractional calculus. There are many
more definitions that we could consider here but since this dissertation is not
aimed at giving a complete working of the subject we will not do so. For this
same reason, for the remainder of this dissertation we will restrict ourselves to
the use of only one m.s. fractional integral – the m.s. R-L fractional integral –
and one m.s. fractional derivative – the m.s. RH fractional derivative. The rea-
son we will not be using the Grünwald m.s. fractional integral and derivative
is that the current body of work (given in Hafiz et al. (2001), Hafiz (2004) and
El-Sayed et al. (2005)) only introduces the R-L fractional derivative and the RH
and LH fractional derivatives and a fair exploration of the m.s. fractional cal-
culus can be done simply by extending and adding to the current body of work.
The reason that the m.s. RH fractional derivative is being used instead of the
m.s. LH fractional derivative is that for any particular value of t ∈ T , say t1,

Dβ
aX(t1) =

∫ t

a

(t− s)β−1

Γ(β)
dm

dtm
X(t1)︸ ︷︷ ︸
0

ds = 0 .

Intuitively this seems correct. By contrast

∗D
β
aX(t1) =

dm

dtm

∫ t

a

(t− s)β−1

Γ(β)
X(t1) ds

= X(t1)
dm

dtm

∫ t

a

(t− s)β−1

Γ(β)
ds

= X(t1)
dm

dtm
(t− a)β

Γ(β + 1)

= X(t1)
(t− a)β−m

Γ(β −m+ 1)
.

In general X(t1) 6= 0 so in general ∗Dt
aX(t1) 6= 0.
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One drawback of our choice for the definition of the m.s. fractional derivative
is that it requires the stochastic process to be m.s. differentiable to order m ∈ N.
This means that we will not be able to consider the m.s. fractional derivatives
of some commonly used stochastic processes. The Poisson process, the Wiener
process and binary noise are three such processes.

For the remainder of this dissertation, unless the situation calls for the use
of the full names of the fractional integrals or derivatives to avoid confusion, we
will refer to the m.s. Riemann-Liouville fractional integral simply as the m.s.
fractional integral and the m.s. RH fractional derivative simply as the m.s. frac-
tional derivative. We will also define I0

aX(t) and D0
aX(t) as follows:

I0
aX(t) , X(t)

D0
aX(t) , X(t) .
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Chapter 4

Properties of mean-square
fractional integrals and
derivatives

Having defined the m.s. fractional integral and derivative, we are now in a po-
sition to consider some of their properties. Ideally we would like to show that
many of the properties of the deterministic fractional calculus have m.s. equiv-
alents. There are some properties in the deterministic fractional calculus that
are used to solve deterministic fractional integral and differential equations. As
such, these are properties that once transferred to a m.s. setting may possibly be
used to solve m.s. fractional integral and differential equations. Presumably for
this reason Hafiz et al. (2001), Hafiz (2004) and El-Sayed et al. (2005) consider
these properties as well as some basic properties of m.s. fractional derivatives
and integrals. Solving m.s. fractional integral and differential equations is the
topic of Chapter 6 and so in this chapter we too will consider these properties
using more general conditions in several places and extending the properties to
include the β > 1 cases which are not considered in Hafiz et al. (2001), Hafiz
(2004) and El-Sayed et al. (2005) when fractional derivatives are involved.

There is a large overlap of the content in Hafiz et al. (2001), Hafiz (2004)
and El-Sayed et al. (2005). The proofs of the properties that are common are
remarkably alike despite Hafiz (2004) using different conditions to Hafiz et al.
(2001) and El-Sayed et al. (2005). Due to this overlap we will, for convenience,
often only make reference to Hafiz et al. (2001).

4.1 Basic properties

Theorem 4.1. Let X(t) and Y (t) be second-order stochastic processes for which
Iβ
aX(t) and Iβ

a Y (t), β > 0, exist for t ∈ [a, b] ⊂ T . Then
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4.1. Basic properties

(a) (Linearity)
Iβ
a [X(t) + Y (t)] = Iβ

aX(t) + Iβ
a Y (t).

(b) (Homogeneity)
Iβ
a [cX(t)] = c · Iβ

aX(t)

where c is a constant.

(c) Iβ
aX(t)|t=a = 0

Proof: Letting

• a = s0 < s1 < s2 < . . . < sn = t ≤ b,

• s∗k ∈ [sk−1, sk] for k = 1, 2, . . . , n and

• ∆n = max
k

(sk − sk−1)

we have

(a)

Iβ
a [X(t) + Y (t)] =

∫ t

a

(t− s)β−1

Γ(β)
[X(s) + Y (s)] ds

= l.i.m.
n→∞
∆n→0

n∑
k=1

(t− s∗k)
β−1

Γ(β)
[X(s∗k) + Y (s∗k)](sk − sk−1)

= l.i.m.
n→∞
∆n→0

n∑
k=1

(t− s∗k)
β−1

Γ(β)
X(s∗k) (sk − sk−1)

+ l.i.m.
n→∞
∆n→0

n∑
k=1

(t− s∗k)
β−1

Γ(β)
Y (s∗k) (sk − sk−1)

=
∫ t

a

(t− s)β−1

Γ(β)
X(s) ds+

∫ t

a

(t− s)β−1

Γ(β)
Y (s) ds

= Iβ
aX(t) + Iβ

a Y (t) .

(b) Similarly,

Iβ
a [cX(t)] = l.i.m.

n→∞
∆n→0

n∑
k=1

(t− s∗k)
β−1

Γ(β)
c X(s∗k) (sk − sk−1)

= c l.i.m.
n→∞
∆n→0

n∑
k=1

(t− s∗k)
β−1

Γ(β)
X(s∗k) (sk − sk−1)

= c · Iβ
aX(t) .
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4.1. Basic properties

(c) Since Iβ
aX(t) is defined as follows

Iβ
aX(t) ,

∫ t

a

(t− s)β−1

Γ(β)
X(s) ds ,

we see that (c) is proved in Corollary 2.1 in Chapter 2. �

Corollary 4.1. Let β ∈ (m − 1,m) where m ∈ N and let X(t) be a second-order
stochastic process such that Dβ

aX(t) exists for t ∈ [a, b] ⊂ T . Then

Dβ
aX(t)|t=a = 0 .

Proof:
For β ∈ (m− 1,m) Dβ

aX(t) is defined as follows

Dβ
aX(t) , Im−β

a X(m)(t) .

This is of the form Iα
a Y (t) where α = m−β and Y (t) is a second-order stochastic

process. Thus, using Part (c) of Theorem 4.1 we have

Dβ
aX(t)|t=a = Im−β

a X(m)(t)|t=a = 0 .

�

Note: Later in this chapter we will come across terms like Iβ
aX(a). By this we

mean Iβ
a [X(a)] and not Iβ

aX(t)|t=a. If there is cause for confusion we will specify
what is meant.

In the following theorem we consider the continuity of Iβ
aX(t).

Theorem 4.2. Let β > 0 and let X(t) be a second-order stochastic process such
that Iβ

aX(t) exists for t ∈ [a, b] ⊂ T . Then Iβ
aX(t) is mean-square continuous

provided that, for h > 0, ∫ t+h

t

(t+ h− s)β−1

Γ(β)
‖X(s)‖ ds

and ∫ t

a

(t+ h− s)β−1 − (t− s)β−1

Γ(β)
‖X(s)‖ ds

exist as Riemann integrals when β ≥ 1 and as CR integrals when β ∈ (0, 1).

Proof:
To show that Iβ

aX(t) is m.s. continuous we must show that, for t, t+h ∈ T where
h > 0,

‖Iβ
aX(t+ h)− Iβ

aX(t)‖ → 0 as h→ 0. (4.1)
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4.1. Basic properties

Now,

‖Iβ
aX(t+ h)− Iβ

aX(t)‖ =
∥∥∥∥∫ t+h

a

(t+ h− s)β−1

Γ(β)
X(s) ds

−
∫ t

a

(t− s)β−1

Γ(β)
X(s) ds

∥∥∥∥
=

∥∥∥∥∫ t+h

t

(t+ h− s)β−1

Γ(β)
X(s) ds

+
∫ t

a

(t+ h− s)β−1 − (t− s)β−1

Γ(β)
X(s) ds

∥∥∥∥
≤

∥∥∥∥∫ t+h

t

(t+ h− s)β−1

Γ(β)
X(s) ds

∥∥∥∥
+
∥∥∥∥∫ t

a

(t+ h− s)β−1 − (t− s)β−1

Γ(β)
X(s) ds

∥∥∥∥
= ‖ I1‖+ ‖ I2‖

where

I1 =
∫ t+h

t

(t+ h− s)β−1

Γ(β)
X(s) ds and

I2 =
∫ t

a

(t+ h− s)β−1 − (t− s)β−1

Γ(β)
X(s) ds .

Consider I1.

‖I1‖ ≤
∫ t+h

t

(t+ h− s)β−1

Γ(β)
‖X(s)‖ ds

provided the integral on the right exists as a Riemann integral when β ≥ 1 and
as a CR integral when β ∈ (0, 1).
Then, letting M = max

s∈[t,t+h]
‖X(s)‖ we have

‖I1‖ ≤M

∫ t+h

t

(t+ h− s)β−1

Γ(β)
ds → 0 as h→ 0.

Similarly,

‖I2‖ ≤
∫ t

a

(t+ h− s)β−1 − (t− s)β−1

Γ(β)
‖X(s)‖ ds

provided the integral on the right exists as a Riemann integral when β ≥ 1 and
as a CR integral when β ∈ (0, 1).
Then, letting N = max

s∈[a,t]
‖X(s)‖ we have

‖I2‖ ≤ N

∫ t

a

(t+ h− s)β−1 − (t− s)β−1

Γ(β)
ds → 0 as h→ 0.
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4.1. Basic properties

Thus

‖Iβ
aX(t+ h)− Iβ

aX(t)‖ ≤ ‖I1‖+ ‖I2‖ → 0 as h→ 0.

So we see that Iβ
aX(t) will be m.s. continuous. �

In Theorem 4.2 we do not restrict ourselves to m.s. continuous second-order
stochastic processes. If X(t) is m.s. continuous and β ≥ 1 then Iβ

aX(t) and the
integrals∫ t+h

t

(t+ h− s)β−1

Γ(β)
‖X(s)‖ ds

and ∫ t

a

(t+ h− s)β−1 − (t− s)β−1

Γ(β)
‖X(s)‖ ds

will exist and so the statement of the above theorem becomes:

If X(t) is mean-square continuous for t ∈ [a, b] ⊂ T , then Iβ
aX(t) is

mean-square continuous for β ≥ 1.

Using a similar method Hafiz et al. (2001) arrive at the same result – if X(t) is
mean-square continuous then Iβ

aX(t) is mean-square continuous – but include
the region β ∈ (0, 1). The reasoning for this being that, according to Hafiz et al.
(2001), the continuity of X(t) insures the existence of Iβ

aX(t) for β > 0. How-
ever, as we have discussed previously, this is not the case when β ∈ (0, 1).

Up till now we have emphasized the importance of checking the existence
of CR integrals when they are used. This is quite tedious so in the following
work – not only in this chapter but also in following chapters – it will go without
saying that the existence of all CR integrals should be checked.

In the next few theorems we take the focus off of t ∈ T and instead focus on
β > 0.

Theorem 4.3. Let X(t) be a second-order stochastic process such that Iγ
aX(t),

t ∈ [a, b] ⊂ T , exists for all γ > 0. Then, for α > 0 where α 6= β,

l.i.m.
β→α

Iβ
aX(t) = Iα

aX(t)

Proof:
Using the convergence in mean-square criterion we see that to prove

l.i.m.
β→α

Iβ
aX(t) = Iα

aX(t)
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4.1. Basic properties

we need only show that E[Iβ
aX(t)Iβ′

a X(t)] tends to a finite limit as β and β′ tend
to α (in any manner whatever) and that the limit is E[Iα

aX(t)Iα
aX(t)].

Now,

lim
β,β′→α

E[Iβ
aX(t)Iβ′

a X(t)]

= lim
β,β′→α

∫ t

a

∫ t

a

(t− s)β−1

Γ(β)
(t− θ)β′−1

Γ(β′)
ΓXX(s, θ) ds dθ

=
∫ t

a

∫ t

a

[
lim

β,β′→α

(t− s)β−1

Γ(β)
(t− θ)β′−1

Γ(β′)

]
ΓXX(s, θ) ds dθ

=
∫ t

a

∫ t

a

(t− s)α−1

Γ(α)
(t− θ)α−1

Γ(α)
ΓXX(s, θ) ds dθ <∞

= E[Iα
aX(t)Iα

aX(t)] .

�

By looking at the proof of Theorem 4.3 it is clear that we could not consider
the case β → α where α = 0. In the following theorem we consider this case.

Theorem 4.4. LetX(t) be a second-order stochastic process such that Ẋ(t) exists
and is mean-square continuous on [a, b] ⊂ T . Then

l.i.m.
β→0

Iβ
aX(t) = X(t).

Proof:
Using integration by parts we have for β > 0

Iβ+1
a Ẋ(t) =

[
(t− s)β

Γ(β + 1)
X(s)

]t

a

+
∫ t

a

(t− s)β−1

Γ(β)
X(s) ds

= − (t− a)β

Γ(β + 1)
X(a) + Iβ

aX(t) .

So

l.i.m.
β→0

Iβ
aX(t) = l.i.m.

β→0

[
Iβ+1
a Ẋ(t) +

(t− a)β

Γ(β + 1)
X(a)

]
= l.i.m.

β→0
Iβ+1
a Ẋ(t) + l.i.m.

β→0

[
(t− a)β

Γ(β + 1)
X(a)

]
= l.i.m.

γ→1
Iγ
a Ẋ(t) +X(a)

= I1
aẊ(t) +X(a)

= X(t)−X(a) +X(a)
= X(t) .

�

27



4.1. Basic properties

We have followed the example of deterministic fractional calculus defining
I0
aX(t) to be X(t). This definition makes sense intuitively but Theorem 4.4

further motivates it (despite Theorem 4.4 requiring the existence of Ẋ(t)).

Theorem 4.5. Let β ∈ (m − 1,m) where m ∈ N. Let X(t) be a second order
stochastic process such that X(m)(t) exists and is mean square continuous on
[a, b] ⊂ T . Then

(a)
l.i.m.
β→m

Dβ
aX(t) = X(m)(t) .

(b)
l.i.m.

β→(m−1)
Dβ

aX(t) = X(m−1)(t)−X(m−1)(a) .

Proof:
(a)

l.i.m.
β→m

Dβ
aX(t) = l.i.m.

β→m
Im−β
a X(m)(t)

= l.i.m.
γ→0

Iγ
aX

(m)(t)

= X(m)(t)

where Theorem 4.4 has been used in the last step.

(b)

l.i.m.
β→(m−1)

Dβ
aX(t) = l.i.m.

β→(m−1)
Im−β
a X(m)(t)

= l.i.m.
γ→1

Iγ
aX

(m)(t)

= I1
aX

(m)(t)
= X(m−1)(t)−X(m−1)(a)

where IBP has been used in the last step. �

From Part (a) of Theorem 4.5 we know that

l.i.m.
β→m

Dβ
aX(t) = X(m)(t)

and from Part (b) we see that we will have

l.i.m.
(β+1)→m

Dβ+1
a X(t) = X(m)(t)−X(m)(a) .

In general X(m)(a) does not equal 0. Thus Theorem 4.5 shows the necessity of
explicitly defining Dβ

aX(t) to be X(m)(t) when β = m ∈ N in the definition of the
mean-square fractional derivative. Dβ

aX(t) could as easily have been defined as
X(m)(t)−X(m)(a) when β = m ∈ N, but this seems counter-intuitive.
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4.2. The composition rule

4.2 The composition rule

Since Iβ
aX(t) and Dβ

aX(t), when they exist, are second-order stochastic pro-
cesses, we can consider expressions such as Iα

a I
β
aX(t) and Dα

a I
β
aX(t). These

expressions, and those like it, make up what we will call the composition rule.
They will play an important role in later chapters. This section deals with parts
of the composition rule.

The following theorem is used to derive many of the remaining properties
in this chapter. In deterministic fractional calculus the proof of this theorem is
often left out. We include the proof for this m.s. version – as do Hafiz et al. (2001)
and Hafiz (2004), albeit in a less detailed manner – for the sake of completeness.

Theorem 4.6. Let β > 0 and α > 0 and let X(t) be a second-order stochastic
process such that Iα

a I
β
aX(t) exists for t ∈ [a, b] ⊂ T . Then

Iα
a I

β
aX(t) = Iα+β

a X(t) .

Proof:

Iα
a I

β
aX(t) =

∫ t

a

(t− θ)α−1

Γ(α)

∫ θ

a

(θ − s)β−1

Γ(β)
X(s) ds dθ

=
∫ t

a
X(s)

[ ∫ t

s

(t− θ)α−1

Γ(α)
(θ − s)β−1

Γ(β)
dθ

]
ds .

Consider

I =
∫ t

s

(t− θ)α−1

Γ(α)
(θ − s)β−1

Γ(β)
dθ .

Letting υ = θ − s we have

I =
1

Γ(α)Γ(β)

∫ t−s

0
(t− υ − s)α−1υβ−1 dυ .

Now letting υ = (t− s)u we have

I =
1

Γ(α)Γ(β)

∫ 1

0
(t− s)α−1(1− u)α−1(t− s)β−1uβ−1(t− s) du

=
(t− s)α+β−1

Γ(α)Γ(β)

∫ 1

0
(1− u)α−1uβ−1 du

=
(t− s)α+β−1

Γ(α)Γ(β)
· Γ(α)Γ(β)

Γ(α+ β)

=
(t− s)α+β−1

Γ(α+ β)
.
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4.2. The composition rule

So

Iα
a I

β
aX(t) =

∫ t

a

(t− s)α+β−1

Γ(α+ β)
X(s) ds

= Iα+β
a X(t) . �

In Theorem 4.6 we considered the m.s. fractional integral of a m.s. frac-
tional integral. In the next few theorems we find expressions for Iα

aD
β
aX(t) and

Dα
a I

β
aX(t). The proofs used when finding these expressions will rely heavily on

Leibniz’s rule and IBP. This is not surprising as Leibniz’s rule deals with the
derivative of an integral and IBP deals with the integral of a derivative (deriva-
tives and integrals being defined in the m.s. sense for second-order stochastic
processes). We will see that the proofs are very similar and will often rely on
parts of previously proved theorems. It would be cumbersome to constantly re-
fer to previous theorems when they are used so, in most situations, we will not
do so.

Theorem 4.7. Let α > 0 and β ∈ (m − 1,m] where m ∈ N. Let X(t) be a
second-order stochastic process such that Dβ

aX(t) exists for t ∈ [a, b] ⊂ T . Then

Iα
aD

β
aX(t) = Iα−β

a X(t)−
m−1∑
j=0

(t− a)α−β+j

Γ(α− β + j + 1)
X(j)(a) , α ≥ β.

Proof:
Using integration by parts we have

I1
a X

(1)(t) =
∫ t

a
X(1)(s) ds

= [X(s) ]ta + 0
= X(t)−X(a) ,

I2
a X

(2)(t) =
∫ t

a

(t− s)
Γ(2)

X(2)(s) ds

=
[

(t− s)
Γ(2)

X(1)(s)
]t

a

+
∫ t

a
X(1)(s) ds︸ ︷︷ ︸
I1
a X(1)(t)

= −(t− a)1

Γ(2)
X(1)(a)−X(a) +X(t) ,
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4.2. The composition rule

and

I3
a X

(3)(t) =
∫ t

a

(t− s)2

Γ(3)
X(3)(s) ds

=
[

(t− s)2

Γ(3)
X(2)(s)

]t

a

+
∫ t

a

(t− s)
Γ(2)

X(2)(s) ds︸ ︷︷ ︸
I2
a X(2)(t)

= −(t− a)2

Γ(3)
X(2)(a)− (t− a)1

Γ(2)
X(1)(a)−X(a) +X(t) .

Continuing in the same manner we have, for α = β = m,

Im
a X(m)(t) = X(t)−

m−1∑
j=0

(t− a)j

Γ(j + 1)
X(j)(a) . (4.2)

For α = β ∈ (m− 1,m)

Iβ
aD

β
aX(t) = Iβ

a Im−β
a X(m)(t) = Im

a X
(m)(t)

= X(t)−
m−1∑
j=0

(t− a)j

Γ(j + 1)
X(j)(a)

where we have used equation (4.2) to find the last line.

Let n ∈ N. When α = n and β = m

In
aD

m
a X(t) = In−m

a Im
a X

(m)(t)

= In−m
a

[
X(t)−

m−1∑
j=0

(t− a)j

Γ(j + 1)
X(j)(a)

]

= In−m
a X(t)−

m−1∑
j=0

(t− a)n−m+j

Γ(n−m+ j + 1)
X(j)(a) .

When α ∈ (n− 1, n) and β = m

β = m ≤ n− 1 < α < n

so that α−m > 0. Under these conditions we have

Iα
aX

(m)(t) = Im−m
a Iα

aX
(m)(t)

= Iα−m
a Im

a X
(m)(t)

= Iα−m
a

[
X(t)−

m−1∑
j=0

(t− a)j

Γ(j + 1)
X(j)(a)

]

= Iα−m
a X(t)−

m−1∑
j=0

(t− a)α−m+j

Γ(α−m+ j + 1)
X(j)(a) .

31



4.2. The composition rule

For α ∈ (n− 1, n] and β ∈ (m,m− 1)

Iα
aD

β
aX(t) = Iα

a I
m−β
a X(m)(t)

= Iα−β
a Im

a X
(m)(t)

= Iα−β
a

[
X(t)−

m−1∑
j=0

(t− a)j

Γ(j + 1)
X(j)(a)

]

= Iα−β
a X(t)−

m−1∑
j=0

(t− a)α−β+j

Γ(α− β + j + 1)
X(j)(a) .

�
In Theorem 4.7 we have considered the fractional integral of a fractional

derivative when the integral is of an order greater than, or equal to, that of the
fractional derivative. In the following theorem, Theorem 4.8, we will look at the
case when the order of the integral is smaller than that of the derivative.

Theorem 4.8. Let n ∈ N and m ∈ N and let 0 < α < β where α ∈ (n− 1, n] and
β ∈ (m − 1,m]. Let X(t) be a second-order stochastic process such that Dβ

aX(t)
exists for t ∈ [a, b] ⊂ T . Then

(a)

Iα
aD

β
aX(t) = Dβ−α

a X(t)

when β − α ∈ (m− 1,m) and β 6= m.

(b)

Iα
aD

β
aX(t) = Dβ−α

a X(t)− (t− a)m−β−1+α

Γ(m− β + α)
X(m−1)(a)

when α ∈ (0, 1), β − α ∈ (m− 2,m− 1] and β 6= m.

(c)

In
aD

β
aX(t) = Dβ−n

a X(t)−
n−1∑
j=0

(t− a)m−β+j

Γ(m− β + j + 1)
X(m−n+j)(a)

for β ∈ (m− 1,m]

(d)

Iα
aD

β
aX(t) = Dβ−α

a X(t)−
n−1∑
j=1

(t− a)m−β−n+α+j

Γ(m− β − n+ α+ j + 1)
X(m−n+j)(a)

when α ∈ (n− 1, n), α > 1.
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4.2. The composition rule

Proof

(a)

Iα
aD

β
aX(t) = Iα

a I
m−β
a X(m)(t)

= Im−(β−α)
a X(m)(t)

= Dβ−α
a X(t) .

(b) Let β − α = m− 1.

Iα
aD

β
aX(t) = Iα

a I
m−β
a X(m)(t)

= Im−(β−α)
a X(m)(t)

= I1
aX

(m)(t)
= X(m−1)(t)−X(m−1)(a)

= Dβ−α
a X(t)− (t− a)m−1−β+α

Γ(m− β + α)
X(m−1)(a) .

Now let β − α ∈ (m− 2,m− 1).

Iα
aD

β
aX(t) = Im−(β−α)

a X(m)(t)
= I(m−1)−(β−α)

a I1X(m)(t)
= I(m−1)−(β−α)

a X(m)(t)− I(m−1)−(β−α)
a X(m−1)(a)

= I(m−1)−(β−α)
a X(m−1)(t)− (t− a)(m−1)−(β−α)

Γ(m− β + α)
X(m−1)(a)

= Dβ−α
a X(t)− (t− a)m−β−1+α

Γ(m− β + α)
X(m−1)(a) .

(c) Using equation (4.2) and recalling that we are working under the assump-
tion that β > α, we have, for β = m and α = n,

In
aD

m
a X(t) = In

a

dn

dtn

[
X(m−n)(t)

]
= X(m−n)(t)−

n−1∑
j=0

(t− a)j

Γ(j + 1)
X(m−n+j)(a) . (4.3)
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Using equation (4.3) we have, for β ∈ (m− 1,m) and α = n,

In
aD

β
aX(t) = In

a I
m−β
a X(m)(t)

= Im−β
a In

aX
(m)(t)

= Im−β
a

[
X(m−n)(t)−

n−1∑
j=0

(t− a)j

Γ(j + 1)
X(m−n+j)(a)

]

= Im−β
a X(m−n)(t)−

n−1∑
j=0

(t− a)m−β+j

Γ(m− β + j + 1)
X(m−n+j)(a)

= Dβ−n
a X(t)−

n−1∑
j=0

(t− a)m−β+j

Γ(m− β + j + 1)
X(m−n+j)(a) .

(d) Using equation (4.3) we have for β = m and α ∈ (n− 1, n) where α > 1,

Iα
aX

(m)(t) = Iα−n+1
a In−1

a X(m)(t)

= Iα−n+1
a

[
X(m−n+1) −

n−2∑
j=0

(t− a)j

Γ(j + 1)
X(m−n+1+j)(a)

]

= Iα−n+1
a X(m−n+1) −

n−2∑
j=0

(t− a)α−n+1+j

Γ(α− n+ j + 2)
X(m−n+1+j)(a)

= Dm−α
a X(t)−

n−1∑
j=1

(t− a)α−n+j

Γ(α− n+ j + 1)
X(m−n+j)(a) .

Let β ∈ (m − 1,m) and α ∈ (n − 1, n) where α > 1. If n = m, then
β − α ∈ (0, 1). Under these conditions we have

Iα
aD

β
aX(t) = Iα+m−β

a X(m)(t)
= I1−(β−α)

a Im−1
a X(m)(t)

= I1−(β−α)
a

[
Xm−m+1(t)−

m−2∑
j=0

(t− a)j

Γ(j + 1)
X(m−m+1+j)(a)

]

= I1−(β−α)
a X1(t)−

m−2∑
j=0

(t− a)1−β+α+j

Γ(j + 2− β + α)
X(j+1)(a)

= Dβ−α
a X(t)−

m−1∑
j=1

(t− a)m−β−n+α+j

Γ(m− β − n+ α+ j + 1)
X(m−n+j)(a) .

Let β ∈ (m − 1,m) and α ∈ (n − 1, n) where α > 1 and n 6= m. Using

34



4.2. The composition rule

equation (4.3) we have

Iα
aD

β
aX(t) = Iα

a Im−β
a X(m)(t)

= Im−β+α−n+1
a In−1

a X(m)(t)

= Im−β+α−n+1
a

[
X(m−n+1)(t)−

n−2∑
j=0

(t− a)j

Γ(j + 1)
X(m−n+j+1)(a)

]
= Im−β+α−n+1

a X(m−n+1)(t)

−
n−2∑
j=0

(t− a)m−β−n+α+1+j

Γ(m− β + α− n+ j + 2)
X(m−n+j+1)(a)

= Dβ−α
a X(t)−

n−1∑
j=1

(t− a)m−β−n+α+j

Γ(m− β − n+ α+ j + 1)
X(m−n+j)(a) .

�

Hafiz et al. (2001) and Hafiz (2004) are only able to consider a situation
like that in Part (a) of the theorem that we have just completed because they
only define the fractional derivative for orders β ∈ (0, 1]. Parts (b), (c) and
(d) are extensions that result from our mean-square fractional derivative being
defined for β > 0. In Part (a) we have used the exact method that is used to
prove Theorem 4.5(i) of Hafiz et al. (2001) and Theorem 3.3(1) of Hafiz (2004)
where it states – incorrectly – that Iα

aD
β
aX(t) = Dβ−α

a X(t) for α ∈ (0, 1] and
β ∈ (0, 1] when α ≤ β. The reason this is incorrect is that it includes the
case when α = β = 1. This leads back to the discussion at the end of Section
4.1 where we looked at the necessity of defining Dβ

aX(t) to be X(m)(t) when
β = m ∈ N. In Hafiz et al. (2001), Hafiz (2004) and El-Sayed et al. (2005) the
RH m.s. fractional derivative (referred to as the Caputo fractional derivative in
said papers) is defined as

Dβ
aX(t) = I1−β

a Ẋ(t) , β ∈ (0, 1]. (4.4)

Note the inclusion of β = 1. If we simply allow β to be 1 in equation (4.4) we get

Dβ
aX(t) = I1−β

a Ẋ(t) = I0
aẊ(t) = Ẋ(t).

So the definition given in equation (4.4) seems reasonable. Using this definition
we find that, for α ∈ (0, 1] and β ∈ (0, 1] where α ≤ β,

Iα
aD

β
aX(t) = Iα

a I
1−β
a Ẋ(t) = I1−(β−α)

a Ẋ(t) = Dβ−α
a X(t) . (4.5)

If we let α = β = 1 in (4.5) we get

Iα
aD

β
aX(t) = Dβ−α

a X(t) = D1−1
a X(t) = D0

aX(t) = X(t) .
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4.2. The composition rule

However, using IBP we know that

Iα
aD

β
aX(t) = I1

aD
1
aX(t) = X(t)−X(a) .

This does not, in general, equal X(t). The mistake that Hafiz et al. (2001) and
Hafiz (2004) have made has been to treat the cases when α and/or β are positive
integers the same as the cases when they are not integers – a mistake that is
probably, in part, caused by not using the definition Dβ

aX(t) = X(m)(t) when
β = m ∈ N. Our definition of Dβ

aX(t) gives separate expressions for β = m ∈ N
and β /∈ N and so for the remainder of the chapter we will do as we have done
for Theorem 4.7 and Theorem 4.8 – we will, when necessary, treat the cases
when α and/or β are positive integers separately from the cases when they are
not.

Theorem 4.9. Let β > 0, n ∈ N and m ∈ N. Let X(t) be a stochastic process
such that Iβ

aX(t) exists for t ∈ [a, b] ⊂ T . Then

Dα
a I

β
aX(t) = Iβ−α

a X(t)

when α ∈ (n− 1, n] and

(a) β = m and n ≤ β, or

(b) β ∈ (m− 1,m) and n < β.

Proof
(a) Let α = n.

Using Leibniz’s rule for β = 1 we have

d

dt
I1
aX(t) = X(t) .

For β = 2 we have

d

dt
I2
aX(t) =

d

dt

∫ t

a

(t− s)
Γ(2)

X(s) ds =
∫ t

a
X(s) ds+ 0 = I1

aX(t) .

d2

dt2
I2
aX(t) =

d

dt

d

dt
I2
aX(t) =

d

dt
I1
aX(t) = X(t) .

For β = 3 we have

d

dt
I3
aX(t) =

d

dt

∫ t

a

(t− s)2

Γ(3)
X(s) ds

=
∫ t

a

(t− s)
Γ(2)

X(s) ds+ 0

= I2
aX(t) .

d2

dt2
I3
aX(t) =

d

dt

d

dt
I3
aX(t) =

d

dt
I2
aX(t) = I1

aX(t)

d3

dt3
I3
aX(t) =

d

dt

d2

dt2
I3
aX(t) =

d

dt
I1
aX(t) = X(t) .
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4.2. The composition rule

Continuing in this manner we have, for β = m and α = n

Dn
a I

m
a X(t) = Im−n

a X(t) for n ≤ m. (4.6)

Now let α ∈ (n − 1, n) and β = m. Using equation (4.6) we have for
n = m

Dα
a I

β
aX(t) = In−α

a

dn

dtn
Im
a X(t)

= Im−α
a

dm

dtm
Im
a X(t)

= Im−α
a X(t)

and for n < m

Dα
a I

β
aX(t) = In−α

a

dn

dtn
Im
a X(t)

= In−α
a Im−n

a X(t)
= Im−α

a X(t) .

(b) Here we have the conditions

n− 1 < α ≤ n ≤ m− 1 < β < m .

Since n ≥ 1 we have β > 1.

Let α = n. Using Leibniz’s rule we have

d

dt
Iβ
aX(t) =

d

dt

∫ t

a

(t− s)β−1

Γ(β)
X(s) ds

=
∫ t

a

(t− s)β−2

Γ(β − 1)
X(s) ds+

[
(t− s)β−1

Γ(β)
X(s)

]
s=t

= Iβ−1
a X(t) , β > 1. (4.7)

Taking the derivative of (4.7) we have

d2

dt2
Iβ
aX(t) =

d

dt

d

dt
Iβ
aX(t)

=
d

dt
Iβ−1
a X(t)

= Iβ−2
a X(t) , β > 2 (4.8)

where (4.7) has been used – with β replaced by (β − 1) – in the last step.
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4.2. The composition rule

Taking the derivative of (4.8) we have

d3

dt3
Iβ
aX(t) =

d

dt

d2

dt2
Iβ
aX(t)

=
d

dt
Iβ−2
a X(t)

= Iβ−3
a X(t) , β > 3

where (4.7) has been used – with β replaced by (β − 2) – in the last step.

Continuing in this manner we have

dn

dtn
Iβ
aX(t) = Iβ−n

a X(t) , β > n. (4.9)

Now let α ∈ (n−1, n) and β ∈ (m−1,m) where β > n. Using equation
(4.9) we have

Dα
a I

β
aX(t) = In−α

a

dn

dtn
Iβ
aX(t)

= In−α
a Iβ−n

a X(t)
= Iβ−α

a X(t) .

�

Corollary 4.2. Let β ∈ (m−1,m], m ∈ N, and letX(t) be a second order stochas-
tic process such that Iβ

aX(t) exists for t ∈ [a, b] ⊂ T . Then for j ∈ {0, 1, 2, ...,m−1}

dj

dtj
Iβ
aX(t)|t=a = 0 .

Proof:
Using the definition of D0

aX(t) we have D0
aI

β
aX(t)|t=0 = Iβ

aX(t)|t=0 = 0.
Using Parts (a) and (b) of Theorem 4.9 we have

dj

dtj
Iβ
aX(t) = Iβ−j

a X(t) j ∈ {1, 2, ...,m− 1} .

Using Part (c) of Theorem 4.1 we have

dj

dtj
Iβ
aX(t)|t=a = Iβ−j

a X(t)|t=a = 0 j ∈ {1, 2, ...,m− 1} .

�

Using Corollary 4.2 we see that the result in Theorem 4.7 becomes
Iα
aD

β
aX(t) = Iα−β

a X(t) if X(t) is itself a mean-square fractional integral or
derivative.
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4.2. The composition rule

Theorem 4.10. Let n ∈ N and m ∈ N where m < n. Let X(t) be a second-order
stochastic process such that X(n−m)(t) exists and is mean-square continuous on
[a, b] ⊂ T . Then, for α ∈ (n− 1, n],

Dα
a I

m
a X(t) = Dα−m

a X(t) .

Proof
Let α = n. Using Leibniz’s rule we have for m = 1

d2

dt2
I1
aX(t) =

d

dt

d

dt
I1
aX(t) = Ẋ(t)

d3

dt3
I1
aX(t) =

d

dt

d2

dt2
I1
aX(t) =

d

dt
Ẋ(t) = Ẍ(t)

d4

dt4
I1
aX(t) =

d

dt

d3

dt3
I1
aX(t) =

d

dt
Ẍ(t) = X(3)(t)

...
...

dn

dtn
I1
aX(t) = X(n−1)(t) , n ≥ 1.

Using equation (4.6) we have for m = 2

d3

dt3
I2
aX(t) =

d

dt

d2

dt2
I2
aX(t) =

d

dt
X(t) = Ẋ(t)

d4

dt4
I2
aX(t) =

d

dt

d3

dt3
I2
aX(t) =

d

dt
Ẋ(t) = Ẍ(t)

d5

dt5
I2
aX(t) =

d

dt

d4

dt4
I2
aX(t) =

d

dt
Ẍ(t) = X(3)(t)

...
...

dn

dtn
I2
aX(t) = X(n−2)(t) , n ≥ 2.

Continuing in this manner we have for n ≥ m

dn

dtn
Im
a X(t) = X(n−m)(t) . (4.10)

When α ∈ (n− 1, n) and n > m we have

Dα
a I

m
a X(t) = In−α

a

dn

dtn
Im
a X(t)

= In−α
a X(n−m)(t)

where we have used equation (4.10) to find the last line.
Since α−m ∈ (n−m− 1, n−m) we have

In−α
a X(n−m)(t) = I(n−m)−(α−m)

a X(n−m)(t) = Dα−m
a X(t)

and so Dα
a I

m
a X(t) = Dα−m

a X(t) when α ∈ (n− 1, n). �
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4.2. The composition rule

The result we derive next is an extension of Theorem 3.4 of Hafiz et al.
(2001). It, like our Theorems 4.10 and 4.9, deals with m.s. derivatives of m.s.
fractional integrals.

Let X(t) be a stochastic process such that X(n)(t), n ∈ N, exists and is mean-
square continuous. Since X(n)(t) exists, all X(j)(t), j ∈ {0, 1, 2, ..., n − 1}, exist
and are mean-square continuous. Thus Iγ

aX(t) and Iγ
aX(j)(t) exist and are mean

square continuous for all γ ≥ 1 and j ∈ {0, 1, 2, ..., n− 1}.

Let β > 1. Using IBP we have

Iβ
a Ẋ(t) =

(t− s)β−1

Γ(β)
X(s)

∣∣∣∣t
a

+
∫ t

a

(t− s)β−2

Γ(β − 1)
X(s) ds

= Iβ−1
a X(t)− (t− a)β−1

Γ(β)
X(a) . (4.11)

Using Leibniz’s rule we have

d

dt
Iβ
aX(t) =

d

dt

∫ t

a

(t− s)β−1

Γ(β)
X(s) ds

=
∫ t

a

(t− s)β−2

Γ(β − 1)
X(s) ds+

[
(t− s)β−1

Γ(β)
X(s)

]
s=t

= Iβ−1
a X(t) . (4.12)

Substituting (4.11) into (4.12) we have

d

dt
Iβ
aX(t) = Iβ

a Ẋ(t) +
(t− a)β−1

Γ(β)
X(a) . (4.13)

Taking the derivative of (4.13) we have

d2

dt2
Iβ
aX(t) =

d

dt
Iβ
a Ẋ(t) +

d

dt

[
(t− a)β−1

Γ(β)
X(a)

]
= Iβ

a Ẍ(t) +
(t− a)β−1

Γ(β)
Ẋ(a) +

(t− a)β−2

Γ(β − 1)
X(a) (4.14)

where we have used (4.13) – with X(t) replaced by Ẋ(t) – to find an expression
for d

dtI
β
a Ẋ(t).

Taking the derivative of (4.14) we have

d3

dt3
Iβ
aX(t) =

d

dt
Iβ
a Ẍ(t) +

d

dt

[
(t− a)β−1

Γ(β)
Ẋ(a) +

(t− a)β−2

Γ(β − 1)
X(a)

]
= Iβ

aX
(3)(t) +

(t− a)β−1

Γ(β)
Ẍ(a) +

(t− a)β−2

Γ(β − 1)
Ẋ(a)

+
(t− a)β−3

Γ(β − 2)
X(a)
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4.2. The composition rule

where we have used (4.13) – with X(t) replaced by Ẍ(t) – to find an expression
for d

dtI
β
a Ẍ(t).

Continuing in this manner we have the following result.

Theorem 4.11. Let n ∈ N and let X(t) be a second-order stochastic process
such that X(n)(t) exists and is mean-square continuous on t ∈ [a, b] ⊂ T . Then,
for β > 1,

Iβ
aX

(n)(t) =
dn

dtn
Iβ
aX(t)−

n−1∑
j=0

(t− a)β−n+j

Γ(β − n+ j + 1)
X(j)(a) .

�

Note that if dj

dtj
X(t)|t=a = 0 for j ∈ {0, 1, 2, . . . , n − 1}, as is the case when

X(t) is itself a m.s. fractional integral or derivative, the result will be
Iβ
aX(n)(t) = dn

dtn I
β
aX(t).

Theorem 4.11 gives an expression for dn

dtn I
β
aX(t) when β ∈ {1, 2, 3, . . . , n} –

something for which an expression had not previously been found. It also gives
alternative expressions for dn

dtn I
β
aX(t) when β ≥ n and for Iβ

aX(n)(t) when β > 1.

In Theorem 4.11 β = 1 has not been included. This is because the result
does not, in general, hold for β = 1 as we show next. The method we will use is
the same as that used to prove Theorem 4.11.

Let β = 1. Using IBP we have

I1
aẊ(t) = X(t)−X(a) (4.15)

and using Leibniz’s rule we have

d

dt
I1
aX(t) =

d

dt

∫ t

a
X(s) ds = X(t) . (4.16)

Substituting equation (4.15) into equation (4.16) we have
d

dt
I1
aX(t) = I1

aẊ(t) +X(a) . (4.17)

Now, taking the derivative of equation (4.17) we get
d2

dt2
I1
aX(t) =

d

dt
I1
aẊ(t) +

d

dt
X(a)

= I1
aẌ(t) + Ẋ(a) + 0 (4.18)

where we have used equation (4.17) to find an expression for d
dtI

1
aẊ(t).

Taking the derivative of equation (4.18) we have
d3

dt3
I1
aX(t) =

d

dt
I1
aẌ(t) +

d

dt
Ẋ(a)

= I1
aX

(3)(t) +X(2)(a) + 0
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4.2. The composition rule

where we have used equation (4.17) to find an expression for d
dtI

1
aẌ(t). Follow-

ing this pattern we see that

dn

dtn
I1
aX(t) = I1

aX
(n)(t) +X(n−1)(a) .

Clearly, only when n = 1 will the expression in Theorem 4.11 hold for β = 1.

IBP is used in the proof of Theorem 4.11. Due to this Theorem 4.11 will not
hold for β ∈ (0, 1). Hafiz et al. (2001) include the β ∈ (0, 1) range despite stating
that IBP is used to prove the result.
Since Theorem 4.11 is consistent with previous work for non-integer values of β
that are greater than 1, we will formally extend it to include the range β ∈ (0, 1).

Theorem 4.11 and its formal extension, can be used to derive many other
properties – one of which we show next.

Theorem 4.12. Let n ∈ N and let X(t) be a second-order stochastic process
such that X(n)(t) exists and is mean-square continuous on [a, b] ⊂ T . Then for
α ∈ (n− 1, n)

Dα
a I

α
aX(t) = X(t) .

Proof

Dα
a I

α
aX(t) = In−α

a

dn

dtn
Iα
aX(t)

= In−α
a

[
Iα
aX

(n)(t) +
n−1∑
j=0

(t− a)α−n+j

Γ(α− n+ j + 1)
X(j)(a)

]

= In
aX

(n)(t) +
n−1∑
j=0

(t− a)j

Γ(j + 1)
X(j)(a)

=
[
X(t)−

n−1∑
j=0

(t− a)j

Γ(j + 1)
X(j)(a)

]
+

n−1∑
j=0

(t− a)j

Γ(j + 1)
X(j)(a)

= X(t) . �

In Theorem 4.9 we proved that Dn
a I

n
aX(t) = X(t). Therefore, by combining

Theorem 4.9 with Theorem 4.12 we see that Dα
a I

α
aX(t) = X(t) for α > 0.

In the following two theorems we find expressions for Dα
aD

β
aX(t). In Theo-

rem 4.13 we will consider the case when β = m, m ∈ N, and in Theorem 4.14
we will consider the case when β ∈ (m− 1,m).

Theorem 4.13. Let n ∈ N and m ∈ N and let X(t) be a second order stochastic
process such that X(m+n)(t) exists for t ∈ [a, b] ⊂ T . Then for α > 0

Dα
aX

(m)(t) = Dα+m
a X(t) .
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4.2. The composition rule

Proof:
When α = n the result clearly holds.

If n− 1 < α < n then n− 1 +m < α+m < n+m

and so

Dα+m
a X(t) = I(n+m)−(α+m)

a X(n+m)(t) = In−α
a X(n+m)(t) .

Using this we have for n− 1 < α < n

Dα
aX

(m)(t) = In−α
a

dn

dtn
X(m)(t) = In−α

a X(n+m)(t) = Dα+m
a X(t) .

�

Theorem 4.14. Let α ∈ (n − 1, n] and β ∈ (m − 1,m) where n ∈ N and m ∈ N.
Let X(t) be a second-order stochastic process such that X(m+n)(t) exists and is
mean-square continuous on [a, b] ⊂ T . Then

(a) Dα
aD

β
aX(t) = Dα+β

a X(t)
for α ∈ (0, 1) and α+ β ∈ (m− 1,m].

(b) Dα
aD

β
aX(t) = Dα+β

a X(t) +
(t− a)m−β−α

Γ(m− β − α+ 1)
X(m)(a)

for α ∈ (0, 1) and α+ β ∈ (m,m+ 1).

(c) Dα
aD

β
aX(t) = Dα+β

a X(t) +
n−1∑
j=0

(t− a)m−β−n+j

Γ(m− β − n+ 1 + j)
X(m+j)(a)

for α = n.

Proof:

(a)
For α ∈ (0, 1)

Dα
aD

β
aX(t) = I1−α

a

[
d

dt
Im−β
a X(m)(t)

]
= I1−α

a

[
Im−β
a X(m+1)(t) +

(t− a)m−β−1

Γ(m− β)
X(m)(a)

]
= Im−(α+β)

a I1
aX

(m+1)(t) +
(t− a)m−β−α

Γ(m− β − α+ 1)
X(m)(a) .

(4.19)
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Thus, when α+ β = m we have

Dα
aD

β
aX(t) = I1

aX
(m+1)(t) +X(m)(a)

= X(m)(t)−X(m)(a) +X(m)(a)
= X(m)(t)
= Dα+β

a X(t) .

When α + β ∈ (m − 1,m) the first term on the right hand side of (4.19)
becomes

I1−α+m−β
a X(m+1)(t) = Im−(α+β)

a [X(m)(t)−X(m)(a)]

= Im−(α+β)
a X(m)(t)− (t− a)m−β−α

Γ(m− β − α+ 1)
X(m)(a)

= Dα+β
a X(t)− (t− a)m−β−α

Γ(m− β − α+ 1)
X(m)(a) .

Substituting this into equation (4.19) we have, for α+ β ∈ (m− 1,m),

Dα
aD

β
aX(t) = Dα+β

a X(t)− (t− a)m−β−α

Γ(m− β − α+ 1)
X(m)(a)

+
(t− a)m−β−α

Γ(m− β − α+ 1)
X(m)(a)

= Dα+β
a X(t) .

(b)
If α ∈ (0, 1) and α+ β ∈ (m,m+ 1) then

Dα
aD

β
aX(t) = I1−α

a

[
d

dt
Im−β
a X(m)(t)

]
= I1−α

a

[
Im−β
a X(m+1)(t) +

(t− a)m−β−1

Γ(m− β)
X(m)(a)

]
= I(m+1)−(α+β)

a X(m+1)(t) +
(t− a)m−β−α

Γ(m− β − α+ 1)
X(m)(a)

= Dα+β
a X(t) +

(t− a)m−β−α

Γ(m− β − α+ 1)
X(m)(a) .
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4.2. The composition rule

(c)
When α = n we have

Dα
aD

β
aX(t) =

dn

dtn
Im−β
a X(m)(t)

= Im−β
a

dn

dtn
X(m)(t) +

n−1∑
j=0

(t− a)m−β−n+j

Γ(m− β − n+ j + 1)
X(m+j)(a)

= I(m+n)−(β+n)
a X(m+n)(t)

+
n−1∑
j=0

(t− a)m−β−n+j

Γ(m− β − n+ j + 1)
X(m+j)(a)

= Dn+β
a X(t) +

n−1∑
j=0

(t− a)m−β−n+j

Γ(m− β − n+ j + 1)
X(m+j)(a) .

�

Theorem 4.14 completes our exploration of the composition rule. The prop-
erties in Sections 4.1 and 4.2 are only a selection of the properties of m.s. frac-
tional integrals and derivatives. In the following chapter we will consider one
last property.
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Chapter 5

Integrals and derivatives of
products

In Section 5.5 of Oldham & Spanier (1974) expressions are found for the frac-
tional integral and the fractional derivative of the product of two functions
(where the two functions possess certain qualities). The aim of this chapter
is to find expressions for Iβ

a [f(t)X(t)] and Dβ
a [f(t)X(t)] where f(t) is a determin-

istic fuction and X(t) is a second-order stochastic process. In Section 5.1 we will
use β ∈ N and f(t) a continuous function of t. We will see that these expres-
sions have the same form as those of the fractional integral and derivative of
the product of two deterministic functions. In Sections 5.2 and 5.3 we will build
on the results of Section 5.1 extending β ∈ N to β > 0. In Sections 5.2 and 5.3
we will, however, only work with f(t) a polynomial in t.

5.1 The case in which β ∈ N

From integration by parts we know that for X1(t) a m.s. differentiable s.p. and
f(t) a deterministic function for which dj

dtj
f(t) exists and is m.s. continuous for

j ∈ N , we have∫ t

a
f(s)Ẋ1(s) ds = f(s)X1(s)

∣∣∣t
a
−
∫ t

a

df(s)
ds

X1(s) ds. (5.1)

Let

X1(t) =
∫ t

a
X(s) ds = I1

aX(t) (5.2)

where X(t) is m.s. continuous. Clearly X1(t) thus defined is indeed a second-
order m.s. continuous stochastic process. Futher, using Lebniz’s rule we find
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5.1. The case in which β ∈ N

that Ẋ1(t) = X(t). Substituting (5.2) into (5.1) we thus have∫ t

a
f(s)X(s) ds =

[
f(s)

∫ s

a
X(y) dy

]s=t

s=a

−
∫ t

a

df(s)
ds

[ ∫ s

a
X(y) dy

]
ds

= f(t)
∫ t

a
X(y) dy − 0−

∫ t

a

df(s)
ds

[ ∫ s

a
X(y) dy

]
ds .

Now, we notice that in the above expression

LHS = I1
a [f(t)X(t)]

and

RHS = f(t)I1
aX(t)− I1

a

[
df(t)
dt

I1
aX(t)

]
so that we have

I1
a [f(t)X(t)] = f(t)I1

aX(t)− I1
a

[
df(t)
dt

I1
aX(t)

]
. (5.3)

If we replace X(t) by I1
aX(t) and f(t) with df(t)

dt in (5.3) we have

I1
a

[
df(t)
dt

I1
aX(t)

]
=

df(t)
dt

I1
a [I1

aX(t)]− I1
a

[
d2f(t)
dt2

I1
a [I1

aX(t)]
]

=
df(t)
dt

I2
aX(t)− I1

a

[
d2f(t)
dt2

I2
aX(t)

]
. (5.4)

Substituting (5.4) back into (5.3) we have

I1
a [f(t)X(t)] = f(t)I1

aX(t)− df(t)
dt

I2
aX(t) + I1

a

[
d2f(t)
dt2

I2
aX(t)

]
. (5.5)

If we replace X(t) with I2
aX(t) and f(t) with d2f(t)

dt2
in (5.3) we have

I1
a

[
d2f(t)
dt2

I2
aX(t)

]
=

d2f(t)
dt2

I3
aX(t)− I1

a

[
d3f(t)
dt3

I3
aX(t)

]
.

Using this, (5.5) becomes

I1
a [f(t)X(t)] = f(t)I1

aX(t)− df(t)
dt

I2
aX(t) +

d2f(t)
dt2

I3
aX(t)− I1

a

[
d3f(t)
dt3

I3
aX(t)

]
.

Continuing in this manner we arrive at the following expression for the m.s.
integral of the product f(t)X(t) where X(t) is m.s. continuous and f(t) is such
that dj

dtj
f(t) exists and is continuous for j ∈ N:

I1
a [f(t)X(t)] =

∞∑
j=0

(−1)j d
jf(t)
dtj

Ij+1
a X(t) . (5.6)
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5.1. The case in which β ∈ N

Using the fact that (Feller, 1957)(
j − β − 1

j

)
= (−1)j

(
β

j

)
we can express (5.6) as

I1
a [f(t)X(t)] =

∞∑
j=0

(
−1
j

)
djf(t)
dtj

Ij+1
a X(t) . (5.7)

In order to find an expression for I2
a [f(t)X(t)] we take the integral of both

sides of (5.7). Doing this we have

LHS = I1
a

[
I1
a [f(t)X(t)]

]
= I2

a [f(t)X(t)]

RHS =
∞∑

j=0

(
−1
j

)
I1
a

[
djf(t)
dtj

Ij+1
a X(t)

]
.

Using (5.7) – with f(t) replaced by dj

dtj
f(t) and X(t) replaced by Ij+1

a X(t) – we
have

RHS =
∞∑

j=0

(
−1
j

)
I1
a

[
djf(t)
dtj

Ij+1
a X(t)

]

=
∞∑

j=0

(
−1
j

) ∞∑
k=0

(
−1
k

)[
dk

dtk
djf(t)
dtj

]
Ik+1
a Ij+1

a X(t)

=
∞∑

k=0

∞∑
j=0

(
−1
k

)(
−1
j

)
dk+jf(t)
dtk+j

Ik+j+2
a X(t) .

Letting k + j = m we then have

RHS =
∞∑

j=0

∞∑
m=j

(
−1
j

)(
−1
m− j

)
dmf(t)
dtm

Im+2
a X(t) .

Noting that
∞∑

j=0

∞∑
m=j

=
∞∑

m=0

m∑
j=0

and
m∑

j=0

(
β

j

)(
α

m− j

)
=
(
β + α

m

)
we have

RHS =
∞∑

m=0

m∑
j=0

(
−1
j

)(
−1
m− j

)
dmf(t)
dtm

Im+2
a X(t)

=
∞∑

m=0

(
−2
m

)
dmf(t)
dtm

Im+2
a X(t) .
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5.1. The case in which β ∈ N

Letting LHS=RHS we then have

I2
a [f(t)X(t)] =

∞∑
m=0

(
−2
m

)
dmf(t)
dtm

Im+2
a X(t) .

Continuing in this fashion we have the following expression for the repeated
integral of the product f(t)X(t):

In
a [f(t)X(t)] =

∞∑
j=0

(
−n
j

)
djf(t)
dtj

In+j
a X(t) , n ∈ N. (5.8)

Now, forX(t) a m.s. differentiable stochastic process, the derivative of f(t)X(t)
is given by the expression

d

dt
[f(t)X(t)] = f(t)Ẋ(t) +

df(t)
dt

X(t) . (5.9)

A derivation of this result is given in Soong (1973). If Ẍ(t) exists we can take
the derivative of both sides of this expression to get

d2

dt2
[f(t)X(t)] =

d

dt
f(t)Ẋ(t) +

d

dt

[
df(t)
dt

X(t)
]

(5.10)

=
d2f(t)
dt2

X(t) + 2
df(t)
dt

Ẋ(t) + f(t)Ẍ(t)

where we have used (5.9) to find expressions for both of the terms on the RHS of
(5.10). Continuing in this manner we find that, for X(t) a s.p. for which X(n)(t)
exists,

Dn
a [f(t)X(t)] =

n∑
j=0

(
n

j

)
dn−jf(t)
dtn−j

X(j)(t) .

Since
(
n
j

)
= 0 when j > n we have

Dn
a [f(t)X(t)] =

∞∑
j=0

(
n

j

)
dn−jf(t)
dtn−j

X(j)(t) , n ∈ N,

or equivalently

Dn
a [f(t)X(t)] =

∞∑
j=0

(
n

j

)
djf(t)
dtj

X(n−j)(t) , n ∈ N . (5.11)

Had we chosen to denote integrals as negative derivatives i.e. instead of
using In

a [·] to denote our nth repeated integral we used D−n
a [·], then (5.8) could

be written as

D−n
a [f(t)X(t)] =

∞∑
n=0

(
−n
j

)
djf(t)
dtj

X(−n−j)(t) , n ∈ N
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5.2. The case in which β > 0

so that we could combine the integral and derivative cases together to give the
expression

Dn
a [f(t)X(t)] =

∞∑
n=0

(
n

j

)
djf(t)
dtj

X(n−j)(t) , n ∈ Z

where D0
a[f(t)X(t)] = f(t)X(t). This is consistent with the form given by Old-

ham & Spanier (1974) for the nth integral and derivative of the product of two
deterministic functions.

5.2 The case in which β > 0

We can now attempt to generalize (5.8) and (5.11) to arbitrary order β > 0 when
f(t) is a polynomial.

Let f(t) = t and β > 0.

Iβ
a [tX(t)] =

∫ t

a

(t− s)β−1

Γ(β)
sX(s) ds

=
∫ t

a

(t− s)β−1

Γ(β)
sX(s) ds+ t Iβ

aX(t)− t Iβ
aX(t)

= t Iβ
aX(t)−

[
t

∫ t

a

(t− s)β−1

Γ(β)
X(s) ds−

∫ t

a

(t− s)β−1

Γ(β)
sX(s) ds

]
= t Iβ

aX(t)− 1
Γ(β)

[ ∫ t

a
(t− s)β−1 tX(s)ds−

∫ t

a
(t− s)β−1 sX(s)ds

]
= t Iβ

aX(t)− 1
Γ(β)

∫ t

a
(t− s)βX(s) ds

= t Iβ
aX(t)− β

Γ(β + 1)

∫ t

a
(t− s)βX(s) ds

= t Iβ
aX(t)− β Iβ+1

a X(t) .

Above we have shown that for f(t) = t

Iβ
a [f(t)X(t)] = f(t) Iβ

aX(t)− β
df(t)
dt

Iβ+1
a X(t) (5.12)

=
∞∑

j=0

(
−β
j

)
djf(t)
dtj

Iβ+j
a X(t) .

Now let us consider f(t) = t2.

Iβ
a [t2X(t)] =

∫ t

a

(t− s)β−1

Γ(β)
s2X(s) ds .
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5.2. The case in which β > 0

Adding and subtracting t2Iβ
aX(t) to the RHS above we then get

Iβ
a [t2X(t)] = t2Iβ

aX(t) +
∫ t

a

(t− s)β−1

Γ(β)
s2X(s)ds− t2

∫ t

a

(t− s)β−1

Γ(β)
X(s)ds

= t2 Iβ
aX(t)−

∫ t

a

(t− s)β−1

Γ(β)
X(s) [t2 − s2] ds

= t2 Iβ
aX(t)− I1

where

I1 =
∫ t

a

(t− s)β−1

Γ(β)
X(s) [t2 − s2] ds

=
∫ t

a

(t− s)β−1

Γ(β)
X(s)(t− s)(t+ s) ds

=
∫ t

a

(t− s)β

Γ(β)
X(s)(t+ s) ds

= β

∫ t

a

(t− s)β

Γ(β + 1)
X(s)(t+ s) ds

= β
[
t Iβ+1

a X(t) + Iβ+1
a [tX(t)]

]
.

Thus we have

Iβ
a [t2X(t)] = t2 Iβ

aX(t)− βt Iβ+1
a X(t)− β Iβ+1

a [tX(t)] .

Using (5.12) on the third term on the RHS of the above we have

Iβ
a [t2X(t)] = t2 Iβ

aX(t)− 2βt Iβ+1
a X(t) + β(β + 1) Iβ+2

a X(t) .

So for f(t) = t2 this is simply

Iβ
a [f(t)X(t)] = f(t) Iβ

aX(t)− β
df(t)
dt

Iβ+1
a X(t) +

β(β + 1)
2

d2f(t)
dt2

Iβ+2
a [X(t)]

=
∞∑

j=0

(
−β
j

)
djf(t)
dtj

Iβ+j
a X(t) .

Continuing in this manner we can show that for f(t) = tp, p ∈ N, and β > 0 we
have

Iβ
a [f(t)X(t)] =

∞∑
j=0

(
−β
j

)
djf(t)
dtj

Iβ+j
a X(t) . (5.13)

Due to the linearity property of Iβ
a [·], we can use (5.13) to find Iβ

a [f(t)X(t)]
where f(t) is a polynomial in t. Clearly the stochastic process, X(t), in (5.13)
can be replaced by a fractional integral or derivative if those integrals or deriva-
tives are m.s. continuous.
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5.2. The case in which β > 0

We will now find an expression for Dβ
a [f(t)X(t)] when β ∈ (m−1,m) , m ∈ N,

f(t) is a polynomial of order p and X(t) is a second-order s.p. for which X(m)(t)
exists. An expression (or, expressions) for the case(s) when p > m can be found
but we will restrict ourselves to the case p ≤ m. Let us start by considering
f(t) = t. Using (5.11) and (5.13) we have

Dβ
a [ tX(t) ] = Im−β

a

dm

dtm
[ tX(t) ]

= Im−β
a [ tX(m)(t) +mX(m−1)(t) ]

= Im−β
a [ tX(m)(t) ] +mIm−β

a X(m−1)(t)
= t Im−β

a X(m)(t)− (m− β) Im−β+1
a X(m)(t)

+mIm−β
a X(m−1)(t) .

Applying integration by parts to Im−β+1
a X(m)(t) we have

Dβ
a [ tX(t) ] = t Im−β

a X(m)(t)− (m− β) Im−β
a X(m−1)(t)

+(m− β)X(m−1)(a)
(t− a)m−β

Γ(m− β + 1)
+mIm−β

a X(m−1)(t)

= t Im−β
a X(m)(t) + β Im−β

a X(m−1)(t)

+(m− β)X(m−1)(a)
(t− a)m−β

Γ(m− β + 1)
. (5.14)

Equation (5.14) can be written in the following form:

Dβ
a [ f(t)X(t) ] =

p∑
j=0

(
β

j

)
djf(t)
dtj

Im−β
a X(m−j)(t) + c1 (5.15)

where f(t) = t and

c1 = (m− β)X(m−1)(a)
(t− a)m−β

Γ(m− β + 1)
. (5.16)

Now let us consider Dβ
a [f(t)X(t)] when f(t) = t2. Using (5.11) we have

Dβ
a

[
t2X(t)

]
= Im−β

a

dm

dtm
[
t2X(t)

]
= Im−β

a

[
t2X(m)(t)

]
+ 2mIm−β

a [ tX(m−1)(t) ]

+m(m− 1) Im−β
a X(m−2)(t) . (5.17)

Using (5.13) and IBP, we have

Im−β
a [ tX(m−1)(t) ] = t Im−β

a X(m−1)(t)− (m− β) Im−β+1
a X(m−1)(t)

= t Im−β
a X(m−1)(t)− (m− β) Im−β

a X(m−2)(t)

+(m− β)X(m−2)(a)
(t− a)m−β

Γ(m− β + 1)

52



5.2. The case in which β > 0

and

Im−β
a

[
t2X(m)(t)

]
= t2 Im−β

a X(m)(t)− 2t(m− β) Im−β+1
a X(m)(t)

+(m− β)(m− β + 1) Im−β+2
a X(m)(t)

= t2 Im−β
a X(m)(t)− 2t(m− β) Im−β

a X(m−1)(t)
+(m− β)(m− β + 1) Im−β

a X(m−2)(t)

+2t(m− β)X(m−1)(a)
(t− a)m−β

Γ(m− β + 1)

−(m− β)(m− β + 1)X(m−1)(a)
(t− a)m−β+1

Γ(m− β + 2)

−(m− β)(m− β + 1)X(m−2)(a)
(t− a)m−β

Γ(m− β + 1)
.

Substituting these into (5.17) and collecting like terms we have

Dβ
a

[
t2X(t)

]
= t2 Im−β

a X(m)(t) + [ 2mt− 2t(m− β) ] Im−β
a X(m−1)(t)

+[m(m− 1)− 2m(m− β)
+(m− β)(m− β + 1)] Im−β

a X(m−2)(t) + 2mc2 + c3

= t2 Im−β
a X(m)(t) + 2tβ Im−β

a X(m−1)(t)
+β(β − 1) Im−β

a X(m−2)(t) + 2mc2 + c3 (5.18)

where

c2 = (m− β)X(m−2)(a)
(t− a)m−β

Γ(m− β + 1)
(5.19)

and

c3 = 2t(m− β)X(m−1)(a)
(t− a)m−β

Γ(m− β + 1)

−(m− β)(m− β + 1)X(m−1)(a)
(t− a)m−β+1

Γ(m− β + 2)

−(m− β)(m− β + 1)X(m−2)(a)
(t− a)m−β

Γ(m− β + 1)
. (5.20)

We may rewrite (5.18) in the form:

Dβ
a [ f(t)X(t) ] =

p∑
j=0

(
β

j

)
djf(t)
dtj

Im−β
a X(m−j)(t) + 2mc2 + c3

where c2 and c3 are given by (5.19) and (5.20) respectively and f(t) = t2.
For both the cases f(t) = t and f(t) = t2 we thus have

Dβ
a [ f(t)X(t) ] =

p∑
j=0

(
β

j

)
djf(t)
dtj

Im−β
a X(m−j)(t) + extra terms. (5.21)
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5.3. Appendix: An expression for Dβ
a [t3X(t)]

Clearly Dβ
a [ f(t)X(t) ] will have this general form for any f(t) = tp, p ∈ N. In

order to find an explicit form for the “extra terms” we can consider Dβ
a [ f(t)X(t) ]

with f(t) = t3 as we will then have more terms from which we can infer a pat-
tern. This is done in Section 5.3 and the results are as follows:

For f(t) = tp, p ≤ m, β ∈ (m − 1,m] and X(m)(t) a m.s. continuous second-
order stochastic process,

Dβ
a [f(t)X(t)] =

p∑
j=0

(
β

j

)
djf(t)
dtj

Im−β
a X(m−j)(t) + CD (5.22)

where CD is given by

CD =
p−1∑
n=0

(
m

n

) p∑
k=1

k−1∑
j=0

(
−(m− β)

k

)
dk+nf(t)
dtk+n

Im−β+j
a X(m−k−n+j)(a) . (5.23)

Note that we include the case β = m above. This is because if we set β = m in
(5.23) then (

−(m− β)
k

)
=
(

0
k

)
= 0 ∀ k 6= 0 ,

(
0
0

)
= 1

so that CD = 0. Also, if we set β = m in (5.22) then

Im−β
a X(m−j)(t) = I0

aX
(m−j)(t) = X(m−j)(t)

and so (5.22) reduces to the form previously found for the integer order case.

Due to the linearity property of Dβ
a [·], we can use (5.22) to find Dβ

a [f(t)X(t)]
where f(t) is a polynomial in t. Clearly the stochastic process, X(t), can be
replaced by a mean square fractional integral or derivative if those integrals
or derivatives are m.s. continuous. By considering Corollary 4.2 we see that
CD = 0 when this is done.

5.3 Appendix: An expression for Dβ
a [t

3X(t)]

In the previous section we derived formulas for Dβ
a

[
f(t)X(t)] where f(t) = tp,

p ∈ {1, 2}. Here we will consider the case p = 3 in order to find the form of
the terms we have called “extra terms” in Section 5.2. Before starting we recall
that we have made the assumption p ≤ m where β ∈ (m− 1,m), m ∈ N.

Dβ
a

[
t3X(t)

]
= Im−β

a

dm

dtm
[t3X(t)]

= Im−β
a

[
t3X(m)(t)

]
+ 3mIm−β

a

[
t2X(m−1)(t)

]
+3m(m− 1) Im−β

a

[
tX(m−2)(t)

]
+m(m− 1)(m− 2) Im−β

a X(m−3)(t) . (5.24)
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5.3. Appendix: An expression for Dβ
a [t3X(t)]

Using (5.13) and IBP we have

Im−β
a [ tX(m−2)(t) ] = t Im−β

a X(m−2)(t)− (m− β) Im−β+1
a X(m−2)(t)

= t Im−β
a X(m−2)(t)− (m− β) Im−β

a X(m−3)(t) + c4

(5.25)

where
c4 = (m− β)Im−β

a X(m−3)(a) .

Similarly,

Im−β
a

[
t2X(m−1)(t)

]
= t2 Im−β

a X(m−1)(t)− 2t(m− β) Im−β+1
a X(m−1)(t)

+(m− β)(m− β + 1) Im−β+2
a X(m−1)(t)

= t2 Im−β
a X(m−1)(t)− 2t(m− β) Im−β

a X(m−2)(t)
+(m− β)(m− β + 1) Im−β

a X(m−3)(t) + c5 (5.26)

where

c5 = 2t(m− β)Im−β
a X(m−2)(a)− (m− β)(m− β + 1)Im−β+1

a X(m−2)(a)
−(m− β)(m− β + 1)Im−β

a X(m−3)(a) .

Using (5.13) we have

Im−β
a

[
t3X(m)(t)

]
= t3 Im−β

a X(m)(t)− 3t2(m− β) Im−β+1
a X(m)(t)

+3t(m− β)(m− β + 1) Im−β+2
a X(m)(t)

−(m− β)(m− β + 1)(m− β + 2) Im−β+3
a X(m)(t) .

Applying IBP to this we have

Im−β
a

[
t3X(m)(t)

]
= t3 Im−β

a X(m)(t)

−3t2(m− β)
[
Im−β
a X(m−1)(t)− Im−β

a X(m−1)(a)
]

+3t(m− β)(m− β + 1)
[
Im−β
a X(m−2)(t)

−Im−β+1
a X(m−1)(a)− Im−β

a X(m−2)(a)
]

−(m− β)(m− β + 1)(m− β + 2)
[
Im−β
a X(m−3)(t)

−Im−β+2
a X(m−1)(a)− Im−β+1

a X(m−2)(a)

−Im−β
a X(m−3)(a)

]
= t3 Im−β

a X(m)(t)− 3t2(m− β) Im−β
a X(m−1)(t)

+3t(m− β)(m− β + 1) Im−β
a X(m−2)(t)

−(m− β)(m− β + 1)(m− β + 2) Im−β
a X(m−3)(t) + c6

(5.27)
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5.3. Appendix: An expression for Dβ
a [t3X(t)]

where

c6 = 3t2(m− β)Im−β
a X(m−1)(a)

−3t(m− β)(m− β + 1)
[
Im−β+1
a X(m−1)(a) + Im−β

a X(m−2)(a)
]

+(m− β)(m− β + 1)(m− β + 2)
[
Im−β+2
a X(m−1)(a)

+Im−β+1
a X(m−2)(a) + Im−β

a X(m−3)(a)
]
.

Thus, substituting (5.25), (5.26) and (5.27) into (5.24) we have

Dβ
a

[
t3X(t)

]
= t3 Im−β

a X(m)(t)

+
[
3mt2 − 3t2(m− β)

]
Im−β
a X(m−1)(t)

+
[
3t(m− β)(m− β + 1)− 6tm(m− β) + 3tm(m− 1)

]
Im−β
a X(m−2)(t)

+
[
3m(m− β)(m− β + 1)− (m− β)(m− β + 1)(m− β + 2) +

−3m(m− 1)(m− β) +m(m− 1)(m− 2)
]
Im−β
a X(m−3)(t)

+3m(m− 1) c4 + 3mc5 + c6 .

=
3∑

j=0

(
β

j

)
dj t3

dtj
Im−β
a X(m−j)(t) + 3m(m− 1) c4 + 3mc5 + c6 .

Now, c6 can be written as follows:

c6 = 3t2(m− β)
0∑

j=0

Im−β+j
a X(m−1+j)(a)

−3t(m− β)(m− β + 1)
1∑

j=0

Im−β+j
a X(m−2+j)(a)

+(m− β)(m− β + 1)(m− β + 2)
2∑

j=0

Im−β+j
a X(m−3+j)(a)

=
(
m

0

) 3∑
k=1

k−1∑
j=0

(
−(m− β)

k

)
dk t3

dtk
Im−β+j
a X(m−k+j)(a) .

Similarly

3mc5 = 6mt(m− β)
0∑

j=0

Im−β+j
a X(m−2+j)(a)

−3m(m− β)(m− β + 1)
1∑

j=0

Im−β+j
a X(m−3+j)(a)

=
(
m

1

) 2∑
k=1

k−1∑
j=0

(
−(m− β)

k

)
dk+1 t3

dtk+1
Im−β+j
a X(m−k−1+j)(a)
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5.3. Appendix: An expression for Dβ
a [t3X(t)]

and

3m(m− 1)c4 = 3m(m− 1)(m− β)
0∑

j=0

Im−β+j
a X(m−3+j)(a)

=
(
m

2

) 1∑
k=1

k−1∑
j=0

(
−(m− β)

k

)
dk+2 t3

dtk+2
Im−β+j
a X(m−k−2+j)(a) .

Thus

c6 + 3mc5 + 3m(m− 1)c4

=
2∑

n=0

(
m

n

) 3∑
k=1

k−1∑
j=0

(
−(m− β)

k

)
dk+n t3

dtk+n
Im−β+j
a X(m−k−n+j)(a) .

Clearly, for f(t) = tp where p ≤ m and m, p ∈ N

Dβ
a [tpX(t)] =

p∑
j=0

(
β

j

)
dj tp

dtj
Im−β
a X(m−j)(t)

+
p−1∑
n=0

(
m

n

) p∑
k=1

k−1∑
j=0

(
−(m− β)

k

)
dk+n tp

dtk+n
Im−β+j
a X(m−k−n+j)(a) .
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Chapter 6

Application of the composition
rules

In deterministic fractional calculus several methods are used to solve frac-
tional integral and differential equations. One of the common methods in-
volves the use of the composition rules. In this chapter we will demonstrate
this method using several examples. Throughout the chapter we will assume
that the stochastic processes involved are such that the steps used are allowed.

We will start by considering the equation

Iβ
aX(t) = Y (t) (6.1)

where β > 0, X(t) is an unknown second-order stochastic process and Y (t) is
a known second-order stochastic process. When β ∈ (0, 1] equation (6.1) is the
mean-square Abel integral of the first kind. We note that this equation could
instead be considered in the form c1I

β
aX(t) = c2Y (t) where c1 and c2 are arbi-

trary constants, but since the presence of the constants will have no effect on
the method we will let c1 = 1 and c2 = 1.

Applying Dβ
a to equation (6.1) we have

Dβ
a I

β
aX(t) = Dβ

aY (t) .

Using Theorem 4.9 when β ∈ N, or Theorem 4.12 when β /∈ N, we see that the
LHS will equal X(t). Thus, provided Dβ

aY (t) exists,

X(t) = Dβ
aY (t)

will be a potential solution to equation (6.1).

Using only β ∈ (0, 1], Hafiz et al. (2001) and Hafiz (2004) solve equation (6.1)
in a slightly different manner – first by applying I1−β

a and then by applying D1
a.
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Below we show the case where β ∈ (m− 1,m), m ∈ N.

Iβ
aX(t) = Y (t) ⇒ Im−β

a Iβ
aX(t)︸ ︷︷ ︸

Im
a X(t)

= Im−β
a Y (t)

⇒ Dm
a I

m
a X(t) = Dm

a I
m−β
a Y (t) .

Using Theorem 4.9 the LHS will be X(t). Using the formal extension of The-
orem 4.11 along with the fact that Y (t)|t=a = Iβ

aX(t)|t=a = 0, the RHS will be
Dβ

aX(t). Thus we get
X(t) = Dβ

aY (t) .

This is the same potential solution as that found with the previous method.

We can now check if this potential solution is a valid solution by substituting
it back into equation (6.1).

LHS = Iβ
aX(t)

= Iβ
aD

β
aY (t)

= Y (t)
= RHS

where Theorem 4.7 was used in conjunction with Corollary 4.2 in the last step.
So X(t) = Dβ

aY (t) is a valid solution to equation (6.1).

If we replace the mean-square fractional integral to order β in equation (6.1)
by the mean-square fractional derivative to order β, we have the following mean
square fractional differential equation:

Dβ
aX(t) = Y (t) . (6.2)

To solve this equation we can apply Iβ
a to both sides and use Theorem 4.7 to get

the following potential solution:

X(t) = Iβ
a Y (t) +

m−1∑
j=0

(t− a)j

Γ(j + 1)
X(j)(a) . (6.3)

To check if this is a valid solution we substitute it back into (6.2).

LHS = Dβ
aX(t)

= Dβ
a

[
Iβ
a Y (t) +

m−1∑
j=0

(t− a)j

Γ(j + 1)
X(j)(a)

]

= Dβ
a I

β
a Y (t) +

m−1∑
j=0

X(j)(a)
[
Dβ

a

(t− a)j

Γ(j + 1)

]
. (6.4)
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Using Theorem 4.9 and Theorem 4.12 we see that the first term on the RHS of
equation (6.4) will equal Y (t). Now

dm

dtm

[
(t− a)j

Γ(j + 1)

]
= 0 for j ∈ {0, 1, 2, ...,m− 1}

so when β = m ∈ N the sum on the RHS of equation (6.4) equals zero. Since

Dβ
a

[
(t− a)j

Γ(j + 1)

]
= Im−β

a

[
dm

dtm
(t− a)j

Γ(j + 1)

]
the sum will also equal zero when β ∈ (m− 1,m). Thus equation (6.4) will be

LHS = Y (t) = RHS .

So the solution given in equation (6.3) is valid.

If β ∈ (m − 1,m) an alternative way to solve equation (6.2) is to first apply
Dm−β

a to both sides and use Part (a) of Theorem 4.14 to get

Dm−β
a Dβ

aX(t)︸ ︷︷ ︸
Dm

a X(t)

= Dm−β
a Y (t) .

Applying Im
a to this we have

Im
a D

m
a X(t) = Im

a D
m−β
a Y (t) .

Using Theorem 4.7 on the LHS and the formal extension of Theorem 4.11 in
conjunction with Corollary 4.2 on the RHS, we arrive at the same solution as
that found previously.

The mean-square fractional equations Iβ
aX(t) = Y (t) and Dβ

aX(t) = Y (t) are
easy to solve because the unknown stochastic process, X(t), appears in only one
term. It is more difficult to solve equations in which X(t) appears in more than
one term. What can be done in these situations is to apply the composition rules
to the equation in order to manipulate it into the form of an ordinary m.s. ran-
dom differential equation. The well known methods for solving ordinary mean-
square random differential equations (see, for example, Soong (1973)) can then
be used. We will demonstrate using two simple examples.

Consider
Iα+Q
a X(t) + Iα

aX(t) = Y (t) (6.5)

where n,Q ∈ N, α ∈ (n− 1, n), X(t) is an unknown second-order stochastic pro-
cess and Y (t) is a known second-order stochastic process. As with the simple
fractional integral and differential equations that we solved previously, we will
use two different approaches.
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For the first approach we start by applying In−α
a .

In−α
a Iα+Q

a X(t)︸ ︷︷ ︸
In+Q
a X(t)

+ In−α
a Iα

aX(t)︸ ︷︷ ︸
In
a X(t)

= In−α
a Y (t) .

Applying Dn+Q
a to this we have

Dn+Q
a In+Q

a X(t) +Dn+Q
a In

aX(t) = Dn+Q
a In−α

a Y (t) .

Using Theorem 4.9 the first term on the LHS is X(t). Using Theorem 4.10 the
second term on the LHS is X(Q)(t). Using Theorem 4.11 in conjunction with
Corollary 4.2 the term on the RHS is

Dn+Q
a In−α

a Y (t) = In−α
a Dn+Q

a Y (t) = Dα+Q
a Y (t) .

Thus we have
X(Q)(t) +X(t) = Dα+Q

a Y (t) .

This is clearly a Qth order mean-square random differential equation.

A second approach that can be used to solve equation (6.5) starts with the
application of Dα

a to both sides of the equation. This gives

Dα
a I

α+Q
a X(t) +Dα

a I
α
aX(t) = Dα

aY (t) .

Using Part (a) of Theorem 4.9 the first term on the LHS is IQ
a X(t) and using

Theorem 4.12 the second term on the LHS is X(t). Thus

IQ
a X(t) +X(t) = Dα

aY (t) .

Applying DQ
a to this we get

DQ
a I

Q
a X(t)︸ ︷︷ ︸

X(t)

+X(Q)(t) = DQ
a D

α
aY (t)︸ ︷︷ ︸

Dα+Q
a Y (t)

where Part (b) of Theorem 4.9 was used on the first term on the LHS and The-
orem 4.14 was used in conjunction with Corollary 4.2 on the RHS. This is the
same Qth order mean-square random differential equation as that found using
the previous approach.

If we replace the fractional integrals by fractional derivatives in equation
(6.5) we have the following mean square fractional differential equation:

Dα+Q
a X(t) +Dα

aX(t) = Y (t) . (6.6)

Let us work with α ∈ (0, 1). Applying Iα+Q
a gives

Iα+Q
a Dα+Q

a X(t) + Iα+Q
a Dα

aX(t) = Iα+Q
a Y (t) .
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Using Theorem 4.7 and rearranging we have

X(t) + IQ
a X(t) = Iα+Q

a Y (t) +
Q∑

j=0

(t− a)j

Γ(j + 1)
X(j)(a) +

(t− a)Q

Γ(Q+ 1)
X(a) . (6.7)

To this we can apply DQ
a . Doing so, the first term on the LHS will be X(Q)(t)

and the second term will be X(t). For the first term on the RHS we will have

DQ
a I

α+Q
a Y (t) = DQ

a I
Q
a Iα

a Y (t) = Iα
a Y (t) .

Since

dn

dtn

[
(t− a)j

Γ(j + 1)

]
=

{
0 , for j ∈ {0, 1, 2, . . . , n− 1}
1 , for j = n

when DQ
a is applied to equation (6.7), the second and third terms on the RHS

will be, respectively, X(Q)(a) and X(a). Thus we have the ordinary m.s. random
differential equation

X(Q)(t) +X(t) = Iα
a Y (t) +X(Q)(a) +X(a) .

An alternative approach to reducing equation (6.6) to an ordinary m.s. ran-
dom differential equation is to start by applying D1−α

a to both sides of the equa-
tion. Doing this we have

D1−α
a Dα+Q

a X(t) +D1−α
a Dα

aX(t) = D1−α
a Y (t) .

Now, α ∈ (0, 1) implies that α+Q ∈ (Q,Q+ 1). Also, (1− α) + (α+Q) = (1 +Q)
and (1− α) + α = 1 so that using Part (a) of Theorem 4.14 the first term on the
LHS is X(Q+1)(t) and the second term is X(1)(t). Thus we have the following
ordinary m.s. random differential equation

X(Q+1)(t) +X(1)(t) = D1−α
a Y (t) .

This does not look like the same equation that we found using the previous
approach. However, by manipulating it we can show it is the same. Applying
I1
a we have

I1
aX

(Q+1)(t) + I1
aX

(1)(t) = I1
aD

1−α
a Y (t) .

Using IBP the LHS is

X(Q)(t)−X(Q)(a) +X(t)−X(a) .

Using Theorem 4.9 and noting that Y (t)|t=a = 0 (see equation (6.6)), the RHS is
Iα
a Y (t). So again we have the ordinary m.s. random differential equation

X(Q)(t) +X(t) = Iα
a Y (t) +X(Q)(a) +X(a) .
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In Section 4.2 we did not give an exhaustive account of the composition
rules but instead considered only certain rules. Due to this, using different ap-
proaches when solving mean square fractional equations in which the unknown
stochastic process occurs more than once, different ODE’s may be found. In the
example we have just seen, we could manipulate the ODE’s using the compo-
sition rules so that they were the same. Using our limited set of composition
rules we may not always be able to do this.

In El-Sayed et al. (2005) conditions for the existence of a solution to the
following random differential equation are considered:

d

dt
I1−β
a X(t) = f(t,X(t)) . (6.8)

In equation (6.8) β ∈ (0, 1), f(t,X(t)) is a “sufficiently nice” function and X(t)
is an unknown second-order stochastic process. Since ∗D

β
aX(t) = d

dtI
1−β
a X(t),

equation (6.8) is clearly a mean-square fractional differential equation where
the derivative is the Left-Hand fractional derivative. Since we are focussing on
the RH definition the problem presented in equation (6.8) may, at first glance,
seem off topic. However, nthorder random differential equations – like those
found when applying the composition rules to equations (6.5) and (6.6) – can be
converted into a set of first-order random differential equations. So instead of
working with a single stochastic process, as is done in El-Sayed et al. (2005), we
can work with a vector stochastic process.

The fractional equations we have considered here are very basic. We have
not considered equations in which fractional integrals and derivatives both oc-
cur, nor have we considered equations in which X(t) occurs more than once but
the orders of the integrals/derivatives differ by a non-integer. We have also not
considered the case when the equation involves terms of the form Iβ

a [f(t)X(t)] or
Dβ

a [f(t)X(t)] where f(t) is a deterministic function. We will not consider these
types of equations as the examples we have considered demonstrate both the
simplicity and the restrictions of this method that is common in deterministic
fractional calculus.
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Chapter 7

A transform of mean-square
fractional integrals and
derivatives

In deterministic fractional calculus the Laplace transform can be used to solve
some fractional integral and differential equations (see, for example, Podlubny
(1999) and Glöckle & Nonnenmacher (1991)). It therefore seems reasonable to
try use a transformation to solve m.s. fractional integral and differential equa-
tions.

Let us define the following:

L∗[X(t)] ,
∫ ∞

0
e−stX(t) dt (7.1)

L∗[f(t)] ,
∫ ∞

0
e−stf(t) dt , L[f(t)]

where f(t) is a deterministic function for which the Laplace transorm, L[f(t)],
exists and X(t) is a second-order s.p. that is defined for t ∈ [0,∞). Using the
integration in m.s. criterion we know that the integral in (7.1) will exist iff the
improper Riemann integral below exists and is finite:∫ ∞

0

∫ ∞

0
e−ste−sτ ΓXX(t, τ) dt dτ

For the rest of the chapter we will assume that β ∈ (m−1,m], m ∈ N, unless
otherwise stated.

7.1 Expressions for L∗[IβaX(t)] and L∗[Dβ
aX(t)]

If Iβ
0X(t) and Dβ

0X(t) exist then they are second-order stochastic processes and
so we can consider L∗[Iβ

0X(t)] and L∗[Dβ
0X(t)].
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7.1. Expressions for L∗[Iβ
aX(t)] and L∗[Dβ

aX(t)]

In order to find an expression for L∗[Iβ
0X(t)] we note that

Iβ
0X(t) =

∫ t

0

(t− s)β−1

Γ(β)
X(s) ds

is the convolution of the stochastic process X(t) and the deterministic function
f(t) = tβ−1

Γ(β) . It can easily be shown that the L∗ transform of the convolution of a
stochastic process and a deterministic function is the product of their individual
L∗ transforms. Thus we have

L∗[Iβ
0X(t)] = L∗[f(t) ∗X(t)] = L[f(t)] · L∗[X(t)] . (7.2)

Since β > 0 we have

L∗[f(t)] , L
[
tβ−1

Γ(β)

]
=

1
sβ

, s 6= 0

so that for β > 0 and s 6= 0

L∗[Iβ
0X(t)] =

L∗[X(t)]
sβ

.

Now consider L∗[Dβ
0X(t)].

L∗[Dβ
0X(t)] = L∗

[ ∫ t

0

(t− u)m−β−1

Γ(m− β)
X(m)(u) du

]
= L

[
tm−β−1

Γ(m− β)

]
L∗[X(m)(t)]

=
1

sm−β
· L∗[X(m)(t)] , s 6= 0. (7.3)

Below we derive an expression for L∗[X(m)(t)].

Using IBP we have

L∗[Ẋ(t)] =
∫ ∞

0
e−stẊ(t) dt

= l.i.m.
T→∞

∫ T

0
e−stẊ(t) dt

= l.i.m.
T→∞

[
e−stX(t)

∣∣∣T
0

+ s

∫ T

0
e−stX(t) dt

]
= l.i.m.

T→∞

[
e−sTX(T )

]
− l.i.m.

T→∞

[
X(0)

]
+ l.i.m.

T→∞

[
s

∫ T

0
e−stX(t) dt

]
= l.i.m.

T→∞

[
e−sTX(T )

]
−X(0) + s L∗[X(t)] .
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7.1. Expressions for L∗[Iβ
aX(t)] and L∗[Dβ

aX(t)]

Thus if l.i.m.
T→∞

[
e−sTX(T )

]
= 0

L∗[Ẋ(t)] = s L∗[X(t)]−X(0) . (7.4)

Now consider L∗[Ẍ(t)]. Using IBP we have

L∗[Ẍ(t)] = l.i.m.
T→∞

∫ T

0
e−stẌ(t) dt

= l.i.m.
T→∞

[
e−stẊ(t)

∣∣∣T
0

+ s

∫ T

0
e−stẊ(t) dt

]
= l.i.m.

T→∞

[
e−sT Ẋ(T )

]
− l.i.m.

T→∞

[
Ẋ(0)

]
+ s l.i.m.

T→∞

[ ∫ T

0
e−stẊ(t) dt

]
.

Substituting (7.4) into the last term of the above and assuming that
l.i.m.
T→∞

[
e−sT Ẋ(T )

]
= 0, we have

L∗[Ẍ(t)] = s [sL∗[X(t)]−X(0)]− Ẋ(0)
= s2 L∗[X(t)]− sX(0)− Ẋ(0) .

In general, assuming that l.i.m.
T→∞

[e−sTX(j)(T )] = 0 for j = {0, 1, 2, . . . ,m − 1},
we have

L∗[X(m)(t)] = sm L∗[X(t)]−
m−1∑
j=0

sm−1−jX(j)(0) . (7.5)

We now need to show that our assumption that l.i.m.
T→∞

[e−sTX(j)(T )] = 0 for

j ∈ {0, 1, 2, . . . ,m− 1} is valid. To show the assumption holds for j = 0 we must
show that

lim
T→∞

||e−sTX(T )− 0|| = 0 .

Now,

lim
T→∞

||e−sTX(T )− 0|| = lim
T→∞

√
E[e−sT e−sTX(T )X(T )]

=
√

lim
T→∞

e−2sT ΓXX(T, T ) .

Since X(t) is a second-order stochastic process ΓXX(t, τ) is finite for all (t, τ).
Thus l.i.m.

T→∞
[e−sTX(T )] = 0 for s > 0. We can similarly show that the assumption

holds for j ∈ {1, 2, 3, . . . ,m− 1} when s > 0.

Returning to (7.3) we have

L∗[Dβ
0X(t)] =

1
sm−β

[
smL∗[X(t)]−

m−1∑
j=0

sm−j−1X(j)(0)
]

= sβL∗[X(t)]−
m−1∑
j=0

sβ−j−1X(j)(0) , s > 0.
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7.1. Expressions for L∗[Iβ
aX(t)] and L∗[Dβ

aX(t)]

We have considered the case where the lower limit of integration for the
fractional integral and derivative is zero. Let us now consider the case where
the lower limit is some constant a > 0.

Using the Heaviside function

H(t− u) =
{

0 for t < u
1 for t ≥ u

we have the following expression:∫ t

0

(t− s)β−1

Γ(β)
X(s)H(s− a) ds =

∫ t

a

(t− s)β−1

Γ(β)
X(s) ds .

So

L∗[Iβ
aX(t)] = L∗

[(
tβ−1

Γ(β)

)
∗X(t)H(t− a)

]
= L

[
tβ−1

Γ(β)

]
· L∗[X(t)H(t− a)]

=
[

1
sβ

]
· L∗[X(t)H(t− a)]

where

L∗[X(t)H(t− a)] =
∫ ∞

0
e−stX(t)H(t− a) dt

=
∫ ∞

a
e−stX(t) dt

=
∫ ∞

0
e−s(t+a)X(t+ a) dt

= e−as

∫ ∞

0
e−stX(t+ a) dt

= e−asL∗[X(t+ a)]

Note that we have used a change of variable to get from the second to the
third line.

Therefore,

L∗[Iβ
aX(t)] =

e−as L∗[X(t+ a)]
sβ

, s 6= 0

and similarly

L∗[Dβ
aX(t)] = L

[ ∫ ∞

0

(t− u)m−β−1

Γ(m− β)
X(m)(u)H(u− a) du

]
=

e−as L∗[X(m)(t+ a)]
sβ

, s > 0.
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7.2. Solving fractional integral and differential equations using the L∗ transform

7.2 Solving fractional integral and differential equa-
tions using the L∗ transform

It is clear that the L∗ transform works in a m.s. setting like the Laplace trans-
form works in a deterministic setting so it seems reasonable to try use the L∗
transform to solve m.s. fractional integral and differential equations. In order
to do this we will need to be able to recover the solution process from the trans-
formed equation. For this reason we will need to define an inverse L∗ transform.

Definition 7.1. Suppose X(t) is a second order stochastic process for which
L∗[X(t)] , X∗(s) exists. Then X(t) is called an inverse L∗ transform of X∗(s).
Symbolicaly we will write X(t) = L−1

∗ [X∗(s)] , L−1
∗ L∗[X(t)].

Provided the validity of the solution process is checked, this simple defini-
tion will suffice. The m.s. fractional integral and differential equations that we
will solve in this section using the L∗ transform are ones to which we know the
solutions. By comparing the solutions we find here to the known solutions, we
will be able to decide if using L∗ transforms is a viable method for solving some
m.s. fractional integral and differential equations.

Consider the following m.s. fractional integral equation:

Iβ
aX(t) = Y (t) , β ∈ (m− 1,m] (7.6)

where X(t) is an unknown second-order s.p. and Y (t) is a known second-order
stochastic process. In Chapter 6 we solved this equation using the composition
rule. Here we will solve it using L∗ transforms and so add the conditions that
both X(t) and Y (t) must be defined on [0,∞) and that their L∗ transforms must
exist.

Setting a = 0 in (7.6) and applying L∗ transforms we have for β ∈ (m− 1,m)

L∗[Iβ
0X(t)] = L∗[Y (t)]

⇒ L∗[X(t)]
sβ

= L∗[Y (t)]

⇒ L∗[X(t)] = sβ L∗[Y (t)]

= sm L∗[Y (t)]
sm−β

= sm L∗[Im−β
0 Y (t)] .

Now, using (7.5) and Corollary 4.2

L∗
[
dm

dtm
Im−β
0 Y (t)

]
= sm L∗[Im−β

0 Y (t)]−
m−1∑
j=0

sm−1−j d
j

dtj
Im−β
0 Y (0)

= sm L∗[Im−β
0 Y (t)] .
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7.2. Solving fractional integral and differential equations using the L∗ transform

So

Iβ
0X(t) = Y (t)

⇒ L∗[X(t)] = L∗
[
dm

dtm
Im−β
0 Y (t)

]
.

Applying L−1
∗ i.e. inverting this equation, we have

X(t) =
dm

dtm
Im−β
0 Y (t)

= Dβ
0Y (t)

where Theorem 4.11 and Corollary 4.2 were used in the last step.
For the β = m ∈ N case we have

Im
0 X(t) = Y (t) ⇒ L∗[X(t)] = smL∗[Y (t)] = L∗[Y (m)(t)]

⇒ X(t) = Dm
0 Y (t) .

Thus
X(t) = Dβ

0Y (t) , β ∈ (m− 1,m] (7.7)

is the solution to (7.6). This is the same solution as that found in the previous
chapter.

In Chapter 6 we also considered the m.s. fractional differential equation

Dβ
aX(t) = Y (t) , β ∈ (m− 1,m].

We can solve this using L∗ transforms by simply noting that for β ∈ (m− 1,m)
this equation can be written as

Im−β
0 X(m)(t) = Y (t) .

Clearly this is of the form of (7.6) so using (7.7) we have

X(m)(t) = Dm−β
0 Y (t) , β ∈ (m− 1,m).

Applying Im
0 to both sides and using Theorem 4.7 and Corollary 4.2 we have

X(t)−
m−1∑
j=0

tj

Γ(j + 1)
X(j)(0) = Iβ

0 Y (t)− tβ

Γ(β + 1)
Y (0) .

Thus the solution when β ∈ (m− 1,m) will be

X(t) = Iβ
0 Y (t) +

m−1∑
j=0

tj

Γ(j + 1)
X(j)(0) .
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7.2. Solving fractional integral and differential equations using the L∗ transform

Using the same method it can be shown that the solution is also valid for
β = m. Again we see that this is the same solution as that found in the previous
chapter.

Now consider the following m.s. fractional integral equation:

X(t) + λIβ
aX(t) = Y (t) , β ∈ (m− 1,m] (7.8)

where X(t) is an unknown second-order s.p. and Y (t) is a known stochastic pro-
cess. When β ∈ (0, 1] equation (7.8) is the stochastic Abel integral of the second
kind. If we assume that L∗[X(t)] and L∗[Y (t)] exist and let a = 0, then (7.8) can
be solved using L∗ transforms.

Applying L∗ transforms to (7.8) we have

L∗[Y (t)] = L∗[X(t)] +
λ

sβ
L∗[X(t)]

=
[
1 +

λ

sβ

]
L∗[X(t)]

=
[

sβ

sβ + λ

]−1

L∗[X(t)] .

So

L∗[X(t)] =
[
s · sβ−1

sβ + λ

]
L∗[Y (t)]

=
[
s · sβ−1

sβ + λ
− 1
]
L∗[Y (t)] + L∗[Y (t)] . (7.9)

In order to find a solution to the above problem we will need to introduce
the Mittag-Leffler function which we will denote by Mα(z):

Mα(z) ,
∞∑

n=0

zn

Γ(αn+ 1)
, α > 0 , z ∈ C.

Taking the L∗ transform of Mα(−λtα) we have (Gorenflo & Mainardi, 2000)

L∗[Mα(−λtα)] = L[Mα(−λtα)] =
sα−1

sα + λ
, <(s) > |λ|

1
α .

Now,

L∗
[
d

dt
Mα(−λtα)

]
= L

[
d

dt
Mα(−λtα)

]
= s L[Mα(−λtα)]− [Mα(−λtα)]t=0

= s · sα−1

sα + λ
−
[
1 +

∞∑
j=1

(−λ)jtαj

Γ(αj + 1)

]
t=0

= s · sα−1

sα + λ
− 1 , <(s) > |λ|

1
α
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so that (7.9) becomes

L∗[X(t)] = L
[
d

dt
Mβ(−λtβ)

]
· L∗[Y (t)] + L∗[Y (t)] .

Taking the inverse L∗ transform of this we have the following solution to (7.8):

X(t) =
[
d

dt
Mβ(−λtβ)

]
∗ Y (t) + Y (t) , <(s) > |λ|

1
β . (7.10)

This solution is of the same form as that found by Loverro (2004) for the
deterministic version of (7.8). Loverro (2004) uses two methods. One method
involves the use of Laplace transforms – it is on this method that we have
based our L∗ transform method. The other method is that adopted in Hafiz
et al. (2001). For β ∈ (0, 1] and |λ| < Γ(1+β)

(b−a)β , Hafiz et al. (2001) solve (7.8) as
follows:

Y (t) = X(t) + λIβ
aX(t)

= (1 + λIβ
a )X(t)

⇒ X(t) = (1 + λIβ
a )−1Y (t)

=
∞∑

j=0

(−λ)jIjβ
a Y (t) . (7.11)

Equations (7.10) and (7.11) are equivalent. To see this we note that

d

dt
Mβ(−λtβ) =

d

dt

[
1 +

∞∑
j=1

(−λtβ)j

Γ(βj + 1)

]

=
∞∑

j=1

(−λ)j tβj−1

Γ(βj)

so that[
d

dt
Mβ(−λtβ)

]
∗ Y (t) =

∫ t

0

∞∑
j=1

(−λ)j (t− u)βj−1

Γ(βj)
Y (u) du

=
∞∑

j=1

(−λ)j

∫ t

0

(t− u)βj−1

Γ(βj)
Y (u) du

=
∞∑

j=1

(−λ)j Iβj
0 Y (t) .
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7.2. Solving fractional integral and differential equations using the L∗ transform

Since Y (t) = (−λ)0 I0
0Y (t), our solution given by (7.10) becomes

X(t) =
[
d

dt
Mβ(−λtβ)

]
∗ Y (t) + Y (t)

=
∞∑

j=1

(−λ)j Iβj
0 Y (t) + (−λ)0I0

0Y (t)

=
∞∑

j=0

(−λ)j Iβj
0 Y (t) .

The solutions to the three equations we have considered in this section are
the same as the solutions found using other methods. This indicates that using
L∗ transforms may be useful in finding potential solutions to some m.s. frac-
tional integral and differential equations.
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Chapter 8

In Closing

The aim of this dissertation was to transfer deterministic fractional calculus –
a powerful tool in deterministic calculus – to a m.s. setting. Our contribution
to the current body of work comes predominantly from Chapters 4, 5 and 7. In
Chapter 4 we considered some properties of m.s. fractional integrals and deriva-
tives. We saw that the inclusion of the β > 1 range often leads to results that
are expected even when different methods are required to prove them. When
we say the results are expected we mean that they are the same as those for
the β ∈ (0, 1] range that is used most often in the current body of work, or that
they follow a similar pattern. Including the β > 1 range also highlighted the
need to define the m.s. (Right-Hand) fractional derivative carefully so that the
results are consistent with one another. In Chapter 5 we found expressions for
Iβ
a [f(t)X(t)] and Dβ

a [f(t)X(t)] which, although derived simply by following the
basic steps used when working with deterministic fractional calculus, had not
yet been given for m.s. fractional integrals and derivatives. In Chapter 7 the
simple transform that we introduced allowed us to find potential solutions to
simple m.s. fractional integral and differential equations in the same way that
the Laplace transform allows us to find solutions to deterministic fractional
integral and differential equations. We have also contributed by considering
definitions other than the m.s. RH and LH fractional derivatives and the m.s.
R-L fractional integral, and by demonstrating that the composition rule method
for solving m.s. fractional integral and differential equations is only useful for
simple equations.

The work in this dissertation extends the existing body of work but is still
only a start to a topic that may become as useful as deterministic fractional
calculus. Work can be put into translating the more complex properties of de-
terministic fractional calculus to a m.s. setting. Mean fourth order calculus is
similar to m.s. calculus. Instead of using second-order random variables fourth
order random variables – those for which the fourth moment is finite – are used
and instead of using the norm ‖X‖ = 2

√
E(X2), the norm ‖X‖4 = 4

√
E(X4) is

used. Using mean fourth-order calculus Villafuerte et al. (2010) found a m.s.
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product rule for two stochastic processes that are not necessarily independent.
They also found a m.s. chain rule. These rules involve integer order derivatives
so it may be possible to generalize them to non-integer orders. In determin-
istic fractional calculus Grünwald integrals and derivatives are often used for
numerical computations of fractional integrals and derivatives. Here we have
restricted ourselves to the use of only the m.s. R-L fractional integral and the
m.s. RH fractional derivative but it might be interesting to look into the use of
m.s. Grünwald integrals and derivatives. These and other ideas can be exten-
sions for further study.
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Glöckle, W. G. & Nonnenmacher, T. F. (1991). Fractional integral operators and
Fox functions in the theory of viscoelasticity. Macromolecules, 24, 6426–6434.

Gorenflo, R. & Mainardi, F. (2000). Essentials of fractional calculus. Maphysto
Center,
www.maphysto.dk/oldpages/events/LevyCAC2000/MainardiNotes/fm2k0a.ps.

Gorenflo, R., Mainardi, F., Scalas, E., & Raberto, M. (2001). Fractional cal-
culus and continuous-time finance III: The diffusion limit. pp.171–180 in M.
Kohlmann and S. Tang: Mathematical Finance. Birkhauser Verlag, Basel.

Hafiz, F. M. (2004). The fractional calculus for some stochastic processes.
Stochastic Analysis and Applications, 22(2), 507–523.

Hafiz, F. M., El-Sayed, A. M. A., & El-Tawil, M. A. (2001). On a stochastic
fractional calculus. Fractional Calculus and Applied Analysis, 4(1), 81–90.

Heymans, N. & Podlubny, I. (2006). Physical interpretation of initial condi-
tions for fractional differential equations with Riemann-Liouville fractional
derivatives. Rheologica Acta, 45(5), 765–771.

Kestelman, H. (1960). Modern Theories of Integration. Dover Publications, New
York.

75



BIBLIOGRAPHY

Loève, M. (1955). Probability Theory. D. Van Nostrand Company Inc, New York.

Loverro, A. (2004). Fractional calculus: History, definitions and applications for
the engineer. www.nd.edu/∼msen/Teaching/UnderRes/FracCalc.

Magin, R. L. (2006). Fractional Calculus in Bioengineering. Begell House, New
York.

Oldham, K. B. & Spanier, J. (1974). The Fractional Calculus. Academic Press,
New York and London.

Podlubny, I. (1999). Fractional-order systems and PIλDµ-controllers. IEEE
Transactions on Automatic Control, 44(1), 208–214.

Soong, T. T. (1973). Random Differential Equations in Science and Engineering.
Academic Press, New York and London.

Tseng, C. (2001). Design of fractional order digital FIR differentiators. IEEE
Signal Processing Letters, 8(3), 77–79.

Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jodar, L. (2010). Random
differential operational calculus: Theory and applications. Computers and
Mathematics with Applications, 59, 115–125.

76


