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ABSTRACT 

 

During the past two centuries, land cover has been changing at an alarming rate in space and 

time and it is humans who have emerged as the dominant driver of change in the 

environment, resulting in changes of extraordinary magnitudes. Most of these changes occur 

due to demands placed on the land by the ever-increasing human population and their need 

for more land for both settlement and food production. Many researchers underscore the 

importance of recognizing and studying past land-use and land cover changes as the legacies 

of these changes continue to play a major role in ecosystem structure and function. The 

objectives of this study were to determine the extent of land cover changes between 1992 and 

2008 in the study areas, Esikhawini and Dube located in the uMhlathuze municipality, 

KwaZulu-Natal, and to both predict and address the implications of the extent of future 

changes likely to occur in the area by 2016. Three Landsat satellite images of the study area 

were acquired for the years, 1992, 2000 and 2008. These images were classified into nine 

classes representing the dominant land covers in the area. An image differencing change 

detection method was used to determine the extent of the changes which took place during 

the specified period. Thereafter, a Markov chain model was used to determine the likely 

distribution of the land cover classes by 2016. The results revealed that aside from 

Waterbodies and Settlements, the rest of the classes exhibited a great degree of change 

between 1992 and 2008, having class change values greater than 50%. With regards to the 

predicted change in the land cover classes, the future land cover change pattern appears to be 

similar to that observed between 1992 and 2008. The Settlements class will most likely 

emerge as the dominant land cover in the study area as many of the other classes are 

increasingly being replaced by this particular class. The overall accuracy of the classification 

method employed for this study was 79.58% and the results have provided a good overview 

of the location and extent of land cover changes in the area. It is therefore plausible to 

conclude that these techniques could be used at both local and regional scales to better inform 

land management practices and policies.  
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CHAPTER 1: INTRODUCTION 

 

1.1. Background 

In the past two centuries, it is humans who have emerged as the dominant force of change in 

the environment, resulting in changes of extraordinary magnitudes, rates, and spatial scales in 

the landscape (Moran, 2001; Schulz et al., 2010; Turner et al., 1994). Anthropogenic changes 

in relation to the demand and consumption of land-related resources and services have 

resulted in significant land clearing as well as changes in land cover and use patterns over the 

years (Barnett and Adger, 2007; Bob, 2010; Kagwanji, 2009). The authors further argue that 

these changes and stressors have contributed significantly to increasing vulnerabilities, 

undermining existing livelihoods (specifically in relation to concerns pertaining to climate 

change) and in some instances have been the key driver of land related conflicts. These have 

been particularly acute in marginalized communities in Africa, such as rural areas.    

 

The ever-increasing human need for more land for activities such as agriculture and housing 

has led to an increase in land cover conversions, land degradation and land-use intensification 

(Houlbrooke et al., 2011; Jones et al., 2011; Lambin, 1997). The aforementioned effects of 

land-use and land cover change (LUCC) has a sometimes negative effect on humans as well, 

most especially the poor who are dependent on the environment for survival and a range of 

livelihoods. Thus, it is for this very reason that many authors (such as Lillesand and Kiefer, 

2000 and Sherbinin, 2002) believe there to be a need for a better understanding of the 

relationship and interaction between humans and the terrestrial environment. In addition, 

Veldkamp and Lambin (2001) emphasize the fact an understanding of the factors which 

result in LUCCs are essential for the development of LUCC models. These models, 

according to Guan et al. (2011), are useful for exploring and predicting future LUCCs under 

different scenario conditions, and are therefore regarded as indispensible tools for sustainable 

land-use planning.    

 

Human and natural systems interact on a dynamic canvas we call land (Parker et al., 2003). 

Land is one of the most important natural resources as it is from here that humans draw most 

of their food, shelter, freshwater and fuel (Foley et al., 2005). Land tenure in Africa takes a 

range of forms including freehold/private titles (includes large tracts of commercial land for 

activities such as farming and forestry plantations), communal/traditional systems, 
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public/state land (includes natural resource areas for conservation purposes) and informal 

squatting (Rugege et al., 2007). Furthermore, Rugege et al. (2007) state that in the South 

African context in particular, colonial and apartheid processes and legacies have resulted in 

skewed land ownership patterns as well as contestations over rights and use. In terms of the 

global land usage, the most economically important human uses include agriculture, timber 

extraction, settlement and construction, and reserves and protected lands (Lambin et al., 

2006; Turner et al., 1994). These land-uses, combined with other human activities, have had 

wide and varied cumulative impacts on the environment. The effects range from direct 

physical impacts on the terrestrial environment, such as deforestation, to indirect 

consequences, such as global warming (Foster et al., 2003). Thus, LUCC can negatively 

impact climate, biodiversity, soil conditions, water flows, and the human population (Turner 

et al., 1994; Verburg et al., 2009).       

 

It is worth noting that much of the research on LUCC has focused primarily on and been 

applied to urban environments with very few studies assessing LUCCs in rural contexts. In 

the case of this research, the study area is a typical rural community within the KwaZulu-

Natal province. It has a built-up residential area (commonly referred to as ‘township’), 

Esikhawini, and a more agriculturally-based rural area called Dube. Additionally, it is 

surrounded by or in close proximity to several land-uses typical of rural landscapes such as 

forest plantations, commercial agriculture and mining interests. These are key LUCC drivers 

in rural areas and therefore this case study is appropriate to examine LUCCs in these 

environments. 

 

1.2. Land-use and land cover assessments 

In order to understand LUCC, one has to first understand what these terms mean. Land cover 

refers to the type of feature which occurs on the earth’s surface while land-use describes the 

actual human activity that is taking place on a specific piece of land (Lillesand and Kiefer, 

2000). Timely and reliable LUCC information is rapidly becoming one of the most important 

requirements in decision-making processes at local, regional and global levels (Jansen and Di 

Gregorio, 2003). 

 

Changes made to the landscape by humans are probably the most ancient of all human-

induced environmental impacts (Serra et al., 2008; Sherbinin, 2002). These changes generally 

occurred due to demands placed on the land by the ever-increasing human population. With 
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an increase in population, there is a need for more land for both settlement and the production 

of food (agriculture). Foster et al. (2003) underscore the importance of recognizing and 

studying past LUCC as the legacies of these changes continue to play a major role in 

ecosystem structure and function. This will further our understanding of modern changes at 

both local and global scales, thereby allowing for better predictions of future changes in the 

terrestrial environment (Deng et al., 2009; Foster et al., 2003). Although the importance of 

assessing both land-use and land cover changes has been underscored above, it should be 

noted that the primary aim of this research is the assessment of land cover changes.        

 

Change detection provides a means of assessing these land cover changes. A commonly 

accepted definition of change detection is that of Singh (1989), who defines this term as the 

“process of identifying differences in the state of an object or phenomenon by observing at 

different times”. Due to the fact that change detection provides a user with repetitive data and 

short time intervals as well as consistent image quality, it is often regarded as one of the most 

significant and indispensable applications of remote sensing (Jansen and Di Gregorio, 2002; 

Mas, 1999).    

 

In order to detect both short- and long-term changes in the landscape, change detection 

employs the use of multi-temporal datasets (Lillesand and Kiefer, 2000). The best results 

from change detection techniques can be produced through the use of data which was 

acquired by the same/similar sensor and that was recorded using the same “spatial resolution, 

viewing geometry, spectral bands, radiometric resolution, and time of day” (Lillesand and 

Kiefer, 2000: 578). It is important to note that various environmental factors play a role in 

influencing the reliability of change detection (Lillesand and Kiefer, 2000). There are a 

variety of change detection techniques available that can be employed to assess changes in 

the landscape and one of the main challenges the many remote sensing users face with 

regards to change detection, is an understanding of how to match a particular technique to an 

application as no single method has proven to be applicable in all cases (Collins and 

Woodcock, 1996; Deng et al., 2009). 

 

The present research will provide a brief description of some of the most commonly used 

change detection methods before establishing why ‘image differencing’ was the method of 

choice. This choice took into account the remote sensing data available, time limit and the 

aim and objectives stated below. 
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1.3. Aim and Objectives 

The aim of this research endeavor is to detect and assess land cover changes in Dube and 

Esikhawini from 1992 to 2008. Specifically, the study will focus on examining changes in 

relation to the natural resource base. 

 

The objectives of the study are: 

1. To determine the dominant land cover changes that have occurred during the 16 year 

period. 

2. To evaluate the extent of these changes. 

3. To predict the extent of future changes.  

4. To examine potential impacts of these changes on the natural resource base.  

 

1.4. Chapter Outline 

This dissertation is divided into seven chapters, with the present Chapter briefly outlining the 

importance of LUCC research and the aim and objectives of the study. Chapter 2 provides an 

overview of the recent literature regarding LUCC and change detection. It also discusses in 

detail how remote sensing data is utilized for change detection and reviews some of the 

existing change detection techniques and their associated advantages. Chapter 3 describes the 

background to the study area. Chapter 4 provides a description of the data and methodology 

used to undertake this research. The findings of the study are described and analyzed in 

Chapter 5. Chapter 6 discusses in detail the changes observed in the area and the likely 

impacts of current and future land cover trends. The final Chapter provides a brief overview 

of the key findings, addresses the implications of this study and provides recommendations 

for future research.  

 

1.5. Summary 

The land-use and land cover trends that exist today allow humans to use increasingly greater 

amounts of environmental goods and services, thus resulting in an inability of the global 

ecosystems to perform various functions, such as sustain food production, maintain 

freshwater and forest resources and regulate climate and air quality (Foley et al., 2005). 

Changes in the terrestrial environment are closely associated with issues of sustainable 

development since and, as mentioned before, these changes affect climate, soils, vegetation, 

water resources and biodiversity, all of which form part of our most essential natural capital 

(Foley et al., 2005; Mather and Sdasyuk, 1991). Perhaps the most important fact to consider 
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about land resources is that they are “finite, fragile, and non-renewable” (Son and Tu, 2008: 

1). These resources also form the basis of human and other terrestrial ecosystems, as well as 

agricultural production (Son and Tu, 2008). Thus, it is clearly evident that there is a need for 

the assessment of the broader impact of these changes on both the natural and human 

environment, especially since these changes often lead to global environmental change 

(Foster et al., 2003; Lambin, 1997). The foundation for a better understanding of the 

interactions between humans and the environment can therefore be provided by timely and 

accurate change detection data of features on the Earth’s surface.  

 

According to Zeleke and Hurni (2001: 184), LUCC assessments should strive to answer the 

following questions:  

 What is the degree and extent, in both temporal and spatial terms, of the changes?  

 What are the major consequences of these changes? 

 What will the future trends in be in land-use and land cover dynamics? 

 Are these dynamics well understood by the relevant stakeholders? 

 What are their implications at the regional, national, and international levels? 

 

Assessments of changes in the landscape could lead to the improved use and management of 

natural resources both in the short- and long-term (Lu et al., 2004). The information gained 

from such assessments can also be used to inform land management policies (Jansen and Di 

Gregorio, 2004). In addition, Peterson et al. (2004) state that these assessments will also 

result in better conservation planning and environmental monitoring of all natural resources.  

 

Rural areas, given the extent and nature of persistent poverty, are widely regarded as being 

socially, economically and ecologically vulnerable. This situation is expected to worsen as a 

result of climate variability and extreme weather conditions linked to global warming as 

highlighted earlier. African rural areas in particular are likely to bear the brunt of these 

changes. In this context, LUCC research that focuses on rural communities will assist in 

identifying developmental trajectories that can improve the quality of life of rural residents 

without undermining the natural resource base. Thus, this research contributes to the 

increasing body of knowledge on how spatial approaches can enhance our understanding of 

LUCC in rural contexts.   
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CHAPTER 2: LITERATURE REVIEW 

 

2.1. Introduction 

In the past few years, remote sensing has played a substantial role in assessing LUCC. The 

valuable information supplied by these assessments coupled with developments in remote 

sensing technologies has led to a rapid increase in the number of change detection studies 

conducted over the years. This chapter seeks to first understand what exactly is meant by the 

terms ‘land-use’ and ‘land cover’, before addressing the determinants of LUCC and their 

significance thereof. A large portion of the literature review is dedicated to describing the 

impacts of LUCC and the role of remote sensing in assessing these changes.     

 

2.2. Land-use and Land cover 

Land-use and land cover are two closely related criteria and as such are easily confused with 

one another even though they are used to describe different aspects of the landscape 

(Fairbanks et al., 2000). In order to fully comprehend the interaction between and changes in 

land-use and land cover, Jansen and Di Gregorio (2002) believe that it is vital to understand 

and know the difference between them. These two terms are often used to describe the 

terrestrial environment in relation to whether it has been shaped by anthropogenic activity or 

nature (Chilar and Jansen, 2001).  

 

Land cover refers to the physical cover that one can observe on the earth’s surface (Brown 

and Duh, 2004; Jansen and Di Gregorio, 2003). It can be defined as “all the natural and 

human features that cover the earth’s immediate surface, including vegetation (natural or 

planted) and human constructions (buildings, roads), water, ice, bare rock or sand surfaces” 

(Fairbanks et al., 2000: 70). Thus, it is apparent that land cover can be either of natural origin 

or it can also be created by people’s use of the land (Chilar and Jansen, 2001). Moreover, 

Meyer and Turner (1992: 41) state that land cover change can take one of two forms: 

“conversion of one category of land to another and modification of condition within a 

category”.  

 

On the other hand, land-use basically refers to the purpose for which the land is used or rather 

the manner in which the biophysical assets on the earth’s surface are used by humans (Brown 

and Duh, 2004; Jansen and Di Gregorio, 2003; Lambin et al., 2000). Land-use is based more 
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on function, with a specific use referring to the activities which are undertaken to produce 

goods and services (Fairbanks et al., 2000). A land-use in a particular area is typically 

influenced by economic, social, political and historical factors (Brown et al., 2000). 

Furthermore Chilar and Jansen (2001) state that since use of the land depends largely on the 

characteristics of the landscape, a close relationship exists between land-use and land cover 

and as such land cover characteristics play a role in influencing land-use. However, it is 

important to note that although there can be only one land cover type associated with a single 

point on the earth’s surface, that point can be associated with different land-use types 

(Fairbanks et al., 2000). 

 

From a remote sensing point of view, the difference between land-use and land cover stems 

from how observable the two are in remotely sensed images. Land cover was found to be 

more easily observed, both in the field and from images, as it comprises the physical cover of 

the landscape, such as vegetation, crops and soils (Verburg et al., 2009). In contrast, it is 

more difficult to distinguish land-use and in many cases land-use is inferred from either 

observable activities (e.g. grazing) or structural elements in the landscape (e.g. the presence 

of logging roads) (Verburg et al., 2009). 

 

2.3. The significance of land-use/land cover change research 

In recent years increasing importance has been placed on the assessment of LUCC since these 

changes are closely linked to other environmental issues such as climate change, 

sustainability of the agricultural sector and provision of safe drinking water in developing 

countries (Lepers et al., 2005). Consequently, changes in the terrestrial environment are a 

major environmental global problem along with changes in biodiversity, atmospheric 

composition and climate change (Jansen and Di Gregorio, 2003). Since LUCC affect both the 

climate and biogeochemistry of the Earth’s ecosystem, they influence land management 

practices, economic health and social processes at both the national and global scale 

(Dwivedi et al., 2005; Ojima et al., 1994). Therefore, information regarding changes in the 

landscape can help in modeling global climate change and terrestrial hydrology (Lambin and 

Strahler, 1994). Perhaps the most vital reason for assessing LUCC is that it will allow for a 

greater understanding of environmental change over the next few decades which will in turn 

allow for a more timely response to these changes (Jansen and Di Gregorio, 2003). 
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Other advantages associated with the monitoring of LUCC include the fact that the 

assessment of these changes will facilitate improved conservation planning and 

environmental monitoring, as well as assist in establishing rates of change in the landscape 

(Fairbanks et al., 2000; Huston, 2005). Furthermore, information regarding these changes 

plays a role in the modeling of land-use and environmental change, sustainable management 

of resources and the development of relevant policies. The aforementioned advantages will 

result in a better understanding of the landscape thereby leading to a more efficient use of this 

resource (Jansen and Di Gregorio, 2004).  

 

2.4. Determinants of land-use and land cover change 

In order to address the impacts of LUCC, it is imperative that one also understands the causes 

of these changes. This understanding will not only lead to better decision-making and land-

use policies but will also allow for prediction of future changes in the landscape (Lambin et 

al., 2001; Verburg et al., 2004). Lambin et al. (2003) divide the determinants of LUCC into 

two distinct categories, namely, proximate (direct) and underlying (indirect) causes. 

Proximate causes refer to anthropogenic activities which result in a physical change in land 

cover (Lambin et al., 2003; Zak et al., 2008). These causes mainly occur at the local level 

(Lambin et al., 2003). Underlying causes on the other hand refer to the fundamental forces 

which underpin proximate causes of land cover changes. Underlying causes, which are 

formed by a mix of social, political, economic, demographic, technological, cultural, and 

biophysical variables, can operate at either the local level or be influenced by impacts at the 

regional and global levels (Lambin et al., 2003; Zak et al., 2008).  Lambin et al. (2003) stress 

that not all determinants of LUCC are equally important, and when attempting to predict the 

trend of change for a particular human-environment system, only a few determinants need to 

be considered.  

 

2.4.1. Economic factors 

Economic factors have often been regarded by many researchers as one of the more dominant 

determinants of LUCC (Lambin et al., 2003; Verburg et al., 2004). The assumption that, in 

equilibrium, land is used for the activity which produces the highest potential profitability 

forms the basis of many of the economic models which economists use to understand the 

relationship between land and location factors (Verburg et al., 2004). Lambin et al. (2003) 

note that changes in the landscape often occur as a consequence of individual and social 

responses to fluctuating economic conditions, which are mediated by institutional factors. 
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Decisions made by land managers are influenced by a variety of economic factors and 

policies such as taxes, subsidies, technology, etc. Furthermore Lambin et al. (2003) argue that 

local consumption has less of an effect on land in comparison to external demand. Increasing 

external demand leads to a decrease in subsistence croplands and an increase in both land for 

market crops and agricultural intensity.  

 

The unequal distribution of wealth amongst households and countries is also a factor which 

influences change in the landscape (Lambin et al., 2003; Turner et al., 1993). According to 

Turner et al. (1993), there exists a mixed relationship between level of wealth or economic 

development and environmental change. For example, wealth has often been associated with 

an ability to easily develop and exploit land and natural resources thereby increasing per 

capita consumption (Lambin et al., 2003). This increase means higher resource demands 

resulting in some form of environmental change, which can be mitigated through the use of 

advanced technologies (Turner et al., 1993).     

 

2.4.2. Technological factors 

The development and application of new technologies, over the years, has allowed humans to 

change or adapt the landscape in ways which severely impact the natural environment 

(Huston, 2005). Huston (2005) states that the history of human civilization and environmental 

impacts can be divided into three phases. The first phase is the “agrarian stage” and portrays 

the growth in human population as a consequence of both primary and secondary production 

(Huston, 2005: 1864). Agricultural activity, driven mainly by primary production, is included 

in this stage. The second phase describes the independence of humans from any 

environmental constraints on primary productivity. The change from the agrarian to industrial 

phase and development of new transportation system allowed for human settlements to be 

located away from agricultural production (Huston, 2005). The third and final phases 

demonstrate a further independence of humans from both industrial and agricultural centers. 

This independence is attributed mainly to the development and efficiency of electronic 

communication and new transport systems (Huston, 2005). Huston (2005) notes that this 

phase has allowed humans to occupy any portion of the landscape and remain completely 

independent of any primary or secondary productivity centers. The aforementioned phases 

result in the creation of varying patterns of human populations, land-use changes as well as 

environmental impacts, constrained only by the availability and location of natural resources.  
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In addition, Lambin et al. (2003) note that although improvements in agricultural technology 

can have the advantage of ensuring that farmers have access to credit and markets as well 

providing them with secure land tenure, it can also lead to an increase in environmental 

degradation. A change in the demand and usefulness of certain natural resources occurs as a 

consequence of the development of new technologies. Furthermore improvements made to 

transport infrastructure, such as the building of new roads, allows for greater access to 

previously inaccessible areas, thereby increasing natural resource exploitation and land 

degradation (Turner et al., 1993).  

 

2.4.3. Social and Cultural Factors 

The focus of social models and theories is one of the factors which play a role in the choice 

of location made by communities. These factors include “individuals’ cultural values, norms, 

and preferences (lifestyles), and their financial, temporal, and transport means” (Verburg et 

al., 2004: 127). In addition to the aforementioned factors, site characteristics, such as land 

property value and topographical quality, and historical events also influence locational 

choices (Verburg et al., 2004).  

 

According to Lambin et al. (2003), cultural values are also taken into account in the land-use 

decision-making process. When making land-use decisions, land managers are influenced by 

their own attitudes, values, beliefs and individual perceptions. Cultural factors together with 

political and economic inequalities affect resource access and land-use, and thus 

understanding of the various factors may better describe the way by which resources are 

managed, peoples’ compliance or resistance to certain government policies as well as social 

flexibility during environmental change (Lambin et al., 2003).     

 

2.4.4. Demographic Factors 

Fluctuations in population size have a significant impact on land-use, especially in 

developing and underdeveloped countries (Lambin et al., 2003; Turner et al., 1993; Zak et 

al., 2008). As human population increases so does the pressure it exerts on the terrestrial 

environment, due to a greater demand for resources such as food, fiber, fuel and water (Ojima 

et al., 1993). Despite the fact that population growth can be positively correlated to expansion 

of agricultural lands, land intensification and deforestation, Turner et al. (1993) argue that 

some studies prove this correlation to be weak and dependant on the inclusion and exclusion 

of statistical outliers. Meyer and Turner (1992) assert that some theories, such as the Faustian 
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and Neoclassical theories, found population to be a secondary determinant of LUCC. These 

theories believe that growing populations serve to only worsen degradation caused by other 

major determinants, such as the development of new technologies (Meyer and Turner, 1992).  

 

Other demographic factors which contribute to LUCC are life-cycle features, migration and 

urbanization. Life-cycle features refer mainly to labor availability at household level which is 

in it-self linked to migration and urbanization (Lambin et al., 2003). Although these features 

arise from rural environments they also affect urban environments. Life-cycle features occur 

as a consequence of households’ responses to economic constraints and opportunities and are 

thus responsible for shaping the trajectory of change in land-use and land cover patterns, 

which in turn impacts on households’ economic status (Lambin et al., 2003).  

 

Lambin et al. (2003) consider migration to be the most important demographic factor 

responsible for change in the landscape. Together with other non-demographic factors, such 

as globalization, government policies and change in consumption patterns, migration operates 

as a major driver of change (Lambin et al., 2003). 

 

Over the next few decades, Lambin et al. (2003) predicts that urbanization will become a 

significant driving force of land-use change, not only in the main urban and peri-urban areas 

but in remote areas as well. This is due to the fact that although urban growth has the 

advantage of creating new markets for agricultural products, timber and livestock, it still 

results in an increase in urban remittances to rural areas (Lambin et al., 2003). 

 

2.4.5. Biophysical Factors 

In comparison to the abovementioned determinants of LUCC, biophysical factors play a 

lesser role. The natural environment is more important in terms of the constraints and 

possibilities it provides for the way in which land can be exploited (Verburg et al., 2004). 

Despite the fact that environmental conditions provide significant constraints to new land-

uses, Chilar and Jansen (2001) believe that these can be mitigated through the investment of 

energy and materials.   

 

Some of the biophysical factors which influence land-use and land cover in area are climate, 

topography, soils, geology, vegetation and the presence or availability of water (Chilar and 

Jansen, 2001). The aforementioned factors frequently interact with anthropogenic 
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determinants of land-use change and often changes in the landscape lead to an increase in the 

vulnerability of human-environment systems to climatic fluctuations resulting in land 

degradation (Lambin et al., 2003). 

 

2.4.6. Policy Factors 

In order to fully understand the causes behind LUCC, one has to also recognize the role 

which institutions (i.e. political, economic, legal and traditional) play in individual decision 

making. Local and national policies together with institutions structure the way in which 

land, labor, capital and technology can be accessed (Lambin et al., 2003). These policies can 

have both negative and positive outcomes. Land-use changes can occur as a product of ill-

defined polices as well as inadequate institutional responses. However, well designed and 

properly implemented policies can have a positive impact in the recovery and restoration of 

natural resources (Lambin et al., 2003).  

 

In the case of developing countries, such as South Africa, land policy, land rights and land 

reform constitute important elements for poverty reduction in both urban and rural sectors 

(Tukahirwa, 2002). Since the new government came into power in 1994, various new policies 

and legislations have been developed to address the injustices of the past (Bradstock, 2006; 

Fourie, 2000). South Africa’s land reform programme comprises of three major components, 

namely, Land Tenure Reform, Land Restitution and Land Reform (Bradstock, 2006). 

 

2.4.7. Spatial Interactions and Neighborhood Characteristics 

Analysis of land-use patterns reveals that these patterns are often a consequence of spatial 

interactions. The occurrence of a type of land-use (be it residential, commercial, etc.) does 

not develop independently, but is rather influenced by land-uses in neighboring locations 

(Verburg et al., 2004). Thus, each land-use type impacts the conditions of both adjacent and 

distant locations. Interregional and international networks of economic, social and political 

relations are also factors which are considered in the location of a particular land-use 

(Verburg et al., 2004). 

 

2.5. The impact of land-use and land cover changes 

According to Walker and Steffen (1997), LUCC “comprise one of four major, large-scale 

environmental perturbations of the earth, together with biodiversity, atmospheric 

composition, and climatic changes”. Agricultural growth and urban expansion are two major 



13 
 

land-use activities responsible for the transformation of one-third to one-half of the Earth’s 

land surface. This transformation, which generally occurs in the form of deforestation, 

agricultural practice and urban growth, has significant impacts on the environment, 

ecosystem services and food production (Yan et al., 2009).    

 

At the global level, land-use is responsible for the dramatic change in land cover, most 

especially in the tropics (Lambin, 1997). Most land cover changes are a consequence of 

anthropogenic activities and driven by either land cover conversions, land degradation or 

land-use intensification (Lambin, 1997). Land cover conversions, which simply entails the 

change in land cover from one type to another, has devastating impacts on the environment 

and two of its main causes are urbanization and tropical deforestation (Lambin, 1997). Land 

degradation is a term which describes the deterioration in the natural resource base via 

processes such as soil erosion and soil salinisation. It negatively impacts food supply and is 

prevalent mainly in semi-arid regions (Lambin, 1997). Land-use intensification, associated 

mainly with the agricultural sector, is driven by population growth and market demand 

(Lambin, 1997). The impacts of both LUCC will be discussed in greater detail below. 

 

2.5.1. Impacts associated with food production 

Advances in agricultural technologies together with changing land practices have allowed 

humans to significantly increase both world food production and the extent of agricultural 

lands, making it one of the largest terrestrial biomes (Foley et al., 2005). However, these 

advances have occurred at a huge cost resulting in widespread environmental damage. The 

conversion of land cover into cropland has been occurring for more than a hundred years, 

resulting in significant impacts on almost all major biomes as well as huge losses in soil 

carbon (Ojima et al., 19994). Tillage, drainage and grazing are just a few of the agricultural 

activities which impact on the native flora and fauna of an area (McLaughlin and Mineau, 

1995). The loss of these native species is detrimental in the fact that it also affects agricultural 

production through the degrading of the services provided by pollinators, such as bees (Foley 

et al., 2005). 

 

In light of the abovementioned impacts of some agricultural activities, Foley et al. (2005) 

conclude that modern agricultural practices may be trading short-term increases in food 

production for long-term losses in ecosystem services, many of which are vital to food 

production itself.  
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2.5.2. Impacts on the hydrological cycle 

LUCC can disrupt the hydrological cycle in both the long- and short-term. Short-term 

disruptions may increase water yield or in cases of low flow, eliminate the flow altogether. 

Reductions in evapotranspiration and water recycling, which can ultimately result in rainfall 

reduction, are examples of long-term disruptions (Li et al., 2007). These changes are also 

responsible for modifying the surface water balance, runoff and groundwater flow (Foley et 

al., 2005). The aforementioned negative impacts on freshwater resources frequently arise as 

consequence of deforestation, vegetation removal and the conversion of one land cover type 

to another (Costa et al., 2003; Foley et al., 2005). 

 

Many land-use activities require large amounts of water, none more so than agriculture. 

Gleick (2003) estimates that global water withdrawals now total approximately 4 324 km
3
   

yr
-1

 and the consumptive use of water is estimated to be 2 501 km
3
 yr

-1
, with agriculture 

responsible for approximately 85% of this consumption. The consequences of such large 

demands on freshwater has led to both a decline in groundwater tables in some regions as 

well many large rivers experiencing reduced flow or even drying up altogether (Foley et al., 

2005). 

 

Urbanization and agriculture are two land-use activities which are responsible for the 

degradation of water quality in many rivers and streams throughout the world (Foley et al., 

2005). In their study on the relationship between land-use and surface water quality, Yong 

and Chen (2002) prove that runoff from both agricultural and urban land-use increase the 

amount of nitrogen and phosphorous thus resulting in contamination of freshwater resources. 

In cases where wastewater treatment is absent, urbanization can result in water quality 

degradation which affects inland and coastal waters thus resulting in oxygen depletion, 

aquatic ecosystem disruptions and increases the occurrence of waterborne diseases (Foley et 

al., 2005).   

 

2.5.3. Impacts associated with forest resources 

In the past 300 years, various land-use activities have contributed to the net loss of about 7 to 

11 million km
2
 of forests (Foley et al., 2005; Ramankutty and Foley, 1999). Agricultural 

expansion, road building, logging, fuelwood collection and forest grazing are some of the 

land-use practices which negatively affect forest ecosystems (Foley et al., 2005; Moran, 
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1993). Changes and development of land-uses is especially troubling in tropical forests, 

which although cover only 17% of the earth’s land surface, sustain over half of the planet’s 

animal and plant species (Laurance, 1999). Forest loss and habitat fragmentation have severe 

negative implications for biodiversity through increasing habitat isolation and thereby 

endangering species and modifying their population dynamics (Echeverria et al., 2006; 

Verburg et al., 2006). Deforestation and fragmentation also negatively impact on forest 

productivity, biomass, stand structure and species richness (Echeverria et al., 2006; Foley et 

al., 2005).  

 

In addition to the previously mentioned impacts, Laurance (1999) believes that loss of 

ecosystem services is by far the greatest and most severe effect of deforestation. The loss of 

these services are detrimental not only to the environment but to humans as well. For 

example, the flooding of the Yangtze River in China, which resulted in 3 000 deaths and 

extensive infrastructural damage, was further exacerbated by the forest removal which took 

place near the headwaters of the river (Gorman, 1999). Thus, it is evident that forests play an 

important role in maintaining both the stability of rivers and soils (Laurance, 1999). 

Furthermore, forest removal also affects climate, as discussed in greater detail below.  

 

2.5.4. Impacts associated with climate change 

Climate change both drives and is impacted by LUCC (Zak et al., 2008). Land conversions 

change the physical properties of the land surface thereby impacting on regional climate 

through its effects on net radiation, the diversion of energy into sensible and latent heat, and 

the partitioning of precipitation into evapotranspiration, soil water and runoff (Foley et al., 

2005; Pielke et al., 2002). In tropical regions, the replacement of tropical forests with 

pastures and other land-uses is of particular importance as it significantly affects the global 

climate (Bonan, 1997; Foley et al., 2005; Pielke et al., 2002). In contrast to the cooling 

brought about by the removal of temperate and boreal forest vegetation, tropical deforestation 

both results in a warmer and drier climate and negatively impacts on the climate-related 

ecosystem services provided by tropical forests (Bonan et al., 1992; Foley et al., 2005; Pielke 

et al., 2002).   

 

The changing spatial and temporal pattern of thunderstorms is another example of the 

negative climatic impacts of LUCC (Pielke, 2005). These changes affect the surface fluxes of 

heat and water vapor which in turn impacts on the atmospheric boundary and the energy 
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available for thunderstorms. Alterations in the spatial patterning of thunderstorms have global 

climate consequences in the form of modifying atmospheric and oceanic circulation patterns 

(Pielke, 2005). Thus, Pielke (2005) concludes that since most thunderstorms form over land, 

LUCC can be recognized as an important determinant of climate change. 

 

Changes in the landscape can sometimes result in the formation of “urban heat islands” 

(Foley et al., 2005: 571). These islands form as a result of the combination of reduced 

vegetation cover, impervious surface area and the morphology of buildings, all of which lead 

to a decrease in evaporative cooling, storage of heat and warming of surface air (Foley et al., 

2005). Furthermore Foley et al. (2005) state that land-use activities also negatively impact air 

quality and causes air pollution through by altering emissions and atmospheric conditions.   

 

The abovementioned impacts of LUCC are just a few of the destructive consequences posed 

by changes in the landscape. These impacts were mentioned in order to reiterate the 

importance of assessing and providing solutions to LUCC. Present land-use practices have 

developed over many years and under different political, environmental, social and 

demographic conditions (Ojima et al., 1994). The goal of most modern land-use activities is 

to meet local needs and increase the supply of material goods and services in the short-term. 

This practice is destructive as it often has severe negative consequences on the natural 

environment at both the regional and global scales (Foley et al., 2005; Ojima et al., 1994). 

Thus, not only is it vital to understand how people responded to past LUCC, but it is equally 

important to develop sustainable land management practices and policies that will allow 

humans to meet their present needs, whilst still maintaining the ability of the environment to 

supply goods and services in the future (Foley et al., 2005; Ojima et al., 1994).  

 

2.6. The importance of LUCC research in developing countries 

Several researchers have shown that the assessment of LUCC can be of great benefit to 

developing countries. One such study which addresses these changes is that of Brink and Eva 

(2009). In their study on land cover changes in sub-Saharan Africa, the authors made note of 

the fairly recent impacts which the area has undergone and the associated impacts. Brink and 

Eva (2009) state that in the last 25 years sub-Saharan Africa has been subjected to both 

natural and anthropogenic disturbances which resulted in unprecedented LUCC. These 

changes were and continue to be the product of various factors such as droughts, civil wars, 

floods, population increase and globalization, all of which serve to enhance the degradation 
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of natural resources and ecosystem services (Brink and Eva, 2009). This has both 

environmental and socioeconomic consequences. With regards to the environmental impacts, 

Brink and Eva (2009) assert that the removal of natural vegetation not only results in 

biodiversity, stored carbon and habitat loss, but also causes the loss of pastures, fuelwood and 

bush meat as well increasing the occurrence of natural hazards. Loss of ecosystem services 

has socioeconomic consequences in the form of deterioration of livelihoods and cultural 

values, which may in turn affect the income generated from tourism to these areas (Brink and 

Eva, 2009). Thus, Brink and Eva (2009) conclude that it is essential to understand the impacts 

of LUCC in sub-Saharan Africa and thereafter develop appropriate land management 

practices to deal with them.  

 

Other studies which also highlight the importance of LUCC research in developing countries, 

especially with regards to African countries, include that of Sedano et al. (2005) and Tekle 

and Hedlund (2000). Sedano et al. (2005) found that poverty alleviation and food security in 

Africa is influenced by natural resource management and environmental monitoring. As such 

the authors advocate the use of land cover information, since it will be of great benefit in 

monitoring the impacts and effectiveness of management practices, thereby assisting in the 

creation of better sustainable development policies (Sedano et al., 2005). According to Tekle 

and Hedlund (2000), a recurring problem in many developing countries is the fact that 

agricultural production has not kept pace with increasing population growth. The focus of 

their study was on LUCC in Southern Wello, Ethiopia. The authors found that the study area 

had undergone significant changes as a result of anthropogenic activities which contributed to 

the problem of land degradation in the country (Tekle and Hedlund, 2000). Consequently, 

Tekle and Hedlund (2000) state that there is a need to better understand the cause and effects 

of LUCC so as to allow for better management of the available resources.  

 

With regards to South Africa, Fairbanks et al. (2000) assert that in order for strategic 

environmental assessments and sustainable land-use planning to be successful, there is 

critical need for good quality information regarding the characteristics and spatial distribution 

of the country’s land cover. Thus, in light of the aforementioned case studies, it can be 

concluded that LUCC research is of vital importance to developing countries.  

2.7. The Role of Remote Sensing for LUCC Research 

According to Lillesand and Kiefer (2000: 1), remote sensing is the “science and art of 

obtaining information about an object, area, or phenomenon through the analysis of data 
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acquired by a device that is not in contact with the object, area or phenomenon under 

investigation. In the last few decades remote sensing technologies and methods have evolved 

dramatically and resulted in the creation of a group of different sensors operating at a variety 

of imaging scales (Rogan and Chen, 2004). Current remote sensing technologies have a 

variety of applications in all fields of study and the fact that remote sensing also provides 

historical data that is both cost-effective and of a good resolution, implying  that  the 

technology will make an even greater impact in the future (Franklin, 2001; Rogan and Chen, 

2004). According to Rogan and Chen (2004: 304), the rapid advancements in the field of 

remote sensing are driven by three main factors: “(1) advancements in sensor technology and 

data quality, (2) improved and standardized remote sensing methods, and (3) research 

applications”.  

 

Remote sensing has played a vital role in LUCC research since the 1940s, when changes in 

the landscape were assessed through the use of aerial photographs (Al-Bakri et al., 2001). 

Although visual interpretation of high resolution aerial photography is still presently regarded 

as a standard tool for monitoring changes in the landscape, it is an expensive and time 

consuming process (Bauer and Steinnocher, 2001; Treitz and Rogan, 2004). The use of 

satellite images provides an alternative to this traditional method and allows for cartographic 

and geographic databases to be updated and maintained more efficiently (Bauer and 

Steinnocher, 2001).  

 

The benefits of remote sensing to LUCC assessments are many and are summarized below. 

Remote sensing can be used for:  

 understanding, mapping and monitoring changes in the landscape since it provides 

multispectral and multitemporal data that can be easily converted into useful information 

(Mas, 1999; Nelson et al., 2005; Weng, 2002). 

 mapping and monitoring of vast areas of the landscape (Jansen and Di Gregorio, 2004; 

Thompson, 1996) at both regional and global scales (Lepers et al., 2005).  

 supplying spatial information of areas where data collection was previously difficult due 

to inaccessibility and high costs (Sedano et al., 2005).  

 

Remote sensing technology is thus rapidly proving to be an invaluable information source to 

planning departments and land managers as it both provides and analyses digital data from 
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ground-based, atmospheric and Earth-orbiting sensors. The fact that this data can be linked to 

GPS data, GIS vector layers and be used to model different scenarios, is a further advantage 

of utilizing the technology (Rogan and Chen, 2004).   

 

2.8. Change detection analysis and remote sensing  

According to Rogan and Chen (2004: 314), digital change detection is “the process of 

determining and/or describing changes in land cover and land-use properties based on co-

registered multi-temporal remote sensing data”. This technique is essentially used to identify 

those areas on digital images (i.e. both satellite and aerial photographs) that show change in 

features of interest, between any two or more dates (Muttitanon and Tripathi, 2005; Rogan 

and Chen, 2004). Macleod and Congalton (1998) assert that there are four main aspects of 

change detection for monitoring natural resources: detecting if a change has occurred, 

identifying the nature of the change, measuring the areal extent of the change, and assessing 

the spatial pattern of the change. There are several advantages associated with change 

detection analysis such as the fact that it is repetitive, facilitates the inclusion of biophysically 

relevant features from the electromagnetic spectrum, and has relatively cheap operational 

costs (Nackaerts et al., 2005). It also has the ability to not only show the location of the 

change, but also the type of change and the manner in which this change is occurring (Jansen 

and Di Gregorio, 2002). 

 

There are numerous change detection methods available that can be used to assess LUCC. 

However before selection can take place, there are several factors that need to be considered. 

Firstly, Jansen and Di Gregorio (2002) make reference to the fact that land cover change 

takes two forms, namely, conversion from one category to another and modifications within a 

single category. This has implications for selection of an appropriate method when describing 

and classifying land cover. Conversion implies an obvious or clear change, whilst 

modification implies a less apparent change and therefore requires a greater level of detail 

(Jansen and Di Gregorio, 2002). In comparison to modifications in land cover, conversions 

are easier to notice, as long as the categories are not too broad or too few. Consequently 

conversions from one land cover type to another are a well-documented unlike modifications 

which are subtle and often very hard to notice, especially at a global level (Jansen and Di 

Gregorio, 2002; Lambin, 1997). Other factors to consider when selecting a method for 

change detection is the remote sensor system, environmental characteristics, and most 

importantly that this type of analysis is subject to spatial, temporal, thematic and spectral 
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constraints (Coppin and Bauer, 1996; Lu et al., 2004; Muttitanon and Tripathi, 2005). 

Therefore the type of method chosen can greatly affect the qualitative and quantitative 

estimates of the change and sometimes, even in the same environment, different change 

detection methods may produce different change maps (Coppin and Bauer, 1996; Muttitanon 

and Tripathi, 2005). A detailed review of various change detection methods is provided by 

Coppin et al. (2004) and Lu et al. (2004). The methods referred to below, namely post-

classification comparison, image ratioing, Change Vector Analysis (CVA) and image 

differencing, are just four of the most popular change detection techniques employed by 

researchers in studies on LUCCs. The purpose of mentioning these methods is to highlight 

the fact that choice of a specific change detection method depends on several factors and no 

one method is perfect for every scenario.  

 

The post-classification method involves the comparison of multiple remotely sensed 

classified images, collected at different time intervals, on a pixel to pixel basis (Peterson et 

al., 2004). Kamusoko and Aniya (2009) used this approach to analyze the LUCCs which 

occurred from 1973 to 2000 in the Bindura district of Zimbabwe. The authors chose this 

method specifically because it provides information on the nature of class changes, and 

compensates for variations in vegetation phenology and atmospheric conditions between two 

dates. The pixel-by pixel comparison nature of the resultant change detection matrix allowed 

Kamusoko and Aniya (2009) to quantify both the areal extent and spatial distribution of the 

LUCCs. Xu et al. (2010) also favored the post-classification comparison method, combined 

with background subtraction (i.e. the exclusion of all other classes other than those of 

interest), for similar reasons in their study on the change in an earthquake-induced barrier 

lake. Using images from before and after the 2008 Wenchaun Earthquake, the results of this 

change detection method showed that the earthquake led to a widening of the river and an 

increase in the surface area of the barrier lake in the study area.  

 

Image ratioing is a quick easy method which basically entails ratioing of remotely sensed 

images on a pixel to pixel basis. A pixel which has not changed will have a ratio value of one, 

whilst areas of change will have values that are either higher or lower than one (Coppin and 

Bauer, 1996; Coppin et al., 2000). Chi et al. (2009) used both the image ratioing and post-

classification comparison methods to assess urban dynamic changes in southeastern China. 

The authors found that whilst post-classification comparison yielded better results on the 
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macro-scale, image ratioing displayed in more detail the changes which occurred in the inner 

city.  

With regards to CVA, this technique is ideal for defining thresholds and identifying change 

trajectories (Lu et al., 2004). It uses multitemporal datasets to calculate both the magnitude 

and nature of LUCC (Rogan and Chen, 2004). Two outputs are generated: (1) a spectral 

change vector which describes the direction and magnitude between the two dates, and (2) 

the total change magnitude per pixel (Lu et al., 2004). It is for these very reasons that Yun-

hao et al. (2001) chose CVA to determine the trends and characteristics in terrestrial 

vegetation change in China over a ten year period, from 1989 to 1999. The results of the 

CVA method showed that most of the observed land cover changes took place in eastern 

China, where climate and human activities were cited as key drivers. Yun-hao et al. (2001) 

advocate CVA as this method, in comparison to many of the other methods, allows for 

processing of as many spectral bands as desired in order to find changed pixels. Other authors 

who have used CVA include Palmer and van Rooyen (1998). The authors employed this 

method in their study on vegetation change in the southern Kalahari, with the specific aim of 

determining whether land cover changes around water points and fence-lines could be 

determined using satellite imagery. Using CVA, Palmer and van Rooyen (1998) explored 

three bands (visible, red and near-infrared) and their results showed that there was a definite 

change in near-infrared activity near water points from 1989 to 1994.  

 

Image differencing, the change detection method on which this particular research is based, 

assesses LUCC by subtracting, pixel by pixel, the first-date image from the second-date 

image (Lu et al., 2004). The popularity of this method stems from the fact that it is simple, 

straightforward and the results can be easily interpreted (Lu et al., 2004). Weng (2001) used 

image differencing to evaluate changes in surface runoff over time in order to analyze the 

impact of LUCC on the environment. His findings showed that the Zhujang Delta of China 

experienced significant urban growth between 1989 and 1997, which led to an increase in 

surface runoff and caused severe problems for water resource management. In their study on 

measuring woody encroachment along a forest-savanna boundary in Central Africa, Mitchard 

et al. (2009) preferred image differencing as this change detection method made it possible to 

examine changes in woody cover, even though the satellite images used were collected from 

different sensors and under unknown atmospheric conditions.      

2.9. Modeling LUCC using remote sensing  
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Prior to the 1960s, LUCC was studied from a disciplinary perspective. In recent years this has 

changed to a more interdisciplinary approach, as researchers seek to understand the 

interactions in land systems from a more holistic point of view (Verburg et al., 2009). 

Advances in remote sensing and classification and change detection methods have enabled 

researchers to more accurately assess current land resources as well as identify trajectories of 

land cover change processes, and hot-spots of LUCC (Herold, 2006). The recent advances in 

land change science enhance our understanding of changes in the landscape, however, Parker 

et al. (2003) stress that these direct measurements are not sufficient. A comprehensive 

understanding of the drivers of LUCCs, according to Parker et al. (2003), can only be gained 

by linking observations at spatial and temporal scales to empirical models.  

 

Over the last few decades a range of different LUCC models have been developed to meet the 

specific needs of land managers and to provide better information about the future role of 

LUCC in the functioning of the earth system (Veldkamp and Lambin, 2001; Verburg et al., 

2006). The objective of many LUCC models is to address when, where, and why LUCC 

occurs (Brown et al., 2000; Lambin, 2004; Lambin et al., 2000). These models are regarded 

as powerful tools that can be used to not only conceptualize and analyze the influence of 

socioeconomic processes on land development, agricultural activities and natural resource 

management strategies, but to also understand the ways in which these changes affect 

ecosystem structure and function (Brown et al., 2000; Schneider and Pontius, 2001; Verburg 

et al., 2004b; Verburg et al., 2009). Furthermore, Veldkamp and Lambin (2001) state that if 

LUCC modeling is conducted in a spatially explicit, integrated and multi-scale manner, these 

models could then be effectively used to explore scenarios of future developments, perform 

experiments that test our understanding of key LUCC processes and drivers and lastly, 

describe the latter using a more quantitative approach. Verburg and Veldkamp (2001) add 

that these models will allow policy makers, researchers and other stakeholders to make more 

informed decisions through the provision of vital information on possible future changes, 

should policies or other land-use determinants change. 

 

A range of land-use and land cover models, from different disciplinary backgrounds, have 

been developed over the years (Verburg et al., 2004b). Initially these models were based on 

the use of biophysical attributes (such as slope, altitude or geology) as there was generally 

good data available for them (Veldkamp and Lambin, 2001). However, in order to be truly 

effective, these models had to incorporate social, economic and political factors, which 
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proved to be difficult due to a lack of spatially explicit data and problems linking social and 

natural data (Veldkamp and Lambin, 2001). One of the main challenges associated with 

monitoring, modeling and communicating LUCC, is the relation between land-use, land 

cover and land functions (i.e. the provision of goods and services by the land system). 

Verburg et al. (2009) note that most studies have focused on the socioeconomic and 

environmental consequences of LUCC as a post-analysis or impact assessment, with many of 

these studies not taking into consideration the fact that in reality, the functionality of land is 

intricately linked to land cover. Thus, the authors stress the need for more attention to be paid 

to this link between land cover and ecosystem functioning as land cover changes do not only 

alter the provision of goods and services, but are also important driving forces of future land 

cover dynamics. However, it is difficult to model or conduct an assessment between land 

cover and land function for several reasons. Firstly, there is no one-to-one relationship 

between land cover and functionality, and the standard techniques used to observe and 

monitor land cover cannot necessarily be applied to land functions. Also, in many cases land 

function may change without any alterations in land cover or vice versa. Furthermore, since 

land cover is not always a good indicator for the actual functions performed by the land at a 

location, it is difficult to quantify these functions bases on land cover information (Verburg et 

al., 2009).  

 

There are four broad categories of modeling which have evolved, namely empirical-

statistical, stochastic, optimization and dynamic (process-based) simulation models (Lambin, 

2004; Lambin et al., 2000). It is important to note that all of these models, different though 

they may be, have three main components: maps of land cover from more than one point in 

time, a function of change that modifies the values and spatial arrangement of an initial land 

cover map, and the resulting prediction map (Schneider and Pontius, 2001). Additionally 

when modeling LUCC, it is essential that the level of analysis, cross-scale dynamics, driving 

factors, spatial interaction and neighborhood effects, temporal dynamics, and level of 

integration are all considered before a model is chosen (Verburg et al., 2004b). Discussed 

below are a few examples of cases where a LUCC model has been used with great success. 

  

In order to aid water resource management and predict the effect of land-use change on the 

Luvuvhu Catchment in South Africa, Jewitt et al. (2004) utilized the HYLUC (Hydrological 

Land Use Change) and ACRU (Agricultural Catchments Research Unit) models. The models 

predicted that increasing either forestry or irrigation in the study area will have a significant 
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negative impact on the catchment. The authors stated that using GIS and remote sensing to 

model LUCC enables policy-makers and managers to quickly and easily understand the 

implications of LUCC on water resources.  

 

Richardson et al. (2010) used a cellular-automata simulation model to estimate the dynamics 

of Schinus molle, an invasive tree species from central South America introduced to South 

Africa in 1850, under future climates and different management scenarios. By using the 

modeling approach outlined in their paper, Riachardson et al. (2010) conclude that it will be 

possible to predict the invasion potential of alien plant species not only in South Africa but in 

other countries as well. Cellular-automata models are quite popular and another example 

featuring this model, this time in an urban context, is the research presented by Han et al. 

(2009). The authors used an integrated systems dynamics and cellular-automata model to 

analyze socioeconomic driving forces and evaluate the urban spatial pattern. The integrated 

model proved to be adept at monitoring and projecting the dynamics of urban growth and 

also predicted a 3% increase in the urban area of Shanghai from 2000 to 2020. Han et al. 

assert that information provided by models such as this is necessary for understanding 

environmental impacts and implementation of sustainable urban development strategies.   

 

Agent-based modeling is a relatively new approach to LUCC assessments and one that has 

been gaining popularity, as it offers a way to mechanistically and spatially explicitly 

incorporate the influence of human decision making on LUCC (Matthews et al., 2007). 

Examples of cases where this approach was applied include studies by Bharwani et al. (2005) 

and Valbuena et al. (2010). Bharwani et al. (2005) used a multi-agent model to model the 

effects climate outlooks and food security on a community garden scheme in Limpopo, South 

Africa. Their model took into account the drivers of decision-making with a focus on the role 

of climate, market and livelihood needs. This innovative approach used by Bharwani et al. 

(2005) not only highlights the effect of climate on small-scale agriculture in South Africa, but 

also allows analysts to experiment with scenarios which do not currently exist. Valbuena et 

al. (2010) study on the other hand explored the effect of voluntary mechanisms on LUCC in 

rural Queensland, Australia. The authors deduced that in rural areas, LUCC were very often 

the result of decision-making on the part of the individual farmers, and both compulsory and 

voluntary mechanisms were implemented to influence these decisions. Valbuena et al. (2010) 

applied their model to an area where farmers were asked to voluntarily participate in restoring 

native vegetation. The results of this approach were in the form of three scenarios which 
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depicted how changes in farmers’ willingness to participate in restoration progammes can 

affect the landscape. 

 

The last few case studies described here are in reference to Markov Chain models, an 

approach used in the present study. The usefulness of this type of modeling approach, 

according to Wu et al. (2006), lies in its ability to describe, analyze and predict LUCC. The 

authors used Markov chains together with regression analyses to predict how land-use would 

change in 2021 in Beijing. Both these models forecasted a significant increase in urban land 

and a subsequent decrease in agricultural land. Wu et al. (2006) concluded that the LUCC 

measurements and predictions provided by Markov and regression models have important 

implications for urban planning and management in Beijing. Unlike Wu et al. (2006), Guan 

et al. (2011) used a combined Markov-Cellular Automata model to analyze temporal change 

and spatial distribution of land-use in Saga, Japan using natural and socioeconomic data. The 

purpose of the model was to predict future land-use changes between 2015 and 2045, with the 

results indicating that there would be a continuing downward trend in agricultural land and 

forestland areas and an upward trend in built-up areas. Guan et al. (2011) believe that these 

predictions will assist local authorities in understanding and addressing this complex land-use 

system and lead to the development of land-use management strategies which will better 

balance urban expansion and ecological conservation.                      

 

The case studies described in this section represent just a small number of the many models 

which are available and used by researchers. These examples were mentioned in order to 

show the range, diversity and extreme usefulness of LUCC models.  

 

2.10. Challenges facing LUCC research 

Researching and understanding exactly how the landscape has and continues to evolve is a 

difficult process which is fraught with a range of data, methodological and analytical 

difficulties (Rindfuss et al., 2004; Turner et al., 2007). Some of the main problems which 

hamper LUCC research are mentioned below. 

 

According to Rindfuss et al. (2004: 13976), data as well as methodological and analytical 

difficulties arise as a result of the “complexity of integrating diverse phenomena, space–time 

patterns, and social–biophysical processes, and the different disciplinary means of addressing 

them” (Rindfuss et al., 2004: 13976). These difficulties are exacerbated by the need to 
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address issues of how, why, where and when LUCCs. Of particular importance is that of 

location and time, since it often involves dynamic human aspects linked to land-use, which 

are investigated at the individual, household, community, parcel, or pixel level (Rindfuss et 

al., 2004). Additional challenges to LUCC research emerge as one considers the many 

dimensions of land-use and land cover systems. Rindfuss et al. (2004) note that not only does 

there exist a wide variety of land-use types worldwide, but also that several of these land-uses 

may be present on a single land unit or parcel, simultaneously. Furthermore, the land-use and 

land cover types of one parcel may influence the land management decisions of neighboring 

parcels. These decisions and the actual behavior of land managers are further influenced by 

the productivity of a particular parcel, i.e. whether the land parcel is used for subsistence or 

commercial purposes (Rindfuss et al., 2004). LUCC research is particularly problematic in 

cases where households engage in both subsistence and market cultivation on the same land 

parcel and when households own several, spatially disconnected parcels (Rindfuss et al., 

2004).   

 

One of the key remote sensing issues which surface during LUCC studies is that of linking 

individual land-uses to pixels as well as linking land managers or owners to the land parcel 

which they have authority over. This is often an arduous process due to the fact that data 

about people and land parcels are collected in different ways. The different methods used 

means that there are spatiotemporal implications to consider, thus making the analytical 

process of combining the two datasets problematic (Rindfuss et al., 2004). Furthermore 

although a land parcel remains stationary, other than slight changes in its boundary over time, 

land managers move, change and combine in a variety of ways, which affect the land-use or 

land cover of a parcel (Rindfuss et al., 2004).  

 

LUCC research which integrates remote sensing, GIS and the social sciences, in order to 

better understand changes in the landscape, will have to deal with issues of data quality and 

validity. Rindfuss et al. (2004) state that there are two main issues which arise during 

interpretation of a remotely sensed image, firstly the problem of accuracy and validity of the 

link between social science measures, land parcels and pixels, and secondly the appropriate 

combination of remote sensing, social science and natural science skills to use to address 

these issues of accuracy and validity. Additional remote sensing problems include that of 

matching spatial and temporal data from different sources and the use of ancillary data during 
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classification, which may undermine the assumption of independence when conducting 

statistical tests (Rindfuss et al., 2004). 

 

2.11. Summary 

This chapter has presented a detailed account of the determinants of LUCC and the associated 

impacts of such changes. The role of remote sensing and the various models used to assess 

LUCC has also been provided. It should be noted that although the literature has focused 

extensively on both land-use and land cover, given the level of scale of analysis used in this 

study, it was easier to detect land cover rather than land-use. Thus, from here onwards only 

the term land cover will be used. 

  



28 
 

CHAPTER 3: GEOGRAPHICAL CONTEXT 

 

3.1. Introduction 

This chapter describes the geographical context of the study area, i.e. Dube and Esikhawini. 

The first section briefly describes the district council and municipality within which the study 

area is located. Thereafter a concise history of the area is provided followed by short 

descriptions of the topography, climate, geology and soils, water resources, biological 

characteristics and demographic characteristics.  

 

3.2. The uMhlathuze Municipality 

Esikhawini and Dube fall under the uMhlathuze municipality, which is one of the six local 

municipalities forming part of the uThulungu District Council. The municipality was 

established on 5 December 2000 and is named after the uMhlathuze River which meanders 

through the area and symbolically unifies all of the towns, suburbs and traditional areas (City 

of uMhlathuze, 2010). The municipality is situated on the north-east coast of KwaZulu-Natal, 

South Africa between latitudes 28º37’S and 28º57’S and longitudes 31º42’E and 32º09’E. 

The area comprises the towns and settlements of Richards Bay, Empangeni, Esikhawini, 

Ngwelezane, Nseleni, Felixton and Vulindlela. Included in the municipality are also five 

tribal authority areas namely, Dube, Mkhwananzi, Khoza, Mbuyazi and Zungu, twenty-one 

rural settlements and sixty-one farms (City of uMhlathuze, 2008). Surrounding the towns in 

the municipality are sugar cane fields, timber plantations, wetlands and fresh waters lakes. 

The municipality also boasts the country’s largest deep-water port which is connected via 

national roads and railway lines to the rest of South Africa (City of uMhlathuze, 2008; City 

of uMhlathuze, 2010). 

 

The uMhlathuze municipality covers an area of approximately 796 km
2
, with an estimated 

population of 345 776 and with an average of 372 people per square kilometer. Of all the 

municipalities in the uThulungu District Council, this uMhlathuze is the smallest, covering 

only 9.7% of the total district area (City of uMhlathuze, 2011). Despite its small size, the 

uMhlathuze municipality contains approximately 32% of the district’s population and 88% of 

the economic activity is centralized within the municipality, making it the third largest 

economy in KwaZulu-Natal (City of uMhlathuze, 2011).  
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Figure 3.1: Map of the study area 

 

3.3. History of the uMhlathuze Municipality 

As mentioned in the previous section, much of the uMhlathuze municipality is rural with the 

majority of the population occupying the towns of Richards Bay and Empangeni. This section 

will provide a brief overview of the formation and history behind these two towns.  

 

The present town of Empangeni was established in 1841 when a mission station was built 

next to the Mpangeni River. Empangeni achieved official village status on 19 June 1906, 
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three years after the birth of Empangeni Rail in 1903. Soon after this, Empangeni Sugar Mill 

was built and this industry together with the railway line allowed for formation of the first 

Town Board of Empangeni and subsequently, in 1960, Empangeni achieved borough status 

(City of uMhlathuze, 2005). 

 

Unlike Empangeni, Richards Bay grew very slowly and remained a small fishing village until 

the late 1960’s. The development of both a deep-water harbor and railway link to 

Witwatersrand provided a much needed boost for development in the town. Richards Bay has 

since evolved into a modern and dynamic port town and despite the fact it has undergone 

serious periods of national recession, international economic pressures and nationwide 

political uncertainty, the town has continued to grow (City of uMhlathuze, 2005). The fact 

that Richards Bay is officially recognized as a ‘port city’ has resulted in it usurping 

Empangeni as the most prominent town in the uMhlathuze municipality. However, it is 

important to note that both towns provide very different functions. Empangeni functions as a 

service centre with higher order commercial, retail, administrative, social, business 

transportation, storage, institutional and light industrial uses, whilst Richards Bay’s main 

function is the harbor and its associated heavy industries. Both towns attract considerable 

investment and development to the uMhlathuze municipality as a whole and are thus vital for 

the sustainable development and functioning of the area (City of uMhlathuze, 2005). 

 

3.4. Topography 

The regional geology of the uMhlathuze municipality has given rise to considerable diversity 

of relief throughout the area. Most of the interior is characterized by relatively gentle slopes 

with gradients less than 1:4. However, slopes in the north-west sections of the area as well 

parts of the North-Eastern and Western sections can have gradients as steep as 1:3 (Govender 

and Hounsome, 2002). The altitude throughout the study area varies from sea level to 

approximately 450 meters above sea level. The Northern and Western sections of Empangeni 

are characterized by a range of rounded conical hills. These hills, which were built by the 

Letaba Formation, have generally steep slopes and are closely spaced. In contrast, the 

topographical undulation of the Eastern and Southern sections of Empangeni are not as 

noticeable, with a range of low hills, which originated as a result of the Empangeni-

Etesa fault, flattening out onto the coastal plains (City of uMhlathuze, 2005; Govender and 

Hounsome, 2002).   
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Towards the coastal plains, the dominant feature of the area is the low lying sandy coastal 

plain, and broad alluvial plain of the Mhlathuze River and former Richards Bay estuary. 

Levies, marginal lakes and ponds in the tributary valleys, and a low plateau north and south 

of the Mhlathuze floodplain all form part of the coastal plain. The coastal barrier dune 

complex is both very young and stable. The stability is due to the presence of relatively 

unspoiled dune vegetation. As one moves away from the coastal plain, the topography 

changes to become steeply undulating with deeply incised drainage courses. There is a deep 

subsurface trough below the harbor sediments and out to sea, which presents engineering and 

geotechnical complications to development (Govender and Hounsome, 2002). 

 

3.5. Climate 

The uMhlathuze municipality experiences a sub-tropical, maritime climate throughout the 

year with temperatures rarely lower than 12 to 14 degrees in winter and reaching 32 to 35 

degrees in summer. The winters are generally warm and dry, with occasional frost in the 

interior areas while summers are hot and humid, and experience the majority of the 

municipality’s rainfall (City of uMhlathuze, 2008). The average daily temperature during 

winter is 22 degrees and 28 degrees in summer. The winds along the coast of the uMhlathuze 

municipality are stronger than those experienced inland. The prevailing winds in the area are 

North-Easterly, associated with high pressure systems and fine weather, and South-Westerly 

winds associated with the ridging Indian Ocean Anticyclone (Govender and Hounsome, 

2002).  

 

Most of the rainfall occurs between January and May, with the average annual rainfall for the 

Richards Bay area about 1 200 mm and decreasing to about 1 000 mm inland towards 

Empangeni. During the past three decades, the municipality has experienced prolonged 

periods of droughts during the years 1981 to 1983 and 1992 to 1994. Furthermore, the area 

has also been subjected to destructive floods generated by the cyclones Demonia and Mboa in 

1984 and followed by the flood disasters in 1987 and 2000 (City of uMhlathuze, 2008).           

 

3.6. Geology and Soils 

The geology of the uMhlathuze municipality is complex and the age of the rock formations 

range from more than 1000 million years to less than 1 million years. The outcrops of the 

Tugela Complex (1 100 million years old) underlie the central part of the area and overlying 

this complex are sediments (consisting of sandstones, shale and basal conglomerates) of the 



32 
 

Natal Supergroup. The Northern and North-Western parts of the municipality are underlain 

by basalts of the Letaba Formation, whilst the Eastern parts of the area are covered by 

Quaternary age red clayey sand as well as alluvial sand, silt and clay. The sands of this part of 

the area have very good agricultural potential (City of uMhlathuze, 2005; Govender and 

Hounsome, 2002).  

 

The entire coastal plain of the area is underlain by marine deposits of the Cretaceous Age and 

a relatively thin layer of Miocene deposits of the Tertiary Age. The coastal dune barrier 

complex is thought to be very young and in some places still being formed and is only, as 

stated before, stable because of the vegetation cover. The sands of the dune barrier complex 

are fine-grained, well-sorted and contain rich deposits of minerals. These minerals, namely 

ilemite, rutile and zircon, are extracted commercially (City of uMhlathuze, 2005; Govender 

and Hounsome, 2002). 

 

Towards the coast, the Port Dunford Formation is covered by red, brown and grey sand 

which have low to very low natural fertility. This is mainly due to their high permeability, 

rapid leaching of nutrients and the fact that they are very thin. Despite the low agricultural 

potential of these sands, they occur in an area which has good rainfall, high temperatures and 

mild topography, thereby favoring the production of both sugarcane and timber (Govender 

and Hounsome, 2002). 

 

3.7. Water Resources 

The Mhlathuze River is the dominant river which flows through the municipality from the 

southwest of Empangeni and Ngwelezane to the south of Felixton, thereafter connecting with 

the Indian Ocean via the Mhlathuze Estuary. This river, along with several other subsidiary 

rivers form part of the Mhlathuze River Basin, and are heavily utilized in the Richards Bay 

area for both commercial and residential purposes. Other water resources in the area include 

natural lakes and dams. There are three coastal lakes in the municipality, namely Lake 

Mzingazi, Nhlabane and Cubhu, and various other smaller inland lakes. The main dam in the 

area, Goedertrouw Dam, was built on the Mhlathuze River and it, together with a few of the 

natural lakes in the lower part of the Mhlathuze catchment, supplies water to the majority of 

the uMhlathuze municipality (City of uMhlathuze, 2005; Govender and Hounsome, 2002).  
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3.8. Biological Characteristics 

The uMhlathuze municipality, which falls within the Maputaland-Pondoland-Albany 

Biodiversity Hotspot, is characterized by a diverse and rich mix of both floral and faunal 

species. The area is floristically, climatologically and geologically complex and provides a 

range of different habitats. Consequently, the municipality is regarded as an area of great 

conservation significance, especially in terms of biodiversity. With regards to the floral 

characteristics of the uMhlathuze municipality, the area falls within the Savanna biome and 

according to Low and Rebelo (1996) comprises six main vegetation types: Afromontane 

Forest, Coast-hinterland Bushveld, Coastal Bushveld/Grassland, Natal Lowveld Bushveld, 

Sand Forest and Valley Thicket. Due to the type of soils and climate experienced by the 

municipality, it has great potential for crop farming and as such the area is characterized by 

intensive agricultural activities, in particular sugar cane and timber (City of uMhlathuze, 

2005; Govender and Hounsome, 2002). 

 

3.9. Demographic Characteristics 

As stated above the estimated population of the uMhlathuze municipality is 345 776, with the 

major ethnic group being the African population who represent 86% of the total population. 

The gender ratio is similar (51% female and 49% male) (City of uMhlathuze, 2008; City of 

uMhlathuze, 2010). The majority of the population is between the ages of 15 and 34 and the 

total unemployment rate is 36%, although this figure only relates to the formal sector (City of 

uMhlathuze, 2008). The municipality has approximately 75 000 households with an average 

of 4.4 persons per household (City of uMhlathuze, 2011). Although a large percentage of 

these households are located within the urban area, more than 40% of the municipality’s 

population resides in rural and tribal areas, which is indicative of a densely populated rural 

area (City of uMhlathuze, 2008).  

 

3.10. Summary 

The geographical context described above serves to highlight the appropriateness of this 

study area  
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CHAPTER 4: METHODOLOGY 

 

4.1. Introduction 

The purpose of this chapter is to provide a detailed account of the data and methodology used 

to achieve the aims and objectives of this research. The first part of this chapter describes the 

satellite imagery used as well the field data. This information is then used to identify the main 

land cover classes in the study area. The bulk of this chapter is dedicated to explaining the 

methodology employed during the course of the research, from data pre-processing to post-

classification. 

 

4.2. Data Acquisition 

4.2.1. Satellite Imagery 

As mentioned earlier, one of the basic requirements for LUCC detection is the use of 

remotely sensed imagery, acquired from sensors with similar spectral, spatial, radiometric 

and temporal resolutions. However, there are many factors which hinder the acquisition of 

such images because images are often selected based on availability, project requirements 

and objectives. For this study, images from the Landsat 5 TM sensor (Table 4.1) were 

selected due to the finer spectral (i.e. 7 bands) and temporal resolution (i.e. 16 day revisit) of 

the sensor in comparison to other commonly available sensors such as SPOT 4/5. 

Additionally, temporal images for South Africa from the Landsat 5 TM sensor are more 

readily available and accessible from the South African National Space Agency (SANSA). 

Three images, acquired during 1992 (July), 2000 (October) and 2008 (September), were 

obtained from the SANSA archive (Figure 4.1).  

 

Landsat 5 TM was launched on 1 March 1984 and has a 16 day revisit period (Lillesand and 

Kiefer, 2000). The satellite has both the Multispectral Scanner System (MSS) and the 

Thematic Mapper (TM) instruments onboard. The MSS instrument has a swath of 185 km, 

ground resolution of 82 m and four spectral bands. The TM instrument has seven spectral 

bands with 8-bit radiometric resolution and a ground resolution of 30 m for every band 

except the thermal band (band 6), which has a ground resolution of 120 m (Lillesand and 

Kiefer, 2000).  
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Table 4.1: Landsat 5 TM spatial and spectral resolution characteristics  

Band Spatial 

Resolution 

(m) 

Spectral Resolution 

(nm) 

Full-Width Half-

Maximum (nm) 

    1 – Blue 30 450-520 70 

    2 – Green 30 520-600 80 

    3 – Red 30 630-690 60 

    4 – Near IR 30 760-900 140 

    5 – Mid-IR 30 1 500-1 750 200 

    6 – Thermal   IR 120 10 400-12 500 210 

    7 – Mid-IR 30 2 080-2 350 270 

 

4.2.2. Field Data and identification of land cover classes 

In order to determine the number and type of land cover classes present in the study area a 

field assessment was undertaken in 2009. Additionally, the latest available aerial photographs 

(taken during 2008, 2006, 2005) and land-use maps (EKZN Wildlife, 2008) were used to aid 

and verify the field assessments. The field assessment was conducted using a Leica GPS, 

which has a Root Mean Square Error (RMSE) of approximately 10 m. A total of 340 ground 

points representing the various land cover classes were collected and thereafter the dataset 

was partitioned in two subsets. Seventy percent (n = 238) of the points were used as a 

training set (approximately 30 points per class), whilst the remaining 30% (n = 102) were 

used as a test set (also commonly referred to as a hold-out sample).  
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Figure 4.1: Landsat 5 TM images of study area, displayed using bands 4, 3 and 2 (i.e. false 

color composite) 
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Traditional land-use and land cover classification systems often (i) do not sufficiently 

distinguish between land-use and land cover, (ii) are limited in the number of classes they 

provide and (iii) do not contain the wide variety of occurring land-uses and land covers 

(Jansen and Di Gregorio, 2002). Furthermore, Thompson (1996: 34) notes that many of these 

classifications “have been developed around specific user objectives (namely, agriculture and 

conservation), and are often influenced by geographical location and actual data capabilities”, 

thus making meaningful comparisons of classes from different study areas difficult. For the 

purposes of this study, the land-use and land cover classification system used was based on 

the classes defined by Thompson (1996). Thompson’s (1996) classification system is a 

structured hierarchical framework that is based on three levels and is designed to suit the 

South African environment while still conforming to international classification standards. 

Additionally, in light of the spectral and spatial limitations associated with Landsat 5 TM 

images, a level 1 classification was deemed more appropriate for this study rather than a level 

2 or 3 classification scheme. Landsat 5 TM images have a 30 m spatial resolution and thus it 

is difficult to accurately classify land cover classes which occupy a small area.  Subsequently, 

the following eight land cover classes were identified: Waterbodies (W), Wetlands (Ws), 

Forest and Woodlands (FW), Bushveld (B), Plantations (P), Cultivated land (CL), 

Settlements (S), and Clearfelled (C) (Table 4.2).  

 

Table 4.2: Description of the land cover classes used in the study (adapted from Thompson, 

1996) 

Class Description 

Waterbodies Areas of (generally permanent) open water. This category includes 

natural and man-made waterbodies. 

Wetlands Natural or artificial areas where the water level is at (or very near) 

the land surface on a permanent or temporary basis, typically 

covered in either herbaceous or woody vegetation cover. 

Forest and Woodlands All wooded areas with greater that 10% tree canopy cover, where the 

canopy is composed of mainly self-supporting, single stemmed, 

woody plants greater than 5 m in height. Essentially indigenous tree 

species, growing under natural or semi-natural conditions.  

Plantations All areas of systematically planted, man-managed tree resources 

composed primarily of exotic species. This category includes both 

young and mature plantations that have been established for 

commercial timber production, seedling trials, and woodlots/wind 

breaks of sufficient size to be identified on satellite imagery. 

Cultivated land Areas of land that are ploughed and/or prepared for raising crops 

(excluding timber production). This category includes areas 

currently under crop, fallow land, and land being prepared for 

planting.  
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Bushveld Communities typically composed of tall, woody, self-supporting, 

single and/or multi-stemmed plants (branching at or near the 

ground), with, in most cases, no clearly definable structure. 

Essentially indigenous species, growing under natural or semi-

natural conditions.  

Settlements An area where there is a permanent concentration of people, 

buildings and other man-made structures and activities, from large 

village to city scale.  

Clearfelled  Areas from which plantation trees have been removed. 

 

4.3. Data Pre-processing 

4.3.1. Geometric Correction 

All three Landsat 5 TM images were geo-referenced to UTM Zone 36 South using a WGS-84 

datum and thereafter geometrically rectified. Geometric corrections are particularly important 

as change detection analysis is performed on a pixel-by-pixel basis and misregistrations 

greater than one pixel can result in substantial errors. As such, it is recommended that the 

RMSE between two images not exceed 0.5 pixels (Deng et al., 2008). In this study, the 2008 

image served as the reference image and was geometrically rectified using ground control 

points and 20 m digital elevation model. The resulting RMSE error was less than 1 pixel. 

Subsequently, the other two images were then registered to the 2008 reference image and 

resampled using the nearest neighbor method. Thereafter all images were clipped to the 

boundary of the study area. 

 

4.3.2. Radiometric Correction 

Radiometric correction of multi-date images is a prerequisite for change detection analysis in 

order to reduce the influence of sensor characteristics, atmospheric condition, solar angle and 

sensor view angle (Chen et al., 2005). These corrections can be grouped into two broad 

categories, absolute corrections, where a digital number (DN) is converted to surface 

reflectance, or relative corrections, which involve the normalization of multiple satellite 

images to one reference image (Lu et al., 2002; Sahu, 2008). It should be noted that the data 

used for this particular study displayed none of the radiometric artifacts (i.e. memory effect, 

scan-correlated shift and coherent noise) mentioned by Helder et al. (1996) and Vogelmann 

et al. (2001) and was radiometrically corrected using an absolute correction method. 

 

The Dark Object Subtraction (DOS) method (Chavez, 1996) was utilized to correct all the 

images used in this study. Although DOS is the most simplest of all absolute correction 
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methods, it is the most widely used approach for classification and change detection 

applications (Song et al., 2001). It is based on the assumption that the atmospheric impact on 

the whole study area is uniform and that any radiance received at the sensor for a dark object 

pixel (i.e. a pixel with near-zero percent reflectance) is purely a result of atmospheric 

scattering (path radiance) and can therefore be subtracted from the signals produced by other 

features in the image (Chavez, 1996; Lu et al., 2002; Sahu, 2008; Schroeder et al., 2006). 

Chavez (1996) further states that the aforementioned assumptions are combined with the fact 

that there are very few features on the earth’s surface which are completely black and thus an 

assumed one-percent minimum reflectance is better than zero percent. DOS, which is 

calculated using Equation 4.1, is strictly an image-based method and while it can correct for 

sun zenith angle, solar radiance and atmospheric scattering, it cannot correct for atmospheric 

absorption (Lu et al., 2002).  
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                  (4.1) 

Where Rλ = surface reflectance 

            PI = 3.141592 

             D = distance between Earth and sun  

      Lλsensor = apparent at satellite radiance  

        Lλhaze = path radiance 

       Esunλ = exo-atmospheric solar irradiance 

              θ = sun zenith angle    

 

4.4. Statistical Analysis 

4.4.1. Signature extraction and separability 

The first step of the classification procedure is the extraction of the class signatures (see 

Table 4.2 for the land cover class descriptions) from the reference image (2008 Landsat 5 TM 

image) and the development of a spectral library. In order to develop the spectral library, the 

training data (n = 238) were converted to Region of Interests (ROI) and the spectral 

signatures for all the classes (n = 8) were then extracted from the reference image and saved 

as a spectral library utilizing ENVI 4.7 (ITT, 2009). 
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Once the spectral library was developed, individual class signatures were evaluated using the 

Jeffries-Matusita (J-M) distance measure of separability. The J-M distance algorithm 

evaluates the separability between two class signatures and outputs a value between 0 and 2 

utilizing Equations 4.2 and 4.3. Class separability values approaching zero indicate a low 

degree of separability, while values close to two indicate a high degree of separability (Ismail 

et al., 2008; Thomas et al., 2002; Trigg et al., 2001).  
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 αij e12JM                               (4.3) 

Where i and j = the two classes being compared 

                  Ci = the covariance matrix of signature i 

                  μi  = the mean vector of signature i 

       ln  = the natural logarithm function 

                 |Ci| = the determinant of Ci (matrix algebra) 

 

4.4.3. Classification 

For this study, three popular and commonly used supervised classification algorithms, 

namely Parallelepiped, Minimum Distance to Means and Maximum Likelihood, were 

examined. The reasoning for comparing the different classification algorithms is due to the 

‘no-free-lunch’ theorem proposed by Wolpert and Macready (1997). This theorem states that 

there is no one perfect algorithm for any given situation, with each classifier having its own 

advantages and disadvantages.  

 

Porter-Bolland et al. (2007) used the parallelepiped classifier to derive LUCC maps, with an 

accuracy of 87%, in order to understand the land-use changes occurring in the La Montaña 

region of Mexico. In their study on the role of land abandonment in landscape dynamics in 

Central Spain between 1984 and 1999, Romero-Calcerrada and Perry (2004) used the 

parallelepiped algorithm to classify images of their study area. However, in contrast to the 

previous case study the authors used a maximum likelihood decision rule to assign a class to 

those pixels which fell in the overlap region between two classes. The accuracy of each of the 
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land cover maps derived by Romero-Calcerrada and Perry (2004) varied between the years 

considered in the study, 1984 had an accuracy of 77.53%, 1991 had 78.95% and 1999 

showed the highest accuracy with a percentage of 82.47%.  

 

The Minimum Distance to Means classification algorithm was used by Chen et al. (2003) 

who developed a new method for determining change type by combining single image 

classification with minimum distance categorization, based on the cosines of change vectors. 

The authors achieved a very high overall accuracy of 96.3% with a Kappa coefficient of 0.87. 

Schneider et al. (2009) found the Maximum Distance to Means classifier to be a better 

alternative to the Maximum Likelihood classifier, in their study on land cover classification 

of tundra environments in the Arctic Lena Delta, due to the limited number of training sites. 

Their accuracy assessment indicated a reasonable overall accuracy of 77.8%. 

 

In their study on urban expansion and land-use change in Shijiazhuang, China from 1987 to 

2001, Xiao et al. (2006) employed the Maximum Likelihood classifier to detect land cover 

types present in the study area. The land-use maps produced from the classification had 

accuracies of above 80% and Kappa coefficients greater than 0.8. Shalaby and Tateishi 

(2007) conducted a similar study in Egypt where they used remote sensing and GIS to map 

and monitor land cover and land-use changes in the Northwestern coastal zone. The 

Maximum Likelihood classifier was once again used to classify the different land cover types 

and the authors achieved very high accuracies for the two years considered in their study, i.e. 

1987 (91%) and 2001 (92.3%). 

 

The classifiers considered in this study are described in greater statistical detail below. 

 

4.4.3.1. Parallelepiped 

In comparison to other classification algorithms, the parallelepiped classifier (also known as 

the box classifier) is methodologically straightforward and computationally fast (Aronoff, 

2005; Richards and Jia, 2006; Schowengerdt, 2007). This decision rule classifier is based on 

simple Boolean ‘and/or’ logic and uses the threshold of each class signature to determine 

whether or not a pixel belongs to a particular class (Jensen, 2005; Teodoro et al., 2009). In 

order to perform a classification, the parallelepiped classifier uses training data to define a 

class as an n-dimensional parallelepiped, where n is the number of spectral bands in the 

image (Albert, 2002; Jensen, 2005). The n-dimensional parallelepiped is constructed for a 
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class using the class mean and standard deviation, the parallelepiped algorithm assigns pixel 

X to a class only if the following equation is satisfied (Jensen, 2005):  

 

ckckckck X                                (4.4) 

Where c = number of classes 

k = number of bands 

µ= the mean value of the training data  

σ = the standard deviation of the training data 

 

Therefore if the high (H) and low (L) boundaries of the box are defined as 

ckckckL                      (4.5) 

ckckckH                      (4.6) 

 

The parallelepiped algorithm then becomes 

ckck HXL                     (4.7) 

 

Pixels which fall above the low threshold and below the high threshold of a specific class 

parallelepiped are assigned to that class. If a pixel does not fall within any class 

parallelepiped, it is left as unclassified. In some cases, a pixel may fall in the overlap area 

between two or more parallelepiped. When this occurs, the pixel will be assigned to the first 

class for which it satisfies all criteria (Jensen, 2005; Schowengerdt, 2007; Teodoro et al., 

2009). Despite the relative simplicity and efficiency of the parallelepiped classifier, it does 

have a few disadvantages. When the thresholds of a class are too small, many pixels will be 

left as unclassified, and when they are too large, pixels which fall within the overlap regions 

will either be arbitrarily placed in a class or regarded as unclassified (Albert, 2002; Aronoff, 

2005; Jensen, 2005; Lillesand and Kiefer, 2000). 

 

4.4.3.2. Minimum Distance to Means 

Similar to the parallelepiped classifier, the widely used Minimum Distance to Means (MDM) 

classification algorithm is non-parametric and relatively easy to compute (Acharya and Ray, 

2005; Lu et al., 2004). Although the Minimum Distance to Means classifier is very simple, 

when it is used correctly it can still result in classification accuracies similar to other more 

computationally intensive classifiers such as the Maximum Likelihood (ML) algorithm. The 
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Minimum Distance to Means classifier functions by first calculating the mean of each class 

and thereafter the Euclidean distance of each pixel from the mean. A pixel is assigned to that 

class whose distance is nearest to the mean (i.e. the distance between the pixel and the mean 

is minimum). If a pixel is further than a user-defined distance from any class mean, it is 

regarded as unclassified (Aronoff, 2005; Lillesand and Kiefer, 2000; Joseph, 2005). The 

computation of the Euclidean distance from an unknown pixel (X) to the mean of a class is 

calculated using the following equation (Jensen, 2005): 

 

   22

cllckk XXDist  
                 (4.8)

 

Where µck = mean for class c measured in band k  

            µcl = mean for class c measured in band l 

 

The main drawback of the Minimum Distance to Means classifier is that it does not take into 

account that some features have a wider range of spectral values than others thus leading to 

some misclassification of pixels (Aronoff, 2005; Lillesand and Kiefer, 200). However, in 

spite of this disadvantage, the Minimum Distance to Means algorithm is very useful for 

classifying large images as it is very fast and uncomplicated (Aronoff, 2005).  

 

4.4.3.3. Maximum Likelihood 

Unlike the parallelepiped and Minimum Distance to Means classifiers, the Maximum 

Likelihood classification algorithm uses probabilities to overcome the limitations associated 

with the parallelepiped and Minimum Distance to Means classifiers (Aronoff, 2005). This 

parametric classifier is one of the most commonly used supervised classification algorithms 

and is often the method of choice for many users as it does not require an extended training 

process (Jensen, 2005; Pal and Mather, 2003). When classifying an image the Maximum 

Likelihood classifier, which pixel-based, evaluates both the variance and covariance of the 

training class pixels (Lillesand and Kiefer, 2000). Classification is carried out by first 

calculating the probability of a pixel belonging to a set of predefined classes and then 

assigning each pixel to the class for which the probability is the highest (Keuchel et al., 2003; 

Jensen, 2005). This algorithm is based on the assumption that the training data statistics for 

each class in each band follow a Gaussian (normal) distribution (Keuchel et al., 2003; Jensen, 

2005; Pal and Mather, 2003). The Maximum Likelihood classifier is defined by the following 

equations as suggested by Nag and Kudrat (1998): 
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     ii wxwxg |.log                    (4.9) 

Where g(x) = probability density 

          ρ(wi) = a priori probability 

       ρ(x|wi) = probability of x for falling in class i 

                i = 1, 2, 3, … n 

 

For equal a priori probability with Gaussian distribution: 
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log              (4.10)                    

Where |∑i| = determinant of variance-covariance matrix of class i 

            ∑
-1

 = inverse of variance-covariance matrix 

               x = measurement vector, i.e. DN values of any pixel for all the channels 

              µi = mean vector for i
th

 class 

                t = transpose 

 

A pixel is classified into the i
th

 class only if: 

   xgxg ji   for all i ≠ j                            (4.11)       

 

The disadvantage of this classifier is that since it requires a large number of computations to 

classify each pixel, it has slower processing time than the parallelepiped and Minimum 

Distance to Means algorithms (Lillesand and Kiefer, 2000). However, Aronoff (2005) states 

that despite the complex and lengthy computations of the Maximum Likelihood classifier, it 

is still advantageous to use it for all but the very large images. 

  

4.3.4. Post classification 

4.4.4.1. Filtering 

After implementing the various classifiers the next step of the classification process was to 

apply a filter to the classified images. Classification results often contain scattered pixels of 

one class surrounded by a larger area of another class. As such, filtering functions are 

thematic generalization processes which identify minor features and amalgamate them into 

the surrounding classes (Gao, 2009). This process is usually conducted in the spatial domain 

and has a number of advantages, such as fine tuning of the classified images to make them 

more reasonable and thereby improving their aesthetic appearance and communication 
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effectiveness (Gao, 2009). In this study the clumping and sieving filtering techniques were 

implemented because clumping maintains the spatial coherency of classified images by 

removing any unclassified black pixels while sieving removes isolated classified pixels using 

blob grouping (Gautam et al., 2003).  

 

4.4.4.2. Accuracy Assessments 

In remote sensing, the term accuracy is typically used to express the degree to which a 

classification can be regarded as correct. Evaluating the accuracy of classified images is 

particularly important for change detection studies because errors in classification may 

obscure substantial change or act to exaggerate change (Foody, 2010). It is for these reasons 

that accuracy assessments are considered fundamental and an integral component of the post 

classification process (Varshney and Arora, 2004; Foody, 2010; Congalton, 1991). In this 

study, the accuracy of the 2008 Landsat 5 TM image was assessed utilizing a total of 150 

GPS points (i.e. test dataset) that were collected during the field visit (see section 4.1.2). 

Accuracy assessments were conducted by comparing the classes from the test dataset to the 

classes provided by the final classification map. The data was summarized using an error 

matrix and various statistics such as overall accuracy, producer’s accuracy, user’s accuracy 

and the kappa coefficient were then computed.  

According to Congalton (1991), an error matrix is a square array of numbers set out in 

columns and rows which represent the number of sample units assigned to a particular class 

relative to the actual class on the ground. The columns of the matrix represent the test data 

while the rows represent the classified data. Overall Accuracy (OA) is used to determine the 

accuracy of the entire classification process and is calculated by dividing the number of 

correctly classified pixels by the total number of pixels in the test dataset (Congalton, 1991; 

Varshney and Arora, 2004). Producer’s Accuracy (PA) is the ratio of correctly classified 

samples of a class to the total number of testing samples of that class in the test dataset 

(Varshney and Arora, 2004). User’s Accuracy (UA), on the other hand, refers to the 

probability that a sample from the classification map represents an actual class on the ground 

(Varshney and Arora, 2004).  The kappa coefficient of agreement, unlike the other accuracy 

measures, considers and accounts for the agreement between the classified image and the test 

dataset arising due to chance (Varshney and Arora, 2004; Foody, 2002). Kappa is a widely 

used measure of accuracy as it considers all elements of the error matrix (Mas, 1999). The 

accuracy assessments were carried out in ENVI 4.7 (ITT, 2009), and the error matrix with the 
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corresponding accuracy measurements were then reported. The classifier that produced 

highest kappa coefficient and classification accuracy was subsequently used to classify the 

other two images considered in this study. 

 

4.4.5. Change Detection 

Analysis of LUCC for this particular study was carried out using ENVI 4.7. The software 

utilizes the image differencing technique when performing change detection. Image 

differencing is one of the most popular and widely used change detection algorithms and 

entails the subtraction of two coregistered images acquired at different dates (Coppin et al., 

2004; Jensen, 2005; Sader et al., 2003). The process typically involves the cell-by-cell 

subtraction of one image from another, both of which have been accurately registered first 

(Sader et al., 2003). Simply put, it subtracts the first-date image, pixel by pixel, from the 

second-date image to generate a third image. This resultant image is composed of the 

numerical differences between the pairs of pixels (Lu et al., 2004; Moser et al., 2003; Ridd 

and Liu, 1998). Areas on the image which display no change will have values which are very 

small, i.e. approaching zero, whilst those areas which display some form of change will have 

larger positive or negative values (Jensen, 2005; Lillesand and Kiefer, 2000). Low costs and 

the potential for massive data processing are two of the main advantages associated with 

image differencing (Lunetta, 1999). Although it does not provide a detailed change matrix 

like some of the other change detection methods, image differencing is a simple and 

straightforward method and produces results which are easy to interpret (Lu et al., 2004).    

 

4.4.6 Markov Chain Model 

Understanding the interaction between LUCC and their associated driving factors is very 

complex and region-dependant, and thus a widely used approach to predicting future LUCC 

is based on stochastic models (Geist, 2006). These models, which mainly consist of transition 

probability models such as Markov chains, stochastically describe LUCC processes that 

move in a sequence of steps through a set of set of states. States in this case refers to the land 

cover class for which a given parcel of land can belong to at a particular moment in time 

(Lambin, 2004; Munthali and Murayama, 2011). Simply put, Markov chain models use 

observed LUCC to estimate the probability of future changes based on the current land cover 

at a location (Geist, 2006). A more detailed explanation is provided by (Zhang et al., 2011). 

The authors describe Markov chains as a set of states, S = {s0, s1, s2,… sn} with the LUCC 

process starting in one of these states and then moving successively from one state to another. 
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Each move is called a step. If the chain is currently in state si, then it moves to state sj at the 

next step with a probability of pij. This probability of moving from one state to another is 

called a transition probability and does not depend on which states the chain was in before the 

current state (Munthali and Murayama, 2011; Zhang et al., 2011). Transition probabilities can 

be represented in the form of a transition probability matrix, whose elements are non-negative 

(Munthali and Murayama, 2011). The matrix provides a description of the basic behavior of 

the system and defines the pattern of movement as elements change from state to state (Lein, 

2003).  Each row reflects the proportion of the original land cover class which changed into 

other land cover classes by the end of the specified period (Pena et al., 2007). An example of 

a simple three state transition probability matrix is given below: 

 

 

 

 

 

Markov models are based on three assumptions. Firstly, they assume that LUCC is a first-

order process, meaning that the conditional probability of a land cover class at any time, 

given all previous uses/covers at earlier times, depends solely on the most recent use/cover 

and not on any earlier ones (Lambin, 2004). Secondly, it is assumed that the Marko chain is 

stochastic (Weng, 2002; Zhang et al., 2011). Lastly, these models rely on the assumption that 

transition probabilities are stationary, i.e. temporally homogeneous (Wu et al., 2006; Zhang 

et al., 2011). The main advantage of using Markov chain models stems from the last 

assumption, whereby the stationarity of the transition probability matrix allows for it to be 

used to calculate the probability of land cover change of one class to another (van 

Schrojenstein Lantman et al., 2011). It should also be noted that in comparison to other 

LUCC models, the Markov chain model is mathematically and operationally simple, with 

current land cover information as the only data requirement (Lambin, 2004). For this study, 

the Markov chain model was used to predict changes in land cover classes in the year 2016. 

The 2008 image was used as the final state image and the 2000 image was used as the initial 

state image.  
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4.5. Summary 

This chapter summarized the data and methodology employed during the course of this 

research. In terms of the data used, the Landsat 5 TM images were both readily available and 

appropriate for the purposes of this research. Eight land cover classes, i.e. Waterbodies, 

Wetlands, Cultivated Land, Plantation, Forest and Woodlands, Bushveld, Clearfelled and 

Settlements, were identified using a combination of remotely sensed images, aerial 

photographs and field observations. With regards to the methodology, various classifications 

methods were considered and described, with specific attention paid to their advantages and 

disadvantages in relation to the objectives of this research. Thereafter an explanation of the 

accuracy assessment was provided, followed by a description of the image differencing 

change detection method and Markov Chain model.  
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 CHAPTER 5: RESULTS 

 

5.1. Introduction 

The aim of this chapter is to provide a detailed description, in the form of statistical graphs 

and maps, of the results and outcomes achieved in the study. Firstly, it addresses the signature 

separability between the individual land cover classes by presenting each classes’ spectral 

plot and J-M value. Thereafter, the results of the three classification algorithms are illustrated 

and, based on the accuracies (i.e. OA, PA and UA) the most appropriate algorithm is chosen. 

The rest of this chapter is dedicated to describing the findings produced by the change 

detection process as well as the Markov model predictions. 

 

5.2. Signature separability 

The use of spectral properties to distinguish individual land covers and develop unique 

spectral signatures is a common procedure in land cover mapping and change detection 

studies (Lu et al., 2004; Schulz et al., 2010; Siren and Brondizio, 2009). In this study, the 

spectral signature for a particular feature is described in the form of a spectral reflectance 

curve (Figure 5.1) that indicates the reflectance values of a particular class across the 

electromagnetic spectrum. By plotting the spectral response curves of the nine land cover 

classes, it was possible to identify specific portions of the electromagnetic spectrum where 

the reflectance values for the classes varied.  
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*W – Water, Ws – Wetlands, CL – Cultivated Land, P – Plantation, FW – Forest and Woodlands, B – Bushveld, 

C – Clearfelled,  S – Settlements 

Figure 5.1: Spectral reflectance plots for individual land cover classes. 

 

From Figure 5.1, it is evident that the Waterbodies, Clearfelled and Settlement classes all 

display significantly different spectral reflectance curves and as such can be readily 

distinguished. The reflectance of water is generally low, with maximum reflectance occurring 

in band 1 (450 nm). As the wavelength increases, the reflectance of water decreases, so that 

in the NIR band the reflectance of deep water is virtually zero. In comparison, the reflectance 

of Clearfelled land increases with increasing wavelength. The Clearfelled class is essentially 

bare soil and as such the reflectance in the visible bands is affected by the presence of organic 

matter and soil moisture content. In the case of the Settlements class, there is a gradual 

increase in reflectance as wavelength increases. This class has no distinct peak, most 

probably due to the fact that settlement areas comprise of a mixture of classes, such as 
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vegetation. The vegetation classes, Cultivated Land, Plantations, Forest and Woodlands, and 

Bushveld, have essentially the same spectral pattern. They all display extremely low 

reflectance in the visible portion (450 to 630 nm) of the electromagnetic spectrum with 

reflectance increasing dramatically thereafter and peaking in band 4 (760 nm). The reason for 

low reflectance of vegetation in the visible bands is because chlorophyll strongly absorbs 

energy in these bands, whilst high reflectance in band 4 is attributed to the internal cell 

structure of a plant leaf (Lillesand and Kiefer, 2000; Mather and Koch, 2011). Subsequent to 

the sharp increase in reflectance in the NIR band, reflectance starts to decrease albeit at 

varying levels for the individual vegetation classes. Despite the similar spectral reflectance 

curves of these vegetation classes, it is still possible to distinguish between them as 

demonstrated by the J-M values shown in Table 5.1. 

 

Table 5.1: Jeffries-Matusita values for each of the eight classes  

 W Ws CL P FW B C S 

W         

Ws 2.000        

CL 2.000 1.999       

P 1.999 1.964 1.992      

FW 2.000 1.939 1.982 1.450     

B 2.000 1.999 1.855 1.992 1.963    

C 2.000 2.000 1.999 2.000 2.000 1.911   

S 1.999 1.999 1.978 1.999 1.998 1.811 1.913  

*W – Water, Ws – Wetlands, CL – Cultivated Land, P – Plantation, FW – Forest and Woodlands, B – Bushveld, 

C – Clearfelled,  S – Settlements  

 

As discussed in section 4.3.1, the J-M separability index is used to statistically determine the 

spectral separation between each of the land cover classes (Paolini et al., 2002). Table 5.1 

depicts the degree of spectral differences for all possible class combinations. The J-M values 

range between 0 and 2, with values approaching 2 indicating that the classes are completely 

separable, while those close to 0 indicate a low degree of separability. The higher the spectral 

separation between classes and thus J-M values greater than 1.6 reduce the probability of 

classification error (Paolini et al, 2002; Marpu, 2009). It is apparent from Table 5.1 that most 

of the class combinations have J-M values greater than 1.8, indicating that these classes can 

be easily distinguished from one another. The class combination which is the least separable 

is Plantation (P) and Forest and Woodlands (FW). This class combination has a 

comparatively low J-M value of 1.450. However, this is not surprising because both these 

classes comprise of commercial tree species which have similar spectral signatures. The 
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relatively high spectral differentiations between the eight land cover classes chosen also 

indicates that they were appropriate in relation to identifying main land-uses in the area that 

were significantly different from each other.  

 

5.3. Selecting the best classification algorithm 

In order to decide which supervised classification algorithms was best suited for the purpose 

of this study, the latest image (2008) was classified using all of the algorithms. Since field 

data as well as the latest aerial photographs and land-use maps were available for 2008, the 

2008 Landsat image was an ideal choice for calculating the overall accuracy and kappa 

coefficients for each of the classification algorithms. Figure 5.2 and Table 5.2 display the 

UA, PA, OA percentages as well as the kappa coefficient values for the Parallelepiped, 

Minimum Distance to Means and Maximum Likelihood algorithms, whilst Figures 5.3 and 

5.4 depict the classified images of the study area using each classifier. 

 

Table 5.2: Overall Accuracy percentages and kappa coefficient values for each algorithm 

 Parallelepiped Minimum Distance to Means Maximum Likelihood 

OA 55.63% 62.68% 79.58% 

Kappa 0.49 0.57 0.77 
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*W – Water, Ws – Wetlands, CL – Cultivated Land, P – Plantation, FW – Forest and Woodlands, B – Bushveld, 

C – Clearfelled, S – Settlements  

Figure 5.2: User’s and Producer’s Accuracy percentages for each of the nine classes and 

three algorithms 
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From Table 5.2, it is evident that the least accurate classification algorithm was 

Parallelepiped, with a low OA percentage of 55.63% and kappa coefficient of 0.49. Unlike 

the other algorithms, this classifier resulted in a total of 21 1269 of pixels being left 

unclassified (as indicated in black in Figure 5.3(a)). Except for Water (PA = 80% and UA = 

100%), Wetlands (PA = 86.7% and UA = 86.7%) and Plantation (PA = 82.1% and UA = 

76.7%), other classes classified using the parallelepiped algorithm displayed relatively low 

PA and UA percentages (refer to Figure 5.2), with Forest and Woodlands and Settlements 

having PA’s of just 6.25% and 9.52%, respectively. Cultivated Land appeared to be the most 

dominant land cover class, covering approximately 22.8% of the study area (shown in yellow 

in Figure 5.3(a)).  

 

With regards to the Minimum Distance to Means classifier, this algorithm proved to be more 

accurate than the parallelepiped classifier with an OA of 62.68% and kappa coefficient of 

0.57. Some classes classified using the Minimum Distance to Means algorithm also exhibited 

relatively low UA and PA percentages with Settlements having the lowest PA (23.81%) and 

Bushveld the lowest UA (25.64%). Conversely, Waterbodies and Wetlands displayed very 

high UA (100% and 83.3%) and PA (100% and 100%) values. In Figure 5.3(b), Bushveld is 

the most dominant class (shown in the color brown) whilst there are very fewer areas 

classified as Settlement. Although the field assessment and aerial photographs prove 

Settlements to be one of the more dominant land cover classes in the study area, the 

parallelepiped and Minimum Distance to Means algorithms fail to accurately classify the 

Settlements class with Figure 5.3(a) and (b) and Figure 5.4 (d) portraying the settlement class 

to be the least dominant class of the nine land cover classes considered in this study.  

 

The ML classifier is the most accurate classification algorithm with an OA of 79.58% and 

kappa coefficient of 0.77. Additionally, all but one of the classes (i.e. Bushveld) have UA and 

PA values greater than 50%, with the majority of classes having UA and PA values greater 

than 90%. These high values, especially with regards to UA, indicate that the classified image 

provides a reliable interpretation of the study area and can be used to predict future LUCC. It 

is for these reasons that the Maximum Likelihood classification algorithm was selected to 

classify the 1992 and 2000 Landsat images (Figure 5.5).  
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Figure 5.3: Classified images of study area in 2008 using the (a) Parallelepiped and (b) 

Minimum Distance to Means classification algorithms  
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Figure 5.4: Classified image of study area in 2008 using the (c) Maximum Likelihood 

classification algorithm  
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Figure 5.5: Classified images of study area in (a) 1992 and (b) 2000 using the Maximum 

Likelihood classification algorithm 
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5.4. Change Detection Analysis 

The spatial distribution of the land cover classes for each of the three years (1992, 2000 and 

2008) is depicted in Figure 5.5 (a) and (b) and Figure 5.4 (c). Initial visual interpretation of 

these classified images indicated that there have been significant changes in the land cover 

from 1992 to 2008. Specifically, the growth in Settlements with a concomitant decrease in 

land cover classes such as Wetlands and Forest and Woodlands is clearly discernible. This 

deduction is further verified by the land cover class change analysis presented in Table 5.3 

and Table 5.4.    

 

Table 5.3: Percentage change in each class over a 16 year period from 1992 to 2008 

 Initial State 

Final 

State 

 W Ws CL P FW B C S 

W 83.2 1.4 0.0 0.0 0.4 0.5 0.0 0.2 

Ws 0.5 37.7 0.1 0.7 2.6 0.3 0.0 0.0 

CL 0.0 0.5 19.5 2.9 3.4 7.1 3.4 1.0 

P 0.2 2.9 1.0 52.6 12.0 2.4 3.0 0.2 

FW 0.1 5.9 1.7 15.3 45.4 6.5 1.2 0.3 

B 0.3 19.9 43.4 22.4 27.8 58.7 71.0 8.8 

C 0.0 0.9 16.4 3.8 0.7 3.3 14.8 0.5 

S 15.6 30.8 18.0 2.4 7.8 21.1 6.6 89.0 

Class Change 16.8 62.3 80.5 47.4 54.6 41.3 85.2 11.0 

Image 

Difference -8.2 -41.6 -6.9 -24.8 -17.5 12.8 -20.3 5.2 
*W – Water, Ws – Wetlands, CL – Cultivated Land, P – Plantation, FW – Forest and Woodlands, B – Bushveld, 

C – Clearfelled, S – Settlements  

 

Table 5.3 provides a detailed description of the change observed in each class from the initial 

state (1992) to the final state (2008). The class change values indicate the total percentage of 

pixels that have changed classes while the individual class rows (i.e. W, Ws etc) indicate how 

these changes have occurred in relation to the other classes considered in the study. The 

image difference row values provide information as to whether the overall class size has 

increased or decreased, as signified by a positive or negative value, respectively. The land 

cover classes which exhibited the largest class change values are Clearfelled (85.2%), 

Cultivated Land (80.5%) and Wetlands (62.3%). In terms of image difference, most classes 

had negative values indicating that these classes decreased in size from 1992 to 2008. 

Although this decrease was relatively small in most cases, the Wetlands class showed a 

significant decline with an image difference value of -41.6. The fact that both Bushveld 

(12.8%) and Settlements (5.2%) had positive image difference values implies that the 
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majority of the areas previously covered by each of these classes have not changed or 

transformed to other land cover classes, but instead expanded in size.   

   

Table 5.4: Summarized Class Change and Image Difference values for each class from 1992 

to 2000 and from 2000 to 2008  

  Initial State 

 

Final 

State 

  W Ws CL P FW B C S 

1992   

   – 

2000  

Class 

Change 22.0 58.7 58.3 36.4 55.5 44.0 97.6 11.4 

Image 

Difference -15.9 -43.5 48.2 -1.4 -21.2 4.2 -18.3 2.2 

2000  

   – 

2008  

Class 

Change 8.6 30.7 27.3 82.6 44.3 42.0 92.8 10.7 

Image 

Difference 9.1 8.3 3.4 -37.2 -23.7 4.6 -2.5 2.9 
*W – Water, Ws – Wetlands, CL – Cultivated Land, P – Plantation, FW – Forest and Woodlands, B – Bushveld, 

C – Clearfelled, S – Settlements  

 

Table 5.4 provides a brief description of the net changes experienced by each land cover class 

during the eight year periods from 1992 to 2000 and from 2000 to 2008. With regards to the 

first set of changes, it appears that with the exception of Waterbodies and Settlements, all 

other land cover classes had comparatively high class change values, especially the 

Clearfelled class which had the highest class change (97.6%). Wetlands, Plantation, and 

Forest and Woodlands also showed changes of more than 50%. In comparison, the image 

difference values were relatively lower, although Wetlands (-43.5%) did show a marked 

decrease in class size whilst Cultivated Land increased by 48.2% during this period.  

 

The land cover changes which took place from 2000 to 2008 displayed a somewhat similar 

pattern to the 1992 to 2000 changes. The Clearfelled class again experienced the greatest 

amount of change with a class change value of 92.8%. This was closely followed by 

Plantation, with a value of 82.6%. Aside from Plantation and Forest and Woodlands, all other 

land cover classes had image difference values below 10%. Both of the aforementioned 

classes decreased in size from 2000 to 2008, Plantation by -37.2% and Forest and Woodlands 

by 23.7%.    

 

5.5. Markov Chain Model 

The results of the Markov chain model are indicated in the transition probability matrix 

below. This matrix is a result of the cross-tabulation of the 2000 and 2008 images, adjusted 



60 
 

by the proportional error of 0.15. The reasoning behind the use of these two images for the 

model is that since there is an eight year difference between the 2000 image and the more 

recent 2008 image, they would be ideal for predicting land cover changes for the year 2016. 

Table 5.5 depicts the percentage of pixels expected to change from each land cover type to 

each other land cover type in 2016. The rows in the matrix represent the older land cover 

classes and the columns represent the newer classes. 

 

Table 5.5: Transition probability matrix 

 Probability of changing into 

Given 

 W Ws CL P FW B C S 

W 80.32 0.68 0.03 0 0.14 0 0 18.83 

Ws 15.11 34.71 1.33 2.5 7.42 4.36 1.35 33.18 

CL 0.01 0.01 13.87 0.47 6.3 38.3 13.33 25.04 

P 0.01 1.11 2.94 45.87 31.98 9.62 6.03 2.12 

FW 0.02 0.25 7.18 7.54 50.63 25.52 3.48 5.12 

B 0 0.04 9.21 1.23 12.08 50.55 13.87 12.7 

C 0.05 3.18 5.26 16.12 29.11 24.7 9.75 11.2 

S 4.34 0.26 6.6 0.72 5.44 20.1 15.8 46.39 
*W – Water, Ws – Wetlands, CL – Cultivated Land, P – Plantation, FW – Forest and Woodlands, B – Bushveld, 

C – Clearfelled, S – Settlements  

 

Before the Markov results are described in detail, it is important to realize that these values 

do not necessarily represent realistic changes in the study area but are rather direct 

equivalents of the land cover changes that have occurred between the time period of 2000 and 

2008, and thus it is due to their new mutual independence that they may be compared directly 

(Muller and Middleton, 1994). From Table 5.5, it is evident that many of the predicted 

changes for 2016 appear to be relatively minor, except in the case of Settlements, Bushveld, 

Clearfelled and Forest and Woodlands. The significance of the Settlements class is that 

although only 46.39% of the class will remain intact, a percentage of every other land cover 

class will be converted into settlements, with Wetlands (33.18%) and Cultivated Land 

(25.04%) displaying the largest change over and Plantation (2.12) and Forest and Woodlands 

(5.12) displaying the lowest. A possible explanation for the low transition probability 

percentage of Forest and Woodlands and Plantations to Settlements is the fact that settlement 

growth in the area appears to be confined to specific localities, mainly expansion in existing 

natural resource areas. The western parts of the study area consist mainly of private-owned 

plantation and therefore community expansion outside of traditional areas is highly unlikely.  
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Waterbodies (80.32%), Forest and Woodlands (50.63%) and Bushveld (50.55%) displayed 

high transition probability percentages for remaining in the same position in 2016. On the 

other hand, Cultivated Land (13.87%) and Clearfelled (9.75%) were two land cover classes 

which had the lowest probability percentages and it is thus most likely that the areas currently 

occupied by these classes will soon be replaced with other land covers. With regards to 

Cultivated Land, Bushveld (38.3%) and Settlements (25.04%) show the highest probabilities 

of replacing this class, whilst Clearfelled will mostly be replaced by Plantation (16.12%) and 

Forest and Woodlands (29.11%).     

 

5.6. Summary 

This chapter summarized the main findings emanating from the study. In terms of signature 

separability, the results for the J-M index for all pair-wise class combinations revealed that all 

but one are totally separable from each other. The choice of the Maximum Likelihood 

classifier as the most appropriate classification algorithm was entirely dependent on the 

accuracy results presented in Table 5.2 and Figure 5.2. This classifier proved to have the best 

OA, PA and UA and was thus selected to classify all three images for change detection 

analysis. With regards to the change detection statistics, many of the land cover classes 

changed significantly during the sixteen year period from 1992 to 2008, with all but Bushveld 

and Settlements actually decreasing in size. The Markov model predicted a similar trend in 

2016, as most classes displayed a relatively low probability of remaining unchanged. The 

significance of the abovementioned findings will be discussed in greater detail in the next 

chapter.  
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CHAPTER 6: DISCUSSION 

 

6.1. Introduction 

The first part of this chapter briefly discusses the selection of the Maximum Likelihood 

classifier as the algorithm of choice. The rest of the chapter focuses on describing the 

observed and predicted trends in land cover change as well as their associated implications. 

The most relevant land cover classes, i.e. Waterbodies, Wetlands, Cultivated Land, 

Plantation, Forest and Woodlands and Settlements, are discussed separately in different 

subsections. The significant results for each class are highlighted and the consequences of 

both past and future changes are discussed in accordance with the relevant literature. A short 

overall summary of the main findings is provided at the end of the chapter.     

 

6.2. Selection of the best classification algorithm 

The ML classifier is the most accurate classification algorithm of the three, with an OA of 

79.58% and kappa coefficient of 0.77. Although many researchers such as Brown et al. 

(2000), Ge et al. (2007), Lucas et al. (1989) and Treitz and Rogan (2004) set a  minimum 

acceptable accuracy target of 85% for land cover maps derived from remote sensing data, 

Foody (2008) argues that such a target may be overly harsh and extremely difficult to 

achieve. Furthermore, Foody (2008) states that often the approaches used to evaluate the 

accuracy of image classification are sometimes harsh and misleading and are commonly 

pessimistically biased. Thus, it is recommended that realistic accuracy targets are set while at 

the same time ensuring that land cover maps of low quality are not viewed as acceptable 

(Foody, 2008). It is for these very reasons that the OA of the Maximum Likelihood classifier 

can be regarded as relatively high and appropriate for the scope of this study. Additionally, 

the UA and PA of most of the individual land cover classes are extremely high, ranging 

between 80% and 100%. These high values, especially with regards to UA, indicate that the 

classified image provides a reliable interpretation of the study area and can be used to predict 

future LUCC. This does not imply that the other two classifiers considered for this study are 

weak or inefficient but rather that they did not meet the needs of this particular research. Each 

of the other classifiers has in fact been used with great success by other researchers as per the 

case studies mentioned in Chapter 4. 
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6.3. Land cover trends and implications 

According to Meyer and Turner (1992) and Jansen and Di Gregorio (2002), land cover 

changes can take one of two forms, namely conversion or modification. In this study 

however, only conversion from one class to another is discernible. Modifications within 

classes were not detectable as a broad classification scheme was used which did not allow for 

these subtle changes to be distinguished. The conversions from one class to another and the 

potential implications of such changes are described in greater detail below. 

 

6.3.1. Waterbodies 

The Waterbodies land cover class is one of two classes in the uMhlathuze municipality which 

has not undergone significant change between 1992 and 2008, displaying a low class change 

value of just 16.8%. Furthermore, in comparison to the other classes, Waterbodies are not 

expected to change drastically by 2016, with the Markov chain model predicting that 80.32% 

of the class will remain intact. The relative stability of this class is in line with other studies 

which have also showed that Waterbodies do not exhibit large changes during short periods 

of time. One such study is that of Long et al. (2007) which investigated the socioeconomic 

driving forces of land-use change in Kunshan, China. The authors found that of all the 

classes, natural lakes and rivers displayed the least amount of change during the period from 

1987 to 2000.  

 

The observed changes in waterbodies are difficult to interpret as they may well be attributed 

to both seasonal and anthropogenic factors. In this study, Table 5.3 shows that Waterbodies 

has actually been replaced by the Settlements class. The same pattern is expected in 2016 

where 18.83% of the Waterbodies class will be replaced by Settlements. The increase in the 

Settlements class will result in a greater demand of water, a fact not taken into account by the 

Markov chain model. The impacts of such land cover changes on Waterbodies and the 

hydrological cycle has been discussed in broad detail in section 2.4.2.  

 

It should be emphasized, that these comparatively subtle changes in Waterbodies are of 

serious concern as the availability of water in South Africa is severely hampered by the fact 

that the country is both part of a semi-arid region, with an annual rainfall that is little more 

than half of the world average, and susceptible to droughts and floods (Department of Water 

Affairs and Forestry - DWAF, 2004). Consequently, water availability has emerged as the 

dominant factor inhibiting development of the country as a whole and is the closely linked to 
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the prevalence of disease, hunger and poverty (Turpie et al., 2008). Other than their impact 

on water availability, Haas et al. (2011) note that changes in Waterbodies can also serve as 

ecological indicators for short-term ecohydrological changes. In a study conducted in sub-

Saharan Western Africa, the authors proved that there was a link between vegetation cover, 

rainfall and surface water extent. Waterbodies can thus serve as good indicators of year-to-

year rainfall availability, for water availability during the dry season, and for the state of an 

ecosystem (Haas et al., 2011). An unfortunate disadvantage of this study is that it did not 

examine water quality, which could be undermined given the increase in Settlements, as 

highlighted by Foley et al. (2005) and Chen (2002) in Chapter 2.     

 

6.3.2. Wetlands 

The Wetlands land cover class has undergone a considerable amount of change from 1992 to 

2008, with a class change value of 62.3% and image difference value of -41.6%, the highest 

from all other land cover classes. Unlike in the case of Waterbodies, only 34.71% of this 

class is expected to remain the same in 2016, with the rest of Wetlands being converted to 

Settlements (33.18%). The impact of rapid urban land expansion on the Wetlands class is not 

only prevalent in this study area but is consistent with observations from around the world. 

For example, Dewan and Yamaguchi (2009) analyzed land-use and land cover change in 

Great Dhaka, Bangladesh and found that substantial growth of built-up areas have led to a 

significant decrease in wetlands. The authors observed that property development had 

increased from 1975 to 2003 and property developers continue to develop wetlands 

regardless of the environmental cost.   

 

In this study, the change from Wetlands to Settlements will have serious implications for the 

hydrological cycle and other ecosystem services provided by wetlands. In terms of the 

hydrological cycle, wetlands in South Africa play a vital role in the provision of water. For 

example, in grassland catchment areas, much of the summer rainfall is caught by seepage 

wetlands which function as sponges by slowly releasing infiltrated water and thereby 

maintaining base flows in the catchments during the dry season (Turpie et al., 2008). 

Wetlands are also effective at flood mitigation, minimizing sediment loss, purifying surface 

water, controlling run-off volume, and enhancing aquifer recharge (Baker et al., 2006). 

Dahlberg and Burlando (2009) note that the coastal plain of KwaZulu-Natal is made-up of 

mostly sandy soils and thus, the scattered wetlands provide areas of productive soil essential 

for local agriculture. This provision of flat, fertile land with a ready supply of water means 
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that many of the local communities living in southern African countries can utilize wetlands 

for fishing, cultivation and livestock production (Aldekola and Mitchell, 2011; Dixon, 2008; 

McCartney et al., 2011). Wetlands are therefore important contributors to livelihoods, food 

security and poverty alleviation (Aldekola and Mitchell, 2011; McCartney et al., 2011). In a 

study conducted by Rebelo et al. (2010) in Tanzania, the contribution of wetlands to the 

livelihoods of people living in rural areas is further emphasized. The authors found that rural 

communities rely heavily on wetlands to meet their basic needs for household survival. The 

wetlands in the study area provide natural resources and are utilized for agriculture, thereby 

contributing greatly to food security, household income and welfare (Rebelo et al., 2010). 

These assertions are also relevant in Dube and Esikhawini as indicated by Bassa (2010).  

 

The aforementioned case studies serve to underscore the importance of preserving wetlands 

both for the sake of the ecosystem services they provide and their vital contribution to rural 

livelihoods. Thus, the wetlands in the current study area have and are still being affected by 

land cover change. This is a matter of concern, especially as past experiences of wetland 

management in Africa have, as stated by Dixon (2008) and McCartney and Houghton-Carr 

(2009), shown that unsuitable agricultural development in wetlands can negatively affect 

sustainability and have severe economic and social impacts for the rural communities 

dependent on the ecosystem services provided by these wetlands. Furthermore, it undermines 

ecological integrity and have serious environmental impacts given the roles that wetlands 

play (Gleick et al., 2009).               

 

6.3.3. Cultivated Land 

During the sixteen year period from 1992 to 2008, Cultivated Land has changed considerably 

as indicated by the 80.5% class change value. The Markov chain model results revealed that 

only 13.87% of this class will remain unchanged in 2016. The majority of this class will be 

replaced with the Settlements class (25.04%). Many authors have shown that Cultivated Land 

is increasingly being replaced with Settlements. Seto and Fragkias’s (2005) study on 

quantification of spatiotemporal patterns of urban land-use change in four cities of China 

with time series landscape metrics showed that in southern China, most of the areas 

surrounding these cities is used for agriculture and thus, urban sprawl often occurs at the 

expense of cultivated land. The literature review revealed that a major concern in terms of 

long-term impacts of land cover change is linked to food production and therefore food 

security. It is clear that in this study area the loss of Cultivated Land means that there is a 
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decline in agricultural activities at the commercial level. Bassa’s (2010) study also found that 

subsistence agriculture in the area has also been on the decrease. The consequences of 

changes in the Cultivated Land class are thus likely to affect food security at both regional 

and household levels.    

 

Aside from urban expansion, another possible reason for the decline in agriculture in the 

study areas is livelihood diversification. During the last two decades of the 20
th

 century, the 

economies of South Africa and other sub-Saharan countries underwent drastic changes and 

rural populations began to move away from an agricultural dominated lifestyle to becoming 

more dependent on non-agricultural income-generating activities (Bryceson, 2000; 2002). In 

a study conducted in five Eastern and Southern African countries, Jayne et al. (2010) list a 

few of the main challenges faced by subsistence farmers and are thus responsible for the 

decrease in agricultural activities in many rural areas. These challenges are as follows: “(1) 

declining land/labor ratios and high inequality of landholding distribution within smallholder 

sectors; (2) high concentration of marketed maize and other crops; (3) most rural households 

being purchasers of maize rather than sellers; (4) rapid urbanization based on a pushing of 

labor out of rural areas; and (5) changing urban consumption patterns” (Jayne et al., 2010: 

1385). Whilst it is impossible to ascertain given the scope of this study which of the 

aforementioned challenges is responsible for the negative change in Cultivated Land in the 

present study area, the literature review and background to the case study reveal that some of 

the challenges raised by Jayne et al. (2010) are discernible in the area under study. 

 

6.3.4. Plantation 

While the Plantation class has exhibited a rather high class change value (59.3%) between 

1992 and 2008, it has a very low image difference value (-1.3%) which shows that in sixteen 

years this class has only decreased by 1.3%. The Markov model predicts that 45.87% of the 

Plantation class will remain as is in 2016 with Forest and Woodlands expected to replace 

31.98% of Plantation. This conversion to Forest and Woodlands is not of particular concern 

as these two classes have very similar spectral signatures and as such the predicted change 

may be attributed more to errors of misclassification than a likely occurrence.  

 

The current and expected trend in forest plantation change is not surprising considering the 

fact that areas for plantation forestry are limited within South Africa and the number of new 

areas chosen for afforestation has decreased significantly in recent years. In light of this, 
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forest productivity maximization within existing planted areas is of crucial importance to 

forestry managers. Forest plantations, consisting of various exotic species such as Pinus spp., 

Eucalyptus spp. and Acacia spp., cover approximately 1.37 million ha of the country and over 

80% percent of them are located in KwaZulu-Natal, Mpumalanga and the Eastern Cape 

(DWAF, 2005). Although commercial forest plantations only cover 1.1% of the total area of 

South Africa, they contribute significantly (R22 billion) to the Gross Domestic Product and 

produce more than 22 million m
3
 of round-wood which is worth approximately R5.1 billion 

annually (Department of Agriculture, Forestry and Fisheries - DAFF, 2009; DWAF, 2005). 

Presently, the forestry sector just meets the timber demands of the country, however, should 

this demand increase in the next few years, the sector will have to either rely on timber 

imports or consider expanding the existing plantation estate (DAFF, 2009). In order to ensure 

that South Africa’s forestry sector remains self sufficient and continues to contribute to 

foreign exchange earnings, the DAFF has developed the Forest Sector Transformation and 

Growth Charter tool which will, in the long run, explore opportunities for new afforestation 

over an area up to 100 000 ha, mostly in the Easter Cape (DAFF, 2009).  Of concern in rural 

areas is that this expansion could undermine existing livelihoods and natural resources that 

poorer communities tend to rely on. It is therefore imperative that plantation forestry 

expansion should consider community based forestry and ascertain mechanisms to ensure 

that rural households have adequate access to resources.  

 

6.3.5. Forest and Woodlands 

From 1992 to 2008, Forest and Woodlands have changed by 50.6% and 50.63% of this class 

will remain in 2016. Although these changes appear to be comparatively less than those of 

other classes, they are nonetheless significant to the people living in this study area. Many of 

the people who live in the traditional area Dube do not have access to electricity and are 

therefore highly dependent on indigenous forests for fuelwood. Fuelwood still remains the 

area’s primary energy source for domestic purposes. Other than the provision of fuelwood, 

Forest and Woodlands provide many other goods and services. The following statistics 

provided by DAFF (2009), albeit at a national level, highlight the undeniable value of this 

natural resource, especially in relation to poverty alleviation: (a) 27 million people rely on 

medicinal plants for healthcare and over 65% of these plants are forest and woodland species; 

(b) between 9 and 12 million people use fuelwood, wooden utensils and wild fruits acquired 

from forest and woodlands; (c) an average rural household uses 5.3 tons of firewood, 104 kg 

of wild fruits, 185 large poles for fences and construction, and 58 kg of wild spinaches each 
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year, most of which are obtained from forest and woodlands; (d) access to this natural 

resource contributes roughly 25% of total livelihood accruals; (e) approximately 800 000 

people work in the craft industry which is heavily dependent on forest and woodland 

resources; and (f) about a 100 000 households in the country engage in small-scale trade in 

forest products from forest and woodlands. Shackelton et al. (2007) add that while forest and 

woodlands and their associated products contribute greatly to the well-being and survival of 

the rural poor, these benefits are also extended to urban communities where forest products 

are widely used and marketed.     

    

In light of the statistics listed above, it is apparent that the changes observed in the Forest and 

Woodlands class have a two-fold impact on rural communities in that the depletion of this 

resource will negatively impact on their livelihoods and quality of life but the continued rate 

of usage will only lead to a further decrease in the availability of this natural resource. The 

impacts of land cover change on forestry resources were examined in the literature review 

and reinforce the importance of forestry resources to rural livelihoods as discussed above.  

 

6.3.6. Settlements 

In relation to the other classes, Settlements has exhibited the least amount of change with a 

class change value of 13.5% and an image difference of 1.5%. The results indicate that 

although only 46.39% of the class is to remain intact in 2016, urban expansion has resulted in 

the considerable reduction of the other classes, especially in regards to Wetlands and 

Cultivated Land. The increasing population size coupled with the dominance of the historical 

township dynamic in the study area continues to negatively impact other land cover classes. 

This is of concern as townships generally consist of mainly poorer households who depend 

heavily on natural resources. This dependence by poverty stricken people together with rising 

demand for land for urban and agricultural use threatens biodiversity, water resources and 

food security (Turpie et al., 2008). Bassa (2010) illustrated that as long as poor people remain 

poor and the current resource use is continued, the natural resource base of this particular 

study area will continue to be depleted.  

 

According to Pauchard et al. (2006) much of the research on urban sprawl has focused on 

developed countries and it is important to note that the effects of this phenomenon are 

different for developing countries. In contrast to developed countries, where urbanization is 

responsible for fragmenting large areas, urban growth in developing countries is concentrated 
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around urban cores and generally involves the replacement of adjacent land-uses such as 

agriculture and other natural vegetation (Pauchard et al, 2006). Other examples of countries 

displaying a similar trend include a study conducted by Lopez et al. (2001) in Puerto Rico. 

This study aimed to link population growth, socioeconomic changes and land-use patterns to 

losses of agricultural land in the country. The authors found that urban areas increase by 

27.4% during the 17 year period of interest and urban growth on land suitable for agriculture 

increased by 41.6% (Pauchard et al, 2006). Pauchard et al. (2006) concluded that Puerto Rico 

lost a total of 6% of potential agricultural land and this pattern of urban sprawl into potential 

farmlands is still continuing. These findings are clearly evident in the present study area 

where, as mentioned before, Cultivated Land and Wetlands have and will continue to be 

replaced by Settlements. 

 

6.4. Summary 

This chapter discussed the implications of the main findings of the study and through the use 

of literary sources offered several explanations for current and future land cover change 

trends. Human settlement increase emerged as a key driver of change in the study area and 

given the rural context of the study area, the increased demand on natural resources (both 

Wetlands and Forest and Woodlands) in the area is likely to have severe environmental 

impacts which will in turn affect rural livelihoods.   
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CHAPTER 7: CONCLUSION AND RECOMMENDATIONS 

 

7.1. Introduction  

The observed land cover change pattern in Dube and Esikhawini is influenced greatly by the 

increase of the Settlements class. The results show that the spread of this class has led to a 

decline in the spatial extent of the other classes and, should the current land cover change 

trend continue, Settlements will emerge as the future dominant land cover class in the area. 

 

The determinants of land cover change, mentioned in the literature review, continue to 

influence land cover dynamics in the study area and this study has served to quantify the 

relationship between land cover change and key driving forces. Whilst the role of social and 

cultural factors have begun to diminish as important drivers of change in the study are, 

technological and more importantly economic factors still play a vital role. Although this 

study did not focus on the policies, many of the main governmental policies, for example, the 

Growth, Employment and Redistribution policy, are centered around development and 

promoting of the economic agenda. More often than not, however, these policies do not take 

into consideration the long term impact of economic activities, such as mining in the case of 

this study, on the natural environment. Therefore, as Brink and Eva (2009) assert, it is critical 

that land cover changes and their impacts are understood before appropriate land 

management practices and policies are developed and implemented.  

 

With regards to demographic factors, the importance of this factor as a driver of land cover 

change, especially in developing countries, has been repeatedly emphasized by the literature. 

The one drawback of this study is that the model chosen to predict future changes did not 

take into account demographic factors and as such any predictions made by the Markov chain 

model are most probably very conservative. The expected land cover change by 2016 and 

their likely impacts on this area would have been considerably different had increasing 

population size been factored into the model.   

 

7.2. Summary of key findings in relation to the objectives 

This study revealed that remote sensing can play a significant role in contributing towards 

examining land cover changes and potential impacts on the natural resource base. In this 
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section the objectives of the study presented in Chapter 1 are reviewed to evaluate how they 

were achieved.  

 

7.2.1. To determine the dominant land cover changes that have occurred during the 16 year 

period 

Eight major land cover classes were identified in the study area, namely Waterbodies, 

Wetlands, Cultivated Land, Plantation, Forest and Woodlands, Bushveld, Clearfelled and 

Settlements. Three classification algorithms were used to classify the study area in 

accordance with the aforementioned land cover classes. Based on the results of the accuracy 

assessment, the Maximum Likelihood classifier was deemed the most appropriate algorithm 

for the study. In order to determine the dominant land cover changes that have occurred from 

1992 to 2008, an image differencing change detection technique was employed. The change 

detection technique results revealed that whilst Waterbodies, Plantation, Bushveld and 

Settlements had class change (Table 5.3) values below 50%, the rest of the classes had 

significantly higher values, indicating that these land cover classes changed considerably 

during the sixteen year period.  

 

7.2.2. To evaluate the extent of these changes 

In terms of the extent of the land cover changes in the area, settlement expansion (i.e. an 

increase in the Settlements class) emerged as a key driver of change. Thus, it is of no surprise 

that the Settlements class displayed the lowest class change and image difference values of 

just 11% and 5.2%, respectively. The only other class with an extremely low class change 

value was Waterbodies (16.8%). This land cover class decreased from 1992 to 2008, with 

15.6% changing to Settlements. In the case of Wetlands, Cultivated Land and Clearfelled, the 

results showed that these three classes had undergone extensive changes and in comparison to 

the other classes the class change values for Wetlands (62.3%), Cultivated Land (80.5%) and 

Clearfelled (85.2%) were significantly higher. Although Plantation (47.4%), Forest and 

Woodlands (54.6%) and Bushveld (41.3%) did not have class change values as high as the 

aforementioned classes, these three land covers did change considerably with both Plantation 

and Forest and Woodlands decreasing (image difference values of -24.8% and 17.5%, 

respectively) and Bushveld increasing (image difference values of 12.8%).     
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7.2.3. To predict the extent of future changes 

In order to predict the extent of land cover changes in 2016, a Markov Chain model was used. 

The model results were in line with those of the change detection analysis which showed 

settlement expansion to be the main driver of change in the study area. Although the model 

revealed that only 46.39% of Settlements is to remain the same in 2016, a portion of every 

other land cover class will change to this class, with Wetlands (33.18%) and Settlements 

(25.04%) displaying the largest conversion percentages. Waterbodies, Plantation, Forest and 

Woodlands and Bushveld displayed relatively high transition probability percentages for 

remaining in the same position in 2016. Despite the fact that some of these results were 

debatable, the Markov Chain model proved to be a useful scenario building tool as it 

highlighted the fact that unattended settlement expansion in rural areas, such as this study 

area, is a serious problem especially in terms of sustainable development.   

 

7.2.4. To examine potential impacts of these changes on the natural resource base 

As per the previous chapter, it is evident that rural livelihoods are linked extensively to access 

to natural resources. As such, the predicted increase in the Settlements class coupled with the 

decrease in the other land cover classes, specifically Wetlands, raises serious questions about 

environmental stability in the area. Furthermore, the literature cautions that continued 

depletion of access to and availability of natural resources are likely to undermine rural 

livelihoods and contribute to increased poverty among vulnerable groups.  

 

7.3. Recommendations 

The study has shown that there is a need to document land cover changes occurring in the 

area at periodic intervals, in order to better manage existing natural resources and ensure that 

the people who depend on them have a secure livelihood. From the summary of the 

objectives above, it is clear that attaining sustainability is critical to ensure livelihoods for the 

poor. It is also important that population pressures associated with settlement expansion in 

particular, which this study reveals as a key driver of land cover change in the area, need to 

be addressed. As stated by McCartney and Houghton-Carr (2009), the role of natural resource 

management in sub-Saharan Africa needs to be strengthened since this widely perceived to be 

the key to sustainability, and central to overcoming both developmental and environmental 

problems. 
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This section provides several recommendations for future research studies that will hopefully 

lead to improved land cover change assessments. Firstly, although the methodology utilized 

in the study could not be used to examine modifications within land cover classes, this needs 

to be addressed further as during the fieldwork it was evident that agricultural practices were 

changing, for example, sugarcane plantations were being replaced by pineapples. Secondly, 

while the present study does indeed exhibit satisfactory results, misclassification does exist to 

some degree, possibly due to one of many factors, such as the spatial, temporal or spectral 

properties of the images used or the classification method chosen.    

 

The images used in this study were of multispectral origin which, while adequate for meeting 

the aims and objectives of this particular research, cannot compare to the advantages 

provided by hyperspectral images. Hyperspectral images are of a higher spatial resolution and 

made up of hundreds of narrow bands thereby allowing for higher classification accuracies to 

be achieved (Chan and Paelinckx, 2008). It is thus recommended that future studies consider 

the use of hyperspectral datasets as they are effective for addressing land cover problems at 

higher-order thematic levels where spatial resolutions of 5 m or greater are needed (Rogan 

and Chen, 2004). 

 

There are various factors which influence land cover change that were not taken into account 

by this study. For example, climatic factors, such as rainfall patterns, were neglected and it is 

important that future studies, particularly those conducted in coastal areas, factor these 

variables in as they play a role in climate change prediction. Demographic factors, as 

mentioned before, have also not been considered during this research and it is again 

emphasized that they be a part of future research, especially when predicting future land 

cover changes. 

 

The last and perhaps most important recommendation for future research is the need to 

consider stakeholder perceptions. This study has not looked at the relevant stakeholders and 

how they perceive the changes which have taken place given the focus of the study. 

Stakeholder perceptions should form an essential component of future land cover change 

studies, particularly in cases where the information derived is used to inform policy and 

planning. 
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7.4. Concluding Remarks 

This study has successfully examined the issues raised as being important when undertaking 

land cover change research. The three classification algorithms used during the course of this 

research indicate that there are several potential methods suitable to examine land cover 

change. Each situation needs to be assessed and the objectives of the study need to be taken 

into account when choosing a classification algorithm. In this study the Maximum Likelihood 

classifier was deemed to be the most appropriate. The land cover maps derived during this 

study have many uses, for example, they can be used to identify spatial patterns of physical 

quantities such as vegetation cover or land-use. In addition, this study has shown the degree 

and extent, both temporally and spatially, of land cover changes taking place in the area. It 

has managed to identify, albeit in a limited way, the major consequences of these changes 

and the key drivers that are informing future land cover change trends. Furthermore, given 

the prominence of economic activities such as commercial forestry and agriculture in the 

area, an improved form of the methodology used in this study can be applied at a regional 

scale. This study emphasizes the importance of considering sustainability imperatives 

(socioeconomic and environmental aspects) when examining results of LUCC studies. It 

further demonstrates the importance of these types of studies in rural contexts to explore 

impacts.   
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