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Abstract 

Kojic acid (KA) is a secondary metabolite and divalent metal chelator that is widely used in the 

beauty industry as a skin lightener. However, KA toxicity is not well-established in humans. This 

study aimed to determine the toxicity of KA by assessing oxidative stress, nuclear factor kappa B 

(NFκB) signalling, and mitogen-activated protein kinase (MAPK) signalling in human hepatoma 

(HepG2) cells following 24 h exposure. Cell viability was assessed using the methylthiazol 

tetrazolium (MTT) and crystal violet assays. To confirm cell death, apoptosis (caspase -8, -9, -3/7 

luminometry), and Lactate dehydrogenase (LDH) leakage were assessed.  Oxidative stress (TBARS), 

DNA damage (8-OHdG), and protein oxidation (protein carbonyls assay) to determine macromolecule 

damage. An assessment of inflammatory and oxidative stress markers were carried out using mRNA 

expression (GPx, NFκB, IκB; qPCR) and miRNA expression (miRNA-29a, miRNA-29b and miRNA-

155; qPCR). Protein expression of nuclear factor erythroid-2 factor-2 (Nrf2), phospho-Nrf2 (ser40), 

catalase (CAT), c-Jun-N-terminal kinase (JNK), p38, phospho-Sirtuin 1 (ser47) (phospho-sirt1), 

NFκB, phospho-NFκB (ser536), and activator protein 1 (AP-1) were assessed using Western Blot in 

HepG2 cells. KA decreased cell viability in HepG2 cells and elevated the activities of caspase -9 (p < 

0.0001), caspase -8 (p = 0.0003) and caspase 3/7 (p < 0.0001) at lower concentrations [4.22 & 8.02 

mM] which served as confirmation of apoptosis. Necrosis at the higher concentration [12.67 mM] was 

confirmed by the presence of LDH leakage indicating membrane damage. Increased cell death was 

further correlated with increased miRNA-29b expression (p = 0.009), a miRNA responsible for 

elevated apoptotic activity. Adenosine Triphosphate (ATP) production was increased significantly at 

12.67 mM (p < 0.0001), while oxidative stress (Malondialdehyde (MDA) levels) was increased 

significantly at 4.22 mM (p < 0.0001). Macromolecules are susceptible to damage in the presence of 

oxidative stress. Due the elevation of MDA levels, DNA damage and protein oxidation assays were 

carried out. Protein carbonyls were significantly decreased (p < 0.0001), suggesting a potential 

cytoprotective effect. Due to the presence of oxidative stress, Nrf2, is activated and is responsible for 

the transcription of antioxidant genes. This was illustrated by an increase in activated Nrf2 at lower 

concentrations (4.22 & 8.02 mM), whilst at higher a concentration (12.67 mM) decreased phospho-

Nrf2 (p > 0.0001). CAT was decreased significantly (p = 0.0002) and GPx significantly increased at 

lower concentration [4.22 mM] (1.51-fold). A key function of the MAPK pathway is the initiation of 

stress-activated protein kinases, p38 and JNK, in response to oxidative stress. KA significantly 

increased, p38 at lower concentration (p = 0.0011) and significantly decreased JNK1 (p = 0.0039) and 

JNK2 (p < 0.0001) activity. Regulation of reactive oxygen species (ROS) production by Sirt-1 occurs 

via the alteration of immune responses through NFκB signalling and AP-1. Inflammatory mediators, 

phospho-Sirt1 was significantly decreased (p < 0.0001), while AP-1 expression was elevated (p = 

0.0003). The decrease in phospho- Sirt1 resulted in decreased phospho- NFκB expression (p < 

0.0001). To further illustrate inflammation repression and alteration in MAPK signalling, MiRNA-155 

expression was increased (p = 0.0018). There was elevation of miRNA-29a expression (p = 0.0002) 
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which is in agreement with repressed inflammatory responses reflected by decreased NFκB 

expression. KA treatment resulted in increased MDA levels and antioxidant responses. MAPK 

signalling was elevated in response to oxidative stress suggesting the involvement in cell death, whilst 

inflammation was suppressed. In conclusion, KA displayed low toxicity in  HepG2 cells. 
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Introduction 

Kojic acid (KA; 5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one), is a fungal metabolite produced by 

Aspergillus and Penicillium species (Parrish et al., 1966). KA is a hydrophilic acid and a recognised 

chelating agent that is widely used in the medicinal, cosmetic and food industry (Azami et al., 2017), 

known to inhibit tyrosinase activity in melanocytes leading to the reduction of melanin and lightening 

of skin pigmentation (Choi et al., 2012).  

 

Toxicity studies by Rodrigues et al. (2011) found that  KA’s ability to produce reactive oxygen 

species (ROS) enhances the phagocytic activity of mice peritoneal cells leading to cell damage. In 

contrast, KA was found to have an antioxidant effect on cells by scavenging ROS in leukocytes in 

vitro (Niwa and Akamatsu, 1991). In vivo, KA studies found increased lipid peroxidation, expressed 

as elevated MDA levels, in liver homogenates (Kotyzova et al., 2004). Oxidative stress is a result of 

the imbalance between antioxidants and oxidants (free radicals). The molecular oxygen can react to 

form products such as water (H2O), hydrogen peroxide (H2O2), and superoxide anions (O2
-
). The 

equilibrium required for the normal functioning of biological systems is altered when oxidants exceed 

the cells antioxidant capacity (Ott et al., 2007).  Macromolecules exposed to excess ROS form DNA 

adducts, protein carbonyls, and are prone to lipid peroxidation (Wiesmüller et al., 2002, Cooke et al., 

2003, Dalle-Donne et al., 2003, Ayala et al., 2014). 

The increase of ROS results in an antioxidant response by nuclear factor erythroid-2 related factor 2 

(Nrf2). Majority of ROS is produced in the mitochondria (Murphy, 2009).  Nrf2 is termed the master 

regulator of antioxidant responses due to its function in the transcription of antioxidant genes, namely 

superoxide-dismutase 2 (SOD2) and catalase (CAT). These enzymes play key roles in the alleviation 

of oxidative stress (Basak et al., 2017). O2 is converted by SOD2 to H2O2 and later decomposed by 

CAT to hydrogen peroxide (H2O2) and O2. Dysregulations in the antioxidant response have been 

linked to several diseases (Liguori et al., 2018).  

ROS acts as a secondary messenger which initiates an immune response. KA inhibits tyrosinase 

activity; hence, the mitogen-activated protein kinase (MAPK) pathway could be a potential target. 

ROS has been found to activate the MAPK signalling pathway to initiate cell death due to toxic insult 

(Kim et al., 2014). The MAPK family comprises of serine/threonine protein kinases, namely, 

extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38. The oxidative 

stress that cells experience can influence the MAPK pathway affecting the stress-activated protein 

kinases (SAPK), namely, JNK and p38. MAPK is responsible for the phosphorylation of transcription 

factors and cellular functions such as cell survival and cell death. The MAPK pathway has been 

implicated in the activation of Nrf2; however, the mechanism in which regulation is initiated remains 

elusive. Studies to date have favoured indirect phosphorylation of Nrf2 as a point of regulation by the 

MAPK pathway (Sun et al., 2009). Previous KA studies have shown that MAPK expression was 
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upregulated in injured Hypsizygus marmoreus as a response to the increase of oxidative stress. The 

expression of CAT was upregulated as well as extracellular ATP (eATP) as a stress signal to facilitate 

mycelial regeneration (Zhang et al., 2017). Previous studies have not investigated Nrf2 and MAPK 

signalling following treatment with KA in HepG2 liver cells. 

Immune responses result in the activation of the inflammatory pathway in the case of oxidative stress. 

Sirtuin 1 (Sirt1) interacts with MAPK proteins in the presence of oxidative stress. Sirt1 is a protein 

deacetylase, responsible for alleviating oxidative stress and promoting cell survival (Salminen et al., 

2013). Regulation of ROS production by Sirt1 occurs via the alteration of immune responses through 

nuclear factor kappa B (NFκB) signalling and activator protein-1 (AP-1) (Salminen et al., 2013, Xie et 

al., 2013a). Inflammation is a contributing factor to several pathologies. NFκB and IκBα (nuclear 

factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) are found in the 

cytoplasm; IκBα is phosphorylated and free for ubiquitin-dependent proteasome degradation while 

NFκB translocates to the nucleus for the transcription of pro-inflammatory cytokines (Yang et al., 

2012). KA has shown anti-inflammatory effects in transfected HaCaT keratinocyte cells (Moon et al., 

2001)  

MAPK proteins activate pro-inflammatory cytokines such as the tumour necrosis factor (TNF) family,  

and interleukin-1 (IL-1) to enhance AP-1 activity  (Shaulian and Karin, 2002). AP-1 is made up of 

dimeric basic region leucine-zipper (bZIP) proteins, Fos, Jun, Maf and ATF sub-families. Of the 

subfamilies, c-Jun (potent transcription activator) and Fos hetero-dimerize which allow for more 

efficient DNA binding activity. AP-1 participates in many processes in cells including cell 

proliferation ,  differentiation, inflammation and cell death (Fisher and Voorhees, 1998).  

MicroRNAs (miRNA’s) are a class of post-transcriptional repressors of gene expression (Reinhart et 

al., 2000). MiRNA’s play key roles in the regulation of inflammation, oxidative stress, immune 

response and cell death. Examples of these miRNA’s are miRNA-155, miRNA-29a and miRNA-29b. 

MiRNA-155 expression can repress NFκB and MAPK signalling (Wang et al., 2015). MiRNA-29a 

expression is also inhibited by NFκB and decreases apoptosis by targeting proapoptotic mediators 

such as bcl-2-like protein 4 (Bax), poly(ADP-ribose) polymerase (PARP), phospho-Fas-associated 

protein with death domain (phospho-FADD), cleaved caspase 8, and caspase 3 (Tiao et al., 2014). 

MiRNA-29b functions include the regulation of oxidative stress by increasing apoptosis and 

decreasing  cell viability (Hou et al., 2017). 

The level and duration of oxidative stress determines the degree of damage and the initiation of cell 

death. Apoptosis plays a key role in the maintenance of cellular homeostasis by removing injured 

cells. Apoptosis is executed via the intrinsic and extrinsic apoptotic pathways by caspases; initiator 

(caspase -8 and -9) and the executioner (caspase -3/7) (Elmore, 2007). KA has known functions in the 
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inhibition of cell proliferation and the reduction of tumour growth (Chen et al., 2013). Although KA is 

known to inhibit cell proliferation, little is known on its inhibitory mechanism. 

Research determining the effects of KA on oxidative stress, MAPK signalling, and inflammation have 

been established in some animal and human models, however, liver toxicity remains neglected. This 

study investigates the effect of KA on oxidative stress, MAPK signalling pathway and NFκB 

inflammatory responses in the human liver (HepG2) cell line. Results from this study provide insights 

into the role of KA in liver toxicity. 
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CHAPTER 1 

LITERATURE REVIEW  

1.1. Kojic acid 

Kojic acid (KA) is a secondary metabolite formed by aerobic respiration in several fungal species 

belonging to the genera Penicillium and Aspergillus (Parrish et al., 1966, Mohamad et al., 2010, El-

Kady et al., 2014). Several carbon sources are used in KA production, such as glucose, sucrose, 

arabinose, xylose, acetate, and ethanol (Burdock et al., 2001). There are several uses of KA in the 

agricultural, food, cosmetic, and medicinal industries. KA has been used as a pesticide and insecticide 

due to its antifungal and antibacterial properties (Lee et al., 1950, Beard and Walton, 1969, Uher et 

al., 1994, Kim et al., 2012, Wu et al., 2019). It inhibits melanin production to reduce skin conditions 

for example melasma (Bandyopadhyay, 2009). KA is also used to preserve food by preventing the 

discolouration of fruits and acting as a flavour-enhancing additive (Chen et al., 1991, Burnett et al., 

2010, Deri et al., 2016).  

1.1.1. Chemical structure of Kojic acid 

KA is known by the chemical nomenclature 5-hydroxy-2-hydroxymethyl-γ-pyranone (C6H6O4). KA 

was first discovered in 1907 in mycelia of A. oryzae, but the structure was later discovered in 1924 

(Beelik, 1956, Belsito et al., 2009). KA is a weak acid with a hydroxyl group on the C5 position of the 

heterocyclic structure (Fig 1.1). KA has an amylene oxide ring structure similar to that of glucose; 

however, the KA ring structure is stable. The compound structure allows for the formation of salts by 

the chelation of metals (Beelik, 1956, Saeedi et al., 2019). KA can form salts with metals such as 

sodium, copper, zinc, calcium, nickel, and cadmium (Coupland and Niehaus, 1987a, Saeedi et al., 

2019). This attribute has been exploited in the inhibition of melanin (Azami et al., 2017). 

KA was considered a mycotoxin due to its contamination of maize and poultry feed and co-existence 

with aflatoxins (Parrish et al., 1966, Souza et al., 2013). With the emergence of more research into 

KA, it was suggested that KA does not exhibit mycotoxin risks to human health (Bentley, 2006). The 

lack of research in some aspects of the efficacy of KA on human health may be the reason for KA's 

varying classification. This draws attention to the need for more research into the health effects of 

KA. 
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Figure 1.1 The chemical structure of KA derived from Aspergillus oryzae fungi. Chemical 

structure was drawn using PubChem Sketcher Version 2.4. 

1.2.2. Absorption, distribution, and metabolism of Kojic acid 

KA is absorbed and distributed in the body through the dermal, transdermal, and oral routes of 

exposure. An in vitro study by Sansho Seiyaku Co., Ltd determined that the percutaneous absorption 

of 2 mg/cm
3 

KA  administered to human dermatomed skin, with 16.98% of the administered KA  

percutaneously absorbed following 16 h incubation. This study was further validated in humans. 

Women who applied creams containing 1% KA to their skin for a period of 0.5, 1, 1.5, 3, 6, 12 and 24 

h were found to have 1 ng/ml KA in their plasma. This study found low penetration of KA into the 

bloodstream; however, no adverse effects were identified (Sansho Seiyaku Co., 2001). 

 

The consumption of fermented food containing undetermined quantities of KA showed blood plasma 

concentrations of 1-8 µg/ml within 12-24 h. This, as well as other studies, indicated that KA was 

absorbed by the gastrointestinal tract (Niwa and Akamatsu, 1991, Higa et al., 2000). According to the 

International Agency for Research on Cancer (IARC), studies into the metabolism of KA have not 

been established. KA's structure allows for a metabolism similar to that of dietary hexoses (Burdock 

et al., 2001). The in vitro metabolism of KA to comenic aldehyde has been carried out in 

Anthrobacter ureafaciens (K-1), a soil-dwelling microorganism that utilises KA as a sole carbon 

source. The proposed enzyme responsible for the degradation of KA was hypothesized to be a non-

heme iron protein-containing ferric ion responsible for accepting hydrogen (H
+
) released from KA 

(Imose et al., 1970). The ferrous ion formed is oxidised by oxygen (aerobic conditions) or 

nicotinamide adenine dinucleotide (NAD) (anaerobic conditions) to produce hydrogen peroxide 

(H2O2) and reduced NAD, respectively (Fig 1.2) (Imose et al., 1970). 
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Limited data is available on the absorption, distribution, metabolism, and excretion of KA in humans; 

however, more information is available on the distribution and metabolism of KA in rat models. [
14

C] 

KA was used to dose JCL Wistar rats with 10 µCi/100g via oral, subcutaneous, and dermal routes. 

The study found that KA was rapidly distributed in tissues and organs within 30 mins of 

administering a single oral dose. Additionally, very high levels of KA were found in the liver, kidney, 

and pancreas, while high levels were found in the lung, heart, and spleen. Blood KA levels were 

assessed after 0.5, 1, 3, 6, 24, and 48 h of KA administration. In the blood, a 20.63% and 25.05% 

decrease in administered KA doses was observed at 30 min and 1h, respectively. Assessment of bile 

revealed 0.5 µCi/10µCi of the administered dose within 24 h and no enterohepatic circulation 

occurred. The elimination of KA from the body was assessed in rats following a single oral dose; it 

was found that approximately 70% was in urine, and 0.82% of the administered quantity was excreted 

in faeces within 48 h (Sansho Seiyaku Co., 2001). 

 

Subcutaneous and dermal exposures, showed high levels of KA in the kidney within 30 min and 1h; 

however, there was no significant KA was found in the liver (Sansho Seiyaku Co., 2001, Burnett et 

al., 2010). Blood KA levels were found to be 13.29% and 21.67% of the administered dose within 30 

min and 1 h of subcutaneous exposure and 5% detected through dermal exposure after 30 min. 

Assessment of bile found 0.76 µCi/10 µCi for subcutaneous and dermal exposures, respectively. The 

excreted doses were more significant in urine samples within 48 h measuring 50% and 56% of the 

subcutaneous and dermal administered doses. Expired air was assessed within 5 h and found 1.4% of 

the subcutaneous single administered dose (Sansho Seiyaku Co., 2001). 

 

A repeated dose for subcutaneous exposure in JCL Wistar rats for a period of 7 days was assessed. 

Observation of the relationship between [
14

C] KA and blood and urine samples revealed an increase in 

the concentration of KA detected until equilibrium was reached. The distribution of KA significant in 

organs and tissues, namely the intestinal tract, pancreas, and adipose tissue was assessed at 10 min, 1, 

6, 24, and 48 h. The excreted concentration was assessed in urine and bile. Metabolites such as 

sulphate conjugated to KA (35.6-93.7%) and glucuronides (6.4-39.6%) were detected in urine and bile 

(Sansho Seiyaku Co., 2001). In a review by the Scientific Committee of Consumer Products (SCCP), 

repeated doses of KA showed a significant increase in concentrations distributed and excreted 

compared to a single dose. 

 

The pregnant rats and nursing rats were dosed with 10 µCi/100g to illustrate KA's transfer from 

nursing JCL Wistar rats and pups via milk, amniotic fluid, uterus, and placenta. The pregnant rats 

were dosed subcutaneously on the 11
th
 and 20

th
 day of gestation. Foetuses were examined following 

removal at 10 min, 30 min, and 3 h after treatment. After treatment, very high KA levels were 

observed in the kidney, liver, pancreas, spleen, salivary glands, and lungs. KA levels were detected 
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within 30 min in the uterus, placenta, amniotic fluid, and foetus. The distribution of treatment in the 

foetus was similar to that of the adults displaying elevated KA levels in the liver and gastrointestinal 

tract. The milk transfer study was dosed on the 3
rd

 day of lactation, and pups were examined at 30 

min, 1 h and 3 h. The pups' stomach wall and contents had 0.02% KA after a 3 h incubation. KA is 

distributed freely to the foetus, uterus, reproductive organs, and secreted milk in JCL Wistar rats 

(Sansho Seiyaku Co., 2001, SCCP, 2008). 

 

Figure 1.2 Proposed metabolism of KA in microorganisms (prepared by author) 

1.2.3. Mechanism of tyrosinase inhibition 

Melanin is produced by the transportation of structural proteins from the endoplasmic reticulum (ER) 

and the fusion of melanosome-specific regulatory glycoproteins. These glycoproteins are released as 

coated vesicles from the Golgi apparatus. They are sorted and transported to the melanosome. 

Melanin is produced in melanocytes and then transferred to keratinocytes hence forming 

pigmentation. Melanogenesis is important for protecting the skin from ultraviolet radiation (UV) 

(Brenner and Hearing, 2008, Zolghadri et al., 2019).  

 

Polyphenol oxidase (tyrosinase) is widely found in plant and animal tissue (Pawelek and Körner, 

1982, Mayer, 1986). It is a metallo-protein enzyme-containing histidine residue that binds copper ion 

at its active site (Gillbro and Olsson, 2011). The enzyme is responsible for the colour of epidermal 

cells such as skin, eyes, and hair of animals (Pekkarinen et al., 1999). Tyrosinase catalyses two steps 

in melanogenesis; the hydroxylation of tyrosine to 3, 4-dihydroxyphenylalanine (L-DOPA) as 

monophenolase and the oxidation of L-DOPA to dopaquinone (Fig 1.3) (Kim et al., 2003).  

 



23 
 

There are two types of melanin in skin, namely pheomelanin and eumelanin. Depending on the type 

of melanin being produced, either dopachrome or cysteinyldopa can be formed. Cysteinyldopa 

produces pheomelanin, whereas dopachrome is used to produce eumelanin with the assistance of 

tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2 (TRP-2).  The melanosomes are 

transferred to keratinocytes by TRP-1 and TRP-2 (Masum et al., 2019). KA has the ability to form 

salts with metals such as sodium, copper, zinc, calcium, nickel, and cadmium (Coupland and Niehaus, 

1987b, Saeedi et al., 2019). KA chelating properties are crucial in the inhibition of tyrosinase activity. 

KA inhibits the process by chelating the copper ion (II) found in tyrosinase hence decreasing melanin 

production (Chen et al., 2013). KA is a slow-binding inhibitor that binds to active tyrosinase present 

(Chang, 2009). KA inhibits melanosis by inhibiting oxygen uptake that aids in browning. The 

competitive inhibition of tyrosinase has led to its use as a preservative in food products and as a skin 

lightening agent in the beauty industry (SCCP, 2008). 

 

Other skin lightening compounds are also tyrosinase inhibitors, such as hydroquinone (HQ). HQ is a 

preferred treatment for hyperpigmentation; however, it has chronic side effects such as nephrotoxicity 

and carcinogenesis (Findlay et al., 1975, Kooyers and Westerhof, 2004). Due to safety concerns, HQ 

is no longer used to treat hyperpigmentation, and KA has become a more popular option due to its 

similar mechanism of action. A study by Azami et al. (2017) evaluated KA's tyrosinase inhibition 

potency by assessing KA's interaction with mushroom tyrosinase binding sites. KA bound to the 

histidine at sites, His263, His259, His296, His94, His85, and His61. It was found that tyrosol and KA 

bind to region 1 of tyrosinase and therefore, compete for binding. KA is a potent inhibitor of 

tyrosinase, displaying more interactions, and better binding with tyrosinase (Azami et al., 2017). 
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Figure 1.3 KA inhibits tyrosinase activity in animals and humans. Chemical structures were 

drawn using PubChem Sketcher Version 2.4. 

1.2.4. Effects of KA in vitro and in vivo 

1.2.4.1. Biological effects of KA in vitro 

KA is commonly referred to as an anti-tumour and anti-cancer treatment. A study assessing the 

proliferative nature of KA and its derivatives in HeLa cells found that KA (25 µg) did not induce cell 
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cycle arrest in the absence and presence of 50 µM copper ion (Chen et al., 2013). A proteomic 

assessment of KA [8 µg/ml] (safe recommended concentration) was used to treat A375 cells for 24, 

48, and 72 h. At 72 h, a significant fold-change of 16 differentially expressed proteins responsible for 

apoptosis and cell signalling, namely p53, Ras/mitogen-activated protein kinase kinase (MEK)/ the 

extracellular-regulated kinase (ERK), RAF-1, and B-cell lymphoma 2 (Bcl-2), was observed. KA 

suppressed heat-shock proteins (HSP), which are proteins found to facilitate tumour growth and 

survival (Nawarak et al., 2008), validating KA’s anti-cancer potential.  

 

KA is well-established as a skin lightener due to the inhibition of tyrosinase activity. The inhibition of 

tyrosinase activity has been associated with proliferation due to microphthalmia-associated 

transcription factor (MITF) functions in cell survival and differentiation (Hodgkinson et al., 1993, 

Hughes et al., 1993). KA-induced cytotoxic effects on B16F1 melanoma cells at higher concentrations 

[125- 500 µg/ml] but not at lower concentrations [7.81- 31.25 µg/ml] (Lajis et al., 2012). 

Inflammatory mediators play a role in melanocyte proliferation, differentiation, and pigmentation (Lin 

and Fisher, 2007). KA [0.2 mM] inhibited melanogenesis by stimulating interleukin-6 (IL-6) in 

keratinocyte and melanocyte co-cultures (Choi et al., 2012). 

 

KA’s ability to treat skin conditions was determined on human transfected-HaCaT and SCC-13 cells. 

It was found that 10 mM KA was a potential inhibitor of nuclear factor kappa B (NF-κB) activation in 

human epithelial cells for 24 h (Moon et al., 2001). Many skin-related conditions, such as psoriasis 

and keloids, exhibit elevated inflammatory markers during the condition's development and 

progression. KA [100 µM] was found to be a potential inhibitor of senescence through NF-κB and 

p21 pathways in HCEC cells following treatments at 1, 3, 5, and 7 days (Wei et al., 2019). The p21 

plays a role in the cell cycle, apoptosis, and transcriptional regulation after DNA damage has 

occurred. The p21 protein was found to inhibit caspase 3 and 9 activations, resulting in apoptosis 

prevention (Karimian et al., 2016).  

 

KA is known to be a chemo-sensitising agent of complex III inhibitors in the electron transport chain 

(ETC) (Kim et al., 2013). As a result of the sensitisation of complex III inhibitors, cellular energy 

production may be disrupted, resulting in the escape of electrons leading to reactive oxygen species 

(ROS). A study by Oncul et al. (2019), highlighting the initiation of the intrinsic pathway of apoptosis 

by KA derivatives, found an approximate IC50 of KA > 100 µM. It was also found that KA derivatives 

had increased ROS production in HepG2 cells. Pro-apoptotic factors such as c-Jun-N-terminal kinase 

(JNK) and Bax were not upregulated; however caspase 3 was activated. KA did not produce the same 

effects in HepG2 cells at 100 µM (Oncul et al., 2019). Studies by Niwa and Akamatsu (1991) on 

neutrophils and lymphocytes have shown a reduction in ROS following KA exposure [5 and 20 

µg/ml] in both xanthine oxidase systems and neutrophils.  
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1.2.4.2. In vivo studies 

1.2.4.2.1. Animal Toxicity 

Skin lightening treatments such as HQ have been found to cause DNA adducts and promote 

carcinogenesis. Research into the effect of KA on carcinogenesis in rats measured the DNA adduct 

formation and cell proliferation in hepatocytes. A study by Higa et al. (2007) investigated 

carcinogenic initiation potential in 2% KA orally treated F344 rats for 4 weeks with sodium 

phenobarbital (PB), a carcinogenic promotor, and found no significant increase in pre-neoplastic 

legions shown by biomarker glutathione S-transferase placental (GST-P) positive foci ( > 0.2 mm). 

An increase was observed in a group initiator treatment without promotion treatment (Higa et al., 

2007). The result showed an increase in proliferation but no significant 8-oxodeoxyguanosine levels 

(8-OxodG) in male F344 rats receiving 2% KA doses for periods of 3, 7, and 28 days. F344 rats dosed 

with KA once [0, 1000, 2000 mg/kg body weight] for 2 weeks showed no liver tumour initiating 

capacity, but some data showed that liver tumours may occur. Interestingly, KA did not exert rat liver 

initiation in tumours following a single dose (Watanabe et al., 2005 ); however prolonged dietary 

intake showed increased tumour promotion. Contrary to in vitro studies, in vivo mice studies found no 

data suggesting KA has potential to initiate tumours following liver assessments (Ishikawa et al., 

2006, Moto et al., 2006, Ogiwara et al., 2015). With contrasting results in in vivo and in vitro models 

regarding KA, no conclusive deductions could be obtained. 

 

The genotoxic tumour initiating potential of KA (0, 0.002, 0.02 and 2%) was assessed in rat thyroid at 

various periods (2-31 weeks), and found that oxidative stress was decreased accompanied by the 

absence of DNA-adducts. It was established that there was low to no genotoxicity of KA in the 

thyroid (Tamura et al., 2006). Similarly, Fujimoto et al. (1999) determined KA proliferative effect in 

the thyroid was not influenced by KA genotoxicity.   

 

KA toxicity in terms of lipid peroxidation and iron chelation was assessed in CD-1 mice dosed [100 

mg/kg in 0.25% methylcellulose] for 7 days, and male Wistar rats dosed ad libitum [0.5% KA] in 

water for 4 weeks. Oral doses of 100 mg/kg for 7 days did not affect iron levels accumulated in the 

liver compared to the control (iron chelator- deferoxamine); however, increased lipid peroxidation 

was observed. Oral doses of 0.5% KA for 4 weeks did not have any effect. KA showed minimum 

effect with no protective effect against reperfusion injury (Kotyzova et al., 2004). This result was 

validated in rabbit hearts dosed with 30 µM, displaying no protective function after reperfusion 

illustrated by any improvement in left ventricular function (Katoh et al., 1992).  

 

The teratogenic capabilities of KA are not fully established; however, Choudhary et al. (1992) found 

an increase in mortality and decreased litter size, implantation sites, and viable litters following KA 
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exposure. The study was conducted in Sprague Dawley rats dosed from day 1-5 (female) post-coitum 

with KA (50 µg/day/rat). The rats were laparotomised at day 8, and the corpora luteum comparison 

found no change compared to the control. The study concluded an increase in mortality with no 

teratogenic effects (Choudhary et al., 1992). 

 

A risk assessment of KA in feed due to mycotoxin contamination was assessed in broiler chickens [> 

2 g/kg] between hatchlings and 21-day old chickens. A decrease in growth rates in 21-day old birds as 

well as effects on pro-ventriculus, gizzard, pancreas, and Bursa of the Fabriculus following KA 

treatment [4 - 8 g/kg] was observed (Giroir et al., 1991). Notably, KA was a gastrointestinal irritant 

and inflammatory promotor of the pro-ventriculus and gizzards. Liver toxicity was observed by the 

increase in relative weight and serum glutamic oxaloacetic transaminase (GOT) activity. The Bursa of 

Fabricius' immune activity was altered along with pancreas toxicity. Haematological effect included 

increased red blood cells and decreased mean corpuscular volume. This was hypothesized to be due to 

the stimulation of erythropoiesis and hemoconcentration (Giroir et al., 1991). 

 

Previous studies by Klein and Olsen (1947) stated that low KA concentrations inhibit oxidation 

enzymes in rat livers, namely D-amino acids, L-phenylalanine, and L-methionine. Giroir et al. (1991) 

further proved the altered activity of serum GOT, alkaline phosphatase, and creatine kinase. It was 

established that KA increased total protein, cholesterol, albumin, and triglycerides due to alterations 

in lipid and protein metabolism; however, more research is required to deduce the mechanisms by 

which KA causes these serum concentration changes.  

 

Kidney dysregulation was observed by the increased concentration of uric acid and serum glucose 

concentrations, possibly, due to damage to the Islets of Langerhans in the pancreas. The alteration of 

glucose could explain the decreased colon temperature in the 8 g/kg KA-treated chickens (Giroir et 

al., 1991). Notably, 2 g/kg and above concentrations caused toxicity detrimental to broiler chicken 

health. Contaminated feed was found to contain KA concentrations of 1 to 25 mg/g; however, Wilson 

(1966) found only trace amounts of KA that do not pose a risk to chicken health. 

1.2.4.2.2. Human Toxicity 

KA is commonly used in creams for beauty applications. To determine sensitivity, 107 patients with 

chloasma were treated with KA creams [2.5% KA] twice daily for an average of 9.5 months. Two 

individuals developed facial dermatitis due to hypersensitivity. No sensitivity was detected in 66 

patients with chloasma (Nakayama, 1982) and 31 healthy subjects when treated with the cream [1% 

KA] (Hira et al., 1985). According to studies carried out by Nakayama (1982), no sensitivity was 

detected following the use of KA creams. 
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In a similar study by Nakagawa et al. (1995), the frequency of sensitisation to KA was assessed in 

patch tests of 220 female patients with suspected cosmetic-related dermatitis. Of the total patients, 8 

used one skin product with KA. Five reacted to KA and one or more products containing 1% KA. 

Three remaining patients showed no reaction to products containing KA. The 212 patients who did 

not use KA previously showed no adverse results (Nakagawa et al., 1995).  

. 

1.3. Cell Death 

Cell death is a process employed by the body to maintain physiological and pathological homeostasis 

during cellular stress. Cell death also allows for the release of chemicals (danger signals) by the dying 

cells to alert the organism or colony of a potential threat (Galluzzi et al., 2018). The process of cell 

death can be categorised into two categories: programmed cell death and accidental cell death. 

However, some overlap of characteristics does exist (Galluzzi et al., 2018). 

1.3.1. Apoptosis (Programmed cell death) 

Apoptosis is a regulated, genetically determined process that occurs when the cell undergoes self-

destruction. The process ensures the elimination of damaged cells that may exhibit protein cross-

linking, protein cleavage, and DNA breakdown (Hengartner, 2000, Elmore, 2007).  

The mechanism of apoptosis is an energy-requiring process that initiates alterations in biochemical 

features of the cell. When apoptosis occurs in a cell, there are characteristic changes such as 

chromatin condensation, nuclear fragmentation, reduction of cellular volume, reduction of 

pseudopods, and the rounding of the cell (Hanahan and Weinberg, 2000). The condensation of 

chromatin occurs at the periphery of the nucleus and can be visualised as a ring structure. The 

chromatin further condenses and breaks up by a process termed karyorrhexis. Throughout this 

process, the cell membrane remains intact. Loss of membrane integrity and membrane blebbing 

occurs at later stages of apoptosis. In normal functioning cells, phagocytic cells engulf apoptotic cells 

as soon as detected.  

Caspases (cysteine aspartic proteases) are proteolytic enzymes that cleave aspartic residues on 

proteins, resulting in apoptosis induction (Shalini et al., 2015). There are ten main categories of 

caspases that are responsible for different specificities. They are categorised into initiators (caspases -

2, -8, -9 and -10), executioners (caspases -3, -6 and -7) and inflammatory caspases (caspases -1, -4 

and -5) (Cohen, 1997). The two main pathways of apoptosis are the extrinsic (death receptor) pathway 

and the intrinsic (mitochondrial) pathway (Fig 1.4). 

1.3.1.1. The intrinsic apoptotic pathway 

The intrinsic pathway is stimulated by external stimuli that include DNA damage, ischemia, and 

oxidative stress. The activation of the intrinsic pathway occurs via the mitochondria and is affected by 

both pro-apoptotic and anti-apoptotic members of the Bcl-2 family. Under stress conditions, the inner 
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mitochondrial membrane (IMM) permeability increases, allowing molecules to enter into the 

mitochondrial matrix leading to the disruption of the oxidative phosphorylation (OxPHOS). Osmotic 

swelling and the compression of vesicles cause unfolding of the inter-cristae space (Redza-Dutordoir 

and Averill-Bates, 2016). An increase in the outer mitochondrial membrane permeabilisation 

(MOMP) results in the release of pro-apoptotic proteins, namely cytochrome C, apoptosis-inducing 

factor (AIF), endonuclease G (endo G), and secondary mitochondria-derived activator of 

caspases/direct inhibitor of apoptosis (IAP)-binding protein with low pI (Smac/Diablo). In the cytosol, 

cytochrome C forms an apoptosome complex with apoptotic protease-activating factor 1 (Apaf-1) and 

procaspase-9 (Redza-Dutordoir and Averill-Bates, 2016). The hydrolysis of adenosine triphosphate 

(ATP) by the apoptosome complex allows for the cleavage of caspase-9, which in turn cleaves 

caspase -3, -6, and -7. The activation of executioner caspases results in apoptosis (Loreto et al., 2014). 

Members of the Bcl-2 family responsible for exerting anti-apoptotic functions are mainly located at 

the outer mitochondrial membrane (OMM). They form heterodimers with pro-apoptotic proteins 

(Bax, Bim, Bak, Bad), thus inhibiting pro-apoptotic signalling (Redza-Dutordoir and Averill-Bates, 

2016)  

1.3.1.2. The Extrinsic apoptotic pathway 

The extrinsic pathway of apoptosis occurs through the transmembrane receptor-mediated interaction. 

These receptors are involved in transmitting death signals from the cell surface to the intracellular 

signalling pathway (Wong, 2011). The death receptors and ligand pairs include FasL/FasR, 

TNFα/TNFR1, Apo3L/DR3, Apo2L/DR4, and Apo2L/DR5 (Elmore, 2007). Binding of ligands to 

respective receptors results in the recruitment of cytoplasmic adaptors; fatty acid synthetase ligand 

(FasL) binding to the fatty acid synthetase receptor (FasR) results in the recruitment of Fas-associated 

death domain (FADD). Tumour necrosis factor-alpha (TNF-α) binds to the tumour necrosis factor 

receptor-1 (TNFR1) resulting in the binding of TNF receptor-associated death domain (TRADD) and 

recruitment of FADD and receptor interacting protein (RIP). FADD dimerizes with procaspase-8 at 

the death effector domain. A death-inducing signalling complex (DISC) is formed, which activates 

pro-caspase 8 (Elmore, 2007). 

 

The execution of apoptosis is the final pathway initiated by the activation of execution caspases -3, -6, 

and -7. These caspases activate cytoplasmic endonucleases and proteases, which degrade nuclear 

material and cytoskeleton and nuclear proteins, respectively (Elmore, 2007). Caspase 3 plays a crucial 

role in the execution pathway by the cleavage of the inhibitor of caspase-activated DNAse (CAD), 

known as ICAD. CAD degrades chromosomal DNA leading to chromatin condensation. Caspase 3 

also plays a role in inducing apoptotic body formation (Elmore, 2007). 
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Figure 1.4 Overview of the intrinsic and extrinsic apoptotic pathways (Wong, 2011) 
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1.3.2. Necrosis 

Necrotic cell death is characterised as the swelling and rupturing of intracellular organelles resulting 

in plasma membrane breakdown. The cell contents, such as cytoplasmic enzymes, are released into 

the extracellular matrix (Chan et al., 2013). The plasma membrane leakage results in the mediation of 

inflammatory responses. Cytokines in the TNF family have been found to trigger necrosis. The 

defining difference between necrosis and apoptosis is plasma membrane lysis before the activation of 

catabolic enzymes in necrotic cell death as opposed to activation of proteases and endonucleases 

before lysis of the cell (Kroemer et al., 1998). A key marker of necrotic death and membrane damage 

is the leakage of lactate dehydrogenase (LDH), found in the cells' cytoplasm (Chan et al., 2013). 

 

1.4. Liver 

1.4.1. Function and hepatotoxicity 

The liver is often affected by toxic insult due to its role as a hub of metabolic activity. The liver uses 

lysosomes for the detoxification of xenobiotics via biotransformation. Liver metabolism converts 

lipophilic compounds into a hydrophilic compound in a two-phase process. Biotransformation occurs 

primarily in the endoplasmic reticulum in hepatocytes. The reactions in phase I are carried out by 

cytochrome P450 (CYP450) enzymes. In phase I, the product undergoes oxidation, reduction, or 

hydrolysis, resulting in an oxygen species' addition. The addition of the oxygen species allows for 

greater reactivity of enzymes with the xenobiotic. Phase II involves the conjugation of glucuronate, 

glutathione, or sulphate to the compound enabling the secretion into blood or bile (Kalra et al., 2020 ).  

Due to the liver's relationship with the gastrointestinal tract and its functions in the detoxification of 

xenobiotics, the liver is prone to toxic insults (Abou Seif, 2016). Injury or impairment of the liver can 

be severe for an individual's health. Hepatotoxicity is dependent on the dose, type of xenobiotic, and 

frequency of exposure (Casas-Grajales and Muriel, 2015). 

1.5. Oxidative stress 

The overproduction of reactive species can cause an electrochemical imbalance resulting in oxidative 

stress. ROS is a term used to refer to metabolic by-products such as superoxide radicals (O2
•−

), H2O2, 

and hydroxyl radicals (•OH) of biological processes (Pizzino et al., 2017). The majority of 

intracellular ROS is produced in the mitochondria (Murphy, 2009); however, the organelle is also a 

target of ROS damage (Ott et al., 2007). Oxidative stress has been associated with diseases due to 

oxidative damage to biomolecules, such as DNA, lipids, and proteins (Liguori et al., 2018).  

1.5.1. Mitochondrial production of reactive oxygen species (ROS) 

The mitochondrion, commonly referred to as the 'powerhouse of the cell', is a double-membrane 

structure that provides energy in the form of ATP for intracellular metabolic processes. The 
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mitochondria also have various roles in nicotinamide adenine dinucleotide phosphate (NADPH) 

synthesis, DNA repair, metabolic pathways, and cell death (Kakkar and Singh, 2007). The ETC 

consists of transmembrane complexes (I-IV), ubiquinone, and cytochrome c, present in the cristae 

(folded inner membrane of mitochondria).  

The mitochondrial ETC complexes may leak electrons to molecular oxygen leading to the production 

of superoxides. Superoxide radicals are produced by NADPH oxidase, xanthine oxidase, and 

peroxidases and non-enzymatic electron transfers to molecular oxygen (Pizzino et al., 2017). 

Superoxide production occurs in the IMM. In the ETC, electrons are transferred by NADH and flavin 

adenine dinucleotide (FADH2) to complex I and II, and electrons are transferred to complex III by 

coenzyme ubiquinone (Zhao et al., 2019). Ubiquinone plays a role in linking complexes I and III, 

complex I and II, and superoxide production by complex III (Fig 1.5) (Ott et al., 2007). The 

superoxide anion is a precursor for most ROS and yields hydrogen peroxide, peroxynitrite, and 

hypochlorous acid. The reaction occurs in the presence of catalysts such as Fe
2+ 

and Cu
+
 (Fenton 

reaction) (Pizzino et al., 2017). 

 

Figure 1.5 Overview of the ETC present in mitochondria and responsible for producing ATP in 

the cell (Zhao et al., 2019) 

1.5.2. Lipid peroxidation 

Lipid peroxidation is a process that involves reactive species oxidising lipids to form aldehydes and 

peroxides. The products formed in lipid peroxidation are more stable than parent reactive species and 

exit the site of generation and inflict tissue damage and dysfunction. The lipid peroxidation products 

are highly reactive and can exert their effects on DNA, protein, and cell signalling (Ramana et al., 

2013). Reactive species attach lipids with carbon-carbon double bonds, especially polyunsaturated 

fatty acids (PUFAs). 

 

Lipid peroxidation is a 3-step process that involves an initiation, propagation, and termination step. 

The initiation step consists of hydrogen abstraction whereby peroxidants abstract allylic hydrogen to 
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form a carbon-centered lipid radical. The propagation step involves the lipid radical reacting with 

oxygen to form lipid peroxy radicals that further abstracts hydrogen from another lipid, thus forming a 

new lipid radical. This initiates a chain reaction between neighbouring lipid molecules. The chain 

reaction continues until a donor antioxidant, such as vitamin E, donates hydrogen to a lipid radical to 

form a nonradical product (Fig. 1.6). This is known as the termination step in lipid peroxidation 

(Ayala et al., 2014). 

 

 

Figure 1.6 The chain reaction that occurs in lipid peroxidation illustrating the key steps i) 

initiation, ii) propagation, and iii) termination (Gaschler and Stockwell, 2017) 

1.5.3. Oxidative DNA damage 

DNA plays a crucial role in transferring genetic information in living organisms. DNA structural 

damage can occur due to endogenous and exogenous factors. A common cause of DNA modifications 

is ROS, while external factors such as ultra-violet radiation can also play a role (Wiesmüller et al., 

2002). The effect of DNA damage, depending on where in the cell the damage occurs, can cause cell 

cycle arrest resulting in cell death. In the event of oxidative DNA damage, modifications of purine 

and pyrimidine bases, deoxyribose backbone, single and double-strand breaks, and cross-links with 

other molecules occur (Ott et al., 2007). DNA modifications have been implicated in premature aging, 

cancer, and neurodegenerative diseases. Mitochondrial DNA (mtDNA) is particularly susceptible to 

damage by ROS potentially due to the absence of a complex chromatin organisation which functions 

as a barrier to ROS, proximity of the OxPHOS, inadequent DNA repair mechanisms in the 

mitochondria and the effect of secondary ROS reactions on mitochondrial membranes due to lipid 

peroxidation (Yakes and Van Houten, 1997, Ott et al., 2007, Singh et al., 2015). 

A common reactant with DNA is the OH
•  

that adds double bonds and abstracts H
+
 from the methyl 

group of thymine and the CH bond at the 2'-deoxyribose. Oxidative DNA damage occurs at the C5, 

C6, and C8 positions, which results in the C5-OH and C6-OH pyrimidine adduct radicals (Cooke et 

al., 2003). The DNA adduct radicals formed is dependent on redox capabilities. A common adduct 

formed due to ROS is 8-hydroxydeoxyguanine (8-OHdG) and is generated by eliminating the OH
-- 

at 
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the C4 position of guanine. The pH determines the occurrence of deprotonation, which could lead to a 

guanine (H
--
)

•
 product. The resultant cation forms a C8-OH, and subsequently, oxidation occurs to 

form DNA modified products (Fig 1.7). An H abstraction between 8-oxoguanine and 2'-deoxyribose 

results in DNA strand breaks (Cooke et al., 2003).  

 

Figure 1.7 The formation of 8-OHdG DNA adduct due to oxidative stress (Valavanidis et al., 

2009) 

1.5.4. ROS-mediated cell signalling  

ROS functions as a secondary messenger to signalling pathways responsible for cell proliferation and 

differentiation. A change in ROS levels initiates the transduction of signalling molecules from the 

plasma membrane to the cell nucleus to exert their functions. ROS interacts with protein kinases, 

protein phosphatases, and transcription factors such as mitogen-activated protein kinase (MAPK) and 

NFκB (Sauer et al., 2001, Zhang et al., 2016). 
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1.6. Response to oxidative stress 

1.6.1. Nuclear factor erythroid-2 factor 2 (Nrf2) pathway 

Antioxidants scavenge free radicals and reduce their reactivity to maintain the balance of oxidants and 

antioxidants (Casas-Grajales and Muriel, 2015). Mammalian cells have defence mechanisms to 

facilitate the intracellular environment's decontamination to return to homeostasis within cells by 

scavenging ROS (Basak et al., 2017). Nrf2 is responsible for the induction of the phase 2 response 

when oxidative stress is detected as a cellular defence mechanism. This process is dependent on the 

dissociation of kelch-like ECH-associated protein-1 (KEAP-1) from Nrf2. Nrf2 has a high affinity for 

KEAP-1 dimers and therefore binds to each other. KEAP-1 is a repressor that contains zinc that is 

bound to a reactive cysteine thiol. Nrf2 release from KEAP-1 requires the phosphorylation of Ser40 

by protein kinase C (PKC) and oxidation of the cysteine thiol groups of KEAP-1 (Basak et al., 2017). 

Free Nrf2 then translocates into the nucleus, where it acts as a transcription factor that activates the 

antioxidant response element (ARE) and initiates the transcription of antioxidant genes such as 

catalase (CAT) and superoxide dismutase (SOD2) (Fig 1.8). CAT neutralises free radicals by reducing 

peroxides to water and oxygen (Zhang et al., 2017). SOD2 converts superoxide into H2O2 and oxygen 

(Wang et al., 2018).  

 

 

 



36 
 

 

Figure 1.8 Nrf2-KEAP1 pathway illustrating antioxidant regulation in the cell. Nrf2 is 

dissociated from KEAP1 upon oxidation and translocates to the nucleus. While in the nucleus, 

Nrf2 binds to the ARE that facilitates the transcription of genes that play a role in antioxidant 

response (Chen et al., 2014) 

1.7. Immune response 

1.7.1. MAPK pathway  

The MAPK is an intracellular signalling pathway consisting of serine/threonine kinases involved in 

cell differentiation, growth, development, cell cycle, cell survival, and cell death (Junttila et al., 2008). 

The general mechanism of MAPK cascade involves stimuli-induced activation of upstream kinases by 

cell receptors. This leads to sequential action (MAPKKK  MAPKK  MAPK) (Junttila et al., 

2008). MAPK downstream kinase activation occurs at the tripeptide motif, which forms the basis of 

the classification of the ERK, p38, and JNK. The classification of kinases is based on the sequence of 

the tripeptide. JNK and p38 are termed stress-activated protein kinases (SAPK) due to their roles in 

inflammatory and environmental stress responses (Fig 1.9) (Plattner and Bibb, 2012).   

The p38 protein has physiological roles in both the cytoplasm and nucleus. MAPK p38 has shown 

functions in cell cycle progression, chromatin remodelling, mRNA stability, cytoskeleton 

reorganisation, metabolism, and many other cellular processes.  In apoptotic pathways, P38 has been 

implicated in the delayed response to apoptosis by activating p21 and tumour suppressor protein 

(p53), resulting in cell death (Debacq-Chainiaux et al., 2010). The activation of p38 occurs via the 
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dual phosphorylation of Thr-Gly-Tyr by mitogen-activated protein kinase kinase 3 (MKK3) and 

mitogen-activated protein kinase kinase 6 (MKK6). These MKK's are highly selective to p38 and are 

unable to phosphorylate JNK and ERK1/2. P38 has been associated with the regulation of pro-

inflammatory cytokines such as IL-1, IL-6, IL-8, TNF-α, and cyclooxygenase-2 (COX-2) (Cuenda 

and Rousseau, 2007).  

JNK has a wide array of functions from neuronal and immunological functions to gene expression, 

cell death, and survival pathways (Zeke et al., 2016). Protein kinase mitogen-activated protein kinase 

kinase 4 (MKK4) and mitogen-activated protein kinase kinase 7 (MKK7) activate JNK via dual 

phosphorylation at Tyr and Thr (Weston and Davis, 2002). JNK is responsible for the activation of c-

Jun, which leads to increased expression of activator protein-1 (AP-1). AP-1 (c-Jun & c-Fos) 

regulates cell growth, differentiation, and cytokines transcription (Fisher and Voorhees, 1998, Xie et 

al., 2013b).  

 

 

 

Figure 1.9 Overview of the MAPK pathway and oxidative stress (prepared by author) 
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1.7.2. Inflammation 

Inflammation is the immune system's response to toxic insult, pathogens, and damaged cells. 

Inflammation is not only a defence mechanism to remove dangerous stimuli and initiate healing, but 

also a consequence of several diseases (Chen et al., 2017). 

1.7.2.1. Sirtuin 1(Sirt1) and inflammatory regulation 

Sirt1 expression has been linked to inflammatory regulation and cytoprotection in different cell lines 

(Xie et al., 2013a).  Sirt1 undergoes phosphorylation by JNK1 and JNK2 at multiple serine and 

threonine residues. JNK and other kinases regulate Sirt1 expression; however, it is unknown which 

regulatory mechanism is involved in Sirt1 alteration of inflammatory responses (Xie et al., 2013a). 

Studies carried out by Alcendor et al. (2007) revealed that Sirt1 regulates ROS levels by elevating 

CAT expression. The increase in CAT expression was induced by forkhead box protein O1 (FoxO1); 

Sirt1 deacetylates FoxO1, FoxO3a, and FoxO4, which in turn, activates antioxidants such as CAT, 

SOD2, and thioredoxin (Trx) (Salminen et al., 2013). Nevertheless, upregulation of Sirt1 also caused 

oxidative stress by deacetylating the Lys588 and Lys591 residues of Nrf2 and repressing its 

antioxidant function (Kawai et al., 2011).  Sirt1 is also responsible for the regulation of ROS by 

controlling immune responses via NFκB. Sirt1 inhibits the activation of NFκB by the deacetylation of 

Lys310 residues found on RelA/p65 (Fig 1.8) (Yeung et al., 2004). Furthermore, Sirt1 expression has 

been associated with the deacetylation of transcription factors of AP-1 (Xie et al., 2013a).  

1.7.2.2. Nuclear factor-kappa β (NFκB)  

NF-κB is a transcription factor responsible for the induction of an immune response and 

inflammation. NFκB is induced in response to stimuli from the environment. NFκB, when 

unstimulated in cells, can form a complex with IκB (nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor, alpha), an inhibitory protein. Activator molecules such as TNF-α, 

interleukin 1 (IL-1β), lipopolysaccharide (LPS), and UV radiation can lead to the phosphorylation of 

NF-κB and the degradation of IκBα. The activated NF-κB translocates to the nucleus and alters the 

expression of target genes (Ahn et al., 2003). Chelators of iron and copper were found to inhibit the 

activation of NF-κB (Schmilz, 1995). Exposure to TNF-α, IκBα can become phosphorylated by IκB 

kinases (IKK). IKK comprises of IKKα and IKKβ (Chen et al., 2017). This may result in the 

ubiquitination or degradation of the freed NFκB. The NFκB transcription genes' repression or 

activation is responsible for mediating inflammatory and immune responses by Th2 cytokines, 

chemokines, COX-2, matrix metallopeptidases (MMP’s), and apoptotic factors (Fig 1.10) (Messadi et 

al., 2004).  
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Figure 1.10 Overview of the NFκB pathway activation. Stimuli, such as ROS, can induce the 

activation of NFκB and degradation IKβ. NFκB translocates to the nucleus and transcribes for 

inflammatory and immune responses. MAPK regulates NFκB and AP-1 via Sirt 1 expression 

(prepared by author). 

1.8. MicroRNAs (miRNAs) 

MiRNAs are small, non-coding RNAs that interact with the 3’ untranslated region (UTR) region of 

mRNA for the post-transcriptional regulation of gene expression. However, some miRNAs may 

interact with the 5' UTR region, gene promoters, and coding sequences (O'Brien et al., 2018). The 

formation of mRNA-miRNA complex results in translational repression or mRNA degradation (Fig 

1.11) (Maurer et al., 2010). MiRNAs are involved in biological processes, including proliferation, 

apoptosis, and differentiation (Maurer et al., 2010). MiRNAs have been found to regulate 

approximately 30% of the human genome. The dysregulation of miRNAs has been associated with 

cancer, neurological, cardiovascular, and autoimmune diseases (Wiemer, 2007, Lukiw et al., 2008, 

Carè et al., 2007, Stanczyk et al., 2008). 
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Figure 1.11 MiRNA function in mRNA degradation and translational repression (prepared by 

author) 

1.8.1. MiRNA biogenesis 

MiRNA biogenesis is classified into two pathways namely the canonical pathway and non-canonical 

pathway. MiRNA is generated predominantly from the canonical pathway. 

1.8.1.1. Canonical miRNA biogenesis pathway 

This pathway involves the transcription of primary miRNA (pri-miRNA) from their genes into 

precursor miRNA (pre-miRNA). The canonical pathway is dependent on the microprocessor complex 

which consists of the nuclease III enzyme, Drosha and an RNA binding protein, DiGeorge Syndrome 

Critical Region 8 (DGCR8) (O'Brien et al., 2018). DGCR8 recognises motifs within the pri-miRNA 

such as N6-methyladenylated GGAC. Drosha is responsible for the cleavage at the base of the hairpin 

structure of the pri-miRNA duplex. The resultant pre-miRNA is exported to the cytoplasm by an 

exportin 5 (XP05)/RanGTP complex. The pre-miRNA is processed by RNase III endonuclease Dicer 

by removing the terminal loop producing a mature miRNA. The miRNA is assigned a name based on 

its directionality (O'Brien et al., 2018). The miRNA hairpin comprises of a 5p strand arising from the 

5’ region and the 3p strand arises from the 3’ region end. The mature duplex comprising of both 3p 

and 5p can be loaded into the Argonaute (AGO) family of proteins and the process is ATP dependent. 

The amount of AGO-loaded 3p and 5p is dependent on the cell type, cellular environment and 

thermodynamic stability. Strands with lower 5’ stability or a uracil at the 5’ region is preferential and 

is AGO loaded and serves as a guide strand while the unloaded strand (passenger strand) unwinds 

through various mechanisms (O'Brien et al., 2018). 
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1.8.1.2. Non-canonical miRNA biogenesis pathway 

This pathway involves Drosha, Dicer, exportin 5 and AGO2. Non-canonical pathway differs from the 

canonical pathway due to Drosha/DGCR8 and Dicer independent pathways. Pre-miRNA’s are 

produced by Drosha/DGR8 independent pathways resembling Dicer substrates. Mirtrons (pre-

miRNA’s produced from introns of miRNA splicing) and 7-methylguanosine-capped-premiRNA’s 

(m
7
G) are examples of premiRNA’s (O'Brien et al., 2018). The RNA’s are exported to the cytoplasm 

by exportin 1 independent of Drosha cleavage. There is a 3p bias which prevents the 5p strand loading 

on AGO. Alternately, Dicer independent miRNA’s are processed by Drosha and require AGO2 due 

their insufficient length which excludes them as a Dicer substrate. The entire miRNA is loaded into 

AGO2 and the maturation process is completed by 3’-5’ trimming of the 5p strand (O'Brien et al., 

2018). 

1.8.2. MiRNAs role in immune responses 

1.8.2.1. MiRNA-29a 

Studies have shown apoptosis regulation by the downregulation of pro-apoptotic proteins, namely 

Bax, PARP, phospho-FADD, cleaved caspase 8, and caspase 3. It was also determined that miRNA-

29a repressed the expression of NFκB and, in this manner, protects cells from injury and apoptosis 

(Tiao et al., 2014).  

1.8.2.2. MiRNA-29b 

Study carried out by Luna et al. (2009), showed the regulation of extracellular matrix (ECM) genes 

following oxidative stress in HTM (human trabecular meshwork) cells suggesting miRNA-29b is a 

common oxidative stress-modulated miRNA. Moreover, miRNA-29b regulates oxidative stress by 

negatively regulating Sirt1 expression in ovarian cancer cells (Hou et al., 2017). MiRNA-29b 

expression initiated apoptosis by downregulating Bax mRNA expression in cardiomyocytes (Jing et 

al., 2018). Therefore, miRNA-29b plays a role in oxidative stress responses via sirt1 and apoptosis. 

1.8.2.3. MiRNA-155 

Studies have shown miRNA-155 as a potential target for cancer treatment due to the ubiquitous 

oncogene characteristics and promotion of proliferation in human cancer. Of importance was the 

elevated proliferation rate of hepatocellular carcinoma (HCC) when miRNA-155 expression was 

upregulated (Gao et al., 2015). Furthermore, miRNA-155 upregulated MAPK signalling and NFκB 

expression in pancreatic cancer cells leading to increased proliferation and ROS production. 

1.9. Problem statement, aims, and objectives 

1.9.1. Problem statement 

Due to KA’s extensive use in the beauty industry and as a food preservative, the effects on organs 

involved in metabolism of KA such as the liver are potential targets.  In vitro and in vivo studies have 
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demonstrated KA's effect in multi-organ systems; however, the liver is often neglected. The liver is 

the main organ responsible for the detoxification of toxins and thus  susceptible to damage; therefore, 

it is important to assess KA's toxicity in liver cells. To date, research on the effects of KA in liver 

cells cells remains limited. Understanding the potential effects of KA may provide insight on the 

concentrations posing minimal risk (Fig 1.12). 

1.9.2. Alternate Hypothesis 

It was hypothesized that KA induced oxidative stress, inflammation, and activated the MAPK 

signalling pathway in HepG2 cells following 24 h exposure 

1.9.3. Aim 

The study aims to determine the effects of KA on oxidative stress and subsequent alteration on 

immune responses related to NFκB inflammation and MAPK signalling in a human liver (HepG2) 

cell line. 

1.9.4. Objectives 

The effects of KA on HepG2 cells was determined by measuring:  

 mitochondrial output (MTT assay) and ATP luminometry  

  apoptosis using caspase luminometry 

 oxidative stress 

- Lipid peroxidation (TBARS) assay  

- DNA integrity using 8-OHdG ELISA 

- Protein integrity using Protein carbonyl assay 

 MAPK signalling and NFκB inflammatory responses using 

- Western blots of p38, JNK, Nrf2, phosphorylated-Nrf2 (ser40), CAT, phosphorylated-

NFκB (ser536), NFκB, phosphorylated-Sirt1 (ser47) and AP-1  

- qPCR of GPx, NFκB, IκBα and miR-29a, miR-29b and miR-155 expression  
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Figure 1.12 The experimental approach employed to investigate the toxicity of KA in HepG2 

cells (prepared by author) 
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CHAPTER 2 

METHODS AND MATERIALS 

2.1. Materials 

HepG2 cells (HB-8065) were purchased from the American Type Culture Collection (ATCC; 

Johannesburg, South Africa).  Cell culture reagents were purchased from Whitehead Scientific 

(Johannesburg, South Africa). Luminometry kits were purchased from Promega (Madison, WI, USA). 

Western Blot reagents were purchased from Bio-Rad (Hercules, CA, USA). All other reagents and 

consumables were purchased from Merck (Darmstadt, Germany) unless otherwise stated. 

2.2. Cell culture 

2.2.1. Introduction 

The HepG2 cell line is derived from the liver tissue of a 15-year-old Caucasian male with 

differentiated hepatocellular carcinoma (Donato et al., 2015b). HepG2 cells are commonly used for 

drug metabolism and hepatotoxicity studies. Favourable characteristics include an unlimited life span, 

stable phenotype, readily available, and easy to handle. HepG2 cells have an epithelial-like 

appearance and have a high proliferation rate with the ability to perform differentiated hepatic 

functions (Donato et al., 2015a). Due to the wide use of the cell line, extensive research into the 

functional characteristics of HepG2 has been carried out. Although a cancer cell line, HepG2 cells 

have retained characteristics of differentiated hepatocytes such as lipoprotein secretion, albumin 

secretion, glycogen synthesis and glutathione detoxification (Kammerer and Küpper, 2018). HepG2 is 

extensively used in toxicity studies due to the presence of biotransformation enzymes such as Phase I 

(cytochrome P450 monooxygenase) and Phase II (glucuronic and sulphate conjugation), which play a 

role in detoxification (Dehn et al., 2004). 

2.2.2. Protocol 

HepG2 cells were cultured (37ºC, 5% CO2) in 25 cm
3
 cell culture flasks containing Eagle's Minimum 

Essentials Medium (EMEM) supplemented with 10% foetal calf serum (FCS), 1% penicillin-

streptomycin-fungizone, and 1% L-glutamine. FCS provides essential albumin and growth factors 

required for cell attachment, growth, and proliferation (Gstraunthaler et al., 2013). Penicillin-

streptomycin-fungizone is a combination of antibiotics and fungicides that are used to prevent 

bacterial and fungal contamination. Glutamine is an essential amino acid required as a building block 

for proteins involved in cell growth and physiological functions (Cruzat et al., 2018). 

 

The trypan blue cell exclusion technique is used to determine viable cells in cell culture. The cells are 

incubated with trypan blue dye and visualised using a light microscope. The trypan blue cell exclusion 

technique is based principle in which viable cells with intact, selectively permeable cell membranes 
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exclude the dye, whereas damaged cells take up the blue dye (Strober, 2015). This method was used 

to enumerate cells and determine cell viability prior to conducting each assay (Fig 2.1). 

 

Figure 2.1 Trypan exclusion method used for the enumeration of viable cells (prepared by 

author) 

2.3. KA preparation and treatment 

A stock solution of KA (20 mg/ml) was prepared in 0.1 M Phosphate buffered saline (PBS). The cells 

were allowed to reach 80% confluency before incubation with KA [4.22, 8.02, or 12.67 mM]. All 

experiments were performed 3 independent times and in triplicate. 

 

2.4. 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay 

2.4.1. Introduction 

The MTT assay is one of the most commonly used assays to assess the anti-proliferative properties of 

compounds in cells. The assay utilises tetrazolium salts to assess the cell's mitochondrial metabolic 

activity. Mitochondrial metabolic activity is indirectly proportional to cell viability. The tetrazolium 

salts are reduced to insoluble purple formazan crystals by mitochondrial dehydrogenases (Fig 2.2). 

Once the crystals are solubilised with Dimethyl sulfoxide (DMSO), the spectrophotometric reading at 

570 nm is used to evaluate cell viability using the following equation: 

 

% 𝐶𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 
× 100 
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Figure 2.2 The reaction catalysed by mitochondrial reductase to produce formazan products 

(Karumuri, 2013) 

2.4.2. Exposure protocol 

HepG2 cells (15,000 cells/well) were seeded in a 96-well microtiter plate and allowed to adhere 

overnight before incubation (37°C, 5% CO2,) for 6, 24 and 48 h with various concentrations of KA (0-

12.67 mM). MTT salt solution [20 µl; 5 mg/ml in 0.1 M PBS] and CCM (100 µl) was added to the 

cells and incubated (37ºC, 4 h). Following incubation, the MTT salt was removed, and DMSO 

(100µl/well) was added to solubilise the formazan crystals. The plate was incubated (37º C, 1 h), and 

the absorbance was measured using a microplate reader (Biotek µQuant Plate reader, Winooski, VT, 

USA) at a wavelength of 570 nm with a reference wavelength of 690 nm. Analysis of the absorbance 

obtained was performed using GraphPad Prism V5.0, and the half-maximum inhibitory concentration 

(IC50) was obtained. 

 

2.5. Crystal violet assay 

2.5.1. Introduction 

The crystal violet assay measures cell viability by assessing the ability of cells to adhere to the cell 

culture vessel. It is based on the principle in which dead cells lose their ability to adhere to cell culture 

surfaces and are lost from the viable population. The crystal violet dye binds to DNA and proteins in 

cells (Fig 2.3). When dead cells detach, the number of cells stained with crystal violet staining 

decreases along with the intensity of the purple colour. The intensity of the purple colour is measured 

spectrophotometrically and describes the cell survival and growth inhibition potential of the treatment 

(Feoktistova et al., 2016). 

2.5.2. Protocol 

Crystal violet assay was performed as per (Feoktistova et al., 2016). HepG2 cells (15,000 cells/well) 

were adhered to a 96-well microtiter plate and incubated (37°C, 5% CO2, 24 h) with varying 

concentrations of KA (0 - 12.67 mM). Following incubation, the cells were washed in dH2O, and 
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0.5% crystal violet stain (50 µl) was added. The plates were incubated for 20 min on a bench shaker at 

20 oscillations per minute. The cells were washed 4 times in dH2O and air-dried overnight at RT. 

Methanol (200 µl) was added to each well, and the plate was incubated at RT for 20 min. The 

absorbance was read in a microplate reader (Biotek µQuant Plate reader, Winooski, VT, USA) at a 

wavelength of 570 nm. Cell viability was determined relative to the control. 

 

 

Figure 2.3 Overview of the crystal violet assay (Feoktistova et al., 2016) 
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2.6. Caspase activity 

2.6.1. Introduction 

Apoptosis and necrosis are both types of cell death associated with normal and disease states. The 

Caspase Glo®-3/7, Caspase Glo®-8, and Caspase Glo®-9 assay kits (Promega, Wisconsin, US) were 

used to measure the activities of caspase 3/7, caspase 8, and caspase 9, respectively. The assay kit 

contains aminoluciferin substrates which undergo cleavage by caspases. The freed aminoluciferin is 

catalysed by luciferase to produce luminescent signal. Luminescence is directly proportional to 

caspase activity. 

2.6.2. Protocol 

Luminometry was used to determine KA's effect on caspase-3/7, -8, and -9 activities in HepG2 cells. 

Following treatment with KA for 24 h, HepG2 cells (20,000 cells/well) were seeded in an opaque 96-

well microtiter plate with 25 µl of Caspase Glo®-3/7, Caspase Glo®-8, and Caspase Glo®-9 reagents. 

The plate was incubated for 30 min at RT in the dark and luminescence was measured on a 

Modulus™ microplate luminometer (Turner Biosystems, Sunnyvale, USA). The results were 

expressed as relative light units (RLU). 

 

2.7. LDH assay 

2.7.1. Introduction 

Necrosis of cells displays plasma membrane permeation causing the leakage of intracellular contents 

into the extracellular matrix (Chan et al., 2013). LDH is an enzyme that plays a role in the glycolytic 

pathway (Jialal and Sokoll, 2015). The amount of LDH released into the extracellular matrix is 

correlated with the extent of disruption to the cell membrane (Chan et al., 2013). 

LDH catalyses the oxidation of lactate to pyruvate and produces reduced nicotinamide adenine 

dinucleotide (NADH). Tetrazolium salts are converted into a formazan product using the NADH 

product in the presence of an electron acceptor (Chan et al., 2013) (Fig 2.4). The spectroscopic 

reading at 500nm is directly proportional to LDH levels and is used to determine cell membrane 

damage and hence, is an indicator of necrosis. 
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Figure 2.4 Principle of the LDH assay (prepared by author) 
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2.7.2. Protocol 
 

The LDH cytotoxicity detection kit (Roche, Mannheim, Germany) was used to determine KA's effect 

on cell membrane integrity. Following the treatment of HepG2 cells with KA for 24 h, supernatants 

(100 µl) were transferred into a 96-well microtiter plate in triplicate.  Thereafter, 100 µl INT/sodium 

lactate dye solution and diaphorase/NAD
+
 catalyst were added to each well, and the plate  incubated 

in the dark for 20 min at RT. Optical density was measured on a spectrophotometer (Biotek µQuant 

Plate reader, Winooski, VT, USA) at 500 nm. Results were expressed as the concentration of KA 

(mM) versus optical density.  

2.8. ATP Quantification assay 

2.8.1. Introduction 

The mitochondria produce ATP by the tricarboxylic acid cycle (TCA) enzymes, electron transport 

chain complexes, and ATP synthase (Zhang et al., 2018). ATP is required for several processes such 

as intracellular signalling, DNA and RNA synthesis, and active transport. Therefore, ATP synthesis is 

essential to support cell survival. 

The assay uses bioluminescence to measure the ATP concentration in the cell. A key reaction is the 

luciferase reaction that converts mono-oxygenated luciferin to oxy-luciferin. The reaction requires 

Mg
+
, oxygen, and ATP and results in the release of energy in the form of luminescence (Fig 2.5). The 

luminescence is directly proportional to ATP and is used to quantify ATP in the cell. 
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Figure 2.5 The principle reaction of the ATP Cell Titre Glo® assay used to quantify ATP 

concentration (prepared by author) 

2.8.2. Protocol  

ATP levels were quantified using the ATP Cell Titre Glo® luminometry assay kit, as previously 

described (Abdul et al., 2016). HepG2 cells (20,000 cells/well) were seeded in an opaque 96-well 

microtiter plate and incubated (RT in the dark, 30 min) with 20 µl of ATP Cell Titre Glo® reagent 

(Promega, Madison, USA). Following incubation, luminescence was measured using the Modulus™ 

microplate luminometer (Turner Biosystems, Sunnyvale, USA). Luminescence is proportional to the 

ATP levels and was expressed as relative light units (RLU). 

 

2.9. Lipid peroxidation (TBARS) assay 

2.9.1. Introduction  

Lipid peroxidation is initiated by hydrogen abstraction from PUFA's due to the presence of excess 

ROS. A lipid peroxidation chain reaction occurs by the initiation of a three-step mechanism involving 

an initiation step, a propagation step, and lastly, a termination step (Ayala et al., 2014). The chain 

reaction produces malondialdehyde (MDA) and 4-Hydroxy-4-nonenal (4-HNE). MDA is used as a 
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biomarker for lipid peroxidation of omega-3 and -6 fatty acids due to its observed reaction with 

thiobarbituric acid (TBA) (Ayala et al., 2014). Thiobarbituric acid reactive substances (TBARS) assay 

is based on the reaction of 2-thiobarbituric acid and one molecule of MDA yielding the chromophoric 

product MDA-TBA adducts measured at 532 nm (Fig 2.6). The reaction occurs at high temperature 

and a low pH. 

 

Figure 2.6 Principle reaction in the lipid peroxidation (TBARS) assay, adapted from Antolovich 

et al. (2002). 

2.9.2. Protocol 

Briefly, 200 µl of supernatants were added to test tubes along with 2% H3PO4 (200 µl), 7% H3PO4 

(200 µl), and 0.1 M TBA/BHT solution (400 µl). A negative control consisting of 3 mM HCl (400 µl) 

and a positive control consisting of 1% MDA (1µl) was also prepared. All samples were vortexed, and 

1 M HCl (200 µl)  added to adjust the pH to 1.5. Samples were heated (100°C, 15 min) and allowed to 

cool to RT before adding butanol (1500 µl). The samples were vortexed (30 s) and allowed to settle 

into two distinct phases.  The upper butanol phase (100 µl) was transferred into a 96-well microtiter 

plate in triplicate, and the absorbance was measured using the Biotek µQuant spectrophotometer 

(Winooski, VT, USA) at a wavelength 532 nm with a reference wavelength of 600 nm. The results 
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were expressed as MDA concentration (mM), which was calculated using the absorption coefficient 

(156 mM
-1

). 

2.10. Protein isolation 

2.10.1. Introduction 

Crude protein was isolated from HepG2 cells using 200 µl Cell Lysis solution (50 mmol/l HEPES, 

1% Triton ×100, 10% glycerol, and 50 mmol/l NaCl) for the protein carbonyl assay and 200 µl 

Cytobuster™ reagent (Novagen, USA) supplemented with protease and phosphatase inhibitors for 

Western Blot. Cytobuster reagent is a non-ionic detergent that disrupts cell membranes to yield 

functionally active and expressed proteins when coupled with mechanical scraping.  It is 

supplemented with protease and phosphatase inhibitors to preserve protein integrity (Eslami and 

Lujan, 2010). The process was carried out on ice to prevent protein degradation. 

2.10.2. Protocol 

HepG2 was treated with KA for 24 h. The supernatant was removed from flasks, and adhered cells 

were washed three times with 0.1 M PBS. Isolation of proteins from control and KA-treated HepG2 

cells was carried out using the respective lysis solutions (200 µl). Samples were incubated for 30 min 

on ice before mechanically lysed. The supernatant obtained from the disrupted cells were decanted 

into 1.5 ml micro-centrifuge tubes. The samples were centrifuged at 13, 000 g for 10 min at 4ºC. 

Supernatant containing crude protein was decanted into 1.5 ml micro-centrifuge tubes and kept on ice 

for further quantification and standardization procedures. The pellet was discarded.  

2.10.3. Quantification and standardisation of proteins 

2.10.3.1. Introduction 

The bicinchoninic acid (BCA) assay is used to quantify total crude protein. The method principle 

reaction is the Biuret reaction. BCA is a water-soluble compound that forms an intense purple 

complex with cuprous ions (Cu
+
) in an alkaline environment (Fig 2.7) (Walker, 1996).  The stable 

chromophore BCA-Cu
2+

 complex absorbs light at a 562 nm wavelength (Walker, 1996). The intensity 

of the purple colour complex is directly proportional to the protein concentration in the sample. 



54 
 

 

Figure 2.7 The principle reactions in the BCA assay used to quantify protein (prepared by 

author) 

2.10.3.2. Protocol 

Bovine serum albumin (BSA) [0, 0.2, 0.4, 0.6, 0.8, and 1 mg/ml], a protein standard, was serially 

diluted using distilled water and used to construct a standard curve. In a 96-well plate, 25 µl of each 

standard (triplicate) and protein sample (duplicate) were added into appropriately labelled wells. A 

working solution (200 µl) containing BCA (198 μl) and CuSO4 (4 μl) was added to each well. The 

plate was incubated at (37°C, 30 min), to allow the reaction between sample protein and Cu
+
 to occur. 

The absorbance was measured at 562 nm using a spectrophotometer (Bio-tek μQuant Plate Reader). 

The standard curve was used to determine the concentration of sample proteins (mg/ml) present by 

extrapolation. The proteins were subsequently standardised to 1 mg/ml for the protein carbonyl assay 

and 1.5 mg/ml for Western blot.  



55 
 

2.11. Protein oxidation (Protein carbonyl) assay 

2.11.1. Introduction 

Protein carbonylation occurs when ROS attack side chains of proline, arginine, lysine, and threonine 

in the presence of transition metals (Fe
2+ 

and Cu
+
) (Celi and Gabai, 2015). The superoxide radicals’ 

mechanism of protein damage involves the oxidation and inactivation of iron-sulphur (Fe-S) proteins. 

Superoxide radicals target proteins such as complex I NADPH dehydrogenase and succinate 

dehydrogenase. The Fenton or Haber-Weiss reaction generates hydroxyl radicals and releases Fe
2+ 

and 

H2O2.   

Primary protein carbonylation is the formation of reactive aldehydes and ketones that can react with 2, 

4-dinitrophenylhydrazine (DNPH). Protein oxidation was quantified by measuring the intracellular 

protein carbonyl groups in the sample at a wavelength of 370 nm. 

2.11.2. Protocol 

The standardised protein (200 µl) was added to DNPH (800 µl) at RT for 1 h. A blank consisting of 

the standardised protein (200 µl) and 2.5 M HCl (800 µl) was also prepared. The solution was 

vortexed after every 15 min interval of the 1h incubation. Following incubation, the protein in each 

sample was precipitated with 20% Trichloroacetic acid (TCA) (1 ml) on ice and vortexed, followed 

by centrifugation (2000 g, 10 min, RT). The pellet formed in each sample was washed twice with 1 ml 

ethanol-ethyl acetate (1:1) and dissolved in 6 mol/l guanidine hydrochloride (500 µl). The samples 

were incubated (37ºC, 10 min) and centrifuged (2,000 g, 10 min, RT) to remove any insoluble 

material. The supernatant (100 µl) was added in triplicate into a 96-well microtiter plate (100 µl) and 

the absorbance was measured at 370 nm with a spectrophotometer. The corrected absorbance was 

calculated by subtracting the average absorbance obtained from the blank from the sample 

absorbance. The protein carbonyl concentration was obtained by dividing the corrected absorbance 

calculated by the 2,4-Dinitrophenol’s (DNP's) extinction coefficient (22, 000 l.M
-1

.cm
-1

). The results 

were expressed in nanomoles per milligram units. 

𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑎𝑟𝑏𝑜𝑛𝑦𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑛𝑚𝑜𝑙/𝑚𝑙) =
𝑝𝑎𝑡ℎ𝑤𝑎𝑦 (1𝑐𝑚) × 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒

𝐸𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐷𝑁𝑃 
 

2.12. Western Blotting 

2.12.1. Introduction 

Western blot is a molecular-based technique used to identify proteins of interest from a heterogeneous 

mixture of proteins in the cell. The technique uses sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) to separate proteins based on their molecular weights (Mahmood and 

Yang, 2012). The charge of the proteins is exploited to ensure the movement of proteins occurs. The 

negative charge of the protein migrates towards the positive electrode through the polyacrylamide gel. 
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The protein's size determines the movement through the gel; the large molecular weight proteins 

migrate slower through the matrix whereas the smaller molecular weight proteins migrate faster 

(Mahmood and Yang, 2012). The protein is transferred onto a solid support such as a nitrocellulose or 

polyvinylidene difluoride (PVDF) membrane. A blocking solution is used to prevent non-specific 

binding of proteins. The membrane is incubated with antibodies specific to the proteins of interest. 

The technique used both primary and enzyme-conjugated secondary antibodies to ensure specificity. 

The membrane is washed and visualised by the reaction between the enzyme conjugated secondary 

antibody and substrate solution. The protein relative band's density (RBD) is proportional to the 

amount of protein present (Fig 2.8) (Mahmood and Yang, 2012). 

 

Figure 2.8 Overview of Western blot procedure (prepared by author) 

2.12.2. Quantification and standardisation of proteins 

2.12.2.1. Protocol 

Laemmli buffer (50 µl; dH2O, 0.5 M Tris-HCl (6.8), bromophenol blue, β- mercaptoethanol, glycerol, 

and 10% SDS) was added to the standardized protein samples for Western blot and boiled (100ºC) for 

5 min. The proteins were allowed to cool at room temperature (RT) and stored at -20°C until the 

western blot procedure was carried out. The buffer solution components serve specific functions 
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required for an efficient gel electrophoresis assay. Tris-HCl is required for the pH buffering of the 

sample solution (Mishra et al., 2017, Bass et al., 2017). Bromophenol blue is a dye used to allow for 

the visualisation of the protein sample as migration through the gel occurs. β-mercaptoethanol acts as 

a reducing agent and denatures protein by breaking disulphide bonds, causing the unfolding of 

proteins (Mahmood and Yang, 2012). Glycerol adds weight to the samples allowing it to sink into the 

gel wells. SDS has a negative charge and alters the charge of proteins, therefore neutralising their 

inherent charge. The neutralisation aids in the separation of proteins solely of size and not the charge 

(Fig 2.9). 

2.12.3. SDS-PAGE 

2.12.3.1. Introduction 

Polyacrylamide is made up of cross-linker N, N'-methylene bis-acrylamide, and acrylamide, which is 

catalysed by ammonium persulfate (APS). SDS-PAGE comprises of two polyacrylamide gels of 

differing characteristics: a stacking gel and a resolving gel. The stacking gel is acidic (pH 6.8) and has 

larger pores due to a lower acrylamide concentration (Mahmood and Yang, 2012). The gel separates 

proteins poorly and forms thin sharp bands. The resolving gel is basic (pH 8.8) and has narrow pores 

to separate proteins. The proteins are separated by size, and smaller proteins move more rapidly 

through the narrower pores, thus migrating further in the polyacrylamide gel towards the positive 

electrode (Mahmood and Yang, 2012). 

2.12.3.2. Protocol 

Polyacrylamide gels were prepared, and MINI-PROTEAN 3 SDS-PAGE apparatus (Bio-Rad) were 

set up according to the manufacturers' guidelines. A 10% resolving gel [Bis-acrylamide, dH2O, 1.5 M 

Tris (pH 8.8), 10% SDS, 10% APS, and TEMED] was prepared and allowed to set (RT, 1 h). Once 

set, the 4% stacking gel [Bis-acrylamide, dH2O. 0.5 M Tris (pH 6.8), 10% SDS, 10% APS, and 

TEMED] was added above the resolving gel. A 1cm plastic comb was placed in the stacking gel to 

form wells to allow for the loading of samples. The gel was allowed to set (RT, 1 h). 

The prepared gels was placed into the electrode tank, and the electrode was assembled (mini-

PROTEAN Tetra Cell System, Bio-Rad), as per manufacturers guidelines. The samples (25 µl) and 

molecular weight markers (5 µl) were loaded into the wells of the gel . Once loaded, the electrode 

tank was filled with running buffer [25 mM Tris, 192 mM glycine, and 0.1% SDS]. The gel was 

electrophoresed using the Bio-Rad compact power supply (150 V, 1 h). 
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Figure 2.9 Denaturation and alteration of charge of the tertiary structure of proteins by SDS 

and β-mercaptoethanol (prepared by author) 

2.12.4. Protein Transfer (Electro-blotting) 

Following electrophoresis, the gel is prepared before transfer onto the nitrocellulose membrane. The 

stacking gel is removed, and the resolving gel is placed into a gel sandwich assembly.  The gel 

sandwich comprises of two fibre pads, a nitrocellulose membrane, electrophoresed gel, and transfer 

buffer adjusted to pH 8.3 [25 mM Tris, 192 mM glycine, 20% methanol]. The gel sandwich is 

assembled between two electrodes, and the separated proteins are transferred to the nitrocellulose 

membrane using a Bio-Rad Trans-Blot Turbo Transfer System (20 V, 30 min). The protein transfer 

principle depends on the application of an electric charge that is perpendicular to the surface of the 

gel.  The electric current causes the negatively charged proteins to migrate towards the positively 

charged electrode resulting in the proteins being embedded onto the nitrocellulose membrane. 

2.12.5. Blocking and antibody incubation (Immuno-blotting) 

Once the proteins are transferred onto the nitrocellulose membrane, the membrane is incubated in a 

blocking solution to prevent proteins' non-specific binding. The blocking solution comprises of 5% 

BSA or 5% non-fat dry milk (NFDM) in Tris buffer saline with 0.05% TWEEN 20 [TTBS, dH2O, 
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0.05% TWEEN, 150 mM NaCl, 3 mM KCl, 25 mM Tris, pH 7.5]. Membranes are incubated in the 

blocking solution with gentle rotation for 1 h at RT. Primary antibodies (Table 1) were used to 

immunoblot the membranes at RT for 1 h on a shaker. The membranes were then incubated overnight 

to allow for the binding of primary antibodies to specific proteins. Following incubation, membranes 

were equilibrated at RT and washed with TTBS at 10 min intervals between washes to remove 

unbound primary antibodies. The membranes were then incubated in secondary antibodies conjugated 

with horseradish peroxidase [goat anti-rabbit (Cell Signaling Technology, 7074S) and goat anti-

mouse (Cell Signaling Technology, 7076P2) with gentle agitation (1:1,000, 2 h, RT) (Fig 2.12). The 

secondary antibody facilitates the detection of a specific protein by binding to the primary antibody. 

Following the incubation, membranes are washed with TTBS five times at 10 min intervals to remove 

unbound secondary antibodies. 

Table 1. Primary antibody dilutions used in Western blot 

Antibody Catalogue number Dilutions 

Phosphorylated Sirt-1 2314L (Cell Signalling 

Technology) 

Rabbit polyclonal 

1:5,000 

AP-1 A5968 (Sigma Aldrich) 

Rabbit polyclonal 

1:5,000 

NFκB D14E12 (Cell Signalling 

Technology) 

Rabbit polyclonal 

1:5,000 

Phosphorylated-NFκB 3031 (Cell Signalling 

Technology) 

Rabbit polyclonal 

1:5,000 

JNK SAB 4200176 (Sigma Aldrich) 

Mouse monoclonal 

1:5,000 

P38 M8177 (Sigma-Aldrich) 

Rabbit polyclonal 

1:5,000 

Nrf-2 12721S (Cell Signalling), 1:5,000 
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Rabbit polyclonal 

Phosphorylated Nrf-2 AB76026 ( Abcam) 

Rabbit polyclonal 

1:5,000 

CAT CO979 (Sigma Aldrich) 

Mouse monoclonal 

1:5,000 

2.12.6. Imaging 

Protein bands were visualised using the Bio-Rad Clarity Western ECL Substrate Kit and the 

ChemiDoc™ XRS + System. The principle reaction that allows visualisation of proteins occurs 

between the HRP-conjugated secondary antibody and H2O2 to free oxygen radicals. The oxygen 

radicals react with luminol to form aminophtalic acid causing luminescence and enabling the 

visualisation of protein bands.  

 

2.12.7. Quenching and normalisation 

Membranes were quenched in 5% hydrogen peroxide (30  min, 37ºC) and washed once with TTBS 

(10 min, RT). Membranes were blocked with 5% BSA and incubated in HRP-conjugated antibody for 

β-actin (Sigma-Aldrich, A3854; 1:5,000; 30 min, RT)  as a housekeeping protein. Images were 

analysed using ImageLab Software™ v6.0 (Bio-Rad). The results were expressed as relative band 

density (RBD) obtained from the proportion of the RBD of the protein of interest and the RBD of the 

respective β-actin.  

 

2.13. Quantitative PCR (qPCR) 

2.13.1. Introduction 

Quantitative polymerase chain reaction (qPCR) involves the amplification and quantification of DNA. 

The conventional PCR technique only amplifies a target gene, whereas qPCR accurately quantifies 

the amount of target genes expressed. 

The qPCR amplification procedure involves three controlled steps that are performed at different 

temperatures in repeated cycles. Step 1 involves denaturation of the double-stranded DNA template at 

(90 - 100°C) to produce single-stranded DNA. The synthesis of cDNA requires various reagents and 

buffers (Table 2 & Table 3). Step 2 involves the annealing of complimentary primers to the target 

DNA sequence at temperatures dependent on the primer. Step 3 is extension in which Taq polymerase 

elongates the annealed primer at 72°C by adding nucleotides. These steps are repeated to produce 

exponential copies of the original DNA fragment (Table 4 & 5). 
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The quantity of the target genes expressed is detected using SYBR Green. A SYBR Green dye binds 

DNA and produces a fluorescent signal that can be detected and quantified (Fig 2.10).  

 

Figure 2.10 Overview of the qPCR steps (Adapted from (Kuang et al., 2018)). 

2.13.2. RNA isolation 

RNA was isolated from control and KA treated HepG2 cells as per (Chuturgoon et al., 2014). 

Following 24 h KA-treatment, cells were washed once with PBS and thereafter, 500 µl Qiazol and 

PBS were added and incubated (5 min, RT). Cells were mechanically scraped and transferred into 1.5 

ml microcentrifuge tubes and stored overnight (-80ºC). Chloroform (100 µl) was added, and 

centrifuged (12,000 x g, 10 min, 4ºC). The supernatant was removed, and to the pellet, isopropanol 

(250 µl) was added and stored overnight (-80ºC). Thawed samples were centrifuged (12,000 x g, 20 

min, 4ºC). The supernatant was discarded, and the pellet was washed with ethanol (75%) and 

centrifuged (7,400  x g, 15 min, 4ºC). Following the removal of ethanol, RNA pellets were air-dried 

(30 min, RT). The dried pellets were resuspended in nuclease-free water (15 µl) and stored at -80ºC.  

2.13.3. RNA Quantification 

The RNA was quantified using the Nanodrop 2000 spectrophotometer (ThermoScientific, Waltham, 

USA) and standardised to 1000 ng/µl. The A260/A280 absorbance ratio was used to determine RNA 

purity. 
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2.13.4. cDNA synthesis for mRNA 

For mRNA expression, cDNA was synthesized using the Maxima™ H Minus strand cDNA synthesis 

kit (ThermoFisher Scientific, K1652) (Table 2). The thermocycler conditions for cDNA synthesis 

were as follows: 25ºC for 10 min, 50ºC for 15 min, 85ºC for 5 min. 

 

Table 2. Reaction volume and components of the Maxima™ H Minus strand cDNA synthesis kit 

Component One reaction volume 

10 mM dNTP mix 1 µl 

Oligo (dT) primer (pmol) 0.25 µl 

Nuclease-free water 12.75 µl 

5× RT buffer 4 µl 

Maxima H minus enzyme mix 1 µl 

Template DNA 1 µl 

TOTAL 20 µl 

 

2.13.5 cDNA synthesis for miRNA 

For miRNA expression, cDNA was synthesized using the miScript II RT kit (Qiagen, 218161) as per 

manufacturers' instruction (Table 3). The thermocycler conditions for cDNA synthesis were as 

follows: 37ºC for 60 min, 95ºC for 5 min, 4ºC for 5 min. 

Table 3: Reaction volumes and components of iScript II RT kit used to synthesise cDNA for 

miRNA expression analysis 

Component One reaction (µl) 

5 x miScript HiFlex Buffer 4 µl 

10 x miScript Nucleics Mix 2 µl 

RNAse free water 11 µl 

miScript RT mix 2 µl 

RNA template 1 µl 



63 
 

TOTAL 20 µl 

 

2.13.6 mRNA expression 

The mRNA expressions of GPx, NFκB, and IκB were investigated using the PowerUp™ SYBR™ 

Green Master mix (ThermoFisher Scientific), as per manufacturers instruction. Primers for the 

forward and reverse sequences are presented in Table 5. Reaction volumes were prepared as follows;  

Table 4: qPCR reaction mix (PowerUp™ SYBR™ Green Master mix) 

Component One reaction volume/ volume per well. 

Sso advanced Universal SYBR Green Supermix 5 µl 

RNAse free water 2 µl 

Sense primer (25 µM) 1 µl 

Anti-sense primer (25 µM) 1 µl 

cDNA 1 µl 

TOTAL 10 µl 

 

CFX96 Touch™ Real-Time PCR Detection System (BioRad) was used to amplify samples. Cycling 

conditions were as follows: initial denaturation (8 min, 95ºC) followed by 40 cycles of denaturation 

(15s, 95ºC); annealing (40s, temperature was assessed based on the gene of interest (Table 5)) and 

extension (30s, 72ºC). Glyceraldehyde-3-Phosphate dehydrogenase (GAPDH), a house-keeping gene, 

was used to normalise mRNA expression. 

Table 5: The primer sequences and annealing temperatures used for mRNA expression 

Primer Sequence Annealing 

temperature (ºC) 

GPx Forward (5’-GACTACACCCAGATGAACGAGC-3’) 

Reverse (5’-AATCCCCAGCAGTGGAATAAGG-3’) 

58 

NFκB (p65) Forward (5’-ACCAACAACAACCCCTTCCA-3’) 

Reverse (5’-GTAGTCCCCACGCTGCTCTT-3’) 

60 
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IκBα Forward (5’-CACTCCATCCTGAAGGCTACCAAC-3’) 

Reverse(5’-CACACTTCAACAGGAGTGACACCAG-3’) 

64 

GAPDH Forward (5’-TCCACCACCCTGTTGCTGTA-3’)  

Reverse (5’-ACCACAGTCCATGCCATCAC-3’) 

Same as gene of 

interest 

 

2.13.7. miRNA Gene expression 

The expression of miR-29a, miR-29b, and miR-155 were analysed using the miScript SYBR Green 

PCR kit (Qiagen, 218073) and 10X miScript primer assays (Qiagen, Hilden, Germany) as per 

manufacturers' instruction. The thermocycler conditions were as follows; initial activation (15 min, 

95ºC), denaturation (15 sec, 94ºC), annealing (30 sec, 55ºC), and extension (30 sec, 70ºC) for 40 

cycles. Human RNU6 (MS000033740) was used as a housekeeping gene to normalise miRNA 

expression. 

2.13.8. Analysis of data for mRNA and miRNA expression 

The relative mRNA expression change was assessed using the method described by (Livak and 

Schmittgen, 2001). The method represents the fold change relative to the control as 2
-∆∆Ct

. All qPCR 

data were analysed using Bio-Rad CFX Manager™ Software version 3.1. 

2.14. 8-OHdG Enzyme-linked immunosorbent assay (ELISA) 

2.14.1. DNA isolation 

2.14.1.1. Introduction 

A cell lysis solution was added to HepG2 cells to obtain crude DNA. The cell lysis solution was made 

up of EDTA (pH 8), SDS (0.1%), and Tris-Cl. EDTA is a chelation agent used due to its high affinity 

for divalent cations, which act as co-factors for nucleases. Divalent cations such as Mn
+
, Ca

2+
, and 

Mg
2+

could inhibit the degradation of DNA. SDS is used as an anionic detergent to lyse the cell 

membranes and nucleus to enable the release of DNA. The Tris-Cl is positively charged and plays a 

role in stabilizing the repellent charges present in negatively charged helices (El-Ashram et al., 2016). 

2.14.1.2. Protocol 

Cells were treated with KA for 24 h, treatments were removed and the cells were washed three times 

with PBS. The PBS was discarded, and the Cell Lysis solution was added and incubated for 15 min at 

RT. The cells were mechanically scraped with a cell scraper until a homogenous solution was 

obtained. In a fume hood, potassium acetate solution (600 µl) was added and the samples were invert 

mixed for 8 min. The solution was vortexed and centrifuged for 5 min at 13,000 rpm at RT. The 

supernatant was decanted, and isopropanol (600 µl) was added. The solution was invert mixed and 
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subsequently centrifuged for 5 min at 13,000 rpm at RT. A white pellet was obtained, and careful 

consideration was taken not to disturb DNA when removing the isopropanol. Ethanol (300 µl) was 

added to the pellet and centrifuged at 13,000 rpm for 5 min at RT. The ethanol was decanted and the 

DNA pellet was air dried (15 min, RT). To the dry pellet, DNA hydration solution (TE buffer) [10 

mM EDTA (pH 8), 100mM Tris-Cl (pH 7.4) and dH2O] was added, and the samples were heated at 

65ºC for 15 mins. Once heated, the tubes were allowed to cool for 15 min at RT and stored at -20ºC.   

2.14.2. Standardisation and quantification  

Crude DNA concentration was quantified using the Nanodrop 2000 spectrophotometer 

(ThermoScientific, Waltham, USA). All samples were standardised to 100 ng/µl in TE buffer (150 µl) 

and used for the ELISA procedure.  

2.14.3. Enzyme-linked immunosorbent assay (ELISA) 

2.14.3.1. Introduction 

ELISA is based on the interaction between an antigen and antibody. Antibodies are produced by B-

cells in leukocytes and play a crucial role in the body’s immune response. Antigens form part of a 

group that consists of nucleic acids, proteins, peptides, and secondary metabolites (Sakamoto et al., 

2018). ELISA exploits this characteristic of antibodies and antigens in a highly specific and selective 

technique. ELISA is a five-step procedure (Fig 2.11). The method relies on the adsorption of antigens 

or antibodies onto a solid phase. The first step involves  antigens or antibodies coating on a 

polystyrene plate. The second step is the addition of samples to the wells to be captured by the 

antibodies. The third step requires the detection of antibody-antigen reaction is visualised using 

enzymes linked to antibodies such as horseradish peroxidase (HRP) (Sakamoto et al., 2018). The 

fourth step involves the addition of the HRP substrate (3,3’,5,5’- Tetramethylbenzidine, TMB), which 

forms a coloured complex with HRP which is visualised using a spectrophotometer. The last step 

stops the reaction using a stop solution (sulfuric acid) and data is analysed to determine the 

concentration of target molecule in the samples.  

2.14.3.2. Protocol 

Preparation of 8-OHdG standards were prepared by completing a serial dilution of 7 concentrations [ 

60, 30, 15, 7.5, 3.75, 1.875, and 0.94 ng/ml]. To a micrcentrifuge tube, 500 µl sample diluent is added 

and 250 µl into a second microcentrifuge tube. To the first microcentrifuge, 3 µl of 8-OHdG standard 

stock (10 µg/ml) was added. The samples were serially diluted to obtain the required concentrations. 

Briefly, standards (50 µl), zero standard, and isolated DNA samples (100 ng/ml) were added in 

duplicate in the 96-well microtiter plate. The anti-8-OHdG was diluted in antibody diluent, and 50 µl 

was added in the appropriate wells except for the blank.  The plates were covered and incubated at RT 

for 1 h. The individual wells were aspirated and washed five times with wash buffer (300 µl) and 
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inverted on an absorbent paper to remove excess liquid.  A working solution comprises of the anti-

mouse antibody and diluted in HRP diluent as per manufacturers' instruction. The working solution 

(100 µl) was pipetted into each well, and incubated (1 h, RT). Each well was aspirated and washed 

five times (300 µl, RT) and inverted to remove excess liquid. TMB substrate solution (100 µl) was 

added to each well and incubated (15 min, RT) in the dark. Following incubation, stop solution (100 

µl) was added to each well. The absorbance was read at a wavelength of 450 nm on a 

spectrophotometer. 

The average net optical density (OD) was calculated as follows; 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑒𝑡 𝑂𝐷 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑂𝐷 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑏𝑙𝑎𝑛𝑘 𝑂𝐷 

 

Absorbances were used to for the construction of a standard curve (average net OD standards versus 

concentration standards) from which the concentration of 8-OHdG was calculated.   

 

Figure 2.11 The principle of ELISA (prepared by author) 
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2.15. Statistical analysis 

The data were analysed using GraphPad Prism V5.0 Software (GraphPad Prism Software Inc.). One-

way analysis of variance (ANOVA) followed by Tukey multiple comparison tests (95% CI) was used 

to present data to determine statistical significance. The data was represented as mean ± standard 

deviation (SD) (n = 3), unless otherwise stated. Significant data obtained a p-value of below 0.05. 
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CHAPTER 3 

RESULTS  

 

3.1. Mitochondrial output in HepG2 cells 

MTT and crystal violet assay was used to determine cell viability and mitochondrial output (0-12.67 

mM KA). KA dose-dependently decreased HepG2 cell viability with half a maximal inhibitory 

concentration (IC50) of 8.02 mM (Fig 3.1A). Furthermore, a significant decline in cell viability was 

observed at 4.22 and 12.67 mM KA (Figure 3.1B, p < 0.0001); these concentrations were used for all 

subsequent assays. 
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Figure 3.1 KA dose-dependently decreased HepG2 cell viability as depicted using the MTT 

assay (A) and crystal violet assay (B) (n = 3) 
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3.2. Kojic acid induced cell death in HepG2 cells 

The activities of caspases 9, 8, and 3/7 and LDH leakage were assessed to determine cell death in 

HepG2 cells. KA upregulated the activity of the initiator caspase 9 (p < 0.0001, Fig 3.2A) and caspase 

8 (p = 0.0003, Fig 3.2B) at all concentrations compared to the control. The activity of the executioner 

caspase 3/7 was significantly increased by the 4.22 mM KA but decreased by the 12.67 mM treatment 

(p < 0.0001, Fig 3.2C). The LDH results indicate that KA at 4.22mM was decreased and 8.02 mM 

was significantly decreased whereas, 12.67 mM KA caused significant membrane damage (p < 

0.0001, Fig 3.3). The decrease in caspase 3/7 activity, as well as the increase in LDH 

leakage/membrane damage strongly suggests that necrosis is the mode of cell death. 
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Figure 3.2 The effect of KA treatment on caspase activities of 9 (A), 8 (B), and 3/7 (C) in HepG2 

cells (*p<0.05, **p<0.001, ***p<0.0001) (n = 3) 
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Figure 3.3 The effect of KA on LDH leakage/membrane integrity in HepG2 cells  (**p < 0.001) 

(n = 3) 

3.3. Assessment of oxidative stress  

To confirm cell death induction due to stress responses, macromolecules, and ATP were assessed in 

HepG2 cells following KA treatment. ATP levels were not increased at 4.22 mM and 8.02 mM 

however, ATP was significantly increased at 12.67 mM KA relative to the control (p < 0.0001, Fig 

3.4). 

C 
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KA treatment altered the antioxidant status in HepG2 cells. KA significantly increased extracellular 

MDA production- a by-product of lipid peroxidation (p < 0.0001, Fig 3.5A) relative to the control. 

The increase of lipid peroxidation suggests the presence of oxidative stress. The markers of lipid 

peroxidation, such as 4-HNE, have the ability to form an adduct with DNA resulting in DNA breaks. 

Although lipid peroxidation markers were upregulated, it was found that KA did not induce a 

significant increase in 8-OHdG (p = 0.0025, Fig 3.5B). Protein carbonyls were assessed in KA-

exposed cells compared to the control. Protein oxidation was significantly decreased in KA-exposed 

cells (p < 0.0001, Fig 3.5C). 
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Figure 3.4 Intracellular ATP levels in HepG2 cells for 24h (***p<0.0001) (n = 3) 
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Figure 3.5 The effect of KA on cellular oxidation in HepG2 cells. KA increased (A) extracellular 

MDA concentration, and decreased (B) 8-OHdG and (C) Protein carbonyl concentrations after 

24 h treatment (*p<0.05, **p<0.001, ***p<0.0001) (n = 3) 

3.4. Antioxidant responses  

Antioxidant response factors, Nrf 2 and p-Nrf 2 were downregulated significantly by KA (12.67 mM). 

At concentrations of 4.22 and 8.02  mM KA, Nrf 2 (p = 0.0002, Fig 3.6A) and p-Nrf2 (p < 0.0001, 

Fig 3.6B) expression was increased by KA in response to oxidative stress.  
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CAT, which aids in detoxification of peroxides, was downregulated following KA treatment (p = 

0.0002, Fig 3.6C).  The expression of GPx was investigated using qPCR to validate the occurrence of 

oxidative stress. GPx transcript levels were upregulated at 4.22 mM (1.51 fold) and 8.02 mM (1.07 

fold); however, at 12.67 mM (1.02 fold), there was no change in expression relative to the control (Fig 

3.6D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



74 
 

 

 

 

Figure 3.6 The effect of KA on antioxidant expression of total Nrf2 (A), p-Nrf2 (B), CAT (C), 

GPx mRNA in HepG2 cells (*p<0.05, **p<0.001, ***p<0.0001) (n = 3) 

3.5. Immune response by MAPK proteins 

JNK1/2 and p38 are stress-activated protein kinases (SAPK) and play a role in cell regulation, 

inflammation, and apoptosis. MAPK proteins were assessed using Western blot to determine the 

immune response to KA. The expression of JNK1/2 was downregulated by KA relative to the control 

(p < 0.0001, Fig 3.7A & B). The protein expression of p38 was significantly increased at 

concentrations 4.22 and 8.02 mM but remained unchanged at 12.67 mM (p = 0.0011, Fig 3.7C).  
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Figure 3.7  Immune response by MAPK proteins following KA-exposure (*p<0.05, **p<0.001, 

***p<0.0001). A. JNK1, B. JNK2, C. p38 (n = 3) 

3.6. Inflammatory response in HepG2 cells 

In the presence of toxic insults, inflammatory markers play a key role in cell regulation. Sirt1 acts as 

an inhibitor of inflammation by decreasing NFκB and AP-1 expression. Phosphorylated - Sirt1 

expression was significantly downregulated by KA relative to the control (p < 0.0001, Fig 3.8A).  AP-

1 expression was elevated by KA (p = 0.0003, Fig 3.8 B).  

Decrease in p-Sirt1 expression resulted in the increase of total NFκB protein expression (p < 0.0001, 

Fig 3.8C). However, NFκB pathway was not activated reflected in a decrease in phosphorylated-

NFκB expression. The decrease of activated NFκB was proportional to dose concentration (p < 

0.0001, Fig 3.8D). qPCR was carried out to validate KA's anti-inflammatory potential. NFκB gene 
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expression was decreased at 4.22 mM (0.82 fold), 8.02 mM (0.24 fold); however, at 12.67 mM (1.02 

fold) was unchanged relative to the control (Fig 3.9A). Notably, both protein and gene expression 

showed a significant decrease in NFκB expression at 8.02 mM. Similarly, IκB expression was 

decreased at 8.02mM. IκB expression was increased relative to the control at 4.22 and 12.67 mM (p < 

0.0001, Fig 3.9B) 

 

 

 

 

 

Figure 3.8  Protein expression of inflammatory markers, p-Sirt1 (A), AP-1 (B), NFκB (C) and p-

NFκB (D) in HepG2 cells following KA treatment (**p<0.001, ***p<0.0001) (n = 3) 
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Figure 3.9 Gene expression of inflammatory markers NFκB and IκB in HepG2 cells following 

KA-treatment (**p<0.001, ***p<0.0001) (n = 3) 

3.7. MiRNA expression involved in oxidative stress and immune response in HepG2 cells 

Following treatment, the gene expression of miRNA-29a was upregulated significantly at 12.67 mM 

(p = 0.0002, Fig 3.10A). MiRNA-29b expression was increased following KA-treatment (p = 0.0009, 

Fig 3.10B). MiRNA-155 was upregulated significantly at 4.22 mM (p = 0.0018, Fig 3.10C). 
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Figure 3.10 MiRNA expression in HepG2 cells following KA-treatment (*p<0.05, **p<0.001, 

***p<0.0001) (n = 3) 
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CHAPTER 4 

DISCUSSION 

KA is found in a many food and beauty products. According to the U.S. Food and Drug 

Administration (FDA), A. oryzae (koji) is classified as generally regarded as safe (GRAS), although 

the nutritional benefit has not been thoroughly studied (Hamajima et al., 2016). In terms of skin-

lightening purposes, the FDA has not approved KA for use in pharmaceutical products (Belsito et al., 

2009). Studies pertaining to the toxicity of KA in the human liver are limited. The applications of KA 

in skin lightening have drawn attention to its toxicity on skin cells in humans and animals (Kim et al., 

2003, Lajis et al., 2012). KA is ingested in fermented food products, and therefore organs involved in 

the metabolism and excretion of toxins need to be further studied. The present study evaluated the 

effect of KA in key biochemical processes on HepG2 cells.  

Cell viability assays were carried out to determine the effect of KA on human liver cells. KA 

decreased cell viability in a dose-dependent manner, more significantly at high doses (12.67 mM) (Fig 

3.1A & B). The MTT assay did not show a significant decrease in cell viability; however, significant 

cell death was observed in the Crystal Violet assay. The result suggests no significant mitochondrial 

dysregulation (MTT assay) due to KA treatment, with the exception of 12.67 mM. Weak acids, such 

as KA, are known to inhibit growth by lowering the cellular pH. In the cytoplasm, the un-dissociated 

acid molecules pass through the plasma membrane by diffusion, depending on the molecule's 

lipophilicity. The acids dissociate into charged anions and protons. Some acids cannot pass through 

the plasma membrane and accumulate in the cytoplasm. The cytoplasm's acidification inhibits 

processes such as metabolism, leading to a decrease in cell viability (Stratford and Anslow, 1998, 

Kundukad et al., 2020).  

To confirm cell death, apoptosis activating caspases -9, -8, and 3/7 and LDH leakage/membrane 

integrity were assessed. Positive results for apoptosis initiation were reflected by an upregulation of 

caspase-8, -9, and -3/7 (Fig 3.2).  In agreement with previous studies, KA-induced apoptosis in HeLa 

cells in response to oxidative stress stimulated by copper-induced apoptotic agents (Chen et al., 2013). 

KA derivatives have copper-chelating properties that initiate apoptosis in HepG2 cells (Oncul et al., 

2019). However, in the present study, KA itself has shown increased caspase -3/7, -8, and -9 activity 

at lower concentrations (4.22 and 8.02 mM),  leading to cell apoptosis. It was also observed that there 

was a significant decrease in LDH levels suggesting no leakage and damage to cellular membranes 

(Fig 3.3). Interestingly at 12.67 mM, caspase -8 and -9 and executioner caspase -3/7 was not 

activated. However, LDH levels were increased, suggesting a decrease in cell viability due to the high 

concentration of KA damaging to the cellular membrane leading to necrosis.  
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Cellular metabolism efficiency is reliant on the supply of ATP that is produced in the mitochondria. 

The mitochondria are organelles responsible for the generation of ATP via the OxPHOS (Zhang et al., 

2018). A high density of mitochondria is essential for the high metabolic activity of the liver. A 

decline in cell viability suggests possible dysregulation on the mitochondrial level. The majority of 

ROS production occurs during mitochondrial respiration, making the mitochondria susceptible to 

damage (Ott et al., 2007). KA significantly increased ATP production (Fig 3.4). “Stress signals” are 

interpreted by the increase of ATP that mediates for downstream signalling. KA is known to increase 

ATP in the case of injury in Hypsizygus marmoreus (Zhang et al., 2017). Necrosis is an ATP-

independent mode of cell death however, cancer cells have the ability to utilise LDH to aerobically 

metabolise ATP. This could account for the increase of ATP at 12.67 KA. To date, there has been no 

study evaluating the change in ATP levels following exposure to KA treatment in human cells. 

KA increased MDA production in HepG2 cells, indicative of the occurrence of oxidative stress (Fig 

3.5A). KA elevated MDA levels significantly in the liver of iron-loaded Wistar rats and did not show 

any protective effect attributed to KA’s chelating ability (Kotyzova et al., 2004). The alteration in pH 

results in enzyme activity changes, reaction rates, protein stability, and nucleic acid structure 

(Kundukad et al., 2020).  

Due to KA's weak acid properties, protein and DNA damage was assessed. DNA plays an important 

role in information transfer; hence mutations can lead to pathologies such as cancer (Yin et al., 1995). 

An analysis on the most common DNA lesion, 8-OHdG was investigated. The data suggests a slight 

increase in the concentration of oxidative lesions; however, the result was statistically insignificant 

(Fig 3.5B). Genotoxic studies in vivo found that 8-OHdG oxidative adducts were not significantly 

increased in the thyroid of rats. The liver, colon, and stomach were further analysed to confirm the 

result and found no significant increase in the concentration of oxidative lesions in vivo correlating 

with the in vitro results obtained (Higa et al., 2007, Tamura et al., 2006). Studies into KA concerning 

its ability to form tumours in in vivo and in vitro models have displayed conflicting results. However, 

an attribute of KA highlighted by research is its anti-carcinogenic properties. DNA lesions have been 

found to be a factor leading to carcinogenesis. The highest treatment concentration decreased 8-

OHdG levels relative to the control, correlating with this deduction. Protein carbonyl concentrations 

were investigated to determine KA’s ability to oxidise proteins. A significant decrease in protein 

carbonyls (Fig 3.5C) relative to the control was observed. KA did not exert toxic effects on DNA and 

protein.  

Mammalian cells have defence mechanisms to ensure homeostasis of the intracellular environment by 

scavenging ROS (Basak et al., 2017). The production of ROS initiates the activation of regulatory 

proteins to minimise cellular damage. Nrf2 is responsible for cellular defence mechanisms by the 
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induction of the phase 2 responses. This process is dependent on the dissociation of KEAP-1, a 

repressor that contains zinc bound to reactive cysteine thiols and facilitates the detection of ROS and 

electrophiles. The phosphorylation of Nrf2 (p-Nrf2) leads to an increase in stability and activity 

(Nguyen et al., 2009). KA has the potential to target the zinc found between Nrf2 and KEAP-1, hence 

facilitating the release of Nrf2. Results showed an increase in Nrf2 and p-Nrf2 expression (Fig 3.6A 

& B), suggesting KA chelation properties may play a role in the release of Nrf2 from KEAP-1. Nrf2 

is a mediator of the anti-apoptotic protein Bcl 2 in stress-induced apoptosis. The increased in p-Nrf2 

expression by KA may have occurred due to persistent oxidative stress. However, the increase in Nrf2 

expression could have been insufficient due to apoptotic proteins being initiated, resulting in the 

release of cytochrome c into the cytosol and encouraging apoptosome formation.   

Nrf2 is a transcription factor that activates ARE, a protein found in antioxidants such as CAT and 

SOD2 (Nguyen et al., 2009). The cell's defence is the neutralisation of free radicals by reducing 

peroxides to water and oxygen facilitated by antioxidant enzymes, namely, CAT and SOD2 (Basak et 

al., 2017, Zhang et al., 2017).  The protein expression of CAT was downregulated following treatment 

with KA, but more significantly at 12.67 mM. The amount of MDA-TBA adducts produced correlates 

with the hindrance of cellular antioxidant response and lipid peroxidation (Fig 3.6C). This is in 

agreement with previous studies in which KA deactivated regulatory proteins, CAT, in the liver and 

kidney of rats (Kotyzova et al., 2004).  GPx functions in reducing peroxides and oxidises glutathione 

to glutathione disulphide. Gene expression of GPx revealed an increase at KA concentrations with 

high MDA levels (4.22 and 8.02 mM) (Fig 3.6D).  

Cells respond to stimuli by the activation of the MAPK signalling pathway in order to facilitate for an 

antioxidant response, inflammation, cell survival, and cell death (Cuenda and Rousseau, 2007, 

Shaulian and Karin, 2002, Weston and Davis, 2002, Kammeyer and Luiten, 2015). KA's role in the 

inhibition of tyrosinase activity by copper's chelation draws attention to the MAPK kinase proteins. 

The expression of MAPK proteins that mediates for cellular regulation, namely JNK1/2 and p38, were 

investigated to elucidate the cell's response to KA toxicity. The MAPK p38 and JNK1/2 proteins play 

a role in apoptosis, inflammation, and cytokine production (Morrison, 2012). JNK1/2 molecules are 

activated by DNA damage and oxidative stress (Sun et al., 2009). Additionally, JNK regulates the 

anti-apoptotic protein, Bcl-2 (Dhanasekaran and Reddy, 2008). The relationship is in agreement with 

the present study results as shown by the decrease of JNK1/2 ineffectively inhibiting Bcl-2 hence 

encouraging apoptosis (Fig 3.7A & B). p38 is a stress-activated protein kinase initiated by upstream 

MAPK signalling. KA was found to upregulate MAPK expression in HeLa cells (Chen et al., 2013), 

which is in agreement with the results obtained for p38 in HepG2 cells (Fig 3.7C). Prolonged 

activation of this pathway can lead to cell death due to the presence of ROS (Redza-Dutordoir and 

Averill-Bates, 2016, Ott et al., 2007). Stress signal detection is carried out by JNK1/2 and p38, which 
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initiate cell death activation and decrease cell proliferation (Ayala et al., 2014). This suggests the 

involvement of the MAPK pathway in response to ROS following KA treatment in HepG2 cells. 

Inflammation has been implicated in the initiation and progression of diseases. Key biomarkers 

involved in the NFκB pathway were evaluated to determine the effect of KA-treatment on 

inflammation in HepG2 cells (Fig. 3.8 & 3.9). Sirt1 possesses protective properties against oxidative 

stress by inhibiting NFκB and AP-1 expression (Becatti et al., 2018, Xie et al., 2013a). The expression 

of phosphorylated-Sirt1 was downregulated by KA (Fig 3.8A). AP-1 is made up of several proteins, 

namely Fos, Jun, Maf, and ATF. Sirt-1 decreases c-fos/c-Jun acetylation resulting in decreased 

transcription of AP-1. Therefore decreased Sirt-1 expression will cause an increase in AP-1 and NFκB 

expression. The study found an increase in AP-1 expression (Fig 3.8B). AP-1 plays a role in COX-2 

inflammatory responses (Xie et al., 2013a). Total NFκB expression was increased following KA-

treatment with the exception of 8.02 mM; however, phosphorylated-NFκB expression was decreased 

(Fig 3.8C & D). Despite the increase in NFκB expression, activation of NFκB and transcription of 

inflammatory genes was decreased by KA. The results correlate with KA anti-inflammatory 

properties illustrated in in vitro studies in other cell lines (Moon et al., 2001, Ahn et al., 2003). 

Similarly, gene expression of NFκB was decreased at 8.02 mM (Fig 3.9A). Gene expression of IκB 

was increased with the exception of 8.02 mM (Fig 3.9B). Due to the trend observed, the results 

suggest a potent inhibition of the inflammation pathway NFκB by KA at 8.02 mM.  

MicroRNA (miRNA) is a class of post-transcriptional repressors of gene expression (Reinhart et al., 

2000). KA significantly increased miRNA-29a expression at the 12.67 mM concentration. At 

12.67mM KA apoptosis and inflammation did not occur (Fig 3.10A). The result is in agreement with 

literature which states miRNA-29a exerts anti-apoptotic effects on cells and downregulates NFκB 

expression in miRNA-29a transgenic mice.   

MiRNA-29b dysregulation plays a role in fibrosis pathogenesis in C57BL/6 mice (Su et al., 2019). 

Moreover, miRNA-29b regulates oxidative stress, decreases cell viability, and increased apoptosis 

(Hou et al., 2017, Engedal et al., 2018). MiRNA-29b was shown to negatively regulate Sirt1 in 

ovarian cancer cells (Hou et al., 2017). MiRNA-29b has pro-apoptotic properties. The miRNA-29b 

expression was increased at concentrations shown to undergo apoptosis (Fig 3.10B).  

The miRNA control of oxidative stress and apoptosis was assessed by analysing miRNA-155 

expression in treated HepG2 cells. MiRNA-155 suppresses antioxidant response by SOD2 and CAT, 

promoting ROS generation. Regulation of miRNA-155 expression was found to be carried out by 

NFκB and MAPK signalling (Wang et al., 2015). However, NFκB is also a target of miRNA-155 by 

controlling IKKβ and IKKε expression (Ma et al., 2011). This results in the repression of NFκB 

activation which is consistent with the increased miRNA-155 expression and decreased NFκB 

expression. MiRNA-155 also stimulated cell proliferation in pancreatic cancer cells (T-rex and K-ras 
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cells) by the inhibition of FOXO3a (Wang et al., 2015). Hence KA upregulated miRNA-155 

expression at 4.22 mM; however, at higher concentrations, no significant changes were observed (Fig 

3.10C). Notably, the most significant elevation in MDA levels and miRNA-155 occurred at 4.22 mM 

correlating the oxidative stress results with miRNA expression.  
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CHAPTER 5 

CONCLUSION 

From the data obtained, it can be determined that KA has cytotoxic potential in HepG2 cells. Studies 

show that KA at very low concentrations acts as an antioxidant (Saeedi et al., 2019). The 

concentrations found to cause oxidative stress was much higher than the KA content in cosmetics. 

HepG2 cells were susceptible to KA toxicity by inducing oxidative stress. The study found no 

significant DNA and protein damage at treated concentrations. On the contrary, KA has shown 

potential hepatic protective properties. MAPK proteins activate inflammatory pathways in the 

presence of oxidative stress. KA elevated stress-activated protein kinase p38 and decreased 

inflammatory biomarkers. 

The evaluation of cosmetic products was found to contain KA concentrations between 1-2%. The 

European Commission's Scientific Committee on Scientific Products (SCCP) determined a maximum 

allowed concentration of 1% in skincare products due to health concerns reflected in published work 

on the effect of thyroid and skin sensitisation (SCCP, 2008). KA use as a food preservative in seafood 

was found to have an approximate concentration of 0.25%-0.6% KA.  

In terms of ingestion, KA is a fermentation by-product in food and is found in small quantities. 

Previous research has found the LD50 dose in mammals to be 1g/kg (Brtko et al., 2004). The 

absorption and distribution of KA were found to be negligible from dermal penetration. Therefore 

metabolism of KA will significantly lower the distributed concentration of KA. 

In conclusion, the study illustrated that although oxidative stress and apoptosis was elevated, the 

effect on liver health in terms of DNA damage, protein oxidation and inflammation was minimal. 

Notably, the concentrations of the KA used to exert such effects were much larger than the average 

use and require further research through dermal and oral exposures. 
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CHAPTER 6 

LIMITATIONS OF THE STUDY 

KA's use in the beauty industry suggests varying exposure periods. The present study investigated cell 

viability due to KA exposures for 6h, 24h, and 48h. The study was carried out on an immortalised cell 

line in vitro; therefore, future studies need to be carried in an in vivo model to validate the in vitro 

study results.   

KA has weak acid properties that have a potential mitochondrial effect. HepG2 cell lines are a cancer 

cell line that minimizes dependence on the mitochondria; therefore, the mitochondrial output cannot 

conclusively be deduced until further studies are carried out. 
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APPENDIX A 

KA increased cell viability at concentrations (0-4.22 mM) following a 6h KA-treatment with the 

highest increase in cell viability at 4.22 mM (170.65%). A decrease in cell viability in comparison to 

4.22 mM, was observed at 5.63 -12.7 mM with the lowest cell viability percentage at 126.8% (Fig 4). 

There was no inhibition of cell viability observed relative to the control (p =0.0006). 
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Figure 4.1 KA increased cell viability as depicted using the MTT assay in HepG2 cells for 6h 

(*p<0.05, **p<0.001, ***p<0.0001) (n = 3) 



100 

APPENDIX B 

KA dose-dependently decreased cell viability of HepG2 cells following a 48h treatment (Fig 5). The 

data illustrates that KA is cytotoxic to cells with an IC50 = 7.2 mM. The IC50 was determined to be 

similar to that of the 24h treatment. Therefore, subsequent treatments were carried out at the 

determined 50% cell death concentrations for 24h. 
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Figure 5.1 KA dose-dependently decreased HepG2 cell viability as depicted using the MTT 

assay for 48h (IC50= 7.2 mM) 
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APPENDIX C 

BCA assay (Western Blot protein preparation) 

Figure 6.1 Standard curve obtained from BSA protein standard to determine the unknown 

concentrations of protein in samples 

Table 6. Standardisation of proteins used for Western Blot (Final volume = 200µl; 

concentration = 1.5 mg/ml) 

Sample 

(mM) 

Mean 

absorbance 

Protein 

concentration 

(mg/ml) 

Volume of 

Protein stock 

(µl) 

CytoBuster (µl) Volume of 

Laemmli buffer 

(µl) 

0 1.976 1.550689 129.03 70.97 200 

4.22 2.2995 1.836365 108.7 91.3 200 

8.02 2.0945 1.655334 121.21 78.79 200 

12.67 1.9215 1.502561 133.33 66.67 200 

y = 1.1324x + 0.22 
R² = 0.9758 
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APPENDIX D 

BCA assay (Protein carbonyl preparation) 

Figure 7.1 Standard curve obtained from BSA protein standard to determine the unknown 

concentrations of protein in samples 

Table 7. Standardisation of proteins used for the protein carbonyl assay (Final volume = 300µl; 

concentration = 1.0 mg/ml) 

Sample 

(mM) 

Mean 

absorbance 

Protein 

concentration 

(mg/ml) 

Volume of 

Protein stock 

(µl) 

Cell Lysis 

solution 

 (µl) 

Volume of 

Laemmli buffer 

(µl) 

0 2.291 2.00829 149.3808 150.6192 300 

4.22 2.079 1.79629 167.0109 132.9891 300 

8.02 2.0855 1.80279 166.4087 133.5913 300 

12.67 2.1005 1.81779 165.0356 134.9644 300 

y = 0.8369x + 0.2366 
R² = 0.9113 
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APPENDIX E 

DNA isolation standardisation 

Table 8. Standardisation of DNA used for ELISA (Final volume = 150µl; concentration = 100 

ng/ml) 

Concentrations (mM) DNA stock (µl) TE buffer (µl) 

0 18.32 131.68 

4.22 11.34 138.66 

8.02 13.98 136.02 

12.67 13.21 136.79 

ELISA standard curve
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Figure 8 The 8-OHdG concentrations standards obtained from ELISA to extrapolate unknown 

concentration of DNA adducts in treatment samples 
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Table 9: Concentrations extrapolated from the 8-OHdG standard concentration graph 

Concentration of Treatment (mM)  Concentration of DNA damage (ng/ml) 

0 0.7315 

4.22 0.8872 

8.02 1.1702 

12.67 0.4937 
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APPENDIX F 

Turnitin Report 




