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Unsupervised Feature Selection for Anomaly-Based

Network Intrusion Detection Using Cluster Validity Indices

Abstract

In recent years, there has been a rapid increase in Internet usage, which has in turn led to a

rise in malicious network activity. Network Intrusion Detection Systems (NIDS) are tools

that monitor network traffic with the purpose of rapidly and accurately detecting malicious

activity. These systems provide a time window for responding to emerging threats and

attacks aimed at exploiting vulnerabilities that arise from issues such as misconfigured

firewalls and outdated software.

Anomaly-based network intrusion detection systems construct a profile of legitimate or

normal traffic patterns using machine learning techniques, and monitor network traffic for

deviations from the profile, which are subsequently classified as threats or intrusions. Due

to the richness of information contained in network traffic, it is possible to define large

feature vectors from network packets. This often leads to redundant or irrelevant features

being used in network intrusion detection systems, which typically reduces the detection

performance of the system.

The purpose of feature selection is to remove unnecessary or redundant features in a fea-

ture space, thereby improving the performance of learning algorithms and as a result the

classification accuracy. Previous approaches have performed feature selection via opti-

mization techniques, using the classification accuracy of the NIDS on a subset of the data

as an objective function. While this approach has been shown to improve the performance

of the system, it is unrealistic to assume that labelled training data is available in opera-

tional networks, which precludes the use of classification accuracy as an objective function

in a practical system.

This research proposes a method for feature selection in network intrusion detection that

does not require any access to labelled data. The algorithm uses normalized cluster valid-

ity indices as an objective function that is optimized over the search space of candidate

feature subsets via a genetic algorithm. Feature subsets produced by the algorithm are

vi



Abstract vii

shown to improve the classification performance of an anomaly–based network intrusion

detection system over the NSL-KDD dataset. Despite not requiring access to labelled

data, the classification performance of the proposed system approaches that of effective

feature subsets that were derived using labelled training data.
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nf = {n1, n2, . . . , nNfront
} Number of candidate feature subsets assigned to

each Pareto front

pm Mutation probability for a feature

Ri,j Measure of similarity between clusters i and j

re Percentage of candidates to produce via elitism

for generation t+ 1



Symbols xx

rc Percentage of candidates to produce via crossover

for generation t+ 1

rout Percentage of data samples to be identified as outliers

s Segments / intervals associated with each candidate

feature subset for stochastic uniform selection

Tlog Threshold for log-likelihood

t Current generation number

W = {w1,w2, . . . ,wNo} Collection of values for each objective function for

each candidate feature subset

X = {x1,x2, . . . ,xN} Collection of data samples or feature vectors

Xdistance Crowding distances for a collection of data samples

Xo Collection of data samples that are labelled as outliers

xi,f Value of feature f of data sample i

x′i,f Normalized value of feature f of data sample i

Ẑ = {z1, z2, . . . , zK} Latent unobserved variable

µ = {µ1,µ2, . . . ,µK} Feature vectors representing the mean of each of

the K Gaussian components over the feature space

µf Mean of the values in feature f

π = {π1, π2, . . . , πK} Mixing coefficients of each of the K Gaussian components

Σ = {Σ1,Σ2, . . . ,ΣK} Covariance matrix of each of the K Gaussian components

σf Standard deviation of the values in feature f



Chapter 1

Introduction

This chapter provides an overview of the current state of security for networked computer

environments, which includes their weaknesses and security threats that these environ-

ments are susceptible to. Mechanisms that are used to protect against such threats, which

includes network intrusion detection systems, and the problem that is intended to be solved

are discussed. The proposed research that will be carried out is outlined in this chapter

as well.

1.1 Background

In modern day society, networked computer systems play a significant role in the com-

pletion of everyday tasks and activities. These tasks include daily financial transactions,

often dealing with exorbitant sums of money, the execution of vital government services or

the day to day social interactions between billions of people. These activities are typically

communicated over the Internet, which is a universal network of millions of interconnected

computer systems and smaller networks [2].

Networked computer systems have a large number of application areas, with vast amounts

of valuable and confidential information being transmitted between them. This has led to

networked computer systems becoming an attractive target for cybercrime. Cybercrime

1
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can be described as any act involving a computer and a network that aims to intention-

ally harm the reputation, or cause physical, mental, emotional or financial harm or loss

to an individual or group of individuals [8]. These acts are frequently carried out over

telecommunication networks such as the Internet, through the illegitimate use of, or ac-

cess to network services such as chat rooms, notice boards, file servers, web servers, mail

servers, network routers, etc, or mobile phone network services such as SMS and MMS [8].

Typical cybercrimes can include the theft of large sums of money, identity theft, fraud

and copyright infringements. The total cost of cybercrime based on 24 major countries

around the world, including South Africa, was 113 Billion US Dollars in 2013 [9]. Russia,

China and South Africa were the top three in the number of victims of cybercrime, with

85%, 77% and 73% of all adults surveyed, respectively.

Cybercrime often involves some form of network intrusion. Network intrusions constitute

any unauthorised activity on a computer network that leads to the loss of confidentiality

and integrity of data transmitted or accessed via a network, the denial of network resources,

or the unauthorised use of network resources. An example of network intrusions that may

concern a system administrator include; the illegitimate usage of existing user accounts

by unauthorised individuals, which provides unauthorised access to confidential system or

user information [10]. This may lead to:

1. The unauthorised alteration of a user’s confidential files or information, or

2. the unauthorised editing of system information in network components, such as

altering router tables to deny a user access to the network (denial of services).

In general, network vulnerabilities can be defined as flaws in the design, implementation

and management of a networked system and its security mechanisms. Their existence cre-

ates weaknesses in networked systems as these vulnerabilities can be exploited by various

types of network attacks, leading to a loss in confidentiality and integrity of information,

the denial of resources, or unauthorised use of resources [2]. An example of a vulnerability

involves the use of outdated software which may have weaknesses in its code that were
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fixed in newer versions. Due to a lack of updating and patching, these weaknesses cre-

ate vulnerabilities that an attacker may exploit. Bhattacharyya et al. [2] identify several

vulnerabilities that weakens the security of networked computer systems.

• Network configuration vulnerabilities — These vulnerabilities occur due to networks

and security mechanisms being improperly set up and managed by an inexperienced

administrator, or due to human error. These vulnerabilities are caused by [2]:

1. incorrect configuration of security equipment, such as firewalls,

2. unprotected password transmission, and

3. use of the same passwords or weak passwords for extended periods of time.

• Network perimeter vulnerabilities — This occurs due to a lack of network perimeter

security and appropriate access control mechanisms. If the perimeter of the net-

work is not well defined, the network may be susceptible to unauthorized access by

illegitimate users [2].

• Communication vulnerabilities — A system can be rendered vulnerable if the com-

munication between devices on a network is not properly secured. Examples of

communication vulnerabilities are, the data transferred between network devices

are not properly encrypted, or devices are not properly authenticated prior to data

transmission. Well documented security protocols need to be adhered to in order

to ensure that connections between nodes are secure. Additionally, proper authenti-

cation measures and data integrity checks need to be followed to ensure that users,

data and devices are legitimate [2].

• Wireless communication vulnerabilities — These occur due to a lack in proper user

authentication methods, as well as poor encryption policies for the data transmission

over the wireless network [2]. Additionally, the use of weak passwords increases the

risk of unauthorized access to a networked system.

A network attack is a sequence of operations or actions executed on a networked system

that leads to the occurrence of a network intrusion. Network attacks are typically accom-

plished by exploiting some vulnerability in the networked system. A taxonomy of network
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attacks is provided in what follows [2]. Examples of these attacks are provided in table

1.1.

1. Infection — The aim of these attacks is to infect a computer system by tampering

with computer software, or installing malicious programs on the target system.

2. Exploding — These attacks add flaws to the target system with the intent of over-

flowing the system, thereby rendering it unusable.

3. Probe — This involves the use of various tools to gather vital information about

the target system or network. Typically the primary goal is to identify networked

systems and services that possess vulnerabilities that can be exploited.

4. Cheat — These are attacks that involve the use of fake identities in order to access

private information on the target system.

5. Traverse — This is an attempt to access a protected target system by trying a list

of commonly occurring “keys” until the correct “key” is found which allows access

to the target system. Typically, the “keys” are user login passwords.

6. Concurrency — The aim of these attacks is to flood a system that provides a service

with a vast amount of requests. This exhausts the capacity of the system to respond

to additional requests by consuming all available system memory or bandwidth. The

result of this attack is to render the system or service unusable and unavailable to

legitimate requests.

7. Others — These attacks make direct use of system weaknesses, as may be present

in outdated software, in order to infect the target system.

Table 1.1 shows several subcategories of attacks that networked systems are susceptible

to.
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Table 1.1: Taxonomy of network attacks (from [2]).

Main Category Subcategory

Infection Viruses, Worms, Trojans

Exploding Buffer overflow

Probe Sniffing, port mapping security scanning

Cheat

IP spoofing, MAC spoofing, DNS spoofing,

session hijacking, XSS (Cross Site Script) attacks,

hidden area operation, and input parameter cheating

Traverse Brute force, dictionary attacks, doorknob attacks

Concurrency Flooding, DDoS (Distributed Denial-of-Service)

1.1.1 Conventional security mechanisms

The RFC2828 standard defines a security service as, “a processing or communication

service that is provided by a system to give a specific kind of protection to system re-

sources; security services implement security policies and are implemented by security

mechanisms” [4]. A list of five broad categories of security services, as defined by the

X.800 standard is provided in what follows [4].

1. Authentication — A service that guarantees that a communicating source is the

source that it claims to be.

2. Access control — This service prevents the use of computing resources by unautho-

rised entities. Access control determines who is allowed to access a resource, the

degree to which they may use a resource, and the conditions under which a resource

may be accessed.

3. Data confidentiality — A service that aims to protect confidential data from disclo-

sure to unauthorised entities.

4. Data integrity — This service guarantees that data received from an authorised com-

municating source is received without being modified or altered during the transmis-

sion process.
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5. Nonrepudiation — A service that aims to protect against entities denying participa-

tion in a communication that said entity was apart of.

Several security mechanisms that are used to implement security services include [4].

• Encipherment — This mechanism involves the application of mathematical algo-

rithms to data, with the aim of encoding the data in such a way that it is incom-

prehensible when viewed using traditional means. The application of a decoding

algorithm is required to revert the data back to its original state.

• Digital signature — A digital signature allows a recipient to verify that the data

received is in fact from the originating source, and confirms that the data has not

been modified or altered. A digital signature is a segment of data added to the unit

of data intended for transmission, or a specific form of cryptographic transformation

applied to the data prior to transmission.

• Access control — There are multiple mechanisms that can be used to control access

to resources, such as user login procedures for computer systems.

• Data integrity — Several security mechanisms may be applied to assure that data is

unaltered during transmission.

• Authentication exchange — This mechanism uses information exchange to verify the

identity of a communicating entity.

• Traffic padding — Extra information in the form of bits are added to network packet

data in order to encode the data such that an unauthorised entity is unable to

comprehend the data.

• Routing control — A mechanism that selects secure routes for data transmission

or alters the route of data currently being transmitted when a breach of security is

detected.

• Notarization — This involves the use of a third-party which manages the data trans-

mission between two entities.
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Table 1.2 maps each security mechanism to the security service that they provide.

Table 1.2: Security mechanisms and the security services that they provide (from [4]).

Security

Service

Security Mechanism

Encipherment
Digital

signature

Access

control

Data

integrity

Authentication

exchange

Traffic

padding
Routing control Notarization

Authentication Y Y Y

Access control Y

Data confidentiality Y Y Y

Data integrity Y Y Y

Nonrepudiation Y Y Y Y

Examples of conventional security mechanisms that are used to provide authentication and

access control security services include firewalls, anti-virus software and Virtual Private

Networks (VPNs).

Firewalls, deployed at the perimeter of a network, contain a set of rules that describe

the types of network activity (malicious or legitimate) that are allowed to traverse the

firewall [4]. Firewalls employ a form of access control for data transmitted to a network

using either blacklisting or whitelisting. Blacklisting allows all network activity to pass into

the network or networked system except the network activity mentioned in the rule set,

whereas whitelisting blocks all network activity from accessing the network or networked

system except for the network activities that are specified in the rule set.

Anti-virus software typically monitors a host for activity that is already known to be

malicious activity. The malicious activity is captured in the form of a signature, where

the anti-virus software compares the signature to the observed activity of the monitored

system. An example of malicious activity that anti-virus software may detect involves,

the execution of a malicious executable file on the windows operating system which may

initiate a sequence of events that results in the collection of confidential information for

an attacker to exploit. This sequence of events may be known to the anti-virus software

if the signature is available as an intrusion, thus, the anti-virus software will stop these

events in mid-sequence.

VPNs are typically used by businesses to securely connect several offices. Communica-

tion between offices and between offices and the Internet are encrypted allowing for safer

communication.
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Although these security mechanisms do prove effective in protecting against casual intru-

sion attempts, it has been demonstrated that these preventative measures are no longer

sufficient [2, 11]. Attackers have found means to create fake identities or use existing

identities in order to masquerade as legitimate users on a network. User login details

can be acquired through brute force attacks, or through social engineering. Firewalls and

VPNs can often be misconfigured due to inexperience which creates vulnerabilities, allow-

ing traffic from malicious sources to penetrate the firewall or VPN. The lack of an updated

anti-virus software implies that the anti-virus will not recognize a sequence of events that

describes new or novel types of malicious activities. Though VPNs attempt to safeguard

networks from malicious content found on the Internet using encryption, they are suscep-

tible to malicious content that may be found on the devices (such as laptops) of legitimate

users that connect to the VPN. Once connected to the VPN, the malicious content on a

users device may have access to the VPNs resources and confidential information.

1.1.2 Intrusion detection systems

The inability of conventional network security measures to reliably safeguard networks and

networked systems against network intrusions, led to the creation of an additional layer

of security. This layer of security, known as intrusion detection and prevention, was intro-

duced by James P. Anderson in the early 1980s [12–15]. Mukherjee et al. [10] state that,

“The goal of intrusion detection is to identify, preferably in real-time, unauthorized use,

misuse, and abuse of computer systems by both system insiders and external penetrators.”

Intrusion detection functionality is carried out by Intrusion Detection Systems (IDSs),

which consists of hardware and software elements for automatically detecting intrusions.

IDSs monitor systems for illegitimate usage patterns which are typically different from

legitimate usage patterns. The detection of intrusions can be used to prevent further harm

caused by an intrusion, for instance, denying access to unauthorised users, effectively limits

the scope of malicious activity and harm.

It is important to note that IDSs are not intended to replace conventional security mecha-

nisms, but rather act as an additional line of defence, with the intention of strengthening

the security of information communication systems [1]. For instance, IDSs can be used
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to detect various types of malicious activities that a firewall may inadvertently allow to

pass through into the network. In addition to this, an IDS can act as a tool for post

mortem analysis, namely to determine the extent of the harm caused by an attack, and

to potentially track down the source of the attack [1, 11, 13, 16, 17].

Intrusion detection systems can be classified as either host-based or network-based. Host-

based IDSs monitor the events on a single computer system or host, where events may

be operating system based or application based. For instance, it can detect whether log

files, security policies, or other important information on that host has been modified in

any way by an attacker. Host-based IDSs may impose high processing overheads on hosts,

depending on the resources available to the host, however, these systems are traditionally

simpler to implement and manage, as they are contained within a single host.

A network-based IDS monitors traffic patterns between network routers, network servers

or network switches, which are ingress and egress points of a network [18]. The network-

based IDS does not have access to information that is specific to individual hosts, which

does not allow for the granular protection that the host-based IDS has. However, the

network-based IDS is able to detect attacks that the host-based IDS may not be able to.

For instance, probing attacks that span several hosts are not detectable on a single host,

but would be detected as an intrusion over the entire network. Network-based systems

are often more complex to implement and manage owing to the need to monitor multiple

hosts, but they are able to detect attacks that span multiple hosts [19, 20]. Both host-

based and network-based IDSs are complementary to each other in the sense that both

are used to detect intrusions in different contexts.

IDSs may also be classified based on the detection approach that they utilize. Typically,

the two main approaches are misuse-based detection and anomaly-based detection [1].

1.1.2.1 Misuse-based detection

Misuse-based detection approaches compares network traffic features to predefined pat-

terns or signatures of known intrusions. Signatures represent a set of rules that describes
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the sequence or set of network activities that characterise an intrusion. Misuse-based ap-

proaches typically have lower false positive percentages owing to the fact that it detects

intrusions that are known. The shortcoming is that misuse-based systems are unable to

detect unknown intrusions or variants of existing intrusions. [1, 10, 11, 13, 14, 16, 20–22].

1.1.2.2 Anomaly-based detection

Anomaly-based detection approaches assumes that the feature values of malicious net-

work traffic is vastly different from that of legitimate network traffic. Anomaly-based

approaches involves the construction of models that represents the expected behaviour of

legitimate network traffic. Incoming network traffic is compared against these models and

any deviation from these models is regarded as an anomalous activity, which may indicate

that malicious network traffic has penetrated the system being monitored. Anomaly-based

detection systems are generally able to detect novel intrusions, however, they often have

high false positive percentages [1, 10, 11, 13, 14, 16, 20–22].

While all types of IDSs have their own strengths and weaknesses, this research focusses

on anomaly-based Network Intrusion Detection Systems (NIDS), owing to their ability

to detect novel intrusions. Anomaly-based network intrusion detection systems typically

follow a basic structure, which is provided in figure 1.1.

Figure 1.1: Anomaly-based NIDS structure (from [1]).
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Parameterization involves representing the data observed in the monitored environment in

a form that is suitable for the application of analysis techniques to the data. The training

stage subsequently characterises and models the legitimate behaviour of the monitored

system. Network traffic observed on the monitored system is parameterized and subse-

quently compared against the model in the detection stage, any deviation from this model

results in the anomaly-based NIDS raising an alarm [1].

Data mining involves the analysis of data with the aim of uncovering valuable informa-

tion which may be transformed into knowledge [23]. Anomaly-based network intrusion

detection systems essentially perform data mining tasks on network data in order to gain

knowledge of the behaviour of a system. In anomaly-based NIDS, there exists a variety of

techniques that may be used to accomplish such data mining tasks, for example, machine

learning techniques have been used previously in this regard [1]. Machine learning is a

branch of computer programming that focusses on developing computer algorithms that

build models based on input data which allows them to make predictions or decisions

on new input data. Machine learning methods typically belong to one of two categories:

supervised machine learning or unsupervised machine learning. The former uses labelled

data to learn a general rule on how to map input data to output data; the latter does

not require labelled data, it learns patterns from the input data itself, using these learned

patterns to make predictions based on new input data [2].

Machine learning based anomaly-based NIDS typically constructs models of legitimate

network traffic based on patterns observed in the network packets of network traffic. These

patterns are observed through the analysis of specific features and their values, embedded

in network packets. These feature values characterise or define various types of network

activity occurring on a networked computer system.

1.2 Research problem statement

The effectiveness of various techniques used to implement network intrusion detection

systems rely heavily on the set of features used. A feature set should provide a good
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distinction among the classes present in the data, allowing for quick and accurate clas-

sification of these classes [2]. Network traffic is rich with contextual information and as

a result large feature vectors can be constructed. While larger feature vectors may hold

more information, it has been shown, particularly for the KDD Cup 1999 dataset [24],

and the NSL-KDD dataset [25], that features within a feature vector can be irrelevant in

detecting certain types of attacks or that certain features are redundant [7, 26–34].

The consequence of performing network intrusion detection on redundant and irrelevant

features is that it leads to a reduction in classification accuracy in certain cases [26, 31, 35],

as well as introduces a high computational complexity which increases the detection delay.

Irrelevant features do not contribute to the detection of certain types of attacks, as they

are unable to capture significant characteristics that are required for the detection of these

attacks [36, 37]. Redundant features do not add any new knowledge with regards to the

detection of attacks [36]. A study performed in [7] revealed that several features of a

well-known network intrusion detection dataset provided little to no information on any

of the classes present in the dataset.

A candidate solution to this problem is feature selection, which is a procedure commonly

used to remove redundant or irrelevant features that may be present within feature vec-

tors [2, 23, 38]. Feature selection has been applied successfully in various application

areas [7, 26–33]. Applying feature selection techniques to the data prior to analysis by a

NIDS has the potential to improve the performance of network intrusion detection sys-

tems. It has already been demonstrated that a reduced set of more significant features can

lead to an improved detection accuracy and false positive percentage as compared to the

original set of features when detecting certain attacks [7, 26–33]. Additionally, the reduced

feature set may consume fewer resources and take less time to process. Higher dimensional

data makes the detection of attacks more difficult due to complex relationships between

features, this increases the processing time, which increases the detection delay.

Feature selection, as applied in the context of network intrusion detection, typically in-

volves the use of supervised methods that require access to labelled network data [30–

33, 35, 39, 40]. Labelled data consists of network traffic samples (feature vectors) that

have been previously classified by experts in the field as legitimate or associated with
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malicious activity. While these implementations demonstrate the effectiveness of feature

selection, they are impractical in the sense that labelled network data is not available in

practical environments, and difficult to construct without the aid of experts in the field.

Constructing features from network packet data is a non-trivial task; it involves an in-

depth analysis of network packet headers and the content of network packet payloads,

which is a time consuming task [38]. Given the lack of availability of labelled network

data, supervised methods cannot always be used to perform feature selection, thus an

unsupervised feature selection algorithm which does not rely on the availability of labelled

data would provide a solution to this problem. To the best of the author’s knowledge, an

unsupervised feature selection algorithm using cluster validity indices, has not yet been

implemented for use in network intrusion detection.

This research introduces an unsupervised feature selection algorithm for use in network in-

trusion detection. The algorithm makes use of unsupervised machine learning techniques.

It does not require labelled data in its execution, making the technique practical, and suit-

able for deployment in an operational environment in which labelled data is unavailable.

This research focusses specifically on utilizing clustering algorithms, cluster validity in-

dices, and evolutionary algorithms in the implementation of the proposed feature selection

algorithm.

1.3 Research objectives

The objectives of this research are.

• To investigate and compare the performance, in terms of true positive and false pos-

itive percentages, of several clustering algorithms in the context of network intrusion

detection using the NSL-KDD dataset [25].

• To compare the performance, in terms of true positive and false positive percentages,

of performing network intrusion detection using several candidate feature subsets of

the KDD Cup 1999 dataset [24] and the NSL-KDD dataset [25], that were proposed

in the literature [31, 35].
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• To design and implement a feature selection algorithm for network intrusion detection

that does not rely on labelled network data, and to compare the overall anomaly

detection system to that of other anomaly detection systems that use supervised

feature selection algorithms.

1.4 Delineations and limitations

This section defines and limits the scope of the investigations performed in this research.

• This study is limited to the use of the NSL-KDD dataset [25]. This dataset has

original candidate features that are already defined. Constructing network traffic

related features involves an in-depth analysis of network packet headers and payloads,

which requires significant domain knowledge and is time consuming. Thus, feature

construction is outside the scope of this research.

• The use of the NSL-KDD dataset limits the study to the investigation of 41 standard

network features.

• Feature selection is considered in this research, whereas feature construction and

feature extraction are not.

• Unsupervised anomaly detection techniques are considered, specifically: the k-means,

k-medoids, expectation-maximization, and distance-based outlier detection algo-

rithms.

• Only the Davies-Bouldin cluster validation index is considered as a metric in the

feature selection algorithm.

• Only genetic algorithms are considered for the purpose of optimisation.

• Performance is measured based on true positive and false positive percentages using

both training and testing sets.
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1.5 Motivation

This section motivates the need for the work performed in this research by providing a

brief overview of the current work that has been done with regards to feature selection in

network intrusion detection. This is provided in table 1.3.

Table 1.3: Techniques used for feature selection.

Reference Class Technique

[26] Filter Correlation and mutual information

[27] Filter Bayesian networks and classification and regression trees

[7, 29] Filter Information gain

[28] Filter Degree of dependency

[35] Filter Information gain and correlation

[30] Filter Correlation

[31] Wrapper Support Vector Machine (SVM) with Matthews correlation coefficient

[32] Wrapper Genetic Algorithm (GA) and SVM with true and false positive percentages

[33] Wrapper Bayesian network with classification accuracy

Table 1.3 shows that the works that implement either filter-based or wrapper-based fea-

ture selection algorithms in the context of network intrusion detection, requires the use of

labelled data, which is not always available in practical environments. Creating a labelled

network dataset is a non-trivial task. It requires the collection of vast amounts of raw

network data, which then requires a further in-depth analysis of network packets and net-

work packet payloads. Unsupervised feature selection in the context of network intrusion

detection would not be constrained by the need for labelled network data.

1.6 Contribution

This section highlights the contributions made by this research.

• This research provides a comparison between several clustering algorithms used to

perform classification in the context of network intrusion detection on the NSL-KDD

dataset [25].
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• This research provides a comparison of the performance achieved when performing

classification on the NSL-KDD dataset [25] over several feature subsets.

• In this research the author designs and implements a feature selection algorithm

for network intrusion detection that does not rely on labelled network data, and

provides a comparison between the performance obtained when using feature sub-

sets obtained through the proposed feature selection algorithm and other supervised

feature selection algorithms.

1.7 Definitions of terms and concepts

Cybercrime: Cybercrime is defined as an act that is intended to cause harm to an indi-

vidual, group of individuals or an organisation through the illegitimate use of, or access

to network services [8]. These acts may negatively affect the victims reputation, or may

cause physical, mental, emotional or financial harm to the victim. Cybercrime may be

detrimental to a nation’s security or financial health. The consequence of cybercrime

can include the theft of large sums of money, the theft of vital information, rendering of

services unusable, or copyright infringements.

Network intrusion: A network intrusion constitutes any unauthorised activity on a com-

puter network that causes the loss of confidentiality and integrity of data, the denial of

network resources, or the unauthorised use of network resources [10].

Network attacks: A network attack is a sequence of operations executed on a network that

leads to the occurrence of a network intrusion. Network attacks are typically accomplished

by exploiting some vulnerability in the system [2].

Network vulnerabilities: Network vulnerabilities can be described as flaws in the design,

implementation and management of a network. Their existence creates weaknesses in

networked systems as these vulnerabilities can be exploited by various types of network

attacks [2].
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Network anomalies: Any network activity that is considered as being out of the ordinary

when compared to expected network activity. Anomalies may be associated with legitimate

or malicious network activities [2].

Malicious network activity: Features of network traffic may be used to characterize the

patterns of network activity, which may be associated with legitimate or malicious activity.

Malicious network activity includes those traffic patterns that are associated with network

attacks [41].

Network event or activity: In this research, a network event is described as any change in

network feature values such as the change in traffic volume, change in IP addresses and

service ports [1].

1.8 Thesis overview

This dissertation is structured as follows; chapter 2 consists of a review of the work that

has been performed in the anomaly-based network intrusion detection field, and a review

of feature selection in the context of network intrusion detection systems. Chapter 3

introduces an unsupervised anomaly-based classifier for network intrusion detection and

presents the experimental results obtained from the comparison of several clustering algo-

rithms, as well as several feature subsets using the proposed classifier. Chapter 4 presents

an unsupervised cluster validity-based feature selection algorithm, and provides the ex-

perimental results obtained from a comparison of the proposed feature selection algorithm

to feature selection algorithms found in the literature. Chapter 5 presents the conclusions

that are drawn for the work performed in this research and Chapter 6 provides future work

that is to be conducted.
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Literature Review

This chapter provides an overview of network intrusion detection systems, as well as a

review of literature related to anomaly-based network intrusion detection using unsuper-

vised machine learning techniques. A review of literature related to the application of

feature selection in network intrusion detection is also provided.

2.1 Introduction

NIDS are typically classified as anomaly-based or misuse-based systems. In recent years,

research efforts focus on the improvement of anomaly-based NIDS, as they show promise

in detecting novel or unobserved intrusions [1]. Anomaly-based NIDS have been imple-

mented using machine learning techniques, which are divided into supervised and un-

supervised methods. Supervised methods require labelled data, whereas unsupervised

methods do not [2]. Both supervised and unsupervised methods have been used to im-

plement anomaly-based NIDS [42]. In general, it is unrealistic to assume that labelled

data is available in practical network environments. Many researchers have overcome this

constraint by focussing on using unsupervised methods in the implementation of anomaly-

based NIDS [43–51]. Specifically, researchers have used clustering and outlier mining

techniques to implement anomaly-based NIDS. Clustering techniques typically involves

the use of a clustering algorithm such as k–means to cluster network data, prior to la-

belling the data in an unsupervised manner [43–46]. Outlier mining techniques typically

18
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use distance or density measures to identify unusual instances of network traffic, which are

subsequently labelled as intrusions [48–51]. Both of these unsupervised techniques have

been demonstrated to produce promising results in detecting network intrusions.

It has been shown that using irrelevant and redundant features in the application of these

machine learning techniques in the context of network intrusion detection, can lead to a

reduction in classification performance [7, 26–33, 35]. Thus, a number of researchers have

applied feature selection algorithms to select relevant features that allow for the accurate

classification of intrusions in network intrusion detection. One approach involves the use of

statistical measures such as mutual information to measure feature relevancy [7, 26–30, 35],

while the other approach uses the performance of a machine learning method, typically

supervised methods such as support vector machines, to identify relevant features [31–33].

The design and implementation of a feature selection algorithm that does not rely on

labelled data and is able to achieve a gain in classification performance is a priority.

2.2 Network intrusion detection systems

This section discusses a typical NIDS structure, and provides a more detailed description

of the two major detection approaches, namely misuse-based detection and anomaly-based

detection.

2.2.1 Structure

Despite various detection methodologies, network intrusion detection system designs typ-

ically adhere to a general structure in terms of functionality. Figure 2.1 shows a block

diagram of the general structure of intrusion detection systems [1]. The monitored en-

vironment in figure 2.1 consists of the network traffic flowing between network routers

and/or networked computer systems. Each block of figure 2.1 is discussed in what follows.
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• E-boxes (Event-boxes) — Event boxes are composed of sensors or nodes that ob-

serve the monitored environment gathering information on events1 that may require

further analysis.

• D-boxes (Database-boxes) — These boxes store the information collected by the

E-boxes. The stored information is passed on to the A-boxes for analysis.

• A-boxes (Analysis-boxes) — These process the event information collected by the E-

boxes, with the aim of detecting malicious or potentially malicious activity occurring

within the monitored environment.

• R-boxes (Response-boxes) — If malicious activity is detected, the response boxes

will raise an alert and may attempt to either stop the potential intrusion, or prevent

a confirmed intrusion from spreading or progressing.

Figure 2.1: Structure of a typical intrusion detection system (from [1]).

2.2.2 Detection approaches

This section provides a more detailed description of the two major approaches toward

detection of intrusions in computer networks.

1Events on a host-based IDS include process identifiers and system calls related to operating system
information, while events on a NIDS includes traffic volumes, protocol usage, service ports, IP addresses,
etc. [1]
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2.2.2.1 Misuse-based detection

Misuse-based detection compares network traffic features, collected on an event basis, to

predefined patterns or signatures of known attacks. Signatures may be defined using a rule-

based approach, where a set of rules describes a specific network attack. For example, a set

of keystrokes executed in a certain sequence may be used to define a specific attack [14].

Masri et al. [52] create signatures based on the sequence of events that occur during an

attack; this sequence of events defines a specific network attack.

Misuse-based NIDS are often more accurate and have lower false positive percentages

than anomaly-based detection approaches, but at the cost of not being able to detect

unknown attacks or previously unobserved variants of existing attacks. Signatures require

constant updating in order to keep up with new and emerging threats. They are typically

created manually by administrators or security experts, which places an extra workload

on them [16]. Thus, constant updating of signatures can be a time consuming exercise,

where a new threat could cause a significant amount of harm to a system long before a

security expert creates a signature for it [10, 11, 13, 14, 16, 20–22].

Automated techniques for generating signatures for intrusion detection systems are found

in [52, 53]. The misuse-based approach is commonly used in commercial NIDS and network

intrusion prevention systems owing to their lower false positive percentages as compared

to anomaly-based approaches. A common misuse-based open source NIDS is Snort [54]

and a common commercial misuse-based NIDS is Bro [55].

2.2.2.2 Anomaly-based detection

Anomaly-based detection techniques operate based on the assumption that the observed

statistics of key features of malicious traffic deviates from that associated with legitimate

traffic [10, 11, 13, 14, 16, 20–22, 56]. These techniques typically involve the construction of

explicit or implicit models of legitimate network traffic. The statistics of observed network

traffic features are subsequently compared to the model, where any deviation from the

model is classified as anomalous, which may indicate that malicious network traffic has

infiltrated the networked computer system.
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The advantage of anomaly-based detection schemes is that they are able to detect those

novel attacks which have not been observed previously [1, 10, 11, 13, 14, 16, 20–22].

Anomaly-based systems do not attempt to identify specific attack sequences, but rather

identifies unusual network traffic, thus, attacks can be identified regardless of whether

they have been observed previously. Anomaly-based systems often suffer from high false

positive percentages owing to the fact that every deviation from the legitimate traffic model

will be classified as anomalous, which may not necessarily be caused by malicious network

traffic. The performance of anomaly-based systems relies on how accurately the legitimate

traffic models represent legitimate traffic. Creating models of legitimate traffic is not a

trivial task in dynamic environments with non-stationary network traffic with constantly

changing statistical profiles, or cyclic trends. Often there is a discrepancy between the

models and the statistics of true legitimate traffic. This increases the need to constantly

update legitimate traffic models or construct models that take cyclic trends into account,

which can be computationally expensive.

In recent years, commercial anomaly-based NIDS have become more prominent [1, 57].

Commercial NIDS that utilize anomaly-based methods include: SPADE [58] and Pre-

lude [59].

2.3 Unsupervised anomaly-based NIDS

Two commonly used unsupervised machine learning techniques for anomaly-based network

intrusion detection are clustering and outlier mining. Clustering techniques group similar

data samples together to discover patterns that may be present within the dataset, while

outlier mining techniques discover those data samples that are different from the majority

of the data over the feature space considered [2]. Data samples that are similar with

regards to feature values over a feature space, and are in the majority, are considered to

be legitimate data samples. This is essentially an implicit model of legitimate network

traffic. Those data samples that are dissimilar to the legitimate samples with regards to

feature values over a feature space, and are in the minority (outliers), are considered to

be attack data samples. The advantage of creating models in this manner is that labelled

data is not required during the classification stage.
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Both clustering and outlier mining techniques have been successfully applied in anomaly-

based NIDS [43–51, 60, 61]. In what follows, NIDS that utilize these techniques are

reviewed.

2.3.1 Clustering based methods

Clustering is an unsupervised learning method commonly used for data mining tasks. It

partitions a dataset into groups (clusters), where those data samples that are similar to

one another with respect to feature values, will be clustered together. While data samples

belonging to different clusters are highly dissimilar to one another, with respect to feature

values. Clustering allows for the identification of patterns and interesting distributions in

the underlying data which in turn allows for the derivation of useful conclusions [2, 62]. In

the context of NIDS, this is the detection of network intrusions. In various fields, clustering

is found under different names: unsupervised learning in pattern recognition, numerical

taxonomy in biology and ecology, typology in social sciences and partitioning in graph

theory [63].

Anomaly-based NIDS that use clustering techniques [43–46] typically follow a common

structure, this structure or functional block diagram is provided in figure 2.2.

Figure 2.2: Anomaly-based NIDS functional block diagram.

Preprocessing involves the application of various algorithms to a dataset in order to rep-

resent the data in a form that is suitable for the machine learning algorithm that the

data will be applied to. Normalization and dimensionality reduction are two examples of

preprocessing methods [38]. Clustering involves the application of a clustering algorithm

to the preprocessed data samples, and cluster labelling involves the assignment of a class

to each cluster. A class or label may correspond to legitimate or malicious network traffic.
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Labels are assigned based on the assumption that legitimate network traffic vastly out-

numbers malicious network traffic. Thus, data samples belonging to smaller clusters, with

respect to the number of data samples assigned to the cluster, are labelled as malicious

traffic samples.

Training and testing is used in supervised machine learning algorithms, where labelled

training data is used to create an inferred function, which is called a classifier. Testing is

subsequently performed by introducing new/previously unseen data samples to the classi-

fier, which classifies or labels the data based on the knowledge inferred from the training

data [64]. Given that clustering does not require labelled data, the equivalent of training

lies in the clustering of data samples and the labelling of cluster centres and data sam-

ples assigned to those cluster centres. The labelled cluster centres form the basis for the

classifier in this case. “Testing” is typically carried out by assigning to new/previously

unseen data samples, the label of the cluster centre that they are closest to with regards

to distances computed over a feature space. In what follows, a review of anomaly-based

NIDS that make use of clustering techniques is provided.

Portnoy et al. [43] introduced an anomaly-based intrusion detection system that does

not require labelled data in its execution. The proposed system makes use of a single-

linkage clustering technique and an innovative cluster labelling scheme that is utilized

by researchers in more recent works as well. The proposed system was applied to the

KDD Cup 1999 dataset [24], and follows the processing sequence illustrated in figure

2.2. Preprocessing involves the normalization of the numeric data of the KDD Cup 1999

dataset, using the statistical normalization technique (refer to section 3.3.1). A variant

of the single-linkage clustering algorithm [65] is used to cluster the normalized data. The

algorithm first selects one random data sample from the dataset to be used as the initial

cluster centre. Subsequent data samples are assigned to the cluster centre that they are

closest to, based on the Euclidean distance metric, or assigned as new cluster centres if

the distance to their closest cluster centre is greater than a threshold value. Clusters are

labelled based on the assumption that legitimate network traffic samples vastly outnumber

malicious network traffic samples. Additionally, it is assumed that legitimate network

traffic will be clustered together. Based on these assumptions the algorithm labels a

predefined percentage of the largest clusters, in terms of the number of data samples
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belonging to the cluster, as legitimate clusters. The remaining smaller clusters are labelled

as malicious or attack clusters. Training and testing sets are created by dividing the KDD

Cup 1999 dataset into ten components, to be used for cross-validation testing. However,

only four were used for training and testing owing to the remaining components not being

representative of various types of attacks. Testing sets are normalized, and performance

is evaluated by assigning each data sample within the testing sets to the cluster centres

that they are closest to. The data samples are assigned the label of the cluster centre to

which they are assigned to. Performance was evaluated in terms of true positive and false

positive percentages. Cross-validation testing revealed that the classifier obtained true

positive percentages between 18% and 57%, and false positive percentages between 0.3%

and 12%, where a majority of the false positive percentages were approximately 1%. The

results varied depending on which training and test set combinations were used.

Syarif et al. [44] proposed an anomaly-based detection algorithm that follows the structure

of figure 2.2 using five different clustering techniques to detect network attacks in the NSL-

KDD dataset [25]. The anomaly-based detection clustering techniques include: k–means,

improved k–means, k–medoids, Expectation-Maximization (EM) with Gaussian Mixture

Models (GMM), and distance-based outlier detection. Note that all algorithms, exclud-

ing the improved k–means clustering algorithm are discussed in greater detail in chapter

3, section 3.4. The anomaly-based detection module consists of four steps. Preprocess-

ing consists of the application of feature extraction and normalization to the NSL-KDD

dataset [25]. Feature extraction was used to create an optimized feature set, though the

exact algorithm or technique was not specified. Normalization was performed on the

numeric data using the statistical normalization technique (refer to section 3.3.1). The

preprocessed data is subsequently clustered using each of the five clustering algorithms

namely: k–means, improved k–means, k–medoids, Expectation-Maximization (EM) clus-

tering, and distance-based outlier detection. The cluster labelling algorithm is unspecified.

Unobserved data samples are subsequently classified by assigning to each sample the class

of the cluster centre it is closest to. The authors compared the performance of the five

clustering techniques used for anomaly-based detection on the NSL-KDD dataset, against

each other and against four misuse-based classifiers that make use of machine learning

algorithms. The misuse-based algorithms were applied to training and testing data in the



Chapter 2. Literature Review 26

supervised sense of training and testing. Based on classification accuracy and false positive

percentage, the results showed that the misuse-based methods were unable to detect novel

attacks that are within the NSL-KDD testing set, with the highest accuracy being 63.97%

with a false positive percentage of 17.90%. The distance based outlier detection algo-

rithm of the anomaly-based system was shown to have the highest classification accuracy

of 80.15%, however, the false positive percentages were above 20% for all anomaly-based

techniques.

Wang [45] proposed an improved k–means clustering algorithm for use in anomaly detec-

tion applied to the KDD Cup 1999 dataset [24]. The algorithm overcomes the sensitivity

in performance to the selection of initial cluster centres experienced in k–means. The dif-

ference between the two algorithms is that improved k–means computes the initial centres

differently; k–means chooses the initial centres randomly, while improved k–means selects

the most decentralized samples as the initial cluster centres by iteratively selecting the

samples that are furthest from each other with regards to the feature space, as cluster

centres. The algorithm consists of a training and a testing phase, where training consists

of preprocessing, clustering and labelling of the data samples and cluster centres, as de-

picted in figure 2.2. Clusters are labelled based on the assumption that legitimate data

samples vastly outnumbers attack data samples. Testing introduces new/unobserved data

samples from a testing set into the classifier produced in the training phase, and assigns

to these data samples the label of the cluster centre to which they are closest to, based on

Euclidean distance with respect to the feature space, which is similar to [43]. Improved

k–means is shown to outperform ordinary k–means when applied to the KDD Cup 1999

dataset [24]. This minor change to the original algorithm results in an increase in true

positive percentage, and a decrease in false positive percentage. Both algorithms were

demonstrated to be capable of detecting unknown attacks.

Papalexakis et al. [46] proposed two co-clustering methods to perform network intrusion

detection when applied to the KDD Cup 1999 dataset [24]. Co-clustering is essentially a

combination of clustering and feature selection, where the algorithm clusters data samples

together over different feature subspaces rather than the entire feature space. Two forms of

co-clustering is presented in reference [46]: hard and soft co-clustering. Hard co-clustering

involves the assignment of data samples to a single cluster, with 100% membership. The
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application of hard co-clustering involves the use of an Information Theoretic (IT) ap-

proach that utilizes Bregman divergences [66]. Soft co-clustering involves the assignment

of data samples to clusters based on fuzzy membership, in which data samples belong

to each cluster to a certain degree. It is implemented using a Sparse Matrix Regression

(SMR) technique [67]. SMR co-clustering is applied to the dataset, where binary clustering

is performed over ten iterations. Two clusters were obtained through SMR co-clustering

where one contained 99.36% attack samples, and the other 73.21% legitimate samples, on

average. This implies that SMR co-clustering is capable of distinguishing between legiti-

mate and attack data samples. SMR performed clustering over a subset of features that

it selects and it was discovered that on each execution the same seven features were used

to distinguish the attack cluster. IT clustering was performed with five clusters and using

only the features identified in the SMR clustering stage. By combining SMR’s ability to

identify features that can distinguish between attack and legitimate data samples, and

IT’s ability to run over the entire dataset, authors achieve results that are argued to be

comparable to the winning entry of the KDD Cup 1999 competition [68] and that is not

tailored for the KDD Cup 1999 dataset only [24].

2.3.2 Outlier mining methods

Outlier mining uses the distances between data samples and their neighbours or the densi-

ties surrounding a data sample, determined over a feature space, to discover data samples

that are significantly different to the rest of the data samples. These are referred to as

outliers. Hence, outliers are those singular data samples that possess a large distance to

their neighbouring data samples, or those data samples that occur in less dense regions of

the feature space [2].

Given that distance and density are used to identify outliers, outlier mining techniques

will generally not be able to identify those small clusters of attack data samples that

clustering techniques can identify. This is owing to the fact that samples within these

small clusters are likely to be close to one another based on their distributions in the

feature space. Thus, clustering techniques identify those attack data samples that occur

in small compact groups within the feature space, while outlier mining identifies those
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attack samples that are disjoint from the rest of the data with respect to their distribution

over the feature space considered.

For these reasons, it is common for outlier mining techniques to be combined with a

clustering algorithm [47–51, 69], which allows for the detection of both attack clusters, as

well as singular attack data samples that are disjoint from the rest of the data samples

with regards to their distribution over the feature space. Training in this regard is similar

to the clustering based “training”, where smaller clusters are labelled as those that consist

of attack data samples. The difference lies in the fact that outliers are also labelled as

attack data samples, resulting in more compact clusters, though they are not utilized in

the testing phase. Thus, the testing phase is the same as with the clustering techniques,

where new/unobserved data samples are assigned the labels of the cluster centres to which

they are closest to.

The authors of [47, 70, 71] proposed an Unsupervised Network Intrusion Detection System

(UNIDS) that is able to detect novel network intrusions without the use of signatures or

labelled traffic data. This is achieved by applying a novel outlier detection technique. The

proposed system operates in four steps to detect network intrusions, as shown in figure

2.3.

Figure 2.3: UNIDS functional block diagram

The UNIDS captures network traffic data and aggregates it into traffic flows, which are

subsequently divided into a series of intervals containing traffic flows which occurred within

a certain time period. A standard time series change-detection technique, presented in [72],

is applied to the aggregated traffic flows over each time interval, to detect unusual changes

in feature values. Three volume based features are analysed: the number of bytes, the

number of packets, and the number of flows within a specific time interval. Intervals which

possess abrupt changes in these feature values are flagged as anomalous.
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UNIDS [47, 70, 71] applies a multi-clustering algorithm to the traffic flows contained within

each anomalous time interval, over the feature space of the three considered features. An

outlier score is subsequently assigned to each interval. The multi-clustering algorithm con-

sists of Sub-Space Clustering (SSC) [73], Density-based Spacial Clustering of Applications

with Noise (DBSCAN) [74] and Evidence Accumulation Clustering (EAC) [75]. SSC seeks

to find clusters of data samples within different feature subspaces of a multi-dimensional

dataset [73]. SSC divides the dataset into multiple n-dimensional feature subspaces, each

comprising of a distinct combination of n features from the dataset. DBSCAN is sub-

sequently applied to cluster the data samples within each feature subspace. DBSCAN

clusters data samples based on density, using a nearest neighbour approach. Data sam-

ples with a large number of data samples that are within close proximity of each other

with regards to distances over the feature space are considered to be in a highly dense

region in the feature space, and are clustered together. Data samples with a small num-

ber of neighbours within close proximity regarding their distances over the feature space,

are considered to be in a region of low density in the feature space, and are labelled as

outliers. The output of this step is thus a set of clusters and outliers for each feature

subspace. EAC assigns a score to each outlier in each subspace which indicates the degree

of abnormality of each outlier. The outlier score is computed within each subspace as the

distance between an outlier and the centroid of the largest cluster within that subspace.

A larger score indicates that the outlier has a high degree of abnormality as it has a larger

distance from the majority of the data samples in the subspace. The result is a set of

scores for each outlier in each subspace. All outliers from all subspaces are subsequently

ranked based on their scores in descending order. All outliers that possess a value above

a threshold are classified as attack data samples.

UNIDS [47, 70, 71] takes advantage of the observation that DBSCAN performs more accu-

rately when applied to lower dimensional data [47]. The advantage of clustering multiple

low dimensional subspaces is that a finer-grained analysis is performed, allowing for the de-

tection of low intensity anomalies that are hidden within high dimensional network traffic,

as demonstrated via experimentation in [47].

In [48], an anomaly detection approach known as NADO (Network Anomaly Detection

using Outliers) was introduced. It is effectively a combination of outlier mining and
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clustering, where the outlier mining technique is the Reference-based Outlier Detection

technique for large Datasets (RODD), as described in [76], which uses the density of each

samples neighbourhood to identify outliers.

NADO is a two stage algorithm. It first uses a k–means clustering technique to partition

the data samples of the KDD Cup 1999 dataset [24]. A reference point from each cluster

is then calculated and mean-based profiles are constructed for each cluster. A profile is a

vector containing the mean of each feature over the data samples belonging to a cluster,

which is essentially the cluster centre of a cluster. Each cluster centre is used as a reference

point to compute the degree of neighbourhood density of each data sample, computed as

the sum of the absolute difference in distance between a sample and a cluster centre, and

the samples neighbour and the cluster centre, for each neighbour. This is computed for

each data sample, over each corresponding cluster centre. The minimum value computed

over each reference point is assigned to the data sample as its outlier score. Samples with

scores greater than a user specified threshold are labelled as attack data samples.

Songma et al. [49] proposed a two-phase classification method for performing intrusion

detection on the KDD Cup 1999 dataset [24]. Preprocessing consists of the removal of

redundant data samples from the dataset, and the conversion of categorical features to

numerical values prior to normalization. The first phase of classification applies k–means

clustering to the data and the second phase utilises a distance-based technique to identify

outliers. Outliers are defined as those data samples whose k nearest neighbours are a

distance dr from it, where k is a user defined fraction of the entire dataset, and dr is a

user specified threshold. Thereafter, each sample of the dataset is assigned a class label.

Authors demonstrate that their method outperforms SVMs and rough-set fuzzy SVMs [77]

in terms of true positive and false positive percentages and overall accuracy.

Said et al. [78] performed intrusion detection using several preprocessing techniques and

distance-based outlier detection on the KDD Cup 1999 dataset [24]. Their goal was to

compare the performance of various attribute normalization techniques, distance metrics,

and PCA threshold values, in terms of true positive percentages when applied to distance

based outlier detection. The numeric data of the KDD Cup 1999 dataset was first nor-

malized using either, Z-Score (statistical normalization), log normalization, or min-max
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normalization. PCA was subsequently applied to the normalized numeric data using seven

different threshold values. Authors identified outliers based on the definition that outliers

are the top Nout data samples that possess the largest sum of distances to their k nearest

neighbours in the feature space. The distances for the numeric data are computed using

either the Euclidean distance metric or the Mahalanobis distance metric, while the dis-

tances for the categorical data are computed using the Hamming distance metric. The

hamming distance is computed by counting the number of categorical features which do

not have the same category. All samples identified as outliers are labelled as attack sam-

ples. Experimentation was performed with and without applying PCA to the numeric

data. The outcome of the study indicated that, overall, the best result was obtained using

the log normalization technique in conjunction with the Euclidean distance metric, while

applying PCA to the numeric data.

Chawla et al. [50] performed intrusion detection by combining the k–means clustering

algorithm with a distance-based outlier detection technique that utilizes the Euclidean

distance metric. This algorithm is a modified version of k–means, and is referred to as

k–means--. First, k initial centres are randomly chosen, and data samples are assigned to

the cluster centres to which they are closest to. All samples are ranked in descending order

based on the distance between a sample and its corresponding cluster centre. The top Nout

samples are selected as outliers and removed from the dataset. New cluster centres are

computed over the feature space as the mean of the remaining data samples belonging

to each cluster. The process was repeated using the new cluster centres as the initial

cluster centres. This continues until convergence is achieved. Cluster labelling was not

required for performance evaluation. Experiments were performed using a subset of the

KDD Cup 1999 dataset [24], where the three largest classes, in terms of number of data

samples, of the dataset (smurf, neptune and normal), were considered as non-outliers,

and the remaining classes were considered as outliers. The performance was measured

based on the algorithms ability to identify these samples as outliers. Using precision and

purity as performance measures, the k–means-- algorithm, was compared against the k

nearest neighbour (kNN) approach for distance-based outlier detection, in which outliers

are defined as the Nout samples with the largest distance to their kth nearest neighbour.

The difference between the two methods is that the kNN approach does not perform
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clustering, outliers are removed from the entire dataset in one iteration. The k–means--

algorithm was demonstrated to outperform the kNN approach.

Authors of [51] proposed a cluster-based outlier detection technique, which classifies both

small clusters and single data samples as outliers. The algorithm LDBSCAN [79] is used

to find both the Local Outlier Factors (LOFs) [80] for each data sample and to assign data

samples to clusters. The LOF is a density-based outlier detection method that identifies

outliers based on their kth nearest neighbour distances. The LOF is local in the sense

that it only considers a certain number of samples as the neighbourhood of a sample in its

computation of outlier scores for each sample in the dataset. The algorithm was applied to

the backbone network anomaly detection system of CSTNET, which monitors the input

and output throughput of CSTNET, which is the internet service provider for all institutes

of the Chinese academy of science. The network administrators of CSTNET report that

the proposed algorithm produced fewer alerts when compared to the LOF technique alone,

where the LOF technique raised many false positives.

2.4 Feature selection

In general, feature selection is an important preprocessing step for data used in machine

learning applications [38]. Network traffic is rich with contextual information that are

characteristic of various types of network activities, which may be legitimate or malicious.

Due to this richness, large feature vectors may be constructed from network packet data for

the purpose of network intrusion detection, which may result in redundant and irrelevant

features being used for classification. This may inadvertently reduce the classification

performance of the machine learning algorithms used in the design of NIDS (as discussed

in section 1.2). In sections 2.3.1 and 2.3.2, many of the works did not perform feature

selection prior to the application of machine learning techniques

Several works [7, 26–33, 35, 39, 81] improve the classification performance of NIDS by

performing feature selection in the context of network intrusion detection. These feature

selection methods are typically applied to either the KDD Cup 1999 dataset [24] or the

NSL-KDD dataset [25].
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The following section is divided into filter and wrapper feature selection methods [82].

A filter method uses a statistical measure to assign scores to each feature. Features

are subsequently ranked according to the scores produced by these statistical measures,

where the top n features are selected. The degree of correlation, and information gain

are commonly used statistical measures [7, 27, 29, 30, 35]. The degree of correlation is

measured between features and between features and classes. A significant feature is one

that is highly correlated with a class, while showing little or no correlation to other features.

Information gain measures the level in which a particular feature is able to discriminate

between classes.

Filter methods require the class labels in order to determine the significance of features and

thus require labelled data. Filter methods are independent of the classification algorithm,

and are typically less computationally intense than wrapper methods [83]. However, ap-

plying data over the resultant feature subset to a classifier may not produce classification

accuracies as high as that obtained when applying the same data over a feature subset

produced by a wrapper method, which optimizes feature subsets for a particular classifier.

Wrapper methods rank features based on the results obtained from performing classifica-

tion on a dataset over various feature subsets. An example of this approach is the use

of a Support Vector Machine (SVM) to perform classification on a dataset, in which the

predicative accuracy of the SVM is used to indicate the significance of a feature subset or

of a single feature [31]. This approach requires labelled data to compute the predictive

accuracy of the SVM.

Wrapper methods are dependent on the classifier, and can be more computationally in-

tensive than filter methods, if the classification algorithm is computationally intense [83].

Wrapper methods generally produce feature subsets that produce results that are bet-

ter than that obtained using feature subsets produced by filter methods, provided that

the same classifier is used as was used during feature selection. Thus, wrapper methods

produce feature subsets that are tailored to specific classification algorithms [2, 31, 82].
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2.4.1 Filter methods

Amiri et al. [26] proposed two feature selection algorithms for network intrusion detection

over the KDD Cup 1999 dataset [24]. The algorithms are the Linear Correlation-based

Feature Selection (LCFS) algorithm, and the Modified Mutual Information-based Feature

Selection (MMIFS) algorithm. LCFS ranks features using the linear correlation coefficient

between features and classes and between pairs of features. The first feature selected is the

feature that possesses the highest correlation with the class. The remaining features are

selected iteratively based on the greedy search algorithm. The next feature is selected as

the one that maximizes the difference between the correlation to the class and the sum of

correlations to each previously selected feature. The process is repeated until the desired

number of features are selected. The MMIFS algorithm functions in a similar fashion to

LCFS, where instead, features are ranked using the mutual information between features

and classes and between features and selected features. Both proposed algorithms are

compared against the Forward Feature Selection Algorithm (FFSA). This method utilizes

mutual information to rank features, but differs from MMIFS by only computing the

mutual information between features and classes. Classification is done using a least

squares variant of a support vector machine (LSSVM). The LSSVM method solves a set of

linear equations in the optimization stage, rather than convex quadratic equations as with

traditional SVMs. Utilizing the LSSVM method with a Radial Basis Function (RBF)

kernel was demonstrated to reduce computational costs [84]. The LSSVM is used to

perform binary classification on the KDD Cup 1999 dataset. The dataset is divided into

five broad classes, thus five LSSVMs were implemented where each LSSVM is a binary

classifier for a different class. Using true positive and false positive percentages, over each

LSSVM classifier, the results showed that MMIFS was the most effective in producing

feature subsets that were able to detect probe and Root-to-Local (R2L) attacks, while

both FFSA and MMIFS performed comparably in producing feature subsets that were

able to detect User-to-Root (U2R) and Denial-of-Service (DoS) attacks, and legitimate

traffic samples.

Chebrolu et al. [27] proposed two filter-based feature selection algorithms based on Bayesian

Networks (BN) and Classification and Regression Trees (CART). The Bayesian network
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consists of a set of nodes and directed edges; in this case, the nodes represent features and

the edges represent the conditional dependency, or conditional probability between the

features that the edge connects. Thus, the edges indicate the level of dependency between

pairs of features. The Markov blanket of a Bayesian network consists of those nodes that

are conditionally independent of one another. The Markov blanket of a particular class C

is defined as the set of features that are conditionally independent of C. Thus, defining

a feature subset of features that are independent of one another, that is, they are uncor-

related to one another, which implies that the feature subset will contain features that

are not redundant. A CART is a binary recursive tree, where each node is split exactly

two times. The CART is constructed by using features as the nodes, where the Gini rule

is used to split each node, essentially creating a path of features leading to a leaf node.

The tree is complete if nodes cannot be split further, these final nodes are leaves and

represent the classes of the dataset. Feature subsets are then constructed based on the

maximal tree that leads to the identification of the various classes. Classification was done

using a combination of the Bayesian network and CART, applied to the KDD Cup 1999

dataset [24], the feature subsets produced by the Bayesian network were demonstrated to

return higher classification accuracies when compared to using the full feature set.

Kayacik et al. [7] used information gain to perform an analysis of each feature of the KDD

Cup 1999 dataset [24], with respect to its ability to discriminate between the classes in

the dataset. Information gain was computed between each feature and each class, which

allowed the authors to construct a list that maps each class to the feature that best discrim-

inates it. It was found that normal, smurf, and neptune classes were easily distinguishable

owing to the fact that a large number of features possessed a large information gain for

those classes. It was also found that a number of features had very little information gain

for all classes in the dataset, implying that some features of the KDD Cup 1999 dataset

are irrelevant for network intrusion detection. A list of class labels and the feature that is

most relevant in discriminating the class is provided.

Tang et al. [29] performed feature selection on the KDD Cup 1999 dataset [24] using the

information gain between features and classes, which is a similar approach to [7]. Authors

construct a list that maps a class to the feature with the highest information gain to that

class. All features that appear within this list are selected as the featute subset. Authors
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apply a Triangle Area-based Support Vector Machine (TASVM) to perform classification.

TASVM is a combination of the k-means clustering algorithm and the SVM learning

algorithm.

Olusola et al. [28] performed feature selection on the KDD Cup 1999 dataset [24] using

the rough set degree of dependency and dependency ratio to measure the relevance of each

feature in distinguishing each class. Feature selection is conducted using two approaches.

The first approach computes degree of dependency for each class based on the available

number of data samples belonging to a class. This signifies how well the feature can

distinguish one class from other classes. The second approach maps each class label to

others for each feature. Authors produce a list that highlights which features are the most

relevant for detecting each class present in the KDD Cup 1999 dataset.

Zargari et al. [35] reviewed the findings of [7, 26–29], providing a table that lists the

features of the KDD Cup 1999 dataset [24] along with those attack classes that are strongly

correlated with each feature. The authors proposed two feature selection algorithms: in the

first, feature subsets are selected based on their degree of correlation, where better feature

subsets are those that consist of features that exhibit a high correlation with the classes

and a low correlation with each other [85]. Features are selected in a similar manner to the

LCFS algorithm in [26], using a greedy approach. The second algorithm uses information

gain as a measure of feature relevance, and selects the top features as the feature subsets

based on the ranking of individual features. Intrusion detection performance is computed

over these feature subsets in the dataset via a random forest algorithm. The feature

subsets produced by the two proposed algorithms were reported to produce results that

outperform the results produced when performing intrusion detection over a feature subset

constructed through a majority vote of the feature sets from [7, 26–29].

Eid et al. [30] performed feature selection on the NSL-KDD dataset [25] using a linear

correlation-based feature selection approach. The proposed method is based on the analy-

sis of Pearson correlation coefficients. The approach consists of two phases, the correlations

between pairs of features are first computed, and constructed into an NF -by-NF matrix,

where NF is the total number of features in the feature space considered. The pairs of

features with the highest correlations to one another are found, and one of the features are
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discarded, if the coefficient is greater than a threshold, if not, neither feature is discarded.

The second phase involves the computation of the correlations between the features se-

lected in the first phase and the classes, where features that are highly correlated to the

classes are selected as the final feature subset. Classification is done using a decision

tree (C4.5) [86] implementation. The proposed method is shown to produce a feature

subset that achieves a higher classification accuracy when compared to using all the fea-

tures within the dataset. The feature subset produced by the proposed algorithm is also

shown to achieve higher classification accuracies when compared to using feature subsets

produced by two commonly used feature selection methods, gain ratio and information

gain, as well as a widely used feature extraction method, Principal Component Analysis

(PCA) [87]. Both the feature selection and classification stages of the proposed algorithm

require labelled data in their execution.

2.4.2 Wrapper methods

Li et al. [31] proposed a Gradual Feature Removal (GFR) method that was applied to the

KDD Cup 1999 dataset [24] for network intrusion detection. The classification algorithm

output, the average Matthews Correlation Coefficient (MCC), as computed over a feature

subset of labelled data is used as a measure of the fitness of a candidate feature subset.

The GFR method begins with the full feature set and iteratively removes the least signif-

icant feature, until only one feature remains. More specifically, given NF features in the

feature space, an iteration involves the computation of the average MCC over NF candi-

date feature subsets. Each subset consists of NF − 1 features, where a different feature

is excluded from each subset.The subset that produces the highest average MCC value

reveals the least significant feature as the one that was excluded from that subset; the

feature is then removed from the candidate feature space. The process is subsequently

repeated with NF − 1, NF − 2, NF − 3 features and so on, until only one feature remains.

The final result is a list of all the excluded features ranked from most to least significant.

Using an SVM, the best accuracy was obtained when the 19 most significant features were

used. The resultant feature subset was compared against feature subsets produced by

three similar feature selection algorithms, namely the Feature Removal Method (FRM),
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the Sole Feature Method (SFM) and a hybrid of these two methods. The FRM is per-

formed in a similar manner to the GFR method in that features are ranked based only

on the first iteration of the GFR method. The SFM computes the average MCC for one

feature at a time, where higher average MCC values shows a higher level of significance

for a feature. The authors demonstrated that the GFR method produced a feature subset

that was able to attain classification accuracies that were higher than the feature subsets

produced by the other three feature selection algorithms. It is noteworthy that all the

feature selection algorithms considered in [31], require the use of labelled data.

Dastanpour et al. [32] proposed the use of a genetic algorithm and an SVM to perform

feature selection on the KDD Cup 1999 dataset [24] for network intrusion detection. A

feature subset is selected based on the true positive percentage of the SVM, which is

produced by performing classification on the dataset over a candidate feature subspace

selected by the GA. The proposed method is compared against two filter-based feature

selection methods, namely the linear correlation-based feature selection method, and the

forward feature selection algorithm. Both these algorithms were utilized by Amiri et

al. [26], as reviewed in section 2.4.1. Applying the KDD Cup 1999 dataset to the SVM

over the feature subsets selected by all three feature selection algorithms demonstrated

that the proposed method was able to produce a feature subset that attained higher true

positive percentages, and lower false positive percentages than the feature subsets produced

by the two filter-based feature selection methods.

Zhang et al. [33] proposed the use of a Bayesian network classifier to perform feature se-

lection and classification on the NSL-KDD dataset [25]. The classification accuracy of the

BN classifier is used to measure the relevance of features in the NSL-KDD dataset. The

classification accuracy when utilizing the full feature set is first computed as a benchmark

for ranking features. Ranking consists of an iterative process which involves the removal

of one feature and the recalculation of the classification accuracy over the reduced feature

space, during each iteration. If the classification accuracy produced by performing classi-

fication over the reduced feature subset is less than the classification accuracy produced

over the full feature set, then the removed feature is significant. The process is repeated

until the classification accuracies of all features that are deemed significant is lower than

the classification accuracy attained over the full feature set. The proposed method was
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compared against four filter-based feature selection methods, namely information gain [88],

gain ratio, ReliefF [89] and ChiSquare [90]. It was demonstrated that the proposed method

produced a feature subset of the NSL-KDD dataset, that attained a higher classification

accuracy than the feature subsets produced by the four filter-based methods. Addition-

ally, the method produced the candidate feature subset in less time than the filter-based

methods.

2.5 Conclusion

This chapter reviewed several works that design and implement anomaly-based network

intrusion detection systems through the application of two unsupervised machine learning

techniques. These include clustering and outlier mining techniques. The literature re-

veals that anomaly-based NIDS typically follow a common structure, which involves data

preprocessing, clustering, and cluster labelling. While outlier mining techniques are typ-

ically implemented in conjunction with a clustering algorithm. It was found that cluster

labelling is commonly achieved by making the assumption that legitimate network traffic

vastly outnumbers malicious network traffic. The literature reviewed, demonstrates that

anomaly-based NIDS using unsupervised machine learning techniques produces promis-

ing results with regards to classification accuracy. These methods also provide the added

benefit of not requiring labelled data. Thus, unsupervised machine learning techniques

are considered in this research for the design and implementation of an anomaly-based

network intrusion detection system.

Additionally, this chapter reviews several works that design and implement feature se-

lection algorithms for use in network intrusion detection. Feature selection algorithms

are divided into filter-based and wrapper-based methods. It was found that filter-based

methods commonly used in the literature include the use of statistical measures such as:

information gain, mutual information and degree of correlation. From the literature re-

viewed, commonly used wrapper-based methods includes the use of classification accuracy

as a measure of the quality of features or feature subsets. The literature demonstrates

that both methods are capable of producing feature subsets that produce classification

accuracies that are higher or comparable to the classification accuracy produced when
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performing classification over the full feature set. The shortcoming of the feature selection

methods reviewed in this chapter is that all techniques require labelled data to determine

feature relevance. Labelled data is not always available in practical environments, thus,

this research focusses on designing and implementing a feature selection algorithm that

does not require labelled data.



Chapter 3

An Unsupervised Classifier for

Anomaly-based Network Intrusion

Detection

3.1 Introduction

The proposed classifier for anomaly-based NID is presented in this chapter. The classifier

uses an unsupervised machine learning algorithm which involves the preprocessing and

clustering of data samples, and the labelling of clusters. The algorithm takes in as input

a set of feature vectors derived from network traffic, and performs binary classification

on each vector, which assigns the label legitimate or attack, to each feature vector. The

proposed classifier does not require labelled data samples.

The functional block diagram of the proposed classifier is presented in figure 3.1.

Figure 3.1: Functional block diagram of the proposed classifier.

41
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In what follows, a description of each block of figure 3.1, as well as the dataset, are

provided.

3.2 Dataset

In this research the NSL-KDD dataset [25] is used. It is widely used as a benchmark dataset

for anomaly-based NIDS. The use of this dataset allows for the comparison of results with

existing systems proposed in the literature. The NSL-KDD dataset was derived from the

KDD Cup 1999 dataset [24]; both datasets are discussed in what follows.

3.2.1 KDD Cup 1999 dataset

In 1998, DARPA (Defence Advanced Research Projects Agency) and the Lincoln labora-

tory at the Massachusetts Institute of Technology (MIT) executed an intrusion detection

system evaluation programme that involved the collection of network traffic data over a

simulated network environment of an air force base [91]. The environment consisted of

an intranet of the air force base and an external network representing the Internet. The

intranet consisted of several physical UNIX machines and a gateway to thousands of em-

ulated workstations that utilize a variety of network applications and services to generate

network traffic. This traffic consisted of typical user activities such as sending and receiv-

ing emails, browsing websites, transferring files using the File Transfer Protocol (FTP),

and using telnet to log into remote computers. The external network consisted of a sniffer

to capture network traffic, a gateway to hundreds of emulated workstations, and an addi-

tional gateway to thousands of emulated web servers [91]. Malicious or attack traffic was

automatically simulated, or simulated by actual users if the attack was too complex to be

automated. The generated legitimate traffic and the simulated attack traffic in the net-

work environment, were captured/recorded by the sniffer. Over a period of seven weeks,

the sniffer captured 4 gigabytes of compressed, raw network packets (TCPdump data).
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3.2.1.1 Attacks

The attacks that were simulated during the DARPA IDS evaluation programme all belong

to one of four broader categories of network attacks, as proposed by DARPA [91]:

• Denial-of-Service (DoS) — This form of attack occurs when an attacker overloads

or exhausts a system resource (such as available memory or bandwidth) through

service requests. This renders the system unable to accommodate new requests from

legitimate users. An example is the SYN flood (Neptune) attack which involves

the transmission of a large number of SYN packets to a host system. A SYN packet

initialises a TCP connection between the attacker and the server, preparing the server

for data transmission. The server replies with a SYN/ACK packet and waits for an

ACK packet from the attacker in order to complete the new connection. However,

the attacker does not reply with an ACK packet leaving the connection half open.

A server can only accommodate a finite number of half open connections, and once

that finite number is reached, new legitimate connections cannot be established.

• User to Root (U2R) — In this category of attack, an attacker is assumed to

already have user-level access to a target system in the network or intranet. This

user-level access is obtained through legitimate or illegitimate means, such as a

brute-force attack on user passwords. The attack consists of the attacker escalating

his/her access level to gain root access (administrator-level access), by exploiting

some vulnerability within the system.

• Remote to Local (R2L) — This occurs when an attacker remotely gains access to

a local system within a network or intranet, that he/she is not entitled to access, by

exploiting some vulnerability within the system. This is achieved by sending packets

to the local machine over a network from a remote location.

• Probing — This involves an attacker attempting to gather private information

about a network with the aim of finding a security flaw or vulnerability in networked

systems. This includes finding target hosts, and specific hosts with open ports, which

reveal network services that can be exploited. It is generally carried out as an initial

step, prior to executing an attack from one of the remaining categories.
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3.2.1.2 Features

Stolfo et al. [92] and Lee et al. [93, 94] specified an initial set of features obtained from

information extracted from the raw data. The initial set of features were constructed for

each connection record. A connection is any form of communication attempt between two

hosts, a source and a destination. Each connection record is therefore represented as a

vector consisting of feature values that describe a specific connection of interest. Certain

features associated with specific connections of interest, were extracted from packet headers

and payloads. Other features involve statistics calculated over multiple time frames and

multiple connections related to the connection of interest. An example includes the number

of connections to the same host or service as the current connection of interest. Stolfo et

al. [92] and Lee et al. [93, 94] divided the initial set of features into four categories.

Basic features of individual TCP connections.

These represent the general features of TCP connections that are derived from packet

headers, such as the amount of data transmitted during a connection, the duration of a

connection, the ports used during a connection, etc. These features are not specifically

derived for intrusion detection, but are commonly used for general network analysis [93].

Content features within a connection derived from the payload.

Content-based features are derived from the payloads of packets. They characterise the

actions of a user, such as, the number of failed login attempts, the number of files created,

the number of “root” accesses, etc. Content-based features allow for the identification of

R2L and U2R attacks. R2L and U2R attacks generally occur over one single connection

and are embedded in the packet payloads, unlike DoS and probe attacks which occur over

multiple connections.
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Traffic features computed using a two-second time window.

The motivation for these features is that attacks frequently exhibit patterns over different

time frames, which can be used to detect certain attacks. For example, DoS and certain

probe attacks involve the transmission of a large number of packets to a host in a very

short period of time. These features are derived from statistics over a two second time

frame, related to the connection of interest, such as, the number of connections to the

same host or service as the current connection of interest.

Traffic features computed using the last 100 connections.

Certain attacks involve the transmission of data over extended periods of time. These

attacks may in some cases be identified using features that are derived over multiple

connections related to a connection of interest. These features are derived from statistics

that are calculated over 100 connections related to a connection of interest, such as, the

number of connections to the same host or service as the current connection of interest.

Table 3.1 summarises the attack categories of those attacks that may be detected by each

feature category, as demonstrated in [92–94].

Table 3.1: Attack categories detectable by the four feature categories.

Feature categories Attack categories

Basic and traffic features DoS and fast probing attacks

Basic and connection-based traffic features Slow probing attacks

Basic and content-based features R2L and U2R attacks

Table 3.2 provides a list of all 41 features of the KDD Cup 1999 dataset [24], along with a

description and the type of each feature. The 41 features consists of 32 numeric features

(16 with continuous values and 16 with discrete values), and 9 categorical features (6 with

two categories and 3 with several categories).
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Table 3.2: List of features contained in the KDD Cup 1999 dataset (from [5–7]).

# Feature Name Description Type

Basic features of individual TCP connections

1 duration length (number of seconds) of the connection Numeric (Continuous)

2 protocol type type of the protocol, e.g. TCP, UDP, etc. Categorical (3-cat.)

3 service network service on the destination, e.g., HTTP, telnet, etc. Categorical (11-cat.)

4 flag normal or error status of the connection Categorical (64-cat.)

5 src bytes number of data bytes from source to destination Numeric (Discrete)

6 dst bytes number of data bytes from destination to source Numeric (Discrete)

7 land 1 if connection is from/to the same host/port; 0 otherwise Categorical (Binary)

8 wrong fragment number of “wrong” fragments Numeric (Discrete)

9 urgent number of urgent packets Numeric (Discrete)

Content features within a connection derived from the payload

10 hot number of “hot” indicators Numeric (Discrete)

11 num failed logins number of failed login attempts Numeric (Discrete)

12 logged in 1 if successfully logged in; 0 otherwise Categorical (Binary)

13 num compromised number of “compromised” conditions Numeric (Discrete)

14 root shell 1 if root shell is obtained; 0 otherwise Categorical (Binary)

15 su attempted 1 if “su root” command attempted; 0 otherwise Categorical (Binary)

16 num root number of “root” accesses Numeric (Discrete)

17 num file creations number of file creation operations Numeric (Discrete)

18 num shells number of shell prompts Numeric (Discrete)

19 num access files number of operations on access control files Numeric (Discrete)

20 num outbound cmds number of outbound commands in an ftp session Numeric (Discrete)

21 is host login 1 if the login belongs to the “host” list; 0 otherwise Categorical (Binary)

22 is guest login 1 if the login is a “guest” login; 0 otherwise Categorical (Binary)

Traffic features computed using a two-second time window

23 count number of connections to the same host as the current connection Numeric (Discrete)

24 srv count number of connections to the same service as the current connection Numeric (Discrete)

25 serror rate % of connections that have “SYN” errors in the count feature Numeric (Continuous)

26 srv serror rate % of connections that have “SYN” errors in the srv count feature Numeric (Continuous)

27 rerror rate % of connections that have “REJ” errors in the count feature Numeric (Continuous)

28 srv rerror rate % of connections that have “REJ” errors in the srv count feature Numeric (Continuous)

29 same srv rate % of connections to the same service in the count feature Numeric (Continuous)

30 diff srv rate % of connections to different services in the count feature Numeric (Continuous)

31 srv diff host rate % of connections to different hosts in the srv count feature Numeric (Continuous)

Traffic features computed using the last 100 connections

32 dst host count number of connections to the same host as the current connection Numeric (Discrete)

33 dst host srv count number of connections to the same service as the current connection Numeric (Discrete)

34 dst host same srv rate % of connections to the same service in the dst host count feature Numeric (Continuous)

35 dst host diff srv rate % of connections to different services in the dst host count feature Numeric (Continuous)

36 dst host same src port rate
% of connections whose source port is the same to that of the current

connection in the dst host count feature
Numeric (Continuous)

37 dst host srv diff host rate % of connections to different hosts in the dst host srv count feature Numeric (Continuous)

38 dst host serror rate % of connections that have “SYN” errors in the dst host count feature Numeric (Continuous)

39 dst host srv serror rate % of connections that have “SYN” errors in the dst host srv count feature Numeric (Continuous)

40 dst host rerror rate % of connections that have “REJ” errors in the dst host count feature Numeric (Continuous)

41 dst host srv rerror rate % of connections that have “REJ” errors in the dst host srv count feature Numeric (Continuous)
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The KDD Cup 1999 dataset [24] consists of training and testing subsets; specifically, the

dataset consists of,

• a training set with 5 million records,

• a 10% subset of the training set, randomly selected, with 500 000 records, and

• a test set with 2 million records.

A detailed overview of the composition of these subsets are not provided, as the NSL-KDD

dataset [25], which was derived from the KDD Cup 1999 dataset, was used in this research.

3.2.1.3 Shortcomings of the KDD Cup 1999 dataset

The KDD Cup 1999 dataset [24] is a widely used dataset for evaluating the performance of

anomaly-based network intrusion detection systems [43, 45, 46, 48–50, 78]. However, the

dataset has several characteristics which detract from its fitness as a benchmark dataset

for performance evaluation. Tavallaee et al. [95] performed a detailed analysis on the KDD

Cup 1999 dataset in order to identify and address the shortcomings of the dataset for the

purpose of serving as a benchmark dataset. The study points out two main shortcomings

of the KDD Cup 1999 dataset.

The first is the presence of redundant records, where the full training and testing sets con-

tain approximately 80% and 75% duplicated records, respectively [95]. These duplicates

occur due to the nature of certain attacks such as Denial-of-Service (DoS) and Probing

attacks [34]. While the existence of duplicates is representative of real network traffic,

their presence introduces a bias towards those attack classes when the dataset is applied

to machine learning algorithms. If a significantly large proportion of the dataset consists

of duplicates and all duplicates are classified correctly, this will result in a high classifica-

tion accuracy, whereas if they are classified incorrectly, this results in a low classification

accuracy. Both scenarios may be misleading as they may not indicate the classification or

detection capabilities of certain classifiers with regards to detecting less frequent attacks,

such as R2L and U2R attacks [34, 95].
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The second shortcoming is that the majority of the connection records are trivial to classify,

this implies that the results reported in certain articles would typically result in high

classification rates in certain classifiers [95]. This shortcoming detracts from the detection

of more sophisticated attacks, which reduces the ability of the KDD Cup 1999 dataset [24]

to serve as a benchmark dataset for intrusion detection. In order to demonstrate the second

shortcoming, Tavallaee et al. [95] performed experiments using seven supervised machine

learning algorithms that were applied to the KDD Cup 1999 dataset. Experiments were

run using the WEKA software package [96] using the following algorithms:

• J48 decision tree [97],

• Naive Bayes (NB) [98],

• NBTree [99],

• random forest [100],

• random tree [101],

• multilayer perceptron [102], and

• support vector machines [103].

Tavallaee et al. [95] trained each of the seven supervised machine learning algorithms

three times using three different training sets. The three training sets were randomly

selected subsets of the full KDD training dataset, each consisting of 50 000 connection

records. This process produced 21 classifiers, which were applied to classify each of the

remaining connection records of the full KDD training and testing sets as either a legitimate

connection, or a specific attack (from one of the classes defined in section 3.2.2, in table

3.4). The results indicated that each of the 21 classifiers were able to correctly classify 98%

and 87% of all records for both the training and test sets, respectively. This demonstrates

that the majority of the attacks are elementary attacks, which are trivial to detect when

using the implementation in [95].
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3.2.2 NSL-KDD dataset

To address the shortcomings of the KDD Cup 1999 dataset [24], Tavallaee et al. [95]

proposed a new dataset known as the NSL-KDD dataset [25], which is a subset of the

KDD Cup 1999 dataset. The NSL-KDD dataset resolves the shortcomings of the KDD

Cup 1999 dataset by eliminating duplicated records and retaining only certain connection

records in order to obtain a distribution that consists of a larger proportion of sophisticated

attacks, making the dataset more challenging for intrusion detection tasks, and thus more

appropriate for use as a benchmark dataset for intrusion detection [95]. In this research,

the NSL-KDD dataset is utilized in all simulations.

The NSL-KDD dataset was created in two steps:

1. The initial step consisted of the removal of all duplicated records, retaining only one

copy of each distinct connection record. This reduced the full KDD training and

testing sets to around 20% and 25% of their original size, respectively.

2. Tavallaee et al. [95] grouped the connection records based on the number of classifiers

(as specified in section 3.2.1) that were able to correctly classify each record. The

groups were as follows, those records that were correctly classified by: 0-5 classifiers,

6-10 classifiers, 11-15 classifiers, 16-20 classifiers, and 21 classifiers, were grouped

together. To obtain the NSL-KDD dataset [25], Tavallaee et al. [95], randomly

selected a proportion of connection records from each group, where each proportion

consisted of a number of connection records that constitute an inversely proportional

percentage of connection records present in the KDD Cup 1999 training and test sets,

after duplicates were removed. For example, after the removal of duplicates, the KDD

Cup 1999 dataset [24] consisted of 0.04% of those connection records belonging to

group 0-5. Thus, 99.96% of those records belonging to group 0-5, were randomly

selected for the NSL-KDD dataset. Thus, the NSL-KDD dataset constitutes a larger

proportion of those attacks that are harder to correctly classify, as compared to the

KDD Cup 1999 dataset.

The NSL-KDD dataset consists of two training sets and two test sets:
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• Training set 1. This training set was derived by applying steps 1 and 2, as set out

above, to the full KDD Cup 1999 training set. It has 125 973 connection records.

• Training set 2. This training set was created by randomly selecting 20% of the

connection records of NSL-KDD training set 1. It has 25 192 records.

• Test set 1. This test set was derived by applying steps 1 and 2, as set out above,

to the full KDD Cup 1999 test set. It has 22 544 connection records.

• Test set 2. This test set is a subset of NSL-KDD test set 1, created by removing

all connection records with a rank of 21. It has 11 850 records. The records of test

set 2 are considered more difficult to classify correctly than the records in test set 1.

Table 3.3 summarises the contents of the training and test sets of the NSL-KDD dataset [25],

detailing the number of connection records as well as the distribution of records that are as-

sociated with legitimate network traffic, and the four network attack categories (as defined

in section 3.2.1.1).

Table 3.3: Contents of the training and testing sets of the NSL-KDD Dataset.

Training set 1 Training set 2 Test set 1 Test set 2

DoS 45 927 36.46% 9 234 36.65% 7 475 33.16% 4 359 36.78%

Probe 11 656 9.25% 2 289 9.09% 2 421 10.74% 2 402 20.27%

R2L 995 0.79% 209 0.83% 2 870 12.73% 2 870 24.22%

U2R 52 0.04% 11 0.04% 67 0.30% 67 0.57%

Normal 67 343 53.46% 13 449 53.39% 9 711 43.08% 2 152 18.16%

Total 125 973 100% 25 192 100% 22 544 100% 11 850 100%

A comprehensive list of all the attacks in the NSL-KDD training and testing sets is provided

in table 3.4. Each attack is grouped into one of the four broader attack categories (as

specified in section 3.2.1.1), and the percentage of records within the dataset belonging to

each attack is provided. The information in table 3.4 was gathered from the KDD Cup

1999 dataset website [5], from an analysis of the class labels and from references [104, 105],

which provide a list of attacks. The interested reader can refer to [106] for a description

of each attack and the steps involved in their execution.
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Table 3.4: List of attacks contained in the NSL-KDD dataset, and percentage of con-
nection records belonging to each attack.

Training Set 1 Training Set 2 Test Set 1 Test Set 2
Attack

Category

back 0.76% back 0.78% back 1.59% back 3.03% DoS

land <0.1% land <0.1% land <0.1% land <0.1% DoS

neptune 32.72% neptune 32.88% neptune 20.66% neptune 13.32% DoS

pod 0.16% pod 0.15% pod 0.18% pod 0.35% DoS

smurf 2.10% smurf 2.10% smurf 2.95% smurf 5.29% DoS

teardrop 0.71% teardrop 0.77% teardrop <0.1% teardrop 0.10% DoS

ipsweep 2.86% ipsweep 2.82% ipsweep 0.63% ipsweep 1.19% Probe

nmap 1.19% nmap 1.19% nmap 0.32% nmap 0.62% Probe

portsweep 2.33% portsweep 2.33% portsweep 0.70% portsweep 1.32% Probe

satan 2.88% satan 2.74% satan 3.26% satan 6.14% Probe

ftp write <0.1% ftp write <0.1% ftp write <0.1% ftp write <0.1% R2L

guess passwd <0.1% guess passwd <0.1% guess passwd 5.46% guess passwd 10.39% R2L

imap <0.1% imap <0.1% imap <0.1% imap <0.1% R2L

multihop <0.1% multihop <0.1% multihop <0.1% multihop 0.15% R2L

phf <0.1% phf <0.1% phf <0.1% phf <0.1% R2L

spy <0.1% spy <0.1% — — — — R2L

warezclient 0.71% warezclient 0.72% — — — — R2L

warezmaster <0.1% warezmaster <0.1% warezmaster 4.19% warezmaster 7.97% R2L

buffer overflow <0.1% buffer overflow <0.1% buffer overflow <0.1% buffer overflow 0.17% U2R

loadmodule <0.1% loadmodule <0.1% loadmodule <0.1% loadmodule <0.1% U2R

perl <0.1% — — perl <0.1% perl <0.1% U2R

rootkit <0.1% rootkit <0.1% rootkit <0.1% rootkit 0.11% U2R

apache2 3.27% apache2 6.22% DoS

mailbomb 1.30% mailbomb 2.47% DoS

named <0.1% named 0.14% DoS

processtable 3.04% processtable 5.78% DoS

udpstorm <0.1% udpstorm <0.1% DoS

mscan 4.42% mscan 8.41% Probe

saint 1.42% saint 2.61% Probe

httptunnel 0.59% httptunnel 1.12% R2L

sendmail <0.1% sendmail 0.12% R2L

snmpgetattack 0.79% snmpgetattack 1.50% R2L

snmpguess 1.47% snmpguess 2.79% R2L

worm <0.1% worm <0.1% R2L

xlock <0.1% xlock <0.1% R2L

xsnoop <0.1% xsnoop <0.1% R2L

ps <0.1% ps 0.13% U2R

sqlattack <0.1% sqlattack <0.1% U2R

xterm <0.1% xterm 0.11% U2R
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Table 3.4 indicates that training set 1 has 22 attacks, whereas training set 2, the 20%

subset of training set 1, has 21 attacks, with the absence of perl records. Both test sets

have 37 attacks, in which 20 attacks are found in the training sets, and 17 are additional

attacks.

Each feature vector of all training and testing sets consists of the same 41 features as

defined in the KDD Cup 1999 dataset [24], as well as a class label for each record in

the dataset. Each record is labelled as either one specific attack, as set out in table 3.4,

or normal, which represents legitimate network traffic. Note that the class labels are

only used to evaluate performance after classification, and not used as a feature during

classification.

3.3 Data transformation

In general, data transformation involves converting the values of data samples into a form

that is suitable for machine learning tasks [23]. It involves the scaling of numeric feature

values to fall within a desired range (normalization), as well as the conversion of categorical

feature values into numeric values, as may be required by certain machine learning tasks

(encoding). Several articles have reviewed various methods for normalizing and encoding

the data of the features of the NSL-KDD dataset [25], and their impact on the classification

performance of several anomaly-based NIDS [107, 108]. This section provides an overview

of the procedure used in this research to transform the NSL-KDD dataset into a format

that is suitable for clustering feature values associated with each data sample.

3.3.1 Normalization

The NSL-KDD dataset [25] contains numeric features that are defined over ranges with

different extent. This disparity in magnitude may lead to the emergence of a bias towards

certain features, during for example, distance calculations in clustering algorithms. Nor-

malization is a technique that is employed to ensure that the features are defined over a

common range, with no bias towards certain features, as a result of disparity of scale [38].
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Several normalization techniques that can be used to normalize numerical features in-

clude [23, 107, 108]:

• mean range normalization,

• frequency normalization,

• maximize normalization,

• rational normalization,

• statistical normalization (standardisation),

• ordinal normalization, and

• decimal scaling normalization.

Wang et al. [108] performed a comparison of the performance impact of several normal-

ization techniques as applied to network intrusion detection over the KDD Cup 1999

dataset [24]. Three supervised learning methods, namely, k-nearest neighbour (kNN),

Principal Component Analysis (PCA) and Support Vector Machines (SVMs) were trained

and tested on subsets of the KDD Cup 1999 dataset. The training set consisted of only

legitimate network traffic to build “normal” models, and the testing set consisted of both

legitimate and attack traffic, in which attacks were detected as those samples that devi-

ated from the “normal” models. PCA was implemented as a classifier by projecting each

test sample onto the subspace found by the PCA algorithm applied to the training set,

that represents normal behaviour. The test sample is labelled as legitimate if the distance

between the test sample and its reconstruction onto the subspace is below a threshold.

Prior to applying machine learning, the numeric features of the KDD Cup 1999 dataset

were normalized using one of the following normalization techniques: mean range, sta-

tistical, ordinal and frequency normalization. The categorical features were not included

in the experiment. The authors suggested that statistical and mean range normalization

should be used if distance-based computations are required, and in situations involving

large datasets, statistical normalization is recommended, as it provides the best overall

performance.
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Statistical normalization was successfully applied in several anomaly-based NIDS that

involve distance-based calculations [43, 44]. Both Syarif et al. [44] and Portnoy et al. [43]

used clustering techniques to perform network intrusion detection. Both authors applied

statistical normalization on the numeric features of the NSL-KDD dataset [25] and KDD

Cup 1999 dataset [24], respectively. Chapter 2, section 2.3.1 describes these systems in

greater detail.

In this research the statistical normalization technique is applied to the numeric features

of the NSL-KDD dataset [25]. The technique rescales each numeric feature such that it

has a mean value of zero and a unity standard deviation when calculated over all samples

of the dataset. The value xi,f of feature f of data sample i is scaled as,

x′i,f =
xi,f − µf

σf
, i = 1 . . . N (3.1)

where x′i,f is the scaled value, N is the number of data samples and µf and σf are the

mean and standard deviation of the values of feature f , respectively. Both the mean and

standard deviation are calculated as,

µf =
1

N

N∑
i=1

xi,f (3.2)

σf =

√√√√ 1

N − 1

N∑
i=1

(xi,f − µf )2 (3.3)

3.3.2 Encoding

This section describes the technique that was used to encode the categories of the cate-

gorical features present in the NSL-KDD dataset [25]. Encoding consists of the mapping

of categories to corresponding numerical values. Several encoding techniques have been

proposed in the literature. Table 3.5 lists several of the techniques that have been success-

fully applied in the context of anomaly-based network intrusion detection, together with
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classifiers used with each technique, and the normalization technique that may have been

applied to the encoded categories of the categorical features.

Table 3.5: Summary of encoding techniques.

Encoding

Technique

Reference Classifier Normalization

Ordinal

[26] Least Squares SVM (Chapter 2, section

2.4)

Maximize

[48] NADO (Chapter 2, section 2.3.2) None

[29] TASVM (Chapter 2, section 2.4) Maximize

[109] SVM Mean Range

Binary

[110] Extreme learning machines (ELM) None

[111] Decision tree, kNN, Multi-layer percep-

tron, regularized discriminant analysis,

Fisher linear discriminant, k-means, single

linkage clustering, quarter-sphere SVM, γ-

algorithm

Statistical

[112] Parzen-window estimators with Gaussian

kernels

None

Frequency [107] Random forest, Bayes net, naive Bayes

(NB), NB tree and decision trees.

None

[113, 114] Transductive Confidence Machines k-

Nearest Neighbour (TCM-kNN)

None

To illustrate each technique suppose that a categorical feature has Ncat possible categories.

Ordinal encoding

In ordinal encoding, each of the Ncat categories are mapped to a distinct integer in the set

0, 1, . . . , Ncat − 1. Amiri et al. [26] encode the categories of the categorical features of the

KDD Cup 1999 dataset [24] as follows; the protocol type feature (for instance) consists of

three categories: TCP, UDP and ICMP ; authors assign integer values to these categories
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by setting the category TCP to 1, UDP to 2, and ICMP to 3. The transformed categor-

ical data as well as the numerical data of the KDD Cup 1999 dataset, are subsequently

normalized using the maximize normalization technique.

The ordinal encoding technique is inappropriate as the clustering techniques of interest

use distances over the feature space. If ordinal encoding is used together with a distance

metric, an implicit measure of dissimilarity is assigned to categories that may not be

accurate or appropriate. The implication is that (for instance) categories mapped to 1

and 3 are more dissimilar than categories mapped to 1 and 2.

Binary encoding

In binary encoding, each of the Ncat categories are mapped to a distinct Ncat-bit number,

where a single bit is nonzero. Authors of [110–112] encode the categories of the categorical

features of the KDD Cup 1999 dataset [24] using binary encoding, where the categories of

the protocol type feature (for instance) are encoded as follows; TCP, UDP and ICMP are

encoded as (0, 0, 1), (0, 1, 0), and (1, 0, 0), respectively.

The drawback of this encoding technique is that it increases the dimensionality of the

dataset. Essentially, one feature becomes Ncat features. Encoding the categories of the

categorical features of the NSL-KDD dataset [25] to binary numbers would drastically

increase the dimensionality of the dataset, which enlarges the search space for feature

selection.

Frequency encoding

In frequency encoding, each category is mapped to a real number between 0 and 1 that rep-

resents the fraction of occurrences of the category in the dataset. A category of categorical

feature f , is encoded as,

Cat′j,f =

∑N
i=1 1(xi,f = Catj,f )

N
, j = [1, 2, . . . , Ncat] (3.4)
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where Catj,f represents category j of feature f , Cat′j,f is the encoded value of category

j of feature f , N is the number of data samples, and Ncat is the number of categories in

feature f .

Li et al. [113, 114] encoded the categories of the categorical features of the KDD Cup 1999

dataset [24], using equation 3.4, to perform network intrusion detection.

Due to the disadvantages of the ordinal and binary encoding methods, in this research, the

frequency-based encoding method is used to encode the data of the non-binary categorical

features of the NSL-KDD dataset [25].

It is noteworthy that some anomaly-based NIDS proposed in the literature exclude the

binary-valued categorical features of the KDD Cup 1999 dataset [24] and NSL-KDD

dataset [25]. This is not considered as an option in this research as it has been demon-

strated previously that several of the binary-valued categorical features have value in

distinguishing between the attack categories present in both datasets. In particular ref-

erences [7, 28, 29] suggest that the land feature is valuable for identifying DoS attacks

while references [26, 28] suggest that the root shell feature is valuable for identifying U2R

attacks. Li et al. [31] showed that, according to their ranking algorithm, the land feature

was the third most significant feature out of all 41 features of the KDD Cup 1999 dataset.

In this research, the binary-valued categorical features were encoded using the ordinal

encoding technique, where values were encoded as either a 0 or a 1. Further normalization

of the encoded binary-valued categorical features was not considered as the feature values

are within the same range as that of the encoded non-binary categorical features of the

NSL-KDD dataset [25]. This is the same approach as used in references [48, 107]

3.4 Clustering

This section describes each of the clustering algorithms that were used in this research. The

goal of clustering is to find hidden structures or regularities among the data samples in the

feature space considered. Clustering algorithms assign data samples in the feature space

to groups or clusters, such that data samples that are in a common region of the feature
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space belong to the same cluster. In applying clustering in the context of classification,

the assumption is that data samples belonging to the same cluster will belong to the

same class. Clustering may be done based on (among others), the distances between data

samples, the relative density of data samples, or according to distributional models such

as a Gaussian mixture model, all computed over the feature space considered [2, 63].

The clustering algorithms described in this section are all sensitive to the choice of initial

cluster centres, where different initial centres produce different results. In the implemen-

tation of the classifier, the clustering algorithm is repeatedly applied to the data, with a

different choice of initial representative points for each cluster on each iteration. A total

of CR repetitions is performed, and during each repetition, the clustering algorithm is

executed until it converges. Each of the CR clustering results obtained, are subsequently

labelled (refer to figure 3.1).

3.4.1 Centroid-based clustering

Centroid-based clustering involves the use of cluster centres or centroids to represent each

cluster [23]. A cluster centre is a feature vector which defines the centre of a cluster in

the feature space considered. A cluster centre may or may not correspond to an actual

data sample of the dataset. Data samples are assigned to the cluster centre that they are

closest to, based on some measure of proximity that is calculated over the feature space

considered. Typically the Euclidean distance is used as the proximity measure, however,

other measures that can be used include the Manhattan distance, Minkowski distance,

and Chebyshev distance [23].

3.4.1.1 K–means

K–means is a widely used centroid-based clustering technique for grouping data samples

together based on distances over the feature space, while maintaining a separation between

samples that are relatively distant from one another with regards to the feature space. The

name k–means was first introduced by James MacQueen in 1967 [115], but the algorithm

itself was derived from the work of Hugo Steinhaus in 1956 [116].
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The pseudocode for the k–means algorithm is provided in algorithm 3.1.

Algorithm 3.1 K–means clustering algorithm

Function [C,L] = kmeans(X,K,Fs)

Inputs:

X = {x1,x2, . . . ,xN}, . A set of feature vectors to be clustered

K, . The number of clusters

Fs, . A feature subset to perform clustering over

Outputs:

C = {c1, c2, . . . , cK}, . Set of feature vectors representing cluster centres

L = {l(xa)|a = 1, 2, . . . , N}, . Set of cluster assignments for X

. Initialization

1: C← K random samples drawn uniformly from dataset X, without replacement

. Assign data samples in X to cluster centres in C

2: for (xi ∈ X) do

3: l(xi)← arg min
j

[Distance(xi, cj)] ; . where j = {1, . . . ,K}

4: end for

5: repeat

6: changed← false ;

7: for all (ci ∈ C) do

8: ci ← mean(x ∈ X | l(x) = i) ; . Recompute cluster centres

9: end for

. Reassign data samples to closest cluster centre

10: for all (xi ∈ X) do

11: minDist index← arg min
j

[Distance(xi, cj)] ; . where j = {1, . . . ,K}

12: if minDist index 6= l(xi) then

13: l(xi)← minDist index ;

14: changed← true ;

15: end if

16: end for

17: until changed = false

18: Return C,L
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The algorithm partitions the data into K clusters, where K is a user-specified parameter.

First, K random data samples are chosen from the dataset, as the initial cluster centres.

Each data sample is then assigned to the cluster centre that it is closest to based on the

squared Euclidean distance from the data sample to each cluster centre. The k–means

algorithm iteratively recalculates the K cluster centres as the mean of all the samples

belonging to the kth cluster, where the mean is computed over each feature in the feature

space. The data samples are subsequently reassigned to the new cluster centres, and the

process is repeated until the cluster centres remain unchanged.

The k–means algorithm is computationally efficient and scalable for application to rel-

atively large datasets. It often converges to a local optimum and is not guaranteed to

converge to a global optimum [23]. It is also able to find spherical or convex shaped

clusters [2]. The disadvantage of k–means clustering is that it is sensitive to outliers in

the dataset. Outliers affect the positioning of cluster centres in the feature space as they

possess large feature values that disproportionately affect the movement of cluster centres

in the feature space, during clustering [2, 23].

3.4.1.2 K–medoids

The k–medoids algorithm is a centroid-based clustering algorithm and is similar to the

k–means algorithm. The difference lies in the recalculation of cluster centres during each

iteration [2, 23, 63]. K–medoids selects cluster centres as those data samples belonging to

a cluster, that possesses the minimum summed distance to all remaining samples belonging

to the same cluster. The samples that are selected as cluster centres are known as medoids.

The k–means algorithm, however, recalculates cluster centres as the mean of all the data

samples assigned to the same cluster centre. The pseudocode for the k–medoids clustering

algorithm is provided in algorithm 3.2.

The algorithm first initializes K medoids and subsequently iterates through several assign-

ment and recalculation steps until convergence. The initial cluster medoids (centres) are

selected as K random samples from the dataset. The remaining data samples are subse-

quently assigned to the cluster medoids to which they are closest to based on the squared

Euclidean distance computed over the feature space. New cluster medoids are found by
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Algorithm 3.2 K–medoids clustering algorithm

Function [C,L] = kmedoids(X,K)

Inputs:

X = {x1,x2, . . . ,xN}, . A set of feature vectors to be clustered

K, . The number of clusters

Outputs:

C = {c1, c2, . . . , cK}, . Set of feature vectors representing cluster centres/medoids

L = {l(xa)|a = 1, 2, . . . , N} . Set of cluster assignments for X

1: C← K random samples drawn uniformly from dataset X, without replacement ;

2: repeat

3: changed← false ;

4: for all (xi ∈ X) do . Assign data samples to the closest medoid

5: l(xi)← arg min
j

[Distance(xi, cj)] ; . where j = {1, . . . ,K}

6: end for

7: for i = 1 to K do

8: Hi ← (x ∈ X | l(x) = i) ; . Data samples belonging to cluster i

9: for all (h ∈ Hi) do

10: sum dist← 0 ;

11: for all (x ∈ Hi) do . x 6= h

12: sum dist← sum dist+ dist(x,h) ;

13: end for

14: sum(h)← sum dist ;

15: end for

16: index← arg min
h∈Hi

[sum(h)] ; . Data sample with the smallest summed

17: ctmp ← Hi(index) ; . distance to all samples in cluster i

18: if (ctmp 6= ci) then . If the candidate medoid ctmp, is different from the

19: ci ← ctmp ; . the previous medoid ci, then the candidate medoid

20: changed← true ; . becomes the new cluster medoid

21: end if

22: end for

23: until changed = false

24: Return C,L
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computing the sum of the distances from each sample belonging to a cluster to each

remaining sample belonging to the same cluster. The sample that possesses the minimum

summed distance to all remaining samples belonging to the same cluster, is selected as the

new cluster medoid. The process is repeated until the cluster medoids do not change after

an iteration.

The disadvantage of the k–medoids clustering algorithm is that it has a greater average

computational complexity than the k–means clustering algorithm during cluster centre or

medoid reselection [2, 23, 63]. The k–medoids algorithm requires the pairwise squared

Euclidean distances between all data samples belonging to a cluster to be computed on

each iteration. The advantage is that it is more resilient to outliers than k–means. In the

k–means clustering algorithm, outliers disproportionately affects the location of cluster

centres in the feature space, during clustering, given that cluster centres are computed

as the mean of all data samples belonging to the same cluster. The location of cluster

centres or medoids with regards to the feature space, of the k–medoids algorithm, are

not as severely influenced by outliers. The algorithm will reject the use of an outlier as a

medoid, as an outlier lies in a region of the feature space that is distant from the remaining

samples with regards to the feature space. This will result in a large summed distance

between an outlier and all remaining samples belonging to the same cluster as the outlier.

3.4.1.3 K–means with distance-based outlier detection

Outlier detection is a technique that is used to find samples that are significantly differ-

ent from the majority of the samples within a dataset, for instance based on proximity

measures such as distance or density in the feature space. These samples are known as

outliers [23]. In anomaly-based network intrusion detection, anomalies are described as

traffic patterns that are vastly different from the traffic patterns of what is assumed to

be legitimate network activity, with regards to the statistics of features and feature values

computed over the feature space. These anomalies may be the result of malicious activity

and may indicate that an intrusion has occurred on the network. Anomalies can be con-

sidered as outliers in network traffic, and thus identifying outliers is of interest [2]. There

exists a number of ways in which outlier detection may be incorporated in anomaly-based
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NIDS. Outlier detection can be combined with clustering algorithms, which may improve

the performance of the clustering algorithm [44]. For example, the k–means clustering al-

gorithm is known to be sensitive to outliers, in the sense that they may disproportionately

shift the location of cluster centres in the feature space. By removing outliers prior to

clustering, this effect no longer occurs.

The two widely used proximity-based outlier detection techniques are density-based and

distance-based methods [23]. Density-based detection methods estimate the density of data

samples surrounding a particular data sample, and the density of data samples surrounding

its neighbours. An outlier is identified as a data sample with a relatively lower density

of surrounding data samples than that of the density of data samples surrounding its

neighbours. Distance-based detection methods identify outliers as those data samples

whose set of neighbours, defined by a given radius, are distant from it, where the radius is

defined based on a distance measure computed over the feature space [23]. For instance,

Ramaswamy et al. [117] defines outliers as the Nout data samples with the largest distance

to their kth nearest neighbour.

In what follows, the algorithm for detecting outliers is provided, followed by the algorithm

in which it is combined with clustering. The pseudocode for identifying outliers using

Ramaswamy’s kth nearest neighbour distance-based outlier detection approach is provided

in algorithm 3.3, further details can be found in [118]. In order to avoid confusion with

previous algorithms, where the number of clusters is represented by the symbol K; the

symbol Nn is used in algorithm 3.3 to represent k in the kth nearest neighbour approach,

where Nn represents the number of nearest neighbours to consider.

The technique implemented in this research involves the combination of outlier detection

with clustering, and was derived from [69], where the difference lies in the manner in

which outliers are identified. The implementation in this research utilizes algorithm 3.3 to

identify outliers, whereas the implementation in [69] utilizes distances to cluster centres

to identify outliers.

Hautamaki et al. [69] proposed an Outlier Removal Clustering (ORC) technique that is

applied to several synthetic datasets. The algorithm clusters the dataset until convergence,

removes outliers, and re-clusters the reduced dataset. The process is subsequently repeated
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Algorithm 3.3 Distance-based outlier detection algorithm

Function [Xo] = DBOD(X, Nn, rout)

Inputs:

X = {x1,x2, . . . ,xN}, . A set of feature vectors

Nn, . Number of nearest neighbours that defines the neighbourhood of a sample

rout . The percentage of data samples to identify as outliers

Output:

Xo = {Xo1 ,Xo2 , . . . ,XoNout
} . Set of feature vectors identified as outliers

1: Nout ← |X| × rout ; . Number of data samples to identify as outliers

. Compute square matrix consisting of the distances between all data samples in X

2: for i = 1 to N do

3: for j = 1 to N do

4: P Dists(i, j)← Distance(xi,xj) ; . j 6= i

5: end for

6: end for

. Sort the columns of P Dist in ascending order

7: Sorted PDists← Sort(P Dists, ascending) ;

. Extract N th
n -nearest neighbour distances. Select the (N th

n + 1) row of Sorted PDist

. The first row represents a samples distance to itself (i.e. 0)

8: Nth
n NN Dists← Sorted PDist(Nn + 1) ; . Vector of distances from each sample

. to its’ N th
n nearest neighbour

. Sort the vector Nth
n NN Dists in descending order, and store

. the sorted indices of all samples

. (i.e. Nth
n NN Dists(Sorted Nth

n NN Indices(j))← Sorted Nth
n NN Dists(j))

9: [Sorted Nth
n NN Dists, Sorted Nth

n NN Indices]

← Sort(Nth
n NN Dists, descending) ;

. Select the top Nout samples from Sorted Nth
n NN Indices

10: for j = 1 to Nout do

11: Xo(j)← X(Sorted Nth
n NN Indices(j)) ;

12: end for

13: Return Xo
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for a user specified number of iterations. Initially the entire dataset is clustered using the k–

means clustering algorithm until convergence. Each data sample is subsequently assigned

an outlier score, which is computed as a data sample’s distance to the cluster centre to

which it is assigned to. Each score is normalized by the largest outlier score amongst all

data samples, which scales all outlier scores to within the range [0,1]. The samples with

scores that are larger than a threshold are removed from the dataset. The reduced dataset

is re-clustered with the initial centres set as the final cluster centres obtained from the

previous iteration.

The pseudocode used for the combination of the distance-based outlier detection approach

provided in algorithm 3.3, and the k–means clustering algorithm provided in algorithm

3.1, is provided in algorithm 3.4.

Algorithm 3.4 K–means clustering with DBOD algorithm

Function [C′, L′] = kDBOD(X,K,Nn, rout)

Inputs:

X = {x1,x2, . . . ,xN}, . A set of feature vectors to be clustered

K, . The number of clusters

Nn . Number of nearest neighbours that defines the neighbourhood of a sample

rout . The percentage of data samples in each cluster to identify as outliers

Outputs:

C′ = {c1′, c2′, . . . , cK′}, . Set of feature vectors representing cluster centres

L′ = {l′(xa)|a = 1, 2, . . . , N}, . Set of cluster assignments for data samples in X

1: (C,L)← kmeans(X, K, Fs) ; . Algorithm 3.1 on entire dataset

2: for i = 1 to K do . Remove outliers from each cluster

3: Hi ← (x ∈ X | l(x) = i) ; . Data samples belonging to cluster i

4: if (|Hi| ≤ Nn) then . If a cluster consists of fewer samples than

5: continue ; . the number of neighbours Nn to consider,

6: end if . then leave cluster as is

7: Hio ← DBOD(Hi, Nn, rout) ; . Algorithm 3.3

8: Xo(|Xo|+ 1, . . . , |Xo|+ |Hio |)← Hio ; . Collection of outliers from all clusters
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9: end for

. Remove all data samples in X identified as outliers

10: for all (xi ∈ X) do

11: X′ ← xi ∈ X, where xi /∈ Xo ;

12: end for

13: (C′,L′)← kmeans(X′, K, Fs) ; . Cluster data samples in X′ using algorithm 3.1

. with C as initial centres

. Assign each outlier to the cluster centre in C′ that it is closest to

14: for all (xi ∈ Xo) do

15: l′(xi)← arg min
j

[Distance(xi, cj
′)] ; . j = {1, . . . ,K}

16: end for

17: Return (C′,L′)

The algorithm clusters the dataset until convergence, removes a percentage rout of outliers

from each cluster, and re-clusters the remaining data samples. Initially, k–means clustering

is applied to the entire dataset until convergence, obtaining a set of cluster centres C and

cluster assignments L for each sample in the dataset. Outliers are subsequently identified

amongst those samples that belong to the same cluster based on the N th
n nearest neighbour

algorithm (algorithm 3.3) proposed by Ramaswamy et al. [117]. All data samples that were

identified as outliers Xo are removed from the dataset. K–means clustering is applied

to the remaining data samples X′ using the cluster centres obtained from the previous

clustering result C, as the initial cluster centres. This produces new cluster centres C′

and cluster assignments L′. Cluster assignments L′ is updated by assigning each outlier

in Xo to the cluster centre in C′ that it is closest to, based on the squared Euclidean

distance computed over the feature space. The algorithm subsequently returns the final

cluster centres and cluster assignments C′ and L′, respectively.
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3.4.2 Distribution-based clustering

Distribution-based clustering is carried out by fitting a parametric distribution to the data

samples. A distribution has multiple components, an example is the Gaussian mixture

model. The posterior probabilities of components conditioned on a specific data sample, is

used as a metric to assign data samples to a component. Those data samples that belong

to the same component constitute a cluster [119].

Distribution-based clustering has been demonstrated as being able to accurately capture

the correlation and dependence between features. However, a possible problem that may

arise when representing data samples using a multi-component parametric distribution,

is that of over-fitting [119]. Over-fitting occurs when the number of components are

excessive, and the distribution model captures variations of individual samples / noise,

in addition to trends in the dataset itself. This problem may be solved by specifying

a conservative number of components K to fit the data to. This number K may be

calculated by incorporating model complexity into the performance metric during fitting.

Distribution-based techniques typically relies on the assumption that data samples can be

accurately represented using the selected distribution.

Gaussian Mixture Model (GMM)

A single Gaussian component may not always be sufficient to model real datasets, as

real datasets may be multi-modal, where in some cases a mixture of multiple Gaussian

components would fit the dataset more effectively [119]. A Gaussian mixture model is a

linear superposition of several Gaussian components, which can be defined as [119]:

p(x) =
K∑
k=1

πkN (x|µk,Σk) (3.5)

where p(x) represents the marginal probability of data sample x, N (x|µk,Σk) represents a

Gaussian component of the mixture model (that is, the multivariate Gaussian probability

density function), with mean µk and covariance matrix Σk. The parameter πk represents
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the mixing coefficients of the kth Gaussian component, and K is the number of Gaussian

components used to fit the dataset [119].

For an NF -dimensional vector x the multivariate Gaussian probability density function is

defined as [119],

N (x|µ,Σ) =
1

(2π)
NF
2

1

|Σ|
1
2

exp

{
1

2
(x− µ)TΣ−1(x− µ)

}
, (3.6)

where µ is an NF -dimensional mean vector, Σ is an NF ×NF covariance matrix, and |Σ|

is the determinant of Σ.

Maximum likelihood

The parameters of the GMM may be estimated by searching for values that maximize the

likelihood of the observed data, conditioned on the parameters of interest, thereby fitting

the distribution to the data samples. The maximum likelihood is a way of estimating the

parameters of a statistical model (such as the Gaussian distribution model) that maximizes

the likelihood function [119]. From equation 3.5, the log of the likelihood function can be

defined as [119]:

ln p(X|π,µ,Σ) =

N∑
n=1

ln

(
K∑
k=1

πkN (x|µk,Σk)

)
(3.7)

A problem associated with applying the maximum likelihood framework to Gaussian mix-

ture models is the potential for certain components to degenerate into singularities [119].

Suppose the covariance matrix Σk is given by Σk = σ2kI, where I is the identity matrix. If

the mean of the jth component is exactly equal to one of the data samples in the dataset

such that µj = xn, then this sample will contribute a term to the likelihood function,

proportional to,

N (xn|xn, σ
2
j I) =

1

(2π)
1
2

1

σj
(3.8)
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In the limit as σj tends to zero, the likelihood contribution by component k will tend to

infinity, and the log-likelihood function will also tend to infinity [119]. These singularities

are characteristic of over-fitting of the data, thus the models will not fit the data effectively.

3.4.2.1 Expectation-Maximization (EM) clustering

A method that may be used to find maximum likelihood parameter estimates in the case of

models with latent variables (see reference [119] for an overview of latent variable models) is

the expectation-maximization algorithm. Thus, the expectation-maximization algorithm

can be used to estimate the parameters π = {π1, π2, . . . , πK},µ = {µ1,µ2, . . . ,µK}, and

Σ = {Σ1,Σ2, . . . ,ΣK} that produces a Gaussian mixture model that effectively fits the

data.

Let a GMM be represented as a model with latent variables. In sampling from the GMM,

first draw a component {1, 2, . . . ,K} according to the prior probabilities {π1, π2, . . . , πK}.

Assign a latent (unobserved) variable Ẑ = {z1, z2, . . . , zK}. If component b was drawn,

zb = 1 and za = 0, for all a 6= b, a = 1, 2, . . . ,K.

A latent variable zn,k(n = 1, 2, . . . , N, k = 1, 2, . . . ,K) is assigned to each observation

(data sample) of the dataset, which corresponds to the component from which that data

sample originated.

Let Ẑi = {zi,1, zi,2, . . . , zi,K} denote the latent variable for data sample i. The parameters

π = {π1, π2, . . . , πK},µ = {µ1,µ2, . . . ,µK}, and Σ = {Σ1,Σ2, . . . ,ΣK} are estimated

using the posterior probability of components, conditioned on data samples x. It is shown

in [119] that the posterior distribution can be calculated as:

γ(zi,k) ≡ p(zi,k = 1|xi) =
πkN (xi|µk,Σk)∑
l πlN (xi|µl,Σl)

(3.9)

The mean µk of the Gaussian components is computed by setting the derivative of equation

3.7 with respect to µk of the Gaussian components to zero [119]. µk is then derived as:
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µk =
1

Nk

N∑
n=1

γ(zn,k)xn (3.10)

where N represents the total number of data samples in the dataset, xn represents a

sample in the dataset, and Nk is defined as,

Nk =
N∑

n=1

γ(zn,k) (3.11)

Similarly, the covariance matrix Σk of the Gaussian components is computed by setting

the derivative of equation 3.7 with respect to Σk of the Gaussian components to zero [119].

Σk is then derived as:

Σk =
1

Nk

N∑
n=1

γ(zn,k)(xn − µk)(xn − µk)T (3.12)

The mixing coefficients πk are obtained by maximizing ln p(X|π,µ,Σ) with respect to

πk [119].

The mixing coefficients πk(k = 1, 2, . . . ,K) is required to sum to one, in order to satisfy

this constraint a Lagrange multiplier is used (refer to [119] for further details). Thus, πk

is derived as:

πk =
Nk

N
(3.13)

Further details regarding these derivations can be found in [119]. The expectation max-

imization algorithm as applied to Gaussian mixture models to perform clustering is pro-

vided in algorithm 3.5.

The EM algorithm is divided into two successive steps, the Expectation (E-step) and

Maximization (M-step), which are performed iteratively until convergence. Initial values

are first chosen for π = {π1, π2, . . . , πk},µ = {µ1,µ2, . . . ,µk}, and Σ = {Σ1,Σ2, . . . ,Σk}.

For the component means µ, K random data samples are chosen from the dataset.
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Algorithm 3.5 Expectation-Maximization clustering with GMMs

Function [L] = EM(X,K, Tlog)

Inputs:

X = {x1,x2, . . . ,xN}, . A set of feature vectors

K, . Number of Gaussian components

Tlog . Threshold for log likelihood

Outputs:

L = {l(xa)|a = 1, 2, . . . , N} . Set of cluster assignments for X

. Initialization

1: π = {π1, π2, . . . , πk},µ = {µ1,µ2, . . . ,µk}, and Σ = {Σ1,Σ2, . . . ,Σk} ;

2: log likelihood← 0 ;

3: convergence← false ;

4: repeat

. E-Step

5: Compute γ(zn,k) ≡ p(k|X) ; . Posterior probabilities (equation 3.9)

. M-Step

. Using equations (3.10), (3.12), and (3.13)

6: Recompute π = {π1, π2, . . . , πk},µ = {µ1,µ2, . . . ,µk}, and Σ = {Σ1,Σ2, . . . ,Σk}

. Log-likelihood

7: Compute new log likelihood← ln p(X|π,µ,Σ) ; . Using equation 3.7

. Convergence test

8: if (|new log likelihood− log likelihood| < Tlog) then

9: convergence← true ;

10: else

11: log likelihood← new log likelihood ;

12: end if

13: until (convergence = true)

14: Recompute γ(zn,k) ≡ p(k|x) ; . Posterior probabilities (equation 3.9)

. Cluster Assignments

15: for all (x ∈ X) do

16: l(x)← arg max
k

[p(k|x)] ;

17: end for

18: Return L
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The mixing coefficients are uniform 1
K , and the covariance matrices for all components are

diagonal, where element j on the diagonal is the variance of the data samples in X along

feature j. The E-step computes the posterior probabilities (responsibilities) for which

the component k takes for fitting the data sample x, defined by π = {π1, π2, . . . , πk},µ

= {µ1,µ2, . . . ,µk}, and Σ = {Σ1,Σ2, . . . ,Σk}. The M-step uses the posterior proba-

bilities to calculate new values for π = {π1, π2, . . . , πk},µ = {µ1,µ2, . . . ,µk}, and Σ =

{Σ1,Σ2, . . . ,Σk}. E and M steps are iteratively carried out until convergence. The al-

gorithm converges when the change in the log-likelihood is below a threshold [119]. Data

samples are subsequently assigned to components based on the posterior probability that

a sample belongs to a given component k.

3.5 Cluster labelling

Cluster labelling is the task of assigning class labels to each cluster. Data samples belonging

to each cluster are subsequently assigned the class label of the cluster. In this research,

binary classification is carried out, where clusters are labelled as legitimate or attack.

Cluster labelling is typically carried out in unsupervised network anomaly detection under

the following assumptions [2, 43]:

1. The amount of legitimate network traffic outnumbers the amount of malicious net-

work traffic in the dataset considered.

2. In the feature space considered, malicious network traffic is found in a different region

of the feature space as that of legitimate network traffic.

3. Certain groups of malicious network traffic have a higher similarity than groups of

legitimate network traffic.

An important note is that certain Denial-of-Service (DoS) attacks are volumetric in nature.

If network traffic data is collected over a short period of time, then it is possible that the

network traffic produced by a DoS attack may constitute a majority of the network traffic

collected over this time period. In this case, the first assumption does not hold. The
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NSL-KDD dataset [25] was created from network traffic collected over a significantly long

period of time, resulting in legitimate network traffic constituting the majority of the

dataset. Thus, the first assumption holds.

References [43, 45, 48, 120–124] perform cluster labelling after the application of the k–

means, the single-linkage, or a variant of the k–means clustering algorithm, based on the

assumptions mentioned previously.

A number of authors label a fraction of the largest clusters as legitimate. The largest

cluster is defined as the cluster with the largest number of data samples belonging to

the cluster. Clusters are ranked according to the number of data samples belonging to

each cluster. A fraction of the top ranking clusters are labelled as legitimate, while the

remaining clusters are subsequently labelled as attacks [43, 48, 120, 122]. A variant of this

technique involves the use of a threshold, where a cluster is assigned the label legitimate

if the number of data samples associated with a cluster exceeds the threshold. Han et

al. [121] and Guan et al [123] label clusters with more than T data samples as legitimate,

while clusters with less than T data samples are labelled as attacks. Wang [45] also use

a threshold, but instead labels clusters consisting of less than T data samples as attacks,

while the remaining clusters are labelled as legitimate. The threshold is calculated as a

percentage of the data samples of the entire dataset. Zhong et al. [124] label a percentage

of the data samples of the entire dataset that are closest to the centre of the largest cluster,

as legitimate.

The labelling scheme implemented in this research is based on the assumptions mentioned

previously and follows a similar labelling scheme to [43, 48, 120, 122]. The Nr largest

clusters are labelled as legitimate, while the remaining clusters are labelled as attacks. The

value of Nr is varied from 1 to K−1, where K is the number of clusters, to obtain different

operating characteristics, each corresponding to a certain false positive and true positive

percentage.
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3.6 Experimental results

In this section, the experimental results obtained by applying the proposed classifier to

the NSL-KDD dataset [25] are presented, compared and discussed. The purpose of the

experimental work was to evaluate the classification performance attained by

• applying the four clustering algorithms presented in sections 3.4.1.1 to 3.4.2.1, to the

proposed classifier over the full feature set, and

• to evaluate the classification performance attained by applying the four clustering

algorithms to the proposed classifier over different feature subsets obtained from the

literature [31, 35].

The false positive and true positive percentages were used as measures of classification

performance in each case.

3.6.1 Experimental setup

This section describes the setup of the proposed classifier, as used to carry out the ex-

perimental work. The parameters for each block of the proposed classifier’s functional

block diagram (figure 3.1), which includes the four clustering algorithms, are provided.

Each of the feature subsets used for classification, as well as the classification performance

measures are presented.

3.6.1.1 Classifier parameters

The parameters of the proposed classifier are presented in table 3.6.

3.6.1.2 Feature subsets

The list of feature sets that were selected for the experimental work of this chapter are

presented in table 3.7. The table presents the name assigned to each feature subset, the
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Table 3.6: Experimental setup of the proposed classifier for the comparison of clustering
algorithms.

Dataset (Feature vectors)

Dataset selected NSL-KDD training set 2
Section 3.2.2. Table 3.3 provides the

dataset distribution.

Data transformation

Normalization of numeric features Statistical normalization Section 3.3.1

Encoding of non-binary categorical features Frequency encoding Section 3.3.2

Encoding of binary categorical features Ordinal encoding Section 3.3.2

Clustering

Clustering algorithm 1: k–means Section 3.4.1.1

Initialization
Initial cluster centres - K randomly selected

data samples
—

Distance metric Euclidean distance —

Number of clusters (K) 2 - 10 —

Number of repetitions with different

cluster centres (CR)
100 —

Clustering algorithm 2: k–medoids Section 3.4.1.2

Initialization
Initial cluster centres - K randomly selected

data samples
—

Distance metric Euclidean distance —

Number of clusters (K) 2 - 10 —

Number of repetitions with different

cluster centres (CR)
100 —

Clustering algorithm 3: k–means with distance-based outlier detection Section 3.4.1.3

Initialization
Initial cluster centres - K randomly selected

data samples
—

Distance metric Euclidean distance —

Number of clusters (K) 2 - 10 —

Number of repetitions with different

cluster centres (CR)
100 —

Number of nearest neighbours

considered (Nn)
10 —

Percentage of outliers to remove from

each cluster (rout)
10% —

Clustering algorithm 4: Expectation Maximization (EM) clustering Section 3.4.2.1

Initialization

Component means - K randomly selected

data samples,

Mixing coefficients - uniform (1/K),

Covariance matrices - diagonal; element j on the

diagonal is the variance of the data

samples in the dataset along feature j

—

Distance metric Euclidean distance —

Number of components (K) 2 - 10 —

Number of repetitions with different

cluster centres (CR)
100 —

Regularization value 0.005 —

Cluster labelling

Labels Binary (intrusion / legitimate) Section 3.5

Labelling algorithm
Largest Nr clusters labelled as legitimate,

remaining clusters labelled as intrusions
—

Number of legitimate clusters (Nr) 1 to K-1 —
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features present in each subset, and the method that was used to derive the feature subset1.

The feature numbers presented in table 3.7 corresponds to the full list of 41 features as

presented in table 3.2.

Note that feature 20, the number of outbound commands, was excluded from all feature

subsets during experimentation. This was due to the fact that the feature had a value

of zero among all data samples within the NSL-KDD dataset [25]. This implies that

the feature is irrelevant (i.e. it does not provide significant information for detecting

intrusions).

In addition to the full, original feature set (FS1), a total of 10 subsets (FS2 – FS11)

of the full feature set were used in this research. It is reported in the literature that,

of the 10 feature subsets, 4 feature subsets (FS2 – FS5) were derived using wrapper-

based feature selection techniques [31] applied to the KDD Cup 1999 dataset [24]. The

remaining 6 feature subsets (FS6 – FS11) were derived using filter-based feature selection

techniques [35] applied to the KDD Cup 1999 and NSL-KDD datasets [25]. All 10 feature

subsets were used directly in the experimental work. A detailed summary of the relevant

filter and wrapper-based feature selection techniques is provided in chapter 2, section 2.4.

Table 3.7: Feature set descriptions of those feature subsets found in the literature.

Name # Features Feature List Method Method Type Reference

FS1 40 All, excl. feature ’20’ Full feature set, excluding feature ’20’ – –

FS2 10 8,10,14,31,32,33,35,36,37,40 Feature Removal Method (FRM) Wrapper [31]

FS3 10 6,7,23,24,25,29,30,31,32,38 Sole Feature Method (SFM) Wrapper [31]

FS4 10 10,14,23,24,25,31,32,33,36,38 Hybrid of FRM and SFM Wrapper [31]

FS5 19
2,4,8,10,14,15,19,25,27,29,31,

32,33,34,35,36,37,38,40
Gradual FRM Wrapper [31]

FS6 4 3,5,6,39 Best of articles [7, 26–29] Filter [35]

FS7 10 3,4,5,6,14,16,27,28,37,39 Best of articles [7, 26–29] Filter [35]

FS8 10 2,3,4,5,6,8,23,30,34,36 Degree of Correlation + Greedy Stepwise Filter [35]

FS9 10 2,3,5,6,23,24,33,34,35,36 Information Gain + Ranker Filter [35]

FS10 4 2,3,5,6 Degree of Correlation + Greedy Stepwise Filter [35]

FS11 4 3,5,23,24 Information Gain + Ranker Filter [35]

1The feature subsets considered in this chapter do not include those derived using the proposed feature
selection algorithm; results for these feature subsets are presented in chapter 4
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3.6.1.3 Performance metrics

The two-class or binary classification of a data sample leads to four possible classification

outcomes, depending on whether the data sample was classified correctly or incorrectly.

The four classification outcomes for a data sample are referred to as True Positive (TP),

True Negative (TN), False Positive (FP) and False Negative (FN) [2].

• True Positive (TP) - A data sample representing an attack is correctly classified as

an attack.

• True Negative (TN) - A data sample representing legitimate network traffic is cor-

rectly classified as legitimate or normal.

• False Positive (FP) - A data sample representing legitimate network traffic is incor-

rectly classified as an attack.

• False Negative (FN) - A data sample representing an attack is incorrectly classified

as legitimate or normal.

The four possible classification outcomes are illustrated in table 3.8 [44].

Table 3.8: Four classification scenarios.

Actual result

Attack Legitimate

Predicted result
Attack TP FP

Legitimate FN TN

In this research, the percentage of true positives and false positives are used to evaluate

the performance of the proposed classifier. The true positive percentage is a measure of a

classifier’s ability to correctly identify data samples representing attacks. It is defined as

the percentage of the total number of attack samples in the dataset that were correctly

classified as attack data samples. The true positive percentage is computed as:

TP

TP + FN
× 100 (3.14)
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The false positive percentage is a measure of a classifier’s tendency to misidentify legitimate

data samples as attack data samples. It is defined as the percentage of the total number

of legitimate data samples in the dataset that were incorrectly classified as attack data

samples. The false positive percentage is computed as:

FP

FP + TN
× 100 (3.15)

Receiver Operating Characteristic (ROC) curves provide a visual representation of the

trade-off between the true positive and false positive percentages of a classifier, which is

brought about by varying the detection threshold2 of the classifier. ROC curves are useful

for analysing the behaviour of a classifier under different operating conditions, and for

comparing the performance of multiple classifiers. Figure 3.2 is an example of a ROC

curve, where the x-axis and y-axis of the graph represents the FP and TP percentages,

respectively. Improved classification performance corresponds to curves that lie towards

the top left corner of the graph. A curve that lies on top of, or to the left of another curve

is indicative of superior performance over the range of TP percentages or FP percentages,

respectively. The line y = x corresponds to a classifier that randomly assigns one of the

two classes to each data sample with equal probability.

Figure 3.2: Examples of ROC curves (from [2]).

2The detection threshold is the number of clusters labelled as legitimate (Nr), where Nr is varied in
the experimental work
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3.6.1.3.a Construction of ROC curves of the proposed classifier

This section provides a detailed description of the method used to construct the ROC

curves of the proposed classifier. In the classifier configuration presented in this chapter,

one pair of average FP and TP percentages is obtained for each pair of parameter values

K and Nr of the clustering algorithm, where K is the number of clusters and Nr is the

number of largest clusters to label as legitimate (and where the average is calculated

over the CR repetitions of the clustering algorithm with randomly selected initial cluster

centres). A ROC curve is constructed for each value of K; i.e., each ROC curve represents

clustering with a fixed number of clusters. The points on the curve correspond to different

values of Nr; in this approach, the number of clusters Nr to label as legitimate controls

the threshold of the classifier.

To illustrate the construction of the ROC curve, consider the TP and FP percentages

obtained during k–means clustering over the transformed NSL-KDD dataset [25], with a

fixed value of K = 5, and for Nr = 1, 2, . . . 4, as indicated in table 3.9.

Table 3.9: TP and FP percentages obtained during k–means clustering with K = 5.

Clusters labelled as legitimate (Nr) TP percentage FP percentage

1 Largest cluster 88.29 19.61

2 Largest clusters 39.47 15.90

3 Largest clusters 17.55 9.35

4 Largest clusters 5.40 3.37

These values were used to construct the ROC curve indicated in figure 3.3, where the

corresponding value of Nr is indicated next to each point of the ROC curve. The point

on the ROC curve most distant from the origin typically represents the labelling scheme

where only the largest cluster is labelled as legitimate, with subsequent points closer to

the origin corresponding to successively larger values of Nr
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Figure 3.3: The plot points for a typical ROC curve obtained using the cluster labelling
scheme described in section 3.5, and the TP and FP percentages.

In order to ease the comparison between multiple classifiers, where each classifier is asso-

ciated with multiple ROC curves, the concept of a composite ROC curve is introduced.

A single composite ROC curve is associated with each classifier, and represents the best

performance that can be obtained over the multiple ROC curves of the classifier. The

composite ROC curve is constructed by first sorting all the FP and TP percentage pairs

obtained over the full range of K = 2, . . . , 10 and Nr = 1, . . . ,K − 1 for the classifier

according to increasing FP percentages. The point with the lowest FP percentage is as-

signed to the composite ROC curve. Points with successively higher FP percentages are

iteratively added to the composite ROC curve only if the TP percentage of the corre-

sponding point is larger than or equal to the TP percentage of the previously added point

of the composite ROC curve. In this manner, points with higher FP percentages are only

considered if it affords a higher TP percentage. This process is illustrated in figure 3.4,

where the composite ROC curve is illustrated with the blue dashed line.

Figure 3.4 illustrates the TP and FP percentages obtained during k–means clustering over

the transformed NSL-KDD dataset [25], with K = 2, . . . , 10. The blue solid lines on the

figure represent the ROC curves for each corresponding value of K = 2, . . . , 10, where

each point represents a pair of TP and FP percentages that were obtained for each value

of Nr = 1, . . . ,K − 1. The blue dashed line represents the composite ROC curve, which

consists of the best TP and FP percentages.
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Figure 3.4: Illustration of the construction of a composite ROC curve.

3.6.2 Results and analysis

In this section, the performance results of the proposed classifier are presented and dis-

cussed. The results are divided into subsections; the first subsection investigates the impact

of the number of clusters on classification performance. The next subsection compares the

classification performance of the clustering algorithms, and the final subsection compares

the classification performance that was attained by each clustering algorithm when applied

over the full feature set and several other feature subsets. All results are presented as ROC

curves or composite ROC curves.

3.6.2.1 Impact of the number of clusters K

The performance impact of varying the number of clusters K was investigated by applying

the proposed classifier to the full feature set (FS1). Each of the four clustering algorithms

were applied over the range of values K ∈ {2, . . . , 10}, where each distinct value of K

corresponds to a single ROC curve. The ROC curves corresponding to each of the four

clustering algorithms are presented in figures 3.5a to 3.5d.

The figures reveal that there is no single value for K that provides both a superior TP

and FP percentage than the remaining values of K, for each of the clustering algorithms.



Chapter 3. Proposed Classifier 82

False Positive Percentage
0 10 20 30 40 50 60 70 80 90 100

T
ru

e
 P

o
si

tiv
e

 P
e

rc
e

n
ta

g
e

0

10

20

30

40

50

60

70

80

90

100
K-means with K set between 2 and 10

2 clusters
3 clusters
4 clusters
5 clusters
6 clusters
7 clusters
8 clusters
9 clusters
10 clusters

(a) K–means
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Figure 3.5: Performance of all four clustering algorithms over feature set FS1, with K
varied between 2 and 10.

This implies that the choice of a suitable value of K is dependant on the desired classifi-

cation performance. For instance, if one seeks to maximize the TP percentage, a value of

K = 6 for the k–means, k–means with DBOD and the EM clustering algorithms would

produce the maximum TP percentages, which are 90%, 90% and 86%, respectively, with

corresponding FP percentages of 28%, 28% and 38%, respectively. A value of K = 10 for

the k–medoids clustering algorithm would produce the maximum TP percentage at 95%,

with a corresponding FP percentage of 24%. However, if one seeks to minimize the FP
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percentage, a value of K = 2 would produce the minimum FP percentages over all clus-

tering algorithms at less than 2% for the k–means, k–means with DBOD and k–medoids

algorithms, with corresponding TP percentages of approximately 51%, 55% and 53%, re-

spectively. The EM clustering algorithm attains a minimum FP percentage of 20% with

a corresponding TP percentage of 35% at K = 2.

A noticeable trend is that the FP percentages increase as the number of clusters K in-

creases. This is accompanied by an increase in the TP percentage when all clusters except

the largest, are labelled as attacks, up to a maximum value of K for each clustering algo-

rithm. The k–medoids algorithm attains its maximum TP percentage at K = 10. While

the TP percentages for the k–means algorithm, the k–means algorithm in combination

with the DBOD technique, and the EM clustering algorithm, reduces at K > 6. An in-

crease in FP percentages implies that an increasing number of legitimate data samples

are grouped into smaller clusters pertaining to attack clusters, while a decrease in TP

percentages implies that a greater number of attack data samples are grouped into the

largest cluster.

3.6.2.2 Comparison of clustering algorithms

A comparison between all four clustering algorithms over each feature subset in table 3.7 is

presented in this subsection. Figures 3.6a to 3.6k contain the composite ROC curves which

were obtained by applying the classifier to each feature subset, with K ∈ {2, . . . , 10}. Each

composite ROC curve corresponds to a different clustering algorithm.

Figure 3.6 reveals that there is no individual clustering algorithm, from the four consid-

ered in this research, that outperforms the remaining algorithms over all feature subsets

considered. The performance of each clustering algorithm varies depending on the feature

subset used. For instance, feature subset FS9 (figure 3.6i) enables the k–means cluster-

ing algorithm to attain a TP percentage of approximately 66%, with a corresponding FP

percentage of 14%, while at the same FP percentage (14%) the k–medoids clustering al-

gorithm applied over FS9, only attains a TP percentage of 23%. However, when applying

the classifier over feature set FS1 (figure 3.6a), it is observed that at a FP percentage
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of 6%, the k–medoids clustering algorithm attains a 9% increase in TP percentage when

compared to the k–means clustering algorithm, at the same FP percentage.

The k–means, k–medoids and k–means with DBOD algorithms provide similar perfor-

mance over the majority of feature subsets (FS1, FS3, FS4, FS5, FS7, FS8, FS11), and

this performance is in general superior to that of the EM clustering algorithm.

It was observed that the EM clustering algorithm was found to produce comparable clas-

sification results over FS2, FS3, FS7 and FS11. In the case of FS3 (figure 3.6c), for FP

percentages greater than 12%, the EM clustering algorithm produces up to a 10% improve-

ment in TP percentages when compared to the remaining three clustering algorithms.
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(b) FS2
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(c) FS3
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(e) FS5
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(f) FS6
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(g) FS7
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(h) FS8
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(i) FS9

False Positive Percentage
0 10 20 30 40 50 60 70 80 90 100

T
ru

e
 P

o
si

tiv
e

 P
e

rc
e

n
ta

g
e

0

10

20

30

40

50

60

70

80

90

100
All four clustering algorithms applied over FS10

k-means
k-medoids
EM Clustering
k-means with DBOD

(j) FS10



Chapter 3. Proposed Classifier 86

False Positive Percentage
0 10 20 30 40 50 60 70 80 90 100

T
ru

e
 P

o
si

tiv
e

 P
e

rc
e

n
ta

g
e

0

10

20

30

40

50

60

70

80

90

100
All four clustering algorithms applied over FS11

k-means
k-medoids
EM Clustering
k-means with DBOD

(k) FS11

Figure 3.6: Performance of all four clustering algorithms over each feature subset

The performance of the EM algorithm was found to be more sensitive to the number of

clusters K (see also figure 3.5d), with the algorithm producing empty clusters over FS6

for K > 7 and FS10 for K > 5. Table 3.10 provides the contents of each cluster found

by the EM clustering algorithm when applied over feature subset FS10, with K = 5. The

contents of each cluster is presented as the number of data samples belonging to a cluster,

that correspond to each of the four broad classes of network attacks described in section

3.2.1.1, or correspond to the “normal” class, which represents legitimate network traffic.

Table 3.10: Cluster contents obtained by applying the EM clustering algorithm over
FS10 with K = 5

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

DoS 755 0 0 8 479 0

Probe 1 142 0 1 1 145 1

R2L 0 7 13 189 0

U2R 1 0 0 10 0

Normal 2 768 33 49 10 342 257

Total 4 666 40 63 20 165 258

Table 3.10 demonstrates that at K = 5 over feature subset FS10, the EM clustering

algorithm groups approximately 80% of all data samples in the dataset into one cluster,
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as shown in cluster 4, which consists of 84% of all attack data samples, and 77% of all

legitimate data samples in the entire dataset. This implies that 84% of the attack samples

are incorrectly classified as legitimate data samples for Nr = 1, which severely decreases

the TP percentage, as demonstrated in figure 3.6j. The FP percentage remains at 23% in

figure 3.6j as a majority of the legitimate data samples are grouped into the largest cluster,

and thus correctly classified as legitimate data samples. It is also observed that clusters 2,

3 and 5 consists of a small number of data samples. When K > 5, these clusters become

empty, as the algorithm is only able to fit the data to a finite number of clusters, when

EM clustering is performed over the features present in subset FS10.

3.6.2.3 Comparison of feature subsets

A comparison of the performance obtained by applying each individual clustering algo-

rithm over all 11 feature subsets is presented in this section. The classification results for

each clustering algorithm is presented in figures 3.7 to 3.10. Each figure contains 11 com-

posite ROC curves, where each composite ROC curve corresponds to a different feature

subset.

3.6.2.3.a K–means

Figure 3.7 provides the composite ROC curves obtained by applying the proposed clas-

sifier to the dataset using the k–means clustering algorithm over each of the 11 feature

subsets. The figure reveals that the performance of the k–means clustering algorithm

varies significantly when applied over the different feature subsets.

The feature subsets can be divided into three groups based on the classification perfor-

mance produced by each feature subset (as indicated by the red ellipses in figure 3.7). The

first group consists of feature subsets FS1, FS5, FS7 and FS8; these subsets produce a

superior classification performance with higher TP and lower FP percentages, as compared

to the remaining feature subsets. FS7 produces TP percentages between 79% and 87%,

with corresponding FP percentages between 5% and 10%. FS8 produces TP percentages
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Figure 3.7: A comparison of the composite ROC curves obtained by applying the pro-
posed classifier to the dataset using the k–means clustering algorithm applied over each

feature subset.

of almost 100% with corresponding FP percentages within the range 28% and 34%, which

is the highest FP percentage produced by those feature subsets belonging to the first group.

FS7 produces superior classification performance amongst all feature subsets applied over

the k–means clustering algorithm, where points that lie towards the upper left corner of

the graph are indicative of better performance.

The second group consists of feature subsets FS3, FS4, FS6, FS9 and FS11, where FS4 and

FS6 produce FP percentages of almost 0%, but with a TP percentage of approximately

57%. FS9 produces a TP percentage of almost 100%, similar to the performance produced

by FS8, however, with a higher corresponding FP percentage of approximately 40%.

The third group consists of feature subsets FS2 and FS10, which produce inferior classifi-

cation performances to all remaining feature subsets.

It is observed that the k–means clustering algorithm when applied over feature subsets

FS5, FS7 and FS8 outperforms the same clustering algorithm when applied over the full
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feature set FS1. An interesting observation is that feature subset FS5 was produced by

a wrapper-based feature selection method, while both feature subsets FS7 and FS8 were

produced by filter-based feature selection methods.

3.6.2.3.b K–medoids

Figure 3.8 provides the composite ROC curves obtained by applying the proposed classi-

fier to the dataset using the k–medoids clustering algorithm over each of the 11 feature

subsets. The figure reveals that the performance of the k–medoids clustering algorithm

varies significantly when applied over the different feature subsets.

The feature subsets can be divided into similar groups, as with the k–means clustering

algorithm, based on the classification performance produced by each feature subset (as

indicated by the red ellipses in figure 3.8). The exception is feature subset FS9 which lies

in two of the three groups.
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Figure 3.8: A comparison of the composite ROC curves obtained by applying the pro-
posed classifier to the dataset using the k–medoids clustering algorithm applied over each

feature subset.
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The first group consists of feature subsets FS1, FS5, FS7 and FS8; these subsets produce

a superior classification performance with higher TP and lower FP percentages, as com-

pared to the remaining feature subsets. FS7 produces TP percentages between 81% and

88%, with corresponding FP percentages between 5% and 7%. FS8 produces the highest

TP percentage of 97% amongst all remaining feature subsets, with a corresponding FP

percentage of 25%. FS7 produces superior classification performance amongst all feature

subsets applied over the k–medoids clustering algorithm, where points that lie towards the

upper left corner of the graph are indicative of better performance.

The second group consists of feature subsets FS3, FS4, FS6, FS9 and FS11, where FS3,

FS4 and FS6 produce FP percentages of less than 2%, but with TP percentages between

57% and 64%. The performance of FS9 severely reduces in comparison to that obtained

using the k–means clustering algorithm, at lower FP percentages, however, at higher FP

percentages, specifically at 39%, FS9 produces a TP percentage of 97%, similar to the

performance produced by FS8, however, with a higher corresponding FP percentage.

The third group consists of feature subsets FS2, FS9 and FS10. FS9 is included in the

third group as well, as it produces similar inferior classification performances to FS2 and

FS10, at FP percentages less than 30%. The inferior classification performance of both FS2

and FS10, which both exhibit significantly high FP percentages (up to 75%), with low TP

percentages (up to 52%) is a result of the k–medoids algorithm grouping a large number

of both legitimate and attack data samples into a single cluster. Table 3.11 provides the

contents of each cluster found by applying the k–medoids algorithm over feature subset

FS2, with K = 5. The TP and FP percentages for this particular clustering result is

approximately 33% and 47% respectively, which lies in close proximity to the composite

ROC curve provided in figure 3.8. The contents of each cluster is presented as the number

of data samples belonging to a cluster, that correspond to each of the four broad classes

of network attacks described in section 3.2.1.1, or correspond to the “normal” class, which

represents legitimate network traffic.

Table 3.11 reveals that the largest cluster consists of a large number of both legitimate

data samples, and DoS data samples, which constitutes 64% of all the attack data samples

present in the dataset. This accounts for the low TP percentages observed in figure 3.8
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for feature subset FS2. The high FP percentages is attributed to the fact that 43% of all

legitimate data samples are grouped into the second largest cluster, thus for Nr = 1, these

data samples are all misclassified as attacks.

It is observed that the k–medoids clustering algorithm when applied over feature subsets

FS5, FS7 and FS8 outperforms the same clustering algorithm when applied over the full

feature set FS1.

Table 3.11: Cluster contents obtained by applying the k–medoids clustering algorithm
over FS2 with K = 5

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

DoS 9 139 1 397 7 502 187

Probe 810 80 1 187 212 0

R2L 5 126 11 67 0

U2R 1 7 0 3 0

Normal 97 5 737 617 6 998 0

Total 922 6 089 3 212 14 782 187

3.6.2.3.c K–means clustering with distance-based outlier detection

Figures 3.9a and 3.9b present the composite ROC curves that were obtained by applying

the proposed classifier to the dataset using the k–means clustering algorithm and the

k–means clustering algorithm in combination with the distance-based outlier detection

algorithm, over each of the 11 feature subsets, respectively.

The figures reveal that both algorithms produce similar results over the majority of feature

subsets. The distance-based outlier detection method with k–means clustering (shown

in figure 3.9b) typically produces marginal changes in both the TP and FP percentages

obtained over a number of feature subsets. Table 3.12 provides the TP and FP percentages

that correspond to the composite ROC curves presented in figures 3.9a and 3.9b, which

were produced by applying both the k–means and k–means with distance-based outlier

detection algorithms over feature set FS1. The table also includes the change in TP and

FP percentages between both composite ROC curves.
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(a) K–means
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Figure 3.9: (a) Composite ROC curves obtained by applying the proposed classifier
using k–means clustering over all 11 feature subsets, (b) Composite ROC curves obtained
by applying the proposed classifier using k–means clustering in combination with DBOD

over all 11 feature subsets



Chapter 3. Proposed Classifier 93

Table 3.12: TP and FP percentages of the composite ROC curves produced over FS1,
provided in figures 3.9a and 3.9b

k–means over FS1
k–means with

DBOD over FS1

Change from k–means

to k–means with DBOD

TP (%) FP (%) TP (%) FP (%) ∆ TP (%) ∆ FP (%)

1.01 0.26 0.81 0.25 -0.20 -0.01

1.20 0.33 1.46 0.48 0.26 0.15

2.48 0.53 2.14 0.53 -0.34 0.00

3.82 0.86 3.39 0.89 -0.43 0.04

4.93 1.00 5.24 1.41 0.31 0.40

54.51 1.71 51.87 2.06 -2.64 0.34

72.79 6.77 72.49 5.72 -0.30 -1.05

82.40 15.21 82.75 15.88 0.35 0.67

88.48 18.44 89.32 20.53 0.83 2.09

89.51 27.42 89.80 28.12 0.28 0.70

Table 3.12 illustrates the marginal changes in TP and FP percentages over feature subset

FS1. This trend is similar amongst several of the remaining feature subsets. However,

feature subset FS9 exhibits a significant difference in both TP and FP percentages. In

figure 3.9b, FS9 exhibits a drastic increase in FP percentage from 13% to 34% with only a

1% increase in TP percentage. However, in figure 3.9a, FS9 does not exhibit this drastic

increase at an FP percentage of 13%. This can also be seen in figure 3.6i. An increase in FP

percentage, implies that a clustering algorithm divides a larger number of legitimate data

samples amongst smaller clusters pertaining to attack clusters, thus these are misclassified

as attack data samples.

Owing to the similarity between the classification performance obtained by the k–means

clustering algorithm and the k–means with DBOD algorithm, the same observation can be

made as with the k–means clustering algorithm, where feature subsets FS5, FS7 and FS8

provide improved classification performance over all remaining feature subsets including

the full feature set FS1.
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3.6.2.3.d Expectation Maximization using GMMs

Figure 3.10 provides the composite ROC curves obtained by applying the proposed clas-

sifier to the dataset using the EM clustering algorithm with GMMs over each of the 11

feature subsets. The figure reveals that the performance of the algorithm varies signifi-

cantly when applied over the different feature subsets.
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Figure 3.10: A comparison of the composite ROC curves obtained by applying the pro-
posed classifier to the dataset using the expectation maximization clustering algorithm with

Gaussian mixture models, applied over each feature subset.

The feature subsets can be divided into three groups, based on the classification perfor-

mance produced by each feature subset (as indicated by the red ellipses in figure 3.10).

The first group consists of feature subsets FS3, FS7 and FS11 which provide superior

classification performance over all remaining feature subsets. Feature subset FS7 provides

the best performance over all feature subsets with TP percentages between 87% and 89%,

which is an improvement of 11% when compared to the performance of feature subsets

FS3 and FS11, at FP percentages between 10% and 12%.
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The second group consists of only feature subset FS6, as this is the only feature subset to

produce FP percentages that are less than 4%, at a reasonable TP percentage of 60%.

The third group consists of all remaining feature subsets, FS1, FS2, FS4, FS5, FS8, FS9

and FS10. These feature subsets, in general, provide inferior classification performance

when compared to all other feature subsets. Exceptions in this group include feature

subsets FS1, FS4 and FS5, which produce relatively high TP percentages of 84%, 77%

and 78%, respectively, but in most cases the classification performance of these subsets is

inferior.

The EM clustering algorithm tends to be sensitive to the features that are present in each

feature subset. For instance, the three groups of feature subsets presented in figure 3.10, are

dissimilar to the groups presented in figures 3.7 and 3.8. There is also no direct correlation

between the dimensionality of a feature subset and the classification performance that the

EM clustering algorithm produces over the subset. For example, feature subsets FS6, FS10

and FS11 consists of four features, but it is observed that the classification performance

produced by each feature subset greatly differs. In figure 3.10, it is observed that FS6,

FS10 and FS11 produce an FP percentage of 24%, however, FS11, FS6 and FS10 produce

corresponding TP percentages of 16%, 60% and 81%, respectively.

Additionally, feature subset FS10 produces empty clusters when K > 5. An interesting

observation is that FS6 and FS10 contain three of the same feature, and FS6, FS10 and

FS11 contain two of the same features. This demonstrates that the EM clustering algo-

rithm is sensitive to the actual features and feature values present in the dataset, rather

than the dimensionality of the feature subset.

An important note is that the EM clustering algorithm, when applied over feature subsets

FS3, FS4, FS5, FS6, FS7 and FS11 outperforms the same clustering algorithm when

applied over the full feature set FS1.
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3.7 Conclusion

In this chapter an unsupervised classifier for anomaly-based network intrusion detection

was presented. A functional block diagram of the proposed classifier was provided and a

detailed description of each block was carried out. These descriptions include the dataset

considered, the data transformation methods utilized, the clustering algorithms considered,

and the cluster labelling scheme used in this research. The proposed classifier was used

to carry out three experiments, that is, the investigation of the impact of the number

of clusters K, a comparison of the performance of the four clustering algorithms, and a

comparison of the performance attained by the four clustering algorithms when applied to

various feature subsets found in the literature.

The experimental results revealed that the number of clusters K has a significant impact

on the classification performance attained by each clustering algorithm. A typical trend is

that the FP percentages of each clustering algorithm increases as the value of K increases,

while the TP percentage increases up to a maximum for a specific value of K, and decreases

for subsequent values of K. The k–means, k–means with distance-based outlier detection

and EM clustering algorithms all reach a maximum TP percentage at K = 6, with lower

TP percentages at K > 6. The k–medoids clustering algorithm reaches a maximum TP

percentage at K = 10.

The comparison of the clustering algorithms revealed that one single clustering algorithm,

for example k–means, does not outperform all other clustering algorithms for all feature

subsets. This is evident when applying the clustering algorithms over feature subsets FS9

and FS1, where the former enables the k–means algorithm to outperform all others, while

the latter enables the k–medoids algorithm to outperform all others. It was also discovered

that the EM clustering algorithm can be sensitive to the number of clusters depending

on the feature subsets used, as was evident with the application of the EM clustering

algorithm over feature subsets FS6 and FS10.

The comparison of the feature subsets revealed that the classification performance of the

clustering algorithms varies significantly over different feature subsets. In all clustering

algorithms, the feature subsets were grouped together based on classification performance,
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where certain feature subsets enabled the clustering algorithms to produce higher TP

percentages at lower corresponding FP percentages. Amongst the k–means, k–medoids

and k–means with distance-based outlier detection clustering algorithms, feature subsets

FS5, FS7 and FS8 provided superior classification performance over all remaining feature

subsets. For the EM clustering algorithm, feature subsets FS3, FS7 and FS11 provided

superior performance. All these feature subsets provide classification performances that

are superior to that produced by the full feature set (FS1), this further motivates the

need for feature selection. An important observation is that there is no direct correlation

between the dimensionality of a feature subset and the classification performance produced

by the feature subset, when applied to the clustering algorithms of the proposed classifier.

This is evident in the fact that FS6, FS10 and FS11 all contain four features, however, the

TP and FP percentages produced by these feature subsets over all clustering algorithms,

varies significantly.



Chapter 4

A Cluster Validity-based Feature

Selection Algorithm

4.1 Introduction

The proposed unsupervised feature selection algorithm is presented in this chapter. The

algorithm is a wrapper-based technique that makes use of the k–means clustering algo-

rithm. It uses normalized Cluster Validity Indices (CVIs) as an objective function to be

minimized over the search space of candidate feature subsets via a genetic algorithm. The

concept behind the proposed feature selection algorithm is that better1 cluster validity in-

dices, as individually computed after clustering of a dataset over a generation of candidate

feature subsets, are indicative of more relevant candidate feature subsets. In other words,

a fit candidate feature subset is expected to produce an improved clustering result, with

clusters that are more compact and with greater separation between clusters. In turn,

these candidate feature subsets translate into improved classifier performance.

The advantage of this proposed approach to feature selection is that the algorithm is not

dependent on labelled data. This is due to the fact that the learning algorithm used

in the proposed wrapper-based feature selection algorithm is unsupervised, and that the

computation of cluster validity indices does not involve the use of labelled data. To the

1The term “better” is used in this context, as for some CVIs such as the DB index [125], smaller values
are associated with improved clustering results, while the opposite holds for other CVIs

98
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best of the author’s knowledge, the use of CVIs to construct an unsupervised feature

selection algorithm is novel in the context of anomaly-based network intrusion detection.

The proposed wrapper-based feature selection algorithm has been successfully used in

application areas other than network intrusion detection [126] (refer to [83] for a summary

of this technique, and related unsupervised feature selection algorithms). In [126], the

proposed algorithm was applied as a precursor to the recognition of handwritten text using

a supervised algorithm for classification. It was demonstrated that the proposed algorithm

produced smaller feature subsets that resulted in classification performance comparable to

that obtained using the full feature set, but with reduced execution time.

Figure 4.1 contains the functional block diagram of the proposed feature selection algo-

rithm implemented in this research. Each block of this diagram is summarised in what

follows, with the exception of the dataset description and the data transformation block.

The description of the NSL-KDD dataset [25] can be found in section 3.2.2, and the de-

scription of the data transformation block can be found in section 3.3.

Figure 4.1: Functional block diagram of the proposed feature selection algorithm.

4.2 Clustering

The k–means clustering algorithm (algorithm 3.1) is applied to the transformed dataset

over each candidate feature subset in the current generation produced by the genetic

algorithm. Owing to the fact that the k–means algorithm is sensitive to the choice in

initial cluster centres, the proposed implementation repeats k–means clustering CR times

for each candidate feature subset, with initial cluster centres selected randomly from the

samples of the dataset at the start of each execution.
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A full summary of the k–means clustering algorithm is provided in section 3.4.1.1. The

pseudocode for the k–means clustering algorithm, as implemented in the proposed feature

selection algorithm, is provided in algorithm 4.1.

Algorithm 4.1 K–means for each candidate feature subset over CR repetitions

Function [C,L] = repeated kmeans(X,K,Fs, CR)

Inputs:

X = {x1,x2, . . . ,xN}, . A set of N feature vectors, corresponding

. to the N dataset samples

K, . The number of clusters

Fs = {Fs(d), d = 1, 2, . . . ,M}, . Set of M candidate feature subsets in current

. generation returned by GA

CR . Number of repetitions of k–means with random initial cluster centres

Outputs:

C = {C(d, z)|d = 1, 2, . . . ,M ; z = 1, 2, . . . , CR}, where

C(d, z) = {c1, c2, . . . , cK}, . The K cluster centres for each clustering result

L = {L(d, z)|d = 1, 2, . . . ,M ; z = 1, 2, . . . , CR}, where

L(d, z) = {l(xa)|a = 1, 2, . . . , N} . Cluster assignments for all data samples

. for each clustering result

. Cluster CR times for each candidate feature subset

1: for d = 1 to M do

2: for z = 1 to CR do

3: [C(d, z), L(d, z)]← kmeans(X, K, Fs(d)) ; . Algorithm 3.1

4: end for

5: end for

6: Return (C,L)

The input of the algorithm includes the transformed dataset X, the number of clusters

K, and the number of repetitions CR of the k–means clustering algorithm to perform, as

in algorithm 3.1. An additional input to the algorithm is the population of M candidate
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feature subsets Fs(d), d = 1, 2, . . . ,M , that is produced by the GA, over which clustering

is to be applied. The algorithm subsequently performs k–means clustering CR times over

each feature subset Fs(d), each with a randomly selected set of initial cluster centres. This

produces a total of M × CR clustering results, represented by cluster centres C(d, z) and

sample assignments L(d, z), where d = 1, 2, . . . ,M, and z = 1, 2, . . . , CR.

It should be noted that the value of the number of clusters K remained fixed during

feature selection. Feature selection was repeated with different values of K to obtain

different feature subsets, which are compared in section 4.6.2.2.

4.3 Relative cluster validity indices

Cluster Validity Indices (CVIs) were used as a measure of clustering quality after applying

the k–means clustering algorithm to the transformed dataset over each candidate subset of

features. Relative CVI scores are computed as a function of the degree of compactness and

separation of the resultant clusters in the feature space, as defined in what follows [62].

• Compactness requires that the samples belonging to a cluster be as close to each

other as possible with regards to distances in the feature space.

• Separation requires that distinct clusters be as far apart as possible. Three measures

that may be used to compute the separation between two clusters are [62]:

1. Single linkage, which involves the distance between the two closest samples of

two clusters.

2. Complete linkage, which involves the distance between the two furthest samples

of two clusters.

3. Comparison of centroids, which involves the distance between the cluster cen-

tres.

Several relative cluster validity indices that may be calculated for a specific clustering result

include the Davies-Bouldin (DB) [125], Dunn [127], Silhouette [128], S Dbw [129] and
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Calinski-Harabasz (CH) indices [130]. These indices differ in the selection of compactness

and separation measures, as well as the manner in which these measures are combined to

obtain the value of the CVI.

A previous feature selection algorithm for text classification [126], that is similar to the

proposed algorithm, made use of the DB index due to its linear time complexity and the

fact that it is unbiased with respect to the number of clusters used [83]. In this research a

normalized version of the DB index is utilized as the relative CVI in the feature selection

algorithm.

The DB index was first introduced by Davies and Bouldin in 1979 [125]. To define the

DB index, suppose a given clustering result consists of K clusters H1,H2, . . . ,HK and

corresponding cluster centres c1, c2, . . . , cK, where Hk represents the set of data samples

belonging to cluster k. The DB index is defined as a function of a similarity measure Ri,j

between pairs of clusters Hi and Hj, where i, j = 1, 2, . . . ,K with i 6= j. The measure of

similarity Ri,j , is defined as a function of compactness gi and separation di,j scores.

The compactness gi of a cluster Hi is defined as the average Euclidean distance between

samples belonging to a cluster and its corresponding cluster centre,

gi =
1

|Hi|
∑
x∈Hi

d(x, ci), (4.1)

where d(x, ci) denotes the Euclidean distance between sample x and its corresponding

cluster centre ci, and |Hi| is the number of samples in cluster Hi. The separation between

clusters Hi and Hj is defined as the pairwise Euclidean distance between cluster centres,

di,j = d(ci, cj). (4.2)

The similarity measure Ri,j of the DB index is defined as

Ri,j =
gi + gj
di,j

. (4.3)
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A small value of Ri,j indicates that clusters are compact and well-separated, which indi-

cates that clusters Hi and Hj are highly dissimilar. It is proved in [125] that the similarity

measure Ri,j of equation 4.3 satisfies the following conditions for a real-valued function to

be both a distance function and a dispersion function [125]:

1. Ri,j ≥ 0

2. Ri,j = Rj,i

3. Ri,j = 0, iff gi = gj = 0

4. if gj > gk and di,j = di,k then Ri,j > Ri,k

5. if gj = gk and di,j < di,k then Ri,j > Ri,k

Let Ri,j(d, z) denote the similarity measure obtained from the evaluation of equation 4.3

using cluster centres C(d, z) and sample assignments L(d, z), where d refers to the dth

candidate feature subset Fs(d), where d = 1, 2, . . . ,M , in the population of M candidate

feature subsets produced by the GA, and z refers to the zth clustering result of the k–

means clustering algorithm, where z = 1, 2, . . . , CR (refer to algorithm 4.1). The DB index

corresponding to this clustering result is defined as

DB(d, z) =
1

K

K∑
i=1

Ri(d, z), (4.4)

where K represents the number of clusters. In equation 4.4, Ri(d, z) is the maximum value

of Ri,j(d, z) over clusters Hj,where j = 1, 2, . . . ,K; that is,

Ri(d, z) = max
j=1,...,K,j 6=i

Ri,j(d, z), i = 1, . . . ,K. (4.5)

DB(d, z) may therefore be interpreted as the average of the similarity scores between each

cluster and the cluster most similar to it. Note that the DB index is defined in such a

manner that smaller numerical values of the DB index corresponds to better clustering

quality [129].
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The DB index, as defined in equation 4.4, tends to be biased towards lower dimensional

feature subsets if the index is used as a measure for comparing clustering quality over

feature subsets with different dimensions [83, 126]. This is owing to the fact that the

Euclidean distance between two points becomes smaller when the number of dimensions

over which the calculation is performed is reduced; since smaller DB index values indicate

better clustering quality, the index will favour lower dimensional feature subsets.

Handl et al. [83] investigated two possible approaches to overcoming the bias of the index

by using the feature cardinality (the number of features in the subset) as an additional

objective function for the genetic algorithm, thereby reformulating the problem as one

of multi-objective optimization. The first approach that was investigated consisted of the

minimization of the DB index value as the first objective, while simultaneously maximizing

the number of features as the second objective. The motivation for this approach is that

the additional objective of maximizing the number of features counteracts the bias of the

DB index value towards lower dimensional feature subsets. The second approach consisted

of the minimization of the DB index value that is normalized by the feature cardinality as

the first objective, while simultaneously minimizing the number of features as the second

objective. The normalized DB index is defined as

NDB(d, z) =
1

|Fs(d)|
DB(d, z), (4.6)

where |Fs(d)| represents the cardinality of the candidate feature subset Fs(d) that was

used during clustering. The motivation for this approach stems from the observation

in [83, 126] that the normalized DB index tends to be biased towards feature subsets with

higher dimensionality. By including the minimization of the number of features as a second

objective, this bias is counteracted.

Single-objective optimization, using the NDB index of equation 4.6, as well as multi-

objective optimization using the NDB index (equation 4.6) and the number of features,

were separately considered in this research. Specifically, for the single-objective optimiza-

tion, the objective function is defined as the average of the NDB index values obtained

over the CR repetitions of the k–means algorithm, which is defined as
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NDBavg(d) =
1

CR

CR∑
z=1

NDB(d, z), (4.7)

where d represents the index of feature subset Fs(d), d = 1, 2, . . . ,M , in the population

of M candidate feature subsets. For the multi-objective optimization, the first objective

function is the average of the NDB index values obtained over the CR repetitions of the

k–means clustering algorithm (equation 4.7), and the second objective function is the

number of features in the candidate feature subset.

The pseudocode for the computation of the average NDB index value (equation 4.7), as

implemented in the proposed feature selection algorithm, is provided in algorithm 4.2.

The algorithm iterates over each of the CR clustering results obtained over each candidate

feature subset and calculates the NDB index for each clustering result. The average of the

index, as associated with each candidate feature subset is calculated over the CR clustering

results.

Algorithm 4.2 CVI computation for each candidate feature subset over CR repetitions

Function [NDBavg] = Avg CV I(X,K,C,L, CR)

Inputs:

X = {x1,x2, . . . ,xN}, . A set of N feature vectors, corresponding

. to the N dataset samples

K, . The number of clusters

C = {C(d, z)|d = 1, 2, . . . ,M ; z = 1, 2, . . . , CR}, where

C(d, z) = {c1, c2, . . . , cK}, . The K cluster centres for each clustering result

L = {L(d, z)|d = 1, 2, . . . ,M ; z = 1, 2, . . . , CR}, where

L(d, z) = {l(xa)|a = 1, 2, . . . , N} . Cluster assignments for all data samples

. for each clustering result over each candidate feature subset

CR . Number of repetitions of k-means with random initial cluster centres

Output:

NDBavg, . Average NDB index value for each candidate feature

. subset over all CR clustering results
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. Compute average NDB index over CR clustering results for

. each candidate feature subset

1: for d = 1 to M do

2: for z = 1 to CR do

3: NDB(d, z)← Compute NDB Index V alue(C(d, z),L(d, z)) ; . Equation 4.6

4: end for

5: NDBavg(d)← mean(NDB(d)) ; . Equation 4.7

6: end for

7: Return [NDBavg]

4.4 Genetic algorithm

Genetic algorithms are heuristic search algorithms that are based on principles of evo-

lution and natural selection [2]. These algorithms are commonly used in optimization

problems, where a search is performed over a space of candidate solutions for a solution

that is considered to be optimal according to a specified measure. Genetic algorithms

are considered in this research as they are robust and can be applied to a wide range of

problem areas [131, 132]. GAs also explore a relatively large region of the solution space

and are insensitive to reasonable amounts of noise, where noise is created from the vari-

ance of fitness values, noisy selection methods and the variance of genetic operations [133].

However, GAs can become computationally expensive as the size of the dataset and its

number of dimensions increase [131].

GAs operate by converting problems into a framework that uses a data structure referred to

as a chromosome, which represents a candidate solution to the problem [2]. Chromosomes,

or individuals, are represented as character strings in the GA (this is analogous to the

chromosomes found in DNA). Chromosomes are evolved through multiple generations

through operations such as selection, crossover and mutation, which facilitate the

traversal of the feature space.
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The objective function is used to measure how well a chromosome solves the problem (that

is, it measures the fitness of each chromosome). Chromosomes that provide good (or “fit”)

solutions to the problem are selected and crossed with one another, in an attempt to find

more fit chromosomes. Mutation involves changes to random characters of the character

string, and is used to maintain diversity from one generation to the next. It forces the

genetic algorithm to explore more distant regions of the search space, allowing the GA to

potentially find solutions that are external to the area surrounding a local optimum [131].

This approach towards optimization is inspired by Charles Darwin’s theory of ‘survival

of the fittest’, where only the ‘fittest’ individuals are selected for crossover and mutation

while the ‘unfit’ ones are removed from the system, thereby improving the average fitness

of all candidate solutions over successive generations [131]. The final output of the GA is

the chromosome with the best fitness score from those chromosomes produced in the last

generation of the GA, as returned by the objective (or fitness) function [131].

In this research, each chromosome represents a candidate feature subset of the feature

space considered, which is a candidate solution to the problem of optimising the CVI.

A chromosome in the GA of the feature selection algorithm proposed in this research is

encoded as a bit string, where each bit represents one of the original 41 candidate features

of the dataset. A value of 1 indicates that the corresponding feature is present in the

feature subset, whereas a value of 0 indicates that the corresponding feature is not present

in the feature subset.

Two types of genetic algorithms were applied in this research. The first corresponds to

the single-objective optimization problem, which produces a candidate feature subset to

minimize the NDB index. The second type corresponds to the multi-objective optimization

problem, which involves the minimization of the NDB index, and the minimization of the

number of features in the candidate feature subset.

4.4.1 Single-objective genetic algorithm

The single-objective genetic algorithm implementation attempts to minimize the NDB

index as an objective function over the space of all possible candidate feature subsets.

Specifically, the average value of the NDB index, as computed over multiple CR clustering
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results over a feature subset (equation 4.7), is used as the objective function. The pseu-

docode for the single-objective genetic algorithm, as applied in this research, is provided

in algorithm 4.3.

Algorithm 4.3 Single-Objective Genetic Algorithm (SOGA)

Function [Fs
(t+1)] = SOGA(Fs

(t),NDBavg
(t), t)

Inputs:

Fs
(t)(d), d = 1, 2, . . . ,M , . Current generation (i.e. generation t) of M

. candidate feature subsets

NDBavg
(t)(d), d = 1, 2, . . . ,M , . Average NDB index value corresponding to

. candidate feature subsets in Fs
(t)(d)

t, t = 0, 1, 2, . . . , Ng . Current generation number

Output:

Fs
(t+1)(d), d = 1, 2, . . . ,M , . Next generation of M candidate feature subsets

Constants:

M , . Number of candidate feature subsets in each generation

NF , . Dimensionality of full, initial feature set

re, . Percentage of top (elite) candidates to select in generation t,

. for appearance in generation t+ 1

rc, . Percentage of candidates to produce from crossover,

. for appearance in generation t+ 1

pm, . Mutation probability for a feature

Ng . Maximum number of generations

1: if t = 0 then . If this is the first generation

2: for d = 1 to M do . Produce initial generation of candidate feature subsets

. Uniformly draw candidate feature subsets from a collection

. of all candidate feature subsets

3: Fs
(1)(d)← random uniform sample(NF ) ;

4: end for

5: Return Fs
(1) ;
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6: else if t = Ng then . If this is the final generation

7: dmax ← arg min
d

(NDBavg
(Ng)(d)) ; . Find the fittest candidate feature subset in

8: . the current generation and return this candidate

9: Fs
(Ng+1) ← Fs

(Ng)(dmax) ;

10: Return Fs
(Ng+1) ;

11: end if

12: Ne ← ceil(M × re) ; . Number of candidates in next generation obtained

. via elitism in current generation

13: Nc ← round((M −Ne)× rc) ; . Number of candidates in next generation obtained

. via crossover in current generation

14: Nm ← (M −Ne −Nc) ; . Number of candidates in next generation obtained

. via mutation in current generation

. Sort average NDB index values in ascending order, and calculate ranking of each

. candidate in sorted list

. (i.e. NDBavg(Rank(d))← Sorted NDBavg(d), for d = 1, 2, . . . ,M)

15: [Sorted NDBavg,Rank]← sort(NDBavg, ascending) ;

. Selection (Algorithm 4.4)

16: [Fsel,elite, Fsel,cross, Fsel,mut]← GA Selection(Fs
(t), Ne, Nc, Nm, NF ,Rank) ;

. Elitism

. Top ranked Ne candidates in generation t appears unchanged in next generation

17: [Felite]← Fsel,elite ;

. Scattered Crossover (Algorithm 4.5)

. Produce Nc candidates for next generation through crossover

18: [Fcross]← GA Crossover(Fsel,cross, Nc, NF ) ;

. Uniform Mutation (Algorithm 4.6)

. Produce Nm candidates for next generation through mutation

19: [Fmut]← GA Mutation(Fsel,mut, Nm, NF , pm) ;
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. Create next generation (i.e. generation t+ 1)

20: Fs
(t+1)(1, . . . , Ne)← Felite ;

21: Fs
(t+1)(Ne + 1, . . . , Ne +Nc)← Fcross ;

22: Fs
(t+1)(Ne +Nc + 1, . . . , Ne +Nc +Nm)← Fmut ;

23: Return Fs
(t+1)

The genetic algorithm first determines whether the first generation Fs
(1) is to be con-

structed (t = 0), or whether the best candidate is to be selected from the final generation

Fs
(Ng) (corresponding to t = Ng). In the former case, the GA constructs an initial pop-

ulation Fs
(1)(d), d = 1, 2, . . . ,M , of M candidate feature subsets, where each candidate

is randomly and uniformly selected from all possible candidate feature subsets. The algo-

rithm subsequently returns this set of candidates. In the latter case, the GA selects and

returns the candidate feature subset from the final generation Fs(d) with the best NDB

index value as the fittest candidate found during optimization. If neither the first case

(t = 0) nor the last case (t = Ng) applies, the GA performs the steps of selection, elitism,

crossover and mutation to produce the next generation Fs
(t+1)(d), d = 1, 2, . . . ,M .

The selection step consists of the selection of those candidates in the current generation

to be directly included in the next generation (elitism), those to undergo crossover, and

those to undergo mutation (Fsel,elite, Fsel,cross and Fsel,mut, respectively). New candi-

date feature subsets are subsequently produced through elitism, crossover and mutation

(Felite, Fcross and Fmut, respectively). These candidates constitute the next generation,

which is returned. The selection, elitism, crossover and mutation operations are discussed

in what follows.

Selection

As an initial step to selection, the GA calculates the number of candidate feature subsets

in the next generation to be derived using elitism (Ne), crossover (Nc) and mutation

(Nm) in the current generation. This is illustrated via an example. Consider a generation
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consisting of 20 (M) candidate feature subsets, with the number of candidates in the next

generation to be derived using elitism (Ne), set to 10% (re) of M , and the number of

candidates in the next generation to be derived using crossover (Nc), set to 80% (rc) of all

remaining candidates, excluding the number of candidates required to be produced from

elitism (Ne). Figure 4.2 illustrates the computations.

Figure 4.2: Illustration of the computation of the number of candidates in the next
generation to be derived from elitism (Ne), crossover (Nc) and mutation (Nm).

The candidates for crossover and candidates for mutation are selected using the stochastic

uniform selection method. The selected candidates are subsequently shuffled (i.e. ran-

domly permuted) to randomize the order in which candidates are used in the crossover

and mutation operations. The pseudocode for the selection of candidate feature subsets

is provided in algorithm 4.4.

The algorithm proceeds by selecting Ne candidates in the current generation for elitism

(Fsel,elite), 2Nc candidates for crossover (Fsel,cross) and Nm candidates for mutation

(Fsel,mut). The candidates selected for elitism constitute the top Ne ranked candidates in

Fs
(t)(d), d = 1, 2, . . . ,M , according to the average NDB index value.

Stochastic uniform selection proceeds in three steps. Firstly, each candidate is assigned

an expectation score e(d), d = 1, 2, . . . ,M based on their rank. Expectation scores are

proportional to the likelihood of a candidate being selected. The expectation scores are

calculated as

e(d)′ =
e(d)∑M
d=1 e(d)

, (4.8)
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Algorithm 4.4 Single-objective GA selection algorithm

Function [Fsel,elite, Fsel,cross, Fsel,mut] = GA Selection(Fs
(t), Ne, Nc, Nm, NF , Rank)

Inputs:

Fs
(t)(d), d = 1, 2, . . . ,M , . Current generation (i.e. generation t) of M

. candidate feature subsets

Ne, . Number of candidates in next generation obtained

. via elitism in current generation

Nc, . Number of candidates in next generation obtained

. via crossover in current generation

Nm, . Number of candidates in next generation obtained

. via mutation in current generation

NF , . Dimensionality of full, initial feature set

Rank . Ranking of each candidate feature subset in Fs
(t)(d), d = 1, 2, . . . ,M ,

. based on average DB index value

Outputs:

Fsel,elite(d), d = 1, 2, . . . , Ne . Feature subsets from Fs
(t) selected for elitism

Fsel,cross(d), d = 1, 2, . . . , 2Nc . Feature subsets from Fs
(t) selected for crossover

Fsel,mut(d), d = 1, 2, . . . , Nm . Feature subsets from Fs
(t) selected for mutation

1: Fsel,elite ← Fs
(t)(Rank(1, . . . , Ne)) . Select Ne top ranked candidates

. from Fs
(t) for elitism

. Stochastic uniform selection algorithm, consisting of three steps:

. computation of candidate expectation scores, computation of candidate segments,

. and iterative selection

. Computation of candidate expectation scores e(d), d = 1, 2, . . . ,M :

. Expectation scores are inversely proportional to candidate’s rank

2: for d = 1 to M do

3: e(d)← [Rank(d)]−
1
2 ;

4: end for
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5: etotal ←
∑M

d=1 e(d) ;

6: for d = 1 to M do

7: e(d)′ ← e(d)
etotal

; . Normalize each expectation score such that the sum equals unity,

. and each score value lies within [0,1]

8: end for

. Computation of candidate segments s(d), d = 1, 2, . . . ,M :

. Numeric interval associated with each candidate, where the length of the interval

. is proportional to its likelihood of being selected

9: s(1)← [0, e(1)′) ;

10: for d = 2 to M do

11: s(d)← [
∑d−1

j=1 e(j)′,
∑d

j=1 e(j)′ ) ;

12: end for

. Iterative selection: construct uniformly spaced (by ∆s) sample points

. over [0,1], and select candidates based on the corresponding

. segment/interval in which each sample point falls

13: ∆s ← 1
2Nc+Nm

;

14: rand start← Random number drawn uniformly over [0, ∆s] ;

15: for d = 1 to (2Nc +Nm) do

16: sample point← rand start+ ((d− 1)×∆s) ;

17: Fsel(d)← Fs
(t)(q) ; . where sample point ∈ s(q)

18: end for

19: Fsel ← Random permutation(Fsel) ;

. Select 2Nc candidates for crossover from current generation

20: Fsel,cross ← Fsel(1, . . . , 2Nc) ;

. Select Nm candidates for mutation from current generation

21: Fsel,mut ← Fsel(2Nc + 1, . . . , 2Nc +Nm) ;

22: Return [Fsel,elite, Fsel,cross, Fsel,mut]
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where

e(d) =
1√

Rank(d)
, (4.9)

where Rank is the ranking of the Fs(d) candidates according to the average NDB index.

Higher ranked candidates will have a larger expectation score implying that they are more

likely to be selected. In the second step, each candidate feature subset in Fs(d) is assigned

a subinterval s(d) of [0,1], where the length of the subinterval is proportional to its expec-

tation score. Candidate d is assigned the interval s(d) = [
∑d−1

j=1 x(j)′,
∑d

j=1 e(j)′ ) with

s(1) = [0, e(1)). In the third step of the stochastic uniform selection algorithm, candi-

dates are selected iteratively by constructing 2Nc + Nm uniformly spaced sample points

over [0,1], and selecting candidate features based on the corresponding segment/interval

in which each sample falls. In this manner, those candidates with longer subintervals of

[0,1] have a higher likelihood of being selected, or are selected more frequently.

The stochastic uniform selection process is illustrated via an example. Consider a case

where each generation has 6 candidates where each successive generation requires Ne = 1,

Nc = 4, and Nm = 1 candidates to be produced through elitism, crossover and mutation

for the next generation. Thus, the number of candidates required to be selected from the

current generation is 10 (i.e. Ne + 2Nc + Nm = 10). Of these, 9 are selected using the

stochastic uniform selection method for crossover and mutation. Figure 4.3 depicts the

operation of the stochastic uniform selection method using the expectation scores for this

scenario.

In figure 4.3, the unit interval is depicted by the blue dotted line. On top of the unit

interval, a segmented black solid line represents the segments associated with candidates,

where the length of the segment is proportional to a candidate’s expectation score. The

fittest candidate, ranked 1, is the most likely candidate to be selected and thus possesses

the longest segment on the line. Iterative selection occurs by selecting 9 equidistant points

(starting with a random point P1 in [0, 1
2Nc+Nm

]), as indicated using the green arrows.

The candidate corresponding to the segment in which each point falls is selected, in this

case, the selected candidates are 1,1,2,2,3,3,4,5,6.
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Figure 4.3: Illustration of the stochastic uniform selection method.

Elitism

Elitism is a mechanism that is incorporated into GAs for guaranteeing that the average

fitness does not decrease from one generation to the next [131]. The elitism operation

duplicates the Ne selected candidates Fsel,elite in the next generation Felite (i.e. they

appear unchanged in the next generation).

Crossover

Scattered crossover is subsequently performed on the first 2Nc selected candidates Fsel,cross,

which produces Nc new candidates Fcross for the next generation. The pseudocode for

the scattered crossover operation is provided in algorithm 4.5.

The algorithm constructs chromosomes that represent the candidate feature subsets of the

current generation. Each chromosome is a bit string, as described in section 4.4. The

algorithm iteratively selects two consecutive candidates to cross, A and B from Fsel,cross,

and iterates through each bit of A and B. The new candidate is produced by randomly

assigning the bit from either candidate A or candidate B, with equal probability, to a new

chromosome. The crossover algorithm concludes by constructing the candidate feature

subsets Fcross(d), d = 1, 2, . . . , Nc associated with the new chromosomes for the next

generation.
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Algorithm 4.5 Scattered crossover algorithm

Function [Fcross] = GA Crossover(Fsel,cross, Nc, NF )

Inputs:

Fsel,cross(d), d = 1, 2, . . . , 2Nc . Feature subsets from Fs
(t) selected for crossover

Nc, . Number of candidates in next generation obtained

. via crossover in current generation

NF , . Dimensionality of full, initial feature set

Output:

Fcross . Candidates in next generation obtained via crossover

Variables:

B(d) . Chromosomes representing selected candidates from Fsel,cross for crossover

B′(d) . Chromosomes representing candidates obtained via crossover in Fcross

. Create chromosomes B(d) for each candidate in Fsel,cross(d), d = 1, 2, . . . , 2Nc

. Binary string where a bit is set to one if the corresponding feature is present

. in the candidate feature subset

1: B(d)← [B1(d),B2(d), . . . ,BNF
(d)] . where Bi(d)← 0, if feature fi /∈ Fsel,cross(d)

. and Bi(d)← 1, if feature fi ∈ Fsel,cross(d)

2: index← 1 ;

3: for d = 1 to Nc do

4: for fnum = 1 to NF do

5: rand val← Random number drawn uniformly from [0, 1] ;

6: if (rand val < 0.5) then

7: Bfnum
′(d)← Bfnum(index) ; . Bit from candidate A

8: else

9: Bfnum
′(d)← Bfnum(index+ 1) ; . Bit from candidate B

10: end if

11: end for

12: index← index+ 2 ;

13: end for

. Construct feature subsets Fcross(d) obtained via crossover from

. new chromosomes B′(d), d = 1, 2, . . . , Nc

14: Fcross(d)← {fnum ∈ {1, 2, . . . , NF } : Bfnum
′(d) = 1} ;

15: Return Fcross
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Mutation

Mutation is subsequently applied to the Fsel,mut(d), d = 1, 2, . . . , Nm candidate feature

subsets, in order to obtain mutated candidates Fmut for the next generation. The pseu-

docode for the uniform mutation operation is provided in algorithm 4.6.

As was the case with the crossover operation, the algorithm constructs chromosomes for

feature subsets in Fmut(d). The algorithm iterates through each bit of each chromosome,

and randomly inverts certain bits. Each bit has a pm percentage chance of being inverted.

Candidate feature subsets Fmut are derived from the mutated chromosomes and returned.

Algorithm 4.6 Uniform mutation algorithm

Function [Fmut] = GA Mutation(Fsel,mut, Nm, NF , pm)

Inputs:

Fsel,mut, . Feature subsets from Fs
(t) selected for mutation

Nm, . Number of candidates in next generation obtained

. via mutation in current generation

NF , . Dimensionality of full, initial feature set

pm, . Mutation probability for a feature

Output:

Fmut . Candidates in next generation obtained via mutation

Variables:

B(d) . Chromosomes representing selected candidates from Fsel,mut for mutation

B′(d) . Chromosomes representing candidates obtained via mutation in Fmut

. Create chromosomes B(d) for each candidate in Fsel,mut(d), d = 1, 2, . . . , Nm

. Binary string where a bit is set to one if the corresponding feature is present

. in the candidate feature subset

1: B(d)← [B1(d),B2(d), . . . ,BNF
(d)] . where Bi(d)← 0, if feature fi /∈ Fsel,mut(d)

. and Bi(d)← 1, if feature fi ∈ Fsel,mut(d)

2: for d = 1 to Nm do

3: for fnum = 1 to NF do
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4: rand val← Random number drawn uniformly from [0, 1] ;

5: if (rand val < pm) then

6: Bfnum
′(d)← 1−Bfnum(d) ; . Mutation

7: else

8: Bfnum
′(d)← Bfnum(d) ; . Non-mutation

9: end if

10: end for

11: end for

. Construct feature subsets Fmut(d) obtained via mutation from

. new chromosomes B′(d), d = 1, 2, . . . , Nm

12: Fmut(d)← {fnum ∈ {1, 2, . . . , NF } : Bfnum
′(d) = 1} ;

13: Return Fmut

4.4.2 Multi-objective genetic algorithm

This section describes the genetic algorithm that was applied in this research for optimiza-

tion over multiple objective functions (i.e. where the fitness of each candidate solution is

measured against multiple criteria). Specifically, the multi-objective GA attempts to find

feature subsets that minimize the NDB index as a first objective, as well as minimize the

number of features in the subset as a second objective, as discussed in section 4.3.

Multi-objective GAs are similar to single-objective GAs in the sense that selection, crossover

and mutation operations are applied to chromosomes over multiple generations, in an at-

tempt to find more “fit” solutions. The key difference between these algorithms lies in the

ranking of candidates during the selection step. The single-objective GA ranks candidates

according to their fitness scores obtained from the evaluation of the single objective func-

tion. In contrast, the multi-objective GA attempts to find solutions that are considered

to provide a superior trade-off between the objective functions, as compared to competing

solutions. These solutions are referred to as the Pareto-optimal front.
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In this research, a variant2 of the improved Non-dominated Sorting Genetic Algorithm, or

NSGA-II, was used [135]. The NSGA-II applies the non-dominated sorting algorithm and

the crowding distance algorithm prior to selecting candidate feature subsets for crossover

and mutation. The non-dominated sorting algorithm ranks candidate feature subsets

based on the trade-off between the objective functions, where higher ranked candidates

provide a better trade-off than lower ranked candidates. The crowding distance algorithm

maintains diversity amongst selected candidate feature subsets by measuring the spread

amongst the candidates in the objective space. The pseudocode for the multi-objective

genetic algorithm, as applied in this research, is provided in algorithm 4.7.

Algorithm 4.7 Multi-Objective Genetic Algorithm (MOGA)

Function [Fs
(t+1)] = MOGA(Fs

(t),NDBavg
(t), t)

Inputs:

Fs
(t)(d), d = 1, 2, . . . ,M , . Current generation (i.e. generation t) of M

. candidate feature subsets

NDBavg
(t)(d), d = 1, 2, . . . ,M , . Average NDB index value corresponding to

. candidate feature subsets in Fs
(t)(d)

t, t = 0, 1, 2, . . . , Ng . Current generation number

Output:

Fs
(t+1)(d), d = 1, 2, . . . ,M , . Next generation of M candidate feature subsets

Constants:

M , . Number of candidate feature subsets in each generation

NF , . Dimensionality of full, initial feature set

rc, . Percentage of candidates to produce from crossover,

. for possible appearance in generation t+ 1

pm, . Mutation probability for a feature

Ng . Maximum number of generations

2NSGA-II is an improvement over the ordinary NSGA algorithm in the sense that it incorporates
elitism, whereas ordinary NSGA does not. It is also computationally less expensive owing to its use of a
more efficient sorting algorithm [134].
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1: if t = 0 then . If this is the first generation

2: for d = 1 to M do . Produce initial generation of candidate feature subsets

. Uniformly draw candidate feature subsets from a collection

. of all candidate feature subsets

3: Fs
(1)(d)← random uniform sample(NF ) ;

4: end for

5: Return Fs
(1) ;

6: end if

. Compute the second objective function,

. the feature cardinality for each candidate feature subset

7: for d = 1 to M do

8: Fcard
(t)(d)← sum(Fs

(t)(d)) ;

9: end for

. Assign each candidate to a pareto front

10: Rank← Non Dominated Sorting(NDBavg
(t),Fcard

(t)) . Algorithm 4.8

. Compute crowding distance of each candidate

11: Xdistance ← Crowding Distance(NDBavg
(t),Fcard

(t)) . Algorithm 4.9

12: if t = Ng then . If this is the final generation

13: i← 1 ;

14: for d = 1 to M do

15: if (Rank(d) = 1) then

16: front1(i)← d ; . where front1 contains the indices of those candidates

. belonging to the Pareto-optimal front

17: i← i+ 1 ;

18: end if

19: end for

20: Fs
(Ng+1) ← Fs

(Ng)(front1) ; . Return all candidates belonging to the first

21: Return Fs
(Ng+1) . pareto front, in the current generation

22: end if
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23: Nc ← round(M × rc) ; . Number of candidates in next generation obtained

. via crossover in current generation

24: Nm ← (M −Nc) ; . Number of candidates in next generation obtained

. via mutation in current generation

. Selection (Algorithm 4.10)

. Select candidates for elitism, crossover and mutation

25: [Fsel,elite, Fsel,cross, Fsel,mut]←MOGA Selection(Fs
(t), Nc, Nm, NF , Rank,Xdistance)

. Elitism

. All candidates in generation t have the possibility to appear unchanged

. in the next generation t+ 1

26: [Felite]← Fsel,elite ; . Equivalent to Fs
(t)

. Scattered Crossover (Algorithm 4.5)

. Produce Nc candidates for possible appearance in next generation through crossover

27: [Fcross]← GA Crossover(Fsel,cross, Nc, NF ) ;

. Uniform Mutation (Algorithm 4.6)

. Produce Nm candidates for possible appearance in next generation through mutation

28: [Fmut]← GA Mutation(Fsel,mut, Nm, NF , pm) ;

. Collection of 2M pre-selected candidates for possible appearance in generation t+ 1,

. consisting of all candidates from generation t, and candidates obtained through

. the application of crossover and mutation to candidates in generation t

29: Fs,pre−sel(1, . . . ,M)← Felite ;

30: Fs,pre−sel(M + 1, . . . ,M + 2Nc)← Fcross ;

31: Fs,pre−sel(M + 2Nc + 1, . . . , 2M)← Fmut ;

. In order to select the top M candidates from Fs,pre−sel for the next generation (t+1),

. the computation of the rank and crowding distances for the collection of Fs,pre−sel

. candidates is required. This in turn requires the computation of the NDBavg and

. Fcard values for those crossed and mutated candidates
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32: NDBavg,pre−sel(1, . . . ,M)← NDBavg
t ; . First M candidates belong

33: Fcard,pre−sel(1, . . . ,M)← Fcard
t ; . to generation t

. Perform clustering on the candidates obtained from crossover and mutation

34: [C, L]← repeated kmeans(X,K,Fs,pre−sel(M + 1, . . . , 2M), CR) ;

. Compute the average NDB index values for those candidates obtained

. from crossover and mutation

35: NDBavg,pre−sel(M + 1, . . . , 2M)← Avg CV I(X,K,C,L, CR) ;

. Compute the second objective function, the feature cardinality for

. those candidates obtained from crossover and mutation

36: for d = (M + 1) to 2M do

37: Fcard,pre−sel(d)← sum(Fs,pre−sel(d)) ;

38: end for

. Assign each candidate in Fs,pre−sel to a Pareto front

39: Rank← Non Dominated Sorting(NDBavg,pre−sel, Fcard,pre−sel) ; . Algorithm 4.8

. Compute crowding distance of each candidate in Fs,pre−sel

40: Xdistance ← Crowding Distance(NDBavg,pre−sel, Fcard,pre−sel) ; . Algorithm 4.9

41: for j = 1 to max(Rank) do . The number of pareto fronts

42: i← 1 ;

43: for d = 1 to 2M do

44: if (Rank(d) = j) then

45: frontj(i)← d ; . where frontj contains the indices of those candidates

. in Fs,pre−sel belonging to the jth Pareto front

46: i← i+ 1 ;

47: end if

48: end for

49: end for
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50: j ← 1 ;

51: repeat

. Add those candidates belonging to frontj to the next generation

52: Fs
(t+1)(|Fs

(t+1)|+ 1, . . . , |Fs
(t+1)|+ |frontj|)← Fs,pre−sel(frontj) ;

53: j ← j + 1 ;

54: until (|Fs
(t+1)|+ |frontj | ≥M) . Until the next generation cannot accomodate

. all candidates belonging to the next front

. Sort the candidates of the remaining front in descending order of crowding distance,

. such that Xdistance(Rank(d))← sorted Xdistance(d), for d = 1, 2, . . . ,M

55: [sorted Xdistance,Rank]← sort(Xdistance(frontj), descending) ;

56: Fs
(t+1)(|Fs

(t+1)|+ 1, . . . ,M)← Fs,pre−sel(frontj(Rank(1 : (M − |Fs
(t+1)|))) ;

57: Return Fs
(t+1) ;

The multi-objective genetic algorithm first determines whether the first generation Fs
(1)

is to be constructed (t = 0), or whether the Pareto-optimal front is to be selected from the

final generation Fs
(Ng) (corresponding to t = Ng). In the former case, the GA constructs

an initial population Fs
(1)(d), d = 1, 2, . . . ,M , of M candidate feature subsets, where

each candidate is randomly and uniformly selected from all possible candidate feature

subsets. The algorithm subsequently returns this set of candidates. In the latter case,

the GA selects and returns the candidate feature subsets from the final generation Fs(d)

that belong to the Pareto-optimal front. If neither the first case (t = 0) nor the last case

(t = Ng) applies, the GA performs the steps of selection, elitism, crossover and mutation

to produce the next generation Fs
(t+1)(d), d = 1, 2, . . . ,M .

Candidate feature subsets of the current generation are ranked using the non-dominated

sorting algorithm according to the normalized DB index and the number of features as cri-

teria (refer to algorithm 4.8). The algorithm subsequently calculates the crowding distance

of each candidate feature subset (refer to algorithm 4.9). The ranking of the candidate

feature subsets and their corresponding crowding distances are used in the selection of



Chapter 4. Proposed Feature Selection Algorithm 124

candidates for crossover and mutation. The selection process is provided in algorithm

4.10, whereas the crossover and mutation operations are identical to those carried out for

the single-objective GA (refer to algorithms 4.5 and 4.6).

Following the crossover and mutation operations, the algorithm returns the top-ranked M

candidates in the union between the current generation and the candidates obtained via

crossover and mutation.

Non-dominated sorting algorithm

The non-dominated sorting algorithm ranks candidates based on how well each candidate

provides a trade-off between the multiple objective functions. The superiority of the

trade-off provided by a candidate, as compared to other candidates, is established using

the concept of domination. To define this concept, consider a generation of candidate

feature subsets Fs(d), d = 1, 2, . . . ,M , and the corresponding objective function values

W(d) = (w1(d),w2(d) . . . ,wNo(d)) that are to be minimized as a function of the feature

subset, where No represents the number of objective functions where No ≥ 2. A candidate

feature subset Fs(d1) dominates another candidate feature subset Fs(d2) if both of the

following conditions are satisfied [135–137]:

1. wi(d1) ≤ wi(d2) for all objective function scores, i = 1, 2, . . . , No

2. wi(d1) < wi(d2) for at least one objective function score, i = 1, 2, . . . , No

The pseudocode for performing non-dominated sorting of candidate feature subsets, which

ranks the candidates in the current generation according to the concept of domination, is

provided in algorithm 4.8 [134].

The ranking of candidates is carried out as follows. Starting with the full generation of

candidate feature subsets, those candidates that are not dominated by any other candidates

are assigned a rank of one, and are collectively referred to as the Pareto-optimal front.

These candidates are removed from the current generation for the remainder of the non-

dominated sorting algorithm. The remaining candidates that are not dominated by any

other candidates in the current generation are assigned a rank of two, and constitute
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Algorithm 4.8 Non-dominated sorting

Function [front] = Non Dominated Sorting(NDBavg,Fcard)

Inputs:

NDBavg, . Average normalized DB index value for each candidate

. feature subset over all CR clustering results

Fcard . Number of features present in each candidate feature subset

Output:

front . Consists of the indices of those candidates

. belonging to each pareto front

Variables:

Nd(i) ; . Counts the number of candidates that dominate candidate i

p front ; . Contains the set of indices of those candidates assigned to front

. currently being constructed

1: Nfront ← 1 ; . Front counter, determines which Pareto front is under construction

2: while |NDBavg| 6= 0 do

3: nf ← 0 ; . Stores the number of candidates currently assigned

. to pareto front Nfront

4: for i = 1 to |NDBavg| do

5: Nd(i)← 0 ;

6: for j = 1 to |NDBavg| do

7: if (j = i) then

8: continue ;

9: end if

. Test if candidate j dominates candidate i

10: if (NDBavg(j) ≤ NDBavg(i)) ∧ (Fcard(j) ≤ Fcard(i)) then

11: cond1← true ; . where cond1 represents the first condition that is

12: else . required to be satisfied for domination

13: cond1← false ;

14: end if
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15: if (NDBavg(j) < NDBavg(i)) ∨ (Fcard(j) < Fcard(i)) then

16: cond2← true ; . where cond2 represents the second condition that is

17: else . required to be satisfied for domination

18: cond2← false ;

19: end if

. If both conditions are true, candidate j dominates candidate i

20: if (cond1 = true) ∧ (cond2 = true) then

21: Nd(i)← Nd(i) + 1 ; . Count the number of candidates that

. dominate candidate i

22: end if

23: end for

24: if ( Nd(i) = 0 ) then . Candidate i belongs to the Pareto front Nfront

25: nf = nf + 1 ;

26: p front(nf )← i ; . Add index of candidate i to the Pareto

. front being constructed

27: end if

28: end for

29: front(Nfront)← p front ; . Store indices of those candidates

. belonging to front Nfront

30: Nfront ← Nfront + 1 ;

31: NDBavg(p front) = Inf ; . Exclude those candidates already

32: Fcard(p front) = Inf ; . assigned to a pareto front

33: end while

34: Return front

the second Pareto front. These candidates are subsequently removed from the current gen-

eration for the remainder of the non-dominated sorting algorithm. This process is repeated

until no candidates remain in the current generation, thereby producing a succession of

Pareto fronts. Candidates are ranked according to the Pareto front to which they belong,
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with candidates in a specific Pareto front dominated by all candidates in preceding fronts.

That is, candidates in Pareto front i are considered as providing a superior trade-off be-

tween the objective functions as compared to candidates in successive Pareto fronts i+1,

i+2, etc.

Crowding distance algorithm

The Pareto-optimal front represents those candidate solutions that provide a superior

trade-off between objective functions. These candidates may be represented by points in

the No-dimensional space corresponding to the range of possible values of the No objective

functions (referred to as the ‘objective space’). As the solution most relevant to the

researcher may be biased towards particular objective functions, it is desirable that the

Pareto optimal front contain a diverse set of candidates that are located far apart in the

objective space; this increases the likelihood of points appearing in the relevant region of

the objective space. Should this be achieved, the researcher is provided the opportunity to

select a candidate solution from the Pareto optimal front that is relevant to the problem

context.

In order to maintain diversity within a set of Pareto-optimal solutions, the NSGA-II algo-

rithm calculates what is known as a crowding distance for each candidate. The crowding

distance associated with a candidate of interest is inversely proportional to the density of

candidates surrounding the candidate of interest in the objective space, and serves as a

measure of the diversity of the candidate solution with respect to the remaining candidates.

During selection, those candidates that have a higher crowding distance are favoured.

The crowding distance is an estimate of the side length of the largest rectangle that sur-

rounds the solution in the objective space, but which does not contain any other solutions

(refer to figure 4.4). The crowding distance of candidate i is computed by considering

distances over each singular dimension of the objective space. Specifically, the nearest

neighbour on either side of the candidate in each dimension of the solution space is found,

and the distance between these neighbours is calculated in that dimension; this distance

is normalized by the distance between the two furthest points in the dimension of interest.

These distances are added to obtain the crowding distance. Those candidates that are at
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the edges of the objective space (i.e. which have no neighbours on one of its sides in any of

the dimensions of the objective space) are assigned a crowding distance of infinity, which

implies that these candidates are given preference during selection.

Figure 4.4: Crowding distance computation (from [3]).

The pseudocode for the computation of the crowding distance for each candidate in a

Pareto-optimal front [134] is provided in algorithm 4.9.

Algorithm 4.9 Crowding distance assignment

Function [Xdistance] = Crowding Distance(NDBavg,Fcard)

Inputs:

NDBavg, . Average normalized DB index value for each candidate

. feature subset over all CR clustering results

Fcard . Number of features present in each candidate feature subset

Output:

Xdistance . The crowding distance for each candidate

1: W← [NDBavg, Fcard] ; . Set of objective function scores

2: for d = 1 to |NDBavg| do

3: Xdistance(d)← 0 ;

4: end for
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5: for j = 1 to |W| do . For each objective function wj

6: Xdistance(1)← Xdistance(N)←∞ ; . Boundary points always selected

. Vector “indices” contains the indices of each candidate sorted based on the

. objective function w(j) values under consideration, such that

. w(j)(indices(j))← sorted scores(j), where j = 1, 2, . . . , |NDBavg|

7: [sorted scores, indices]← sort(w(j), ascending) ;

8: for ( d = 2 to (|NDBavg| − 1) ) do

9: Xdistance(indices(d))← Xdistance(indices(d))+ (w(j,indices(d)+1)−w(j,indices(d)−1))
(max(w(j))−min(w(j)))

10: end for

11: end for

12: Return Xdistance

The algorithm uses the normalized DB index of the candidate feature subset, as well as

the number of features in the subset, as objectives. It subsequently iterates over the two

dimensions of the objective space. The objective scores corresponding to the dimension

are sorted; the sorted indices are used to find the two neighbours on either side of each

candidate. The normalized distance between the neighbours are calculated, and added to

the total over all dimensions to obtain the crowding distance. A value of infinity is assigned

to the candidates in each dimension with the smallest and largest objective scores.

Selection

The multi-objective GA selects M , Nc and Nm candidate feature subsets for elitism,

crossover and mutation (Fsel,elite, Fsel,cross, Fsel,mut), respectively. The selection of

candidates for crossover and mutation, is carried out using the tournament selection al-

gorithm, thereby producing feature subsets for each operation. It is worth noting that

the multi-objective algorithm ranks the collection consisting of the elite candidates and

the candidates obtained via crossover and mutation using the non-dominated sorting al-

gorithm and constructs the next generation as the top M candidates, as discussed in
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section 4.4.2. Hence, those candidates selected for elitism, and the candidates obtained

via crossover and mutation, may not necessarily form part of the next generation; only

their availability for the next generation is ensured. This implies that the definition of

elitism for the multi-objective GA differs from that of the single-objective GA, in that

selection for elitism does not guarantee appearance in the next generation.

The pseudocode for the tournament selection algorithm is provided in algorithm 4.10.

Unlike the single-objective genetic algorithm, the multi-objective genetic algorithm selects

the entire current generation for elitism. The selection of the candidates for crossover and

mutation involves the iterative random selection of pairs of candidate feature subsets from

the current generation, which are compared in terms of their rank. The higher ranked

candidate is included in the collection of features selected for crossover and mutation; if

both candidates are of equal rank, the candidate with the larger crowding distance is se-

lected. Using this approach, those candidates that have a higher rank and larger crowding

distance are favoured, and are more likely to be selected / selected more frequently than

other candidates.

Elitism, crossover and mutation

The multi-objective genetic algorithm ensures that the entire generation is made available

as candidates for the next generation through elitism. The same algorithms for crossover

(algorithm 4.5) and mutation (algorithm 4.6), as used in the single-objective genetic algo-

rithm (algorithm 4.3), were used in the multi-objective genetic algorithm. Following the

application of elitism, crossover and mutation, a collection of candidate feature subsets of

size 2M is obtained.

The collection of 2M candidate feature subsets is ranked using the non-dominated sorting

algorithm, and the crowding distance of each candidate is computed. The next generation

Fs
t+1(d) is created by successively including the candidate feature subsets from each Pareto

front, starting with the first Pareto front, or the optimal front, until there are M candidate

solutions in the next generation. If the final front to be included has more than the required

number of candidates, those candidates with the largest crowding distances are selected

from the final considered Pareto front. The resulting collection of M candidate feature
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subsets are returned by the algorithm as the next generation (provided that the initial or

final generation is not to be produced - refer to section 4.4.2 for these cases).

Algorithm 4.10 Multi-objective GA selection algorithm

Function [Fsel,elite, Fsel,cross, Fsel,mut]

= MOGA Selection(Fs
(t), Nc, Nm, NF , Rank,Xdistance)

Inputs:

Fs
(t)(d), d = 1, 2, . . . ,M , . Current generation (i.e. generation t) of M

. candidate feature subsets

Nc, . Number of candidates in next generation obtained

. via crossover in current generation

Nm, . Number of candidates in next generation obtained

. via mutation in current generation

Rank, . Ranking of each candidate feature subset in Fs
(t)(d), d = 1, 2, . . . ,M ,

. based on the pareto front that each candidate belongs to

Xdistance . Crowding distance of each candidate feature subset in

. Fs
(t)(d), d = 1, 2, . . . ,M

Outputs:

Fsel,elite(d), d = 1, 2, . . . ,M . Feature subsets from Fs
(t) selected for elitism

Fsel,cross(d), d = 1, 2, . . . , 2Nc . Feature subsets from Fs
(t) selected for crossover

Fsel,mut(d), d = 1, 2, . . . , Nm . Feature subsets from Fs
(t) selected for mutation

1: Fsel,elite ← Fs
(t) ; . Select all candidates from Fs

(t) for elitism

2: for d = 1 to (2Nc +Nm) do

3: A← rand(1 : M) ; . Random number between 1 and total number of candidates

4: repeat

5: B ← rand(1 : M) ; . Random number between 1 and total number of

6: until (B 6= A) . candidates

. If Fs
(t)(A) and Fs

(t)(B) belong to the same front (i.e. have the same rank),

. select either Fs
(t)(A) or Fs

(t)(B) based on crowding distance
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7: if Rank(A) = Rank(B) then

8: if Xdistance(A) > Xdistance(B) then

9: Fsel(d)← Fs
(t)(A) ;

10: continue ;

11: else

12: Fsel(d)← Fs
(t)(B) ;

13: continue ;

14: end if

15: end if

. Select the candidate with the better (lower integer value) rank

16: if Rank(A) < Rank(B) then

17: Fsel(d)← Fs
(t)(A) ;

18: continue ;

19: else

20: Fsel(d)← Fs
(t)(B) ;

21: continue ;

22: end if

23: end for

24: Fsel ← Random permutation(Fsel) ;

. Select 2Nc candidates for crossover from current generation

25: Fsel,cross ← Fsel(1, . . . , 2Nc) ;

. Select Nm candidates for mutation from current generation

26: Fsel,mut ← Fsel(2Nc + 1, . . . , 2Nc +Nm) ;

27: Return [Fsel,elite, Fsel,cross, Fsel,mut]
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4.5 Flowchart of the proposed feature selection algorithm

A flowchart of the proposed feature selection algorithm is provided in figure 4.5. The

inputs of the feature selection algorithm are the dataset, the number of clusters K, the

maximum number of generations of the GA (Ng), the population size (M), and the number

of repetitions to perform the k–means clustering algorithm over each candidate feature

subset (CR). The dataset is transformed using the normalization and encoding techniques

described in sections 3.3.1 and 3.3.2, respectively. Following data transformation, the

feature selection algorithm iteratively applies the k–means clustering algorithm to the

dataset over generations of candidate feature subsets, computes the relative cluster validity

indices corresponding to the clustering results, and selects the subsequent generation via

the genetic algorithm.

During the first iteration, the initial generation of candidate feature subsets is drawn

uniformly with replacement from the set of all possible candidate feature subsets (the

pseudocode for this selection appears in algorithm 4.7, the multi-objective GA). In each

iteration, k–means clustering is applied to the transformed dataset over each candidate

feature subset a number of CR executions, each with random starting positions for the

cluster centres (refer to algorithm 4.1). This is followed by the calculation of the average

normalized DB index (equation 4.7) for both the single and multi-objective GAs (refer

to algorithm 4.2). The corresponding genetic algorithm (i.e. single or multi-objective)

(refer to algorithms 4.3 or 4.7) is subsequently executed. If the final generation is reached,

the highest ranked candidate feature subset from the final generation is returned as the

optimized feature subset of the feature selection algorithm in the case of the single-objective

optimization. In the case of the multi-objective optimization, those candidates with the

highest rank (those belonging to the Pareto-optimal front) are returned as the optimized

collection of feature subsets.
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Figure 4.5: Flow diagram of the proposed feature selection algorithm.
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4.6 Experimental results

In this section the results obtained from the application of the proposed unsupervised

feature selection algorithm are presented, compared and discussed. The feature sub-

sets obtained using the proposed feature selection algorithm, as well as the classification

performance obtained by applying the proposed classifier in chapter 3 to the NSL-KDD

dataset [25] over the optimized feature subsets produced by the GA, are presented. The

classification results are compared to feature subsets produced by wrapper and filter tech-

niques from the literature. The false positive and true positive percentages, as well as the

Matthew’s Correlation Coefficient (MCC), were used as measures of classification perfor-

mance.

4.6.1 Experimental setup

This section provides,

1. the setup of the proposed feature selection algorithm, as used to perform feature

selection on the NSL-KDD dataset [25],

2. the benchmark feature subsets derived using wrapper and filter-based techniques

from the literature, and

3. the performance metrics used to evaluate the classification performance of feature

subsets.

4.6.1.1 Feature selection algorithm parameters

The parameters for each block of the proposed feature selection algorithm’s functional

block diagram (figure 4.1) is provided.
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Table 4.1: Parameters of the proposed feature selection algorithm.

Dataset (Feature vectors)

Dataset selected NSL-KDD training set 2
Section 3.2.2. Table 3.3 provides

the dataset distribution.

Data transformation

Normalization of numeric features Statistical Normalization Section 3.3.1

Encoding of non-binary categorical features Frequency Encoding Section 3.3.2

Encoding of binary categorical features Ordinal Encoding Section 3.3.2

Clustering

Clustering algorithm K–means Section 3.4.1.1

Initialization Initial cluster centres - K randomly selected data samples —

Distance metric Euclidean distance —

Number of clusters (K) 5 - 7 —

Number of repetitions with different

cluster centres (CR)
100 —

Computation of relative CVIs

Relative CVI selected Normalized Davies-Bouldin (NDB) index Section 4.3, equation 4.6

Single-Objective Genetic Algorithm (SOGA)

Objective function Average normalized DB index Section 4.3, algorithm 4.2

Chromosome 40-bit binary string —

Population size (M) 50 —

Max number of generations (Ng) 150 —

Ranking method Fitness scaling - sorted NDB index values —

Selection method Stochastic uniform Section 4.4.1, algorithm 4.4

Crossover method Scattered Section 4.4.1, algorithm 4.5

Mutation method Uniform Section 4.4.1, algorithm 4.6

Percentage of elite candidates (re) 5% of population size (Ne = M × re) —

Percentage of candidates created via

crossover (rc)
80% of (M −Ne) —

Mutation probability (pm) 1% —

Stopping criteria Max number of generations reached —

Multi-Objective Genetic Algorithm (MOGA)

Objective functions Average normalized DB index, feature cardinality Section 4.3, algorithm 4.2

Chromosome 40-bit binary string —

Population size (M) 50 —

Max number of generations (Ng) 150 —

Ranking method Non-dominated sorting Section 4.4.2, algorithm 4.8

Selection method Tournament Section 4.4.2, algorithm 4.10

Crossover method Scattered Section 4.4.1 algorithm 4.5

Mutation method Uniform Section 4.4.1, algorithm 4.6

Percentage of candidates created via

crossover (rc)
80% of (M) —

Mutation probability (pm) 1% —

Stopping criteria Max number of generations reached —
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4.6.1.2 Feature subsets

The feature subsets obtained using the proposed feature selection algorithm were compared

against two wrapper-based feature selection algorithms, obtained from [31]. The feature

subsets obtained from these wrapper-based techniques were optimized for use with the k–

means clustering algorithm, as part of the experimental work. Refer to section 2.4.2 and

Appendix A for details on the implementation of these wrapper-based feature selection

algorithms. Additionally, the feature subsets obtained using the proposed feature selection

algorithm were compared against two filter-based feature selection algorithms found in

the literature [35], in which the feature subsets produced by these methods, in [35], were

directly used.

Table 4.2 provides the feature subsets that were compared to the feature subsets obtained

from the proposed feature selection algorithm.

Note that the wrapper-based feature selection algorithms produced feature subsets by

applying the training set to each of the feature selection algorithms. The feature subsets

were tested by applying the training, as well as two test sets to the proposed classifier with

K = 2, . . . , 10, producing composite ROC curves for each of the training and test sets.

Table 4.2: Feature set descriptions of the full feature set and of those feature subsets
produced by several feature selection algorithms.

Name # Features Feature List Method Reference

FS1 40 All excl. feature ’20’ Full feature set, excluding feature ’20’ —

Wrapper-1 (FRM) 15 1,2,3,4,12,23,25,26,27,28,31,34,35,36,39
Feature Removal Method (FRM) optimized for

the k–means clustering algorithm
—

Wrapper-2 (SFM) 8 2,3,18,23,25,26,29,35
Sole Feature Method (SFM) optimized for the

k–means clustering algorithm
—

Filter-1 (FS7) 10 3,4,5,6,14,16,27,28,37,39 Best of articles [7, 26–29] [35]

Filter-2 (FS8) 10 2,3,4,5,6,8,23,30,34,36 Degree of Correlation + Greedy Stepwise [35]

4.6.1.3 Performance metrics

As in the previous chapter, the TP and FP percentages were used as performance measures,

and the performance is illustrated using the composite ROC curve as defined in section

3.6.1.3.a, and illustrated in figure 3.4.
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4.6.2 Results and analysis

This section presents the feature subsets that were obtained using the proposed feature

selection algorithm. The classification performance of the feature subsets produced by

the proposed feature selection algorithm over different datasets, is provided and discussed.

Additionally, a comparison of the classification performance of the full feature set, the

filter-based feature subsets, the best performing wrapper-based feature subsets and the

best performing feature subsets produced by the genetic algorithm, is provided and dis-

cussed.

4.6.2.1 Feature subsets produced by the genetic algorithm

This section provides the feature subsets that were produced by the proposed feature

selection algorithm for both the single-objective and multi-objective optimization. Of

these feature subsets, the best performing ones, in terms of average MCC values, are

compared against the feature subsets presented in table 4.2.

4.6.2.1.a Single-objective genetic algorithm

The proposed feature selection algorithm using single-objective optimization and the train-

ing set produced three feature subsets for each value of K = 5, . . . , 7. These feature subsets

are provided in table 4.3. The proposed classifier was applied to the training set, as well

as two test sets, over each feature subset with K = 2, . . . , 10, producing composite ROC

curves corresponding to each feature subset. These composite ROC curves are provided

in figure 4.6.

Table 4.3: Feature subsets produced by the proposed feature selection algorithm using
single-objective optimization.

Name # Features Feature List Method Reference

SOGA-1 28
2,3,4,5,7,9,11,12,13,14,15,16,17,19,21,

22,23,24,25,26,27,28,29,31,38,39,40,41

Proposed feature selection algorithm using the

single-objective GA with K = 5
Novel

SOGA-2 20
2,3,4,7,10,11,14,15,21,22,23,

24,25,26,27,28,38,39,40,41

Proposed feature selection algorithm using the

single-objective GA with K = 6
Novel

SOGA-3 23
2,3,4,7,8,13,14,15,16,17,21,22,23,24,

25,26,27,28,29,38,39,40,41

Proposed feature selection algorithm using the

single-objective GA with K = 7
Novel
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4.6.2.1.b Multi-objective genetic algorithm

The proposed feature selection algorithm using multi-objective optimization and the train-

ing set produced multiple feature subsets for each value of K = 5, . . . , 7 (i.e. three Pareto-

optimal fronts).

The proposed classifier was applied to the training set, as well as two test sets, over all

feature subsets with K = 2, . . . , 10, producing composite ROC curves corresponding to

each feature subset in each of the three Pareto-optimal fronts. The average MCC value for

each composite ROC curve was computed, and the feature subset with the largest average

MCC value in each Pareto-optimal front was selected. This resulted in the selection of

three feature subsets, where each represents the best performing feature subset amongst

those produced using a different value of K = 5, . . . , 7. The composite ROC curves of the

best performing feature subsets are provided in figure 4.7.

Table 4.4: Best performing feature subsets from each Pareto-optimal front, produced by
the proposed feature selection algorithm using multi-objective optimization.

Name # Features Feature List Method Reference

MOGA-1 15 4,7,8,9,14,15,18,21,22,25,26,27,28,39,41
Proposed feature selection algorithm using the

multi-objective GA with K = 5
Novel

MOGA-2 15 4,9,10,14,15,18,21,22,25,26,27,28,38,39,41
Proposed feature selection algorithm using the

multi-objective GA with K = 6
Novel

MOGA-3 19
2,3,4,5,7,8,9,14,15,18,21,22,23,24,27,

28,38,39,41

Proposed feature selection algorithm using the

multi-objective GA with K = 7
Novel

4.6.2.2 Performance of feature subsets produced by the GA

This section presents the classification performance of the three feature subsets produced

by the single-objective GA, and the three selected feature subsets produced by the multi-

objective GA. The classification performance was measured by applying the training set,

and two test sets to the proposed classifier over each of the six feature subsets (in table

4.3 and 4.4), and subsequently computing the composite ROC curves. The test sets used

are described in section 3.2.2 and the distribution of the test sets can be found in table

3.3.
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Figure 4.6 consists of the composite ROC curves for each dataset over each of the three

feature subsets produced by the single-objective GA. Figure 4.7 consists of the composite

ROC curves for each dataset over each of the three selected feature subsets produced by

the multi-objective GA.

Figure 4.6 reveals that classification performed over the training set produces the best

performance compared to that produced over the test sets, with higher TP percentages

at the same FP percentages. For instance, at an FP percentage of 10%, the training set

produces TP percentages between 80% and 85%, while test set 1 produces TP percentages

between 61% and 71%. Test set 2, however, produces TP percentages between 30% and

40%.

Figure 4.7 reveals a similar trend, where classification performed over the training set

produces the best performance compared to that produced over the test sets, with higher

TP percentages at FP percentages greater than 2%. This figure, however, illustrates that

the MOGA-1 and MOGA-2 composite ROC curves for each dataset maintain low FP

percentages as the TP percentages increase. At most, these composite ROC curves attain

a 7% FP percentage, with corresponding TP percentages of 80%, 63% and 54% for the

training set, test set 1, and test set 2, respectively. An interesting observation is that test

set 1 over MOGA-1 and MOGA-2, attains approximately 1% to 5% lower FP percentages

than the training set over MOGA-1 and MOGA-2.

It is observed that all composite ROC curves for test set 2 in figure 4.6 and 4.7, typically

exhibit lower TP percentages than all remaining feature subsets. This is owing to the

fact that test set 2 consists of a majority of attack data samples (refer to table 3.3).

Given the cluster labelling scheme used in the proposed classifier, the largest cluster will

typically consist of a larger quantity of attack data samples, which are incorrectly classified

as legitimate data samples, thus decreasing the TP percentage. Table 4.5 illustrates a

typical clustering result obtained by applying the k–means clustering algorithm over the

full feature set with K = 6. The table provides the contents of each cluster which shows

that the largest cluster consists of a majority of attack data samples, as evident in cluster

6.
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Figure 4.6: Composite ROC curves obtained by applying the proposed classifier to the
training and test sets over the feature subsets produced by the single-objective genetic

algorithm over multiple values of K.
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Figure 4.7: Composite ROC curves obtained by applying the proposed classifier to the
training and test sets over the feature subsets produced by the multi-objective genetic al-

gorithm over multiple values of K.
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Table 4.5: Contents of each cluster produced by applying k–means over test set 2, with
K = 6.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

DoS 43 1 019 853 202 0 2 242

Probe 376 689 262 103 555 417

R2L 220 75 18 0 0 2 557

U2R 9 0 4 0 0 54

Normal 99 71 25 5 0 1 952

Total 747 1 854 1 162 310 555 7 222

4.6.2.3 Comparison of feature selection algorithms

This section compares the classification performance obtained by applying the proposed

classifier to each of the training and test sets over each of the feature subsets of those

depicted in table 4.2, and the best performing feature subsets depicted in table 4.3 and 4.4.

The best performing feature subsets were selected as those feature subsets that produced

the highest average MCC value as computed over the composite ROC curves produced by

the application of the proposed classifier over the training set. The selected subsets are

SOGA-3 and MOGA-3.

Figures 4.8, 4.9 and 4.10 consists of the composite ROC curves produced by each feature

subset as well as the full feature set (FS1), by applying the proposed classifier to the

training set, test set 1, and test set 2, respectively. Figures 4.8b, 4.9b and 4.10b provide a

closer inspection of the composite ROC curves presented in figures 4.8a, 4.9a and 4.10a.

It is observed in figure 4.8, that a majority of the feature subsets (Wrapper-1, Wrapper-2,

Filter-1, SOGA-3, MOGA-3) produce superior performance with TP percentages of 85%,

at corresponding FP percentages of 10%. While at the same FP percentage, the full feature

set (FS1) and Filter-2 produce TP percentages of 77% and 65%, respectively. However,

Filter-2 produces the highest TP percentage amongst all remaining feature subsets of

approximately 97%, but with corresponding FP percentages of more than 30%. The feature

subsets produced by the proposed feature selection algorithm (SOGA-3 and MOGA-3)
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shows comparable performance to both Wrapper-1 and Wrapper-2, as well as Filter-1.

At lower FP percentages, between 7% and 10%, SOGA-3 and MOGA-3 typically exhibit

a marginal reduction in TP percentage of approximately 5%, at most. However, at FP

percentages greater than 16%, both SOGA-3 and MOGA-3 produce, at most, 5% higher

TP percentages than Filter-1. The marginal reduction in TP percentages produced by

both SOGA-3 and MOGA-3 is acceptable given that these feature subsets were selected

using an unsupervised feature selection algorithm, whereas the remaining feature subsets

(excluding FS1), were selected using supervised feature selection algorithms. An important

observation is that both SOGA-3 and MOGA-3 produce classification performances that

are superior to that produced by the full feature set FS1.

Figure 4.9 reveals that Filter-1, SOGA-3 and MOGA-3 all provide superior performance

when compared to the remaining feature subsets. Filter-1 produces the lowest FP per-

centage of approximately 1%, however, Filter-1 only attains a maximum TP percentage

of 65%, whereas all remaining feature subsets produce maximum TP percentages that are

greater than 80%. Although, this only occurs at corresponding FP percentages between

20% and 49%. SOGA-3 and MOGA-3 consistently produce higher TP percentages than

that produced by both wrapper-based subsets, both filter-based subsets and the full feature

set, over the entire range of FP percentages. At FP percentages above 5%, both SOGA-3

and MOGA-3 provide a minimum increase of approximately 5% and a maximum increase

of approximately 15%, to TP percentages, when compared to all feature subsets excluding

Filter-1. Similarly, at TP percentages above 60%, both SOGA-3 and MOGA-3 provide

a minimum reduction of approximately 4% and a maximum reduction of approximately

30%, to FP percentages, when compared to all feature subsets excluding Filter-1. This

is an important observation as the SOGA-3 and MOGA-3 feature subsets were selected

such that the clustering result of the training set would be optimized. However, when

applied to a new dataset (i.e. test set 1), with data samples previously unseen by the pro-

posed unsupervised feature selection algorithm, both feature subsets produce classification

performances that outperform a majority of the classification performance produced by

feature subsets selected using supervised wrapper-based and filter-based feature selection

algorithms, as well as the full feature set.
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Figure 4.10 reveals that the classification performance produced by Filter-1 is superior to

all remaining feature subsets, with FP percentages of less than 9%, at a maximum TP

percentage of 56%. At the same TP percentage (56%), all other feature subsets produce

FP percentages that are between 32% and 70%, depending on the feature subset observed.

The classification performance produced by both SOGA-3 and MOGA-3 is marginally

improved when compared to that produced by sevearl of the feature subsets, excluding

Filter-1, where both SOGA-3 and MOGA-3 produce improved TP percentages within

certain ranges of FP percentages, while both produce lower TP percentages with regards

to certain feature subsets, within other ranges.

In figure 4.10, at an FP percentage of 10% SOGA-3 provides the same TP percentage as

the full feature set (FS1), approximately 36%, while both SOGA-3 and MOGA-3 exhibit

higher TP percentages than Wrapper-1, Wrapper-2 and Filter-2; SOGA-3 produces a 7%,

16% and 19% improvement in TP percentages, respectively, and MOGA-3 produces a

2%, 10% and 13% improvement in TP percentages, respectively. At an FP percentage of

20%, however, SOGA-3 and MOGA-3 produced higher TP percentage than all remaining

feature subsets, excluding Filter-1. When compared to FS1, Wrapper-1, Wrapper-2 and

Filter-2, both SOGA-3 and MOGA-3 produce a 4%, 4%, 14% and 20% improvement in TP

percentage, respectively. At a higher FP percentage of 40%, SOGA-3 and MOGA-3 both

produce higher TP percentage than all remaining feature subsets, excluding Filter-1 and

Wrapper-1. When compared to FS1, Wrapper-2 and Filter-2, both SOGA-3 and MOGA-3

produce a 8%, 12% and 17% improvement in TP percentage, respectively.
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Figure 4.8: Comparison of the performance attained by applying the proposed classifier
to the training set over the feature subsets produced by several feature selection algorithms,

which includes the proposed feature selection algorithm.
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Figure 4.9: Comparison of the performance attained by applying the proposed classifier
to test set 1 over the feature subsets produced by several feature selection algorithms, which

includes the proposed feature selection algorithm.
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(b) Closer inspection of the comparison over test set 2

Figure 4.10: Comparison of the performance attained by applying the proposed classifier
to test set 2 over the feature subsets produced by several feature selection algorithms, which

includes the proposed feature selection algorithm.
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4.6.2.4 Analysis of the convergence of the single-objective GA

This section presents an analysis of the convergence of the single-objective GA, starting

from the initial randomly generated set of candidates until the final generation, in which

the NDB index is minimized and the optimized feature subset is returned. Figure 4.11

shows the minimization of the NDB index value over each generation, when applying

the proposed feature selection algorithm to the training set with K = 8. Each point

corresponds to a generation, that is, each point corresponds to a set of candidate feature

subsets. The blue points represent the mean of the NDB index values over the set of

candidate feature subsets, and the black points represent the smallest NDB index value

over the set of candidate feature subsets. The three circled points that exhibit an abrupt

reduction in the minimum NDB index value in the set of candidate feature subsets will be

discussed in what follows.

Figure 4.11: The convergence of the genetic algorithm in searching for an optimized
feature subset, that minimizes the average NDB index value.

Figure 4.12 shows the step-by-step progression of the minimization of the NDB index value.

On the left, the region of interest is illustrated, and on the right are several of the composite

ROC curves that are produced using the sets of candidate feature subsets directly above

the coloured blocks. The points above each coloured block in the figure indicates that
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those points (i.e. those candidate feature subsets), produced the corresponding composite

ROC curves of the same colour.

Figure 4.12a illustrates the initial stage of the genetic algorithm in which it searches for an

appropriate set of candidate feature subsets which produces smaller average NDB index

values. At this stage, the search space of the GA is large as it has only begun to progress

to an improved feature subset. Figure 4.12a indicates that the blue and red composite

ROC curves constitute a diverse or wide spread region of the TP and FP space.

Figure 4.12b illustrates that the GA locates sets of candidate feature subsets that pro-

vide classification performance that is, in general, better than the red curves (higher TP

percentages), but worse than the blue curves (lower TP percentages), at the same FP

percentages. However, upon closer inspection, it is observed that the green curves exhibit

a marginally reduced FP percentage than the blue curves, approximately 0.5% to 1%, at

TP percentages less than 40%. All points above the green block produce similar composite

ROC curves until the next region of interest is reached.

Figure 4.12c illustrates the region where the GA locates sets of candidate feature subsets

that produce composite ROC curves (the black curves) that exhibit an improved level of

performance over the composite ROC curves produced by the previous candidate feature

subsets. The black curves exhibit a 5% to 8% improvement in TP percentages when

compared to the blue curves, at FP percentages between 5% and 8%. All points above

the black block produce similar composite ROC curves until the next region of interest is

reached.

Figure 4.12d illustrates the final region of interest in which the GA locates sets of candidate

feature subsets which further minimizes the NDB index value, however, these subsets do

not increase the TP percentages when compared to the black curves. At an FP percentage

of 5%, the pink composite ROC curves reach a maximum TP percentage of 80%, while

the black composite ROC curves also produce an 80% TP percentage. However, the black

curves reach a maximum TP percentage of 88%, at a corresponding FP percentage of 8%.

At TP percentages less than 60%, the pink curves exhibit a marginal reduction in FP

percentages, up to 2%, when compared to the black curves. All points above the pink

block produce similar composite ROC curves for the remaining generations.
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Given that the algorithm favoured the green curves over the blue curves in figure 4.12b,

and the pink curves over the black curves in figure 4.12d, it is assumed that the NDB index

favours lower false positive percentages over higher true positive percentages. However,

this assumption requires further investigation.

(a) Stage 1

(b) Stage 2
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(c) Stage 3

(d) Stage 4

Figure 4.12: Analysis of four significant stages of the progression of a particular imple-
mentation of the genetic algorithm to produce an optimized feature subset.

4.7 Conclusion

In this chapter an unsupervised cluster validity-based feature selection algorithm for use

in network intrusion detection was presented. A functional block diagram of the proposed

feature selection algorithm was provided, and each block was discussed in further detail.

The blocks consist of the dataset utilized, the data transformation using normalization

and encoding methods, clustering of the dataset using the k–means clustering algorithm,

the computation of the Davies-Bouldin cluster validity index, and the implementation of
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a genetic algorithm. A flowchart of the proposed feature selection algorithm was also

provided.

The proposed feature selection algorithm was applied using both single-objective and

multi-objective optimizations, using fixed values of K for the k–means clustering algo-

rithm. This produced three feature subsets for the single-objective optimization, and

three Pareto-optimal fronts for the multi-objective optimization.

The experimental work consisted of two experiments. The first compared the classification

performance of the three subsets produced through the single-objective optimization and

the three best performing subsets in each Pareto-optimal front produced through the

multi-objective optimization, over different datasets. The second experiment compared

the classification performance of the best performing feature subsets produced by the

proposed feature selection algorithm, based on average MCC value, to the full feature

set, two feature subsets obtained through filter-based methods, and two feature subsets

obtained through wrapper-based methods. The classification performance was measured

by applying the proposed classifier to a training set and to two test sets over each of the

feature subsets, which produced composite ROC curves for each feature subset.

The comparison of the classification performance produced by the feature subsets returned

by the GA over different datasets, revealed that the best performance is typically achieved

when classification is performed over the same dataset that was used in the selection of

the feature subsets. It was observed that the feature subsets produced by the multi-

objective GA enables the k–means clustering algorithm to attain lower FP percentages

when compared to that produced by the single-objective GA. Specifically, when applied

to test set 1, MOGA-1 and MOGA-2 produce FP percentages of less than 1%, at a TP

percentage of 63%. Additionally, it was observed that the proposed classifier suffers in

performance when applied to a dataset that does not contain a majority of legitimate data

samples. This is evident in the fact that test set 2 typically produces lower TP and higher

FP percentages, when compared to the performance attained when using the training set

and test set 1.

The comparison between the subsets produced by all feature selection algorithms consid-

ered in this chapter, revealed that the proposed feature selection algorithm is capable of
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producing feature subsets that perform comparably, or outperforms the remaining feature

selection algorithms. For the training set, the SOGA and MOGA feature subsets perform

comparably to the remaining subsets. These feature subsets exhibit a marginal reduction

in TP percentages when compared to a majority of the remaining feature subsets, at sim-

ilar FP percentages. For test set 1, it was discovered that the SOGA and MOGA feature

subsets outperformed all remaining feature subsets, excluding feature subset Filter-1, with

higher TP percentages throughout the entire range of FP percentages. For test set 2, the

SOGA and MOGA feature subsets produced superior performance to all feature subsets,

excluding the Filter-1 and Wrapper-1 subsets. It is important to note that the proposed

feature selection algorithm did not use labelled data in the selection of the feature subsets,

while all remaining feature subsets used labelled data to select features. Additionally, an

important observation is that both the single-objective and multi-objective feature sub-

sets attained improved classification performances than that produced by the full feature

subset, which was attained with fewer features than the full feature set.



Chapter 5

Conclusion

This research consists of three main objectives, which includes the comparison of clustering

algorithms and feature subsets and the implementation of an unsupervised feature selection

algorithm, all in the context of anomaly-based network intrusion detection.

The comparison of four clustering algorithms and 10 feature subsets found in the literature,

in addition to the full feature set, was achieved through the design and implementation

of an unsupervised anomaly-based classifier for network intrusion detection. The pro-

posed classifier consists of several stages, data transformation using normalization and

encoding techniques, clustering and cluster labelling. The performance of the classifier

was subsequently measured using true positive and false positive percentages, which were

illustrated using receiver operating characteristic (ROC) curves, as well as a composite of

these curves, which was introduced in this research.

The proposed classifier was applied using four different clustering algorithms: k–means, k-

medoids, k–means with distance-based outlier detection and the expectation-maximization

clustering algorithms. Each classifier was subsequently applied to the NSL-KDD training

set [25] over the full feature set, as well as 10 different feature subsets. This allowed for

the comparison of the classification performance produced by each clustering algorithm

over the full feature set and different feature subsets.

The experimental results revealed that from the four clustering algorithms considered in

this research, one single clustering algorithm does not outperform all other clustering
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algorithms over all feature subsets. For instance, when clustering is performed over the

full feature set, the k–medoids algorithm outperforms all others, while clustering over

feature subset FS9 reveals that the k–means algorithm outperforms all others. It was

observed that performing clustering using all four clustering algorithms over feature subset

FS7, produced classification performances that were superior to all other feature subsets.

In addition to FS7, it was observed that several feature subsets enabled each clustering

algorithm to produce classification performances that are superior to that produced by the

full feature set. This was attained using fewer features than that found in the full feature

set, which motivates the need for feature selection. An interesting observation is that there

is no direct correlation between feature cardinality and TP and FP performance. Feature

subsets with the same number of features were demonstrated to provide classification

performances that are highly dissimilar to one another.

The design and implementation of the unsupervised feature selection algorithm was driven

by the lack of labelled network data in practical environments. The proposed feature

selection algorithm consists of several stages which include, data transformation using

normalization and encoding techniques, clustering using the k–means clustering algorithm,

the computation of the Davies-Bouldin cluster validity index and the application of both

a single-objective and multi-objective genetic algorithm.

The feature subsets produced by the proposed feature selection algorithm were demon-

strated to produce classification performances that outperformed that produced by the

full feature set. When compared against two wrapper-based and two filter-based feature

selection algorithms, the proposed feature sets produced TP and FP percentages that were

comparable to the subsets of the remaining feature selection algorithms, and in some cases

outperformed the subsets of the remaining feature selection algorithms when applied to

different datasets. The proposed classifier was applied to a test set over the feature subsets

produced by each feature selection algorithm. It was observed that the feature subsets of

the proposed feature selection algorithm produced up to a 15% improvement in TP per-

centages, for FP percentages above 5%, over a majority of the remaining feature subsets.

This is an important observation as it demonstrates that the proposed feature selection

algorithm is capable of producing feature subsets that provide superior classification per-

formance when applied to a dataset containing data samples that were not present during
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the feature selection stage.

These results demonstrate that an unsupervised feature selection algorithm for use in net-

work intrusion detection was successfully designed and implemented. The proposed feature

selection algorithm did not use labelled network data to produce feature subsets, while the

benchmark feature subsets, were produced through both filter-based and wrapper-based

feature selection algorithms that required labelled data to select features.



Chapter 6

Future Work

This chapter highlights several aspects of this research that, if extended upon or altered,

could potentially improve the performance of the unsupervised feature selection algorithm.

The first aspect involves the use of an alternate cluster validity index. In this research,

the Davies-Bouldin cluster validity index was used to evaluate the clustering quality of the

clustering results returned by various clustering algorithms. This index was subsequently

used as an indicator of the quality of the feature subsets returned by the genetic algorithm.

It is believed that an alternate cluster validity index may better discriminate between

high and low quality clustering results, which may subsequently improve the quality of

the feature subsets returned by the genetic algorithm. Future work would involve the use

of other cluster validity indices in the feature selection algorithm, where alternate indices

were specified in section 4.3.

The normalization of the Davies-Bouldin index was performed to counter the bias that

the index places towards lower dimensional spaces. This normalization was achieved by

dividing the index value by the feature subset cardinality. This method of normalization

may be improved upon as there are other methods that may be used to normalize the

Davies-Bouldin index, which would aid in producing better quality feature subsets. Future

work would involve further investigation into these methods.
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Supervised Wrapper-based

Feature Selection Algorithms

The following sections describe the derivation of the wrapper-based feature subsets pro-

vided in table 4.2, which were compared against the feature subsets produced by the

proposed feature selection algorithm.

A.1 Feature Removal Method (FRM)

The feature removal method, a wrapper-based feature selection algorithm, that was sum-

marized in section 2.4.2, was used to produce a feature subset for comparison. The FRM

algorithm was implemented in this research using the k–means clustering algorithm as a

classifier, thereby producing feature subsets optimized for use with k–means.

The FRM algorithm performs feature selection in two steps. The initial step involves the

ranking of each feature based on a performance measure, as calculated after clustering

and cluster labelling was performed. The second step involves the selection of a suitable

number of the top ranked features to constitute the final feature subset produced by the

FRM feature selection algorithm.

In the first step, the FRM algorithm iteratively ranks each feature present in the full

feature set, as described in what follows.
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• A feature is removed from the full feature set.

• The proposed classifier with k–means clustering, is applied to the dataset over the

reduced feature set for K ∈ {2, . . . , 10}.

• The TP and FP percentages are computed for each value of K.

• The composite ROC curve using the obtained TP and FP percentages is constructed.

• The average Matthew’s Correlation Coefficient (MCC) over the TP and FP percent-

ages of the composite ROC curve is computed.

MCC measures the quality of the classification produced by a binary classifier by taking

into account the number of TPs, FPs, TNs and FNs that were produced by the classifier.

It is computed as

MCC =
(TP )(TN)− (FP )(FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
. (A.1)

The MCC value is between [-1,1], where -1 indicates that none of the data samples were

correctly classified, 1 indicates that all data samples were correctly classified, and 0 indi-

cates that the equivalent of a random classification was performed.

The result of this iterative process is an average MCC value corresponding to each feature.

The FRM algorithm associates smaller average MCC values with more significant features.

That is, if the removal of a feature results in a significant reduction in the average MCC

value, then the removed feature is considered significant. The output of the first step is a

list of features ranked in ascending order with regards to average MCC values.

The second step of the FRM algorithm involves the construction of feature subsets pro-

duced by the FRM algorithm, and the selection of the best performing feature subset.

Given the ranked list of features, the algorithm constructs NF feature subsets, where the

ith feature subset consists of the top i features. That is, the first feature subset consists

of only the top ranked feature; the second feature subset consists of the two top ranked

features, and so on. From the candidate NF feature subsets, the algorithm selects the



Appendix A. Supervised Wrapper-based Feature Selection Algorithms 160

best feature subset according to classification performance. The proposed classifier is ap-

plied to the dataset over each of the NF feature subsets produced by the FRM algorithm,

and the composite ROC curves corresponding to each feature subset is computed. The

average MCC value for each composite ROC curve is calculated and the feature subset

corresponding to the highest MCC score is selected. (i.e. Wrapper-1 in table 4.2).

A.2 Sole Feature Method (SFM)

The sole feature method, a wrapper-based feature selection algorithm, that was summa-

rized in section 2.4.2, was used to produce a feature subset for comparison. The SFM

algorithm was implemented in this research using the k–means clustering algorithm as a

classifier, thereby producing feature subsets optimized for use with k–means.

The SFM algorithm performs feature selection in two steps. The initial step involves the

ranking of each feature based on a performance measure, as calculated after clustering

and cluster labelling was performed. The second step involves the selection of a suitable

number of the top ranked features to constitute the final feature subset produced by the

SFM feature selection algorithm.

In the first step, the SFM algorithm iteratively ranks each feature present in the full feature

set, as described in what follows.

• A single feature is selected from the full feature set.

• The proposed classifier with k–means clustering, is applied to the dataset over the

selected feature for K ∈ {2, . . . , 10}.

• The TP and FP percentages are computed for each value of K.

• The composite ROC curve using the obtained TP and FP percentages is constructed.

• The average Matthew’s Correlation Coefficient (MCC) over the TP and FP percent-

ages of the composite ROC curve is computed.
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The result of this iterative process is an average MCC value corresponding to each feature.

The SFM algorithm associates larger average MCC values with more significant features.

The output of the first step is a list of features ranked in descending order with respect to

the average MCC values.

The second step of the SFM algorithm involves the construction of feature subsets pro-

duced by the SFM algorithm, and the selection of the best performing feature subset.

This step is identical to that of the second step of the FRM feature selection algorithm

described in section A.1. The composite ROC curve with the highest average MCC value

was selected for comparison (i.e. Wrapper-2 in table 4.2).
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