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Abstract

In this research, we explore modifications to the Einstein-Hilbert action by exam-

ining exact barotropic distributions in Einstein-Gauss-Bonnet gravity (EGB). We

consider exact solutions of interior models in stars in five-dimensional EGB theory

with spherical symmetry. We start by giving a brief introduction to the theory

of general relativity and thereafter give a review of EGB gravity. From basic as-

trophysical modeling using the static five-dimensional metric, we obtain classical

differential geometric quantities and thereafter produce the EGB field equations.

These equations are a set of highly nonlinear partial differential equations and

it is very difficult to solve exactly. By imposing a transformation proposed by

Durgapal and Bannerji (1983), the field equations are written in equivalent form.

Earlier EGB models are reviewed. New classes of exact solutions to the Einstein

equations in five dimensions are found and their physical features are studied. In

the EGB case we find two exact models with constant density. The first solution is

the generalized Schwarzchild model. The second solution corresponds to a specific

value of the Gauss-Bonnet constant.
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Chapter 1

Introduction

The general theory of relativity has difficulty in explaining several inconsistencies

such as taking into account the causes of the acceleration of the universe, its

failure to be quantized - that is a quantum field theory cannot be generated for it,

and its predictions of spacetime singularities. As a consequence several alternate

theories of gravity have surfaced. An example is the Einstein-Gauss-Bonnet (EGB)

theory which has been demonstrated to be promising in this regard, and has been

studied rigorously. Consequently, in heterotic string theoretic models EGB gravity

appears as a natural consideration of the effective action in the low energy limit.

Therefore, EGB gravity generalizes the Einsteinian theory of gravity by adding an

additional term to the Einstein-Hilbert action. This additional term is quadratic

in the Riemann tensor and thus the variation of this term with respect to the

metric allows for the attainment of a system of second order equations of motion
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which shares many nice properties with traditional general relativity. Additionally,

EGB gravity is ghost-free about exact backgrounds, i.e. the negative norm state

does not break unitarity and thus probabilities are strictly positive (Boulware and

Deser - 1985).

In this thesis, we seek to find new exact solutions to the five-dimensional Ein-

stein and EGB field equations for spherically symmetric, static, uncharged fluids.

Using differential geometric quantities, we derive the field equations and there-

after explore solution strategies using a variety of ad hoc techniques. In the past,

solutions have been found in terms of elementary functions see for example the

works of Chilambwe et al (2015), Hansraj et al (2015) and Maharaj et al (2015).

Solutions in this thesis have been found in terms of elementary functions and spe-

cial functions. For a comprehensive review of generating exact solutions to the

Einstein field equations, the reader is encouraged to see Stephani et al (2003).

The importance of traditional four-dimensional general relativity is quintessen-

tial to the understanding of gravitational phenomena such as stellar formation and

gravitational collapse. However the importance of a higher dimensional theory of

gravity cannot be overstated, and is pivotal to an improved understanding of many

physical phenomena. For example, it is of tantamount importance to have an im-

proved theory of gravity in order to explain the large scale structure of the universe,

the expansion and acceleration of the universe and a concrete explanation for dark
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energy. Further, in order to attain a unification of the fundamental forces the

Strong Nuclear Force, the Weak Nuclear Force, the Electromagnetic force and the

Gravitational Force, i.e. a Grand Unified Theory (GUT), we require an improve-

ment to traditional general relativity. In this regard, EGB gravity has proved to be

a worthy successor to the Einsteinian theory of gravity with higher order curvature

terms.

There exists several well known exact solutions to the five-dimensional Einstein

and EGB field equations for spherically symmetric spacetimes. Of these proposed

solutions, very few are physically viable. In the domain of neutral and charged

isotropic spheres, many excellent solutions have been obtained by Durgapal and

Bannerji (1983), Finch and Skea (1989) and Hansraj and Maharaj (2006). For

charged, anisotropic matter, a recent paper has been published by Mafa Takisa

and Maharaj (2013). Some results have been found by Hansraj et al (2015) and

Maharaj et al (2015). Another interesting class of new solutions has been obtained

by Chilambwe et al (2015). The reader is encouraged to seek out these papers to

view a more modern approach to solution methodologies. The study of black

hole solutions in EGB theory has been carried out by Wheeler (1986), Myers and

Simon (1988) and Torii and Maeda (2005). The inhomogeneous collapse of dust in

pressure-free fluids containing non-interacting particles in EGB theory was studied

extensively by Maeda (2006), and solutions to this model were attained by Jhingan
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and Ghosh (2010).

In chapter 2, we give the mathematical preliminaries that are fundamental to

the understanding of general relativity. We start with the assumption of a four-

dimensional spacetime and thereafter extend the theory to five-dimensions. Firstly,

we give the definition of the basic differential geometry quantities. Thereafter, we

introduce the Einstein tensor and then give the Einstein field equations. We then

describe the physical phenomenon of causality. The energy conditions are then

stated, and it is pointed out that for a physical solution to be viable, they have to

be satisfied. We conclude this chapter by introducing higher dimensional gravity

in the form of the EGB field equations with the inclusion of the Lovelock term.

In chapter 3, using the five-dimensional, spherically symmetric, static line el-

ement, we derive the relevant differential geometry quantities. We combine the

Einstein tensor and the Lanczos term linearly and equate to the matter term to

form the EGB field equations. Using the pressure isotropy condition, we get the

master gravitational equation. Thereafter, using a transformation proposed by

Durgapal and Bannerji (1983), we convert the field equations into a form that is

easier to work with. This transformation is also applied to the pressure isotropy

equation and we get two representations of this equation, one in terms of the

dependent variable Y and the other in terms of Z.

In chapter 4, we give a review of three known solutions that were found by
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Chilambwe et al (2015), Hansraj et al (2015) and Maharaj et al (2015). We outline

the strategy used and then give the solutions in terms of the matter variables for

both the higher dimensional Einstein and EGB cases. The solutions indicate that

the EGB equations provide a rich family of physically viable models.

In chapter 5, we examine the five-dimensional Einstein field equations and pro-

duce three new solutions. We thereafter examine the physical features of these solu-

tions and perform a matching of the interior spacetime with the exterior Boulware-

Deser metric at the surface of the star. Choosing specific values of the parameters,

we produce graphical renditions of the solutions and discuss their physical viabil-

ities. Lastly, we generalize the model to the higher dimensional Einstein case to

include any arbitrary function.

In chapter 6, we consider the EGB equations with the Lovelock term present.

We show that it is possible to integrate the field equations for a specific choice of

one of the potentials. Two cases of exact solutions are identified.

In chapter 7, we conclude this thesis by discussing what has been accomplished

through this work and the ramifications of finding a higher dimensional theory of

gravity.
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Chapter 2

Mathematical formalism of general

relativity

2.1 Introduction

Mathematically speaking, the concept of spacetime is traditionally modelled as a

four-dimensional, smooth, continuously differentiable (C∞) manifold. A manifold

is a topological space that is locally Euclidean because for every point in the man-

ifold there is a neighbourhood that is topologically the same as the open unit ball

in Rn. From a point-set topological perspective, a spacetime is a Hausdorff space,

because for any two non-identical points on the manifold, a continuous function

exists that separates the two points, this is due to the condition of the separation

axiom acting on the spacetime. What is meant here by smooth is that the man-
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ifold is defined everywhere, with no singularities, and functions have continuous

partial derivatives. The differentiability of a manifold allows for the introduction

of continuous coordinate systems, at least locally. This allows for the definition

of curves, vector fields and tensor fields. From a local perspective, the spacetime

manifold displays properties of a Euclidean space, in that orthogonality of the ba-

sis frames are present and the conditions of special relativity hold. Each point in

the manifold has coordinates (xa, 0 ≤ a ≤ 3) = (x0, x1, x2, x3) where 1,2,3 denote

the three spatial coordinates and x0 = ct (where c is the speed of light in a vacuum

given exactly as 2.99792458 × 108 m/s) is the timelike coordinate. The spacetime

structure forms the basis for the definition of invariant quantities in differential

geometry, see for example the works of de Felice and Clarke (1990), Misner et al

(1973), Wald (1984), Foster and Nightingale (2010) and Poisson (2004).

2.2 Differential geometry

The quantities T and T ∗ denote the space of all tangent and dual tangent vector

spaces respectively on a curve in the manifold. The vectors {ea} and {ea} are

basis vectors in T and T ∗ respectively. In order to consider metrical properties on

the manifold we define a symmetric, nonsingular, covariant tensor g of rank two

called the metric tensor field. Thus we have that g ∈ T ⊗ T and g = gabe
a ⊗ eb
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where g is the bilinear functional

g : (ea, eb)→ R,

relative to a basis {ea}. The metric tensor field g endows the manifold with the

inner product

〈X,Y〉 = g(X,Y)

= gabX
aY b,

whereX andY are vector fields. The manifold in which the indefinite metric tensor

g is defined, is called a pseudo-Riemannian manifold. The invariant quantity

s =

∫ t2

t1

|gabẋaẋb|1/2 dt,

defines the length along a curve on the manifold between t1 and t2 which repre-

sents the values of the parameter t at the endpoints of the curve. This definition

is independent of the coordinates used and does not depend on the way the curve

is parametrised. The infinitesimal distance between neighbouring points with co-

ordinates xa and xa + dxa is defined by the invariant relativistic quantity

ds2 = gabdx
adxb, (2.1)

called the line element or Riemannian fundamental form.

The metric connection Γ is defined in terms of the metric tensor field g and its

derivatives. It is given by

Γabc =
1

2
gad(gbd,c + gcd,b − gbc,d), (2.2)
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where the commas in (2.2) denote partial differentiation. Note that there exists a

unique connection Γ that preserves inner products under parallel transport on the

manifold (do Carmo - 1992).

We can now define a rank four tensor in terms of the Christoffel symbols and

its related partial derivatives as follows

Rd
abc = Γdac,b − Γdab,c + ΓeacΓ

d
eb − ΓeabΓ

d
ec. (2.3)

The quantity (2.3) is known as the Riemann or the curvature tensor which provides

a measure of the amount of curvature of a manifold. The Riemann tensor measures

how much a spacetime manifold deviates from flatness. A spacetime is Minkowski

(flat space) if Rd
abc = 0 and for curved spacetimes Rd

abc 6= 0.

Performing a contraction on equation (2.3), we obtain the Ricci tensor

Rab = Rc
acb = Γcab,c − Γcac,b + ΓcdcΓ

d
ab − ΓcdbΓ

d
ac. (2.4)

We form the Ricci scalar by further contracting equation (2.4) as follows

R = gabRab. (2.5)

The equations (2.4) and (2.5) equip us with the machinery we need to form

the Einstein tensor G. This is given by

Gab = Rab −
1

2
Rgab. (2.6)

Since the Ricci and metric tensors are symmetric, it follows that the Einstein
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tensor is also symmetric. The Einstein tensor is divergence-free so that

Gab
;b = 0. (2.7)

Equation (2.7) is known famously as the Bianchi identity, from which conserva-

tion laws are generated. A proof of the result (2.7) can be found in Foster and

Nightingale (2010).

The Weyl tensor is another tensor which can be obtained from the Riemann

tensor, Ricci tensor and Ricci scalar. It is defined by

Cabcd = Rabcd +
1

2
(gabRbc − gacRbd + gbcRad − gbdRac)

+
1

6
(gacgbd − gadgcb)R, (2.8)

in four dimensions. The Weyl tensor measures the secondary effects of gravita-

tional force that a particle experiences while traveling along a geodesic and rep-

resents tidal effects. The Weyl and Riemann tensors are different in that while

the Riemann tensor precisely quantifies the change in volume of a particle, the

Weyl tensor describes the distortion of the shape of the particle under the effect

of the gravitational force. It has the same symmetries as the Riemann tensor but

is trace-free; it is the Riemann tensor with the Ricci terms subtracted out. For an

extensive treatment of differential geometry with applications to general relativ-

ity, the reader is referred to Bishop and Goldberg (1980), Borisenko and Tarapov

(1968) and Wald (1984).
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2.3 The matter tensor and the Einstein field equa-

tions

The matter content is described by the energy momentum tensor T. It is defined

as follows

T ab = (ρ+ p)uaub + pgab + qaub + qbua + πab, (2.9)

where ρ is the energy density and p is the isotropic pressure, qa is the contravariant

heat flow vector (qaua) = 0 and πab is the pressure or stress tensor (πabua = 0, πaa =

0). These quantities in equation (2.9) are measured with respect to a comoving

fluid four velocity ua, which is unit and timelike (uaua = −1). In the absence of

heat flux and anisotropic stress (qa = 0, πab = 0) we have the simpler case

T ab = (ρ+ p)uaub + pgab. (2.10)

This is the form of a perfect fluid matter distribution. The distribution (2.10) is

studied in this thesis.

In order to investigate how the mass of celestial bodies affects the curvature of

spacetime, we let equation (2.6) equal to equation (2.9) in order to arrive at the

famous Einstein field equations

Gab = T ab. (2.11)

The Einstein field equations relate the gravitational field to the matter content.

Equation (2.11) is a set of highly nonlinear partial differential equations, for which
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it is difficult to find exact solutions. We utilize geometric units in which the speed

of light and the coupling constant are taken to be unity.

2.4 Energy conditions and causality

Consider two events say A and B. For event A to be the cause of event B, it is

only natural to assume that A occurs before B. But if some observer thinks that A

occurs before B and another thinks that B occurred before A, then a contradiction

occurs. More formally, “ an event cannot occur from a cause which is not in the

past light cone of that event. ” This is known as the law of causality. In order

to prevent contradictory circumstances and to ensure that the law of causality

is not violated, a set of mathematical criteria has been established to eliminate

unphysical solutions to the Einstein field equations. These criteria apply generally

in the theory of general relativity and are called energy conditions. The energy

conditions impose restrictions on the eigenvalues and eigenvectors of the energy

momentum tensor. In a four-dimensional manifold, this would require us to solve

a quartic polynomial.

Thus for relativistic fluids to be rendered physically viable, they should obey

the following energy conditions:

The weak energy condition: For every timelike vector A, the density of matter

observed is nonnegative. This gives the condition ρ = TabA
aAb ≥ 0.
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The strong energy condition: For every future pointing timelike vector A, the

observed trace of the energy momentum tensor is always nonnegative. We obtain

the restriction
(
Tab − 1

2
Tgab

)
AaAb ≥ 0.

The dominant energy condition: Provided that the weak energy condition

holds, mass-energy can never be observed to be moving faster than the speed of

light. More formally, for every vector A (both null and timelike), the contracted

vector −T abAb must be a future pointing vector.

In the special case of the perfect fluid energy momentum tensor (2.10), these

general conditions take the form

(a) the weak energy condition: ρ− p ≥ 0,

(b) the strong energy condition: ρ+ p ≥ 0,

(c) the dominant energy condition: ρ+ 3p ≥ 0.

For a mathematical treatment and an in depth exploration into the origins

of the energy conditions, the reader is referred to Hawking and Ellis (1973) and

Kolassis et al (1988) .

2.5 Einstein-Gauss-Bonnet gravity

The Einstein theory of gravity is highly successful in explaining many physical

observations. However it has shortcomings in describing particular situations such

as the late time expansion of the universe. It is therefore necessary to consider
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modified theories of gravity to study a wide variety of gravitational phenomena.

One particular modified theory is the EGB gravity which is widely studied. The

EGB theory has been extensively applied to many cosmological and astrophysical

scenarios because its geometrical features are consistent with an acceptable covari-

ant theory of gravity. The higher order curvature terms make a nonzero addition

to the dynamical behaviour of the model. The EGB action in five dimensions is

of the form

S =

∫ √
−g
[

1

2
(R− 2Λ + αLGB)

]
d5x+ Smatter, (2.12)

where α is the Gauss-Bonnet coupling constant and Smatter is the matter contri-

bution to the action integral. The Lovelock term has the form

LGB = R2 +RabcdR
abcd − 4RcdR

cd. (2.13)

With the Gauss-Bonnet modification of gravity, we redefine the interaction

between geometry and matter in terms of EGB field equations as

Gab + αHab = Tab, (2.14)

The tensor Hab is a special term called the Lanczos tensor which plays a similar

role in general relativity to that of the vector potential in electromagnetic theory

(Lovelock - 1971). In the setting of this research, we define the Lanczos tensor as

Hab = 2(RRab − 2RacR
c
b − 2RcdRacbd +Rcde

aRbcde)−
1

2
gabLGB. (2.15)
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Traditionally, the Lanczos tensor is defined as a rank three tensor, which is used to

generate the Weyl tensor. However, we will not consider it’s rank three formalism

here.
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Chapter 3

Einstein-Gauss-Bonnet theory

3.1 Introduction

In this chapter, we derive the master equations in EGB gravity that are the fore-

most objective of our study. In order to achieve this, we derive the relevant differ-

ential geometric quantities needed. We then find forms for the matter variables,

that is, the density and the radial pressure. We thereafter generate the pressure

isotropy condition in order to attain our master equation. This equation, in it’s

original form, is difficult to work with and cannot be solved exactly. Therefore we

apply a transformation proposed by Durgapal and Bannerji (1983) and convert

this equation into two other forms in terms of the new variables. We observe the

presence of the Lovelock term increases the nonlinearity of the EGB field equations.

In §3.2, using the five-dimensional spherically symmetric, static line element, we
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derive all relevant geometric quantities. In §3.3, we give the forms for the compo-

nents of the Lanczos tensor explicitly. These forms are not easily obtainable in the

prescribed literature, and thus we have endeavoured to categorically show them.

We combine the Einstein tensor components from §3.2 with these Lanczos tensor

components by introducing an arbitrary coupling constant. These expressions are

then equated to the energy momentum tensor components to produce the EGB

field equations. Lastly, we generate the pressure isotropy condition and transform

it into two master equations.

3.2 Geometric quantities

The line element for a general five-dimensional static, spherically symmetric space-

time is given by

ds2 = −e2νdt2 + e2λdr2 + r2(dθ2 + sin2θ dφ2 + sin2θ sin2φ dψ2), (3.1)

in comoving coordinates (x0, x1, x2, x3, x4) = (t, r, θ, φ, ψ). The metric functions

ν(r) and λ(r) represent the gravitational potentials.
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Thus, the metric tensor is

gab =



−e2ν 0 0 0 0

0 e2λ 0 0 0

0 0 r2 0 0

0 0 0 r2 sin2θ 0

0 0 0 0 r2 sin2θ sin2φ


, (3.2)

which is diagonal.

The geometric quantities associated with the line element (3.1) are not well

known and cannot be found easily in the prescribed literature. We have therefore

calculated these quantities in full and present them here. These results have been

checked with the software packages Maple and GRTensor.

The nonzero Christoffel symbols for the line element (3.1) are

Γ0
01 = ν ′, (3.3a)

Γ1
00 = ν ′e2(ν−λ), (3.3b)

Γ1
11 = λ′, (3.3c)

Γ1
22 = − re−2λ, (3.3d)

Γ1
33 = − re−2λ sin2θ, (3.3e)
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Γ1
44 = − re−2λ sin2θ sin2φ, (3.3f)

Γ2
12 = Γ3

13 = Γ4
14 =

1

r
, (3.3g)

Γ2
33 = − 1

2
sin(2θ), (3.3h)

Γ2
44 = − 1

2
sin(2θ) sin2φ, (3.3i)

Γ3
23 = Γ4

24 = cotθ, (3.3j)

Γ3
44 = − 1

2
sin(2φ), (3.3k)

Γ4
34 = cotφ. (3.3l)

The nonzero Riemann curvature tensor components are

R0101 = e2ν [ν ′′ + ν ′(ν ′ − λ′)], (3.4a)

R0202 = rν ′e2(ν−λ), (3.4b)

R0303 = sin2θ R0202, (3.4c)

R0404 = sin2θ sin2φ R0202, (3.4d)

R1212 = rλ′, (3.4e)

R1313 = sin2θ R1212, (3.4f)
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R1414 = sin2θ sin2φ R1212, (3.4g)

R2323 = sin2θ r2(1− e−2λ), (3.4h)

R2424 = sin2φ R2323, (3.4i)

R3434 = sin2θ sin2φ (cos2θ − 1) r2 (e−2λ−1). (3.4j)

The nonzero Ricci tensor components are

R00 = e2(ν−λ)
[
(ν ′)2 + ν ′′ +

3ν ′

r
− ν ′λ′

]
, (3.5a)

R11 = ν ′λ′ − (ν ′)2 − ν ′′ + 3λ′

r
, (3.5b)

R22 = re−2λ
[
λ′ +

2e2λ

r
− ν ′ − 2

r

]
, (3.5c)

R33 = sin2θ R22, (3.5d)

R44 = sin2θ sin2φ R22. (3.5e)

The Ricci scalar becomes

R =
6(1− e−2λ)

r2
+

6e−2λ(λ′ − ν ′)
r

− 2e−2λν ′′

− 2e−2λ(ν ′)2 + 2e−2λλ′ν ′. (3.6)
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The Einstein tensor components have the form

G00 =
3

r2
[
re2(ν−λ)λ′ + e2ν − e2(ν−λ)

]
, (3.7a)

G11 =
3

r2
[
1− e2λ + rν ′

]
, (3.7b)

G22 = e−2λ[1 + 2rν ′ + r2(ν ′)2 − rλ′(rν ′ + 2) + r2ν ′′]− 1, (3.7c)

G33 = sin2θ G22, (3.7d)

G44 = sin2θ sin2φ G22. (3.7e)

3.3 The Einstein-Gauss-Bonnet field equations

The energy momentum tensor components are

T00 = ρe2ν , (3.8a)

T11 = pe2λ, (3.8b)

T22 = pr2, (3.8c)

T33 = sin2θ T22, (3.8d)

T44 = sin2θ sin2φ T22. (3.8e)
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The components of the Lanczos tensor are

H00 = − 12e2(ν−λ)(1+e2λ)λ′

r3
, (3.9a)

H11 =
3(4− 3e−2λ)ν ′

r3
, (3.9b)

H22 = 4e−2λ(3e−2λ − 1)λ′ν ′ + 4e−2λ(1− e−2λ)(ν ′)2

+ 4e−2λ(1− e−2λ)ν ′′, (3.9c)

H33 = sin2θ H22, (3.9d)

H44 = sin2θ sin2φ H22. (3.9e)

It remains to combine the components of the Einstein tensor Gab and the Lanczos

tensor Hab. From equations (3.7) and (3.9), we can write

G00 + αH00 =
3e2(ν−λ)(re2λ + r2λ′ − 4αe2λλ′ − 4αλ′ − r)

r3
, (3.10a)

G11 + αH11 =
3e−2λ(re2λ + r2e2λν ′ + 4αe2λν ′ − 3αν ′ − re4λ)

r3
, (3.10b)

G22 + αH22 = e−2λ[2rν ′ + r2(ν ′)2 + 4α(ν ′)2 + r2ν ′′ + 4αν ′′ + 1]

+ 4αe−4λ[3λ′ν ′ − (ν ′)2 − ν ′′]− e−2λ[2rλ′ + r2λ′ν ′]

− 4αe−2λλ′ν ′ − 1, (3.10c)
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G33 + αH33 = sin2θ (G22 + αH22), (3.10d)

G44 + αH44 = sin2θ sin2φ (G22 + αH22). (3.10e)

Equating (3.8) and (3.10), we arrive at the EGB field equations

ρ =
3

e4λr3
[
re4λ − re2λ − 4αλ′ + r2e2λλ′ − 4αe2λλ′

]
, (3.11a)

p =
3

e4λr3
[
(r2ν ′ + 4αν ′ + r)e2λ − re4λ − 3αν ′

]
, (3.11b)

p =
1

e4λr2
[
12αλ′ν ′ − 4α(ν ′)2 − 4αν ′′ − e4λ

]
+

1

e2λr2
[
2rν ′ + r2(ν ′)2 − r2λ′ν ′ − 2rλ′ + 1

]
+

1

e2λr2
[
4α(ν ′)2 + (r2 + 4α)ν ′′ − 4αλ′ν ′

]
. (3.11c)

The pressure isotropy condition requires that the radial and tangential components

of the pressure are equal. Equating (3.11b) and (3.11c), we get

e−2λ[2r2λ′ + r2ν ′ + 12αν ′ + r3λ′ν ′ + 4α rλ′ν ′ + 2r − r3(ν ′)2]

+ αe−4λ[4r(ν ′)2 + 4rν ′′ − 12rλ′ν ′ − 9ν ′] + r3e−2λν ′′

− e−2λ[4αr(ν ′)2 − 4αrν ′′]− 2r = 0. (3.12)

Equation (3.12) is the condition that governs the behaviour of the model. It is a

highly nonlinear and difficult equation to analyse. It is possible that new variables

may reduce (3.12) to simpler form. Durgapal and Bannerji (1983) proposed the
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transformation for general relativity equations

e2ν = Y 2(x), (3.13a)

e−2λ = Z(x) (3.13b)

x = Cr2, (3.13c)

where C in (3.13c) is an arbitrary constant.

Finch and Skea (1989), Hansraj and Maharaj (2006), Chilambwe et al (2015).

Hansraj et al (2015) and Maharaj et al (2015) and others have utilized this trans-

formation with great success and hence we employ its use in this thesis to simplify

equation (3.12). Substituting (3.13) into (3.11), we get

ρ

C
= 3Ż +

3(Z − 1)(1− 4αCŻ)

x
, (3.14a)

p

C
=

3(Z − 1)

x
+

6ZẎ

Y
− 24αC(Z − 1)ZẎ

xY
. (3.14b)

Substituting (3.13) into (3.12), we get the pressure isotropy condition

2xZ [4αC(Z − 1)− x] Ÿ −
[
x2Ż + 4αC

(
xŻ − 2Z + 2Z2 − 3xZŻ

)]
Ẏ

−
(

1 + xŻ − Z
)
Y = 0. (3.15)

We are treating (3.15) as a differential equation in Y when Z is specified.
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Rearranging equation (3.15) in terms of Z and its derivatives, we get

[(−x2 − 4αCx)Ẏ − xY ]Ż + (12αCxẎ )ZŻ + [8αC(xŸ − Ẏ )]Z2

+ [(−2x2 − 8αCx)Ÿ + 8αCẎ + Y ]Z − Y = 0. (3.16)

We are treating (3.16) as a differential equation in Z when Y is specified.

Equations (3.15) and (3.16) become our master equations and our focus will

be on solving them.
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Chapter 4

A review of known solutions

4.1 Introduction

In this chapter, we briefly provide three known solutions to the five-dimensional

Einstein and Einstein-Gauss-Bonnet field equations that were found by Chilambwe

et al (2015), Hansraj et al (2015) and Maharaj et al (2015). Using the solution

generating techniques, we present these solutions and forms for the matter variables

ρ and p. For a comprehensive study and a discussion of the physical characteristics

of these solutions, the reader is encouraged to refer to these three papers. In

§4.2, we discuss the solutions found by Chilambwe et al (2015). By making some

simplification assumptions to the master equation (3.16), we select a linear form for

the dependent variable Y and then solve the resulting equation for Z. Setting the

coupling constant α = 0, we provide the solution for the five-dimensional Einstein
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field equations and thereafter considering a nonzero coupling constant, we provide

a generalized EGB solution. In §4.3, we discuss the solutions found by Hansraj et al

(2015). In this case, a coefficient of the master equation (3.16), arranged in terms

of Z and its derivatives is made to vanish. In this way, a form for Y is attained.

This form of Y and its first and second derivatives are back substituted into the

master equation in order to attain an equation with one dependent variable Z.

Solutions to this equation are then attained in both the five-dimensional Einstein

and EGB cases. In §4.4, we discuss the solutions found by Maharaj et al (2015).

Using the method of Frobenius, a solution to both the five-dimensional Einstein

and EGB cases are carried out. We provide an equaton of state for this equation.

4.2 Chilambwe et al (2015)

Letting β = 4αC in (3.16), we get

(x2Ẏ + xY + βxY + βxẎ − 3βxẎ Z)Ż + 2β(Ẏ − xŸ )Z2

+ (2x2Ÿ + 2βxŸ − 2βẎ − Y )Z + Y = 0. (4.1)

On setting Y = a + bx, where a and b are arbitrary constants, equation (4.1)

reduces to

[x(a+ bx) + bx2bβx− 3bβxZ]Ż + 2bβZ2 − (bx+ 2bβ + a)Z

+ (a+ bx) = 0. (4.2)
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4.2.1 The higher dimensional Einstein case

Setting α = 0 in equation (4.2) gives β = 0. Thus equation (4.2) reduces to

x(a+ 2bx)Ż − (a+ bx)Z + (a+ bx) = 0. (4.3)

Integration of (4.3) yields

Z = 1 +
c1x√
a+ 2bx

, (4.4)

where c1 is the constant of integration. Substituting these forms for Y and Z into

the EGB field equations (3.14), we get

ρ

C
=

3c1(2a+ 3bx)

(a+ 2bx)3/2
, (4.5a)

p

C
=

3c1(a+ 3bx) + 6b
√
a+ 2bx

(a+ bx)
√
a+ 2bx

. (4.5b)

4.2.2 The Einstein-Gauss-Bonnet case

When α 6= 0, equation (4.2) is a nonlinear modified Abel equation, and the solution

is not elementary. However, due to the simplifying assumption that β = 4αC, the

solution of equation (4.2) can be expressed in terms of elementary functions as

Z =
(1 + 2A)± (a+ 2bx)(1− A)

3bβ
, (4.6)

28



where

A =
(80c21x

2 −B)1/2[(80c21 −B)1/2 −
√

80c1x]1/3

B1/3{[(80c21x
2 −B)1/2 −

√
80c1x]2/3 −B1/3}

, (4.7a)

B = a3 − 6a2bβ + 12a(bβ)2 − 8(bβ)3 + 6b[a2 + 4(bβ)2 − 4abβ]x

+ 12b2(a− 2bβ)x2 + 8b2x3, (4.7b)

and c1 is the constant of integration. Substituting these forms for Y and Z into

the field equations, we get

ρ

C
=
b(2bβ − a− 8bx)

3b2βx
+
Ab(2bβ + 4bx− a)

3b2βx

− 2A2b(2bβ − a− 2bx)

3b2βx
+

3b2βx
+
AȦ(2bβ − a− 2bx)2

3b2βx

+
Ȧ(2bβ − a− 2bx)(a− 2bβ − bx)

3b2βx
, (4.8a)

p

C
=

10b2x2 + b(7 + 4bβ)x+ (2bβ − a)2

3bβx(a+ bx)
− 2A2(2bβ − a− 2bβx)2

3bβx(a+ bx)

+
A(2bβ − a− 2bx)(2bβ + bx− a)

3bβx(a+ bx)
, (4.8b)

where Ȧ = dA
dx
, Ä = d2A

dx2
.
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4.3 Hansraj et al (2015)

4.3.1 The Einstein-Gauss-Bonnet case

Making the coefficient of Z2 vanish in equation (3.16), we get

8αC(Ẏ − xŸ ) = 0. (4.9)

Integrating (4.9), we obtain

Y =
1

2
ax2 + b, (4.10)

where a and b are the constants of integration. Letting β = Cα and ε = a
b
and

substituting the equation (4.10) into equation (3.16), we get

(3εx3 + 8βεx2 + 2x− 24βεx2Z)Ż + (3εx2 − 2)Z + 2 = 0. (4.11)

Integrating (4.11), we get

Z =
3εx2 + 8βεx±M

24βεx
, (4.12)

where

M = [4(1− 16βεx) + 4ε(16β2ε+ 144β2εc1 + 3)x2

+ 3ε2(3x4 + 32βx3)]1/2, (4.13)
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and c1 is the constant of integration. Substituting (4.10) and (4.12) and their

respective derivatives into the EGB field equations (3.14), we get

ρ

C
=

27ε2x4 − 48βε2x3 − 32β2εx

48βε2x4
+

4− 4M(1− 4βεx)

48βε2x4

− Ṁx(3εx2 + 16βεx− 2)−M(M − xṀ)

48βε2x4
, (4.14a)

p

C
=

27ε2x4 + 96βε2x3 + 8ε(3 + 32εβ2)x2

24εβx2(εx2 + 2)

− 64βx− 4 +Mx(3εx2 + 16εβx+ 2M − 2)

24εβx2(εx2 + 2)
, (4.14b)

where Ṁ = dM
dx

, M̈ = d2M
dx2

.

4.3.2 The higher dimensional Einstein case

Setting α = 0 in equation (3.16), we get

(2x2Z)Ÿ + (x2Ż)Ẏ + (1− Z + xŻ)Y = 0. (4.15)

Substituting the form for Y in equation (4.10) into (4.15), we obtain

x(3εx2 + 1)Ż + (3εx2 − 1)Z + (εx2 + 1) = 0. (4.16)

Integrating (4.16), we get

Z =
1 + c1x− ε̄x2

3ε̄x2 + 1
, (4.17)
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where ε̄ = 1
2
ε and c1 is the constant of integration. Substituting equations (4.10)

and (4.10) into the EGB field equations (3.14), we have

ρ

C
=

6(c1 − 6ε̄x− ε̄2x3)
(1 + 3ε̄x2)2

, (4.18a)

p

C
=

3(c1 + 5c1ε̄x
2 − 8ε̄2x3)

(1 + ε̄x2)(1 + 3ε̄x2)
. (4.18b)

4.4 Maharaj et al (2015)

4.4.1 The higher-dimensional Einstein case

Setting Z = a in equation (4.15), where a is some arbitrary constant, we get

(2x2)Ÿ + (1− a)Y = 0. (4.19)

Case 1: a = 1

Setting a = 1 in (4.19), we get

2x2Ÿ = 0. (4.20)

Integration of (4.20) yields

Y = a+ bx, (4.21)

where a and b are constants of integration. However, these forms for Y and Z are

inadmissible because upon substitution into the field equations we obtain a zero

density.
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Case 2: a 6= 1

Using the method of Frobenius, we seek solutions of the form

Y1(x) =
∑
k≥0

akx
k+c, (4.22)

where ak is the coefficient of the power series and c is some constant introduced

to satisfy the indicial equation. Since (4.19), and more generally (3.16) are hyper-

geometric differential equations, we can express Y1(x) as

Y1(x) = 2
∑
k≥1

(−1)ka0
Ak

k∏
i=1

[i(i+ 1) + E]xk+2, (4.23)

where a0, A and E are constants. Specifically A = 4α(1− a) and E = 1−a
2a

. Since

the roots of the indicial equation for Y1 differ integrally, i.e. by an integer value,

we can express the second solution as

Y2(x) = mY1(x) lnx+
∑
k≥0

bkx
k, (4.5)

where m is some arbitrary constant and bk is the coefficient of the power series.

Using the principle of superposition, we express the solution for Y as a linear

combination of the forms for Y1 and Y2 as

Y = c1Y1 + c2Y2, (4.24)

where c1 and c2 are arbitrary constants. When α = 0, Y takes the form

Y = c1x
1−
√

3a−2
a

2 + c2x
1+

√
3a−2
a

2 . (4.25)

33



Substituting this form for Y in equation (4.25) and the form for Z into the EGB

field equations (3.14), we get

ρ

C
=

3(1− a)

x
, (4.26a)

p

C
=

3a

c1 (1−
√

3a−2
a

)
x
−
(

1+

√
3a−2
a

2

)
+ c2

(
1−

√
3a−2
a

)
x
−
(

1−
√

3a−2
a

2

)
c1x

1−
√

3a−2
a

2 + c2x
1+

√
3a−2
a

2

.

(4.26b)

Setting the constant c1 = 0, we get a linear barotropic equation of state

p =

[
a

1− a

(
1 +

√
3a− 2

a

)
− 1

]
ρ. (4.27)

Thus, from this model it is evident that ρ ∝ 1
r2
. Therefore, this model is valid

for spherically symmetric bodies with isothermal temperature profiles. Hence, we

have found a five-dimensional Einstein relation, with a linear equation of state,

from the EGB equations.
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Chapter 5

The higher dimensional Einstein

case

5.1 Introduction

In this chapter we present three new solutions to the Einstein field equations for

spherically symmetric fluid bodies in five dimensions. By making the coupling

constant vanish in the general master equations, we attain new master equations

that become the object of our study. These solutions are attained through astute

selections of forms for the dependent variables. Without loss of generality, when

a form for the dependent variable Y is chosen, the master equation is then solved

to produce a form for Z. Unlike previous studies conducted, where solutions were

attained in terms of elementary functions, see the works of Chilambwe et al (2015),
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Hansraj et al (2015) and Maharaj et al (2015), some of the solutions attained

here are in terms of special functions. We thereafter match the interior solutions

attained to the exterior spacetime which we take to be the Boulware-Deser metric

at the boundary of the celestial object. Lastly, we examine the physical features of

these models by selecting specific forms for the parameters and producing graphical

renditions of the solutions and discussing their physical viabilities. In §5.2, we

analyze the master equation by selecting a form for the dependent variable Z and

then solve the master equation for Y . It is shown that selecting a linear form for

Z is a redundant avenue of pursuit, as the form for the matter variables lies in

the complex field C. By choosing the natural logarithmic form for Z, we attain

a form for Y in terms of hypergeometric functions and thereafter we perform a

matching of the solutions with exterior spacetime at the boundary. We then plot

the matter variables, the energy conditions and show that the speed of sound is

less than the speed of light throughout the star. In §5.3, firstly we choose a form

for Y that encapsulates all polynomials and transcendentals of degree n, with some

restrictions to the value of n. A form for Z is then found explicitly and matching

is thereafter carried out. The physical features of this model is then studied by

plotting the various equations for specific values of the parameters. It is shown

graphically that for the region x ∈ (0, 3.5461) that the weak energy condition is

defied. Thereafter, we choose the scaled exponential function and we attain a form

36



for Z in terms of the exponential integral function. As with the other models, the

matching is carried out and physical features is studied. Lastly, in §5.4, we select

an arbitrary functional for Y and then using the method of integrating factors,

find an arbitrary functional form for Z. This method generalizes all solutions to

the five-dimensional Einstein equations. We then express the matter variables ρ

and p in terms if these arbitrary functions.

5.2 Analysis in terms of Y

Equation (4.15) when α = 0 is quintessential to the analysis of this section, we

restate it here as

(2x2Z)Ÿ + (x2Ż)Ẏ + (xŻ − Z + 1)Y = 0. (5.1)

Equation (5.1) becomes our master equation in this section and solution method-

ologies will be explored based on this equation.

5.2.1 Choosing a general linear functional form for Z

Selecting Z = ax+ b, where a and b are arbitrary constants, and substituting this

form into equation (5.1), we get

(2ax3 + 2bx2)Ÿ + (ax2)Ẏ + (1− b)Y = 0. (5.2)
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Equation (5.2) is a second order linear differential equation with variable coeffi-

cients; upon integration we get

Y = c1
√
ax exp

[
−
√

3b− 2

b
arctanh

(√
ax+ b

b

)]

− c2
√

x

a(3b− 2)
exp

[√
3b− 2

b
arctanh

(√
ax+ b

b

)]
, (5.3)

where c1 and c2 are the constants of integration. From equation (5.3), we see that

the constants a and b are restricted by a ∈ (0,∞) and b ∈ (2
3
,∞). Substituting

these forms for Y and Z into the equation (3.14b) for pressure, we get a function

whose domain is x ∈ (−∞, 0). This is unrealistic and we do not pursue this case

any further.

5.2.2 Solution I

Selecting Z = lnx and substituting this form into (5.1), we get

(2x2 lnx)Ÿ + xẎ + (2− lnx)Y = 0. (5.4)

Equation (5.4) is a second order nonlinear differential equation with varying coef-

ficients. Using the solution strategy proposed by Polyanin and Zaitsev (2002), we

find the solution of (5.4) to be
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Y =
c1 x

(1−
√
3)/2 U

(
9−5
√
3

12
, 3
2
,
√

3 lnx
)√

lnx

21/4

+
c2 x

(1−
√
3)/2M

(
9−5
√
3

12
, 3
2
,
√

3 lnx
)√

lnx

21/4
, (5.5)

where c1 and c2 are the constants of integration. The quantities U and M are

the Tricomi and Kummer confluent hypergeometric functions respectively, and

are defined by

U(a, b, x) :=
1

Γ(a)

∫ ∞
0

e−xtta−1(1− t)b−a−1 dt, (5.6a)

M(a, b, x) :=
Γ(b)

Γ(a)Γ(b− 1)

∫ 1

0

extta−1(1− t)b−a−1 dt, (5.6b)

and Γ(ζ) is the gamma function defined as

Γ(ζ) :=

∫ ∞
0

xζ−1e−x dx. (5.6c)

For a comprehensive treatment of these special functions, the reader should see the

excellent texts of Andrews et al (1999), Andrews (1985), Bell (2004) and Polyanin

and Mazhirov (2007). Substituting these forms of Y and Z into the field equations

(3.14), we get

ρ

C
=

3 ln x

x
, (5.7a)

p

C
=

3 ln x

x
− 3

x
+ (3 + 3 lnx− 3

√
3 ln x)(Φ + Ψ)

+ (3
√

3 ln x− 5 ln x)Λ + (15 lnx− 9
√

3)Υ, (5.7b)
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where we have introduced

Φ = Φ(x) =
c2M

(
9−5
√
3

12
, 3
2
,
√

3 ln x
)

x
[
c1U

(
9−5
√
3

12
, 3
2
,
√

3 ln x
)

+ c2M
(

9−5
√
3

12
, 3
2
,
√

3 ln x
)] , (5.8a)

Ψ = Ψ(x) =
c1U

(
9−5
√
3

12
, 3
2
,
√

3 ln x
)

x
[
c1U

(
9−5
√
3

12
, 3
2
,
√

3 ln x
)

+ c2M
(

9−5
√
3

12
, 3
2
,
√

3 ln x
)] , (5.8b)

Λ = Λ(x) =
c2M

(
21−5

√
3

12
, 5
2
,
√

3 ln x
)

x
[
c1U

(
9−5
√
3

12
, 3
2
,
√

3 ln x
)

+ c2M
(

9−5
√
3

12
, 3
2
,
√

3 ln x
)] , (5.8c)

Υ = Υ(x) =
c1U

(
21−5

√
3

12
, 5
2
,
√

3 ln x
)

2x
[
c1U

(
9−5
√
3

12
, 3
2
,
√

3 ln x
)

+ c2M
(

9−5
√
3

12
, 3
2
,
√

3 ln x
)] . (5.8d)

Physical Features

We study the physical features related to our proposed exact solutions. We produce

graphical renditions for the parameter values c1 = 56, c2 = 0 and C = 1
1000

. From

the graphs, we see that the energy density and pressure look very similar for this

choice of the parameter values. The energy density in Figure 5.1, which is plotted

for the range x ∈ [1.05, 100], has a singularity at the centre of the star. Further,

the energy density is a monotonically decreasing function and approaches zero as

we move away from the centre of the star. The pressure in Figure 5.2 is also a

monotonically decreasing function and eventually tends toward zero as we move to

the boundary. This defines the pressure-free surface for the star, thus guaranteeing
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that the stellar surface does in fact exist, and there exists a realistic star candidate.

The pressure was plotted for the range x ∈ [1.41151, 100], and also has a singularity

at the origin.

In Figure 5.3 the speed of sound parameter converges to a numerical value

smaller than one. Mathematically,

lim
x→∞

dp

dρ
= 2−

√
3 < 1.

Thus, throughout the star the speed of sound is less than the speed of light and

causality is maintained. i.e. for this region the the sound speed is subluminal. We

also observe in Figure 5.4 that ρ− p ≥ 0, ρ+ p ≥ 0 and ρ+ 3p ≥ 0. This implies

that the weak, strong and dominant energy conditions are satisfied throughout the

star. The speed of sound parameter was plotted for the range x ∈ [21.6, 100].

In order to illustrate the physical viability of this stellar model, we match

the interior solution found above to the exterior spacetime. We take the exterior

spacetime to be the Boulware-Deser metric given by

ds2 = −F (r)dt2 +
dr2

F (r)
+ r2(dθ2 + sin2θ dφ2 + sin2θ sin2φ dψ2), (5.9a)

where

F (r) = 1 +
r2

4α

(
1−

√
1 +

8Mα

r4

)
, (5.9b)

and M is the mass of the gravitating hypersphere.
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On the inside of the star, we require that

e2λ =
1

ln(Cr2)
, (5.10a)

e2ν =

[
c1U

(
9−5
√
3

12
, 3
2
,
√

3 ln(Cr2)
)

+ c2M
(

9−5
√
3

12
, 3
2
,
√

3 ln(Cr2)
)]2

ln(Cr2) (Cr2)1−
√
3

√
2

.

(5.10b)

At the boundary of the gravitating hypersphere r = R, we require that the interior

solution generated matches the metric (5.9a). Thus

1

ln(CR2)
=

4α

4α +R2
(

1−
√

1 + 8Mα
R4

) , (5.11a)

[ãc1 + b̃c2]
2 ln(CR2) (CR2)1−

√
3

√
2

=
R2

4α

(
1−

√
R4 + 8Mα

R4

)
+ 1. (5.11b)

The third junction condition that we require is that of a pressure-free hypersurface

at the boundary. Therefore, we obtain

3 ln(CR2)

CR2
− 3

CR2
+

3 + 3 ln(CR2)− 3
√

3 ln(CR2)

CR2

+
[
3
√

3 ln(CR2 − 5 ln(CR2))
] [ c2d̃

CR2(c1ã+ c2b̃)

]

+ [15 ln(CR2)− 9
√

3]

[
c1c̃

2CR2(c1ã+ c2b̃)

]
= 0. (5.11c)
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In equations (5.11b) and (5.11c),

ã = U

(
9− 5

√
3

12
,
3

2
,
√

3 ln(CR2)

)
, (5.12a)

b̃ =M

(
9− 5

√
3

12
,
3

2
,
√

3 ln(CR2)

)
, (5.12b)

c̃ = U

(
21− 5

√
3

12
,
5

2
,
√

3 ln(CR2)

)
, (5.12c)

d̃ =M

(
21− 5

√
3

12
,
5

2
,
√

3 ln(CR2)

)
. (5.12d)

In principle, one can solve (5.11b) and (5.11c) for c1 and c2 simultaneously and

thus uniquely fix these arbitrary constants in terms of the stellar radius R and the

mass of the spherical hypersphere M .
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Figure 5.1: Plot of the energy density versus the radial coordinate x.
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Figure 5.2: Plot of the pressure versus the radial coordinate x.
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Figure 5.3: Plot of the speed of sound parameter versus the radial coordinate x.
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The energy conditions are governed by the equations

ρ− p
C

=
3

x
+ (3
√

3 ln x− 3 ln x− 3)(Φ + Ψ)

+ (5 lnx− 3
√

3 ln x)Λ + (9
√

3− 15 ln x)Υ, (5.13a)

ρ+ p

C
=

6 ln x

x
− 3

x
+ (3 + 3 lnx− 3

√
3 ln x)(Φ + Ψ)

+ (3
√

3 ln x− 5 ln x)Λ + (15 lnx− 9
√

3)Υ, (5.13b)

ρ+ 3p

C
=

12 ln x

x
− 9

x
+ (9 + 9 lnx− 9

√
3 ln x)(Φ + Ψ)

+ (9
√

3 ln x− 15 ln x)Λ + (45 lnx− 27
√

3 ln x)Υ. (5.13c)
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Figure 5.4: Plot of the energy conditions versus the radial coordinate x.
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5.3 Analysis in terms of Z

Setting α = 0 in equation (3.16), we get

x(xẎ + Y )Ż + (2x2Ÿ − Y )Z + Y = 0. (5.14)

Equation (5.14) becomes our master equation in this section, and solution method-

ologies will be explored based on this equation.

5.3.1 Solution II

Selecting Y = xn, where n is some arbitrary constant, and substituting this form

for Y into equation (5.14), we get

(n+ 1)xŻ + (2n2 − 2n− 1)Z + 1 = 0. (5.15)

Equation (5.15) is a first order linear differential equation, direct integration of

this equation yields

Z =
1

1 + 2n− 2n2
+ c1[(n+ 1)x]

1+2n−2n2

n+1 , (5.16)

where c1 is the constant of integration. From equation (5.16), we get the restric-

tion that n 6= −1, 1+
√
3

2
, 1−

√
3

2
. Substituting our forms for Y and Z into the field

equations (3.14), we get

ρ

C
=

6n(n− 1)

(1− 2n− 2n2)x
+

3c1(2 + 3n− 2n2)[(n+ 1)x]
1+2n−2n2

n+1

(n+ 1)x
, (5.17a)

p

C
=

6n2

(1 + 2n− 2n2)x
+

3c1(2n+ 1)[(n+ 1)x]
1+2n−2n2

n+1

x
. (5.17b)
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Physical Features

We study the physical features related to our exact solutions. We produce graphical

renditions for the parameter values c1 = −178, n = 92, C = −23. From the graphs

we see that the energy density and pressure look very similar for this choice of

the parameter values. The energy density in Figure 5.5 is plotted for the range

x ∈ [0.1.100], we observe that the star has a singularity at the origin. Further, the

energy density is a monotonically decreasing function and approaches zero as we

move away from the centre of the star. The pressure in Figure 5.6 is plotted for

the range x ∈ [0, 100]. The pressure is also a monotonically decreasing function

and eventually tends toward zero as we move away from the centre of the star to

the boundary. This defines a pressure-free surface for the star.

From Figure 5.7 we observe that dp
dρ

= 1 throughout the star, so the speed of

sound equals the speed of light throughout the star. We plot the energy conditions,

ρ− p, ρ+ p and ρ+ 3p for the range x ∈ [13, 100] in Figure 5.8. For this range, we

see that all three energy conditions are strictly positive and satisfied. We match

the interior solution found above with the exterior spacetime defined by the metric
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(5.9a). For the inside of the star, we require

e2λ =
1

a
1+2n−2n2 + c1[(n+ 1)(Cr2)]

1+2n−2n2

n+1

, (5.18a)

e2ν = (Cr2)2n. (5.18b)

At the boundary r = R, we require that the interior solution generated matches

the exterior spacetime (5.9a). Thus

1

a
1+2n−2n2 + c1[(n+ 1)(CR2)]

1+2n−2n2

n+1

=
4α

4α +R2
(

1−
√

1 + 8Mα
R4

) , (5.19a)

(CR2)2n =
R2

4α

(
1−

√
R4 + 8Mα

R4

)
+ 1. (5.19b)

Further, the pressure at the boundary must be zero. Therefore

6n2

(1 + 2n− 2n2)CR2
+

3c1(2n+ 1)[(n+ 1)CR2]
1+2n−2n2

n+1

(n+ 1)CR2
= 0. (5.19c)

Using equation (5.19c), we find c1 to be

c1 =
2n2(n+ 1)[CR2(n+ 1)]

2n2−2n−1
n+1

(2n+ 1)(2n2 − 2n− 1)
. (5.20)
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Figure 5.5: Plot of the energy versus the radial coordinate x.
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Figure 5.6: Plot of the pressure versus the radial coordinate x.
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The speed of sound parameter has the form

dp

dρ
=
A
B
, (5.21)

where

A =
2n2

2n2 − 2n− 1
− c1(2n+ 1)(2n2 − 2n− 1)x[(n+ 1)x]

n(1−2n)
n+1

− c1(2n+ 1)[(n+ 1)x]
1+2n−2n2

n+1 , (5.22a)

B =
2n(n− 1)

2n2 − 2n− 1
+ c1(2n

2 − 3n− 2)x[(n+ 1)x]
n(1−2n)
n+1

+
c1(2n

2 − 3n− 2)(2n2 − 2n− 1)[(n+ 1)x]
1+2n−2n2

n+1

(n+ 1)2
. (5.22b)
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Figure 5.7: Plot of the speed of sound parameter versus the radial coordinate x.
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The energy conditions have the form

ρ− p
C

=
6n

(2n2 − 2n− 1)x
+

3c1(1− 4n2)[(n+ 1)x]
1+2n−2n2

n+1

x
, (5.23a)

ρ+ p

C
=

6n(2n− 1)

(1 + 2n− 2n2)x
+

9c1(2n+ 1)[(n+ 1)x]
1+2n−2n2

n+1

(n+ 1)x
, (5.23b)

ρ+ 3p

C
=

6n(4n− 1)

(1 + 2n− 2n2)x
+

3c1(4n
2 + 12n+ 5)[(n+ 1)x]

1+2n−2n2

n+1

(n+ 1)x
. (5.23c)

20 40 60 80 100
0

2

4

6

8

10

12

14

x

E
ne

rg
y

co
nd

it
io

ns

Ρ+3p

Ρ+p

Ρ-p

Figure 5.8: Plot of the energy conditions versus the radial coordinate x.
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5.3.2 Solution III

Selecting Y = eβx, where β is some arbitrary constant and substituting into equa-

tion (5.14), we get

x(1 + βx)Ż + (2β2x2 − 1)Z + 1 = 0. (5.24)

Equation (5.24) admits solutions in terms of elementary and special functions. We

have

Z = 1 + 2βx+ e−2(1+βx)x(1 + βx)[e2c1 − 4β E(2 + 2βx)], (5.25)

where c1 is the constant of integration and E(τ) is the exponential integral function.

Polyanin and Manzhirov (2007) have defined the exponential integral function as

E(τ) =

∫ ∞
−τ

e−t

t
dt. (5.26)

Then substituting our forms for Y and Z into the field equations, we get

ρ

C
= 12β(1− βx)− 3e−2(1+βx)(2β2x2 − βx− 2)[c1e2 − 4βE(2 + 2βx)], (5.27a)

p

C
= 12β(1 + βx) + 3e−2(1+βx)(2x2β2 + 3xβ + 1)[c1e2 − 4βE(2 + 2βx)]. (5.27b)

Physical Features

We study the physical features to our proposed exact solutions. We produce

graphical renditions for the parameter values c1 = 5, β = 5 and C = −5. From the
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graphs we see that the energy density and pressure look very similar for this choice

of the parameter values. The energy density in Figure 5.9 which is plotted for the

range x ∈ [1, 100], has a singularity at the centre of the star. Further, the energy

density is a monotonically decreasing function and approaches zero as we move

away from the centre of the star. The pressure in Figure 5.10 is a monotonically

decreasing function and eventually tends towards zero as we move to the boundary.

This defines the pressure free surface for the star, thus guaranteeing that the stellar

surface does in fact exist, and there is a realistic star candidate. The pressure was

plotted for the range x ∈ [1.2, 100] and also has a singularity at the origin.

In Figure 5.11 we observe that the speed of sound parameter is greater than

one. This implies that the speed of sound is greater than the speed of light and

that causality is defied. This is an unfortunate negative feature of this class of

solution. We speculate that this behaviour arises because of the specific choice of

the parameters made. Possibly another choice may lead to causal features. Other

features are physically reasonable such as the energy conditions. In Figure 5.12 we

observe that in the range x ∈ [13, 100], ρ− p, ρ+ p and ρ+ 3p are strictly positive

and satisfied. Lastly, we match the interior solution generated with the exterior
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metric given by (5.9a). For the inside of the star we require

e2λ =
1

1 + 2βCr2 + e−2(1+βCr2)Cr2(1 + βCr2)[e2c1 − 4βE(2 + 2βCr2)]
, (5.28a)

e2ν = e2βCr
2

. (5.28b)

At the boundary r = R, we require that the interior solution generated matches

the exterior spacetime (5.9a). Thus

1

1 + 2βCR2 + e−2(1+βCR2)CR2(1 + βCR2)[e2c1 − 4βE(2 + 2βCR2)]

=
4α

4α +R2
(

1−
√

1 + 8Mα
R4

) , (5.29a)

e2βCR
2

=
R2

4α

(√
1− R4 + 8Mα

R4

)
+ 1. (5.29b)

Further, the pressure at the boundary must be zero. Therefore

3e−2(1+βCR
2)(2C2R4β2 + 3CR2β + 1)[c1e2 − 4βE(2 + 2βCR2)]

+ 12β(1 + βCR2) = 0. (5.30)

Solving (5.30) for c1, we get

c1 =
4β[2βCR2E(2 + 2βCR2) + E(2 + 2βCR2)− e2(1+βCR2)]

e2(1 + 2βCR2)
. (5.31)
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Figure 5.9: Plot of the energy density versus the radial coordinate x.

0 20 40 60 80 100

0.5

1.0

1.5

x

Pr
es

su
re

Figure 5.10: Plot of the pressure versus the radial coordinate x.
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The speed of sound parameter has the form

dp

dρ
=
C
D
, (5.32)

where

C = (1− βx− 6β2x2 − 4β3x3)[c1e2 − 4βE(2 + 2βx)]

− 8β2e2(1+βx)x(1 + βx), (5.33a)

D = (4β3x3 − 2β2x2 − 9βx− 3)[c1e2 − 4βE(2 + 2βx)]

+ 4βe2(1+βx)(2β2x2 − 2βx− 3). (5.33b)
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Figure 5.11: Plot of the speed of sound parameter versus the radial coordinate x.
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The energy conditions have the form

ρ− p
C

= 3e−2(1+βx)(1− 2βx− 4β2x2)[e2c1 − 4β + E(2 + 2βx)]

− 24β2x, (5.34a)

ρ+ p

C
= 3e−2(1+βx)(3 + 4βx)[e2c1 − 4βE(2 + 2βx)] + 24β, (5.34b)

ρ+ 3p

C
= 3e−2(1+βx)(5 + 10βx+ 4β2x2)[e2c1 − 4βE(2 + 2βx)]

+ 24β(2 + βx). (5.34c)
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Figure 5.12: Plot of the energy density versus the radial coordinate x.
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5.4 Solution in terms of arbitrary functions

We select Y = f(x), where f is some general function of the variable x. Substi-

tuting this form of Y into (5.14), we get

(−xf − x2f ′)Ż + (f − 2x2f ′′)Z − f = 0. (5.35)

Equation (5.35) is a first order linear equation, using the method of integrating

factors, we find that (5.35) admits the solution

Z = eF (x)

(∫
G(x)

eF (x)
dx+ β

)
, (5.36)

where β is the constant of integration and

F (x) =

∫
f − 2x2f ′′

x(xf ′ + f)
dx, (5.37a)

G(x) = − f

x(xf ′ + f)
. (5.37b)

The implication of this result is that we can select any functional form for Y and

get a corresponding functional form for Z. Substituting this result into the field

equations, we get

ρ

C
=

3eF (x)(2x2f ′′ − xf ′ − 2f)
(∫ G(x)

eF (x) dx− β
)

x(xf ′ + f)
− 3(xf ′ + 2f)

x(xf ′ + f)
, (5.38a)

p

C
=

3eF (x)(2xf ′ + f)
(
β −

∫ G(x)

eF (x) dx
)

xf
− 3

x
. (5.38b)
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Any choice of f(x) allows us to complete the integration in (5.37), an produce an

explicit solution. Clearly the physical conditions will restrict the functional forms

of f(x).
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Chapter 6

The Einstein-Gauss-Bonnet case

6.1 Introduction

In this chapter we consider the form of the master equation derived in §3.3 in terms

of the dependent variable Z. By making the coefficient of Y vanish, we generate

a linear functional form for Z. Thereafter, the master equation is solved and we

show that Y can be expressed in general surd form. These particular forms of the

potentials Y and Z correspond to the classical Schwarzchild solution in terms of

the matter variables. However, we obtain two cases from the master equation, and

generate a new constant density exact solution to the EGB field equations. We

point out that this solution results from integration and holds for any arbitrary

form of the potential Y . In §6.3 we examine the case of the constant density

solution that was found using the intuitive reasoning of Dadhich et al (2010) in
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five-dimensional EGB theory. We show that the related method we employed

to this integration procedure is unique, and is a generalization of the traditional

Schwarzchild solution. In §6.4 we fix the value of the integration constant c1 in

terms of the Gauss-Bonnet coupling constant α and the transformation constant

C. In so doing, we obtain a new constant density solution in five-dimensional

EGB gravity. Lastly, we show that this solution is distinct because the form for

the isotropic pressure p is arbitrary.

6.2 The Schwarzchild solution extended

We show that it is possible to generate a simple class of exact solutions to the

EGB equations. By making the coefficient of Y vanish in equation (3.15), we get

1 + xŻ − Z = 0. (6.1)

Integrating (6.1), we get the form for Z

Z = 1 + c1x, (6.2)

where c1 is the constant of integration. Substituting this form for Z and its first

derivative into equation (3.15), we get

2x2(1 + c1x)(4αCc1 − 1)Ÿ − [c1x
2 − 12αCc1x(c1x+ 1)]Ẏ

− 4αC[c1x− 2(c1x+ 1) + 2(1 + c1x)2]Ẏ = 0. (6.3)
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We can write then (6.3) in the simplified form

(4αCc1 − 1)[2(1 + c1x)Ÿ + c1Ẏ ] = 0. (6.4)

From (6.4) we observe that two cases arise. We will consider each case in turn.

6.3 Case 1

In this case

4αCc1 6= 0. (6.5)

Then we get from (6.4) the condition

2(1 + c1x)Ÿ + c1Ẏ = 0. (6.6)

Integrating (6.6) we obtain

Y =
c2
c1

(1 + c1x)1/2 + c3, (6.7)

where c2 and c3 are constants of integration. Therefore for this case we obtain the

line element

ds2 = −

[(
c2
c1

)2

(1 + c1x) +
2c2c3
c1

(1 + c1x)1/2 + c23

]
dt2

+
dr2

1 + c1x
+ r2(dθ2 + sin2θ dφ2 + sin2θ sin2φ dψ2). (6.8)
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The energy density and pressure are given by

ρ

C
= 6c1(1− 2αCc1), (6.9a)

p

C
=

3c1[c1c3 − 2c2(2αCc1 − 1)(1 + c1x)1/2]

c2(1 + c1x)1/2 + c1c3
. (6.9b)

Observe the solution (6.7) of equation (6.9) corresponds to the constant density

model in five-dimensional EGB theory. We interpret this result as an EGB gener-

alization of the conventional Schwarzschild solution in general relativity. Note that

we have obtained this model by a direct integration of the field equations. Dad-

hich et al (2010) obtained a similar form of the generalized Schwarzschild solution

using the principle of universality without any integration. We have shown that

the five-dimensional EGB constant metric can be generated exactly by integrating

the condition of pressure isotropy.

6.4 Case 2

In this case

2(1 + c1x)Ÿ + c1Y 6= 0. (6.10)

Then we have the condition that

c1 =
1

4αC
. (6.11)
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Thus the condition of pressure isotropy is always satisfied for this value of the

integration constant c1. Therefore in this case we generate the line element

ds2 = −Y 2(x)dt2+

(
4αC

x+ 4αC

)
dr2+r2(dθ2+sin2θ dφ2+sin2θ sin2φ dψ2). (6.12)

The energy density and pressure are given by

ρ

C
= 6c1(1− 2αCc1), (6.13a)

p

C
=

3[c1Y − 2(1 + c1x)(4αCc1 − 1)Ẏ ]

Y
. (6.13b)

Note that (6.12) and (6.13) correspond to a constant density solution in five-

dimensional EGB gravity. It is important to observe (6.12) and (6.13) are different

from (6.8) and (6.9) respectively in §6.3. Therefore we have generated a new

constant density solution in EGB theory. It holds for the special value of c1 = 1
4αC

and the pressure is arbitrary. We have not seen this particular solution in the

literature. The special choice of α producing this solution may affect the dynamical

evolution of the model. In this class of solutions the function Y is arbitrary and

we can interpret the model as a cosmological solution. In the astrophysical setting

the boundary conditions at the surface of the relativistic star may place additional

conditions on Y . It is necessary to check if any types of constant density solutions

are possible in EGB gravity by integrating the field equations for forms of the

potential Z different from 1 + c1x. This is an area for future research.
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Chapter 7

Conclusion

In this thesis we have considered new exact solutions to the five-dimensional Ein-

stein and EGB field equations for static, spherically symmetric spacetimes. Three

new exact solutions to the five-dimensional Einstein equations are found in terms

of both elementary and special functions. The master equations were analysed

in terms of both dependent variables Y and Z. One solution was found when

analysed in terms of Y , and two solutions were found when analysed in terms of

Z. We carried out a matching of the interior solutions generated with the exterior

Boulware-Deser metric at the respective boundaries. For the EGB case, the master

equations were not easy to solve. By making the coefficient of Y vanish we were

able to attain two cases which we examined in turn. By elementary factorization of

the master equation in terms of the dependent variable Y , we were able to attain

the constant density solution by direct integration of the field equations. Then by
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selection of a specific form of the integration constant c1, we were able to generate

a new exact constant density solution that is applicable in the cosmological setting.

Below we present an overview of the thesis:

In chapter 2, we introduced the relevant differential geometric quantities that

were quintessential to the astrophysical modeling of EGB gravity. A brief descrip-

tion of the energy conditions and causality was presented in order to illustrate

the physical viability of an astrophysical model. We concluded this chapter by

introducing the action integral for five-dimensional EGB gravity and provided ex-

planations of the Lovelock and Lanczos tensors. The EGB field equations were

shown to be a linear combination of the Einstein tensor and Lanczos tensor by

introducing the Gauss-Bonnet coupling constant. This expression is then equated

to the energy momentum tensor, and thus the EGB field equations were formed.

In chapter 3, we derived all the relevant differential geometric quantities for

the spherically symmetric, static, uncharged metric

ds2 = −e2νdt2 + e2λdr2 + r2(dθ2 + sin2θ dφ2 + sin2θ sin2φ dψ2). (7.1)

It was pointed out that these quantities are not easily attainable from the literature

and thus we have calculated them in full and presented them here. We thereafter

form the EGB field equations and generate the pressure isotropy condition. The

pressure isotropy condition is also made more comprehensible by the implementa-

tion of a transformation and we attained two forms for the master gravitational
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equations. The first being

2xZ [4αC(Z − 1)− x] Ÿ −
[
x2Ż + 4αC

(
xŻ − 2Z + 2Z2 − 3xZŻ

)]
Ẏ

−
(

1 + xŻ − Z
)
Y = 0, (7.2a)

which is in terms of Y and when Z is specified, and

[(−x2 − 4αCx)Ẏ − xY ]Ż + (12αCxẎ )ZŻ + [8αC(xŸ − Ẏ )]Z2

+ [(−2x2 − 8αCx)Ÿ + 8αCẎ + Y ]Z − Y = 0, (7.2b)

which is in terms of Z when Y is specified.

In chapter 4, we presented known solutions that were found by Chilambwe et

al (2015), Hansraj et al (2015) and Maharaj et al (2015) for the five-dimensional

Einstein and EGB cases and expressions for the matter variables ρ and p. In

the research conducted by Chilambwe et al (2015), the simplification assumption

β = 4αC was used in order simplify equation (7.2b). By choosing a general linear

form for Y and setting α = 0, a direct integration yielded a surd form for Z.

In the more general EGB case when α 6= 0, the equation was integrated directly

to produce a form for Z in terms of elementary functions. In the investigation

carried out by Hansraj et al (2015), the coefficient of the dependent variable Z2

in equation (7.2b) was made to vanish. In so doing, the resulting equation could

be integrated to produce a quadratic form for Y . In the analysis of Maharaj et al

(2015), by selecting a constant form for Z an ordinary differential equation was
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attained. The resulting equation was then solved using the power series method of

Frobenius to generate a form for Y . Two cases arose, when the constant was made

unity, the constant density solution found by Dadhich et al (2010) was attained

and when the constant was nonunity, a new class of exact solutions was generated.

In chapter 5, we examined the case of the five-dimensional Einstein field equa-

tions that are attained when the Gauss-Bonnet coupling constant α equals zero.

Two types of analysis is carried out in terms of both equations (7.2a) and (7.2b). In

the first analysis, we start by selecting a general linear form for Z and successfully

solve the resulting ordinary differential equation to attain a form for Y .Thereafter,

by selecting

Z = lnx, (7.3)

we attained the form

Y =
c1x

1−
√
3U
(

9−5
√
3

12
, 3
2
,
√

3 ln x
)

21/4

+
c2x

1−
√
3M

(
9−5
√
3

12
, 3
2
,
√

3 ln x
)

21/4
. (7.4)

We performed an analysis of the physical features of this solution. It was shown

that throughout the star causality is maintained and thus speed of sound is less

than the speed of light. The density exhibited a monotonically decreasing profile

and we infer that due to the decreasing nature of the pressure equation, a pressure-

free boundary is defined for the star. The energy conditions are all strictly positive
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and decreasing. This is a new solution for the five-dimensional Einstein case. In

the second analysis we chose

Y = xn, (7.5)

and obtained the form

Z =
1

1 + 2n− 2n2
+ c1[(n+ 1)x]

1+2n−2n2

n+1 . (7.6)

As before, we performed an analysis of the physical features. The solution is well

behaved. We believe that this is another new solution in the Einstein case. We

also selected the form

Y = eβx, (7.7)

and solved the resulting differential equation to obtain the form

Z = 1 + 2βx+ e−2(1+βx)x(1 + βx)[e2c1 − 4β E(2 + 2βx)]. (7.8)

Again we performed an analysis of the physical features. We observed that through-

out the star the speed of sound is greater than the speed of light and thus this

model describes a superluminous fluid in ther interior of the star. The remaining

physical conditions were satisfied. We demonstrated a general algorithm to solve

the field equations by selecting an arbitrary functional form

Y = f(x), (7.9)

and then treating the resulting differential equation as first order. Therefore we
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could express the solution in terms of the matter variables

ρ

C
=

3eF (x)(2x2f ′′ − xf ′ − 2f)
(∫ G(x)

eF (x) dx− β
)

x(xf ′ + f)
− 3(xf ′ + 2f)

x(xf ′ + f)
, (7.10a)

p

C
=

3eF (x)(2xf ′ + f)
(
β −

∫ G(x)

eF (x) dx
)

xf
− 3

x
, (7.10b)

where F (x) and G(x) are defined in equation (5.37).

In chapter 6, we analyzed equation (7.2a) by making the coefficient of Y vanish

to obtain the form

Z = 1 + c1x. (7.11)

Back substitution of (7.11) into (7.2a) yields the product

(4αCc1 − 1)[2(1 + c1x)Ÿ + c1Ẏ ] = 0, (7.12)

when factorized. We obtain two cases from (7.12) and we examined each case in

turn. For the first case, 4αCc1 − 1 6= 0. This produced the form

Y =
c2
c1

(1 + c1x)1/2 + c3, (7.13)

which is related to the Schwarzchild constant density model. For the second case,

2(1 + c1x)Ÿ + c1Y 6= 0. In this manner, we fixed the value of the integration

constant to be

c1 =
1

4αC
, (7.14)

and the metric function Y is arbitrary. This is another constant density solution
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that exists in EGB gravity. This is in contrast to the interior Schwarzchild solution

which is unique.

The models generated in this thesis were as a result of selecting specific forms

of the gravitating variables Y and Z and manipulations of the master equations

by making coefficients vanish and fixing integration constants. The advocation

of future research in this field and other modified theories of gravity will be to

find exact solutions of the field equations by the application of Lie algebras to the

system of equations. In so doing, simplification assumptions will not have to be

made and the equations can be solved directly to obtain generalized solutions. In

the astrophysical setting, Abebe et al (2013) were able to solve partial differential

equations that resulted from modeling conformally flat radiating stars. Msomi

et al (2010) were able to obtain exact models for spherically symmetric fluids

in gravitating fields by finding the Lie symmetries of the underlying equations.

The aggrandizement of this research can be accomplished by modeling spherically

symmetric fluids in five-dimensional EGB theory with pressure anisotropy. In this

regard, Abbas and Zubair (2015) have modeled gravitationally collapsing fluid

spheres with unequal radial and tangential pressures. This research can also be

enhanced by taking into consideration adiabatic and nonadiabatic effects. These

analyses will be investigated in future work.
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