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Abstract

This dissertation deals with spanning trees associated with graphs. The number

of spanning trees of a graph can be found by considering the eigenvalues of the

Laplacian matrix associated with that graph. Special classes of graphs are also

considered, such as fan and wheel graphs, where their spanning tree numbers are

connected to special numbers, like the Lucas and Fibonacci numbers. We use the

eigenvalues of the complete graph and its associated circulant matrix to create a

unit-trigonometric equation which generates a sequence and diagram similar to

that of the famous Farey sequence. A new ratio is introduced: the tree-cover ratio

involving spanning trees and vertex coverings and is motivated by the fact that

such a ratio, associated with complete graphs, has the asymptotic convergence

identical to that of the secretary problem. We use this ratio to introduce the idea

of tree-cover asymptotes and areas and determine such values for known classes

of graphs. This ratio, in communication networks, allows for the investigation of

the outward social connectivity from a vertex covering to the rest of the network

when a large number of vertices are involved.
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Chapter 1

Introduction

Graphs are distinct structures that consist of points or vertices, connected by

edges. Di�erent real life situations can be modelled using graphs. Examples of such

are representations of hydrocarbons in chemistry, distributions in transportation,

links in communication networks, and the study of neural networks and species

interactions in biology.

There has been an increased interest in the study of graphs and networks in the

past few decades, particularly amongst mathematicians, computer scientists and

engineers. Leonard Euler (1736), was the �rst to study graph theory in his paper

published on the K�onigsberg bridge problem encountered by the then eighteenth

century people of K�onigsberg, the capital of Prussia in the German Empire.

The last two decades have also witnessed increased interest in spectral graph

theory involving the adjacency and Laplacian matrices associated with a graph.

During that era, matrix theory and linear algebraic properties were used to ef-

�ciently analyze the adjacency matrices of graphs. For example, the \algebraic

connectivity " of a graph was given as a measure of the connectivity of the graph

and claimed to be connected to the adjacency eigenvalues by Bousquet-M'elouy
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M. and Weller [7]. The second smallest eigenvalue and the largest eigenvalue of

the Laplacian are also very important parameters as measures of connectivity, as

studied by Bojan Monar in Beineke et. al. [12].

Many developments in spectral graph theory have mostly involved inputs of

geometry in recent times. One of these is the recent progress in expander graphs

and eigenvalues initiated by the problems in communication networks by Alon

and Spencer [1]. Here, they showed that any k-regular graph whose adjacency

eigenvalues lie between -0.9 and 0.9, is well connected. The explicit construction of

expander graphs due to Gabber and Galil in [16], is based on Laplacian eigenvalues

and isoperimetric properties of graphs. However, there is no doubt that both

eigenvalues are crucial to the fundamental understanding of the connectivity in

graphs.

The aim of this dissertation is to consider the connectivity properties of some

special graphs based on properties such as their eigenvalues, their number of span-

ning trees, and the cardinality of their (minimum) vertex-cover. With these prop-

erties, we introduce a new concept of tree-cover ratios, asymptotes and areas of

graphs. In this dissertation, only simple undirected connected �nite graphs are

considered.

The number of spanning trees was �rst studied by Gustav Kircho�, a German

physicist [24], in his quest to study electrical networks. He described the connec-

tion between the number of spanning trees in terms of linear algebraic terms [24].

Several other proofs for the number of spanning trees are also known. For exam-

ple, Temperly [32], for a graph of order n, gave it as det[L(G) + 1
n2
J ], where J is
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an n� n matrix whose elements are 1 and L(G) is the graph Laplacian. Kal'man

and Chelnokov [23], gave it as 1
n

Qn
k=2 �k, where �k are the Laplacian eigenvalues

of the n-vertex graph.

Similarly, the number of spanning trees for some special classes of graphs has

been considered by many authors. Arthur Cayley [2], a British mathematician,

was the �rst to use the term \tree", in his quest for the study of the number

of carbon atoms in a given saturated hydrocarbons, and he gave the number of

spanning trees for the complete graph Kn as nn�2. Hilton [20], gave the number

of spanning trees of labelled wheels, fans and baskets, in terms of the Fibonacci

and Lucas numbers. Moreso, di�erent graph ratios have been considered in recent

years. For example, Buckley in [8], gave the central radius ratio asymptote as 1.

Winter and Jessop describe the eigen-pair ratio based on the adjacency matrix

in [37] having asymptote on interval [�1; 0], and the Hall ratio with asymptote

in�nity, was described by Gabor in [15].

This dissertation is structured into eight chapters under the following organi-

sation: Chapter 2 details the de�nitions and terminologies in graphs required for

better understanding of this dissertation. In addition, it also introduces the special

graphs which will be used in this dissertation. Chapter 3 introduces basic linear

algebra terms used in graph theory and necessary for the understanding of this

dissertation. Chapter 4 introduces and discusses the eigenvalues of some special

graphs. Here, both the adjacency eigenvalues and the Laplacian eigenvalues are

considered. In Chapter 5, we consider the t-complete eigen sequence generated

from the adjacency eigenvalues of the complete graph, which is similar to the Farey
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sequence. In Chapter 6, we discuss spanning trees of the special graphs introduced

in Chapter 2 in terms of the Laplacian eigenvalues discussed in Chapter 4, or in

terms of special numbers, namely, the Fibonacci sequence and Lucas numbers, for

some special class of graphs using the Kircho�'s matrix tree theorem.

In Chapter 7, we consider the spanning trees discussed in Chapter 6 and the

(minimum) vertex covering sets of these graphs, to introduce their tree-cover ratio,

asymptotes and areas. This ratio, in communication networks, allows for the

investigation of the outward social connectivity from a vertex covering with the

rest of the network, when a large number of vertices are involved. Among them is

the complete graphKn, which is a graph theoretical interpretation for the secretary

problem, and the gambling problem with social decision making, as described in

[38]. This provided a motivation for the study of the tree-cover ratio, asymptotes

and areas. In Chapter 8, conclusions are drawn.
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Chapter 2

Graph Theory Terminologies

2.1 Introduction

The purpose of this chapter is to de�ne the most important terms that will be used

in this dissertation and to present motivations for our study, as well as provide

relevant backgrounds. Hence, the graph theoretical terminology of Harris, Hirst

and Mossingho� [19] will be adopted. Terms not de�ned in this chapter will be

de�ned in subsequent chapters, as the need arises.

2.2 Graph Terminologies

Definition 1 A graph, G = (V;E), consists of a non-empty �nite set, V (G),

of elements called vertices and a possibly empty �nite set, E(G), of 2-subsets

of V called edges.

The number of vertices in G, denoted as n, is called its order while the number

of edges in G, denoted as m, is called the size of G. Let e = fu; vg be an edge

of G. Then, u and v are called the end vertices of the edge e, while e is said to

be incident with u and v, and we say that u and v are adjacent or neighbours.
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We could simply write e as e = uv in place of fu; vg. Two edges are said to be

incident or adjacent if they have a common end vertex.

The degree of a vertex, v, denoted as deg(v), is the number of edges incident

with v. An isolated vertex is a vertex of degree zero while an end or leaf vertex

of G is a vertex of degree one. A graph with no edges is called a null or empty

graph while a graph with only one vertex is called a trivial graph. The minimum

degree of G, denoted by �(G), is the minimum of the vertex degrees of G and the

maximum degree of G, denoted by �(G), is the maximum of the vertex degrees

of G. The average degree of G, denoted as Q(G), is de�ned as

Q(G) =

Pn
i=1 deg(vi)

n
=

2m

n
;

where V (G) = fv1; v2; : : : ; vng.

A walk,

W := v0; e0; v1; e1; v2; : : : ; ek�1; vk;

in a graph G, is an alternating sequence of vertices and edges such that for i =

0; 1; 2; 3; : : : ; k� 1, ei = vivi+1 2 E(G). We say that W is a closed walk if v0 = vk.

The length of W is k, i.e., the number of edges in W . The walk that begins at

v0 and ends at vk is called a v0-vk walk. A trail is a walk in which all edges are

distinct, while a path is a walk in which all vertices are distinct. A cycle is a

closed path while a circuit is a closed trail.

Let u; v be vertices in G. The distance d(u; v) between u and v in G is de�ned

as the length of a shortest u-v path. The maximum distance between a vertex v

and any vertex u farthest from v in G is called the eccentricity of v, denoted as

6



�(v), and is given by,

�(v) = max
u2V (G)

d(v; u):

The maximum distance between any two vertices in G is called the diameter of

G, denoted as diam(G), and can also be given as

diam(G) = max
v2V (G)

�(v):

Vertices u and v are said to be connected if there is a u-v path in G. The graph G

is connected if every pair of vertices in G is connected. The center of G, denoted

as C(G), is the set of vertices in G with minimum eccentricity. The radius of G,

r(G), is the minimum of all the eccentricities of vertices in G.

Definition 2 (Subgraphs) Let G = (V;E) be a graph. The graph H = (U;F )

is a subgraph of the graph G if U � V and F � E. If U = V , then H is called

a spanning subgraph of G. If H is a subgraph of graph G, we write H � G.

Definition 3 (Trees and Spanning Trees) A tree, denoted as T , is a con-

nected graph with no cycles. A spanning subgraph of a graph that is a tree is

called a spanning tree.

Definition 4 (Cartesian Product of Two Graphs) Let G = (V1; E1) and H =

(V2; E2) be two connected simple graphs with V1\V2 = ;. The Cartesian prod-

uct of G and H, denoted as G�H, is the graph with vertex set V1� V2, where

vertices (v11; v
1
2) and (v21; v

2
2) are adjacent in G�H if either (i) v11 = v21 and v12

is adjacent to v22 in H or (ii) v12 = v22 and v11 is adjacent to v21 in G.
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2.3 Special Types of Graphs

We now introduce several types of connected graphs which may arise in many real

life applications and will often be used as examples in this thesis.

A cycle, denoted as Cn, for n � 3, is a graph consisting of n vertices, V (Cn)=

fv1; v2; : : : ; vng, and edges E(Cn)=fv1v2; v2v3; : : : ; vn�1vn; vnv1g, where jE(Cn)j =

n. A path of order n, denoted as Pn, is the graph obtained from Cn by remov-

ing one edge. Here, jE(Pn)j = n � 1. A complete graph of order n, Kn, is a

graph with n vertices in which any two vertices are adjacent. The size of Kn

is jE(Kn)j = n(n�1)
2

. A graph is k-regular if all its vertices have degree k. For

example, the null graph is 0-regular, Kn is (n� 1)-regular, and the cycle graph is

2-regular.

A graph is bipartite if its vertex set V can be partitioned into two disjoint sets V1

and V2, called partite sets, such that every edge in the graph has one end in V1

and the other end in V2. A complete bipartite graph, denoted as Kp;q, is a bipar-

tite graph with partite sets V1 and V2, of cardinalities p and q respectively, such

that every vertex in V1 is adjacent to every vertex in V2. The size of Kp;q is given

as jE(Kp;q)j = pq, where p + q = n, for an n-vertex graph. The complete split

bipartite graph is the complete bipartite graph with equal partitions of vertices,

denoted as Kn
2
;n
2
.

According to Jordan [22], if T is a tree, then either diam(T ) = 2r(T ) and C(T )
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contains exactly one vertex or diam(T ) = 2r(T ) � 1 and C(T ) consists of two

adjacent vertices. In this dissertation, we will deal with special trees with only

one center vertex. The commonly known star graph, denoted as Sn, is a tree of

order n with maximum diameter 2. Let e = uv be an edge of G. By subdividing

the edge e, we mean removing e from G and adding a new vertex w together with

edges uw and wv to G. A subdivided star is a graph obtained from the star graph,

Sn, by a sequence of edge subdivisions.

Let Sk(n; r) be a subdivided star of order n, whose center contains only one

vertex, say C(Sk(n; r)) = fv1g. A branch of Sk(n; r), denoted as B[Sk(n; r)] is a

v1 � v2 path in Sk(n; r), where v2 is an end vertex. The ray of Sk(n; r), denoted

as r[Sk(n; r)] = r, is the number of branches in Sk(n; r). In this dissertation, we

deal with subdivided stars with branches of the same length and we call such a

subdivided star the star graph with k rays of length r, denoted as Sk(n; r).

Below is a star graph of order 7 and center vertex v1. The branches are the paths

v1 � v7, v1 � v6 and v1 � v5. Therefore, the star graph is of ray 3.

u
u

u
u

u
u
u

v1

v4

v5

v2

v6

v3

v7

Figure 2.1: Star graph with 3 rays of length 2, S3(7; 2).
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A wheel, Wn, is the graph obtained by taking a cycle Cn and adding a new

vertex v which is joined to every vertex of Cn. The rim of Wn is the cycle Cn,

the spokes are the edges incident with v, while the hub is the vertex v. A Fan,

Fn, is the graph obtained by taking a path Pn and adding a new vertex v which

is joined to every vertex of Pn. Both Wn and Fn have order n+1 for convenience

in proofs. A Ladder, Ln, of order on n , is the Cartesian product, P2�Pn
2
, of P2

and Pn
2
. A Sun graph, SNn, of order n, is the graph obtained by taking Cn

2
and

attaching exactly one vertex to each vertex of Cn
2
.

2.4 Summary

This chapter provided the basics on graph terminology necessary to understand

the remaining parts of this dissertation. We speci�ed the meaning of subgraphs,

spanning subgraphs, trees, branches, rays, and the Cartesian product of two graphs

as would be needed for better understanding of the subsequent chapters. Further-

more, we studied the di�erent types of classes of simple �nite connected graphs

termed \special graphs", that are commonly found in many real-life applications,

and would serve mainly as examples in this dissertation. To further understand

the properties of these graphs, we must take into account an understanding of

basic linear algebra in the next chapter.
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Chapter 3

Representations of Graphs

3.1 Introduction

In solving graph problems, it is easier to represent graphs algebraically. One such

algebraic tool is the use of matrix theory, which is used in the representation and

structural study of graphs. In this chapter, basic important linear algebra concepts

necessary for the study and description of graphs are considered.

3.2 Basic Linear Algebra

This section is based on pages 112-125 of [11].

3.2.1 Brief Definitions

Definition 5 Let S = fs1; s2; : : : ; sng be a �nite set. A group (S; �) is a pair

consisting of a set, S, and a binary operation � satisfying the following prop-

erties.

i. S is closed under �, i.e., for s1; s2 2 S, s1 � s2 2 S.

ii. S is associative under �, i.e., (s1 � s2) � s3 = s1 � (s2 � s3) for all s1; s2; s3 2 S.
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iii. There is a unique identity element of the group, e, such that for any element

s 2 S, e � s = s = s � e.

iv. Every element s 2 S has an inverse element s�1 2 S, such that s � s�1 = e =

s�1 � s.

If in addition to the above properties for all s1; s2 2 S, s1 � s2 = s2 � s1, then the

group is said to be abelian or commutative.

A �eld, (S;+; ?), on the other hand, is a set S together with two binary oper-

ations + and ? satisfying properties p1 to p3.

p1. S is an abelian group under +.

p2. S�f0g is an abelian group under ?, where 0 is the additive identity element.

p3. S satis�es the distributive property, i.e., given s1; s2; s3 2 S,

s1 ? (s2 + s3) = (s1 ? s2) + (s1 ? s3) and

(s1 + s2) ? s3 = (s1 ? s3) + (s2 ? s3):

For example, the set of integers modulo p, Zp, for p prime is a �eld, and (Zp;+; ?) is

called the Galois Field. In graph theory, the Galois �eld modulo 2, represented as

GF (2), is of special interest because it consists of only 0's and 1's. An illustration

is describe below.

+ 0 1

0 0 1

1 1 0

? 0 1

0 0 0

1 0 1

12



In general, it should be observed that apart from satisfying the properties (i)-(iv),

it also satis�es the properties p1 to p3.

3.2.2 Vector Spaces Associated With Graphs

Many physical properties of natural phenomena are well represented as vector

spaces. Since graphs are intuitively points that are either connected by lines or

not, their structural study can be well described in terms of their geometrical

properties, as described by Beezer in [3].

A vector space, V, de�ned over a �eld F , consists of objects called vectors which

satisfy the following properties.

(i) If v1; v2; v3 2 V, then v1 + v2 2 V. Also, v1 + v2 = v2 + v1, (v1 + v2) + v3 =

v1 + (v2 + v3).

(ii) There exists the additive identity element 0 2 V, such that for any v 2 V,

v + 0 = v.

(iii) For any v 2 V, 9 �v 2 V such that v + (�v) = 0.

(iv) For any v 2 V and a scalar c 2 F , cv 2 V.

(v) For any v1; v2;2 V and c1; c2 2 F , c1(v1 + v2) = c1v1 + c1v2, (c1 + c2)v1 =

c1v1 + c2v1, and c1(c2v1) = (c1c2)v1.

(vi) For all elements v 2 V, 1:v = v is satis�ed, where 1 is the multiplicative

identity element.

The elements of �eld F are called scalars. A vector is a matrix with only one

row called a row vector or one column called a column vector. A subspace of a

13



vector space V is a subset H of V which satisfy the properties below.

(i). The zero vector of V is in H.

(ii). For each elements u; v 2 H, u+ v 2 H.

(iii). For each u 2 H and scalar c 2 F , u:c 2 H.

Consider an n � n matrix K whose entries are kij 2 R for i; j 2 f1; 2; : : : ; ng.

We can rewrite K as column vectors, K = [c1 c2 : : : cn] 2 R
n or row vectors,

K =

2
66666664

r1

r2
...

rn

3
77777775
2 Rn, where ci =

2
66666664

k1i

k2i
...

kni

3
77777775
and ri = [ki1 ki2 : : : kin]: The subspaces ci and

ri in R
n are the column space and row space of K respectively. The null space

or kernel of K is de�ned as the set of all vectors v, which maps to the zero vector,

0, i.e.,

Ker(K) = fv 2 VjKv = 0g:

The minor, Mij, of the entry in the ith row and jth column of K, is the de-

terminant of the square matrix obtained from K by deleting its ith row and its

jth column. The i � i principal minor of K is the minor obtained from K by

deleting (n� i) rows and its corresponding (n� i) columns; for some 1 � i � n. A

cofactor, Cij, is given as Cij = (�1)i+jMij. The maximum dimension (number

of rows and columns) of a non-zero minor of K is its rank.

3.2.3 Galois Fields Representation of Graphs

Given a graph of order n and size m, with edge set E(G) = fe1; e2; : : : ; emg, and

vertex set, V (G) = fv1; v2; : : : ; vng, any subgraph, Gk � G, can be represented by

14



an m-tuple,

Gk = (g1; g2; : : : ; gm);

where,

gi =

8<
: 1 if ei 2 E(Gk);

0 if ei 62 E(Gk);

for i = 1; : : : ;m.

Example 1 Consider the graph G below.

t t

t
e2 e1

e3

Figure 3.1: Graph, G

Then, Figure 3.2 shows two subgraphs of G and their corresponding 3-tuple

representation.

Other possible subgraphs ofG are (0; 0; 1); (1; 0; 0); (0; 1; 0); (0; 0; 0); (1; 1; 1); (1; 1; 0),

where (0; 0; 0) represents the null graph and (1; 1; 1) is the graph G itself. In the

following corollary, we make use of the m-tuple representation of graphs to deter-

mine the number of subgraphs in a given graph.
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s s
s

e2

e3
G1 = (0; 1; 1)

ss
s

e1

G2 = (1; 0; 1)
e3

Figure 3.2: Subgraphs G1 and G2

Corollary 1 The number of possible subgraphs of order n associated with any

graph, G of order n, is 2m, where m is the size of the graph.

Proof

Let G be a graph with edge set E(G) = fe1; e2; : : : ; emg. Then every subgraph Gk

ofG is represented by onem-tuple (g1; g2; : : : ; gm) where gi =

8<
: 1 if ei 2 E(Gk);

0 otherwise;

for i = 1; 2; : : : ;m. Since for each i = 1; 2; : : : ;m, there are two choices for gi, by

the Multiplication Principle, there are 2� 2� : : :� 2 = 2m m-tuples of this form.

Hence, G has 2m subgraphs, as desired. 2

In [11], these tuples representing subgraphs have been used as vectors to con-

struct a vector space V over the Galois �eld, [GF (2);+; ?], where addition and mul-

tiplication is modulo 2. In particular, V consists of all 2m m-tuples representing all

subgraphs of G. In V, addition of vectors is component wise. Scalar multiplication

is as follows. Let a 2 f0; 1g and Gk � G be represented by (g1; g2; : : : ; gm). Then,

a ? (g1; g2; : : : ; gm) =

8<
: (g1; g2; : : : ; gm) if a = 1;

(0; 0; : : : ; 0) if a = 0:

The result in Corollary 1 could be used to �nd the number of spanning trees of

16



a complete graph. For example, the complete graph, K4 has 6 edges so that it

has 26 = 64 subgraphs. A spanning tree will require 3 edges, so we remove all

subgraphs of sizes 0,1,2,4,5 and 6 and the subgraphs of size 3 that have triangles.

Thus the total number of spanning trees will be 64� (1+6+15+15+6+1+4) =

64 � 48 = 16 which gives the number of spanning trees as expected from known

results of [2]. One may wish to generalize this method to �nd the number of

spanning trees on a complete graph but it would be cumbersome. A more elegant

proof will be presented in Chapter 6.

3.3 Matrix Representations of Graphs

Generally, apart from the Galois �eld representation, the connectivity property

of graphs is mostly represented in terms of matrices. In this section, we study

structures of graphs using their adjacency, incidence and Laplacian matrices.

Definition 6 (Adjacency Matrix) Let G = (V;E) be a graph with vertex set,

V = fv1; v2; : : : ; vng. Then, the adjacency matrix of G, denoted as A = A(G),

is de�ned as the n� n matrix, A(G) = [aij] whose entries are given as:

aij =

8<
: 1 if vivj 2 E;

0 otherwise:

Note that aij = aji since we are considering undirected graphs.

Let G be a graph with vertex set V = fv1; v2; : : : ; vng. Let e = vivj be an edge of

G with i < j. Here and in the sequel, we will say that vi is the tail of e and vj is

the head of e.
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Definition 7 (Incidence Matrix) Let G be a graph with vertex set V = fv1; v2; : : : ; vng

and edge set E = fe1; e2; : : : ; emg. The incidence matrix of G, denoted by

B = B(G) = [bij], is the n�m matrix whose (i,j)th entry is given by

bij =

8>>><
>>>:

1 if vi is the head of ej;

�1 if vi is the tail of ej;

0 otherwise:

Definition 8 (Laplacian) The Laplacian of a graph G is an n � n matrix,

denoted as L = L(G) = [lij], where

lij =

8<
: di; if i = j;

�aij if i 6= j;

with di denoting the degree of vertex vi and aij is the (i; j)th entry of the

adjacency matrix of G.

The graph Laplacian can be given as

L(G) = D(G)� A(G);

where D(G) is the diagonal matrix of the degrees of G and A(G) is the adjacency

matrix of the graph. Basically, the relationship between the adjacency and inci-

dence matrices together with the graph Laplacian, can be used to �nd important

properties of the graph. This will be considered in Chapter 5. For convenience,

we use A for adjacency matrix, B for incidence matrix, and L for Laplacian.
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3.3.1 Relationship Between Adjacency Matrix, Incidence

Matrix and the Graph Laplacian.

Theorem 1 Let B be an (n�m) incidence matrix and L an (n�n) Laplacian

matrix given as D � A. Then

BBT = L:

Proof

Let

B =

2
66666664

B11 B12 : : : B1m

B21 B22 : : : B2m

...
...

. . .
...

Bn1 Bn2 : : : Bnm

3
77777775

and BT =

2
66666664

B11 B21 : : : Bn1

B12 B22 : : : Bn2

...
...

. . .
...

B1m B2m : : : Bnm

3
77777775
:

Then, for i; j 2 f1; 2; : : : ; ng, we have

[BBT ]ij = [Bi1; Bi2; : : : ; Bim] : [B1j
T ; B2j

T ; : : : ; Bnj
T ]

= [Bi1; Bi2; : : : ; Bim] : [B1j; B2j; : : : ; Bnj]
T

=
mX
k=1

BikBkj
T

=
mX
k=1

BikBjk:

If i = j, then

mX
k=1

BikBik =
mX
k=1

[Bik]
2 = deg(vi):

It follows that the diag(BBT ) = [deg(v1); deg(v2); : : : ; deg(vn)]. Since BBT is a

symmetric matrix, each of its entry consists of only �1, 0 and deg(vi) on the
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diagonals. Thus, it can be expressed as

[BBT ]ij =

8>>><
>>>:
deg(vi) if i = j;

�1 if vivj 2 E;

0 if vivj 62 E:

(3.1)

Since [BBT ]ij is an n � n matrix, we can split it into two matrices containing

one for the diagonals and the other for the 0's and the �1's such that it can be

represented as:

[BBT ]ij =

8<
: deg(vi) if i = j;

�aij if i 6= j

= D � A

= L;

(3.2)

where D is the diagonal matrix, A is the adjacency matrix and L is the graph

Laplacian. 2

Definition 9 (Reduced Laplacian)

Let the cofactor of [BBT ]ij be given as

Cij = (�1)i+j det L̂; (3.3)

where L̂ is obtained from [BBT ]ij = L by deleting the ith row and the jth

column. Then L̂ is called the reduced Laplacian.

Let the adjoint of L (transpose of the matrix of cofactors of L), be given as L��.

By elementary matrix theory, it is known that

[LL��] = detL:In (3.4)

20



where In is the n�n identity matrix of L. Since L is symmetric, it is diagonalizable.

Hence, the sum of entries in its every row and column is zero. By the use of

elementary row operations, an upper triangular matrix with a column of 0's is

created by taking the �rst column and then replacing with this column plus the

sum of all the other columns.

It is a well known fact that the determinant of an upper (or lower) triangular

matrix equals the product of its diagonal entries. Hence, with a zero on the

diagonal, the determinant of L is zero.

From (3.4), it implies that

LL�� = ~0;

that is

Nullspace(L) = kernel(L):

We can also say that

dim[kernel (L)] = 1:

Hence, kernel(L) is the span of (1; 1; : : : ; 1) and L�� is of the form

L�� = aJ = a

2
66666664

1 1 : : : 1

1 1 : : : 1
...

...
. . .

...

1 1 : : : 1

3
77777775
; (3.5)

where a is a positive real number.

3.4 Summary

This chapter presented an overview of the basic linear algebra concepts for the

structural approach to representation of graphs. The purpose of this study was
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to describe the various methods of representing connected graphs. We started

by giving brief de�nitions involving groups and �elds, and then generalizing it to

the Galois �elds representation of graphs modulo 2. Based on the analysis of this

chapter, the number of possible subgraphs associated with graphs was evaluated

as 2m in Corollary 1, where m is the size of the graph. The matrix representations

involving the incidence matrix, adjacency matrix and the graph Laplacian were

considered and will be used in the next chapter for evaluating the eigenvalues of

graphs.
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Chapter 4

Eigenvalues Associated With

Graphs

4.1 Introduction

Graphs are better interpreted with linear algebraic properties in terms of their

matrix representation compared to the Galois �eld representation. Of particular

interest in this chapter is the eigenvalues of the adjacency and Laplacian matrices,

which are useful for obtaining important information about the properties of the

graph.

Definition 10 Let K be an n � n matrix. The real number � is called an

eigenvalue of K if there exists a non-zero vector v such that

Kv = �v: (4.1)

Every non-zero vector v satisfying (4.1) is called an eigenvector of K associ-

ated with the eigenvalue �.

The characteristic polynomial, P (K;�), of K is de�ned as

P (K;�) = det(K � �In) = (�1)n[�n + c1�
n�1 + : : :+ cn�2�2 + cn�1�+ cn]:
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The zeros or roots of the characteristic polynomial are the eigenvalues of K.

Let K be a symmetric matrix. The following simple observations are well known

and we will state them without proof.

Observation 1: K is diagonalizable.

Observation 2: Let P be a non-singular matrix and D a diagonal matrix such that

K = P�1DP . Then

(i) Kk = P�1DkP for any positive integer k.

(ii)

Tr(Kk) = Tr(Dk) =
nX
i=1

�ki ; (4.2)

where �1; �2; : : : ; �n are the eigenvalues of K.

4.2 Adjacency Eigenvalues

The eigenvalues of G are de�ned as its eigenvalues of the adjacency matrix, A.

Definition 11 Let G be a graph of order n. Then the set of eigenvalues,

�1 � �2 � : : : � �n�1 � �n of G together with their multiplicities, is called the

spectrum of G, denoted as �(G).

We state the following useful theorem without proof. Its proof can be found in

any standard graph theory text.

Theorem 2 Let G be a connected graph with adjacency matrix A. Let Ak

be the kth power of A and Ak
ij be the (i; j)th entry of Ak. Then, Ak

ij is the

number of distinct walks joining vertices vi and vj of length k.
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4.2.1 Properties of the Adjacency Spectrum

For undirected graphs, the adjacency matrices are symmetric, i.e., A = AT , where

AT is the transpose of A. But, A is diagonalizable since it is symmetric. Then,

A = P�1DP , where

D =

2
66666664

�1 0 : : : 0

0 �2 : : : 0
...

...
. . .

...

0 0 : : : �n

3
77777775
:

Fact 1: From (4.2) and the fact that Tr(A) = 0, we get

Tr(A) =
nX
i=1

�i = 0:

Fact 2: Recall from Theorem 2 that the Aii entries of A
2
ij is the number of vi � vj

walks of length 2 in G. Hence, Tr(A2) =
Pn

i=1 deg(vi): This, in conjunction

with the Handshaking Lemma [28] and (4.2) gives

Tr(A2) =
nX
i=1

�2
i = 2m:

Fact 3: Let tr(G) be the number of triangles in G. Consider the diagonal entry a3ii

in A3. Then by Theorem 2, a3ii is equal to the number of vi�vi walks in G of

length 3. Any two vi� vi walks vi; u; w; vi and vi; w; u; vi form one and only

one triangle. Furthermore, in Tr(A3), each triangle is counted three times.

Therefore, Tr(A3) = 6tr(G). This, together with (4.2), gives

nX
i=1

�3
i = Tr(A3) = 6tr(G):
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In the theorem that follows, we state and prove some well-known elementary

properties of some of the co-e�cients of the characteristic polynomial of a graph.

Theorem 3 Let A be the adjacency matrix of a graph G of size m and eigen-

value �. Let P (A;�) = (�1)n[�n + c1�
n�1 + : : : + cn�2�2 + cn�1� + cn] be its

characteristic polynomial. Then

(i) c1 = 0.

(ii) �c2 = m.

(iii) cn = (�1)n detA = (�1)nQn
i=1 �i.

Proof

The i� i principal minor of A is the determinant of the i� i submatrix obtained

from A by deleting (n� i) rows and its corresponding (n� i) columns. It can be

observed that the coe�cients ci's in P (A;�) are the sums of the i � i principal

minors of A. Hence, we have that

(i) For c1, the 1� 1 submatrices of A are the zeros along the diagonal of A. Thus,

c1 = 0.

(ii) Every edge in A can be represented as the non-zero 2 � 2 principal minor of

A, represented as det[ 0 1
1 0 ]. Since each principal minor is unique for each adjacent

vertices in G and other principal minors of A for i = 3; 4; : : : ; n are all zeros, then

c2 = �m.

(iii) cn is the n�n principal minor of A. Since there is only one n�n submatrix

26



equivalent to A itself, then,

cn = (�1)n detA;

where (�1)n can be obtained by expanding the determinant along the diagonal.

Recall that

P (A;�) = det(A� �I) = (�1 � �)(�2 � �) : : : (�n � �):

Since � is a variable, we can set � = 0 so that

P (A;�) = det(A) = �1�2 : : : �n;

as desired. 2

In the following theorem, we state without proof, a generalised formular by Sachs

[29] for the coe�cients ci of the characteristic polynomial of a graph G.

Theorem 4 Let Hi denote the collection of i-vertex subgraphs of G whose

components are edges or cycles. If P (G;�) =
P

i ci�
n�1 is the characteristic

polynomial of G, then ci =
P

H2Hi
(�1)c(H)2y(H), where c(H) is the number of

components of H, and y(H) is the number of components that are cycles in

H.

2

4.3 Laplacian Eigenvalues

Apart from the adjacency eigenvalues, �(A), the Laplacian eigenvalue, �(L) or

simply denoted as �i in this thesis, is another important concept in graph theory

basically because of its application to the evaluation of the number of spanning

trees of graphs which will be discussed in Chapter 5.

27



4.3.1 Properties of the Laplacian Eigenvalues

Lemma 1 Let G be a graph. The Laplacian eigenvalues of G, written as

�i(L), has values �i � 0.

Proof

Let v be a non-zero orthonormal eigenvector of L with eigenvalue �. Then, Lv =

�v and so

vT�v = vTLv; (4.3)

which can be written as

�(vTv) = vTLv:

Since vTv = 1;

� = vTLv:

Recall that from (3.2), the Laplacian can be expressed as:

[L]ij = [BBT ]ij = [BTB]ij;

where B is the incidence matrix of G which is symmetric. Hence, (4.3) becomes

vTLv = vT (BTB)v = (vTBT )(Bv):

It follows that

(Bv)T (Bv) = (Bv):(Bv) =
nX
i=1

(Bv)2 � 0;

which proves the lemma. 2

Lemma 2 Zero is an eigenvalue of L.
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Proof

Let v be the column vector, v = [1 1 : : : 1]T . Then Lv = 0 = 0:v since each

row associated with vertex vi has �di and sum of 10s equivalent to the sum of

neighbours of vi, for i = 1; 2; : : : ; n.

Hence, � = 0 is an eigenvalue of L. 2

Lemma 3 If G is k-regular, then

(�1)n detL =
nY
i=1

�i =
nY
i=1

(k � �i):

Proof

Recall from Theorem 3 that (�1)n detL =
Qn
i=1 �i. Hence, using the fact that

L = D � A from (3.2) in conjunction with Theorem 3 completes the proof. 2

4.4 Laplacian Eigenvalues of Some Special Graphs

In this section, we state and prove by derivation some well known Laplacian eigen-

values of the special graphs discussed in Chapter 2.

Complete Graph, Kn

Theorem 5 The Laplacian eigenvalues of the complete graph Kn are 0 and

n. The multiplicities are 1 and n� 1 respectively.
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Proof

A complete graph is an (n� 1)-regular graph whose adjacency matrix is given as:

A(Kn) =

2
66666666664

0 1 1 : : : 1

1 0 1 : : : 1

1 1 0 : : : 1
...

...
...

. . .
...

1 1 1 : : : 0

3
77777777775
n�n

:

The Laplacian can be written as:

L(Kn) =

2
66666666664

n� 1 0 0 : : : 0

0 n� 1 0 : : : 0

0 0 n� 1 : : : 0
...

...
...

. . .
...

0 0 0 : : : n� 1

3
77777777775
�

2
66666666664

0 1 1 : : : 1

1 0 1 : : : 1

1 1 0 : : : 1
...

...
...

. . .
...

1 1 1 : : : 0

3
77777777775

=

2
66666666664

n� 1 �1 �1 : : : �1
�1 n� 1 �1 : : : �1
�1 �1 n� 1 : : : �1
...

...
...

. . .
...

�1 �1 �1 : : : n� 1

3
77777777775

We can re-write L(Kn) as

L(Kn) =

2
66666666664

n 0 0 : : : 0

0 n 0 : : : 0

0 0 n : : : 0
...

...
...

. . .
...

0 0 0 : : : n

3
77777777775
�

2
66666666664

1 1 1 : : : 1

1 1 1 : : : 1

1 1 1 : : : 1
...

...
...

. . .
...

1 1 1 : : : 1

3
77777777775

:

That is

L(Kn) = nIn � J;
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where J is a matrix whose elements are all ones. Thus,

L(Kn)� nIn =

2
66666666664

�1 �1 �1 : : : �1
�1 �1 �1 : : : �1
�1 �1 �1 : : : �1
...

...
...

. . .
...

�1 �1 �1 : : : �1

3
77777777775
= �J:

But,

det(L(Kn)� nIn) =

����������������

�1 �1 �1 : : : �1
�1 �1 �1 : : : �1
�1 �1 �1 : : : �1
...

...
...

. . .
...

�1 �1 �1 : : : �1

����������������
= 0:

Therefore, n is an eigenvalue of L(Kn). By expressing (�J) in echelon form, we

have that:

(�J) =

2
66666666664

�1 �1 �1 : : : �1
�1 �1 �1 : : : �1
�1 �1 �1 : : : �1
...

...
...

. . .
...

�1 �1 �1 : : : �1

3
77777777775
s

2
66666666664

1 1 1 : : : 1

0 0 0 : : : 0

0 0 0 : : : 0
...

...
...

. . .
...

0 0 0 : : : 0

3
77777777775
:

Thus, (�J) is a rank one matrix of eigenvector ~1 = [111 : : : 1]T : This means that

it has only one non-zero eigenvalue, n and the remaining eigenvalues as zeros of

multiplicity (n � 1). The eigenvalues of L(Kn) are reversed when nI is added to

(�J) . Therefore, we obtain the eigenvalues of L(Kn) as 0 of multiplicity 1 and n

of multiplicity n� 1 which completes the proof. 2
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Complete Bipartite Graph, Kp;q

Theorem 6 Let Kp;q be the complete bipartite graph of order n. Then, the

Laplacian eigenvalues of Kp;q are 0, p+q, p and q with respective multiplicities

1,1, q � 1 and p� 1.

Proof

Consider a complete bipartite graph, Kp;q, of order n. since the adjacency matrix

of Kp;q is given as:

A(Kp;q) =

2
66666666666664

0 � � � 0 1 � � � 1
...

. . .
...

. . .

0 � � � 0 1 � � � 1

1 � � � 1 0 � � � 0
...

. . .
...

. . .
...

1 � � � 1 0 � � � 0

3
77777777777775
;

its Laplacian can be expressed as:

L(Kp;q) =

2
66666666666664

q � � � 0 �1 � � � �1
...

. . .
...

. . .

0 � � � q �1 � � � �1
�1 � � � �1 p � � � 0
...

. . .
...

. . .
...

�1 � � � �1 0 � � � p

3
77777777777775
n�n

:

In block matrix form, we can re-write L(Kp;q) as

L(Kp;q) =

2
4 Dq �J
�JT Dp

3
5 ;

where Dq is a (p � p) diagonal matrix containing q in its diagonals and Dp is a

(q � q) diagonal matrix containing p in its diagonals. By reducing the Laplacian
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to its echelon form, we have that

L(Kp;q) =

2
66666666666664

q � � � 0 �1 � � � �1
...

. . .
...

. . .

0 � � � q �1 � � � �1
�1 � � � �1 p � � � 0
...

. . .
...

. . .
...

�1 � � � �1 0 � � � p

3
77777777777775
�

2
66666666666664

1 � � � 1 0 � � � �p
...

. . .
...

. . .

0 � � � q p � � � 0
...

. . .
...

. . .
...

0 � � � 0 0 � � � �p
0 � � � 0 0 � � � 0

3
77777777777775
:

Hence, L(Kp;q) has a rank of n�1, implying that there are n�1 non zero eigenval-

ues containing p of multiplicity q� 1, and q of multiplicity p� 1 on the diagonals,

and one zero eigenvalue. Therefore, the characteristic equation is then expressed

as:

P (L) = �n + bn�1�n�1 + : : :+ b1�+ b0

= �(�� �1)(�� �2) : : : (�� �n�1); since�n = 0

= �n � (
nX
i=i

�i)�
n�1 + : : :+ �

n�1Y
i=1

�i = 0:

It then follows that

�� �n = 0;

and so

� = �n:

Hence, n is also a Laplacian eigenvalue of L(Kp;q) of multiplicity 1. Thus, the

eigenvalues of Kp;q are 0, p + q, p and q with respective multiplicities 1,1, q � 1

and p� 1, as required. 2
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Star graph

The star graph, Sn, is the complete bipartite graph, K1;n�1, so we can get the

Laplacian eigenvalues directly from the previous section. The adjacency matrix

denoted as A(Sn), is given as

A(Sn) =

2
66666666664

0 1 1 � � � 1 1

1 0 0 � � � 0 0

1 0 0 : : : 0 0
...

...
...

...
...

...

1 0 0 � � � 0 0

3
77777777775
(n�n)

:

Thus, the Laplacian matrix, denoted L(Sn), can be expressed as follows:

L(Sn) =

2
66666666666664

n� 1 �1 �1 � � � �1 �1
�1 1 0 � � � 0 0

�1 0 1 : : : 0 0
...

...
...

. . .
...

...

�1 0 0 � � � 1 0

�1 0 0 � � � 0 1

3
77777777777775
n�n

:

By substituting for p = 1 and q = n � 1 in the Theorem 6, it su�ces to show

that the Laplacian eigenvalues of Sn are n and 0 of multiplicity 1 each; and 1 of

multiplicity n� 2 as required.

4.4.1 Graphs With Teoplitz Laplacian Matrices

In this section, we state and provide proofs for the Laplacian eigenvalues of special

graphs whose adjacency and Laplacian matrix are Teoplitz matrices. Teoplitz ma-

trices are matrices named after Otto Teoplitz, a German mathematician, in which

each descending diagonal from left to right is constant.
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Here, we use the idea by Yueh and Cheng in [39] to derive the Laplacian eigenval-

ues, �i of L, from the eigenvalue problem Lv = �v.

Theorem 7 The eigenvalues, �i, associated with the homogeneous di�erence

equation of a Teoplitz matrix is given as :

�j = a+ 2
p
bc
�
cos(

�j

n
)
�
; j = 0; 1; 2; : : : ; n� 1 (4.4)

Proof

Let G be a graph whose Laplacian can be represented by the Teoplitz matrix as

follows:

L(G) =

2
66666666666664

a+ � c 0 0 � � � 0 �

b a c 0 � � � 0 0

0 b a c : : : 0 0
...

...
...

...
. . .

...
...

0 0 0 0 � � � a c

 0 0 0 � � � b a+ �

3
77777777777775
n�n

: (4.5)

Let the eigenvector associated to L(G) be ~v such that L~v = �~v. Then:

2
66666666666664

a+ � c 0 0 � � � 0 �

b a c 0 � � � 0 0

0 b a c : : : 0 0
...

...
...

...
. . .

...
...

0 0 0 0 � � � a c

 0 0 0 � � � b a+ �

3
77777777777775

2
66666666666664

v1

v2

v3
...

vn�1

vn

3
77777777777775
= �

2
66666666666664

v1

v2

v3
...

vn�1

vn

3
77777777777775
: (4.6)

By changing (4.6) to system of equations, we obtain sets of di�erence equations:
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(a+ �)v1 + cv2 + �vn = �v1 (4.7)

bv1 + av2 + cv3 = �v2 (4.8)

bv2 + av3 + cv4 = �v3 (4.9)

bvn�2 + avn�1 + cvn = �vn�1 (4.10)

v1 + bvn�1 + (a+ �)vn = �vn: (4.11)

The general form of the di�erence equations (4.7) to (4.11) above can be expressed

as

bvk�1 + avk + cvk+1 = �vk + Fk

bvk�1 + (a� �)vk + cvk+1 = Fk

cvk+2 + (a� �)vk+1 + bvk = Fk+1;

(4.12)

where k 2 Z+ and 0 < k � n. Therefore, by dividing (4.12) by c, we obtained the

following.

vk+2 +
(a� �)

c
vk+1 + (

b

c
)vk =

Fk+1

c
;

where, Fk is the inhomogeneous part which is also a function of k.

By re-writing (4.7) and comparing with (4.12), we obtain the equation for k = 1

as

(a� �)v1 + cv2 = ��v1 � �vn;

bv0 = ��vn � �v1 = 0:

Similarly, by re-writing (4.11) and comparing with (4.12), we obtain for k = n,

bvn�1 + (a� �)vn = ��vn � v1;
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cvn+1 = �v1 � �vn = 0:

Therefore, the non-homogeneous part of (4.12) is given as:

Fk =

8>>><
>>>:
�(�vn + �v1) if k = 1;

�(v1 + �vn) if k = n;

0 otherwise:

By solving the homogeneous part of (4.12),

vk+2 +
(a� �)

c
vk+1 + (

b

c
)vk = 0; for k 6= 1; n;

it follows that the characteristic equation is given as

r2 + (
a� �

c
)r +

b

c
= 0: (4.13)

Solutions of the di�erence equations can be of the form:

vk =

8>>><
>>>:
t1r

k
1 + t2r

k
2 if r1 6= r2;

t1r
k + t2kr

k if r1 = r2 = r;

0 otherwise;

where t1 and t2 are arbitrary constants. But r1 6= r2, therefore solutions of vk are

of the form vk = t1r
k
1 + t2r

k
2 . Let the initial conditions be v0 = vn = 0. Then,

when k = 0; v0 = 0,

v0 = t1r
0
1 + t2r

0
2 = 0;

so that

t1 = �t2:

When k = n; vn = 0,

vn+1 = t1r
n
1 + t2r

n
2 = 0: (4.14)
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By substituting t1 for �t2 in (4.14), it follows that

(
r1
r2
)n = 1:

Hence, a representation in complex form is

r1
r2

= exp(i
2�j

n
): (4.15)

Moreso, we can write (4.13) as

r2 + (
a� �

c
)r +

b

c
= (r � r1)(r � r2); (4.16)

so that

r1r2 =
b

c
and r1 + r2 = �(a� �

c
): (4.17)

By substituting (4.15) into (4.17), we have that:

r22 exp(
2�ij

n
) =

b

c
;

which can also be expressed as

�
r2 exp(

�ij

n
)
�2

=
b

c
;

so that by taking the square root of both sides and dividing through by exp(�ij
n
),

we obtain

r2 =

s
b

c

�
exp(��ij

n
)
�
:

Thus, by substituting for r2 in (4.15), we can obtain r1 as follows:

r1 = r2 exp(
2�ij

n
) =

s
b

c

�
exp(

�ij

n
)
�
:

By substituting for r1 and r2 in (4.17), we gets
b

c

�
exp(

�ij

n
)
�
+

s
b

c

�
exp(��ij

n
)
�
=
�� a

c
;
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so that

p
bc
�
exp(

�ij

n
) + exp(��ij

n
)
�
+ a = �;

and

p
bc
�
2 cos(

�j

n
)
�
+ a = �;

which proves the theorem. 2

Bojan Mohar in [12] gave the Laplacian eigenvalues of the path, cycle and

ladder graphs in terms of the sine of some angles without proof. Here, we derived

the Laplacian eigenvalues of the path, cycle and ladder from Theorem 7.

Path Graph, Pn

Theorem 8 The Laplacian eigenvalues of Pn are:

�j(Pn) = 4 sin2(
�j

2n
); j = 0; 1; : : : ; n� 1:

Proof

The path graph's adjacency and Laplacian matrices are examples of Teoplitz ma-

trices. The adjacency matrix is given as

A(Pn) =

2
66666666666664

0 1 0 � � � 0 0

1 0 1 � � � 0 0

0 1 0 : : : 0 0
...

...
...

. . .
...

...

0 0 0 � � � 0 1

0 0 0 � � � 1 0

3
77777777777775
n�n

;
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and the Laplacian matrix is

L(Pn) =

2
66666666666664

1 �1 0 � � � 0 0

�1 2 �1 � � � 0 0

0 �1 2 : : : 0 0
...

...
...

. . .
...

...

0 0 0 � � � 2 �1
0 0 0 � � � �1 1

3
77777777777775
n�n

:

By comparing with (4.5), we have that a = 2, b = c = �1, � = � = �1, and

� =  = 0. Hence, the Laplacian eigenvalues of Pn is given as

�j(Pn) = a+ 2
p
bc cos(

�j

n
)

= a+ 2b cos(
�j

n
):

Since b = c and cos(�j
n
) = 1� 2 sin2(�j

2n
); we have that

�j(Pn) = 2� 2 cos(
j

n
)� = 2

�
1� cos(

j

n
)�
�

= 4 sin2(
�j

2n
);

(4.18)

for j = 0; 1; : : : ; n� 1, and the theorem is proved. 2

Ladder Graph, Ln

Similar to the path graph is the Laplacian of the Ladder graph stated by Bojan

in [12]. We derive the Laplacian eigenvalues from Theorem 8 using a lemma by

Bojan in [12].

Theorem 9 The Laplacian eigenvalues of the ladder graph is given as:

�j(Ln) = 4 sin2
�
�i

4

�
+ 4 sin2

�
�j

n

�
; 8 i; j = 0; 1; : : : ; n� 1:

40



To derive the Laplacian eigenvalues of Ln, we use a lemma in [12] without proof.

Lemma 4 If �i are the Laplacian eigenvalues of the graph Gi and �j are the

eigenvalues of the graph Gj, then the eigenvalues of the Cartesian product

Gi�Gj is given as �i + �j for 1 � i; j � n.

Proof of Theorem

The ladder graph adjacency and Laplacian matrices are also examples of Teoplitz

matrices. The adjacency matrix of the ladder graph is given as

A(Ln) =

2
4 T I

I T

3
5 ;

where I is an (n
2
� n

2
) identity matrix and T is a leading (n

2
� n

2
) diagonal Teoplitz

matrix given below.

T =

2
66666666666664

0 1 0 � � � 0 0

1 0 1 � � � 0 0

0 1 0 : : : 0 0
...

...
...

. . .
...

...

0 0 0 � � � 0 1

0 0 0 � � � 1 0

3
77777777777775
(n
2
�n

2
)

:

The Laplacian matrix can be expressed as below.

L(Ln) =

2
4 P �I
�I P

3
5
n�n

;
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where P can be expressed as:

P =

2
66666666666664

2 �1 0 � � � 0 0

�1 3 �1 � � � 0 0

0 �1 3 : : : 0 0
...

...
...

. . .
...

...

0 0 0 � � � 3 �1
0 0 0 � � � �1 2

3
77777777777775
(n
2
�n

2
)

:

Since Ln is a Cartesian product of P2 and Pn
2
, it follows from Lemma 4 that

�j(Ln) = �j(P2�Pn
2
)

= �j(P2) + �j(Pn
2
):

Since �i(Pn) = 4 sin2(�j
2n
), we have that

= 4 sin2
�
�i

2(2)

�
+ 4 sin2

�
�j

2(n
2
)

�

= 4 sin2
�
�i

4

�
+ 4 sin2

�
�j

n

�
;

for all i; j = 0; 1; : : : ; n� 1, as required. 2

Cycle Graph, Cn

Here, we also derived the cycle Laplacian eigenvalues using Theorem 7.

Theorem 10 The Laplacian eigenvalues of the cycle is given as:

�j(Cn) = 4 sin2(
�j

n
); j = 1; : : : ; n
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The cycle graph has the adjacency matrix as

A(Cn) =

2
66666666666664

0 1 0 � � � 0 1

1 0 1 � � � 0 0

0 1 0 : : : 0 0
...

...
...

. . .
...

...

0 0 0 � � � 0 1

1 0 0 � � � 1 0

3
77777777777775
n�n

;

and the Laplacian matrix as

L(Cn) =

2
66666666666664

2 �1 0 � � � 0 �1
�1 2 �1 � � � 0 0

0 �1 2 : : : 0 0
...

...
...

. . .
...

...

0 0 0 � � � 2 �1
�1 0 0 � � � �1 2

3
77777777777775
n�n

= 2I � A(Cn):

By comparing L(Cn) with (4.5), we have that a = 2, b = c = �1, � = � = 0 and

� =  = �1. Since a path is obtained from Cn by removing an edge, then the

Laplacian eigenvalues of Cn is given as

�j(Cn) = a+ 2b cos(
2j

n
)�:

From b = c, we get

�j(Cn) = 2� 2 cos(
2j

n
)� = 2

�
1� cos(

2j

n
)�
�
:
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It follows using the fact that cos(2u) = 1� 2 sin2 u, that

�j(Cn) = 2
�
1� (1� 2 sin2(

�j

n
))
�

= 2
�
2 sin2(

�j

n
)
�

= 4 sin2(
�j

n
);

for j = 1; : : : ; n:, which proves the theorem. 2

According to Lee et. al. [26], the wheel and fan graphs are also special cases

of the Teoplitz matrix with Laplacian eigenvalues 1+4 sin2(�j
n
), and 1+4 sin2(�j

2n
)

respectively. We state �rst the Laplacian as a theorem and then give proofs from

the general Teoplitz formulae in Theorem 7.

Wheel Graph, Wn

Theorem 11 The Laplacian eigenvalues of the Wn are 0, n + 1 and [1 +

4 sin2(�j
n
)]; j = 1; : : : ; n� 1.

The wheel graph, Wn is such that the adjacency matrix can be expressed as

A(Wn) =

2
66666666666664

0 1 1 � � � 1 1

1 0 1 � � � 0 1

1 1 0 : : : 0 0
...

...
...

. . .
...

...

1 0 0 � � � 0 1

1 1 0 � � � 1 0

3
77777777777775
=

2
4 0 J

JT A(Cn)

3
5 :

Here, J is a 1�n matrix and A(Cn) is the corresponding adjacency matrix of the

cycle associated with the wheel graph.
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The Laplacian matrix is given as:

L(Wn) =

2
66666666666664

n �1 �1 � � � �1 �1
�1 3 �1 � � � 0 �1
�1 �1 3 : : : 0 0
...

...
...

. . .
...

...

�1 0 3 � � � 3 �1
�1 �1 0 � � � �1 3

3
77777777777775
=

2
4 n �J
(�J)T L(Cn) + In

3
5 :

Recall from Lemma 2 that 0 is an eigenvalue. The remaining eigenvalues, denoted

as �i; i = 1; : : : ; n, can be obtained as follows:

�i(Wn) = �i(L(Cn + In)):

Here, a = 3; b = c = �1; � =  = �1 and � = � = 0. Hence, we have that:

�i(Wn) = a+ 2b cos(
2j

n
)�:

By substituting for a = 3 and b = c = �1, we have that

�i(Wn) = 3� 2 cos(
2�j

n
) = 1 + 2

�
1� cos(

2�j

n
)
�
:

It follows that

�i(Wn) = 1 + 4 sin2(
�j

n
):

This completes the proof. 2

Since �i(Cn) = 4 sin2(�j
n
), we can express the Laplacian eigenvalues of the

wheel in terms of the cycle graph as follows

�i(Wn) = 1 + �i(Cn):

Fan Graph, Fn

Theorem 12 The Laplacian eigenvalues of the Fn are 0, n + 1 and [1 +

4 sin2(�j
2n
); j = 1; : : : ; n� 1.
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Proof

The fan graph, Fn, has the adjacency matrix:

A(Fn) =

2
66666666666664

0 1 1 � � � 1 1

1 0 1 � � � 0 0

1 1 0 : : : 0 0
...

...
...

. . .
...

...

1 0 0 � � � 0 1

1 0 0 � � � 1 0

3
77777777777775
=

2
4 0 J

JT A(Pn)

3
5 ;

and Laplacian as below.

L(Fn) =

2
66666666666664

n �1 �1 � � � �1 �1
�1 2 �1 � � � 0 0

�1 �1 3 : : : 0 0
...

...
...

. . .
...

...

�1 0 3 � � � 3 �1
�1 0 0 � � � �1 2

3
77777777777775
=

2
4 n �J
(�J)T L(Pn) + In

3
5 :

Similarly with that of the wheel, 0 is an eigenvalue and the remaining correspond-

ing eigenvalues are obtained from:

�j(Fn) = �j(L(Pn) + In):

Hence by comparison, a = 3, b = c = �1, � = � = �1, � =  = 0.

�j(Fn) = a+ 2b cos(
�j

2n
):

From a = 3 and b = c = �1, we have that

�j(Fn) = 3� 2 cos(
�j

2n
) = 1 + 2

�
1� cos(

�j

2n
)
�
:
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Since 1� cos(�j
2n
) = 2 sin2(�j

2n
), it follows that

�j(Fn) = 1 + 4 sin2(
�j

2n
);

for j = 1; : : : ; n, which completes the proof. 2

Since �i(Pn) = 4 sin2(�j
2n
), we can express the Laplacian eigenvalues of the fan

as follows

�i(Fn) = 1 + �i(Pn):

4.5 Summary

This chapter gives an in-depth overview of the adjacency and Laplacian eigenval-

ues of the special graphs described earlier in Chapter 2. The properties of the

adjacency spectrum were studied using the characteristic polynomial which con-

tains important information about the graph especially the determinant, trace and

eigenvalues of the matrix. Furthermore, based on the relationship between the ad-

jacency and Laplacian matrices described in Chapter 3, the Laplacian eigenvalues

of the special graphs were evaluated. These results will be used in Chapter 5 in the

determination of their various number of spanning trees. Moreover, the derived

generalised eigenvalues of the Teoplitz matrix will be used for the derivation of

the adjacency spectrum of the complete graph in the next chapter.
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Chapter 5

t-Complete Eigen Sequences

5.1 Introduction

The complete graph is often used in verifying certain new graph theoretical de�-

nitions because of its strong connectivity and rigid property. In this chapter, we

use the adjacency spectrum of the complete graph to generate trigonometric unit

equations involving sum of terms in the form of cosines for n odd, which gives

rise to the t- complete eigen sequences, similar to the famous Farey sequence. The

main results in this chapter are presented in Theorem 13 and Corollaries 2 and 3.

This results have been submitted for publication.

5.2 Formation of the t-Complete Eigen Sequence

Generally, the complete graph is a circulant graph. Circulant matrices are special

cases of the Teoplitz matrices whose remaining n�1 rows are cyclic permutations

of the �rst row.
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Lemma 5 (Jessop, [21]) Let

A =

2
66666666664

c0 c1 c2 : : : cn�2 cn�1

cn�1 c0 c1 : : : cn�3 cn�2
...

...
...

. . .
...

...

c2 c3 c4 : : : c0 c1

c1 c2 c3 : : : cn�1 c0

3
77777777775

be an n � n circulant matrix, such that AVj = �Vj, where �j and Vj are

the eigenvalue and eigenvector respectively. Then, the eigenvectors of A are

given as:

Vj = [1; �j; �
2
j ; : : : ; �

n�1
j ]T ; j = 0; 1; : : : ; n� 1;

where �j = exp
�
2�ij
n

�
are the nth roots of unity and i =

p�1.

The corresponding eigenvalues are given as:

�j = c0 + c1�j + c2�
2
j + : : :+ cn�1�

n�1
j :

Lemma 6 Let the adjacency matrix of the complete graph, Kn on n vertices

be given as:

A(Kn) =

2
66666666664

0 1 1 : : : 1

1 0 1 : : : 1

1 1 0 : : : 1
...

...
...

. . .
...

1 1 1 : : : 0

3
77777777775
n�n

:

Then, its eigenvalues for all j, where j = 0; 1; : : : ; n� 1, are:
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�j = e
2�ij
n + e

4�ij
n + : : :+ e

2(n�1)�ij
n

=
�
cos

�
2�j

n

�
+ i sin

�
2�j

n

��
+
�
cos

�
4�j

n

�
+ i sin

�
4�j

n

��
+ : : :

+
�
cos

�
2(n� 1)�j

n

�
+ i sin

�
2(n� 1)�j

n

��

=
n�1X
k=1

cos
�
2�jk

n

�
+ i

n�1X
k=1

sin
�
2�jk

n

�
:

The proofs for Lemmas 5 and 6 can be found in (Jessop [21]).

Using the above lemmas and the fact that the eigenvalues of the adjacency

matrix associated with the complete graph are n � 1 of multiplicity 1 and �1 of

multiplicity n� 1, we have the following theorem.

Theorem 13 Let t 2 Z+. Then

2
�
cos

�
�

2t+ 1

�
+ cos

�
3�

2t+ 1

�
+ : : :+ cos

�
(2t� 1)�

2t+ 1

��

= 2
tX

r=1

cos
�
�(2t� 2r + 1)

2t� 1

�
= 1:

(5.1)

Proof

For j = 0, Lemma 6 yields the eigenvalue n � 1. Thus for j 6= 0, the eigenvalues

are �1, i.e., for j 6= 0,

�j =
n�1X
k=1

cos
�
2�jk

n

�
+ i

n�1X
k=1

sin
�
2�jk

n

�
= �1:
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Considering n = 2t+ 1 for j 6= 0, we have that:

n�1X
k=1

sin
�
2�jk

n

�
=

2tX
k=1

sin
�
2�jk

2t+ 1

�

= sin
�

2�j

2t+ 1

�
+ sin

�
4�j

2t+ 1

�
+ : : :+ sin

�
4t�j

2t+ 1

�

=
�
sin

�
2�j

2t+ 1

�
+ : : :+ sin

�
2t�j

2t+ 1

��
+
�
sin

�
2(t+ 1)�j

2t+ 1

�
+ : : :+ sin

�
4t�j

2t+ 1

��

= [A] + [B];

where A has the �rst t terms and B the next t terms. By adding the �rst term of

A and the last term of B, it follows that:

sin
�

2�

2t+ 1

�
+ sin

�
4�t

2t+ 1

�

= sin
�
(2t+ 1)�

2t+ 1
� (2t� 1)�

2t+ 1

�
+ sin

�
(2t+ 1)�

2t+ 1
+
(2t� 1)�

2t+ 1

�

= sin
�
(2t� 1)�

2t+ 1

�
� sin

�
(2t� 1)�

2t+ 1

�
= 0:

Generally, adding the rth term of A and the t � (r � 1)th term of B, where

r = 1; 2; : : : t, yields:

sin
�

2�r

2t+ 1

�
+ sin

�
2�(2t� r + 1)

2t+ 1

�

= sin
�
(2t+ 1)�

2t+ 1
� (2t� 2r + 1)�

2t+ 1

�
+ sin

�
(2t+ 1)�

2t+ 1
� (2t� 2r + 1)�

2t+ 1

�

= sin
�
(2t� 2r + 1)�

2t+ 1

�
� sin

�
(2t� 2r + 1)�

2t+ 1

�
= 0; r = 1; 2; : : : t:

Therefore, for j 6= 0,

n�1X
k=1

sin
�
2�jk

n

�
= 0;
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and then,

�j =
2t�1X
k=1

cos
�
2�jk

n

�
+ i

n�1X
k=1

sin
�
2�jk

n

�
=

2t�1X
k=1

cos
�
2�jk

2t

�
= �1:

Now,

2t�1X
k=1

cos
�
2�jk

2t

�
=
�
cos

�
2�

2t+ 1

�
+ cos

�
4�

2t+ 1

�
+ : : :+ cos

�
2�t

2t+ 1

��

= +
�
cos

�
2�(t+ 1)

2t+ 1

�
+ cos

�
2�(t+ 2)

2t+ 1

�
+ : : :+ cos

�
4�t

2t+ 1

��

= A+B;

where A has the �rst t terms and B the next t terms. By adding the �rst term of

A and the last term of B, we have:

cos
�

2�

2t+ 1

�
+ cos

�
4�t

2t+ 1

�

= cos
�
(2t+ 1)�

2t+ 1
� (2t� 1)�

2t+ 1

�
+ cos

�
(2t+ 1)�

2t+ 1
+
(2t� 1)�

2t+ 1

�

= 2 cos
�
(2t+ 1)�

2t+ 1

�
cos

�
(2t� 1)�

2t+ 1

�

= �2 cos
�
(2t� 1)�

2t+ 1

�
:

By adding the t-th term of A and the �rst term of B yield

cos
�

2�t

2t+ 1

�
+ cos

�
2�(t+ 1)

2t+ 1

�

= cos
�
(2t+ 1)�

2t+ 1
� �

2t+ 1

�
+ cos

�
(2t+ 1)�

2t+ 1
+

�

2t+ 1

�

= �2 cos
�

�

2t+ 1

�
:
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Adding the second term of A and the second to the last term of B yields:

cos
�
2�(2)

2t+ 1

�
+ cos

�
2�(2t� 2 + 1)

2t+ 1

�

= cos
�
4t�

2t+ 1

�
+ cos

�
(2t� 1)2�

2t+ 1

�

= cos
�
(2t+ 1)�

2t+ 1
� (2t� 3)�

2t+ 1

�
+ cos

�
(2t+ 1)�

2t+ 1
+
(2t� 3)�

2t+ 1

�

= �2 cos
�
(2t� 3)�

2t+ 1

�
:

Generally, adding the rth term of A and the t�(r�1)th term of B, for r = 1; 2; : : : t,

yields

cos
�

2�r

2t+ 1

�
+ cos

�
2�(2t� r + 1)

2t+ 1

�

= cos
�
(2t+ 1)�

2t+ 1
� (2t� 2r + 1)�

2t+ 1

�
+ cos

�
(2t+ 1)�

2t+ 1
+
(2t� 2r + 1)�

2t+ 1

�

= �2 cos� cos
�
(2t� 2r + 1)�

2t+ 1

�

= �2 cos
�
(2t� 2r + 1)�

2t+ 1

�
; r = 1; 2; : : : t:

Thus,

2
tX

r=1

cos
�
(2t� 2r + 1)�

2t+ 1

�
= 1; t 2 Z+:

This implies that

2
�
cos

�
�

2t+ 1

�
+cos

�
3�

2t+ 1

�
+cos

�
5�

2t+ 1

�
+: : :+cos

�
(2t� 1)�

2t+ 1

��
= 1; t 2 Z+;

which is equivalently

�
cos

�
�

2t+ 1

�
+cos

�
3�

2t+ 1

�
+cos

�
5�

2t+ 1

�
+: : :+cos

�
(2t� 1)�

2t+ 1

��
=

1

2
; t 2 Z+;

and the theorem is proven. 2
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From Theorem 13, we can generate the following trigonometric unit-equations

having t terms involving cos( a
2t+1

)�, where a
2t+1

involves all \odd" rational numbers

in the interval (0; 1), i.e., a is also odd. There will be exactly t such odd rational

numbers forming a t-sequence:

t = 1; 2
�
cos(

�

3
)
�
= 1 =) d =

1

3

t = 2; 2
�
cos(

�

5
) + cos(

3�

5
)
�
= 1 =) d =

1

5
;
3

5

t = 3; 2
�
cos(

�

7
) + cos(

3�

7
) + cos(

5�

7
)
�
= 1 =) d =

1

7
;
3

7
;
5

7

t = 4; 2
�
cos(

�

9
) + cos(

3�

9
) + cos(

5�

9
) + cos(

7�

9
)
�
= 1 =) d =

1

9
;
3

9
;
5

9
;
7

9
;

where d is the sequence consisting of the odd rational numbers between 0 and 1.

For each t, we therefore associate the t-sequence of odd rational terms, each term

belonging to the interval (0; 1) and having the form a
2t+1

, containing t-terms:

1

2t+ 1
;

3

2t+ 1
;

5

2t+ 1
;

7

2t+ 1
; : : : ;

2t� 1

2t+ 1
; t 2 Z+:

This sequence has similarities to the Farey sequence. The Farey sequence of

order n is the sequence, FYn, of completely reduced fractions between 0 and 1,

which; when in lowest terms, have denominators less than or equal to n, arranged

in order of increasing size [18].

The sequence derived from the eigenvalues of the complete graph, Kn is called the

t-Complete-Eigen Sequence.

Corollary 2 The sum of the terms of the t-complete eigen sequence:

1

2t+ 1
;

3

2t+ 1
;

5

2t+ 1
;

7

2t+ 1
; : : : ;

2t� 1

2t+ 1
;
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is given by:

tX
r=1

2t� 2r + 1

2t+ 1
=

t2

2t+ 1
; t 2 Z+:

Proof

By writing each t-sequence down twice, with the second reversed, we obtain:

S :
1

2t+ 1
;

3

2t+ 1
;

5

2t+ 1
;

7

2t+ 1
; : : : ;

2t� 1

2t+ 1

S 0 :
2t� 1

2t+ 1
;
2t� 3

2t+ 1
;
2t� 5

2t+ 1
;
2t� 7

2t+ 1
; : : : ;

1

2t+ 1

Adding corresponding terms, we obtain a double sum of the terms of the sequence

as:

tX
r=1

2t� 2r + 1

2t+ 1
=

1

2

�
2t2

2t+ 1

�
=

t2

2t+ 1
; t 2 Z+;

which proves the corollary. 2

5.3 t-Complete-Eigen Ratio

Let tKn
be the ratio formed by dividing each term of the t-complete eigen sequence

by t to obtain a new sequence below

1

t(2t+ 1)
;

3

t(2t+ 1)
;

5

t(2t+ 1)
;

7

t(2t+ 1)
; : : : ;

2t� 1

t(2t+ 1)
; t 2 Z+:

Then,

tX
r=1

2t� 2r + 1

t(2t+ 1)
=

1

t

�
t2

2t+ 1

�
=

t

2t+ 1
; t 2 Z+;

which converges to 1
2
, as t increases. Hence, t2

t(2t+1)
is the t-Complete-Eigen Ratio

of t2

(2t+1)
, denoted as tKn

, which converges to the constant 1
2
.
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Corollary 3 Let tKn
be the t-Complete-Eigen Ratio. Then, the asymptotic

value of tKn
as t!1 is given as

t1Kn
= lim

t!1

tX
r=1

2t� 2r + 1

t(2t+ 1)
= lim

t!1
t2

t(2t+ 1)
=

1

2
:

Similarly from Theorem 13,

t1Kn
=

tX
r=1

cos
�
(2t� 2r + 1)�

2t+ 1

�
=

1

2
:

Thus,

t1Kn
= lim

t!1

tX
r=1

2t� 2r + 1

t(2t+ 1)
=

tX
r=1

cos
�
(2t� 2r + 1)�

2t+ 1

�
=

1

2
:

5.4 Total t-Complete Eigen Sequence

Given the sequence

S :
1

2t+ 1
;

3

2t+ 1
;

5

2t+ 1
;

7

2t+ 1
; : : : ;

2t� 1

2t+ 1
;

we associate themirror image unit-pair partner belonging to the unit t-complete

eigen sequence :

S 00 :
2t

2t+ 1
;
2t� 2

2t+ 1
;
2t� 4

2t+ 1
;
2t� 6

2t+ 1
; : : : ;

2

2t+ 1
;

of the form c
2t+1

, where c is even. The sum of the corresponding pairs of terms of

S and S 00 yields:

2t� 2r + 1

2t+ 1
+

2r

2t+ 1
=

2t� 2r + 1 + 2r

2t+ 1

=
2t+ 1

2t+ 1
= 1 (r = 1; 2; 3; : : : ; t):
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Thus, (2t�2r+1
2t+1

; 2r
2t+1

) are unit mirror pairs. The union of S and S 00 yields the total

t-complete eigen sequence as follows:

S [ S 00 = 1

2t+ 1
;

2

2t+ 1
;

3

2t+ 1
;

4

2t+ 1
; : : : ;

2t� 1

2t+ 1
;

2t

2t+ 1
;

so that

2tX
k=1

k

2t+ 1
= t:

By joining neighbours and unit mirror pairs, a diagram for t = 3 similar to the

Farey sequence diagram is created in Figure 5:1 .

The average degree of the vertices of the complete graph on n = 2t + 1 vertices

Figure 5.1: Diagram for total t-complete eigen sequence for t = 3.

is n�1 = (2t+1)�1 = 2t. The �rst t-complete eigen sequence arises when n = 3

and t = 1.
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5.5 Summary

In this chapter, the trigonometric unit equations as regards adjacency spectrum

of Kn were formed, such that for each parameter t considered, a t-complete eigen

sequence of odd rational terms were generated for the interval (0; 1) and having

the form a
2t+1

. We also showed that the sum of the terms of this sequence is t
2t+1

,

and it converges to 1
2
as t goes to in�nity. Moreover, by joining the unit mirror

pairs, the diagram similar to the Farey sequence is obtained for t = 3.
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Chapter 6

Spanning Trees of Special Graphs

6.1 Introduction

The aim of this chapter is to study the methods of evaluating the number of

spanning trees of the special graphs discussed earlier in Chapter 2. The number

of spanning trees of the connected simple graphs considered in this dissertation

are well known and are not original. Methods to be considered include the use of

Kircho�'s Matrix Tree Theorem [24] and the Kelman and Chelnokov formular [23]

based on the evaluated Laplacian eigenvalues in Chapter 4 and special numbers

involving Fibonacci and Lucas numbers.

6.2 Spanning Trees Using Eigenvalues

We consider the matrix tree theorem useful for the evaluation of the number of

spanning trees of any given graph.

Theorem 14 (Kirchoff’s Matrix Tree Theorem) ([24], [23]) Let L(G) be the

Laplacian matrix of a connected simple graph, G, of order n. Then the num-
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ber of spanning trees in G, denoted as t(G), is given as:

t(G) =
1

n

n�1Y
k=1

�k: (6.1)

Proof

Let the n-eigenvalues of the Laplacian, L, of G be �1 � �2 � : : : � �n�1 � �n = 0.

Recall that from (3.2) and (3.3) respectively,

L = BBT and Ckk = det(L̂):

This implies that the entries of L were obtained from the correponding dot prod-

ucts of B and BT . Let Bk be a (n � 1) �m submatrix Bk obtained from B by

deleting its kth row. Recall from (3.5) that

Adjoint of L = aJ;

where a 2 R and J is a matrix whose entries are 1. Then, the fact that the

cofactors of L are all equal implies that:

Ckk = det(L̂) = det(BkB
T
k ): (6.2)

Let Bs
k be obtained as all possible (n� 1)� (n� 1) sets, s of (n� 1)-combinations

submatrices of Bk using the Cauchy-Binet formula [34], we have

Ckk = det(BkB
T
k )

=
X
s

det(Bs
k)� det(Bs

k)
T :

(6.3)
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But the determinant of any (n� 1)� (n� 1) submatrix of B is either �1 or zero

since each row of B contains +1;�1 and zero and sums up to zero. Hence,

Ckk = det(BkB
T
k )

=
X
s

det(Bs
k)� det(Bs

k)
T

=
X
s

�
det(Bs

k)
�2
; since det(Bs

k) = det(Bs
k)

T

=
X
s

�
det(Bs

k) = 0
�
+
X
s

�
det(Bs

k) = (�1)2
�
:

This implies that Ckk is the number of invertible (n� 1)� (n� 1) submatrices of

Bs
k. Since Ckk = det L̂, then the number of spanning trees of G, t(G), is Ckk, i.e.,

Ckk = t(G) = det(L̂): (6.4)

However, since all the cofactors are equal to the determinant of the reduced Lapla-

cian, L̂ and the coe�cients, bk in the characteristic polynomial also equals the sum

of the cofactors of order k, then we have

�(L) = (�� �1)(�� �2) : : : (�� �n)

= �(�� �1)(�� �2) : : : (�� �n�1) since�n = 0

= �n + bn�1�n�1 + : : :+ b1�+ b0;

where,

bk =
X
k

Ckk:

Hence,

bk = t(G) + t(G) + : : :+ t(G) (n times)

= n t(G):
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From Theorem 3, a generalisation for a Laplacian gives:

n�1Y
k=1

�k =
nX

k=1

det L̂k = bk:

Thus, the number of spanning trees can be expressed as:

t(G) =
1

n
bk

=
1

n

n�1Y
k=1

�k;

which completes the proof of the theorem. 2

6.3 Number of Spanning Trees of Some Classes

of Graphs

Complete Graph, Kn

This was �rst proved by Arthur Cayley in 1889 [2]. From Theorem 5, the non-zero

Laplacian eigenvalue of a complete graph is n of multiplicity n � 1. Hence, the

number of spanning trees in a complete graph, t(Kn), is given as:

t(Kn) =
1

n

n�1Y
i=1

�i

=
1

n

(n�1)timesz }| {
[n:n:n : : : n]

=
1

n
[nn�1]

= nn�2:
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Complete Bipartite Graph, Kp;q

In this section, we give an interesting proof using [24] based on linear algebraic

properties.

Theorem 15 [6] The number of spanning trees of Kp;q is given as

t(Kp;q) = det(L��) = 1:pq�1:qp�1

= pq�1qp�1:

Proof

Recall that from (4.4)

L(Kp;q) =

2
4 Dq �J
�JT Dp

3
5 ;

where Dq is a (p � p) diagonal matrix containing q in its diagonals and Dp is a

(q � q) diagonal matrix containing p in its diagonals. Let the reduced Laplacian

matrix, L�, obtained by removing the �rst row and �rst column, be

L�(Kp;q) =

2
4 D�

q �J�
(�J�)T D�

p

3
5 :

Here, D�
q = pIDq�, IDq� is an (q � 1) � (q � 1) identity matrix and (�J)� is an

(p � 1) � (q � 1) matrix. To obtain the number of spanning trees, our aim is to

�nd the determinant of the reduced Laplacian matrix.

Let P be given as

P =

2
4 I O

( 1
p
)I I

3
5 ;
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so that

PL� =

2
4 I O

( 1
p
)I I

3
5
2
4 D�

q (�J)�
(�J�)T D�

p

3
5 =

2
4D�

q �J�
O D�

p

3
5 ;

where,

D�
p =

2
66666664

q � 1=p �1=p : : : �1=p
�1=p q � 1=p : : : �1=p
...

...
. . .

...

�1=p �1=p : : : �1=p

3
77777775
p�p

:

In echelon form, D�
p becomes

D��
p =

2
66666664

1 1 : : : 1

0 q : : : 0
...

...
. . .

...

0 0 : : : q

3
77777775
p�p

:

Let

L�� = PL� =

2
4D�

q �J�
O D��

p

3
5 :

By taking � to be an eigenvalue, we have that

det(L�� � �Ip+q) = 0:

By substututing for L�� and Ip+q in det(L�� � �Ip+q) = 0, it follows that:

det(L�� � �Ip+q) = det
�0@D�

q �J�
O D��

p

1
A� �Ip+q

�
= 0

= det
�0@D�

q �J�
O D��

p

1
A�

0
@D�

� O

O D�
�

1
A� = 0

= det
�0@D�

q � �Ip�1 �J�
O D��

p � �Iq�1

1
A� = 0

= det(D�
q � �Ip�1)� det(D��

p � �Iq�1) = 0:
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This implies that if � is an eigenvalue of D�
q or D��

p , then det(D�
q � �Ip�1) = 0

or det(D��
p � �Iq�1) = 0. Hence, � is an eigenvalue of L��. But the eigenvalue of

D�
q is p of multiplicity (q � 1) and the eigenvalue of D��

p is q of multiplicity p� 1.

Hence, the eigenvalues of L�� are 1; pq�1, and qp�1. This theorem follows by an

application of the Kircho�'s Matrix Tree Theorem. 2

Path Graph, Pn

The path graph Pn has the adjacency matrix and Laplacian given as below whose

number of spanning trees is well known to be 1. Here, we give an interesting proof

using di�erence equations.

A(Pn) =

2
66666666666664

0 1 0 � � � 0 0

1 0 1 � � � 0 0

0 1 0 : : : 0 0
...

...
...

...
...

...

0 0 0 � � � 0 1

0 0 0 � � � 1 0

3
77777777777775
n�n

:

The Laplacian matrix can be given as:

L(Pn) =

2
66666666666664

1 �1 0 � � � 0 0

�1 2 �1 � � � 0 0

0 �1 2 : : : 0 0
...

...
...

...
...

...

0 0 0 � � � 2 �1
0 0 0 � � � �1 1

3
77777777777775
n�n

:
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By removing the �rst row and its corresponding column, we obtain the reduced

Laplacian matrix as

L̂(Pn) =

2
66666666666664

2 �1 0 � � � 0 0

�1 2 �1 � � � 0 0

0 �1 2 : : : 0 0
...

...
...

...
...

...

0 0 0 � � � 2 �1
0 0 0 � � � �1 1

3
77777777777775
(n�1)�(n�1)

:

When n = 1,

det L̂(P1) = 1:

When n = 2,

det L̂(P2) = j1j = 1:

Similarly, when n = 3,

det L̂(P3) =

������
2 �1
�1 1

������ = 1:

Let k < n. By mathematical induction, and assuming it is true for any k < n, by

expanding det L̂(Pn) along the �rst row, we have that

det L̂(Pn) = 2 det L̂(Pn�1) + det

2
4 �1 T

0 L̂(Pn�2)

3
5 ;

where T = [�1; 0; 0 : : : ; 0] and 0 is the zero vector.

Hence,

det L̂(Pn) = 2 det L̂(Pn�1)� det L̂(Pn�2):

Let det L̂(Pk) be Fk for k < n.

Then,

Fk = 2Fk�1 � Fk�2:
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This can be re-written as:

Fk+2 � 2Fk+1 + Fk = 0:

The solution to the di�erence equation is of the form Fk = �xk, so that the

associated characteristic equation is given as

x2 � 2x+ 1 = 0;

and having solutions x = 1(twice).

Therefore, Fk = �(constant). With the initial conditions of the di�erence equation

being F1 = F2 = 1, then detL̂(Pn) = 1. Hence, the number of spanning trees of

the path graph Pn is always 1. Thus,

t(Pn) =
1

n

n�1Y
i=1

�
�j(Pn)

�
j=1;:::;n�1

=
1

n

n�1Y
i=1

�
4 sin2(

�j

2n
)
�
j=1;:::;n�1

= 1;

where �j(Pn) = 0 for j = n.

Ladder Graph, Ln

The ladder graph, Ln, on n vertices have the Laplacian matrix L(Ln). Let the

vertices along the top of Ln be (u1; u2; : : : ; ut) and vertices along the bottom of

Ln be (v1; v2; : : : ; vt) for t =
n
2
. We derive the formula for the number of spanning

trees of the ladder as stated in [31]. We �rst give a lemma which will help us in

proving the theorem.

Lemma 7 Every spanning tree of Ln that contain both fui; ui+1g and fvi; vi+1g

does not contain fui+1; vi+1g, for i = 2; : : : ; n
2
. Let Ln�2 be the ladder graph
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obtained by removing any two opposite end vertices of Ln. Then, by adding

any of (i) � (iii) below to any spanning tree of Ln�2, we create a spanning

tree of Ln.

(i) A graph consisting of the edges fui�1; uig and fui; vig.

(ii) A graph consisting of the edges fui; vig and fvi�1; vig.

(iii) A graph consisting of the edges fui�1; uig and fvi�1:vig.

The graphs (i) to (iii) are shown in the graphs below.

. 2

Theorem 16 The number of spanning trees of the Ladder graph, Ln, is given

as:

t(Ln) =

p
3

6

�
(2 +

p
3)n � (2�

p
3)n

�
;

= 4
n�1Y
i;j=1

�
sin2(

�i

4
) + sin2(

�j

n
)
�
:
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Proof

Let

L(Ln) =

2
66666666666664

2 � � � 0 �1 � � � 0
...

. . .
...

. . .

0 � � � 2 0 � � � �1
�1 � � � 0 2 � � � 0
...

. . .
...

. . .
...

0 � � � �1 0 � � � 2

3
77777777777775
n�n

=

2
4 P �I
�I P

3
5 ;

where I is the identity matrix, and P can be expressed as

P =

2
66666666666664

2 �1 0 � � � 0 0

�1 3 �1 � � � 0 0

0 �1 3 : : : 0 0
...

...
...

. . .
...

...

0 0 0 � � � 3 �1
0 0 0 � � � �1 2

3
77777777777775
(n
2
�n

2
)

:

By deleting the last row and its corresponding last column of L(Ln), we obtain

the reduced Laplacian below

L̂(Ln) =

2
66666666666664

2 � � � 0 �1 � � � 0
...

. . .
...

. . .

0 � � � 2 0 � � � 0

�1 � � � 0 2 � � � 0
...

. . .
...

. . .
...

0 � � � � 1 0 0 � � � 3

3
77777777777775
(n�1)�(n�1)

:

Let the det L̂(Ln) = Ln. From Lemma 7, it follows that

Ln = 3Ln�1 + Sn�1; (6.5)
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where Sn�1 is the number of spanning trees that contain fu(n
2
)�1; v(n

2
)�1g and 3Ln�1

is the number of spanning trees obtained by adding any of the graphs in (i) to

(iii) above to form a spanning tree.

Similarly, by adding either of (i) and (ii) to a spanning tree of Ln which contains

fu(n
2
); v(n

2
)g, we obtain 2Ln�1, and by adding (iii) to a spanning tree of Ln that

contain fu(n
2
)�1; v(n

2
)�1g and then deleting the fu(n

2
)�1; v(n

2
)�1g, we obtain Sn�1.

Thus,

Sn = 2Ln�1 + Sn�1: (6.6)

By subtracting (6.6) from (6.5), we have

Ln � Sn = 3Ln�1 + Sn�1 � 2Ln�1 � Sn�1

= Ln�1:
(6.7)

This implies that

Sn = Ln � Ln�1;

so that

Sn�1 = Ln�1 � Ln�2:

Thus, (6.5) becomes

Ln = 4Ln�1 � Ln�2:

Solving the di�erence equation, we obtain the associated charateristic equation

x2 � 4x + 1 = 0 with roots x = 2 � p
3. Hence, the solution of the di�erence

equation becomes:

Ln = �(2 +
p
3)n + �(2�

p
3)n:

For n = 0, we get L0 = 0, and �+ � = 0, implying that � = ��.

For n = 1, we have L1 = 1, so that �(2 +
p
3) + �(2�p3) = 1.
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By solving for � and �, we obtain � = 1
2
p
3
and � = � 1

2
p
3
,

so that

Ln =
1

2
p
3
(2 +

p
3)n � 1

2
p
3
(2�

p
3)n;

or equivalently as

Ln =

p
3

6

�
(2 +

p
3)n � (2�

p
3)n

�
:

This completes the proof. 2

Cycle Graph, Cn

The number of spanning trees of the cycle graph is also known to be n. Here, we

con�rmed this using solutions of di�erence equations.

Theorem 17 The number of spanning trees of Cn is n.

Proof

The adjacency matrix of the cycle graph, Cn, can be expressed as

A(Cn) =

2
66666666666664

0 1 0 � � � 0 1

1 0 1 � � � 0 0

0 1 0 : : : 0 0
...

...
...

...
...

...

0 0 0 � � � 0 1

1 0 0 � � � 1 0

3
77777777777775
n�n

:
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Also, its Laplacian matrix can be given as

L(Cn) =

2
66666666666664

2 �1 0 � � � 0 �1
�1 2 �1 � � � 0 0

0 �1 2 : : : 0 0
...

...
...

...
...

...

0 0 0 � � � 2 �1
�1 0 0 � � � �1 2

3
77777777777775
n�n

:

Therefore, the reduced Laplacian matrix obtained by removing the �rst row and

�rst column is given as:

L̂(Cn) =

2
66666666666664

2 �1 0 � � � 0 0

�1 2 �1 � � � 0 0

0 �1 2 : : : 0 0
...

...
...

...
...

...

0 0 0 � � � 2 �1
0 0 0 � � � �1 2

3
77777777777775
(n�1)�(n�1)

:

The number of spanning trees of Cn can be expressed as

det L̂(Cn) = 2 det L̂(Cn�1) + det

2
4 �1 T

0 L̂(Cn�2)

3
5 ; (6.8)

where T = [�1; 0; 0; : : : ; 0]. Hence,

detL̂(Cn) = 2 det L̂(Cn�1)� det L̂(Cn�2): (6.9)

But,

det L̂(C2) = j2j = 2;

and

det L̂(C3) =

������
2 �1
�1 2

������ = 3:
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Let det L̂(Cn) be Yn. By substituting for Yn in (6.9) above, we have that

Yn � 2Yn�1 + Yn�2 = 0:

Let Yn = �yn be a solution to the di�erence equation. Then the characteristic

equation is given as

y2 � 2y + 1 = 0;

and having solutions y = 1(twice). Hence, the solution to the di�erence equation

becomes

Yn = �(1)n + �n(1)n = �+ �n:

For n = 2, we have Y2 = 2, and so 2 = �+ 2�.

For n = 3, we get Y3 = 3, so that 3 = �+ 3�.

By solving the two equations for both � and �, we have that: � = 0 and � = 1.

Hence, the solution to the di�erence equation is given as:

Yn = n

Therefore, the number of spanning trees of the cycle, Cn is n, as desired. 2

Note: The sun graph, SNn, on n vertices has the number of vertices, n
2
of its cycle

Cn
2
as the number of spanning trees, t(SNn).

Star Graph, Sn

The star graph is known to have the number of spanning trees as 1 since it is a

tree, whose Laplacian, denoted as L(Sn), can be expressed as follows
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L(Sn) =

2
66666666664

n� 1 �1 �1 � � � �1 �1
�1 1 0 � � � 0 0

�1 0 1 : : : 0 0
...

...
...

...
...

...

�1 0 0 � � � 0 1

3
77777777775
:

The number of spanning trees of Sn, denoted t(Sn) is the determinant, det L̂(Sn).

But,

L̂(Sn) =

2
66666666664

1 0 0 � � � 0 0

0 1 0 � � � 0 0

0 0 1 : : : 0 0
...

...
...

...
...

...

0 0 0 � � � 0 1

3
77777777775
n�n

:

Hence, t(Sn) = det In�1 = 1, since the reduced Laplacian matrix is the identity

matrix, In. Also,

t(Sn) =
1

n

n�1Y
i=1

�
�(Sn)

�

=
1

n

�
n:(1)n�2

�
= 1:

6.4 Spanning Trees of Graphs With Special Num-

bers

6.4.1 Fibonacci and Lucas Numbers

The number of spanning trees can be expressed in terms of special sequences of

numbers called the Fibonacci numbers, denoted as Fn, and the Lucas numbers,

denoted as Ln [20]. The numbers are derived as the sum of the preceeding pair of

terms. The set of the �rst ten Fibonacci and Lucas numbers respectively, can be
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expressed as follows [27] .

n 1 2 3 4 5 6 7 8 9 10

Fn 1 1 2 3 5 8 13 21 34 55

Ln 1 3 4 7 11 18 29 47 76 123

Thus, these sequences, for n � 3, can be de�ned as

Fn = Fn�2 + Fn�1

Ln = Ln�2 + Ln�1 jn�3;
(6.10)

or for n � 1 as

Fn+2 = Fn+1 + Fn

Ln+2 = Ln+1 + Ln jn�1:
(6.11)

From (6.10) and (6.11) above, we get

Fn = Fn�2 + Fn�1 = Fn+2 �Fn+1

Fn+2 + Fn�2 = (Fn+1 + Fn) + (Fn �Fn�1)

= 2Fn + Fn+1 �Fn�1:

(6.12)

But if Fn = Fn�2 + Fn�1, it implies that

Fn+1 = Fn�1 + Fn =) Fn = Fn+1 �Fn�1;

and hence,

Fn+2 + Fn�2 = 2Fn + Fn = 3Fn:

Therefore,

Fn+2 = 3Fn �Fn�2: (6.13)

From the table above, it is obvious that

Ln = Fn�1 + Fn+1:
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From (6.10) and (6.11),we obtain

Fn�2 + Fn�1 = Fn+2 �Fn+1;

Fn+2 �Fn�2 = Fn+1 + Fn�1 = Ln:

By subtracting Fn�2 from both sides, we have that

Fn+2 + Fn�2 = 3Fn � 2Fn�2

Ln = 3Fn � 2Fn�2:
(6.14)

From (6.10) and (6.14), it follows that

Fn+2 + Fn�2 = 3Fn � 2Fn�2

L2n = 3F2n � 2F2n�2 jn�3:
(6.15)

Di�erent formulae are known for the number of spanning trees of the wheel

and fan graphs. Sedlacek in 1969 [30] was the �rst to give explicit formulae for

spanning trees of �nite graphs. Here, we derived the number of spanning trees in

terms of Fibonacci and Lucas numbers following an argument due to Hilton [20].

Wheel Graph, Wn

Theorem 18 The number of spanning trees of the wheel graph, Wn, is given

as:

t(Wn) = L2n � 2; n � 1; ([20]; [31])

=
�
3 +

p
5

2

�n+1

�
�
3�p5

2

�n+1

� 2; n � 1; ([27])

=
n�1Y
j=1

�
1 + 4 sin2(

�j

n
)
�
; j = 1; 2; : : : ; n� 1:
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Proof

By the use of the Matrix Tree Theorem [24], we choose a vertex, say the hub, and

eliminate its corresponding row and column to get the reduced Laplacian matrix,

denoted as L̂(Wn), given generally as

L̂(Wn) =

2
66666666666664

3 �1 0 0 � � � 0 �1
�1 3 �1 0 � � � 0 0

0 �1 3 0 : : : 0 0
...

...
...

...
...

...
...

0 0 0 0 � � � 3 �1
�1 0 0 0 � � � �1 3

3
77777777777775
n�n

:

The reduced Laplacian matrix is such that it has 3's on the diagonal, -1's on the

upper and lower parts of the diagonal, -1's in the extreme upper and lower parts

of the matrix, and 0's elsewhere.

Let the reduced Laplacian matrix without the extreme -1's in the upper right and

lower left be given as

A�n =

2
66666666666664

3 �1 0 0 � � � 0 0

�1 3 �1 0 � � � 0 0

0 �1 3 0 : : : 0 0
...

...
...

...
...

...
...

0 0 0 0 � � � 3 �1
0 0 0 0 � � � �1 3

3
77777777777775
n�n

:

By the principle of mathematical induction, the determinants of An for any given

n = 1; 2; : : : ; k, is described below.

jA�1j = j3j = 3 = F4 = F2(1)+2;

jA�2j =
��� 3 �1
�1 3

��� = 8 = F6 = F2(2)+2:
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Hence, the result is true for n = 1 and n = 2. Assuming it is true for any positive

integer n > k, we have,

jA�nj = 3jA�n�1j � (�1)

����������������

�1 �1 0 : : : 0 0

0 3 �1 : : : 0 0
...

...
...

...
...

0 0 0 : : : 3 �1
0 0 0 : : : �1 3

����������������
(n�1)�(n�1)

= 3jA�n�1j+ (�1)

����������������

3 �1 0 : : : 0 0

�1 3 �1 : : : 0 0
...

... : : :
...

...

0 0 0 : : : 3 �1
0 0 0 : : : �1 3

����������������
(n�2)�(n�2)

= 3jA�n�1j � jA�n�2j:

By the use of the inductive hypothesis,

jA�nj = 3jA�n�1j � jA�n�2j

= 3F2(n�1)+2 �F2(n�2)+2

= 3F2n �F2n�2

= F2n+2 (for n � 1):

Hence, the determinant of the reduced Laplacian matrix, L̂n, is given as:

det(L̂n) =

�������������������

3 �1 0 0 � � � 0 �1
�1 3 �1 0 � � � 0 0

0 �1 3 0 : : : 0 0
...

...
...

...
...

...
...

0 0 0 0 � � � 3 �1
�1 0 0 0 � � � �1 3

�������������������
n�n
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= 3jA�n�1j+ jB�
n�1j+ (�1)(�1)n+1jC�

n�1j;

where,

jA�n�1j =

�������������������

3 �1 0 � � � 0 0

�1 3 �1 � � � 0 0

0 �1 3 : : : 0 0
...

...
...

...
...

...

0 0 0 � � � 3 �1
0 0 0 � � � �1 3

�������������������
(n�1)�(n�1)

;

jB�
n�1j =

�������������������

�1 �1 0 � � � 0 0

0 3 �1 � � � 0 0

0 �1 3 : : : 0 0
...

...
...

...
...

...

0 0 0 � � � 3 �1
�1 0 0 � � � �1 3

�������������������
(n�1)�(n�1)

;

jC�
n�1j =

�������������������

�1 3 �1 0 � � � 0 0

0 �1 3 �1 � � � 0 0

0 0 �1 3 : : : 0 0
...

...
...

...
...

...

0 0 0 0 � � � �1 3

�1 0 0 0 � � � 0 �1

�������������������
(n�1)�(n�1)

:

Solving for each of the determinants:

jB�
n�1j = (�1)

�������������������

3 �1 0 � � � 0 0

�1 3 �1 � � � 0 0

0 �1 3 : : : 0 0
...

...
...

...
...

...

0 0 0 � � � 3 �1
0 0 0 � � � �1 3

�������������������
(n�2)�(n�2)

+

�������������������

0 �1 0 � � � 0 0

0 3 �1 � � � 0 0

0 �1 3 : : : 0 0
...

...
...

...
...

...

0 0 0 � � � 3 �1
�1 0 0 � � � �1 3

�������������������
(n�2)�(n�2)
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= (�1)jA�n�2j+ (�1)n�1

����������������

�1 0 0 � � � 0 0

3 �1 0 � � � 0 0

�1 3 �1 : : : 0 0
...

...
...

...
...

...

0 0 0 � � � 0 �1

����������������
:

Thus,

jB�
n�1j = (�1)jA�n�2j+ (�1)n�1(�1)n�2

= (�1)jA�n�2j+ (�1)2n�3

= (�1)jA�n�2j � 1

= �F2(n�2)+2 � 1

= �F2n�2 � 1:

Similarly,

jC�
n�1j = (�1)n�1 + (�1)(�1)n�2

�������������������

3 �1 0 � � � 0 0

�1 3 �1 � � � 0 0

0 �1 3 : : : 0 0
...

...
...

...
...

...

0 0 0 � � � 3 �1
0 0 0 � � � �1 3

�������������������
(n�2)�(n�2)

;

so that

jC�
n�1j = (�1)n�1 + (�1)(�1)n�2jA�n�2j

= (�1)n�1 + (�1)n�1jA�n�2j

= (�1)n�1
�
1 + jA�n�2j

�

= (�1)n�1
�
1 + F2n�2

�
:
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It follows that,

det(L̂n) = 3jA�n�1j+ jB�
n�1j+ (�1)n+2jC�

n�1j

= 3jA�n�1j+ (�F2n�2 � 1) + (�1)n+2(�1)n�1(1 + F2n�2)

= 3F2n �F2n�2 � 1 + (�1)2n+1(1 + F2n�2)

= 3F2n �F2n�2 � 1 + (�1)(1 + F2n�2)

= 3F2n �F2n�2 � 1 +�1�F2n�2

= 3F2n � 2F2n�2 � 2

= L2n � 2;

as desired. 2

Hence, the number of spanning trees of a wheel can be evaluated using the

matrix tree theorem to be L2n � 2, where L2n is the (2n)th Lucas number.

Fan Graph, Fn

Similarly as in the case of the wheel graph, we state and prove by derivation the

number of spanning trees of the fan graph in terms of Fibonacci numbers.

Theorem 19 The number of spanning trees of the fan graph, Fn, is given as

t(Fn) = F2n; n � 1; ([20]; [27])

=
1

2
p
5

�
(3 +

p
5)n+1 � (3�

p
5)n+1

�
; n � 0; ([5])

=
n�1Y
j=1

�
1 + 4 sin2(

�j

2n
)
�
; j = 1; 2; : : : ; n� 1:
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Proof

The reduced Laplacian of the fan graph, Fn, is expressed as:

L̂(Fn) =

2
66666666666664

2 �1 0 0 � � � 0 0

�1 3 �1 0 � � � 0 0

0 �1 3 0 : : : 0 0
...

...
...

...
...

...
...

0 0 0 0 � � � 3 �1
0 0 0 0 � � � �1 2

3
77777777777775
n�n

:

The determinant of L̂(Fn) can be expressed as

det L̂(Fn) =

�������������������

2 �1 0 0 � � � 0 0

�1 3 �1 0 � � � 0 0

0 �1 3 0 : : : 0 0
...

...
...

...
...

...
...

0 0 0 0 � � � 3 �1
0 0 0 0 � � � �1 2

�������������������
n�n

= 2jTn�1j+

2
66666666666664

�1 �1 0 0 � � � 0 0

0 3 �1 0 � � � 0 0

0 �1 3 0 : : : 0 0
...

...
...

...
...

...
...

0 0 0 0 � � � 3 �1
0 0 0 0 � � � �1 2

3
77777777777775
(n�1)�(n�1)

= 2jTn�1j+ (�1)

2
66666666666664

3 �1 0 0 � � � 0 0

�1 3 �1 0 � � � 0 0

0 �1 3 0 : : : 0 0
...

...
...

...
...

...
...

0 0 0 0 � � � 3 �1
0 0 0 0 � � � �1 2

3
77777777777775
(n�2)�(n�2)

;
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where

Tn =

2
66666666666664

3 �1 0 0 � � � 0 0

�1 3 �1 0 � � � 0 0

0 �1 3 0 : : : 0 0
...

...
...

...
...

...
...

0 0 0 0 � � � 3 �1
0 0 0 0 � � � �1 2

3
77777777777775
n�n

;

so that we obtain the di�erence equation:

det L̂(Fn) = 2jTn�1j � jTn�2j; n � 3: (6.16)

Using the principle of mathematical induction, the determinants of Tn for any

given positive integer n > k are as follows.

jT1j = j2j = 2 = F3 = F2(1)+1;

jT2j = j 3 �1
�1 2 j = 5 = F5 = F2(2)+1;

jT3j =
���� 3 �1 0
�1 3 �1
0 �1 2

���� = 13 = F7 = F2(3)+1:

By inductive hypothesis, assuming that it is true for n > k, we have

jTnj = 3jTn�1j � (�1)

����������������

�1 �1 0 : : : 0 0

0 3 �1 : : : 0 0
...

...
...

...
...

0 0 0 : : : 3 �1
0 0 0 : : : �1 3

����������������
(n�1)�(n�1)

= 3jTn�1j+ (�1)

����������������

3 �1 0 : : : 0 0

�1 3 �1 : : : 0 0
...

... : : :
...

...

0 0 0 : : : 3 �1
0 0 0 : : : �1 3

����������������
(n�2)�(n�2)
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= 3jTn�1j � jTn�2j:

Hence,

jTnj = 3jTn�1j � jTn�2j

= 3F2(n�1)+1 �F2(n�2)+1

= 3F2n�1 �F2n�3:

(6.17)

Recall from (6.13) that 3F2n�1 �F2n�3 = F2n+1. It follows that for n � 1,

jTnj = F2n+1:

By substituting for jTij in (6.16), we have that

det L̂(Fn) = 2jTn�1j � jTn�2j

= 2F2(n�1)+1 �F2(n�2)+1

= 2F2n�1 �F2n�3

= F2n; n � 1:

(6.18)

Also, jTnj satis�es

jTnj � 3jTn�1j+ jTn�2j = 0:

This implies that F2n also satis�es the recurrence relation

F2n � 3F2n�1 + F2n�2 = 0:

The associated characteristic equation is given as x2 � 3x + 1 = 0, with roots

x = 3�p5
2

. Let fi = F2n. Hence, we have

F2n = fi = �(
3 +

p
5

2
)i + �(

3�p5
2

)i:
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For i = 0, we get f0 = F0 = 0 so that �+ � = 0, i.e., � = ��.

For i = 1, we obtain f1 = F2 = 1 and so �(3+
p
5

2
) + �(3�

p
5

2
) = 1.

Thus,

�(
3 +

p
5

2
)� �(

3�p5
2

) = 1:

Therefore,

� =
1p
5

and � = � 1p
5
:

We conclude that

F2n =
1

2
p
5

�
(3 +

p
5)n+1 � (3�

p
5)n+1

�
:

This proves the theorem. 2

We summarize all the results proved above in Table 1 below.

Graph, G t(G)

Kn nn�2

Kp;q pq�1qp�1

Pn 1

Cn n

Sn 1

Wn L2n � 2 =
�
3+
p
5

2

�n+1

�
�
3�p5

2

�n+1

� 2

Fn F2n =
1

2
p
5

�
(3 +

p
5)n+1 � (3�p5)n+1

�
Ln

p
3
6

�
(2 +

p
3)n � (2�p3)n

�

Table 1: Number of spanning trees, t(G) of special graphs

6.5 Summary

In this chapter, we studied the di�erent methods of obtaining formulae for the

number of spanning trees, t(G), of the special graphs, G, discussed in the previous
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chapters. We further studied methods involving the use of the graphs' Laplacian

eigenvalues and the representations of the wheel and fan graphs in terms of Fi-

bonacci and Lucas numbers. In the next chapter, we will introduce a new concept

of a ratio, namely, tree-cover ratios, asymptotes and areas of classes of graphs,

involving spanning trees and vertex coverings.
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Chapter 7

Tree-Cover Ratios, Asymptotes

and Areas of Graphs

7.1 Introduction

This chapter is entirely original and is based on the paper, Winter and Adewusi

[38]. In this chapter, we describe the tree-cover ratios, asymptotes and areas of

classes of graphs. This involves spanning trees and minimum vertex covering sets

of the graphs discussed in Chapter 5. This was motivated by the fact that such a

ratio, associated with a complete graph, has an asymptotic convergence which is

identical to that of the secretary problem.

7.2 Ratios

Di�erent types of ratios and their asymptotic values connected to graphs have

been investigated in recent times. In this section, we study some of the known

graph ratios and provide the motivation for the tree-cover ratio.
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The Hall Ratio

Cropper et al. in [9] were the �rst to study the Hall ratio of a graph which was

motivated by the problems of listing coloring. The asymptotic values of Hall ratios

of graphs had also been studied by Gabor in [15] and by Cropper and Gy�arf�as in

[10].

Definition 12 (Independent Set)

Let G be a graph of order n. Let U � V , such that no two vertices in U are

adjacent. Then, U is said to be an Independent Set of G. The cardinality

of the largest independent set of G is called the Independence Number of

G, denoted by �(G).

Definition 13 The ratio between �(G) and jV j, denoted as IR(G), is called

the Independence Ratio of G.

That is,

IR(G) =
�(G)

jV j :

The Hall Ratio of G, denoted as �(G), is de�ned as the ratio of the number of

vertices and the independence number maximized over all subgraphs of G [15],

i.e.,

�(G) = max
� jHj
�(H)

; H � G
�
:

Definition 14 (Vertex Cover)

Let G = (V;E) be a graph and V 0 � V . We say that V 0 is a vertex cover if for

every edge e = uv 2 E, u 2 V 0 or v 2 V 0 or both u; v 2 V 0. A Minimum Vertex
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Cover is the vertex cover with the smallest cardinality and the cardinality of

the minimum vertex cover is called the Vertex Cover Number of G, denoted

as � (G).

By de�nition,

�(G) + � (G) = jV j:

For the complete graph Kn, �(Kn) = 1 and � (Kn) = n�1, so that the asymptotic

convergence of the Hall ratio of Kn is given as

lim
n!1 �(Kn) = lim

n!1

�
max

�
n

1

��
=1:

Central Radius Ratio

The central radius ratio, described by Buckley [8], is characterised by the closeness

of some sets of vertices to other vertices in the graph.

Let G = (V;E) be a graph and v1; v2 2 V . The distance, d(v1; v2), between v1 and

v2, is the length of a shortest v1 � v2 path in G.

The Eccentricity of any vertex, v in G, denoted as �(v), is the largest out of all

the distances, d(v; vi) between v and any other vertex vi in G. The Radius of G,

denoted as r(G), is the minimum of all the eccentricities of vertices in G.

That is,

r(G) = min
v2V

�(v):

Definition 15 (Center of a Graph) [8] The center of G, C(G), is the set of

all vertices in G with minimum eccentricity. The Central Radius Ratio,

c(G) is de�ned as

c(G) =
jC(G)j
jV (G)j ; 0 < c(G) � 1:
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The graphs with c(G) = 1 are said to be self-centered. The complete graph Kn has

all vertices connected to every other vertex in it. Hence, for any vi; vj 2 V (Kn),

d(vi; vj) = 1 and �(Kn) = 1. The central ratio, c(Kn), is then
n
n
= 1 and the

asymptotic convergence of c(Kn) is 1.

Edge Expansion Ratio

The edge expansion ratio, also known as the Cheeger constant, as explained by

Alon and Spencer in [1], is a measure of the degree of a graph. They argued

that by taking all possible nonempty subsets S � V of order at most n
2
, and edge

boundary of S (i.e., the number of \out" edges from S), denoted as �(S), then the

edge expansion ratio, ex(G), is the value of the smallest ratio between S and �(S).

Definition 16 ([1]) The edge expansion ratio, ex(G), of a graph G of order n

is given as the ratio

ex(G) = min
0<jSj�n

2

j�(S)j
jSj :

For the complete graph on n vertices, jS(Kn)j = n
2
and j�(S)(Kn)j = n

2
:n
2
= n2

4
,

so that ex(Kn) =
n
2
. Since this is a function of n, the idea of asymptotes can be

considered as n becomes large. Thus,

lim
n!1 ex(Kn) =1:

The Secretary Problem

We use the historical discussion and assumptions of the problem by T.S. Ferguson

in [13], where n denotes the number of applicants applying for the secretary job,

90



with the objective of maximixing the probability of selecting the best applicant.

Let n be the number of candidates and r the selected candidates, where, r 2

f1; 2; : : : ; ng. Assume that the probability of selecting r candidates from n candi-

dates is Pn(r) and that Sr denotes the event of success of selecting r candidates.

Let xn be the order of arrival of the candidates. Since the candidates arrive in a

random order, then xn is uniformly distributed. Hence, the conditional probability

of selecting the best candidate given the order of arrival is

Pn(Srjxn = i) =

8<
: 0; if i < r;

r�1
i�1 if i � r:

This implies that if the best applicant i is less than r, then i is rejected. But given

that i � r, then i is selected if and only if the best applicant among the remaining

i� 1 applicants, is among the �rst r � 1 that were rejected.

Therefore,

Pn(Sr) =
nX
i=1

P(xn):P(Srjxn = i)

=
nX
i=r

1

n
:
r � 1

i� 1

=
r � 1

n

nX
i=r

1

i� 1
:

By the use of Riemann Sum, we have that

Pn(Sr) = x
Z 1

x

1

t
dt = �x lnx;

By di�erentiating Pn(Sr), we get

P
0
n(Sr) = �1� lnx;
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where

x = lim
n�!1

r

n
; t =

i

n
:

Hence, at the point where P0n = 0, x = e�1: This implies that as n becomes very

large, the probability of selecting the best candidate tends to e�1.

We now provide a graph theoretical variation of the secretary problem with con-

vergent ratio identical to the cut-o� number e�1, and we use it to motivate for the

de�nition of a tree cover ratio of classes of graphs.

Gambling problem with social decision making and

guaranteed win

We have n gamblers each coming to the casino with 1 million dollars. We assume

that these individuals do not know each other, and they agree to the conditions of

the game determined by the casino. The casino guarantees that a pair will leave

with 2 million dollars each, and selects 1 participant randomly, say ni.

This ni is given 2 million (so he/she has a total of 3 million dollars) by the

casino and ni must decide who to share the 3 million dollars with by social inter-

action with the other n� 1 participants. This is done with exactly one spanning

tree which he/she arbitrarily selects. Only ni and the casino knows who has been

selected. This participant must decide who he/she "likes" the most through the

spanning tree. The casino then selects, randomly, an individual (other than ni)

from the remaining n � 1 participants. This individual, say nk, must decide,

through communication involving all possible spanning trees determined by the
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n� 1 participants, if he/she has been chosen by ni.

A correct guess, i.e., a perfect match (in terms of the individual chosen by ni)

means that both ni and nk walk away with 2 million dollars each and the game

is over. If nk is correct (in terms of not being chosen by ni), he keeps his million,

remains in the game but cannot play to win and is an inactive participant, and

then the casino selects the next participant. Otherwise, if nk is wrong (he believes

he has been chosen by nk, but was not), he loses a million and the casino then

selects a next participant (with nk remaining as part of the communication span-

ning trees but cannot be chosen again-an inactive participant).

The last case is when nk is wrong (he believes he has been chosen when he has not

been chosen by ni). In this case, since there must be a perfect match, the casino

makes the changes as per 7(iv) below.

Conditions:

1. All n individuals are communicationally linked by edges of a complete graph,

and have not known each other before the game.

2. Every individual can communicate with the others with a two way directed

edge- i.e., we have a complete digraph, G, representing their connections.

3. Individual ni is selected at random by the casino. This individual then

interacts with all the n�1 others by selecting any one of the possible spanning
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trees: either directly to each of the individuals (a star graph= a spanning

tree), connecting from ni to the remaining n � 1 vertices. Or, for example,

via all possible paths to nj, i.e., through discussing with the individuals

along each path to nj.

4. Once ni has been found through a spanning tree, the individual n� he wants

to share the money with, the money is kept to this individual n�. The

probability of �nding a match will be:

P =
1

t(Kn)
=

1

nn�2
;

where t(Kn) = nn�2 is the possible number of spanning trees of the complete

graph.

5. We now remove ni and work with the complete subgraph, H of G, induced

by the remaining n � 1 active individuals (vertices, which is a covering set

of G), and select a n1
k (as a leader) randomly, such that each of the n � 1

individuals in this subgraph have interacted with ni through some spanning

tree.

6. This individual leader n1
k interacts with the remaining n � 2 vertices using

all possible spanning trees on the set of n� 1 vertices and decides if he has

or has not been chosen by ni (conforming or contradicting ni's choice).

7. This individual n1
k must go through all possible spanning trees t(Kn�1) before

making a decision.
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(i.) If n1
k decides through social interaction with others that he is chosen/not

chosen by ni and is correct ( a perfect match), the pair ni and n1
k walk

away with 2 million dollars each and the game ends.

(ii.) If n1
k is correct (a match) in the \ni has not chosen me" case, then the

contestant keeps his million and the casino selects the next participant

other than n1
k (n

1
k cannot be chosen again but remains in the game as

a communicator or inactive participant or vertex).

(iii.) If n1
k is wrong (a non- match) by saying that he has been chosen, when

in fact he has not been chosen. He loses the million to the casino and the

casino proceed randomly to the next active vertex n2
k in the subgraph

H, excluding n1
k.

(iv.) If n1
k is wrong by saying that he has not been chosen by ni, when in fact

he has been chosen by ni, then n1
k= n�. If this is the last contestant,

then the casino declares a perfect match and the game ends. Otherwise,

he keeps his million and the casino swaps him with an arbitrary active

participant njk (njk becomes inactive but keeps his million), and the

casino proceed randomly to the next active vertex n2
k in the subgraph

H (the participant now know that he is n� so will eventually be a perfect

matched with ni). The new leader n2
k selected randomly by the casino,

interacts with the other active individuals in the same way n1
k did and

decides if he is chosen or not by ni.
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(v) The game stops when a perfect match is found. If no perfect match has

been found after n� 2 contestants in the set of n� 1 contestants, then

the last contestant allows for a perfect match by default.

For each of the n� 1 vertices in H, we have (n� 1)n�3 spanning trees, so that the

probability of arriving at a perfect match of ni with n� will be according to the

following theorem.

Theorem 20 The probability of arriving at a perfect match of ni with n�

through spanning trees in the gambling problem above is

�
n� 1

n

�n�2
=
jSjt(H(S))

t(Kn)
:

Proof

This probability of a perfect match through the spanning trees is given as: (prob-

ability of selecting (ni)) � (probability of n1
k in H having a perfect match with n�

through t(Kn�1) spanning trees OR n2
k having a perfect match with n� through

t(Kn�1) spanning trees OR : : : OR nn�1k having a perfect match with n� through

spanning trees).
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Mathematically, this can be expressed as:

Pn =
1

t(Kn)
�

(n�1)timesz }| {�
t(Kn�1) + t(Kn�1) + : : :+ t(Kn�1)

�

=
1

t(Kn)
� (n� 1)t(Kn�1)

=
(n� 1)(n� 1)n�3

nn�2
=
�n� 1

n

�n�2

� jSjt(H(S))

t(Kn)
;

where S is the number of vertices in the minimum vertex covering set of Kn, H(S)

is the complete subgraph induced by the remaining n�1 vertices and t(Kn) is the

number of spanning trees of Kn. 2

Corollary 4 The probability ratio
�
n�1
n

�n�2
= jSjt(H(S))

t(Kn)
of the gambling prob-

lem converges to e�1. (Same as the probability of selecting the best applicant

in the secretary problem).

Proof

Let

q =
�
n� 1

n

�n�2
:

Then,

ln q =
ln(1� 1

n
)

1
n�2

:

As n!1, ln q tends to �1. Hence, q tends to e�1 as n goes to 1. 2

The ratio jSjt(H(S))
t(Kn)

involving spanning trees and vertex cover, S, with its con-

vergence property, provides the motivation for the de�nition of the tree-cover ratio
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and asymptotes of classes of graphs presented below.

7.3 Tree Cover Ratios and Asymptotes

Definition 17 (Tree Cover Ratio)

Let t(G) be the number of spanning trees of a graph, G. Let S be a minimum

vertex cover of G and H(S) be the subgraph of G induced by S. Then, the

tree cover ratio of G with respect to S is de�ned as

tc(G)s =
jSjt(H(S))

t(G)
;

where jSj is the cardinality of S.

The following cases might arise:

(i) If H(S) is connected, then t(H(S)) is the number of spanning trees.

(ii) IfH(S) consists of n isolated vertices, then t(H(S)) is de�ned as t(H(S)) = 1.

(iii) If H(S) is disconnected, a spanning forest may be considered involving the

components of H(S). This case would not be considered in the dissertation.

Definition 18 (Tree Cover Asymptotes) Let the tree cover ratio be de�ned

as a function on the order n of the graph, i.e.,

tc(G)s =
jSjt(H(S))

t(G)
= f(n):

Then, the tree cover asymptote of f(n), denoted as Asyp(G)s with respect to

S, is de�ned as

Asyp(G)s = lim
n�!1 f(n):
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The asymptote describes the behaviour of the tree cover ratio of the graph when

the order is very large.

7.3.1 An Ideal communication problem and tree-cover asymp-

tote.

In [7], the communication problem is to select a minimal set of placed sensor de-

vices in a service area so that the entire service area is accessible by the minimal

set of sensors. Finding the minimal set of sensors is modelled as a vertex-cover

problem, where the vertex-cover set facilitates the communications between the

sensors. The tree-cover asymptote may therefore have application where commu-

nication is involved in networks with a large number of vertices, i.e., in extreme

networks.

IfH(S), in the tree-cover de�nition, is connected, andM represents the vertices

of G not in S, then each vertex of M is connected directly by an edge (an out-

edge) to a vertex of H(S) which is part of a spanning tree. Thus, the ease of

communication between vertices of H(S) and M through the out edges, involving

spanning trees, may be represented by this tree-cover ratio � the \ideal" case,

involving large number of vertices, being when this tree-cover asymptotic ratio of

e�1 is the smallest (and positive)- which we believe is the case of the complete

graphs.

This tree-cover ratio, in communication networks, allows for the investigation of

the outward social connectivity from a vertex covering, with the rest of the network

when large number of vertices are involved.
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7.3.2 Examples of Tree Cover Ratios and Asymptotes

Complete graph

Let Kn be a complete graph on n vertices. Any subset of n� 1 vertices of Kn is a

minimum vertex cover of Kn. Thus, jSj = n�1 and t(Kn�1) = (n�1)n�3. Hence,

the tree cover ratio of Kn is given as

tc(Kn)s =
jSjt(Kn�1)
t(Kn)

=
(n� 1)(n� 1)n�3

nn�2

=
�n� 1

n

�n�2
:

Note that �n� 1

n

�n�2
=
�n� 1

n

�n
� 1

(1� 1
n
)2
�
�n� 1

n

�n
:

Therefore, for very large n, the tree cover asymptotes of Kn can be evaluated as

Asyp(Kn)s = lim
n!1

�n� 1

n

�n

= lim
n!1

� 1X
i=0

 
n

i

!��1
n

�n�

� lim
n!1

�
[1� 1

n
]

2!
� [1� 3

n
+ 2

n2
]

3!
+ : : :

�

=
1

2!
� 1

3!
+

1

4!
� : : :

= e�1:

Thus, the tree-cover asymptote for Kn is Asyp(Kn)s = e�1:
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Complete split bipartite graph

Consider a complete split bipartite graph, Kn
2
;n
2
, of order n, whose number of

spanning trees, t(Kn
2
;n
2
), is (n

2
)n�2. The minimum vertex cover consists of jSj = n

2

elements such that t(H(S)) = 1.

Hence, the tree cover ratio of the complete split bipartite graph is given as

tc(Kn
2
;n
2
)s =

jSjt(H(S))

t(Kn
2
;n
2
)

=
n
2
:1

(n
2
)n�2

= (
2

n
)n�3:

It follows that the tree cover asymptote of Kn
2
;n
2
is

Asyp(Kn
2
;n
2
)s = lim

n!1

�
(
2

n
)n�3

�
= 0:

Cycle graph

The cycle on n vertices has n spanning trees. For n even, the minimum vertex

cover, S consists of n
2
isolated alternating vertices. Thus, t(H(S)) = 1 and the

tree cover ratio of Cn is given as:

tc(Cn)s =
jSjt(H(S))

t(Cn)

=
n
2
:1

n
=

1

2
:

It follows that the tree cover asymptotes of Cn is

Asyp(Cn)s = lim
n!1

�
1

2

�
=

1

2
:
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For n odd, jSj = n
2
+1 but the number of spanning forest has to be considered for

t(H(S)).

Sun graph

The sun graph, SNn, on n vertices has n
2
spanning trees. The minimum vertex

set S consists of all the vertices of Cn
2
.

Thus, jSj = n
2
, t(SNn

2
) = n

2
, and the tree-cover ratio is

tc(SNn)s =
jSjt(SNn

2
)

t(SNn)
=

n
2
:n
2

n
2

=
n

2
;

so that the tree-cover asymptotes of tc(SNn)s is,

Asyp(SNn) = lim
n!1(

n

2
) =1:

Path graph

From (6.3), t(Pn) = 1. For n even, the minimum vertex cover, S, consists of n
2

vertices while for n odd, S consists of n�1
2

vertices.

Hence,

tc(Pn)s =
jSjt(H(S))

t(Pn)
=

8<
:

n
2

if n is even;
n�1
2

if n is odd:

It follows that Asyp(Pn)s =1.

Wheel graph

Recall that the wheel graph, Wn, is the join between Cn and K1. For n even, Wn

has odd order and the minimum vertex cover of Wn consists of the alternating
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vertices of Cn and the center vertex K1. But the number of spanning trees of Wn

on n+ 1 vertices is given as (3+
p
5

2
)n+1 + (3�

p
5

2
)n+1 � 2. Then,

tc(Wn)s =
jSjt(H(S))

t(Wn)

=
n+ 1

(3+
p
5

2
)n+1 + (3�

p
5

2
)n+1 � 2

:

As n increases,

tc(Wn)s � n+ 1

2(3
2
)n+1

:

The tree cover asymptote of Wn is

Asyp(Wn)s = lim
n!1

�
n+ 1

2(3
2
)n+1

�

= lim
n!1

n+ 1

3(1:5)n
= 0:

For n odd, a disconnected subgraph H(S) is obtained, which is not considered in

this thesis.

Ladder graph

Recall that the ladder graph, Ln, of order n, can be obtained as the Cartesian

product of two path graphs one of which has only one edge. Let the vertices in

the upper path be P 0 = fu1; u2; : : : ; un
2
g and lower path be P 00 = fv1; v2; : : : ; vn

2
g.

Then, the minimum vertex cover, S, can be obtained by taking alternating vertices

from P 0 and P 00. Hence, S = fu1; v2; : : : ; un
2
�1; vn

2
g and jSj = n

2
. Since t(H(S)) = 1

and t(Ln) =
p
3
6

�
(2 +

p
3)n � (2�p3)n

�
, it follows that the tree cover ratio of Ln
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is given as:

tc(Ln)s =
jSjt(H(S))

t(Ln)

=
n
2p

3
6

�
(2 +

p
3)n � (2�p3)n

�

=
n
p
3

(2 +
p
3)n � (2�p3)n :

For n large,

tc(Ln)s � n
p
3

2(
p
3)n

:

Thus, the tree cover asymptotes of Ln is given as

Asyp(Ln)s = lim
n!1

�
n
p
3

2(
p
3)n

�

= lim
n!1

�
n

2
(
p
3)1�n

�
= 0:

Fan graph

From (19), t(Fn) =
1

2
p
5

�
(3 +

p
5)n+1 � (3�p5)n+1

�
. For n even, the minimum

vertex cover, S, consists of n
2
+1 vertices while for n odd, S consists of n+1

2
vertices.

Hence, for n large,

tc(Fn)s =
jSjt(H(S))

t(Fn)
�

8>><
>>:

(n+2)
2

�p
5
5

�n
; if n is even;

(n+1)
2

�p
5
5

�n
; if n is odd:

It follows that Asyp(Fn)s = 0.
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Star graph

The star graph, Sn, consists of the center vertex as the minimum vertex cover.

Thus, jSj = 1, t(H(S)) = 1, and t(Sn) = 1. Hence, the tree cover ratio and

asymptote respectively are given as:

tc(Sn)s =
jSjt(H(S))

t(Fn)
= 1;

and

Asyp(Sn)s = 1:

Star graph of k rays of length 2

The minimum vertex cover S of the star graph of k rays of length 2 consists of

vertices of distance 1 from the center of the graph. Its cardinality is jSj = n�1
2
, so

that the tree cover ratio is

tc(Sk(n; 2))s =
n�1
2
:1

1
=
n� 1

2
:

It follows that the tree cover asymptotes is

Asyp(Sk(n; 2))s = lim
n!1

�
n� 1

2

�
=1:

We summarize all the results above in the next theorem.

Theorem 21 The tree cover ratios and asymptotes of the following graphs

are given below.
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Graphs, G tc(G)s Asyp(G)s

Kn

�
n�1
n

�n�2
e�1

Kn
2
;n
2

(n
2
)n�1 0

Cn(n even) 1
2

1
2

Pn
n
2
(n even), n�1

2
(n odd) 1

Wn
n+1

( 3+
p
5

2
)n+1+( 3�

p
5

2
)n+1�2 , (n even) 0

Ln
n
p
3

(2+
p
3)n�(2�p3)n

0

Fn
p
5(n+2)

(3+
p
5)n+1�(3�p5)n+1 (n even ),

p
5(n+1)

(3+
p
5)n+1�(3�p5)n+1 (n odd) 0

S(n;1) 1 1

Sk(n; 2)
n�1
2

1
SNn

n
2

1

Table 2: Tree-cover ratios and asymptotes of classes of graphs

7.4 Tree-Cover Areas of Graphs

Definition 19 Let � be the class of all special graphs considered above and

tc(G)s =
jSjt(H(S))

t(G)
= f(n), for each G 2 �. Then the tree-cover area, denoted

as Ar(�), is de�ned as

Ar(�) =
2m

n

Z
f(n)dn:

where 2m
n

is the average degree of the graph and
R
f(n)dn represents the tree-

cover height of the graph, denoted as ht(G).

7.4.1 Examples of tree-cover areas of graphs

1. Kn

Ar(Kn) = (n� 1)
Z �n� 1

n

�n�2
dn:
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2. Kn
2
;n
2

Ar(Kn
2
;n
2
) =

n

2

Z �
2

n

�n�3
dn:

3. Cn

Ar(Cn) =
2n

n

Z 1

2
dn:

4. SNn

Ar(SNn) = 2
Z
ndn:

5. Pn

Ar(Pn) =

8<
:

2(n�1)
n

R
n
2
dn if n is even;

n�1
n

R
n
2
dn if n is odd:

6. Sn

Ar(Sn) =
2(n� 1)

n

Z
dn:

7. Sk(n; 2)

Ar(Sk(n; 2)) =
2(n� 1)

n

Z n� 1

2
dn:

8. Ln

Ar(Ln) =
3n� 4

n

Z n
p
3

(2 +
p
3)n � (2�p3)ndn:
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9. Fn

Ar(Fn) =

8><
>:

2(2n�1)
n

R p
5(n+2)

(3+
p
5)n+1�(3�p5)n+1dn if n is even;

2(2n�1)
n

R p
5(n+1)

(3+
p
5)n+1�(3�p5)n+1dn if n is odd:

10. Wn

Ar(Wn) =
4n

n+ 1

Z n+ 1

(3+
p
5

2
)n+1 + (3�

p
5

2
)n+1 � 2

dn:

By the use of Trapezoid rule, we obtained the following tree cover heights and

areas for the range n = 2 to n = 6.

� ht(�) Ar(�)

Kn 2.4372 12.1860

Kn

2
;
n

2
2.2260 6.6780

Cn 1.5000 3.0000

Pn, n even 8.0000 12.0000

Pn, n odd 8.0000 6.0000

Sn 4.0000 6.6667

Ln 0.2576 0.3965

Fn, n even 0.1787 0.5754

Fn, n odd 0.2284 0.7343

Wn 0.2364 0.7820

Table 3: Tree-cover heights and areas for classes of graphs

The tree-cover area could be used as alternative con�rmation of the use of

complete graphs as representations in the ideal communication network problem

described in [7]. It follows from Table 3 above that a placed sensor device in a
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service area modelled as a complete graph has higher degree of accessibility to

other set of sensors than other connected graphs considered.

7.5 Summary

In this chapter, we combined the concept of the number of spanning trees, t(G),

together with the vertex cover number, S, to derive explicit formulas for the tree

cover ratios, and then use these formulas to evaluate the asymptotes of these

graphs as n becomes large. However, for the star graph of k rays of length 2,

the asymptote as n becomes large is not de�ned for n even. This concept was

motivated by the graph theoretical interpretations of the secretary and gambling

problems which converges to the same asymptotes as the complete graph. We

de�ned the notions of a tree-cover, asymptotes and area, and speci�cally showed

that for regular classes of graphs, the complete graph has the largest tree-cover

area indicating its robustness and strong connectivity property.
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Chapter 8

Conclusion

The main objective of this dissertation is to study the parameters of graphs such

as its eigenvalues (adjacency and Laplacian) and the number of spanning trees

of special classes of simple connected graphs, G, using the Kircho�'s matrix tree

theorem and to apply these formulas in the evaluation of the newly introduced

concept of tree-cover ratios, asymptotes and areas [38].

Moreover, to achieve this objective, basic graph terminologies such as subgraphs,

spanning subgraphs, trees, branch, rays, and the Cartesian product of two graphs

were de�ned for better understanding of the other chapters. Furthermore, the dif-

ferent types of classes of simple �nite connected graphs termed \special graphs",

that are commonly found in many real-life applications, were studied and were

also used mainly as examples in this dissertation.

In particular, we presented an overview of the basic linear algebra concepts for the

structural approach to representation of graphs. The purpose of this study was

to describe the various methods of representing connected graphs. We started by
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giving brief de�nitions involving groups and �elds, and then generalizing it to the

Galois �elds representation of graphs modulo 2. Based on this Galois represen-

tation, we evaluated the number of possible subgraphs associated with graphs as

2m, where m is the size of the graph. Here, we showed the signi�cance of these

subgraphs with an example on K4, that the number of spanning trees, t(G) � 2m.

Furthermore, we gave an overview of matrix representations involving the inci-

dence matrix, adjacency matrix and the graph Laplacian which are instrumental

for evaluating the eigenvalues of graphs.

However, with the use of the properties of the adjacency spectrum, we studied the

characteristic polynomial which contains important information about the graph

especially the determinant, trace and eigenvalues of the matrix. In addition, the

relationship between the adjacency and Laplacian eigenvalues for k-regular graphs

was found to be
nY
i=1

�i =
nY
i=1

(k � �i);

where �i is the Laplacian eigenvalues and �i is the adjacency eigenvalues, for

i = 1; 2; : : : ; n. Moreso, the derived generalised eigenvalues of the Teoplitz matrix

was found to be as

�j = a+ b
p
bc
�
cos

�
�j

n+ 1

��
;

for a; b and c constants.

Further, the trigonometric unit equations based on adjacency spectrum ofKn were

investigated and formed, such that for each parameter t considered, a t-complete
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eigen sequence of odd rational terms were generated for the interval (0; 1) and

having the form a
2t+1

. We also showed that the sum of the terms of this sequence

is t2

2t+1
, and it converges to 1

2
as t goes to in�nity. Additionally, by joining the

unit mirror pairs, we obtained the diagram similar to the Farey sequence for t = 3.

However, apart from the adjacency eigenvalues, the other work which was done in

this dissertation has been on the Laplacian eigenvalues and its use for the deriva-

tion of the number of spanning trees of some \special graphs" in Table 1. We

showed that the wheel and fan graphs' numbers of spanning trees can be repre-

sented in terms of Lucas numbers and the Fibonacci sequence respectively.

Most importantly, we combined the concept of the number of spanning trees,

t(G), together with the vertex cover number, S, to derive explicit formulas for

the tree cover ratios, and then used these formulas to evaluate the asymptotes

of these graphs as n becomes large. For the star graph with k rays of length 2,

the asymptote as n becomes large is not de�ned for n even. This concept was

motivated by the graph theoretical interpretations of the secretary and gambling

problems which converges to the same asymptotes, e�1 as the complete graph. We

speci�cally showed that for regular classes of graphs, the complete graph has the

largest tree cover area indicating its robustness and strong connectivity property

as shown in Tables 2 and 3.
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In future research work, we propose the evaluation of the number of spanning

trees using the Galois �elds modulo 2 by combinatorial and algorithmic methods.

Also, the tree-cover ratios of graphs involving disconnected subgraphs, H(S) of G

can be investigated where the number of spanning forest, t(H(S)), is evaluated.

Future research may also involve considering the tree cover ratio of the comple-

ments of the classes of graphs discussed here. Also, the idea of the reciprocal of

the tree cover ratio,

[tc(G)]�1 =
t(G)

jSjt(H(S))
;

can be used as alternative measure for the study of graph connectivity. Moreso,

it should be observed that the complete graph Kn has many untapped special

qualities which would be interesting to explore. It would also be interesting to

�nd a lower bound on tree-cover asymptotes for connected graphs. We mention

here that it is conceivable that the complete graph has the smallest value amongst

all connected graphs with a positive tree-cover asymptote.

113



Bibliography

[1] Alon N. and Spencer J.H., "9.2. Eigenvalues and Expanders". The Prob-

abilistic Method, (3rd ed.), John Wiley and Sons, (2011).

[2] Cayley A., A Theorem on Trees, Quart. Jour. Math. 23, (1889), 376-378.

[3] Beezer R. A., A First Course in Linear Algerbra. Department of Math-

ematics and Computer Science, University of Puget Sound, Version 0.70,

(2006), 439-452.

[4] Biggs N., Algebraic Graph Theory. Cambridge Tracts in Mathematics 67,

Cambridge University Press, (1974).

[5] Bogdanowicz Z. R., Formulars for the Number of Spanning Trees of a

Fan, Applied Maths. Sci. Vol. 2, No. 16, (2008), 781-786.

[6] Bondy J. A. and Murty U.S.R., Graph Theory with Applications, North-

Holland, (1976), ISBN 0-444-19451-7.

[7] Bousquet-M'elouy M. and Weller K., Asymptotic properties of some

minor-closed classes of graphs, DMTCS proc. (2013), 629 { 640

[8] Buckley F. The central ratio of a graph, Discrete Mathematics, 38(1),

(1982), 17-21.

114



[9] Cropper M. and Gy�arf�as A., Jacobson M.S and Lehel J., Hall Ratio of

Graphs and Hypergraphs, Les cahiers du laboratoire Leibniz, Grenoble,No

17, (2000).

[10] Cropper M. and Gy�arf�as A. and Lehel J., Hall Ratio of the Mycielski

Graphs, Discrete Mathematics 306, (2006),1988 { 1990.

[11] Narsingh Deo, Graph Theory with Applications to Engineering and Com-

puter Science, Prentice-Hall Inc., N.J, (1974).

[12] Beineke L. W., Wilson R. J. and Cameron P. J., Topics in Algebraic

Graph Theory, Cambrigde Univ. Press., (2004).

[13] Ferguson T.S., Who solved the secretary problem?, Statistical Science.

4(3) (1989), 282 { 296.

[14] Fox J., Spectral Graph Theory, Lecture Notes, MAT 307 Combinatorics.

[15] Gabor S., Asymptotic values of the Hall-ratio for graph powers, Discrete

Mathematics. 306 (19-20), (2006), 2593-2601.

[16] Goldreich O., Basic Facts about Expander Graphs, Studies in Complexity

and Cryptography, (2011), 451-464.

[17] Harary F.,The Determinant of the Adjacency Matrix of a Graph, SIAM

Rev., 4 (1962), 202-210.

[18] Hardy G.H. and Wright E.M. , An Introduction to the Theory of Num-

bers, Fifth Edition, Oxford University Press (1979).

115



[19] Harris J. L, Hirst J.L. and Mossinghoff M., Combinatorics and Graph

Theory, Springer, New York, Second Edition, (2008).

[20] Hilton A.J.W., Spanning Trees and Fibonacci and Lucas Numbers, Uni-

versity of Reading, England, Proceedings of the Oxford Conference of Com-

binatorics, (1972), 259-262.

[21] Jessop C. L., Matrices of Graphs and Designs with Emphasis on their

Eigen-pair Balances Characteristics, (2014), M.Sc. Dissertation, University

of Kwazulu-Natal, Durban.

[22] Jordan C., Sur les assemblages des lignes, J. Reine Angew, Math. 70

(1869), 185{190.

[23] Kelmans A.K. and Chelnokov V. M., A Certain Polynomial of a Graph

and Graphs with an Extremal Number of Trees, Jour. Comb. Theory B,

16 (1974), 197-214.

[24] Kirchoff G., �Uber die Au�osung der Gleichungen auf, welche man beider

Untersuchung der linearen Verteiluncy galvanisher Str�ome gef�uhrt, Ann.

Phy. Chem.,72 (1847), 497-508.

[25] Koshy T., Elementary Number Theory with Applications, Academic of

Elsevier, UK, (2007), 37-38.

[26] Lee S.L. , Manvel B.E. and Yeh Y.N., Eigenvectors and Eigenvalues of

Some Spectra Graphs IV. Multilevel Circulants, International Journal of

Quantum Chemistry, Vol 41, (1992), 105-116.

116



[27] Rebman R.K., The Sequence: 1 5 16 45 121 320 . . . , in Combinatorics,

California State University, Hayward, (1975).

[28] Rosen K. H., Discrete Mathematics and its Applications, Monmouth Uni-

versity, McGaw-Hill Publishers, New York, Seventh Edition, (2012), 335-338.

[29] Sachs H., �Uber Teiler, Faktoren und charakteristischePolynome von-

Graphen, II, Wiss.Z.Techn.Hochsch.Ilmenau, 13, (1967), 405-412.

[30] Sedlacek J., On the Spanning Trees of Finite Graphs, Cas. Pestovani Mat.,

94 (1969), 217-221.

[31] Sedlacek J., Lucas Numbers in Graph Theory, Mathematics (Geometry

and Graph theory), Chech., Univ. Karlova, Prague (1970), 111- 115.

[32] Temperly H.N.V., On the Mutual Cancellation of Cluster Integrals in

Mayer's Fugacity Series, (1964), Proc. Phys. Soc. 83, 3-16.

[33] Thulasiraman K., Swamy M. N. S., Graphs: Theory and Algorithms,

Concordia University, A Wiley-Interscience Plublications, Montreal, Canada

(1992).

[34] van Lint J.H. and Wilson R.M., A Course in Combinatorics, Cambridge

University Press (1992).

[35] West D. B., Introduction to Graph Theory, Second Edition, Englewoods

Cli�s, NJ:Prentice-Hall, (2000).

117



[36] Schwede K., MATH 186-1 Lecture Note, Worksheet on Similar Matrices,

Eigenvectors and Characteristic polynomials, Penn State Univ., (Winter,

2010).

[37] Winter P. A. and Jessop C. L., Integral eigen-pair balanced classes of

graphs: ratios, asymptotes, density and areas, (2013), viXra:1305.0050.

[38] Winter P. A. and Adewusi F.J., Tree-Cover Ratio of Graphs with Asymp-

totic Convergence Identical to that of the Secretary Problem, Advances in

Maths: Sci. Jour., Vol 3. No 1, (2014), 47-61.

[39] Yueh W. C. and Cheng S.S., Explicit Eigenvalues and Inverses of Tridi-

agonal Teoplitz Matrices With Four Perturbed Corners, Australian Math-

ematical Society, 49 (2007), 361-387.

118


	Preface
	Abstract
	Declaration 1: Plagiarism
	Declaration 2: Publications
	Dedication
	List of Symbols
	Introduction
	Graph Theory Terminologies
	Introduction
	Graph Terminologies
	Special Types of Graphs
	Summary

	Representations of Graphs
	Introduction
	Basic Linear Algebra
	Brief Definitions
	Vector Spaces Associated With Graphs
	Galois Fields Representation of Graphs

	Matrix Representations of Graphs
	Relationship Between Adjacency Matrix, Incidence Matrix and the Graph Laplacian.

	Summary

	Eigenvalues Associated With Graphs
	Introduction
	Adjacency Eigenvalues
	Properties of the Adjacency Spectrum

	Laplacian Eigenvalues
	Properties of the Laplacian Eigenvalues

	Laplacian Eigenvalues of Some Special Graphs
	Graphs With Teoplitz Laplacian Matrices

	Summary

	t-Complete Eigen Sequences
	Introduction
	Formation of the t-Complete Eigen Sequence
	t-Complete-Eigen Ratio
	Total t-Complete Eigen Sequence
	Summary

	Spanning Trees of Special Graphs
	Introduction
	Spanning Trees Using Eigenvalues
	Number of Spanning Trees of Some Classes of Graphs
	Spanning Trees of Graphs With Special Numbers
	Fibonacci and Lucas Numbers

	Summary

	Tree-Cover Ratios, Asymptotes and Areas of Graphs
	Introduction
	Ratios
	Tree Cover Ratios and Asymptotes
	An Ideal communication problem and tree-cover asymptote.
	Examples of Tree Cover Ratios and Asymptotes

	Tree-Cover Areas of Graphs
	Examples of tree-cover areas of graphs

	Summary

	Conclusion
	Bibliography

